scipy.signal.correlate2d#
- scipy.signal.correlate2d(in1, in2, mode='full', boundary='fill', fillvalue=0)[source]#
- Cross-correlate two 2-dimensional arrays. - Cross correlate in1 and in2 with output size determined by mode, and boundary conditions determined by boundary and fillvalue. - Parameters
- in1array_like
- First input. 
- in2array_like
- Second input. Should have the same number of dimensions as in1. 
- modestr {‘full’, ‘valid’, ‘same’}, optional
- A string indicating the size of the output: - full
- The output is the full discrete linear cross-correlation of the inputs. (Default) 
- valid
- The output consists only of those elements that do not rely on the zero-padding. In ‘valid’ mode, either in1 or in2 must be at least as large as the other in every dimension. 
- same
- The output is the same size as in1, centered with respect to the ‘full’ output. 
 
- boundarystr {‘fill’, ‘wrap’, ‘symm’}, optional
- A flag indicating how to handle boundaries: - fill
- pad input arrays with fillvalue. (default) 
- wrap
- circular boundary conditions. 
- symm
- symmetrical boundary conditions. 
 
- fillvaluescalar, optional
- Value to fill pad input arrays with. Default is 0. 
 
- Returns
- correlate2dndarray
- A 2-dimensional array containing a subset of the discrete linear cross-correlation of in1 with in2. 
 
 - Notes - When using “same” mode with even-length inputs, the outputs of - correlateand- correlate2ddiffer: There is a 1-index offset between them.- Examples - Use 2D cross-correlation to find the location of a template in a noisy image: - >>> from scipy import signal >>> from scipy import misc >>> rng = np.random.default_rng() >>> face = misc.face(gray=True) - misc.face(gray=True).mean() >>> template = np.copy(face[300:365, 670:750]) # right eye >>> template -= template.mean() >>> face = face + rng.standard_normal(face.shape) * 50 # add noise >>> corr = signal.correlate2d(face, template, boundary='symm', mode='same') >>> y, x = np.unravel_index(np.argmax(corr), corr.shape) # find the match - >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_template, ax_corr) = plt.subplots(3, 1, ... figsize=(6, 15)) >>> ax_orig.imshow(face, cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_template.imshow(template, cmap='gray') >>> ax_template.set_title('Template') >>> ax_template.set_axis_off() >>> ax_corr.imshow(corr, cmap='gray') >>> ax_corr.set_title('Cross-correlation') >>> ax_corr.set_axis_off() >>> ax_orig.plot(x, y, 'ro') >>> fig.show() 