scipy.signal.fftconvolve#
- scipy.signal.fftconvolve(in1, in2, mode='full', axes=None)[source]#
- Convolve two N-dimensional arrays using FFT. - Convolve in1 and in2 using the fast Fourier transform method, with the output size determined by the mode argument. - This is generally much faster than - convolvefor large arrays (n > ~500), but can be slower when only a few output values are needed, and can only output float arrays (int or object array inputs will be cast to float).- As of v0.19, - convolveautomatically chooses this method or the direct method based on an estimation of which is faster.- Parameters
- in1array_like
- First input. 
- in2array_like
- Second input. Should have the same number of dimensions as in1. 
- modestr {‘full’, ‘valid’, ‘same’}, optional
- A string indicating the size of the output: - full
- The output is the full discrete linear convolution of the inputs. (Default) 
- valid
- The output consists only of those elements that do not rely on the zero-padding. In ‘valid’ mode, either in1 or in2 must be at least as large as the other in every dimension. 
- same
- The output is the same size as in1, centered with respect to the ‘full’ output. 
 
- axesint or array_like of ints or None, optional
- Axes over which to compute the convolution. The default is over all axes. 
 
- Returns
- outarray
- An N-dimensional array containing a subset of the discrete linear convolution of in1 with in2. 
 
 - See also - convolve
- Uses the direct convolution or FFT convolution algorithm depending on which is faster. 
- oaconvolve
- Uses the overlap-add method to do convolution, which is generally faster when the input arrays are large and significantly different in size. 
 - Examples - Autocorrelation of white noise is an impulse. - >>> from scipy import signal >>> rng = np.random.default_rng() >>> sig = rng.standard_normal(1000) >>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full') - >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1) >>> ax_orig.plot(sig) >>> ax_orig.set_title('White noise') >>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr) >>> ax_mag.set_title('Autocorrelation') >>> fig.tight_layout() >>> fig.show() - Gaussian blur implemented using FFT convolution. Notice the dark borders around the image, due to the zero-padding beyond its boundaries. The - convolve2dfunction allows for other types of image boundaries, but is far slower.- >>> from scipy import misc >>> face = misc.face(gray=True) >>> kernel = np.outer(signal.windows.gaussian(70, 8), ... signal.windows.gaussian(70, 8)) >>> blurred = signal.fftconvolve(face, kernel, mode='same') - >>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(3, 1, ... figsize=(6, 15)) >>> ax_orig.imshow(face, cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_kernel.imshow(kernel, cmap='gray') >>> ax_kernel.set_title('Gaussian kernel') >>> ax_kernel.set_axis_off() >>> ax_blurred.imshow(blurred, cmap='gray') >>> ax_blurred.set_title('Blurred') >>> ax_blurred.set_axis_off() >>> fig.show()   