CONTENTS

1 Getting started .. 5
 1.1 Installation .. 5
 1.2 Tutorials .. 6

2 SciPy User Guide ... 7
 2.1 Introduction .. 7
 2.1.1 SciPy Organization ... 8
 2.1.2 Finding Documentation .. 8
 2.2 Special functions (scipy.special) 10
 2.2.1 Bessel functions of real order (jv, jn_zeros) 10
 2.2.2 Cython Bindings for Special Functions (scipy.special.cython_special) ... 11
 2.2.3 Functions not in scipy.special 14
 2.3 Integration (scipy.integrate) 14
 2.3.1 General integration (quad) 15
 2.3.2 General multiple integration (dblquad, tplquad, nquad) 17
 2.3.3 Gaussian quadrature .. 18
 2.3.4 Romberg Integration .. 18
 2.3.5 Integrating using Samples 18
 2.3.6 Faster integration using low-level callback functions 19
 2.3.7 Ordinary differential equations (solve_ivp) 20
 2.4 Optimization (scipy.optimize) 25
 2.4.1 Unconstrained minimization of multivariate scalar functions (minimize) 27
 2.4.2 Constrained minimization of multivariate scalar functions (minimize) 33
 2.4.3 Global optimization .. 37
 2.4.4 Least-squares minimization (least_squares) 40
 2.4.5 Univariate function minimizers (minimize_scalar) 43
 2.4.6 Custom minimizers ... 43
 2.4.7 Root finding ... 45
 2.4.8 Linear programming (linprog) 51
 2.4.9 Assignment problems ... 54
 2.5 Interpolation (scipy.interpolate) 55
 2.5.1 1-D interpolation (interp1d) 56
 2.5.2 Multivariate data interpolation (griddata) 58
 2.5.3 Spline interpolation ... 60
 2.5.4 Using radial basis functions for smoothing/interpolation 68
 2.6 Fourier Transforms (scipy.fft) 70
 2.6.1 Fast Fourier transforms 71
 2.6.2 Discrete Cosine Transforms 76
 2.6.3 Discrete Sine Transforms 79
 2.6.4 Fast Hankel Transform 81
2.6.5 References .. 81
2.7 Signal Processing (scipy.signal) 81
2.7.1 B-splines .. 81
2.7.2 Filtering .. 84
2.7.3 Spectral Analysis ... 97
2.7.4 Detrend ... 101
2.8 Linear Algebra (scipy.linalg) 102
2.8.1 scipy.linalg vs numpy.linalg 102
2.8.2 numpy.matrix vs 2-D numpy.ndarray 103
2.8.3 Basic routines .. 104
2.8.4 Decompositions .. 109
2.8.5 Matrix functions .. 113
2.8.6 Special matrices .. 115
2.9 Sparse eigenvalue problems with ARPACK 116
2.9.1 Introduction ... 116
2.9.2 Basic functionality .. 116
2.9.3 Shift-invert mode ... 117
2.9.4 Examples .. 117
2.9.5 Use of LinearOperator 119
2.9.6 References .. 121
2.10 Compressed Sparse Graph Routines (scipy.sparse.csgraph) 121
2.10.1 Example: Word Ladders 121
2.11 Spatial data structures and algorithms (scipy.spatial) 124
2.11.1 Delaunay triangulations 124
2.11.2 Convex hulls ... 126
2.11.3 Voronoi diagrams .. 127
2.12 Statistics (scipy.stats) 131
2.12.1 Introduction ... 131
2.12.2 Random variables .. 225
2.12.3 Building specific distributions 232
2.12.4 Analysing one sample 235
2.12.5 Comparing two samples 239
2.12.6 Kernel density estimation 240
2.12.7 Quasi-Monte Carlo .. 253
2.13 Multidimensional image processing (scipy.ndimage) 260
2.13.1 Introduction ... 260
2.13.2 Properties shared by all functions 260
2.13.3 Filter functions .. 261
2.13.4 Interpolation functions 270
2.13.5 Morphology .. 274
2.13.6 Distance transforms 277
2.13.7 Segmentation and labeling 278
2.13.8 Object measurements 281
2.13.9 Extending scipy.ndimage in C 283
2.13.10 References .. 289
2.14 File IO (scipy.io) .. 289
2.14.1 MATLAB files .. 289
2.14.2 IDL files .. 294
2.14.3 Matrix Market files 294
2.14.4 WAV sound files (scipy.io.wavfile) 294
2.14.5 ARFF files (scipy.io.arff) 294
2.14.6 Netcdf .. 295

3 SciPy API 297
4 Developer Documentation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 SciPy Code of Conduct</td>
<td>3065</td>
</tr>
<tr>
<td>4.2 Ways to Contribute</td>
<td>3067</td>
</tr>
<tr>
<td>4.3 Development environment quicker start guide (Linux and Mac)</td>
<td>3071</td>
</tr>
<tr>
<td>4.4 SciPy contributor guide</td>
<td>3071</td>
</tr>
<tr>
<td>4.5 SciPy Roadmap</td>
<td>3073</td>
</tr>
<tr>
<td>4.6 Detailed SciPy Roadmap</td>
<td>3074</td>
</tr>
<tr>
<td>4.7 Toolchain Roadmap</td>
<td>3081</td>
</tr>
<tr>
<td>4.8 SciPy Core Developer Guide</td>
<td>3086</td>
</tr>
<tr>
<td>4.9 Deciding on new features</td>
<td>3087</td>
</tr>
<tr>
<td>4.10 SciPy API Development Guide</td>
<td>3098</td>
</tr>
<tr>
<td>4.11 SciPy Project Governance</td>
<td>3101</td>
</tr>
<tr>
<td>4.12 Development environment quickstart guide (macOS)</td>
<td>3106</td>
</tr>
<tr>
<td>4.13 Development environment quickstart guide (Ubuntu)</td>
<td>3108</td>
</tr>
<tr>
<td>4.14 Development workflow</td>
<td>3110</td>
</tr>
<tr>
<td>4.15 PEP8 and SciPy</td>
<td>3115</td>
</tr>
<tr>
<td>4.16 Rendering Documentation with Sphinx</td>
<td>3115</td>
</tr>
<tr>
<td>4.17 Running SciPy Tests Locally</td>
<td>3116</td>
</tr>
<tr>
<td>4.18 Benchmarking SciPy with airspeed velocity</td>
<td>3118</td>
</tr>
<tr>
<td>4.19 Adding Cython to SciPy</td>
<td>3120</td>
</tr>
<tr>
<td>4.20 Public Cython APIs</td>
<td>3122</td>
</tr>
<tr>
<td>4.21 Adding New Methods, Functions, and Classes</td>
<td>3124</td>
</tr>
<tr>
<td>4.22 Continuous Integration</td>
<td>3126</td>
</tr>
</tbody>
</table>

5 Release Notes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 SciPy 1.8.0 Release Notes</td>
<td>3129</td>
</tr>
<tr>
<td>5.2 SciPy 1.7.3 Release Notes</td>
<td>3152</td>
</tr>
<tr>
<td>5.3 SciPy 1.7.2 Release Notes</td>
<td>3153</td>
</tr>
<tr>
<td>5.4 SciPy 1.7.1 Release Notes</td>
<td>3155</td>
</tr>
<tr>
<td>5.5 SciPy 1.7.0 Release Notes</td>
<td>3156</td>
</tr>
<tr>
<td>5.6 SciPy 1.6.3 Release Notes</td>
<td>3181</td>
</tr>
<tr>
<td>5.7 SciPy 1.6.2 Release Notes</td>
<td>3182</td>
</tr>
<tr>
<td>5.8 SciPy 1.6.1 Release Notes</td>
<td>3183</td>
</tr>
<tr>
<td>5.9 SciPy 1.6.0 Release Notes</td>
<td>3185</td>
</tr>
<tr>
<td>5.10 SciPy 1.5.4 Release Notes</td>
<td>3208</td>
</tr>
<tr>
<td>5.11 SciPy 1.5.3 Release Notes</td>
<td>3209</td>
</tr>
<tr>
<td>5.12 SciPy 1.5.2 Release Notes</td>
<td>3211</td>
</tr>
<tr>
<td>5.13 SciPy 1.5.1 Release Notes</td>
<td>3213</td>
</tr>
<tr>
<td>5.14 SciPy 1.5.0 Release Notes</td>
<td>3214</td>
</tr>
<tr>
<td>5.15 SciPy 1.4.1 Release Notes</td>
<td>3242</td>
</tr>
<tr>
<td>5.16 SciPy 1.4.0 Release Notes</td>
<td>3243</td>
</tr>
<tr>
<td>5.17 SciPy 1.3.3 Release Notes</td>
<td>3267</td>
</tr>
<tr>
<td>5.18 SciPy 1.3.2 Release Notes</td>
<td>3268</td>
</tr>
<tr>
<td>5.19 SciPy 1.3.1 Release Notes</td>
<td>3269</td>
</tr>
<tr>
<td>5.20 SciPy 1.3.0 Release Notes</td>
<td>3271</td>
</tr>
<tr>
<td>5.21 SciPy 1.2.3 Release Notes</td>
<td>3271</td>
</tr>
<tr>
<td>5.22 SciPy 1.2.2 Release Notes</td>
<td>3285</td>
</tr>
<tr>
<td>5.23 SciPy 1.2.1 Release Notes</td>
<td>3287</td>
</tr>
<tr>
<td>5.24 SciPy 1.2.0 Release Notes</td>
<td>3288</td>
</tr>
</tbody>
</table>
SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering.

Getting started

New to SciPy? Check out the getting started guides. They contain an introduction to SciPy’s main concepts and links to additional tutorials.

To the getting started guides
User guide

The user guide provides in-depth information on the key concepts of SciPy with useful background information and explanation.

To the user guide
API reference

The reference guide contains a detailed description of the SciPy API. The reference describes how the methods work and which parameters can be used. It assumes that you have an understanding of the key concepts.

To the reference guide
Developer guide

Saw a typo in the documentation? Want to improve existing functionalities? The contributing guidelines will guide you through the process of improving SciPy.

To the development guide
1.1 Installation

Working with conda?
SciPy is part of the Anaconda distribution and can be installed with Anaconda or Miniconda:

```
conda install scipy
```

Prefer pip?
SciPy can be installed via pip from PyPI.

```
pip install scipy
```

In-depth instructions?
Installing a specific version? Installing from source? Check the advanced installation page.

Learn more

1.1.1 Installing and upgrading

Information on how to install SciPy and/or the SciPy Stack (a larger set of packages for scientific computing with Python) can be found at https://scipy.org/install/.

It is recommended that users use a scientific Python distribution or binaries for their platform. If building from source is required, documentation about that can be found at building/index.

If you already have SciPy installed and want to upgrade to a newer version, use the same install mechanism as you have used to install SciPy before. Before upgrading to a newer version, it is recommended to check that your own code does not use any deprecated SciPy functionality. To do so, run your code with `python -Wd`.
1.2 Tutorials

For a quick overview of SciPy functionality, see the user guide.

You can also refer to the reference guide for an exhaustive list of all what is possible with SciPy.
2.1 Introduction

SciPy is a collection of mathematical algorithms and convenience functions built on the NumPy extension of Python. It adds significant power to the interactive Python session by providing the user with high-level commands and classes for manipulating and visualizing data. With SciPy, an interactive Python session becomes a data-processing and system-prototyping environment rivaling systems, such as MATLAB, IDL, Octave, R-Lab, and SciLab.

The additional benefit of basing SciPy on Python is that this also makes a powerful programming language available for use in developing sophisticated programs and specialized applications. Scientific applications using SciPy benefit from the development of additional modules in numerous niches of the software landscape by developers across the world. Everything from parallel programming to web and data-base subroutines and classes have been made available to the Python programmer. All of this power is available in addition to the mathematical libraries in SciPy.

This tutorial will acquaint the first-time user of SciPy with some of its most important features. It assumes that the user has already installed the SciPy package. Some general Python facility is also assumed, such as could be acquired by working through the Python distribution’s Tutorial. For further introductory help the user is directed to the NumPy documentation.

For brevity and convenience, we will often assume that the main packages (numpy, scipy, and matplotlib) have been imported as:

```python
>>> import numpy as np
>>> import matplotlib as mpl
>>> import matplotlib.pyplot as plt
```

These are the import conventions that our community has adopted after discussion on public mailing lists. You will see these conventions used throughout NumPy and SciPy source code and documentation. While we obviously don’t require you to follow these conventions in your own code, it is highly recommended.
2.1.1 SciPy Organization

SciPy is organized into subpackages covering different scientific computing domains. These are summarized in the following table:

<table>
<thead>
<tr>
<th>Subpackage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster</td>
<td>Clustering algorithms</td>
</tr>
<tr>
<td>constants</td>
<td>Physical and mathematical constants</td>
</tr>
<tr>
<td>fftpack</td>
<td>Fast Fourier Transform routines</td>
</tr>
<tr>
<td>integrate</td>
<td>Integration and ordinary differential equation solvers</td>
</tr>
<tr>
<td>interpolate</td>
<td>Interpolation and smoothing splines</td>
</tr>
<tr>
<td>io</td>
<td>Input and Output</td>
</tr>
<tr>
<td>linalg</td>
<td>Linear algebra</td>
</tr>
<tr>
<td>ndimage</td>
<td>N-dimensional image processing</td>
</tr>
<tr>
<td>odr</td>
<td>Orthogonal distance regression</td>
</tr>
<tr>
<td>optimize</td>
<td>Optimization and root-finding routines</td>
</tr>
<tr>
<td>signal</td>
<td>Signal processing</td>
</tr>
<tr>
<td>sparse</td>
<td>Sparse matrices and associated routines</td>
</tr>
<tr>
<td>spatial</td>
<td>Spatial data structures and algorithms</td>
</tr>
<tr>
<td>special</td>
<td>Special functions</td>
</tr>
<tr>
<td>stats</td>
<td>Statistical distributions and functions</td>
</tr>
</tbody>
</table>

SciPy sub-packages need to be imported separately, for example:

```python
>>> from scipy import linalg, optimize
```

Because of their ubiquitousness, some of the functions in these subpackages are also made available in the `scipy` namespace to ease their use in interactive sessions and programs. In addition, many basic array functions from `numpy` are also available at the top-level of the `scipy` package. Before looking at the sub-packages individually, we will first look at some of these common functions.

2.1.2 Finding Documentation

SciPy and NumPy have documentation versions in both HTML and PDF format available at https://docs.scipy.org/, that cover nearly all available functionality. However, this documentation is still work-in-progress and some parts may be incomplete or sparse. As we are a volunteer organization and depend on the community for growth, your participation - everything from providing feedback to improving the documentation and code - is welcome and actively encouraged.

Python’s documentation strings are used in SciPy for on-line documentation. There are two methods for reading them and getting help. One is Python’s command `help` in the `pydoc` module. Entering this command with no arguments (i.e. `>>> help`) launches an interactive help session that allows searching through the keywords and modules available to all of Python. Secondly, running the command `help(obj)` with an object as the argument displays that object’s calling signature, and documentation string.

The `pydoc` method of `help` is sophisticated but uses a pager to display the text. Sometimes this can interfere with the terminal within which you are running the interactive session. A `numpy/scipy`-specific help system is also available under the command `numpy.info`. The signature and documentation string for the object passed to the `help` command are printed to standard output (or to a writeable object passed as the third argument). The second keyword argument of `numpy.info` defines the maximum width of the line for printing. If a module is passed as the argument to `help` then a list of the functions and classes defined in that module is printed. For example:

```python
>>> np.info(optimize.fmin)
```

(continues on next page)
Minimize a function using the downhill simplex algorithm.

Parameters

func : callable func(x,*args)
 The objective function to be minimized.
x0 : ndarray
 Initial guess.
args : tuple
 Extra arguments passed to func, i.e. `func(x,*args)`.
callback : callable
 Called after each iteration, as callback(xk), where xk is the current parameter vector.

Returns

xopt : ndarray
 Parameter that minimizes function.
fopt : float
 Value of function at minimum: `fopt = func(xopt)`.
iter : int
 Number of iterations performed.
funcalls : int
 Number of function calls made.
warnflag : int
 1 : Maximum number of function evaluations made.
 2 : Maximum number of iterations reached.
allvecs : list
 Solution at each iteration.

Other parameters

xtol : float
 Relative error in xopt acceptable for convergence.
ftol : number
 Relative error in func(xopt) acceptable for convergence.
maxiter : int
 Maximum number of iterations to perform.
maxfun : number
 Maximum number of function evaluations to make.
full_output : bool
 Set to True if fopt and warnflag outputs are desired.
disp : bool
 Set to True to print convergence messages.
retall : bool
 Set to True to return list of solutions at each iteration.

Notes

Uses a Nelder-Mead simplex algorithm to find the minimum of function of
Another useful command is `dir`, which can be used to look at the namespace of a module or package.

2.2 Special functions (`scipy.special`)

The main feature of the `scipy.special` package is the definition of numerous special functions of mathematical physics. Available functions include airy, elliptic, bessel, gamma, beta, hypergeometric, parabolic cylinder, mathieu, spheroidal wave, struve, and kelvin. There are also some low-level stats functions that are not intended for general use as an easier interface to these functions is provided by the `stats` module. Most of these functions can take array arguments and return array results following the same broadcasting rules as other math functions in Numerical Python. Many of these functions also accept complex numbers as input. For a complete list of the available functions with a one-line description type `>>> help(special)`. Each function also has its own documentation accessible using `help`. If you don’t see a function you need, consider writing it and contributing it to the library. You can write the function in either C, Fortran, or Python. Look in the source code of the library for examples of each of these kinds of functions.

2.2.1 Bessel functions of real order (`jv, jn_zeros`)

Bessel functions are a family of solutions to Bessel’s differential equation with real or complex order \(\alpha \):

\[
x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - \alpha^2)y = 0
\]

Among other uses, these functions arise in wave propagation problems, such as the vibrational modes of a thin drum head. Here is an example of a circular drum head anchored at the edge:

```python
>>> from scipy import special
>>> def drumhead_height(n, k, distance, angle, t):
...     kth_zero = special.jn_zeros(n, k)[-1]
...     return np.cos(t) * np.cos(n*angle) * special.jn(n, distance*kth_zero)
>>> theta = np.linspace(0, 2*np.pi, 50)
>>> radius = np.linspace(0, 0.5, 50)
>>> x = np.array([r * np.cos(theta) for r in radius])
>>> y = np.array([r * np.sin(theta) for r in radius])
>>> z = np.array([drumhead_height(1, 1, r, theta, 0.5) for r in radius])
```

```python
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_axes(rect=(0, 0.05, 0.95, 0.95), projection='3d')
>>> ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap='RdBu_r', vmin=-0.5, ...
...     vmax=0.5)
>>> ax.set_xlabel('X')
>>> ax.set_ylabel('Y')
>>> ax.set_xticks(np.arange(-1, 1.1, 0.5))
>>> ax.set_yticks(np.arange(-1, 1.1, 0.5))
>>> ax.set_zlabel('Z')
>>> plt.show()
```
2.2.2 Cython Bindings for Special Functions (scipy.special.cython_special)

SciPy also offers Cython bindings for scalar, typed versions of many of the functions in special. The following Cython code gives a simple example of how to use these functions:

```
cimport scipy.special.cython_special as csc
cdef:
    double x = 1
    double complex z = 1 + 1j
    double si, ci, rgam
    double complex cgam

    rgam = csc.gamma(x)
    print(rgam)
    cgam = csc.gamma(z)
    print(cgam)
    csc.sici(x, &si, &ci)
    print(si, ci)
```

(See the Cython documentation for help with compiling Cython.) In the example the function `csc.gamma` works essentially like its ufunc counterpart `gamma`, though it takes C types as arguments instead of NumPy arrays. Note, in particular, that the function is overloaded to support real and complex arguments; the correct variant is selected at compile time. The function `csc.sici` works slightly differently from `sici`; for the ufunc we could write `ai, bi = sici(x)`, whereas in the Cython version multiple return values are passed as pointers. It might help to think of this as analogous to calling a ufunc with an output array: `sici(x, out=(si, ci))`.

There are two potential advantages to using the Cython bindings:

- they avoid Python function overhead
- they do not require the Python Global Interpreter Lock (GIL)

The following sections discuss how to use these advantages to potentially speed up your code, though, of course, one should always profile the code first to make sure putting in the extra effort will be worth it.
Avoiding Python Function Overhead

For the ufuncs in special, Python function overhead is avoided by vectorizing, that is, by passing an array to the function. Typically, this approach works quite well, but sometimes it is more convenient to call a special function on scalar inputs inside a loop, for example, when implementing your own ufunc. In this case, the Python function overhead can become significant. Consider the following example:

```python
import scipy.special as sc
cimport scipy.special.cython_special as csc

def python_tight_loop():
    cdef:
        int n
        double x = 1

    for n in range(100):
        sc.jv(n, x)

def cython_tight_loop():
    cdef:
        int n
        double x = 1

    for n in range(100):
        csc.jv(n, x)
```

On one computer python_tight_loop took about 131 microseconds to run and cython_tight_loop took about 18.2 microseconds to run. Obviously this example is contrived: one could just call special.jv(np.arange(100), 1) and get results just as fast as in cython_tight_loop. The point is that if Python function overhead becomes significant in your code, then the Cython bindings might be useful.

Releasing the GIL

One often needs to evaluate a special function at many points, and typically the evaluations are trivially parallelizable. Since the Cython bindings do not require the GIL, it is easy to run them in parallel using Cython’s prange function. For example, suppose that we wanted to compute the fundamental solution to the Helmholtz equation:

\[\Delta_x G(x, y) + k^2 G(x, y) = \delta(x - y), \]

where \(k \) is the wavenumber and \(\delta \) is the Dirac delta function. It is known that in two dimensions the unique (radiating) solution is

\[G(x, y) = \frac{i}{4} H_0^{(1)}(k|x - y|), \]

where \(H_0^{(1)} \) is the Hankel function of the first kind, i.e., the function hankel1. The following example shows how we could compute this function in parallel:

```python
from libc.math cimport fabs
cimport cython
from cython.parallel cimport prange

import numpy as np
import scipy.special as sc
```

(continues on next page)
cimport scipy.special.cython_special as csc

def serial_G(k, x, y):
 return 0.25*j*csc.hankel1(0, k*np.abs(x - y))

@cython.boundscheck(False)
@cython.wraparound(False)
cdef void _parallel_G(double k, double[:, :] x, double[:, :] y, double complex[:, :] out) nogil:
 cdef int i, j
 for i in prange(x.shape[0]):
 for j in range(y.shape[0]):
 out[i, j] = 0.25j*csc.hankel1(0, k*fabs(x[i, j] - y[i, j]))

def parallel_G(k, x, y):
 out = np.empty_like(x, dtype='complex128')
 _parallel_G(k, x, y, out)
 return out

(For help with compiling parallel code in Cython see here.) If the above Cython code is in a file test.pyx, then we can write an informal benchmark which compares the parallel and serial versions of the function:

```python
import timeit
import numpy as np
from test import serial_G, parallel_G

def main():
    k = 1
    x, y = np.linspace(-100, 100, 1000), np.linspace(-100, 100, 1000)
    x, y = np.meshgrid(x, y)

    def serial():
        serial_G(k, x, y)

    def parallel():
        parallel_G(k, x, y)

    time_serial = timeit.timeit(serial, number=3)
    time_parallel = timeit.timeit(parallel, number=3)
    print("Serial method took {:.3} seconds".format(time_serial))
    print("Parallel method took {:.3} seconds".format(time_parallel))

if __name__ == "__main__":
    main()
```

On one quad-core computer the serial method took 1.29 seconds and the parallel method took 0.29 seconds.
Some functions are not included in special because they are straightforward to implement with existing functions in NumPy and SciPy. To prevent reinventing the wheel, this section provides implementations of several such functions, which hopefully illustrate how to handle similar functions. In all examples NumPy is imported as np and special is imported as sc.

The binary entropy function:

```python
def binary_entropy(x):
    return -(sc.xlogy(x, x) + sc.xlog1py(1 - x, -x))/np.log(2)
```

A rectangular step function on [0, 1]:

```python
def step(x):
    return 0.5*(np.sign(x) + np.sign(1 - x))
```

Translating and scaling can be used to get an arbitrary step function.

The ramp function:

```python
def ramp(x):
    return np.maximum(0, x)
```

2.3 Integration (scipy.integrate)

The `scipy.integrate` sub-package provides several integration techniques including an ordinary differential equation integrator. An overview of the module is provided by the help command:

```python
>>> help(integrate)
Methods for Integrating Functions given function object.
    quad       -- General purpose integration.
    dblquad    -- General purpose double integration.
    tplquad    -- General purpose triple integration.
    fixed_quad -- Integrate func(x) using Gaussian quadrature of order n.
    quadrature -- Integrate with given tolerance using Gaussian quadrature.
    romberg    -- Integrate func using Romberg integration.

Methods for Integrating Functions given fixed samples.

    trapezoid   -- Use trapezoidal rule to compute integral.
    cumulative_trapezoid -- Use trapezoidal rule to cumulatively compute integral.
    simpson     -- Use Simpson's rule to compute integral from samples.
    romb        -- Use Romberg Integration to compute integral from (2**k + 1) evenly-spaced samples.

See the special module's orthogonal polynomials (special) for Gaussian quadrature roots and weights for other weighting factors and regions.

Interface to numerical integrators of ODE systems.
```
odeint -- General integration of ordinary differential equations.
ode -- Integrate ODE using VODE and ZVODE routines.

2.3.1 General integration (quad)

The function \texttt{quad} is provided to integrate a function of one variable between two points. The points can be ±∞ (± inf) to indicate infinite limits. For example, suppose you wish to integrate a bessel function \(j_v(2.5, x) \) along the interval \([0, 4.5]\).

\[I = \int_{0}^{4.5} J_{2.5}(x) \, dx. \]

This could be computed using \texttt{quad}:

```python
>>> import scipy.integrate as integrate
>>> import scipy.special as special
>>> result = integrate.quad(lambda x: special.jv(2.5, x), 0, 4.5)
>>> result
(1.117817938078325, 7.8663172481899801e-09)
```

```python
>>> from numpy import sqrt, sin, cos, pi
>>> I = sqrt(2/pi)*(18.0/27*sqrt(2)*cos(4.5) - 4.0/27*sqrt(2)*sin(4.5) + ...
                        sqrt(2*pi)*special.fresnel(3/sqrt(pi))[0])
>>> I
1.117817938088701
```

```python
>>> print(abs(result[0]-I))
1.03761443881e-11
```

The first argument to \texttt{quad} is a “callable” Python object (i.e., a function, method, or class instance). Notice the use of a lambda- function in this case as the argument. The next two arguments are the limits of integration. The return value is a tuple, with the first element holding the estimated value of the integral and the second element holding an upper bound on the error. Notice, that in this case, the true value of this integral is

\[I = \sqrt{\frac{2}{\pi}} \left(\frac{18}{27} \sqrt{2} \cos(4.5) - \frac{4}{27} \sqrt{2} \sin(4.5) + \sqrt{2\pi} \text{Si}\left(\frac{3}{\sqrt{\pi}} \right) \right), \]

where

\[\text{Si}(x) = \int_{0}^{x} \sin\left(\frac{\pi}{2} t^2 \right) \, dt. \]

is the Fresnel sine integral. Note that the numerically-computed integral is within \(1.04 \times 10^{-11}\) of the exact result — well below the reported error bound.

If the function to integrate takes additional parameters, they can be provided in the \texttt{args} argument. Suppose that the following integral shall be calculated:

\[I(a, b) = \int_{0}^{1} ax^2 + b \, dx. \]

This integral can be evaluated by using the following code:

2.3. Integration (scipy.integrate)
Infinite inputs are also allowed in `quad` by using \pm \infty as one of the arguments. For example, suppose that a numerical value for the exponential integral:

\[E_n(x) = \int_0^\infty e^{-xt} t^n \, dt. \]

is desired (and the fact that this integral can be computed as `special.expn(n, x)` is forgotten). The functionality of the function `special.expn` can be replicated by defining a new function `vec_expint` based on the routine `quad`:

```python
>>> from scipy.integrate import quad
>>> def integrand(t, n, x):
...     return np.exp(-x*t) / t**n
...>>> def expint(n, x):
...     return quad(integrand, 1, np.inf, args=(n, x))[0]
...>>> vec_expint = np.vectorize(expint)
>>> vec_expint(3, np.arange(1.0, 4.0, 0.5))
array([ 0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.0049])
```

The function which is integrated can even use the quad argument (though the error bound may underestimate the error due to possible numerical error in the integrand from the use of `quad`). The integral in this case is

\[I_n = \int_0^\infty \int_1^\infty \frac{e^{-xt}}{t^n} \, dt \, dx = \frac{1}{n}. \]

```python
>>> result = quad(lambda x: expint(3, x), 0, np.inf)
>>> print(result)
(0.33333333334560266, 2.8548934485373678e-09)
```

```python
>>> I3 = 1.0/3.0
>>> print(I3)
0.333333333333
```

```python
>>> print(I3 - result[0])
8.77306560731e-11
```

This last example shows that multiple integration can be handled using repeated calls to `quad`.
2.3.2 General multiple integration (dblquad, tplquad, nquad)

The mechanics for double and triple integration have been wrapped up into the functions `dblquad` and `tplquad`. These functions take the function to integrate and four, or six arguments, respectively. The limits of all inner integrals need to be defined as functions.

An example of using double integration to compute several values of \(I_n \) is shown below:

```python
>>> from scipy.integrate import quad, dblquad
>>> def I(n):
...     return dblquad(lambda t, x: np.exp(-x*t)/t**n, 0, np.inf, lambda x: 1, lambda x: np.inf)
...
>>> print(I(4))
(0.2500000000043577, 1.29830334693681e-08)
>>> print(I(3))
(0.33333333325010883, 1.3888461883425516e-08)
>>> print(I(2))
(0.4999999999985751, 1.3894083651858995e-08)
```

As example for non-constant limits consider the integral

\[
I = \int_{y=0}^{1/2} \int_{x=0}^{1-2y} xy \, dx \, dy = \frac{1}{96}.
\]

This integral can be evaluated using the expression below (Note the use of the non-constant lambda functions for the upper limit of the inner integral):

```python
>>> from scipy.integrate import dblquad
>>> area = dblquad(lambda x, y: x*y, 0, 0.5, lambda x: 0, lambda x: 1-2*x)
>>> area
(0.010416666666666668, 1.1564823173178715e-16)
```

For n-fold integration, scipy provides the function `nquad`. The integration bounds are an iterable object: either a list of constant bounds, or a list of functions for the non-constant integration bounds. The order of integration (and therefore the bounds) is from the innermost integral to the outermost one.

The integral from above

\[
I_n = \int_0^{\infty} \int_1^{\infty} \frac{e^{-xt}}{t^n} \, dt \, dx = \frac{1}{n}
\]

can be calculated as

```python
>>> from scipy import integrate
>>> N = 5
>>> def f(t, x):
...     return np.exp(-x*t) / t**N
... >>> integrate.nquad(f, [[1, np.inf], [0, np.inf]])
(0.20000000000002294, 1.2239614263187945e-08)
```

Note that the order of arguments for \(f \) must match the order of the integration bounds; i.e., the inner integral with respect to \(t \) is on the interval \([1, \infty]\) and the outer integral with respect to \(x \) is on the interval \([0, \infty]\).
Non-constant integration bounds can be treated in a similar manner; the example from above

\[I = \int_{y=0}^{1/2} \int_{x=0}^{1-2y} xy \, dx \, dy = \frac{1}{96}. \]

can be evaluated by means of

```python
>>> from scipy import integrate
>>> def f(x, y):
...     return x*y
...>
>>> def bounds_y():
...     return [0, 0.5]
...>
>>> def bounds_x(y):
...     return [0, 1-2*y]
...>
>>> integrate.nquad(f, [bounds_x, bounds_y])
(0.010416666666666668, 4.101620128472366e-16)
```

which is the same result as before.

2.3.3 Gaussian quadrature

A few functions are also provided in order to perform simple Gaussian quadrature over a fixed interval. The first is `fixed_quad`, which performs fixed-order Gaussian quadrature. The second function is `quadrature`, which performs Gaussian quadrature of multiple orders until the difference in the integral estimate is beneath some tolerance supplied by the user. These functions both use the module `scipy.special.orthogonal`, which can calculate the roots and quadrature weights of a large variety of orthogonal polynomials (the polynomials themselves are available as special functions returning instances of the polynomial class — e.g., `special.legendre`).

2.3.4 Romberg Integration

Romberg’s method [WPR] is another method for numerically evaluating an integral. See the help function for `romberg` for further details.

2.3.5 Integrating using Samples

If the samples are equally-spaced and the number of samples available is \(2^k + 1\) for some integer \(k\), then Romberg `romb` integration can be used to obtain high-precision estimates of the integral using the available samples. Romberg integration uses the trapezoid rule at step-sizes related by a power of two and then performs Richardson extrapolation on these estimates to approximate the integral with a higher degree of accuracy.

In case of arbitrary spaced samples, the two functions `trapezoid` and `simpson` are available. They are using Newton-Coates formulas of order 1 and 2 respectively to perform integration. The trapezoidal rule approximates the function as a straight line between adjacent points, while Simpson’s rule approximates the function between three adjacent points as a parabola.

For an odd number of samples that are equally spaced Simpson’s rule is exact if the function is a polynomial of order 3 or less. If the samples are not equally spaced, then the result is exact only if the function is a polynomial of order 2 or less.
```python
>>> import numpy as np
>>> def f1(x):
...     return x**2
... >>> def f2(x):
...     return x**3
... >>> x = np.array([1, 3, 4])
>>> y1 = f1(x)
>>> from scipy import integrate
>>> I1 = integrate.simpson(y1, x)
>>> print(I1)
21.0
```

This corresponds exactly to

\[
\int_1^4 x^2 \, dx = 21,
\]

whereas integrating the second function

```python
>>> y2 = f2(x)
>>> I2 = integrate.simpson(y2, x)
>>> print(I2)
61.5
```

does not correspond to

\[
\int_1^4 x^3 \, dx = 63.75
\]

because the order of the polynomial in \(f_2 \) is larger than two.

2.3.6 Faster integration using low-level callback functions

A user desiring reduced integration times may pass a C function pointer through `scipy.LowLevelCallable` to `quad`, `dblquad`, `tplquad` or `nquad` and it will be integrated and return a result in Python. The performance increase here arises from two factors. The primary improvement is faster function evaluation, which is provided by compilation of the function itself. Additionally we have a speedup provided by the removal of function calls between C and Python in `quad`. This method may provide a speed improvements of ~2x for trivial functions such as sine but can produce a much more noticeable improvements (10x+) for more complex functions. This feature then, is geared towards a user with numerically intensive integrations willing to write a little C to reduce computation time significantly.

The approach can be used, for example, via `ctypes` in a few simple steps:

1.) Write an integrand function in C with the function signature `double f(int n, double *x, void *user_data)`, where \(x \) is an array containing the point the function \(f \) is evaluated at, and \(user_data \) to arbitrary additional data you want to provide.

```c
/* testlib.c */
double f(int n, double *x, void *user_data) {
    double c = *(double *)user_data;
    return c + x[0] - x[1] * x[2]; /* corresponds to \( c + x - y \cdot z \) */
}
```
2.) Now compile this file to a shared/dynamic library (a quick search will help with this as it is OS-dependent). The user must link any math libraries, etc., used. On Linux this looks like:

```
$ gcc -shared -fPIC -o testlib.so testlib.c
```

The output library will be referred to as testlib.so, but it may have a different file extension. A library has now been created that can be loaded into Python with `ctypes`.

3.) Load shared library into Python using `ctypes` and set `restypes` and `argtypes` - this allows SciPy to interpret the function correctly:

```python
import os, ctypes
from scipy import integrate, LowLevelCallable

lib = ctypes.CDLL(os.path.abspath('testlib.so'))
lib.f.retype = ctypes.c_double
lib.f.argtypes = (ctypes.c_int, ctypes.POINTER(ctypes.c_double), ctypes.c_void_p)

c = ctypes.c_double(1.0)
user_data = ctypes.cast(ctypes.pointer(c), ctypes.c_void_p)
func = LowLevelCallable(lib.f, user_data)
```

The last void *user_data in the function is optional and can be omitted (both in the C function and ctypes argtypes) if not needed. Note that the coordinates are passed in as an array of doubles rather than a separate argument.

4.) Now integrate the library function as normally, here using `nquad`:

```python
>>> integrate.nquad(func, [[0, 10], [-10, 0], [-1, 1]])
(1200.0, 1.1102230246251565e-11)
```

The Python tuple is returned as expected in a reduced amount of time. All optional parameters can be used with this method including specifying singularities, infinite bounds, etc.

2.3.7 Ordinary differential equations (solve_ivp)

Integrating a set of ordinary differential equations (ODEs) given initial conditions is another useful example. The function `solve_ivp` is available in SciPy for integrating a first-order vector differential equation:

$$\frac{dy}{dt} = f(y, t),$$

given initial conditions $y(0) = y_0$, where y is a length N vector and f is a mapping from \mathbb{R}^N to \mathbb{R}^N. A higher-order ordinary differential equation can always be reduced to a differential equation of this type by introducing intermediate derivatives into the y vector.

For example, suppose it is desired to find the solution to the following second-order differential equation:

$$\frac{d^2w}{dz^2} - zw(z) = 0$$

with initial conditions $w(0) = \frac{1}{\sqrt{3\pi f(\frac{1}{3})}}$ and $\frac{dw}{dz} |_{z=0} = -\frac{1}{\sqrt{3\pi f(\frac{1}{3})}}$. It is known that the solution to this differential equation with these boundary conditions is the Airy function

$$w = Ai(z),$$
which gives a means to check the integrator using `special.airy`.

First, convert this ODE into standard form by setting \(y = \frac{dw}{dz}, w \) and \(t = z \). Thus, the differential equation becomes

\[
\frac{dy}{dt} = \begin{bmatrix} ty_1 \\ y_0 \end{bmatrix} = \begin{bmatrix} 0 & t \\ 1 & 0 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \end{bmatrix} = \begin{bmatrix} 0 & t \\ 1 & 0 \end{bmatrix} y.
\]

In other words,

\[
f (y, t) = A (t) y.
\]

As an interesting reminder, if \(A (t) \) commutes with \(\int_0^t A (\tau) \, d\tau \) under matrix multiplication, then this linear differential equation has an exact solution using the matrix exponential:

\[
y(t) = \exp \left(\int_0^t A (\tau) \, d\tau \right) y (0),
\]

However, in this case, \(A (t) \) and its integral do not commute.

This differential equation can be solved using the function `solve_ivp`. It requires the derivative, \(fprime \), the time span \([t_{start}, t_{end}]\) and the initial conditions vector, \(y0 \), as input arguments and returns an object whose \(y \) field is an array with consecutive solution values as columns. The initial conditions are therefore given in the first output column.

```python
>>> from scipy.integrate import solve_ivp
>>> from scipy.special import gamma, airy
>>> y1_0 = +1 / 3**(2/3) / gamma(2/3)
>>> y0_0 = -1 / 3**(1/3) / gamma(1/3)
>>> y0 = [y0_0, y1_0]
>>> def func(t, y):
...     return [t*y[1], y[0]]
...
>>> t_span = [0, 4]
>>> sol1 = solve_ivp(func, t_span, y0)
>>> print("sol1.t: {}").format(sol1.t))
sol1.t: [0. 0.10097672 1.04643602 1.91060117 2.49872472 3.08684827
3.62692846 4.]
```

As it can be seen `solve_ivp` determines its time steps automatically if not specified otherwise. To compare the solution of `solve_ivp` with the `airy` function the time vector created by `solve_ivp` is passed to the `airy` function.

```python
>>> print("sol1.y[1][::6]: {}").format(sol1.y[1][::6]))
sol1.y[1][::6]: [0.35502805 0.19145234 0.06368989 0.0205917 0.00554734 0.
...00106409
```

The solution of `solve_ivp` with its standard parameters shows a big deviation to the `airy` function. To minimize this deviation, relative and absolute tolerances can be used.

```python
>>> rtol, atol = (1e-8, 1e-8)
>>> sol2 = solve_ivp(func, t_span, y0, rtol=rtol, atol=atol)
>>> print("sol2.y[1][::6]: {}").format(sol2.y[1][::6]))
sol2.y[1][::6]: [0.35502805 0.19145234 0.06368989 0.0205917 0.00554734 0.
...00106409]
```

(continues on next page)
To specify user defined time points for the solution of `solve_ivp`, `solve_ivp` offers two possibilities that can also be used complementarily. By passing the `t_eval` option to the function call `solve_ivp` returns the solutions of these time points of `t_eval` in its output.

```python
>>> import numpy as np
>>> t = np.linspace(0, 4, 100)
>>> sol3 = solve_ivp(func, t_span, y0, t_eval=t)
```

If the jacobian matrix of function is known, it can be passed to the `solve_ivp` to achieve better results. Please be aware however that the default integration method `RK45` does not support jacobian matrices and thereby another integration method has to be chosen. One of the integration methods that support a jacobian matrix is the for example the `Radau` method of following example.

```python
>>> def gradient(t, y):
...     return 
>>>     [0, t],
>>>     [1, 0]
>>> sol4 = solve_ivp(func, t_span, y0, method='Radau', jac=gradient)
```

Solving a system with a banded Jacobian matrix

`odeint` can be told that the Jacobian is banded. For a large system of differential equations that are known to be stiff, this can improve performance significantly.

As an example, we'll solve the 1-D Gray-Scott partial differential equations using the method of lines [MOL]. The Gray-Scott equations for the functions \(u(x, t)\) and \(v(x, t)\) on the interval \(x \in [0, L]\) are

\[
\begin{align*}
\frac{\partial u}{\partial t} &= D_u \frac{\partial^2 u}{\partial x^2} - uv^2 + f(1-u) \\
\frac{\partial v}{\partial t} &= D_v \frac{\partial^2 v}{\partial x^2} + uv^2 - (f+k)v
\end{align*}
\]

where \(D_u\) and \(D_v\) are the diffusion coefficients of the components \(u\) and \(v\), respectively, and \(f\) and \(k\) are constants. (For more information about the system, see http://groups.csail.mit.edu/mac/projects/amorphous/GrayScott/)

We'll assume Neumann (i.e., “no flux”) boundary conditions:

\[
\begin{align*}
\frac{\partial u}{\partial x}(0, t) &= 0, & \frac{\partial v}{\partial x}(0, t) &= 0, & \frac{\partial u}{\partial x}(L, t) &= 0, & \frac{\partial v}{\partial x}(L, t) &= 0
\end{align*}
\]

To apply the method of lines, we discretize the \(x\) variable by defining the uniformly spaced grid of \(N\) points \(\{x_0, x_1, ..., x_{N-1}\}\), with \(x_0 = 0\) and \(x_{N-1} = L\). We define \(u_j(t) \equiv u(x_j, t)\) and \(v_j(t) \equiv v(x_j, t)\), and replace the \(x\) derivatives with finite differences. That is,

\[
\frac{\partial^2 u}{\partial x^2}(x_j, t) \to \frac{u_{j-1}(t) - 2u_j(t) + u_{j+1}(t)}{(\Delta x)^2}
\]

We then have a system of \(2N\) ordinary differential equations:

\[
\begin{align*}
\frac{du_j}{dt} &= \frac{D_u}{(\Delta x)^2} (u_{j-1} - 2u_j + u_{j+1}) - u_jv_j^2 + f(1-u_j) \\
\frac{dv_j}{dt} &= \frac{D_v}{(\Delta x)^2} (v_{j-1} - 2v_j + v_{j+1}) + u_jv_j^2 - (f+k)v_j
\end{align*}
\]

(2.1)
For convenience, the \((t)\) arguments have been dropped.

To enforce the boundary conditions, we introduce “ghost” points \(x_{-1}\) and \(x_N\), and define \(u_{-1}(t) \equiv u_1(t), u_N(t) \equiv u_{N-2}(t)\); \(v_{-1}(t)\) and \(v_N(t)\) are defined analogously.

Then
\[
\frac{du_0}{dt} = \frac{D_u}{(\Delta x)^2} (2u_1 - 2u_0) - u_0 v_0^2 + f(1 - u_0) \tag{2.2}
\]
\[
\frac{dv_0}{dt} = \frac{D_v}{(\Delta x)^2} (2v_1 - 2v_0) + u_0 v_0^2 - (f + k)v_0
\]
and
\[
\frac{du_{N-1}}{dt} = \frac{D_u}{(\Delta x)^2} (2u_{N-2} - 2u_{N-1}) - u_{N-1} v_{N-1}^2 + f(1 - u_{N-1}) \tag{2.3}
\]
\[
\frac{dv_{N-1}}{dt} = \frac{D_v}{(\Delta x)^2} (2v_{N-2} - 2v_{N-1}) + u_{N-1} v_{N-1}^2 - (f + k)v_{N-1}
\]

Our complete system of \(2N\) ordinary differential equations is (2.1) for \(k = 1, 2, \ldots, N - 2\), along with (2.2) and (2.3).

We can now starting implementing this system in code. We must combine \(\{u_k\}\) and \(\{v_k\}\) into a single vector of length \(2N\). The two obvious choices are \(\{u_0, u_1, \ldots, u_{N-1}, v_0, v_1, \ldots, v_{N-1}\}\) and \(\{u_0, v_0, u_1, v_1, \ldots, u_{N-1}, v_{N-1}\}\). Mathematically, it does not matter, but the choice affects how efficiently \texttt{odeint} can solve the system. The reason is in how the order affects the pattern of the nonzero elements of the Jacobian matrix.

When the variables are ordered as \(\{u_0, u_1, \ldots, u_{N-1}, v_0, v_1, \ldots, v_{N-1}\}\), the pattern of nonzero elements of the Jacobian matrix is

\[
\begin{array}{cccccccccccc}
* & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & * & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & * & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & * & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & * & * & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & * & * & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & * & * & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & * & * & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & * & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & * & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & * & * \\
\end{array}
\]

The Jacobian pattern with variables interleaved as \(\{u_0, v_0, u_1, v_1, \ldots, u_{N-1}, v_{N-1}\}\) is

\[
\begin{array}{cccccccccccc}
* & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & 0 & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & * & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & * & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & * & * & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & * & * & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & * & * & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & * & * & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & * & * & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & * & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & * & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & * & * \\
\end{array}
\]

In both cases, there are just five nontrivial diagonals, but when the variables are interleaved, the bandwidth is much smaller. That is, the main diagonal and the two diagonals immediately above and the two immediately below the main diagonal are the nonzero diagonals. This is important, because the inputs \texttt{mu} and \texttt{ml} of \texttt{odeint} are the upper and lower bandwidths of the Jacobian matrix. When the variables are interleaved, \texttt{mu} and \texttt{ml} are 2. When the variables are stacked with \(\{u_k\}\) following \(\{v_k\}\), the upper and lower bandwidths are \(N\).

With that decision made, we can write the function that implements the system of differential equations.

First, we define the functions for the source and reaction terms of the system:

2.3. Integration (\texttt{scipy.integrate})
def G(u, v, f, k):
 return f * (1 - u) - u*v**2

def H(u, v, f, k):
 return -(f + k) * v + u*v**2

Next, we define the function that computes the right-hand side of the system of differential equations:

def grayscott1d(y, t, f, k, Du, Dv, dx):

 """Differential equations for the 1-D Gray-Scott equations.
 The ODEs are derived using the method of lines.
 """
 # The vectors u and v are interleaved in y. We define
 # views of u and v by slicing y.
 u = y[::2]
 v = y[1::2]

 # dydt is the return value of this function.
 dydt = np.empty_like(y)

 # Just like u and v are views of the interleaved vectors
 # in y, dudt and dvdt are views of the interleaved output
 # vectors in dydt.
 dudt = dydt[:2]
 dvdt = dydt[1::2]

 # Compute du/dt and dv/dt. The end points and the interior points
 # are handled separately.
 dudt[0] = G(u[0], v[0], f, k) + Du * (-2.0*u[0] + 2.0*u[1]) / dx**2
 dudt[1:-1] = G(u[1:-1], v[1:-1], f, k) + Du * np.diff(u, 2) / dx**2
 dudt[-1] = G(u[-1], v[-1], f, k) + Du * (-2.0*u[-1] + 2.0*u[-2]) / dx**2

 dvdt[0] = H(u[0], v[0], f, k) + Dv * (-2.0*v[0] + 2.0*v[1]) / dx**2
 dvdt[1:-1] = H(u[1:-1], v[1:-1], f, k) + Dv * np.diff(v, 2) / dx**2
 dvdt[-1] = H(u[-1], v[-1], f, k) + Dv * (-2.0*v[-1] + 2.0*v[-2]) / dx**2

 return dydt

We won't implement a function to compute the Jacobian, but we will tell odeint that the Jacobian matrix is banded. This allows the underlying solver (LSODA) to avoid computing values that it knows are zero. For a large system, this improves the performance significantly, as demonstrated in the following ipython session.

First, we define the required inputs:

In [30]: rng = np.random.default_rng()
In [31]: y0 = rng.standard_normal(5000)
In [32]: t = np.linspace(0, 50, 11)
In [33]: f = 0.024
In [34]: k = 0.055
In [35]: Du = 0.01
In [36]: Dv = 0.005
In [37]: dx = 0.025

Time the computation without taking advantage of the banded structure of the Jacobian matrix:

In [38]: %timeit sola = odeint(grayscott1d, y0, t, args=(f, k, Du, Dv, dx))
1 loop, best of 3: 25.2 s per loop

Now set ml=2 and mu=2, so odeint knows that the Jacobian matrix is banded:

In [39]: %timeit solb = odeint(grayscott1d, y0, t, args=(f, k, Du, Dv, dx), ml=2, mu=2)
10 loops, best of 3: 191 ms per loop

That is quite a bit faster!

Let’s ensure that they have computed the same result:

In [41]: np.allclose(sola, solb)
Out[41]: True

References

2.4 Optimization (scipy.optimize)

Contents

- Optimization (scipy.optimize)
 - Unconstrained minimization of multivariate scalar functions (minimize)
 - Nelder-Mead Simplex algorithm (method='Nelder-Mead')
 - Broyden-Fletcher-Goldfarb-Shanno algorithm (method='BFGS')
 - Newton-Conjugate-Gradient algorithm (method='Newton-CG')
 - Full Hessian example:
 - Hessian product example:
 - Trust-Region Newton-Conjugate-Gradient Algorithm (method='trust-ncg')
 - Full Hessian example:
 - Hessian product example:
The `scipy.optimize` package provides several commonly used optimization algorithms. A detailed listing is available: `scipy.optimize` (can also be found by `help(scipy.optimize)`).
2.4.1 Unconstrained minimization of multivariate scalar functions (**minimize**)

The **minimize** function provides a common interface to unconstrained and constrained minimization algorithms for multivariate scalar functions in **scipy.optimize**. To demonstrate the minimization function, consider the problem of minimizing the Rosenbrock function of \(N \) variables:

\[
f(x) = \sum_{i=1}^{N-1} 100 \left(x_{i+1} - x_i^2 \right)^2 + \left(1 - x_i \right)^2.
\]

The minimum value of this function is 0 which is achieved when \(x_i = 1 \).

Note that the Rosenbrock function and its derivatives are included in **scipy.optimize**. The implementations shown in the following sections provide examples of how to define an objective function as well as its jacobian and hessian functions.

Nelder-Mead Simplex algorithm (method='Nelder-Mead'**)**

In the example below, the **minimize** routine is used with the Nelder-Mead simplex algorithm (selected through the **method** parameter):

```python
>>> import numpy as np
>>> from scipy.optimize import minimize

>>> def rosen(x):
...     return sum(100.0*(x[1:]-x[:-1]**2)**2.0 + (1-x[:-1])**2.0)

>>> x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])
>>> res = minimize(rosen, x0, method='nelder-mead',
...     options={'xatol': 1e-8, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 339
Function evaluations: 571

>>> print(res.x)
[1. 1. 1. 1. 1.]
```

The simplex algorithm is probably the simplest way to minimize a fairly well-behaved function. It requires only function evaluations and is a good choice for simple minimization problems. However, because it does not use any gradient evaluations, it may take longer to find the minimum.

Another optimization algorithm that needs only function calls to find the minimum is Powell's method available by setting **method='powell'** in **minimize**.
Broyden-Fletcher-Goldfarb-Shanno algorithm (method='BFGS')

In order to converge more quickly to the solution, this routine uses the gradient of the objective function. If the gradient is not given by the user, then it is estimated using first-differences. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method typically requires fewer function calls than the simplex algorithm even when the gradient must be estimated.

To demonstrate this algorithm, the Rosenbrock function is again used. The gradient of the Rosenbrock function is the vector:

\[
\frac{\partial f}{\partial x_j} = 200 (x_j - x_{j-1}^2) - 400 x_j (x_{j+1} - x_j^2) - 2 (1 - x_j).
\]

This expression is valid for the interior derivatives. Special cases are

\[
\frac{\partial f}{\partial x_0} = - 400 x_0 (x_1 - x_0^2) - 2 (1 - x_0),
\]

\[
\frac{\partial f}{\partial x_{N-1}} = 200 (x_{N-1} - x_{N-2}^2).
\]

A Python function which computes this gradient is constructed by the code-segment:

```python
>>> def rosen_der(x):
...     xm = x[1:-1]
...     xm_m1 = x[:-2]
...     xm_p1 = x[2:]
...     der = np.zeros_like(x)
...     der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm)*xm - 2*(1-xm)
...     der[0] = -400*x[0]*(x[1]-x[0])**2 - 2*(1-x[0])
...     der[-1] = 200*(x[-1]-x[-2])**2
...     return der
```

This gradient information is specified in the `minimize` function through the `jac` parameter as illustrated below.

```python
>>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der,
...                 options={'disp': True})
Optimization terminated successfully.
         Current function value: 0.000000
         Iterations: 51 # may vary
         Function evaluations: 63
         Gradient evaluations: 63
>>> res.x
array([1., 1., 1., 1., 1.])
```

Newton-Conjugate-Gradient algorithm (method='Newton-CG')

Newton-Conjugate Gradient algorithm is a modified Newton’s method and uses a conjugate gradient algorithm to (approximately) invert the local Hessian [NW]. Newton’s method is based on fitting the function locally to a quadratic form:

\[
f(x) \approx f(x_0) + \nabla f(x_0) \cdot (x - x_0) + \frac{1}{2} (x - x_0)^T H(x_0) (x - x_0) .
\]

where \(H(x_0) \) is a matrix of second-derivatives (the Hessian). If the Hessian is positive definite then the local minimum of this function can be found by setting the gradient of the quadratic form to zero, resulting in

\[x_{opt} = x_0 - H^{-1} \nabla f. \]
The inverse of the Hessian is evaluated using the conjugate-gradient method. An example of employing this method to minimizing the Rosenbrock function is given below. To take full advantage of the Newton-CG method, a function which computes the Hessian must be provided. The Hessian matrix itself does not need to be constructed, only a vector which is the product of the Hessian with an arbitrary vector needs to be available to the minimization routine. As a result, the user can provide either a function to compute the Hessian matrix, or a function to compute the product of the Hessian with an arbitrary vector.

Full Hessian example:

The Hessian of the Rosenbrock function is

\[
H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j} = 200 (\delta_{i,j} - 2x_{i-1}\delta_{i-1,j}) - 400x_i (\delta_{i+1,j} - 2x_{i+1}\delta_{i,j}) - 400\delta_{i,j} (x_{i+1} - x_i^2) + 2\delta_{i,j},
\]

\[
= (202 + 1200x_i^2 - 400x_{i+1}) \delta_{i,j} - 400x_i \delta_{i+1,j} - 400x_{i-1}\delta_{i-1,j},
\]

if \(i, j \in [1, N - 2] \) with \(i, j \in [0, N - 1] \) defining the \(N \times N \) matrix. Other non-zero entries of the matrix are

\[
\frac{\partial^2 f}{\partial x_0 \partial x_1} = 1200x_0^2 - 400x_1 + 2,
\]

\[
\frac{\partial^2 f}{\partial x_0 \partial x_0} = -400x_0,
\]

\[
\frac{\partial^2 f}{\partial x_{N-1} \partial x_{N-2}} = -400x_{N-2},
\]

\[
\frac{\partial^2 f}{\partial x_{N-1}^2} = 200.
\]

For example, the Hessian when \(N = 5 \) is

\[
H = \begin{bmatrix}
1200x_0^2 - 400x_1 + 2 & -400x_0 & 0 & 0 & 0 \\
-400x_0 & 202 + 1200x_1^2 - 400x_2 & -400x_1 & 0 & 0 \\
0 & -400x_1 & 202 + 1200x_2^2 - 400x_3 & -400x_2 & 0 \\
0 & 0 & -400x_2 & 202 + 1200x_3^2 - 400x_4 & -400x_3 \\
0 & 0 & 0 & 0 & 200
\end{bmatrix}.
\]

The code which computes this Hessian along with the code to minimize the function using Newton-CG method is shown in the following example:

```python
>>> def rosen_hess(x):
...     x = np.asarray(x)
...     H = np.diag(-400*x[1:-1],1) - np.diag(400*x[1:-1],-1)
...     diagonal = np.zeros_like(x)
...     diagonal[0] = 1200*x[0]**2 - 400*x[1]+2
...     diagonal[-1] = 200
...     diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2]
...     H = H + np.diag(diagonal)
...     return H
```

```python
>>> res = minimize(rosen, x0, method='Newton-CG',
...                 jac=rosen_der, hess=rosen_hess,
...                 options={'xtol': 1e-8, 'disp': True})
```

Optimization terminated successfully.
Current function value: 0.000000
Iterations: 19 # may vary
Function evaluations: 22

(continues on next page)
Gradient evaluations: 19
Hessian evaluations: 19

>>> res.x
array([1., 1., 1., 1., 1.])

Hessian product example:

For larger minimization problems, storing the entire Hessian matrix can consume considerable time and memory. The Newton-CG algorithm only needs the product of the Hessian times an arbitrary vector. As a result, the user can supply code to compute this product rather than the full Hessian by giving a `hess` function which take the minimization vector as the first argument and the arbitrary vector as the second argument (along with extra arguments passed to the function to be minimized). If possible, using Newton-CG with the Hessian product option is probably the fastest way to minimize the function.

In this case, the product of the Rosenbrock Hessian with an arbitrary vector is not difficult to compute. If \(p \) is the arbitrary vector, then \(H(x)p \) has elements:

\[
H(x)p = \begin{bmatrix}
(1200x_0^2 - 400x_1 + 2)p_0 - 400x_0p_1 \\
\vdots \\
-400x_{i-1}p_{i-1} + (202 + 1200x_i^2 - 400x_{i+1})p_i - 400x_ip_{i+1} \\
\vdots \\
-400x_{N-2}p_{N-2} + 200p_{N-1}
\end{bmatrix}.
\]

Code which makes use of this Hessian product to minimize the Rosenbrock function using `minimize` follows:

```python
>>> def rosen_hess_p(x, p):
...     x = np.asarray(x)
...     Hp = np.zeros_like(x)
...     Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1]
...     Hp[1:-1] = -400*x[:-2]*p[:-2] + (202 + 1200*x[1:-1]**2 - 400*x[2:])*p[1:-1] -
...     Hp[-2] = -400*x[-2]*p[-2] + 200*p[-1]
...     return Hp

>>> res = minimize(rosen, x0, method='Newton-CG',
...     jac=rosen_der, hess=rosen_hess_p,
...     options={'xtol': 1e-8, 'disp': True})
Optimization terminated successfully.
  Current function value: 0.000000
  Iterations: 20     # may vary
  Function evaluations: 23
  Gradient evaluations: 20
  Hessian evaluations: 44

>>> res.x
array([1., 1., 1., 1., 1.])
```

According to [NW] p. 170 the Newton-CG algorithm can be inefficient when the Hessian is ill-conditioned because of the poor quality search directions provided by the method in those situations. The method `trust-ncg`, according to the authors, deals more effectively with this problematic situation and will be described next.
Trust-Region Newton-Conjugate-Gradient Algorithm (method='trust-ncg')

The Newton-CG method is a line search method: it finds a direction of search minimizing a quadratic approximation of the function and then uses a line search algorithm to find the (nearly) optimal step size in that direction. An alternative approach is to, first, fix the step size limit Δ and then find the optimal step p inside the given trust-radius by solving the following quadratic subproblem:

$$
\min_p f(x_k) + \nabla f(x_k) \cdot p + \frac{1}{2} p^T H(x_k) p;
$$
subject to: $\|p\| \leq \Delta$.

The solution is then updated $x_{k+1} = x_k + p$ and the trust-radius Δ is adjusted according to the degree of agreement of the quadratic model with the real function. This family of methods is known as trust-region methods. The trust-ncg algorithm is a trust-region method that uses a conjugate gradient algorithm to solve the trust-region subproblem [NW].

Full Hessian example:

```python
>>> res = minimize(rosen, x0, method='trust-ncg',
...                   jac=rosen_der, hess=rosen_hess,
...                   options={'gtol': 1e-8, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 20  # may vary
Function evaluations: 21
Gradient evaluations: 20
Hessian evaluations: 19
```  

Hessian product example:

```python
>>> res = minimize(rosen, x0, method='trust-ncg',
...                   jac=rosen_der, hess=rosen_hess_p,
...                   options={'gtol': 1e-8, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 20  # may vary
Function evaluations: 21
Gradient evaluations: 20
Hessian evaluations: 0
```  

Trust-Region Truncated Generalized Lanczos / Conjugate Gradient Algorithm (method='trust-krylov')

Similar to the trust-ncg method, the trust-krylov method is a method suitable for large-scale problems as it uses the hessian only as linear operator by means of matrix-vector products. It solves the quadratic subproblem more accurately than the trust-ncg method.

$$
\min_p f(x_k) + \nabla f(x_k) \cdot p + \frac{1}{2} p^T H(x_k) p;
$$
subject to: $\|p\| \leq \Delta$.

2.4. Optimization (scipy.optimize)
This method wraps the [TRLIB] implementation of the [GLTR] method solving exactly a trust-region subproblem restricted to a truncated Krylov subspace. For indefinite problems it is usually better to use this method as it reduces the number of nonlinear iterations at the expense of few more matrix-vector products per subproblem solve in comparison to the trust-ncg method.

Full Hessian example:

```python
>>> res = minimize(rosen, x0, method='trust-krylov',
...   jac=rosen_der, hess=rosen_hess,
...   options={'gtol': 1e-8, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 19 # may vary
Function evaluations: 20
Gradient evaluations: 20
Hessian evaluations: 18

>>> res.x
array([1., 1., 1., 1., 1.])
```

Hessian product example:

```python
>>> res = minimize(rosen, x0, method='trust-krylov',
...   jac=rosen_der, hess=rosen_hess_p,
...   options={'gtol': 1e-8, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 19 # may vary
Function evaluations: 20
Gradient evaluations: 20
Hessian evaluations: 0

>>> res.x
array([1., 1., 1., 1., 1.])
```

Trust-Region Nearly Exact Algorithm (method='trust-exact')

All methods Newton-CG, trust-ncg and trust-krylov are suitable for dealing with large-scale problems (problems with thousands of variables). That is because the conjugate gradient algorithm approximately solve the trust-region subproblem (or invert the Hessian) by iterations without the explicit Hessian factorization. Since only the product of the Hessian with an arbitrary vector is needed, the algorithm is specially suited for dealing with sparse Hessians, allowing low storage requirements and significant time savings for those sparse problems.

For medium-size problems, for which the storage and factorization cost of the Hessian are not critical, it is possible to obtain a solution within fewer iteration by solving the trust-region subproblems almost exactly. To achieve that, a certain nonlinear equations is solved iteratively for each quadratic subproblem [CGT]. This solution requires usually 3 or 4 Cholesky factorizations of the Hessian matrix. As the result, the method converges in fewer number of iterations and takes fewer evaluations of the objective function than the other implemented trust-region methods. The Hessian product option is not supported by this algorithm. An example using the Rosenbrock function follows:

```python
>>> res = minimize(rosen, x0, method='trust-exact',
...   jac=rosen_der, hess=rosen_hess,
...   options={'gtol': 1e-8, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
```

(continues on next page)
Iterations: 13 # may vary
Function evaluations: 14
Gradient evaluations: 13
Hessian evaluations: 14

```
res.x
array([1., 1., 1., 1., 1.])
```

2.4.2 Constrained minimization of multivariate scalar functions (minimize)

The `minimize` function provides algorithms for constrained minimization, namely `trust-constr`, 'SLSQP' and 'COBYLA'. They require the constraints to be defined using slightly different structures. The method 'trust-constr' requires the constraints to be defined as a sequence of objects `LinearConstraint` and `NonlinearConstraint`. Methods 'SLSQP' and 'COBYLA', on the other hand, require constraints to be defined as a sequence of dictionaries, with keys `type`, `fun` and `jac`.

As an example let us consider the constrained minimization of the Rosenbrock function:

\[
\begin{align*}
\min_{x_0, x_1} & \quad 100 (x_1 - x_0^2)^2 + (1 - x_0)^2 \\
\text{subject to:} & \quad x_0 + 2x_1 \leq 1 \\
& \quad x_0^2 + x_1 \leq 1 \\
& \quad x_0^2 - x_1 \leq 1 \\
& \quad 2x_0 + x_1 = 1 \\
& \quad 0 \leq x_0 \leq 1 \\
& \quad -0.5 \leq x_1 \leq 2.0.
\end{align*}
\]

This optimization problem has the unique solution \([x_0, x_1] = [0.4149, 0.1701]\), for which only the first and fourth constraints are active.

Trust-Region Constrained Algorithm (method='trust-constr')

The trust-region constrained method deals with constrained minimization problems of the form:

\[
\begin{align*}
\min_x & \quad f(x) \\
\text{subject to:} & \quad c^l \leq c(x) \leq c^u, \\
& \quad x^l \leq x \leq x^u.
\end{align*}
\]

When \(c^l_j = c^u_j\) the method reads the \(j\)-th constraint as an equality constraint and deals with it accordingly. Besides that, one-sided constraint can be specified by setting the upper or lower bound to `np.inf` with the appropriate sign.

The implementation is based on [EQSQP] for equality-constraint problems and on [TRIP] for problems with inequality constraints. Both are trust-region type algorithms suitable for large-scale problems.
Defining Bounds Constraints:
The bound constraints $0 \leq x_0 \leq 1$ and $-0.5 \leq x_1 \leq 2.0$ are defined using a `Bounds` object.

```python
>>> from scipy.optimize import Bounds
>>> bounds = Bounds([0, -0.5], [1.0, 2.0])
```

Defining Linear Constraints:
The constraints $x_0 + 2x_1 \leq 1$ and $2x_0 + x_1 = 1$ can be written in the linear constraint standard format:

$$
\begin{bmatrix}
-\infty \\
1
\end{bmatrix} \leq
\begin{bmatrix}
1 & 2 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
x_0 \\
x_1
\end{bmatrix} \leq
\begin{bmatrix}
1 \\
1
\end{bmatrix},
$$

and defined using a `LinearConstraint` object.

```python
>>> from scipy.optimize import LinearConstraint
>>> linear_constraint = LinearConstraint([[1, 2], [2, 1]], [-np.inf, 1], [1, -1])
```

Defining Nonlinear Constraints:
The nonlinear constraint:

$$
c(x) = \begin{bmatrix} x_0^2 + x_1 \\ x_0^2 - x_1 \end{bmatrix} \leq \begin{bmatrix} 1 \\
1
\end{bmatrix},
$$

with Jacobian matrix:

$$
J(x) = \begin{bmatrix} 2x_0 & 1 \\
2x_0 & -1
\end{bmatrix},
$$

and linear combination of the Hessians:

$$
H(x,v) = \sum_{i=0}^{1} v_i \nabla^2 c_i(x) = v_0 \begin{bmatrix} 2 & 0 \\
0 & 0
\end{bmatrix} + v_1 \begin{bmatrix} 2 & 0 \\
0 & 0
\end{bmatrix},
$$
is defined using a `NonlinearConstraint` object.

```python
>>> def cons_f(x):
...     return [x[0]**2 + x[1], x[0]**2 - x[1]]
>>> def cons_J(x):
...     return [[2*x[0], 1], [2*x[0], -1]]
>>> def cons_H(x, v):
...     return v[0]*np.array([[2, 0], [0, 0]]) + v[1]*np.array([[2, 0], [-1, 0]])
>>> from scipy.optimize import NonlinearConstraint
>>> nonlinear_constraint = NonlinearConstraint(cons_f, -np.inf, 1, jac=cons_J, hess=cons_H)
```

Alternatively, it is also possible to define the Hessian $H(x,v)$ as a sparse matrix,

```python
>>> from scipy.sparse import csc_matrix
>>> def cons_H_sparse(x, v):
...     return v[0]*csc_matrix([[2, 0], [0, 0]]) + v[1]*csc_matrix([[2, 0], [-1, 0]])
>>> nonlinear_constraint = NonlinearConstraint(cons_f, -np.inf, 1, jac=cons_J, hess=cons_H_sparse)
```

or as a `LinearOperator` object.
When the evaluation of the Hessian $H(x,v)$ is difficult to implement or computationally infeasible, one may use HessianUpdateStrategy. Currently available strategies are BFGS and SR1.

Alternatively, the Hessian may be approximated using finite differences.

The Jacobian of the constraints can be approximated by finite differences as well. In this case, however, the Hessian cannot be computed with finite differences and needs to be provided by the user or defined using HessianUpdateStrategy.

Solving the Optimization Problem:

The optimization problem is solved using:

When needed, the objective function Hessian can be defined using a LinearOperator object,
or a Hessian-vector product through the parameter \texttt{hessp}.

Alternatively, the first and second derivatives of the objective function can be approximated. For instance, the Hessian can be approximated with \texttt{SR1} quasi-Newton approximation and the gradient with finite differences.

Sequential Least SQares Programming (SLSQP) Algorithm (method=’SLSQP’)

The SLSQP method deals with constrained minimization problems of the form:

\[
\begin{align*}
\min_{x} & \quad f(x) \\
\text{subject to} & \quad c_j(x) = 0, \quad j \in \mathcal{E} \\
& \quad c_j(x) \geq 0, \quad j \in \mathcal{I} \\
& \quad lb_i \leq x_i \leq ub_i, \quad i = 1, \ldots, N.
\end{align*}
\]

Where \(\mathcal{E}\) or \(\mathcal{I}\) are sets of indices containing equality and inequality constraints.

Both linear and nonlinear constraints are defined as dictionaries with keys \texttt{type}, \texttt{fun} and \texttt{jac}.
And the optimization problem is solved with:

```python
>>> x0 = np.array([0.5, 0])
>>> res = minimize(rosen, x0, method='SLSQP', jac=rosen_der,
...                constraints=[eq_cons, ineq_cons], options={'ftol': 1e-9,
...                'disp': True},
...                bounds=bounds)
# may vary
Optimization terminated successfully.  (Exit mode 0)
Current function value: 0.342717574857755
Iterations: 5
Function evaluations: 6
Gradient evaluations: 5
>>> print(res.x)
[0.41494475 0.1701105 ]
```

Most of the options available for the method 'trust-constr' are not available for 'SLSQP'.

2.4.3 Global optimization

Global optimization aims to find the global minimum of a function within given bounds, in the presence of potentially many local minima. Typically, global minimizers efficiently search the parameter space, while using a local minimizer (e.g., minimize) under the hood. SciPy contains a number of good global optimizers. Here, we’ll use those on the same objective function, namely the (aptly named) eggholder function:

```python
>>> def eggholder(x):
...     return -((x[1] + 47) * np.sin(np.sqrt(abs(x[0] / 2 + (x[1] + 47))))
...            + x[0] * np.sin(np.sqrt(abs(x[0] - (x[1] + 47)))))
```

This function looks like an egg carton:

```python
>>> bounds = [(-512, 512), (-512, 512)]
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.mplot3d import Axes3D
>>> x = np.arange(-512, 513)
>>> y = np.arange(-512, 513)
>>> xgrid, ygrid = np.meshgrid(x, y)
>>> xy = np.stack([xgrid, ygrid])
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.mplot3d import Axes3D
>>> x = np.arange(-512, 513)
>>> y = np.arange(-512, 513)
>>> xgrid, ygrid = np.meshgrid(x, y)
>>> xy = np.stack([xgrid, ygrid])
```
```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='3d')
>>> ax.view_init(45, -45)
>>> ax.plot_surface(xgrid, ygrid, eggholder(xy), cmap='terrain')
>>> ax.set_xlabel('x')
>>> ax.set_ylabel('y')
>>> ax.set_zlabel('eggholder(x, y)')
>>> plt.show()
```

We now use the global optimizers to obtain the minimum and the function value at the minimum. We’ll store the results in a dictionary so we can compare different optimization results later.

```python
>>> from scipy import optimize
>>> results = dict()
>>> results['shgo'] = optimize.shgo(eggholder, bounds)
>>> results['shgo']
    fun: -935.3379515604197 # may vary
    funl: array([-935.33795156])
    message: 'Optimization terminated successfully.'
    nfev: 42
    nit: 2
    nlfev: 37
    nlhev: 0
    nljev: 9
    success: True
    x: array([439.48096952, 453.97740589])
    xl: array([[439.48096952, 453.97740589]])
```
All optimizers return an `OptimizeResult`, which in addition to the solution contains information on the number of function evaluations, whether the optimization was successful, and more. For brevity, we won’t show the full output of the other optimizers:

```python
>>> results['DE'] = optimize.differential_evolution(eggholder, bounds)
>>> results['BH'] = optimize.basinhopping(eggholder, bounds)
```

`shgo` has a second method, which returns all local minima rather than only what it thinks is the global minimum:

```python
>>> results['shgo_sobol'] = optimize.shgo(eggholder, bounds, n=200, iters=5,
...                                          sampling_method='sobol')
```

We’ll now plot all found minima on a heatmap of the function:

```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> im = ax.imshow(eggholder(xy), interpolation='bilinear', origin='lower',
...                 cmap='gray')
>>> ax.set_xlabel('x')
>>> ax.set_ylabel('y')

>>> def plot_point(res, marker='o', color=None):
...     ax.plot(512 + res.x[0], 512 + res.x[1], marker=marker, color=color, ms=10)

>>> plot_point(results['BH'], color='y')  # basinhopping - yellow
>>> plot_point(results['DE'], color='c')   # differential_evolution - cyan
>>> plot_point(results['DA'], color='w')   # dual_annealing. - white

>>> # SHGO produces multiple minima, plot them all (with a smaller marker_size)
>>> plot_point(results['shgo'], color='r', marker='+')
>>> plot_point(results['shgo_sobol'], color='r', marker='x')

>>> for i in range(results['shgo_sobol'].xl.shape[0]):
...     ax.plot(512 + results['shgo_sobol'].xl[i, 0], 512 + results['shgo_sobol'].xl[i, 1],
...             'ro', ms=2)

>>> ax.set_xlim([-4, 514*2])
>>> ax.set_ylim([-4, 514*2])
>>> plt.show()
```
2.4.4 Least-squares minimization (least_squares)

SciPy is capable of solving robustified bound-constrained nonlinear least-squares problems:

$$\begin{align*}
\min_x \frac{1}{2} \sum_{i=1}^{m} \rho (f_i(x)^2) \\
\text{subject to } lb \leq x \leq ub
\end{align*}$$

Here $f_i(x)$ are smooth functions from \mathbb{R}^n to \mathbb{R}, we refer to them as residuals. The purpose of a scalar-valued function $\rho(\cdot)$ is to reduce the influence of outlier residuals and contribute to robustness of the solution, we refer to it as a loss function. A linear loss function gives a standard least-squares problem. Additionally, constraints in a form of lower and upper bounds on some of x_j are allowed.

All methods specific to least-squares minimization utilize a $m \times n$ matrix of partial derivatives called Jacobian and defined as $J_{ij} = \partial f_i / \partial x_j$. It is highly recommended to compute this matrix analytically and pass it to `least_squares`, otherwise, it will be estimated by finite differences, which takes a lot of additional time and can be very inaccurate in hard cases.

Function `least_squares` can be used for fitting a function $\varphi(t; x)$ to empirical data $\{(t_i, y_i), i = 0, \ldots, m-1\}$. To do this, one should simply precompute residuals as $f_i(x) = w_i(\varphi(t_i; x) - y_i)$, where w_i are weights assigned to each observation.
Example of solving a fitting problem

Here we consider an enzymatic reaction\(^1\). There are 11 residuals defined as

\[
f_i(x) = \frac{x_0(u_i^2 + u_i x_1)}{u_i^2 + u_i x_2 + x_3} - y_i, \quad i = 0, \ldots, 10,
\]

where \(y_i\) are measurement values and \(u_i\) are values of the independent variable. The unknown vector of parameters is \(x = (x_0, x_1, x_2, x_3)^T\). As was said previously, it is recommended to compute Jacobian matrix in a closed form:

\[
J_{i0} = \frac{\partial f_i}{\partial x_0} = \frac{u_i^2 + u_i x_1}{u_i^2 + u_i x_2 + x_3}
\]

(2.6)

\[
J_{i1} = \frac{\partial f_i}{\partial x_1} = \frac{u_i x_0}{u_i^2 + u_i x_2 + x_3}
\]

(2.7)

\[
J_{i2} = \frac{\partial f_i}{\partial x_2} = -\frac{x_0(u_i^2 + u_i x_1) u_i}{(u_i^2 + u_i x_2 + x_3)^2}
\]

(2.8)

\[
J_{i3} = \frac{\partial f_i}{\partial x_3} = -\frac{x_0(u_i^2 + u_i x_1)}{(u_i^2 + u_i x_2 + x_3)^2}
\]

(2.9)

We are going to use the “hard” starting point defined in\(^2\). To find a physically meaningful solution, avoid potential division by zero and assure convergence to the global minimum we impose constraints \(0 \leq x_j \leq 100, j = 0, 1, 2, 3\).

The code below implements least-squares estimation of \(x\) and finally plots the original data and the fitted model function:

```python
>>> from scipy.optimize import least_squares

>>> def model(x, u):
...     return x[0] * (u ** 2 + x[1] * u) / (u ** 2 + x[2] * u + x[3])

>>> def fun(x, u, y):
...     return model(x, u) - y

>>> def jac(x, u, y):
...     J = np.empty((u.size, x.size))
...     den = u ** 2 + x[2] * u + x[3]
...     num = u ** 2 + x[1] * u
...     J[:, 0] = num / den
...     J[:, 1] = x[0] * u / den
...     J[:, 2] = -x[0] * num / den ** 2
...     J[:, 3] = -x[0] * num / den ** 2
...     return J

>>> x0 = np.array([2.5, 3.9, 4.15, 3.9])
>>> args = (u, y)
>>> res = least_squares(fun, x0, jac=jac, bounds=(0, 100), args=args, verbose=1)
```

(continues on next page)

\(^2\) M. Averick et al., “The MINPACK-2 Test Problem Collection”.

2.4. Optimization (scipy.optimize)
may vary
`ftol` termination condition is satisfied.
Function evaluations 130, initial cost 4.4383e+00, final cost 1.5375e-04,
→ first-order optimality 4.92e-08.
>>> res.x
array([0.19280596, 0.19130423, 0.12306063, 0.13607247])

```python
>>> import matplotlib.pyplot as plt
>>> u_test = np.linspace(0, 5)
>>> y_test = model(res.x, u_test)
>>> plt.plot(u, y, 'o', markersize=4, label='data')
>>> plt.plot(u_test, y_test, label='fitted model')
>>> plt.xlabel("u")
>>> plt.ylabel("y")
>>> plt.legend(loc='lower right')
>>> plt.show()
```

Further examples

Three interactive examples below illustrate usage of `least_squares` in greater detail.

1. **Large-scale bundle adjustment in scipy** demonstrates large-scale capabilities of `least_squares` and how to efficiently compute finite difference approximation of sparse Jacobian.

2. **Robust nonlinear regression in scipy** shows how to handle outliers with a robust loss function in a nonlinear regression.

3. **Solving a discrete boundary-value problem in scipy** examines how to solve a large system of equations and use bounds to achieve desired properties of the solution.

For the details about mathematical algorithms behind the implementation refer to documentation of `least_squares`.
2.4.5 Univariate function minimizers (minimize_scalar)

Often only the minimum of an univariate function (i.e., a function that takes a scalar as input) is needed. In these circumstances, other optimization techniques have been developed that can work faster. These are accessible from the `minimize_scalar` function, which proposes several algorithms.

Unconstrained minimization (method='brent')

There are, actually, two methods that can be used to minimize an univariate function: `brent` and `golden`, but `golden` is included only for academic purposes and should rarely be used. These can be respectively selected through the `method` parameter in `minimize_scalar`. The `brent` method uses Brent’s algorithm for locating a minimum. Optimally, a bracket (the `bracket` parameter) should be given which contains the minimum desired. A bracket is a triple \((a, b, c)\) such that \(f(a) > f(b) < f(c)\) and \(a < b < c\). If this is not given, then alternatively two starting points can be chosen and a bracket will be found from these points using a simple marching algorithm. If these two starting points are not provided, 0 and 1 will be used (this may not be the right choice for your function and result in an unexpected minimum being returned).

Here is an example:

```python
>>> from scipy.optimize import minimize_scalar
>>> f = lambda x: (x - 2) * (x + 1)**2
>>> res = minimize_scalar(f, method='brent')
>>> print(res.x)
1.0
```

Bounded minimization (method='bounded')

Very often, there are constraints that can be placed on the solution space before minimization occurs. The `bounded` method in `minimize_scalar` is an example of a constrained minimization procedure that provides a rudimentary interval constraint for scalar functions. The interval constraint allows the minimization to occur only between two fixed endpoints, specified using the mandatory `bounds` parameter.

For example, to find the minimum of \(J_1(x)\) near \(x = 5\), `minimize_scalar` can be called using the interval \([4, 7]\) as a constraint. The result is \(x_{\text{min}} = 5.3314\):

```python
>>> from scipy.special import j1
>>> res = minimize_scalar(j1, bounds=(4, 7), method='bounded')
>>> res.x
5.33144184241
```

2.4.6 Custom minimizers

Sometimes, it may be useful to use a custom method as a (multivariate or univariate) minimizer, for example, when using some library wrappers of `minimize` (e.g., `basinhopping`).

We can achieve that by, instead of passing a method name, passing a callable (either a function or an object implementing a `__call__` method) as the `method` parameter.

Let us consider an (admittedly rather virtual) need to use a trivial custom multivariate minimization method that will just search the neighborhood in each dimension independently with a fixed step size:
```python
from scipy.optimize import OptimizeResult

def custmin(fun, x0, args=(), maxfev=None, stepsize=0.1,
             maxiter=100, callback=None, **options):
    bestx = x0
    besty = fun(x0)
    funcalls = 1
    niter = 0
    improved = True
    stop = False
    
    while improved and not stop and niter < maxiter:
        improved = False
        niter += 1
        for dim in range(np.size(x0)):
            for s in [bestx[dim] - stepsize, bestx[dim] + stepsize]:
                testx = np.copy(bestx)
                testx[dim] = s
                testy = fun(testx, *args)
                funcalls += 1
                if testy < besty:
                    besty = testy
                    bestx = testx
                    improved = True
        if callback is not None:
            callback(bestx)
        if maxfev is not None and funcalls >= maxfev:
            stop = True
            break
    return OptimizeResult(fun=besty, x=bestx, nit=niter,
                           nfev=funcalls, success=(niter > 1))
```

This will work just as well in case of univariate optimization:

```python
def custmin(fun, bracket, args=(), maxfev=None, stepsize=0.1,
            maxiter=100, callback=None, **options):
    bestx = (bracket[1] + bracket[0]) / 2.0
    besty = fun(bestx)
    funcalls = 1
    niter = 0
    improved = True
    stop = False

    while improved and not stop and niter < maxiter:
        improved = False
        niter += 1
        for testx in [bestx - stepsize, bestx + stepsize]:
            testy = fun(testx, *args)
            funcalls += 1
```

(continues on next page)
if testy < besty:
 besty = testy
 bestx = testx
 improved = True

if callback is not None:
 callback(bestx)

if maxfev is not None and funcalls >= maxfev:
 stop = True
 break

return OptimizeResult(fun=besty, x=bestx, nit=niter, nfev=funcalls, success=(niter > 1))

>>> f(x):
 return (x - 2)**2 + (x + 2)**2

>>> res = minimize_scalar(f, bracket=(-3.5, 0), method=custmin,
 options=dict(stepsize = 0.05))

>>> res
-2.0

2.4.7 Root finding

Scalar functions

If one has a single-variable equation, there are multiple different root finding algorithms that can be tried. Most of these algorithms require the endpoints of an interval in which a root is expected (because the function changes signs). In general, brentq is the best choice, but the other methods may be useful in certain circumstances or for academic purposes. When a bracket is not available, but one or more derivatives are available, then newton (or halley, secant) may be applicable. This is especially the case if the function is defined on a subset of the complex plane, and the bracketing methods cannot be used.

Fixed-point solving

A problem closely related to finding the zeros of a function is the problem of finding a fixed point of a function. A fixed point of a function is the point at which evaluation of the function returns the point: \(g(x) = x \). Clearly, the fixed point of \(g \) is the root of \(f(x) = g(x) - x \). Equivalently, the root of \(f \) is the fixed point of \(g(x) = f(x) + x \). The routine fixed_point provides a simple iterative method using Aitkens sequence acceleration to estimate the fixed point of \(g \) given a starting point.

Sets of equations

Finding a root of a set of non-linear equations can be achieved using the root function. Several methods are available, amongst which hybr (the default) and lm, which, respectively, use the hybrid method of Powell and the Levenberg-Marquardt method from MINPACK.

The following example considers the single-variable transcendental equation

\[x + 2 \cos(x) = 0, \]

a root of which can be found as follows:
Consider now a set of non-linear equations

\[
\begin{align*}
 x_0 \cos(x_1) &= 4, \\
 x_0 x_1 - x_1 &= 5.
\end{align*}
\]

We define the objective function so that it also returns the Jacobian and indicate this by setting the `jac` parameter to `True`. Also, the Levenberg-Marquardt solver is used here.

```python
>>> def func2(x):
    ...     f = [x[0] * np.cos(x[1]) - 4,    
    ...         x[1]*x[0] - x[1] - 5]
    ...     df = np.array([[-np.sin(x[1]), -x[0] * np.sin(x[1])],  
                    [x[1], x[0] - 1]])
    ...     return f, df

>>> sol = root(func2, [1, 1], jac=True, method='lm')
>>> sol.x
array([ 6.50409711, 0.90841421])
```

Root finding for large problems

Methods `hybr` and `lm` in `root` cannot deal with a very large number of variables \((N)\), as they need to calculate and invert a dense \(N \times N\) Jacobian matrix on every Newton step. This becomes rather inefficient when \(N\) grows.

Consider, for instance, the following problem: we need to solve the following integrodifferential equation on the square \([0,1] \times [0,1]\):

\[
(\partial_x^2 + \partial_y^2)P + 5 \left(\int_0^1 \int_0^1 \cosh(P) \, dx \, dy \right)^2 = 0
\]

with the boundary condition \(P(x,1) = 1\) on the upper edge and \(P = 0\) elsewhere on the boundary of the square. This can be done by approximating the continuous function \(P\) by its values on a grid, \(P_{n,m} \approx P(nh, mh)\), with a small grid spacing \(h\). The derivatives and integrals can then be approximated; for instance \(\partial_x^2 P(x, y) \approx (P(x + h, y) - 2P(x, y) + P(x - h, y))/h^2\). The problem is then equivalent to finding the root of some function `residual(P)`, where \(P\) is a vector of length \(N_x N_y\).

Now, because \(N_x N_y\) can be large, methods `hybr` or `lm` in `root` will take a long time to solve this problem. The solution can, however, be found using one of the large-scale solvers, for example `krylov`, `broyden2`, or `anderson`. These use what is known as the inexact Newton method, which instead of computing the Jacobian matrix exactly, forms an approximation for it.

The problem we have can now be solved as follows:
import numpy as np
from scipy.optimize import root
from numpy import cosh, zeros_like, mgrid, zeros

parameters
nx, ny = 75, 75
hx, hy = 1. / (nx-1), 1. / (ny-1)

P_left, P_right = 0, 0
P_top, P_bottom = 1, 0

def residual(P):
 d2x = zeros_like(P)
 d2y = zeros_like(P)

 d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:0])/hx/hx
 d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
 d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx

 d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,-2])/hy/hy
 d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy
 d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy

 return d2x + d2y + 5*cosh(P).mean()**2

solve
guess = zeros((nx, ny), float)
sol = root(residual, guess, method='krylov', options={'disp': True})
#sol = root(residual, guess, method='broyden2', options={'disp': True, 'max_rank': 50})
#sol = root(residual, guess, method='anderson', options={'disp': True, 'M': 10})
print('Residual: %g' % abs(residual(sol.x)).max())

visualize
import matplotlib.pyplot as plt
x, y = mgrid[0:1:(nx+1j), 0:1:(ny+1j)]
plt.pcolormesh(x, y, sol.x, shading='gouraud')
plt.colorbar()
plt.show()

Still too slow? Preconditioning.

When looking for the zero of the functions $f_i(x) = 0$, $i = 1, 2, ..., N$, the krylov solver spends most of the time inverting the Jacobian matrix,

$$J_{ij} = \frac{\partial f_j}{\partial x_i}.$$

If you have an approximation for the inverse matrix $M \approx J^{-1}$, you can use it for preconditioning the linear-inversion problem. The idea is that instead of solving $Js = y$ one solves $MJJs = My$: since matrix MJ is “closer” to the identity matrix than J is, the equation should be easier for the Krylov method to deal with.
The matrix M can be passed to `root` with method `krylov` as an option `options[\texttt{\textquoteleft\textquoteleft jac_options\textquoteRight\textquoteLeft\textquoteRight}][\texttt{\textquoteleft\textquoteLeft inner_M\textquoteRight\textquoteRight}]`. It can be a (sparse) matrix or a \texttt{scipy.sparse.linalg.LinearOperator} instance.

For the problem in the previous section, we note that the function to solve consists of two parts: the first one is the application of the Laplace operator, $[\partial_x^2 + \partial_y^2]P$, and the second is the integral. We can actually easily compute the Jacobian corresponding to the Laplace operator part: we know that in 1-D

$$\partial_x^2 \approx \frac{1}{h_x^2} \begin{pmatrix} -2 & 1 & 0 & 0 & \cdots \\ 1 & -2 & 1 & 0 & \cdots \\ 0 & 1 & -2 & 1 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix} = h_x^{-2}L$$

so that the whole 2-D operator is represented by

$$J_1 = \partial_x^2 + \partial_y^2 \approx h_x^{-2}L \otimes I + h_y^{-2}I \otimes L$$

The matrix J_2 of the Jacobian corresponding to the integral is more difficult to calculate, and since all of it entries are nonzero, it will be difficult to invert. J_1 on the other hand is a relatively simple matrix, and can be inverted by \texttt{scipy.sparse.linalg.spilu} (or the inverse can be approximated by \texttt{scipy.sparse.linalg.spilu}). So we are content to take $M \approx J_1^{-1}$ and hope for the best.

In the example below, we use the preconditioner $M = J_1^{-1}$.

```python
import numpy as np
from scipy.optimize import root
from scipy.sparse import spdiags, kron
from scipy.sparse.linalg import spilu, LinearOperator
from numpy import cosh, zeros_like, mgrid, zeros, eye

# parameters
nx, ny = 75, 75
hx, hy = 1./(nx-1), 1./(ny-1)

P_left, P_right = 0, 0
P_top, P_bottom = 1, 0
```
```python
def get_preconditioner():
    """Compute the preconditioner M""
    diags_x = zeros((3, nx))
    diags_x[0, :] = 1/hx/hx
    diags_x[1, :] = -2/hx/hx
    diags_x[2, :] = 1/hx/hx
    Lx = spdiags(diags_x, [-1, 0, 1], nx, nx)
    diags_y = zeros((3, ny))
    diags_y[0, :] = 1/gy/gy
    diags_y[1, :] = -2/gy/gy
    diags_y[2, :] = 1/gy/gy
    Ly = spdiags(diags_y, [-1, 0, 1], ny, ny)
    J1 = kron(Lx, eye(ny)) + kron(eye(nx), Ly)

    # Now we have the matrix 'J_1'. We need to find its inverse 'M' --
    # however, since an approximate inverse is enough, we can use
    # the *incomplete LU* decomposition
    J1_ilu = spilu(J1)

    # This returns an object with a method .solve() that evaluates
    # the corresponding matrix-vector product. We need to wrap it into
    # a LinearOperator before it can be passed to the Krylov methods:
    M = LinearOperator(shape=(nx*ny, nx*ny), matvec=J1_ilu.solve)
    return M

def solve(preconditioning=True):
    """Compute the solution""
    count = [0]

    def residual(P):
        count[0] += 1
        d2x = zeros_like(P)
        d2y = zeros_like(P)

        d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:2])/hx/hx
        d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
        d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx

        d2y[:, 1:-1] = (P[:, 2:] - 2*P[:, 1:-1] + P[:, :2])/hy/hy
        d2y[:, 0] = (P[:, 1] - 2*P[:, 0] + P_bottom)/hy/hy
        d2y[:, -1] = (P_top - 2*P[:, -1] + P[:, -2])/hy/hy

        return d2x + d2y + 5*cosh(P).mean()**2

    if preconditioning:
        preconditioning (continued on next page)
```

(continued from previous page)
M = get_preconditioner()
else:
 M = None

solve
guess = zeros((nx, ny), float)
sol = root(residual, guess, method='krylov',
options={'disp': True,
 'jac_options': {'inner_M': M}})
print('Residual', abs(residual(sol.x)).max())
print('Evaluations', count[0])
return sol.x

def main():
 sol = solve(preconditioning=True)

 # visualize
 import matplotlib.pyplot as plt
 x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
 plt.clf()
 plt.pcolor(x, y, sol)
 plt.clim(0, 1)
 plt.colorbar()
 plt.show()

if __name__ == '__main__':
 main()

Resulting run, first without preconditioning:

| Iteration | |F(x)| | Tol | Step |
|-----------|-------|------|-----|
| 0 | |803.614| 0.000257947 |
| 1 | |345.912| 0.166755 |
| 2 | |139.159| 0.145657 |
| 3 | |27.3682| 0.0348109 |
| 4 | |1.03303| 0.00128227 |
| 5 | |0.0406634| 0.00139451 |
| 6 | |0.0034431| 0.00645373 |
| 7 | |0.00153671| 0.00179246 |
| 8 | |6.7424e-06| 0.00173256 |

Residual 3.57078908664e-07
Evaluations 317

and then with preconditioning:

| Iteration | |F(x)| | Tol | Step |
|-----------|-------|------|-----|
| 0 | |136.993| 7.49599e-06 |
| 1 | |4.80983| 0.00110945 |
| 2 | |0.195942| 0.00149362 |
| 3 | |0.000563597| 7.44604e-06 |
| 4 | |1.00698e-09| 2.87308e-12 |
Using a preconditioner reduced the number of evaluations of the residual function by a factor of 4. For problems where the residual is expensive to compute, good preconditioning can be crucial — it can even decide whether the problem is solvable in practice or not.

Preconditioning is an art, science, and industry. Here, we were lucky in making a simple choice that worked reasonably well, but there is a lot more depth to this topic than is shown here.

2.4.8 Linear programming (linprog)

The function linprog can minimize a linear objective function subject to linear equality and inequality constraints. This kind of problem is well known as linear programming. Linear programming solves problems of the following form:

$$\min_x c^T x$$

such that $A_{ub} x \leq b_{ub}$,

$A_{eq} x = b_{eq}$,

$l \leq x \leq u$,

where x is a vector of decision variables; c, b_{ub}, b_{eq}, l, and u are vectors; and A_{ub} and A_{eq} are matrices.

In this tutorial, we will try to solve a typical linear programming problem using linprog.

Linear programming example

Consider the following simple linear programming problem:

$$\max_{x_1, x_2, x_3, x_4} 29x_1 + 45x_2$$

such that $x_1 - x_2 - 3x_3 \leq 5$

$2x_1 - 3x_2 - 7x_3 + 3x_4 \geq 10$

$2x_1 + 8x_2 + x_3 = 60$

$4x_1 + 4x_2 + x_4 = 60$

$0 \leq x_0$

$0 \leq x_1 \leq 5$

$x_2 \leq 0.5$

$-3 \leq x_3$

We need some mathematical manipulations to convert the target problem to the form accepted by linprog.

First of all, let’s consider the objective function. We want to maximize the objective function, but linprog can only accept a minimization problem. This is easily remedied by converting the maximize $29x_1 + 45x_2$ to minimizing $-29x_1 - 45x_2$. Also, x_3, x_4 are not shown in the objective function. That means the weights corresponding with x_3, x_4 are zero. So, the objective function can be converted to:

$$\min_{x_1, x_2, x_3, x_4} -29x_1 - 45x_2 + 0x_3 + 0x_4$$

If we define the vector of decision variables $x = [x_1, x_2, x_3, x_4]^T$, the objective weights vector c of linprog in this problem should be

$$c = [-29, -45, 0, 0]^T$$
Next, let’s consider the two inequality constraints. The first one is a “less than” inequality, so it is already in the form accepted by `linprog`. The second one is a “greater than” inequality, so we need to multiply both sides by -1 to convert it to a “less than” inequality. Explicitly showing zero coefficients, we have:

\[
\begin{align*}
x_1 - x_2 - 3x_3 + 0x_4 & \leq 5 \\
-2x_1 + 3x_2 + 7x_3 - 3x_4 & \leq -10
\end{align*}
\]

These equations can be converted to matrix form:

\[
A_{ub} x \leq b_{ub}
\]

where

\[
A_{ub} = \begin{bmatrix} 1 & -1 & -3 & 0 \\ -2 & 3 & 7 & -3 \end{bmatrix},
\]

\[
b_{ub} = \begin{bmatrix} 5 \\ -10 \end{bmatrix}
\]

Next, let’s consider the two equality constraints. Showing zero weights explicitly, these are:

\[
\begin{align*}
2x_1 + 8x_2 + 1x_3 + 0x_4 &= 60 \\
4x_1 + 4x_2 + 0x_3 + 1x_4 &= 60
\end{align*}
\]

These equations can be converted to matrix form:

\[
A_{eq} x = b_{eq}
\]

where

\[
A_{eq} = \begin{bmatrix} 2 & 8 & 1 & 0 \\ 4 & 4 & 0 & 1 \end{bmatrix},
\]

\[
b_{eq} = \begin{bmatrix} 60 \\ 60 \end{bmatrix}
\]

Lastly, let’s consider the separate inequality constraints on individual decision variables, which are known as “box constraints” or “simple bounds”. These constraints can be applied using the bounds argument of `linprog`. As noted in the `linprog` documentation, the default value of bounds is `(0, None)`, meaning that the lower bound on each decision variable is 0, and the upper bound on each decision variable is infinity: all the decision variables are non-negative. Our bounds are different, so we will need to specify the lower and upper bound on each decision variable as a tuple and group these tuples into a list.

Finally, we can solve the transformed problem using `linprog`.

```python
>>> import numpy as np
>>> from scipy.optimize import linprog
>>> c = np.array([-29.0, -45.0, 0.0, 0.0])
>>> A_ub = np.array([[1.0, -1.0, -3.0, 0.0],
...                   [-2.0, 3.0, 7.0, -3.0]])
>>> b_ub = np.array([5.0, -10.0])
>>> A_eq = np.array([[2.0, 8.0, 1.0, 0.0],
...                   [4.0, 4.0, 0.0, 1.0]])
>>> b_eq = np.array([60.0, 60.0])
>>> x0_bounds = (0, None)
>>> x1_bounds = (0, 5.0)
>>> x2_bounds = (-np.inf, 0.5) # +/- np.inf can be used instead of None
>>> x3_bounds = (-3.0, None)
>>> bounds = [x0_bounds, x1_bounds, x2_bounds, x3_bounds]
```

(continues on next page)
The result states that our problem is infeasible, meaning that there is no solution vector that satisfies all the constraints. That doesn't necessarily mean we did anything wrong; some problems truly are infeasible. Suppose, however, that we decided to change our bound constraint on x_1 to $0 \leq x_1 \leq 6$. After adjusting our code $x1_bounds = (0, 6)$ to reflect the change and executing it again:

```python
>>> x1_bounds = (0, 6)
>>> bounds = [x0_bounds, x1_bounds, x2_bounds, x3_bounds]
>>> result = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, ...
    ...bounds=bounds)
>>> print(result)
    con: array([9.78840831e-09, 1.04662945e-08]) # may vary
    fun: -505.97435889013434 # may vary
    message: 'Optimization terminated successfully.'
    nit: 4 # may vary
    slack: array([ 6.52747190e-10, -2.26730279e-09]) # may vary
    status: 0
    success: True
    x: array([ 9.41025641, 5.17948718, -0.25641026, 1.64102564]) # may vary
```

The result shows the optimization was successful. We can check the objective value (result.fun) is same as $c^T x$:

```python
>>> x = np.array(result.x)
>>> print(c @ x)
-505.97435889013434 # may vary
```

We can also check that all constraints are satisfied within reasonable tolerances:

```python
>>> print(b_ub - (A_ub @ x).flatten()) # this is equivalent to result.slack
    [ 6.52747190e-10, -2.26730279e-09] # may vary
>>> print(b_eq - (A_eq @ x).flatten()) # this is equivalent to result.con
    [ 9.78840831e-09, 1.04662945e-08] # may vary
>>> print([0 <= result.x[0], 0 <= result.x[1] <= 6.0, result.x[2] <= 0.5, -3.0 <= result.x[3]])
    [True, True, True, True]
```

If we need greater accuracy, typically at the expense of speed, we can solve using the revised simplex method:
```python
>>> result = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq,...
... bounds=bounds, method='revised simplex')
>>> print(result)
con: array([0.00000000e+00, 7.10542736e-15]) # may vary
fun: -505.97435897435895 # may vary
message: 'Optimization terminated successfully.'
nit: 5 # may vary
slack: array([ 1.77635684e-15, -3.55271368e-15]) # may vary
status: 0
success: True
x: array([ 9.41025641, 5.17948718, -0.25641026, 1.64102564]) # may
... vary
```

2.4.9 Assignment problems

Linear sum assignment problem example

Consider the problem of selecting students for a swimming medley relay team. We have a table showing times for each swimming style of five students:

<table>
<thead>
<tr>
<th>Student</th>
<th>backstroke</th>
<th>breaststroke</th>
<th>butterfly</th>
<th>freestyle</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>43.5</td>
<td>47.1</td>
<td>48.4</td>
<td>38.2</td>
</tr>
<tr>
<td>B</td>
<td>45.5</td>
<td>42.1</td>
<td>49.6</td>
<td>36.8</td>
</tr>
<tr>
<td>C</td>
<td>43.4</td>
<td>39.1</td>
<td>42.1</td>
<td>43.2</td>
</tr>
<tr>
<td>D</td>
<td>46.5</td>
<td>44.1</td>
<td>44.5</td>
<td>41.2</td>
</tr>
<tr>
<td>E</td>
<td>46.3</td>
<td>47.8</td>
<td>50.4</td>
<td>37.2</td>
</tr>
</tbody>
</table>

We need to choose a student for each of the four swimming styles such that the total relay time is minimized. This is a typical linear sum assignment problem. We can use `linear_sum_assignment` to solve it.

The linear sum assignment problem is one of the most famous combinatorial optimization problems. Given a “cost matrix” *C*, the problem is to choose

- exactly one element from each row
- without choosing more than one element from any column
- such that the sum of the chosen elements is minimized

In other words, we need to assign each row to one column such that the sum of the corresponding entries is minimized.

Formally, let *X* be a boolean matrix where *X*[i, j] = 1 iff row *i* is assigned to column *j*. Then the optimal assignment has cost

\[
\min \sum_i \sum_j C_{i,j} X_{i,j}
\]

The first step is to define the cost matrix. In this example, we want to assign each swimming style to a student. `linear_sum_assignment` is able to assign each row of a cost matrix to a column. Therefore, to form the cost matrix, the table above needs to be transposed so that the rows correspond with swimming styles and the columns correspond with students:

```python
>>> import numpy as np
>>> cost = np.array([[43.5, 45.5, 43.4, 46.5, 46.3],
...                   [54.5, 49.6, 42.1, 44.5, 41.2],
...                   [48.4, 44.1, 42.1, 44.5, 41.2],
...                   [38.2, 39.1, 42.1, 43.2, 43.2],
...                   [36.8, 44.1, 44.5, 41.2, 37.2]],
...                   [43.5, 45.5, 43.4, 46.5, 46.3],
...                   [54.5, 49.6, 42.1, 44.5, 41.2],
...                   [48.4, 44.1, 42.1, 44.5, 41.2],
...                   [38.2, 39.1, 42.1, 43.2, 43.2],
...                   [36.8, 44.1, 44.5, 41.2, 37.2]],
```
We can solve the assignment problem with `linear_sum_assignment`:

```python
>>> from scipy.optimize import linear_sum_assignment
>>> row_ind, col_ind = linear_sum_assignment(cost)
```

The `row_ind` and `col_ind` are optimal assigned matrix indexes of the cost matrix:

```python
>>> row_ind
array([0, 1, 2, 3])
>>> col_ind
array([0, 2, 3, 1])
```

The optimal assignment is:

```python
>>> styles = np.array(['backstroke', 'breaststroke', 'butterfly', 'freestyle'])
>>> students = np.array(['A', 'B', 'C', 'D', 'E'])
>>> zip(styles, students)
[('backstroke', 'A'), ('breaststroke', 'C'), ('butterfly', 'D'), ('freestyle', 'B')]
```

The optimal total medley time is:

```python
>>> cost[row_ind, col_ind].sum()
163.89999999999998
```

Note that this result is not the same as the sum of the minimum times for each swimming style:

```python
>>> np.min(cost, axis=1).sum()
161.39999999999998
```

because student “C” is the best swimmer in both “breaststroke” and “butterfly” style. We cannot assign student “C” to both styles, so we assigned student C to the “breaststroke” style and D to the “butterfly” style to minimize the total time.

References

Some further reading and related software, such as Newton-Krylov [KK], PETSc [PP], and PyAMG [AMG]:

2.5 Interpolation (scipy.interpolate)

Contents

- `Interpolation (scipy.interpolate)`
 - `1-D interpolation (interp1d)`
 - `Multivariate data interpolation (griddata)`
There are several general interpolation facilities available in SciPy, for data in 1, 2, and higher dimensions:

- A class representing an interpolant (`interp1d`) in 1-D, offering several interpolation methods.
- Convenience function `griddata` offering a simple interface to interpolation in N dimensions (N = 1, 2, 3, 4, …). Object-oriented interface for the underlying routines is also available.
- Functions for 1- and 2-D (smoothed) cubic-spline interpolation, based on the FORTRAN library FITPACK. They are both procedural and object-oriented interfaces for the FITPACK library.
- Interpolation using radial basis functions.

2.5.1 1-D interpolation (`interp1d`)

The `interp1d` class in `scipy.interpolate` is a convenient method to create a function based on fixed data points, which can be evaluated anywhere within the domain defined by the given data using linear interpolation. An instance of this class is created by passing the 1-D vectors comprising the data. The instance of this class defines a `__call__` method and can therefore be treated like a function which interpolates between known data values to obtain unknown values (it also has a docstring for help). Behavior at the boundary can be specified at instantiation time. The following example demonstrates its use, for linear and cubic spline interpolation:

```python
>>> from scipy.interpolate import interp1d

>>> x = np.linspace(0, 10, num=11, endpoint=True)
>>> y = np.cos(-x**2/9.0)
>>> f = interp1d(x, y)
>>> f2 = interp1d(x, y, kind='cubic')

>>> xnew = np.linspace(0, 10, num=41, endpoint=True)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o', xnew, f(xnew), '-', xnew, f2(xnew), '--')
>>> plt.legend(['data', 'linear', 'cubic'], loc='best')
>>> plt.show()
```

Another set of interpolations in `interp1d` is `nearest`, `previous`, and `next`, where they return the nearest, previous, or next point along the x-axis. Nearest and next can be thought of as a special case of a causal interpolating filter. The following example demonstrates their use, using the same data as in the previous example:

```python
>>> from scipy.interpolate import interp1d

>>> x = np.linspace(0, 10, num=11, endpoint=True)
>>> y = np.cos(-x**2/9.0)
>>> f = interp1d(x, y)
>>> xnew = np.linspace(0, 10, num=41, endpoint=True)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o', xnew, f(xnew), '-', xnew, f(xnew), 'o', xnew, f(xnew), 'o')
>>> plt.legend(['data', 'linear', 'cubic'], loc='best')
>>> plt.show()
```
2.5. Interpolation (scipy.interpolate)

```python
>>> x = np.linspace(0, 10, num=11, endpoint=True)
>>> y = np.cos(-x**2/9.0)
>>> f1 = interp1d(x, y, kind='nearest')
>>> f2 = interp1d(x, y, kind='previous')
>>> f3 = interp1d(x, y, kind='next')

>>> xnew = np.linspace(0, 10, num=1001, endpoint=True)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o')
>>> plt.plot(xnew, f1(xnew), '-', xnew, f2(xnew), '--', xnew, f3(xnew), ':')
>>> plt.legend(['data', 'nearest', 'previous', 'next'], loc='best')
>>> plt.show()
```
2.5.2 Multivariate data interpolation (griddata)

Suppose you have multidimensional data, for instance, for an underlying function \(f(x, y) \) you only know the values at points \((x[i], y[i])\) that do not form a regular grid.

Suppose we want to interpolate the 2-D function

```python
>>> def func(x, y):
...     return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2
```

on a grid in \([0, 1] \times [0, 1]\)

```python
>>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]
```

but we only know its values at 1000 data points:

```python
>>> rng = np.random.default_rng()
>>> points = rng.random((1000, 2))
>>> values = func(points[:, 0], points[:, 1])
```

This can be done with `griddata`—below, we try out all of the interpolation methods:

```python
>>> from scipy.interpolate import griddata
>>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
>>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear')
>>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')
```

One can see that the exact result is reproduced by all of the methods to some degree, but for this smooth function the piecewise cubic interpolant gives the best results:

```python
>>> import matplotlib.pyplot as plt
>>> plt.subplot(221)
>>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')
>>> plt.plot(points[:,0], points[:,1], 'k', ms=1)
>>> plt.title('Original')
>>> plt.subplot(222)
>>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Nearest')
>>> plt.subplot(223)
>>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Linear')
>>> plt.subplot(224)
>>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Cubic')
>>> plt.gcf().set_size_inches(6, 6)
>>> plt.show()
```
2.5. Interpolation (\texttt{scipy.interpolate})

![Interpolation Examples]

Original

Nearest

Linear

Cubic
2.5.3 Spline interpolation

Spline interpolation requires two essential steps: (1) a spline representation of the curve is computed, and (2) the spline is evaluated at the desired points. In order to find the spline representation, there are two different ways to represent a curve and obtain (smoothing) spline coefficients: directly and parametrically. The direct method finds the spline representation of a curve in a 2-D plane using the function `splrep`. The first two arguments are the only ones required, and these provide the \(x \) and \(y \) components of the curve. The normal output is a 3-tuple, \((t,c,k)\), containing the knot-points, \(t \), the coefficients \(c \) and the order \(k \) of the spline. The default spline order is cubic, but this can be changed with the input keyword, \(k \).

For curves in N-D space the function `splprep` allows defining the curve parametrically. For this function only 1 input argument is required. This input is a list of \(N \)-arrays representing the curve in N-D space. The length of each array is the number of curve points, and each array provides one component of the N-D datapoint. The parameter variable is given with the keyword argument, \(u \), which defaults to an equally-spaced monotonic sequence between 0 and 1. The default output consists of two objects: a 3-tuple, \((t,c,k)\), containing the spline representation and the parameter variable \(u \).

The keyword argument, \(s \), is used to specify the amount of smoothing to perform during the spline fit. The default value of \(s \) is \(s = m - \sqrt{2}m \) where \(m \) is the number of data-points being fit. Therefore, if no smoothing is desired a value of \(s = 0 \) should be passed to the routines.

Once the spline representation of the data has been determined, functions are available for evaluating the spline (`splev`) and its derivatives (`splev`, `spalde`) at any point and the integral of the spline between any two points (`splint`). In addition, for cubic splines \((k = 3)\) with 8 or more knots, the roots of the spline can be estimated (`sproot`). These functions are demonstrated in the example that follows.

```python
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

Cubic-spline

```> x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)
>>> y = np.sin(x)
>>> tck = interpolate.splrep(x, y, s=0)
>>> xnew = np.arange(0, 2*np.pi, np.pi/50)
>>> ynew = interpolate.splev(xnew, tck, der=0)

```> plt.figure()
>>> plt.plot(x, y, 'x', xnew, ynew, xnew, np.sin(xnew), x, y, 'b')
>>> plt.legend(['Linear', 'Cubic Spline', 'True'])
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])
>>> plt.title('Cubic-spline interpolation')
>>> plt.show()

Derivative of spline

```> yder = interpolate.splev(xnew, tck, der=1)
>>> plt.figure()
>>> plt.plot(xnew, yder, xnew, np.cos(xnew), '--')
>>> plt.legend(['Cubic Spline', 'True'])
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])
>>> plt.title('Derivative estimation from spline')
>>> plt.show()
```
2.5. Interpolation (scipy.interpolate)
All derivatives of spline

```python
>>> yders = interpolate.spalde(xnew, tck)
>>> plt.figure()
>>> for i in range(len(yders[0])):
... plt.plot(xnew, [d[i] for d in yders], '--', label=f'{i} derivative')
>>> plt.legend()
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])
>>> plt.title('All derivatives of a B-spline')
>>> plt.show()
```

Integral of spline

```python
>>> def integ(x, tck, constant=-1):
... x = np.atleast_1d(x)
... out = np.zeros(x.shape, dtype=x.dtype)
... for n in range(len(out)):
... out[n] = interpolate.splint(0, x[n], tck)
... out += constant
... return out
```

```python
>>> yint = integ(xnew, tck)
>>> plt.figure()
>>> plt.plot(xnew, yint, xnew, -np.cos(xnew), '--')
>>> plt.legend(['Cubic Spline', 'True'])
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])
>>> plt.title('Integral estimation from spline')
>>> plt.show()
```

Roots of spline

```python
>>> interpolate.sproot(tck)
```
```
array([3.1416])
```

Notice that `sproot` failed to find an obvious solution at the edge of the approximation interval, \( x = 0 \). If we define the
Integral estimation from spline
Cubic Spline
True

Spline on a slightly larger interval, we recover both roots $x = 0$ and $x = 2\pi$:

```python
>>> x = np.linspace(-np.pi/4, 2.*np.pi + np.pi/4, 21)
>>> y = np.sin(x)
>>> tck = interpolate.splrep(x, y, s=0)
>>> interpolate.sproot(tck)
array([0., 3.1416])
```

Parametric spline

```python
>>> t = np.arange(0, 1.1, .1)
>>> x = np.sin(2*np.pi*t)
>>> y = np.cos(2*np.pi*t)
>>> tck, u = interpolate.splprep([x, y], s=0)
>>> unew = np.arange(0, 1.01, 0.01)
>>> out = interpolate.splev(unew, tck)
>>> plt.figure()
>>> plt.plot(x, y, 'x', out[0], out[1], np.sin(2*np.pi*unew), np.cos(2*np.pi*unew), x, y, 'b')
>>> plt.legend(['Linear', 'Cubic Spline', 'True'])
>>> plt.axis([-1.05, 1.05, -1.05, 1.05])
>>> plt.title('Spline of parametrically-defined curve')
>>> plt.show()
```
### Spline interpolation in 1-d: Object-oriented (UnivariateSpline)

The spline-fitting capabilities described above are also available via an object-oriented interface. The 1-D splines are objects of the `UnivariateSpline` class, and are created with the `x` and `y` components of the curve provided as arguments to the constructor. The class defines the `__call__` method, allowing the object to be called with the `x`-axis values, at which the spline should be evaluated, returning the interpolated `y`-values. This is shown in the example below for the subclass `InterpolatedUnivariateSpline`. The `integral`, `derivatives`, and `roots` methods are also available on `UnivariateSpline` objects, allowing definite integrals, derivatives, and roots to be computed for the spline.

The `UnivariateSpline` class can also be used to smooth data by providing a non-zero value of the smoothing parameter `s`, with the same meaning as the `s` keyword of the `splrep` function described above. This results in a spline that has fewer knots than the number of data points, and hence is no longer strictly an interpolating spline, but rather a smoothing spline. If this is not desired, the `InterpolatedUnivariateSpline` class is available. It is a subclass of `UnivariateSpline` that always passes through all points (equivalent to forcing the smoothing parameter to 0). This class is demonstrated in the example below.

The `LSQUnivariateSpline` class is the other subclass of `UnivariateSpline`. It allows the user to specify the number and location of internal knots explicitly with the parameter `t`. This allows for the creation of customized splines with non-linear spacing, to interpolate in some domains and smooth in others, or change the character of the spline.

```python
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

InterpolatedUnivariateSpline

```n
```python
>>> x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)
>>> y = np.sin(x)
>>> s = interpolate.InterpolatedUnivariateSpline(x, y)
>>> xnew = np.arange(0, 2*np.pi, np.pi/50)
>>> ynew = s(xnew)

>>> plt.figure()
>>> plt.plot(x, y, 'x', xnew, ynew, xnew, np.sin(xnew), x, y, 'b')
```
LSQUnivariateSpline with non-uniform knots

```python
>>> t = [np.pi/2-.1, np.pi/2+.1, 3*np.pi/2-.1, 3*np.pi/2+.1]
>>> s = interpolate.LSQUnivariateSpline(x, y, t, k=2)
>>> ynew = s(xnew)
```

2-D spline representation: Procedural (`bisplrep`)

For (smooth) spline-fitting to a 2-D surface, the function `bisplrep` is available. This function takes as required inputs the 1-D arrays `x`, `y`, and `z`, which represent points on the surface $z = f(x, y)$. The default output is a list `[tx, ty, c, kx, ky]` whose entries represent respectively, the components of the knot positions, the coefficients of the spline, and the order of the spline in each coordinate. It is convenient to hold this list in a single object, `tck`, so that it can be passed easily to the function `bisplev`. The keyword, $s$, can be used to change the amount of smoothing performed on the data while determining the appropriate spline. The default value is $s = m - \sqrt{2m}$, where $m$ is the number of data points in the $x$, $y$, and $z$ vectors. As a result, if no smoothing is desired, then $s = 0$ should be passed to `bisplrep`.

To evaluate the 2-D spline and its partial derivatives (up to the order of the spline), the function `bisplev` is required. This function takes as the first two arguments two 1-D arrays whose cross-product specifies the domain over which to evaluate the spline. The third argument is the `tck` list returned from `bisplrep`. If desired, the fourth and fifth arguments provide the orders of the partial derivative in the $x$ and $y$ direction, respectively.
It is important to note that 2-D interpolation should not be used to find the spline representation of images. The algorithm used is not amenable to large numbers of input points. The signal-processing toolbox contains more appropriate algorithms for finding the spline representation of an image. The 2-D interpolation commands are intended for use when interpolating a 2-D function as shown in the example that follows. This example uses the `mgrid` command in NumPy which is useful for defining a “mesh-grid” in many dimensions. (See also the `ogrid` command if the full-mesh is not needed). The number of output arguments and the number of dimensions of each argument is determined by the number of indexing objects passed in `mgrid`.

```python
>>> import numpy as np
>>> from scipy import interpolate
>>> import matplotlib.pyplot as plt

Define function over a sparse 20x20 grid

```python
>>> x, y = np.mgrid[-1:1:21j,-1:1:21j]
>>> z = (x+y) * np.exp(-6.0*(x**2+y**2))
```  
```python
>>> plt.figure()
>>> lims = dict(cmap='RdBu_r', vmin=-0.25, vmax=0.25)
>>> plt.pcolormesh(x, y, z, shading='flat', **lims)
>>> plt.colorbar()
>>> plt.title("Sparsely sampled function.")
>>> plt.show()
```

Interpolate function over a new 70x70 grid

```python
>>> xnew, ynew = np.mgrid[-1:1:71j,-1:1:71j]
>>> xnew = xnew_edges[:-1, :1] + np.diff(xnew_edges[:, 0])[0] / 2.
>>> ynew = ynew_edges[:-1, :1] + np.diff(ynew_edges[0, :2])[0] / 2.
>>> tck = interpolate.bisplrep(x, y, z, s=0)
>>> znew = interpolate.bisplev(xnew[:, 0], ynew[0, :], tck)
```
```python
>>> plt.figure()
>>> plt.pcolormesh(xnew_edges, ynew_edges, znew, shading='flat', **lims)
>>> plt.colorbar()
>>> plt.title("Interpolated function.")
>>> plt.show()
```
2-D spline representation: Object-oriented (BivariateSpline)

The BivariateSpline class is the 2-D analog of the UnivariateSpline class. It and its subclasses implement the FITPACK functions described above in an object-oriented fashion, allowing objects to be instantiated that can be called to compute the spline value by passing in the two coordinates as the two arguments.

2.5.4 Using radial basis functions for smoothing/interpolation

Radial basis functions can be used for smoothing/interpolating scattered data in N dimensions, but should be used with caution for extrapolation outside of the observed data range.

1-D Example

This example compares the usage of the Rbf and UnivariateSpline classes from the scipy.interpolate module.

```python
>>> import numpy as np
>>> from scipy.interpolate import Rbf, InterpolatedUnivariateSpline
>>> import matplotlib.pyplot as plt

>>> # setup data
>>> x = np.linspace(0, 10, 9)
>>> y = np.sin(x)
>>> xi = np.linspace(0, 10, 101)

>>> # use fitpack2 method
>>> ius = InterpolatedUnivariateSpline(x, y)
>>> yi = ius(xi)

>>> plt.subplot(2, 1, 1)
>>> plt.plot(x, y, 'bo')
>>> plt.plot(xi, yi, 'g')
>>> plt.plot(xi, np.sin(xi), 'r')
>>> plt.title('Interpolation using univariate spline')

>>> # use RBF method
>>> rbf = Rbf(x, y)
>>> fi = rbf(xi)

>>> plt.subplot(2, 1, 2)
>>> plt.plot(x, y, 'bo')
>>> plt.plot(xi, fi, 'g')
>>> plt.plot(xi, np.sin(xi), 'r')
>>> plt.title('Interpolation using RBF - multiquadrics')
>>> plt.show()
```
2-D Example

This example shows how to interpolate scattered 2-D data:

```python
>>> import numpy as np
>>> from scipy.interpolate import Rbf
>>> import matplotlib.pyplot as plt
>>> from matplotlib import cm

>>> # 2-d tests - setup scattered data
>>> rng = np.random.default_rng()
>>> x = rng.random(100)*4.0-2.0
>>> y = rng.random(100)*4.0-2.0
>>> z = x*np.exp(-x**2-y**2)
>>> edges = np.linspace(-2.0, 2.0, 101)
>>> centers = edges[:-1] + np.diff(edges[1:])[0] / 2.
>>> XI, YI = np.meshgrid(centers, centers)

>>> # use RBF
>>> rbf = Rbf(x, y, z, epsilon=2)
>>> ZI = rbf(XI, YI)

>>> # plot the result
>>> plt.subplot(1, 1, 1)
>>> X_edges, Y_edges = np.meshgrid(edges, edges)
>>> lims = dict(cmap='RdBu_r', vmin=-0.4, vmax=0.4)
>>> plt.pcolormesh(X_edges, Y_edges, ZI, shading='flat', **lims)
>>> plt.scatter(x, y, 100, z, edgecolor='w', lw=0.1, **lims)
>>> plt.title('RBF interpolation - multiquadrics')
>>> plt.xlim(-2, 2)
>>> plt.ylim(-2, 2)
>>> plt.colorbar()
```
2.6 Fourier Transforms (scipy.fft)

Contents

- Fourier Transforms (scipy.fft)
 - Fast Fourier transforms
 - 1-D discrete Fourier transforms
 - 2- and N-D discrete Fourier transforms
 - Discrete Cosine Transforms
 - Type I DCT
 - Type II DCT
 - Type III DCT
 - Type IV DCT
 - DCT and IDCT
 - Example
 - Discrete Sine Transforms
 - Type I DST
 - Type II DST
 - Type III DST
 - Type IV DST
 - DST and IDST
 - Fast Hankel Transform
 - References
Fourier analysis is a method for expressing a function as a sum of periodic components, and for recovering the signal from those components. When both the function and its Fourier transform are replaced with discretized counterparts, it is called the discrete Fourier transform (DFT). The DFT has become a mainstay of numerical computing in part because of a very fast algorithm for computing it, called the Fast Fourier Transform (FFT), which was known to Gauss (1805) and was brought to light in its current form by Cooley and Tukey \[CT65\]. Press et al. \[NR07\] provide an accessible introduction to Fourier analysis and its applications.

2.6.1 Fast Fourier transforms

1-D discrete Fourier transforms

The FFT $y[k]$ of length N of the length-N sequence $x[n]$ is defined as

$$y[k] = \sum_{n=0}^{N-1} e^{-2\pi j \frac{kn}{N}} x[n],$$

and the inverse transform is defined as follows

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} e^{2\pi j \frac{kn}{N}} y[k].$$

These transforms can be calculated by means of fft and ifft, respectively, as shown in the following example.

```python
>>> from scipy.fft import fft, ifft
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
>>> y = fft(x)
>>> y
array([4.5+0.j, 2.08155948-1.65109876j, -1.83155948+1.60822041j, -1.83155948-1.60822041j, 2.08155948+1.65109876j])
>>> yinv = ifft(y)
>>> yinv
array([1.0+0.j, 2.0+0.j, 1.0+0.j, -1.0+0.j, 1.5+0.j])
```

From the definition of the FFT it can be seen that

$$y[0] = \sum_{n=0}^{N-1} x[n].$$

In the example

```python
>>> np.sum(x)
4.5
```

which corresponds to $y[0]$. For N even, the elements $y[1]...y[N/2-1]$ contain the positive-frequency terms, and the elements $y[N/2]...y[N-1]$ contain the negative-frequency terms, in order of decreasingly negative frequency. For N odd, the elements $y[1]...y[(N-1)/2]$ contain the positive-frequency terms, and the elements $y[(N+1)/2]...y[N-1]$ contain the negative-frequency terms, in order of decreasingly negative frequency.

In case the sequence x is real-valued, the values of $y[n]$ for positive frequencies is the conjugate of the values $y[n]$ for negative frequencies (because the spectrum is symmetric). Typically, only the FFT corresponding to positive frequencies is plotted.

The example plots the FFT of the sum of two sines.
The FFT input signal is inherently truncated. This truncation can be modeled as multiplication of an infinite signal with a rectangular window function. In the spectral domain this multiplication becomes convolution of the signal spectrum with the window function spectrum, being of form \(\sin(x)/x \). This convolution is the cause of an effect called spectral leakage (see [WPW]). Windowing the signal with a dedicated window function helps mitigate spectral leakage. The example below uses a Blackman window from scipy.signal and shows the effect of windowing (the zero component of the FFT has been truncated for illustrative purposes).

```python
>>> from scipy.fft import fft, fftfreq
>>> # Number of sample points
>>> N = 600
>>> # sample spacing
>>> T = 1.0 / 800.0
>>> x = np.linspace(0.0, N*T, N, endpoint=False)
>>> y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
>>> yf = fft(y)
>>> xf = fftfreq(N, T)[:N//2]
>>> import matplotlib.pyplot as plt
>>> plt.plot(xf, 2.0/N * np.abs(yf[0:N//2]))
>>> plt.grid()
>>> plt.show()
```
In case the sequence x is complex-valued, the spectrum is no longer symmetric. To simplify working with the FFT functions, scipy provides the following two helper functions.

The function `fftfreq` returns the FFT sample frequency points.

```python
>>> from scipy.fft import fftfreq
>>> freq = fftfreq(8, 0.125)
>>> freq
array([ 0., 1., 2., 3., -4., -3., -2., -1.])
```

In a similar spirit, the function `fftshift` allows swapping the lower and upper halves of a vector, so that it becomes suitable for display.

```python
>>> from scipy.fft import fftshift
>>> x = np.arange(8)
>>> fftshift(x)
array([4, 5, 6, 7, 0, 1, 2, 3])
```

The example below plots the FFT of two complex exponentials; note the asymmetric spectrum.

```python
>>> from scipy.fft import fft, fftfreq, fftshift
>>> # number of signal points
>>> N = 400
>>> # sample spacing
>>> T = 1.0 / 800.0
>>> x = np.linspace(0.0, N*T, N, endpoint=False)
>>> y = np.exp(50.0 * 1.j * 2.0*np.pi*x) + 0.5*np.exp(-80.0 * 1.j * 2.0*np.pi*x -pi*x)
```

2.6. Fourier Transforms (scipy.fft)
The function \texttt{rfft} calculates the FFT of a real sequence and outputs the complex FFT coefficients $y[n]$ for only half of the frequency range. The remaining negative frequency components are implied by the Hermitian symmetry of the FFT for a real input ($y[n] = \text{conj}(y[-n])$). In case of N being even: $[\text{Re}(y[0]) + 0j, y[1], \ldots, \text{Re}(y[N/2]) + 0j]$; in case of N being odd $[\text{Re}(y[0]) + 0j, y[1], \ldots, y[N/2]]$. The terms shown explicitly as $\text{Re}(y[k]) + 0j$ are restricted to be purely real since, by the hermitian property, they are their own complex conjugate.

The corresponding function \texttt{irfft} calculates the IFFT of the FFT coefficients with this special ordering.
Notice that the `rfft` of odd and even length signals are of the same shape. By default, `irfft` assumes the output signal should be of even length. And so, for odd signals, it will give the wrong result:

```python
>>> irfft(yr)
array([ 1.70788987,  2.40843925, -0.37366961,  0.75734049])
```

To recover the original odd-length signal, we must pass the output shape by the `n` parameter.

```python
>>> irfft(yr, n=len(x))
array([ 1. ,  2. ,  1. , -1. ,  1.5])
```

2.6. Fourier Transforms (scipy.fft)

The functions `fft` and `ifft` provide 2-D FFT and IFFT, respectively. Similarly, `fftn` and `ifftn` provide N-D FFT, and IFFT, respectively.

For real-input signals, similarly to `rfft`, we have the functions `rfft2` and `irfft2` for 2-D real transforms; `rfftn` and `irfftn` for N-D real transforms.

The example below demonstrates a 2-D IFFT and plots the resulting (2-D) time-domain signals.

```python
>>> from scipy.fft import ifftn
>>> import matplotlib.pyplot as plt
>>> import matplotlib.cm as cm
>>> N = 30
>>> f, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2, 3, sharex='col', sharey='row')
>>> xf = np.zeros((N,N))
>>> xf[0, 5] = 1
>>> xf[0, N-5] = 1
>>> Z = ifftn(xf)
>>> ax1.imshow(xf, cmap=cm.Reds)
>>> ax4.imshow(np.real(Z), cmap=cm.gray)
>>> xf = np.zeros((N, N))
>>> xf[5, 0] = 1
>>> xf[N-5, 0] = 1
>>> Z = ifftn(xf)
>>> ax2.imshow(xf, cmap=cm.Reds)
>>> ax5.imshow(np.real(Z), cmap=cm.gray)
>>> xf = np.zeros((N, N))
>>> xf[5, 10] = 1
>>> xf[N-5, N-10] = 1
>>> Z = ifftn(xf)
>>> ax3.imshow(xf, cmap=cm.Reds)
>>> ax6.imshow(np.real(Z), cmap=cm.gray)
>>> plt.show()
```
2.6.2 Discrete Cosine Transforms

SciPy provides a DCT with the function \texttt{dct} and a corresponding IDCT with the function \texttt{idct}. There are 8 types of the DCT [WPC], [Mak]; however, only the first 4 types are implemented in scipy. “The” DCT generally refers to DCT type 2, and “the” Inverse DCT generally refers to DCT type 3. In addition, the DCT coefficients can be normalized differently (for most types, scipy provides \texttt{None} and \texttt{ortho}). Two parameters of the \texttt{dct/idct} function calls allow setting the DCT type and coefficient normalization.

For a single dimension array \(x \), \(\text{dct}(x, \text{norm}='\text{ortho}') \) is equal to MATLAB \(\text{dct}(x) \).

Type I DCT

SciPy uses the following definition of the unnormalized DCT-I (\texttt{norm=None}):

\[
y[k] = x_0 + (-1)^k x_{N-1} + 2 \sum_{n=1}^{N-2} x[n] \cos \left(\frac{\pi n k}{N-1} \right), \quad 0 \leq k < N.
\]

Note that the DCT-I is only supported for input size > 1.

Type II DCT

SciPy uses the following definition of the unnormalized DCT-II (\texttt{norm=None}):

\[
y[k] = 2 \sum_{n=0}^{N-1} x[n] \cos \left(\frac{\pi (2n + 1) k}{2N} \right), \quad 0 \leq k < N.
\]

In case of the normalized DCT (\texttt{norm='ortho'}), the DCT coefficients \(y[k] \) are multiplied by a scaling factor \(f \):

\[
f = \begin{cases}
\sqrt{1/(4N)}, & \text{if } k = 0 \\
\sqrt{1/(2N)}, & \text{otherwise}
\end{cases}
\]

In this case, the DCT “base functions” \(\phi_k[n] = 2f \cos \left(\frac{\pi (2n + 1) k}{2N} \right) \) become orthonormal:

\[
\sum_{n=0}^{N-1} \phi_k[n] \phi_l[n] = \delta_{lk}.
\]
Type III DCT

SciPy uses the following definition of the unnormalized DCT-III (norm=None):

\[y[k] = x_0 + 2 \sum_{n=1}^{N-1} x[n] \cos \left(\frac{\pi n (2k + 1)}{2N} \right) \quad 0 \leq k < N, \]

or, for norm='ortho':

\[y[k] = \frac{x_0}{\sqrt{N}} + \frac{2}{\sqrt{N}} \sum_{n=1}^{N-1} x[n] \cos \left(\frac{\pi n (2k + 1)}{2N} \right) \quad 0 \leq k < N. \]

Type IV DCT

SciPy uses the following definition of the unnormalized DCT-IV (norm=None):

\[y[k] = 2 \sum_{n=0}^{N-1} x[n] \cos \left(\frac{\pi (2n+1)(2k + 1)}{4N} \right) \quad 0 \leq k < N, \]

or, for norm='ortho':

\[y[k] = \sqrt{\frac{2}{N}} \sum_{n=0}^{N-1} x[n] \cos \left(\frac{\pi (2n+1)(2k + 1)}{4N} \right) \quad 0 \leq k < N \]

DCT and IDCT

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor of \(2N\). The orthonormalized DCT-III is exactly the inverse of the orthonormalized DCT-II. The function \texttt{idct} performs the mappings between the DCT and IDCT types, as well as the correct normalization.

The following example shows the relation between DCT and IDCT for different types and normalizations.

```python
>>> from scipy.fft import dct, idct
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
```

The DCT-II and DCT-III are each other’s inverses, so for an orthonormal transform we return back to the original signal.

```python
>>> dct(dct(x, type=2, norm='ortho'), type=3, norm='ortho')
array([ 1. , 2. , 1. , -1. , 1.5])
```

Doing the same under default normalization, however, we pick up an extra scaling factor of \(2N = 10\) since the forward transform is unnormalized.

```python
>>> dct(dct(x, type=2), type=3)
array([ 10., 20., 10., -10., 15.])
```

For this reason, we should use the function \texttt{idct} using the same type for both, giving a correctly normalized result.

```python
>>> # Normalized inverse: no scaling factor
>>> idct(dct(x, type=2), type=2)
array([ 1. , 2. , 1. , -1. , 1.5])
```

Analogous results can be seen for the DCT-I, which is its own inverse up to a factor of \(2(N - 1)\).

2.6. Fourier Transforms (\texttt{scipy.fft})
>>> dct(dct(x, type=1, norm='ortho'), type=1, norm='ortho')
array([1. , 2. , 1. , -1. , 1.5])
>>> # Unnormalized round-trip via DCT-I: scaling factor 2*(N-1) = 8
>>> dct(dct(x, type=1), type=1)
array([8. , 16. , 8. , -8. , 12.])
>>> # Normalized inverse: no scaling factor
>>> idct(dct(x, type=1), type=1)
array([1. , 2. , 1. , -1. , 1.5])

And for the DCT-IV, which is also its own inverse up to a factor of $2N$.

>>> dct(dct(x, type=4, norm='ortho'), type=4, norm='ortho')
array([1. , 2. , 1. , -1. , 1.5])
>>> # Unnormalized round-trip via DCT-IV: scaling factor $2N = 10$
>>> dct(dct(x, type=4), type=4)
array([10. , 20. , 10. , -10. , 15.])
>>> # Normalized inverse: no scaling factor
>>> idct(dct(x, type=4), type=4)
array([1. , 2. , 1. , -1. , 1.5])

Example

The DCT exhibits the “energy compaction property”, meaning that for many signals only the first few DCT coefficients have significant magnitude. Zeroing out the other coefficients leads to a small reconstruction error, a fact which is exploited in lossy signal compression (e.g. JPEG compression).

The example below shows a signal x and two reconstructions (x_{20} and x_{15}) from the signal’s DCT coefficients. The signal x_{20} is reconstructed from the first 20 DCT coefficients, x_{15} is reconstructed from the first 15 DCT coefficients. It can be seen that the relative error of using 20 coefficients is still very small (~0.1%), but provides a five-fold compression rate.

```python
>>> from scipy.fft import dct, idct
>>> import matplotlib.pyplot as plt
>>> N = 100
>>> t = np.linspace(0, 20, N, endpoint=False)
>>> x = np.exp(-t/3) * np.cos(2 * t)
>>> y = dct(x, norm='ortho')
>>> window = np.zeros(N)
>>> window[:20] = 1
>>> yr = idct(y * window, norm='ortho')
>>> sum(abs(x-yr)**2) / sum(abs(x)**2)
0.0009872817275276098
>>> plt.plot(t, x, '-bx')
>>> plt.plot(t, yr, 'ro')
>>> window[:15] = 1
>>> yr = idct(y * window, norm='ortho')
>>> sum(abs(x-yr)**2) / sum(abs(x)**2)
0.06196643004256714
>>> plt.plot(t, yr, 'g+')
>>> plt.legend([['x', '$x_{20}$', '$x_{15}$'])
>>> plt.grid()
>>> plt.show()
```
2.6.3 Discrete Sine Transforms

SciPy provides a DST [Mak] with the function `dst` and a corresponding IDST with the function `idst`.

There are, theoretically, 8 types of the DST for different combinations of even/odd boundary conditions and boundary offsets [WPS], only the first 4 types are implemented in scipy.

Type I DST

DST-I assumes the input is odd around \(n = -1 \) and \(n = N \). SciPy uses the following definition of the unnormalized DST-I (\(\text{norm}=\text{None} \)):

\[
y[k] = 2 \sum_{n=0}^{N-1} x[n] \sin \left(\frac{\pi(n + 1)(k + 1)}{N + 1} \right), \quad 0 \leq k < N.
\]

Note also that the DST-I is only supported for input size > 1. The (unnormalized) DST-I is its own inverse, up to a factor of \(2(N+1) \).

Type II DST

DST-II assumes the input is odd around \(n = -1/2 \) and even around \(n = N \). SciPy uses the following definition of the unnormalized DST-II (\(\text{norm}=\text{None} \)):

\[
y[k] = 2 \sum_{n=0}^{N-1} x[n] \sin \left(\frac{\pi(n + 1/2)(k + 1)}{N} \right), \quad 0 \leq k < N.
\]
Type III DST

DST-III assumes the input is odd around n=-1 and even around n=N-1. SciPy uses the following definition of the unnormalized DST-III (norm=None):

\[y[k] = (-1)^k x[N - 1] + 2 \sum_{n=0}^{N-2} x[n] \sin \left(\frac{\pi(n + 1)(k + 1/2)}{N} \right), \quad 0 \leq k < N. \]

Type IV DST

SciPy uses the following definition of the unnormalized DST-IV (norm=None):

\[y[k] = 2 \sum_{n=0}^{N-1} x[n] \sin \left(\frac{\pi(2n + 1)(2k + 1)}{4N} \right) \quad 0 \leq k < N, \]

or, for norm='ortho':

\[y[k] = \sqrt{\frac{2}{N}} \sum_{n=0}^{N-1} x[n] \sin \left(\frac{\pi(2n + 1)(2k + 1)}{4N} \right) \quad 0 \leq k < N, \]

DST and IDST

The following example shows the relation between DST and IDST for different types and normalizations.

```python
>>> from scipy.fft import dst, idst
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
```

The DST-II and DST-III are each other’s inverses, so for an orthonormal transform we return back to the original signal.

```python
>>> dst(dst(x, type=2, norm='ortho'), type=3, norm='ortho')
array([ 1. ,  2. ,  1. , -1. ,  1.5])
```

Doing the same under default normalization, however, we pick up an extra scaling factor of \(2N = 10\) since the forward transform is unnormalized.

```python
>>> dst(dst(x, type=2), type=3)
array([ 10.,  20.,  10., -10.,  15.])
```

For this reason, we should use the function `idst` using the same type for both, giving a correctly normalized result.

```python
>>> idst(dst(x, type=2), type=2)
array([ 1. ,  2. ,  1. , -1. ,  1.5])
```

Analogous results can be seen for the DST-I, which is its own inverse up to a factor of \(2(N - 1)\).

```python
>>> dst(dst(x, type=1, norm='ortho'), type=1, norm='ortho')
array([ 1. ,  2. ,  1. , -1. ,  1.5])
>>> # scaling factor \(2*(N+1) = 12\)
>>> dst(dst(x, type=1), type=1)
array([ 12.,  24.,  12., -12.,  18.])
>>> # no scaling factor
>>> idst(dst(x, type=1), type=1)
array([ 1. ,  2. ,  1. , -1. ,  1.5])
```
And for the DST-IV, which is also its own inverse up to a factor of $2N$.

```python
>>> dst(dst(x, type=4, norm='ortho'), type=4, norm='ortho')
array([ 1. , 2. , 1. , -1. , 1.5])
>>> # scaling factor 2*N = 10
>>> dst(dst(x, type=4), type=4)
array([ 10., 20., 10., -10., 15.])
>>> # no scaling factor
>>> idst(dst(x, type=4), type=4)
array([ 1. , 2. , 1. , -1. , 1.5])
```

2.6.4 Fast Hankel Transform

SciPy provides the functions `fht` and `ifht` to perform the Fast Hankel Transform (FHT) and its inverse (IFHT) on logarithmically-spaced input arrays.

The FHT is the discretised version of the continuous Hankel transform defined by [Ham00]

$$ A(k) = \int_0^\infty a(r) J_\mu(kr) k \, dr , $$

with J_μ the Bessel function of order μ. Under a change of variables $r \to \log r$, $k \to \log k$, this becomes

$$ A(e^{\log k}) = \int_0^\infty a(e^{\log r}) J_\mu(e^{\log k+\log r}) e^{\log k+\log r} d\log r $$

which is a convolution in logarithmic space. The FHT algorithm uses the FFT to perform this convolution on discrete input data.

Care must be taken to minimise numerical ringing due to the circular nature of FFT convolution. To ensure that the low-ringing condition [Ham00] holds, the output array can be slightly shifted by an offset computed using the `fhtoffset` function.

2.6.5 References

2.7 Signal Processing (scipy.signal)

The signal processing toolbox currently contains some filtering functions, a limited set of filter design tools, and a few B-spline interpolation algorithms for 1- and 2-D data. While the B-spline algorithms could technically be placed under the interpolation category, they are included here because they only work with equally-spaced data and make heavy use of filter-theory and transfer-function formalism to provide a fast B-spline transform. To understand this section, you will need to understand that a signal in SciPy is an array of real or complex numbers.

2.7.1 B-splines

A B-spline is an approximation of a continuous function over a finite domain in terms of B-spline coefficients and knot points. If the knot points are equally spaced with spacing Δx, then the B-spline approximation to a 1-D function is the finite-basis expansion.

$$ y(x) \approx \sum_j c_j \beta^\nu \left(\frac{x}{\Delta x} - j \right). $$
In two dimensions with knot-spacing \(\Delta x \) and \(\Delta y \), the function representation is

\[
z(x, y) \approx \sum_j \sum_k c_{jk} \beta^o \left(\frac{x}{\Delta x} - j \right) \beta^o \left(\frac{y}{\Delta y} - k \right).
\]

In these expressions, \(\beta^o (\cdot) \) is the space-limited B-spline basis function of order \(o \). The requirement of equally-spaced knot-points and equally-spaced data points, allows the development of fast (inverse-filtering) algorithms for determining the coefficients, \(c_j \), from sample-values, \(y_m \). Unlike the general spline interpolation algorithms, these algorithms can quickly find the spline coefficients for large images.

The advantage of representing a set of samples via B-spline basis functions is that continuous-domain operators (derivatives, re-sampling, integral, etc.), which assume that the data samples are drawn from an underlying continuous function, can be computed with relative ease from the spline coefficients. For example, the second derivative of a spline is

\[
y''(x) = \frac{1}{\Delta x^2} \sum_j c_j \beta'^o \left(\frac{x}{\Delta x} - j \right).
\]

Using the property of B-splines that

\[
\frac{d^2 \beta^o(w)}{dw^2} = \beta^{o-2}(w + 1) - 2\beta^{o-2}(w) + \beta^{o-2}(w - 1),
\]

it can be seen that

\[
y''(x) = \frac{1}{\Delta x^2} \sum_j c_j \left[\beta^{o-2} \left(\frac{x}{\Delta x} - j + 1 \right) - 2\beta^{o-2} \left(\frac{x}{\Delta x} - j \right) + \beta^{o-2} \left(\frac{x}{\Delta x} - j - 1 \right) \right].
\]

If \(o = 3 \), then at the sample points:

\[
\Delta x^2 y'(x)|_{x=n\Delta x} = \sum_j c_j \delta_{n-j+1} - 2c_j \delta_{n-j} + c_j \delta_{n-j-1},
\]

\[
= c_{n+1} - 2c_n + c_{n-1}.
\]

Thus, the second-derivative signal can be easily calculated from the spline fit. If desired, smoothing splines can be found to make the second derivative less sensitive to random errors.

The savvy reader will have already noticed that the data samples are related to the knot coefficients via a convolution operator, so that simple convolution with the sampled B-spline function recovers the original data from the spline coefficients. The output of convolutions can change depending on how the boundaries are handled (this becomes increasingly more important as the number of dimensions in the dataset increases). The algorithms relating to B-splines in the signal-processing subpackage assume mirror-symmetric boundary conditions. Thus, spline coefficients are computed based on that assumption, and data-samples can be recovered exactly from the spline coefficients by assuming them to be mirror-symmetric also.

Currently the package provides functions for determining second- and third- order cubic spline coefficients from equally-spaced samples in one and two dimensions (\texttt{gspline1d, gspline2d, cspline1d, cspline2d}). The package also supplies a function (\texttt{bspline}) for evaluating the B-spline basis function, \(\beta^o(x) \) for arbitrary order and \(x \). For large \(o \), the B-spline basis function can be approximated well by a zero-mean Gaussian function with standard-deviation equal to \(\sigma_o = (o + 1) / 12 \):

\[
\beta^o(x) \approx \frac{1}{\sqrt{2\pi\sigma_o^2}} \exp \left(-\frac{x^2}{2\sigma_o^2} \right).
\]

A function to compute this Gaussian for arbitrary \(x \) and \(o \) is also available (\texttt{gauss_spline}). The following code and figure use spline-filtering to compute an edge-image (the second derivative of a smoothed spline) of a raccoon’s face, which is an array returned by the command \texttt{scipy.misc.face}. The command \texttt{sepfir2d} was used to apply a separable 2-D FIR filter with mirror-symmetric boundary conditions to the spline coefficients. This function is ideally-suited for reconstructing samples from spline coefficients and is faster than \texttt{convolve2d}, which convolves arbitrary 2-D filters and allows for choosing mirror-symmetric boundary conditions.
>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt

```python
>>> image = misc.face(gray=True).astype(np.float32)
>>> derfilt = np.array([1.0, -2, 1.0], dtype=np.float32)
>>> ck = signal.cspline2d(image, 8.0)
>>> deriv = (signal.sepfir2d(ck, derfilt, [1]) +
...         signal.sepfir2d(ck, [1], derfilt))
```

Alternatively, we could have done:

```python
laplacian = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]], dtype=np.float32)
deriv2 = signal.convolve2d(ck, laplacian, mode='same', boundary='symm')
```

```python
>>> plt.figure()
>>> plt.imshow(image)
>>> plt.gray()
>>> plt.title('Original image')
>>> plt.show()
```

![Original image](image)

```python
>>> plt.figure()
>>> plt.imshow(deriv)
>>> plt.gray()
>>> plt.title('Output of spline edge filter')
>>> plt.show()
```

```python
>>> plt.figure()
>>> plt.imshow(deriv2)
>>> plt.gray()
>>> plt.title('Output of separable filter')
>>> plt.show()
```
2.7.2 Filtering

Filtering is a generic name for any system that modifies an input signal in some way. In SciPy, a signal can be thought of as a NumPy array. There are different kinds of filters for different kinds of operations. There are two broad kinds of filtering operations: linear and non-linear. Linear filters can always be reduced to multiplication of the flattened NumPy array by an appropriate matrix resulting in another flattened NumPy array. Of course, this is not usually the best way to compute the filter, as the matrices and vectors involved may be huge. For example, filtering a 512×512 image with this method would require multiplication of a $512^2 \times 512^2$ matrix with a 512^2 vector. Just trying to store the $512^2 \times 512^2$ matrix using a standard NumPy array would require 68,719,476,736 elements. At 4 bytes per element this would require 256GB of memory. In most applications, most of the elements of this matrix are zero and a different method for computing the output of the filter is employed.

Convolution/Correlation

Many linear filters also have the property of shift-invariance. This means that the filtering operation is the same at different locations in the signal and it implies that the filtering matrix can be constructed from knowledge of one row (or column) of the matrix alone. In this case, the matrix multiplication can be accomplished using Fourier transforms.

Let $x[n]$ define a 1-D signal indexed by the integer n. Full convolution of two 1-D signals can be expressed as

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k].$$

This equation can only be implemented directly if we limit the sequences to finite-support sequences that can be stored in a computer, choose $n = 0$ to be the starting point of both sequences, let $K + 1$ be that value for which $x[n] = 0$ for all $n \geq K + 1$ and $M + 1$ be that value for which $h[n] = 0$ for all $n \geq M + 1$, then the discrete convolution expression is

$$y[n] = \sum_{k=\max(n-M,0)}^{\min(n,K)} x[k] h[n-k].$$
For convenience, assume $K \geq M$. Then, more explicitly, the output of this operation is

\[
\begin{align*}
y[0] &= x[0] h[0] \\
&\quad \vdots \\
&\quad \vdots \\
&\quad \vdots \\
y[K + M] &= x[K] h[M].
\end{align*}
\]

Thus, the full discrete convolution of two finite sequences of lengths $K + 1$ and $M + 1$, respectively, results in a finite sequence of length $K + M + 1 = (K + 1) + (M + 1) - 1$.

1-D convolution is implemented in SciPy with the function `convolve`. This function takes as inputs the signals x, h, and two optional flags ‘mode’ and ‘method’, and returns the signal y.

The first optional flag, ‘mode’, allows for the specification of which part of the output signal to return. The default value of ‘full’ returns the entire signal. If the flag has a value of ‘same’, then only the middle K values are returned, starting at $y \left\lceil \frac{M}{2} \right\rceil$, so that the output has the same length as the first input. If the flag has a value of ‘valid’, then only the middle $K - M + 1 = (K + 1) - (M + 1) + 1$ output values are returned, where z depends on all of the values of the smallest input from $h[0]$ to $h[M]$. In other words, only the values $y[M]$ to $y[K]$ inclusive are returned.

The second optional flag, ‘method’, determines how the convolution is computed, either through the Fourier transform approach with `fftconvolve` or through the direct method. By default, it selects the expected faster method. The Fourier transform method has order $O(N \log N)$, while the direct method has order $O(N^2)$. Depending on the big O constant and the value of N, one of these two methods may be faster. The default value, ‘auto’, performs a rough calculation and chooses the expected faster method, while the values ‘direct’ and ‘fft’ force computation with the other two methods.

The code below shows a simple example for convolution of 2 sequences:

```python
>>> x = np.array([1.0, 2.0, 3.0])
>>> h = np.array([0.0, 1.0, 0.0, 0.0, 0.0])
>>> signal.convolve(x, h)
array([ 0. , 1. , 2. , 3. , 0. , 0. , 0. ])
>>> signal.convolve(x, h, 'same')
array([ 2. , 3. , 0. ])
```

This same function `convolve` can actually take N-D arrays as inputs and will return the N-D convolution of the two arrays, as is shown in the code example below. The same input flags are available for that case as well.

```python
>>> x = np.array([[1., 1., 0., 0., 0.], [1., 1., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., -0., 0., 0., 0.]])
>>> h = np.array([[1., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., -0., 0., 0., 0.]])
>>> signal.convolve(x, h)
array([[ 1., 1., 0., 0., 0.], [ 0., 0., 0., 0., 0.],
       [ 0., 0., 0., 0., 0.]],
       (continues on next page))
```

2.7. Signal Processing (*scipy.signal*)
Correlation is very similar to convolution except that the minus sign becomes a plus sign. Thus,

\[w[n] = \sum_{k=-\infty}^{\infty} y[k] x[n+k], \]

is the (cross) correlation of the signals \(y \) and \(x \). For finite-length signals with \(y[n] = 0 \) outside of the range \([0, K]\) and \(x[n] = 0 \) outside of the range \([0, M]\), the summation can simplify to

\[w[n] = \sum_{k=\max(0,-n)}^{\min(K,M-n)} y[k] x[n+k]. \]

Assuming again that \(K \geq M \), this is

\[
\begin{align*}
 w[-K] &= y[K] x[0] \\
 & \vdots \\
 & \vdots \\
 & \vdots \\
 w[M] &= y[0] x[M].
\end{align*}
\]

The SciPy function \texttt{correlate} implements this operation. Equivalent flags are available for this operation to return the full \(K + M + 1 \) length sequence (‘full’) or a sequence with the same size as the largest sequence starting at \(w[-K+\lfloor M/2 \rfloor] \) (‘same’) or a sequence where the values depend on all the values of the smallest sequence (‘valid’). This final option returns the \(K - M + 1 \) values \(w[M-K] \) to \(w[0] \) inclusive.

The function \texttt{correlate} can also take arbitrary N-D arrays as input and return the N-D convolution of the two arrays on output.

When \(N = 2 \), \texttt{correlate} and/or \texttt{convolve} can be used to construct arbitrary image filters to perform actions such as blurring, enhancing, and edge-detection for an image.

```python
>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt
```
Calculating the convolution in the time domain as above is mainly used for filtering when one of the signals is much smaller than the other ($K \gg M$), otherwise linear filtering is more efficiently calculated in the frequency domain provided by the function `fftconvolve`. By default, `convolve` estimates the fastest method using `choose_conv_method`.

If the filter function $w[n,m]$ can be factored according to

$$h[n,m] = h_1[n]h_2[m],$$

convolution can be calculated by means of the function `sepfir2d`. As an example, we consider a Gaussian filter

$$h[n,m] \propto e^{-x^2-y^2} = e^{-x^2}e^{-y^2},$$

which is often used for blurring.
```python
>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt

>>> image = misc.ascent()
>>> w = signal.windows.gaussian(51, 10.0)
>>> image_new = signal.sepfir2d(image, w, w)

>>> plt.figure()
>>> plt.imshow(image)
>>> plt.gray()
>>> plt.title('Original image')
>>> plt.show()
```
Difference-equation filtering

A general class of linear 1-D filters (that includes convolution filters) are filters described by the difference equation

\[\sum_{k=0}^{N} a_k y[n - k] = \sum_{k=0}^{M} b_k x[n - k], \]

where \(x[n] \) is the input sequence and \(y[n] \) is the output sequence. If we assume initial rest so that \(y[n] = 0 \) for \(n < 0 \), then this kind of filter can be implemented using convolution. However, the convolution filter sequence \(h[n] \) could be infinite if \(a_k \neq 0 \) for \(k \geq 1 \). In addition, this general class of linear filter allows initial conditions to be placed on \(y[n] \) for \(n < 0 \) resulting in a filter that cannot be expressed using convolution.

The difference equation filter can be thought of as finding \(y[n] \) recursively in terms of its previous values

\[a_0 y[n] = -a_1 y[n - 1] - \cdots - a_N y[n - N] + \cdots + b_0 x[n] + \cdots + b_M x[n - M]. \]

Often, \(a_0 = 1 \) is chosen for normalization. The implementation in SciPy of this general difference equation filter is a little more complicated than would be implied by the previous equation. It is implemented so that only one signal needs to be delayed. The actual implementation equations are (assuming \(a_0 = 1 \)):

\[
\begin{align*}
y[n] & = b_0 x[n] + z_0[n - 1] \\
z_0[n] & = b_1 x[n] + z_1[n - 1] - a_1 y[n] \\
z_1[n] & = b_2 x[n] + z_2[n - 1] - a_2 y[n] \\
& \vdots \quad \vdots \\
z_{K-2}[n] & = b_{K-1} x[n] + z_{K-1}[n - 1] - a_{K-1} y[n] \\
z_{K-1}[n] & = b_K x[n] - a_K y[n],
\end{align*}
\]
where \(K = \max(N, M) \). Note that \(b_K = 0 \) if \(K > M \) and \(a_K = 0 \) if \(K > N \). In this way, the output at time \(n \) depends only on the input at time \(n \) and the value of \(z_0 \) at the previous time. This can always be calculated as long as the \(K \) values \(z_0[n-1] \ldots z_{K-1}[n-1] \) are computed and stored at each time step.

The difference-equation filter is called using the command `lfilter` in SciPy. This command takes as inputs the vector \(b \), the vector, \(a \), a signal \(x \) and returns the vector \(y \) (the same length as \(x \)) computed using the equation given above. If \(x \) is \(N \)-D, then the filter is computed along the axis provided. If desired, initial conditions providing the values of \(z_0[−1] \) to \(z_{K-1}[−1] \) can be provided or else it will be assumed that they are all zero. If initial conditions are provided, then the final conditions on the intermediate variables are also returned. These could be used, for example, to restart the calculation in the same state.

Sometimes, it is more convenient to express the initial conditions in terms of the signals \(x[n] \) and \(y[n] \). In other words, perhaps you have the values of \(x[−M] \) to \(x[−1] \) and the values of \(y[−N] \) to \(y[−1] \) and would like to determine what values of \(z_m[−1] \) should be delivered as initial conditions to the difference-equation filter. It is not difficult to show that, for \(0 \leq m < K \),

\[
z_m[n] = \sum_{p=0}^{K-m-1} (b_{m+p+1}x[n-p] - a_{m+p+1}y[n-p]) .
\]

Using this formula, we can find the initial-condition vector \(z_0[−1] \) to \(z_{K-1}[−1] \) given initial conditions on \(y \) (and \(x \)). The command `lfilter` performs this function.

As an example, consider the following system:

\[
y[n] = \frac{1}{2} x[n] + \frac{1}{4} x[n-1] + \frac{1}{3} y[n-1]
\]

The code calculates the signal \(y[n] \) for a given signal \(x[n] \); first for initial conditions \(y[−1] = 0 \) (default case), then for \(y[−1] = 2 \) by means of `lfilter`.

```python
>>> import numpy as np
call signal

>>> x = np.array([1., 0., 0., 0.])
>>> b = np.array([1.0/2, 1.0/4])
>>> a = np.array([1.0, -1.0/3])
>>> signal.lfilter(b, a, x)
anarray([0.5, 0.41666667, 0.13888889, 0.0462963])
>>> zi = signal.lfilter(b, a, y=2.)
>>> signal.lfilter(b, a, x, zi=zi)
anarray([ 1.16666667, 0.63888889, 0.21296296, 0.070987655])
```

Note that the output signal \(y[n] \) has the same length as the length as the input signal \(x[n] \).

Analysis of Linear Systems

Linear system described a linear-difference equation can be fully described by the coefficient vectors \(a \) and \(b \) as was done above; an alternative representation is to provide a factor \(k \), \(N_z \) zeros \(z_k \) and \(N_p \) poles \(p_k \), respectively, to describe the system by means of its transfer function \(H(z) \), according to

\[
H(z) = k \frac{(z - z_1)(z - z_2)\ldots(z - z_{N_z})}{(z - p_1)(z - p_2)\ldots(z - p_{N_p})}.
\]

This alternative representation can be obtained with the scipy function `tf2zpk`; the inverse is provided by `zpk2tf`.

For the above example we have
i.e., the system has a zero at \(z = -1/2 \) and a pole at \(z = 1/3 \).

The scipy function \(\text{freqz} \) allows calculation of the frequency response of a system described by the coefficients \(a_k \) and \(b_k \). See the help of the \(\text{freqz} \) function for a comprehensive example.

Filter Design

Time-discrete filters can be classified into finite response (FIR) filters and infinite response (IIR) filters. FIR filters can provide a linear phase response, whereas IIR filters cannot. SciPy provides functions for designing both types of filters.

FIR Filter

The function \(\text{firwin} \) designs filters according to the window method. Depending on the provided arguments, the function returns different filter types (e.g., low-pass, band-pass...).

The example below designs a low-pass and a band-stop filter, respectively.

```python
>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b1 = signal.firwin(40, 0.5)
>>> b2 = signal.firwin(41, [0.3, 0.8])
>>> w1, h1 = signal.freqz(b1)
>>> w2, h2 = signal.freqz(b2)

>>> plt.title('Digital filter frequency response')
>>> plt.plot(w1, 20*np.log10(np.abs(h1)), 'b')
>>> plt.plot(w2, 20*np.log10(np.abs(h2)), 'r')
>>> plt.xlabel('Frequency (rad/sample)')
>>> plt.ylabel('Amplitude Response (dB)')
>>> plt.grid()
>>> plt.show()
```

Note that \(\text{firwin} \) uses, per default, a normalized frequency defined such that the value 1 corresponds to the Nyquist frequency, whereas the function \(\text{freqz} \) is defined such that the value \(\pi \) corresponds to the Nyquist frequency.

The function \(\text{firwin2} \) allows design of almost arbitrary frequency responses by specifying an array of corner frequencies and corresponding gains, respectively.

The example below designs a filter with such an arbitrary amplitude response.

```python
>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b = signal.firwin2(150, [0.0, 0.3, 0.6, 1.0], [1.0, 2.0, 0.5, 0.0])
>>> w, h = signal.freqz(b)
```
Note the linear scaling of the y-axis and the different definition of the Nyquist frequency in `firwin2` and `freqz` (as explained above).
IIR Filter

SciPy provides two functions to directly design IIR \texttt{iirdesign} and \texttt{iirfilter}, where the filter type (e.g., elliptic) is passed as an argument and several more filter design functions for specific filter types, e.g., \texttt{ellip}.

The example below designs an elliptic low-pass filter with defined pass-band and stop-band ripple, respectively. Note the much lower filter order (order 4) compared with the FIR filters from the examples above in order to reach the same stop-band attenuation of ≈ 60 dB.

```python
>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.iirfilter(4, Wn=0.2, rp=5, rs=60, btype='lowpass', ftype='ellip')
>>> w, h = signal.freqz(b, a)

>>> plt.title('Digital filter frequency response')
>>> plt.plot(w, 20*np.log10(np.abs(h)))
>>> plt.title('Digital filter frequency response')
>>> plt.ylabel('Amplitude Response [dB]')
>>> plt.xlabel('Frequency (rad/sample)')
>>> plt.grid()
>>> plt.show()
```

Filter Coefficients

Filter coefficients can be stored in several different formats:

- `ba` or `tf` = transfer function coefficients
- `zpk` = zeros, poles, and overall gain
- `ss` = state-space system representation
- `sos` = transfer function coefficients of second-order sections

Functions, such as \texttt{tf2zpk} and \texttt{zpk2ss}, can convert between them.
Transfer function representation

The `ba` or `tf` format is a 2-tuple \((b, a)\) representing a transfer function, where \(b\) is a length \(M+1\) array of coefficients of the \(M\)-order numerator polynomial, and \(a\) is a length \(N+1\) array of coefficients of the \(N\)-order denominator, as positive, descending powers of the transfer function variable. So the tuple of \(b = [b_0, b_1, ..., b_M]\) and \(a = [a_0, a_1, ..., a_N]\) can represent an analog filter of the form:

\[
H(s) = \frac{b_0 s^M + b_1 s^{(M-1)} + \cdots + b_M}{a_0 s^N + a_1 s^{(N-1)} + \cdots + a_N} = \frac{\sum_{i=0}^{M} b_i s^{(M-i)}}{\sum_{i=0}^{N} a_i s^{(N-i)}}
\]

or a discrete-time filter of the form:

\[
H(z) = \frac{b_0 z^M + b_1 z^{(M-1)} + \cdots + b_M}{a_0 z^N + a_1 z^{(N-1)} + \cdots + a_N} = \frac{\sum_{i=0}^{M} b_i z^{(M-i)}}{\sum_{i=0}^{N} a_i z^{(N-i)}}.
\]

This “positive powers” form is found more commonly in controls engineering. If \(M\) and \(N\) are equal (which is true for all filters generated by the bilinear transform), then this happens to be equivalent to the “negative powers” discrete-time form preferred in DSP:

\[
H(z) = \frac{b_0 + b_1 z^{-1} + \cdots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \cdots + a_N z^{-N}} = \frac{\sum_{i=0}^{M} b_i z^{-i}}{\sum_{i=0}^{N} a_i z^{-i}}.
\]

Although this is true for common filters, remember that this is not true in the general case. If \(M\) and \(N\) are not equal, the discrete-time transfer function coefficients must first be converted to the “positive powers” form before finding the poles and zeros.

This representation suffers from numerical error at higher orders, so other formats are preferred when possible.

Zeros and poles representation

The `zpk` format is a 3-tuple \((z, p, k)\), where \(z\) is an \(M\)-length array of the complex zeros of the transfer function \(z = [z_0, z_1, ..., z_{M-1}]\), \(p\) is an \(N\)-length array of the complex poles of the transfer function \(p = [p_0, p_1, ..., p_{N-1}]\), and \(k\) is a scalar gain. These represent the digital transfer function:

\[
H(z) = k \cdot \frac{(z - z_0)(z - z_1) \cdots (z - z_{M-1})}{(z - p_0)(z - p_1) \cdots (z - p_{N-1})} = k \frac{\prod_{i=0}^{M-1} (z - z_i)}{\prod_{i=0}^{N-1} (z - p_i)}
\]

or the analog transfer function:

\[
H(s) = k \cdot \frac{(s - z_0)(s - z_1) \cdots (s - z_{M-1})}{(s - p_0)(s - p_1) \cdots (s - p_{N-1})} = k \frac{\prod_{i=0}^{M-1} (s - z_i)}{\prod_{i=0}^{N-1} (s - p_i)}.
\]

Although the sets of roots are stored as ordered NumPy arrays, their ordering does not matter: \([-1, -2], [-3, -4], 1\) is the same filter as \([-2, -1], [-4, -3], 1\).

State-space system representation

The `ss` format is a 4-tuple of arrays \((A, B, C, D)\) representing the state-space of an \(N\)-order digital/discrete-time system of the form:

\[
x[k+1] = Ax[k] + Bu[k] \\
y[k] = Cx[k] + Du[k]
\]
or a continuous/analog system of the form:

\[
\dot{x}(t) = Ax(t) + Bu(t)
\]
\[
y(t) = Cx(t) + Du(t),
\]

with \(P \) inputs, \(Q \) outputs and \(N \) state variables, where:

- \(x \) is the state vector
- \(y \) is the output vector of length \(Q \)
- \(u \) is the input vector of length \(P \)
- \(A \) is the state matrix, with shape \((N, N)\)
- \(B \) is the input matrix with shape \((N, P)\)
- \(C \) is the output matrix with shape \((Q, N)\)
- \(D \) is the feedthrough or feedforward matrix with shape \((Q, P)\). (In cases where the system does not have a direct feedthrough, all values in \(D \) are zero.)

State-space is the most general representation and the only one that allows for multiple-input, multiple-output (MIMO) systems. There are multiple state-space representations for a given transfer function. Specifically, the “controllable canonical form” and “observable canonical form” have the same coefficients as the \(\text{tf} \) representation, and, therefore, suffer from the same numerical errors.

Second-order sections representation

The \(\text{sos} \) format is a single 2-D array of shape \((n_sections, 6)\), representing a sequence of second-order transfer functions which, when cascaded in series, realize a higher-order filter with minimal numerical error. Each row corresponds to a second-order \(\text{tf} \) representation, with the first three columns providing the numerator coefficients and the last three providing the denominator coefficients:

\[
[b_0, b_1, b_2, a_0, a_1, a_2]
\]

The coefficients are typically normalized, such that \(a_0 \) is always 1. The section order is usually not important with floating-point computation; the filter output will be the same, regardless of the order.

Filter transformations

The IIR filter design functions first generate a prototype analog low-pass filter with a normalized cutoff frequency of 1 rad/sec. This is then transformed into other frequencies and band types using the following substitutions:

<table>
<thead>
<tr>
<th>Type</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1p21p</td>
<td>(s \to \frac{s}{\omega_0})</td>
</tr>
<tr>
<td>1p2hp</td>
<td>(s \to \frac{s}{\omega_0^2})</td>
</tr>
<tr>
<td>1p2bp</td>
<td>(s \to \frac{s + \omega_0^2}{s + \text{BW}^2})</td>
</tr>
<tr>
<td>1p2bs</td>
<td>(s \to \frac{\text{BW}}{s + \text{BW}^2})</td>
</tr>
</tbody>
</table>

Here, \(\omega_0 \) is the new cutoff or center frequency, and \(\text{BW} \) is the bandwidth. These preserve symmetry on a logarithmic frequency axis.

To convert the transformed analog filter into a digital filter, the \textit{bilinear} transform is used, which makes the following substitution:

\[
s \to \frac{2z - 1}{Tz + 1},
\]

where \(T \) is the sampling time (the inverse of the sampling frequency).
Other filters

The signal processing package provides many more filters as well.

Median Filter

A median filter is commonly applied when noise is markedly non-Gaussian or when it is desired to preserve edges. The median filter works by sorting all of the array pixel values in a rectangular region surrounding the point of interest. The sample median of this list of neighborhood pixel values is used as the value for the output array. The sample median is the middle-array value in a sorted list of neighborhood values. If there are an even number of elements in the neighborhood, then the average of the middle two values is used as the median. A general purpose median filter that works on N-D arrays is `medfilt`. A specialized version that works only for 2-D arrays is available as `medfilt2d`.

Order Filter

A median filter is a specific example of a more general class of filters called order filters. To compute the output at a particular pixel, all order filters use the array values in a region surrounding that pixel. These array values are sorted and then one of them is selected as the output value. For the median filter, the sample median of the list of array values is used as the output. A general-order filter allows the user to select which of the sorted values will be used as the output. So, for example, one could choose to pick the maximum in the list or the minimum. The order filter takes an additional argument besides the input array and the region mask that specifies which of the elements in the sorted list of neighbor array values should be used as the output. The command to perform an order filter is `order_filter`.

Wiener filter

The Wiener filter is a simple deblurring filter for denoising images. This is not the Wiener filter commonly described in image-reconstruction problems but, instead, it is a simple, local-mean filter. Let x be the input signal, then the output is

$$
y = \begin{cases}
\frac{\sigma_x^2}{\sigma_x^2} m_x + \left(1 - \frac{\sigma_x^2}{\sigma_x^2}\right) x & \sigma_x^2 \geq \sigma^2, \\
\frac{m_x}{\sigma_x^2} & \sigma_x^2 < \sigma^2,
\end{cases}
$$

where m_x is the local estimate of the mean and σ_x^2 is the local estimate of the variance. The window for these estimates is an optional input parameter (default is 3×3). The parameter σ^2 is a threshold noise parameter. If σ is not given, then it is estimated as the average of the local variances.

Hilbert filter

The Hilbert transform constructs the complex-valued analytic signal from a real signal. For example, if $x = \cos \omega n$, then $y = \text{hilbert}(x)$ would return (except near the edges) $y = \exp(j\omega n)$. In the frequency domain, the hilbert transform performs

$$
Y = X \cdot H,
$$

where H is 2 for positive frequencies, 0 for negative frequencies, and 1 for zero-frequencies.

Analog Filter Design

The functions `iirdesign`, `iirfilter`, and the filter design functions for specific filter types (e.g., `ellip`) all have a flag `analog`, which allows the design of analog filters as well.

The example below designs an analog (IIR) filter, obtains via `tf2zpk` the poles and zeros and plots them in the complex s-plane. The zeros at $\omega \approx 150$ and $\omega \approx 300$ can be clearly seen in the amplitude response.

```python
>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt
```
2.7.3 Spectral Analysis

Periodogram Measurements

The scipy function `periodogram` provides a method to estimate the spectral density using the periodogram method. The example below calculates the periodogram of a sine signal in white Gaussian noise.
Spectral Analysis using Welch’s Method

An improved method, especially with respect to noise immunity, is Welch’s method, which is implemented by the scipy function `welch`.

The example below estimates the spectrum using Welch’s method and uses the same parameters as the example above. Note the much smoother noise floor of the spectrogram.

```python
>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2*np.sqrt(2)  
>>> freq = 1270.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> x = amp*np.sin(2*np.pi*freq*time)
>>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)

>>> f, P_per_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum')

>>> plt.semilogy(f, P_per_spec)
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD')
>>> plt.grid()
>>> plt.show()
```
>>> fs = 10e3
>>> N = 1e5
>>> amp = 2*np.sqrt(2)
>>> freq = 1270.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> x = amp*np.sin(2*np.pi*freq*time)
>>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)

>>> f, Pwelch_spec = signal.welch(x, fs, scaling='spectrum')

>>> plt.semilogy(f, Pwelch_spec)
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD')
>>> plt.grid()
>>> plt.show()

Lomb-Scargle Periodograms (lombscargle)

Least-squares spectral analysis (LSSA)\(^1\)\(^2\) is a method of estimating a frequency spectrum, based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in long-gapped records; LSSA mitigates such problems.

The Lomb-Scargle method performs spectral analysis on unevenly-sampled data and is known to be a powerful way to find, and test the significance of, weak periodic signals.

For a time series comprising \(N\) measurements \(X_j \equiv X(t_j)\) sampled at times \(t_j\), where \((j = 1, \ldots, N)\), assumed to have been scaled and shifted, such that its mean is zero and its variance is unity, the normalized Lomb-Scargle periodogram at

2.7. Signal Processing (scipy.signal)
Here, $\omega \equiv 2\pi f$ is the angular frequency. The frequency-dependent time offset τ is given by

$$
\tan 2\omega \tau = \frac{\sum_{j}^{N} \sin 2\omega t_{j}}{\sum_{j}^{N} \cos 2\omega t_{j}}.
$$

The function calculates the periodogram using a slightly modified algorithm due to Townsend\(^3\), which allows the periodogram to be calculated using only a single pass through the input arrays for each frequency.

The equation is refactored as:

$$
P_{n}(f) = \frac{1}{2} \left[\frac{\left(c_{\tau} X \cos \omega (t_{j} - \tau) + s_{\tau} X \sin \omega (t_{j} - \tau) \right)^{2}}{\sum_{j}^{N} \cos^{2} \omega (t_{j} - \tau)} + \frac{\left(c_{\tau} X \sin \omega (t_{j} - \tau) - s_{\tau} X \cos \omega (t_{j} - \tau) \right)^{2}}{\sum_{j}^{N} \sin^{2} \omega (t_{j} - \tau)} \right].
$$

and

$$
\tan 2\omega \tau = \frac{2CS}{CC - SS}.
$$

Here,

$$
c_{\tau} = \cos \omega \tau, \quad s_{\tau} = \sin \omega \tau,
$$

while the sums are

\[
XC = \sum_{j}^{N_t} X_j \cos \omega t_j \\
XS = \sum_{j}^{N_t} X_j \sin \omega t_j \\
CC = \sum_{j}^{N_t} \cos^2 \omega t_j \\
SS = \sum_{j}^{N_t} \sin^2 \omega t_j \\
CS = \sum_{j}^{N_t} \cos \omega t_j \sin \omega t_j.
\]

This requires \(N_f (2N_t + 3)\) trigonometric function evaluations giving a factor of \(\sim 2\) speed increase over the straightforward implementation.

2.7.4 Detrend

SciPy provides the function `detrend` to remove a constant or linear trend in a data series in order to see effect of higher order.

The example below removes the constant and linear trend of a second-order polynomial time series and plots the remaining signal components.

```python
>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> t = np.linspace(-10, 10, 20)
>>> y = 1 + t + 0.01*t**2
>>> yconst = signal.detrend(y, type='constant')
>>> ylin = signal.detrend(y, type='linear')

>>> plt.plot(t, y, '-rx')
>>> plt.plot(t, yconst, '-bo')
>>> plt.plot(t, ylin, '-k+')
>>> plt.grid()
>>> plt.legend(["signal", 'const. detrend', 'linear detrend'])
>>> plt.show()
```
References

Some further reading and related software:

2.8 Linear Algebra (scipy.linalg)

When SciPy is built using the optimized ATLAS LAPACK and BLAS libraries, it has very fast linear algebra capabilities. If you dig deep enough, all of the raw LAPACK and BLAS libraries are available for your use for even more speed. In this section, some easier-to-use interfaces to these routines are described.

All of these linear algebra routines expect an object that can be converted into a 2-D array. The output of these routines is also a 2-D array.

2.8.1 scipy.linalg vs numpy.linalg

scipy.linalg contains all the functions in numpy.linalg, plus some other more advanced ones not contained in numpy.linalg.

Another advantage of using scipy.linalg over numpy.linalg is that it is always compiled with BLAS/LAPACK support, while for numpy this is optional. Therefore, the scipy version might be faster depending on how numpy was installed.

Therefore, unless you don’t want to add scipy as a dependency to your numpy program, use scipy.linalg instead of numpy.linalg.
2.8.2 numpy.matrix vs 2-D numpy.ndarray

The classes that represent matrices, and basic operations, such as matrix multiplications and transpose are a part of numpy. For convenience, we summarize the differences between numpy.matrix and numpy.ndarray here.

numpy.matrix is matrix class that has a more convenient interface than numpy.ndarray for matrix operations. This class supports, for example, MATLAB-like creation syntax via the semicolon, has matrix multiplication as default for the * operator, and contains I and T members that serve as shortcuts for inverse and transpose:

```python
>>> import numpy as np
>>> A = np.mat('1 2;3 4')
>>> A
matrix([[1, 2],
        [3, 4]])
>>> A.I
matrix([[-2., 1.],
        [1.5, -0.5]])
>>> b = np.mat('[5 6]')
>>> b
matrix([[5, 6]])
>>> b.T
matrix([[5],
        [6]])
>>> A*b.T
matrix([[17],
        [39]])
```

Despite its convenience, the use of the numpy.matrix class is discouraged, since it adds nothing that cannot be accomplished with 2-D numpy.ndarray objects, and may lead to a confusion of which class is being used. For example, the above code can be rewritten as:

```python
>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2],[3,4]])
>>> A
array([[1, 2],
       [3, 4]])
>>> linalg.inv(A)
array([[-2., 1.],
       [1.5, -0.5]])
>>> b = np.array([[5,6]]) #2D array
>>> b
array([[5, 6]])
>>> b.T
array([[5],
       [6]])
>>> A*b #not matrix multiplication!
array([[ 5, 12],
       [15, 24]])
>>> A.dot(b.T) #matrix multiplication
array([[17],
       [39]])
>>> b = np.array([5,6]) #1D array
>>> b
(continues on next page)
```
array([5, 6])
>>> b.T #not matrix transpose!
array([5, 6])
>>> A.dot(b) #does not matter for multiplication
array([17, 39])

scipy.linalg operations can be applied equally to numpy.matrix or to 2D numpy.ndarray objects.

2.8.3 Basic routines

Finding the inverse

The inverse of a matrix A is the matrix B, such that $AB = I$, where I is the identity matrix consisting of ones down the main diagonal. Usually, B is denoted $B = A^{-1}$. In SciPy, the matrix inverse of the NumPy array, A, is obtained using `linalg.inv(A)`, or using $A.I$ if A is a Matrix. For example, let

$$
A = \begin{bmatrix}
1 & 3 & 5 \\
2 & 5 & 1 \\
2 & 3 & 8
\end{bmatrix},
$$

then

$$
A^{-1} = \frac{1}{25} \begin{bmatrix}
-37 & 9 & 22 \\
14 & 2 & -9 \\
4 & -3 & 1
\end{bmatrix} = \begin{bmatrix}
-1.48 & 0.36 & 0.88 \\
0.56 & 0.08 & -0.36 \\
0.16 & -0.12 & 0.04
\end{bmatrix}.
$$

The following example demonstrates this computation in SciPy

```python
>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1, 3, 5], [2, 5, 1], [2, 3, 8]])
>>> A
array([[1, 3, 5],
       [2, 5, 1],
       [2, 3, 8]])
>>> linalg.inv(A)
array([[-1.48,  0.36,  0.88],
       [ 0.56,  0.08, -0.36],
       [ 0.16, -0.12,  0.04]])
>>> A.dot(linalg.inv(A))  #double check
array([[ 1.00000000e+00, -1.11022302e-16, -5.55111512e-17],
       [ 3.05311332e-16,  1.00000000e+00, 1.87350135e-16],
       [ 2.22044605e-16, -1.11022302e-16,  1.00000000e+00]])
```
Solving a linear system

Solving linear systems of equations is straightforward using the scipy command `linalg.solve`. This command expects an input matrix and a right-hand side vector. The solution vector is then computed. An option for entering a symmetric matrix is offered, which can speed up the processing when applicable. As an example, suppose it is desired to solve the following simultaneous equations:

\[
\begin{align*}
x + 3y + 5z &= 10 \\
2x + 5y + z &= 8 \\
2x + 3y + 8z &= 3
\end{align*}
\]

We could find the solution vector using a matrix inverse:

\[
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix}
1 & 3 & 5 \\
2 & 5 & 1 \\
2 & 3 & 8
\end{bmatrix}^{-1} \begin{bmatrix}
10 \\
8 \\
3
\end{bmatrix} = \begin{bmatrix}
1 \\
8 \\
3
\end{bmatrix} = \begin{bmatrix}
-232 \\
129 \\
19
\end{bmatrix} = \begin{bmatrix}
-9.28 \\
5.16 \\
0.76
\end{bmatrix}.
\]

However, it is better to use the `linalg.solve` command, which can be faster and more numerically stable. In this case, it, however, gives the same answer as shown in the following example:

```python
>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1, 2], [3, 4]]
>>> A
array([[1, 2],
       [3, 4]])
>>> b = np.array([[5], [6]])
>>> b
array([[5],
       [6]])
>>> linalg.inv(A).dot(b)  # slow
array([[-4.],
       [ 4.5]])
>>> A.dot(linalg.inv(A).dot(b)) - b  # check
array([[ 8.88178420e-16],
       [ 2.66453526e-15]])
>>> np.linalg.solve(A, b)  # fast
array([[-4.],
       [ 4.5]])
>>> A.dot(np.linalg.solve(A, b)) - b  # check
array([[ 0.],
       [ 0.0]])
```

Finding the determinant

The determinant of a square matrix \(A\) is often denoted \(|A|\) and is a quantity often used in linear algebra. Suppose \(a_{ij}\) are the elements of the matrix \(A\) and let \(M_{ij} = |A_{ij}|\) be the determinant of the matrix left by removing the \(i^{th}\) row and \(j^{th}\) column from \(A\). Then, for any row \(i\),

\[
|A| = \sum_j (-1)^{i+j} a_{ij} M_{ij}.
\]

This is a recursive way to define the determinant, where the base case is defined by accepting that the determinant of a \(1 \times 1\) matrix is the only matrix element. In SciPy the determinant can be calculated with `linalg.det`. For example,
the determinant of

\[
A = \begin{bmatrix}
 1 & 3 & 5 \\
 2 & 5 & 1 \\
 2 & 3 & 8
\end{bmatrix}
\]

is

\[
|A| = 1 \begin{vmatrix}
 5 & 1 \\
 3 & 8
\end{vmatrix} - 3 \begin{vmatrix}
 2 & 1 \\
 2 & 8
\end{vmatrix} + 5 \begin{vmatrix}
 2 & 5 \\
 2 & 3
\end{vmatrix}
= 1(5 \cdot 8 - 3 \cdot 1) - 3(2 \cdot 8 - 2 \cdot 1) + 5(2 \cdot 3 - 2 \cdot 5) = -25.
\]

In SciPy, this is computed as shown in this example:

```python
>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1, 2], [3, 4]])
>>> A
array([[1, 2],
       [3, 4]])
>>> linalg.det(A)
-2.0
```

Computing norms

Matrix and vector norms can also be computed with SciPy. A wide range of norm definitions are available using different parameters to the order argument of `linalg.norm`. This function takes a rank-1 (vectors) or a rank-2 (matrices) array and an optional order argument (default is 2). Based on these inputs, a vector or matrix norm of the requested order is computed.

For vector \(x \), the order parameter can be any real number including \(\infty \) or \(-\infty \). The computed norm is

\[
\|x\| = \begin{cases}
 \max |x_i| & \text{ord} = \infty \\
 \min |x_i| & \text{ord} = -\infty \\
 \left(\sum_i |x_i|^{\text{ord}}\right)^{1/\text{ord}} & |\text{ord}| < \infty.
\end{cases}
\]

For matrix \(A \), the only valid values for norm are \(\pm 2, \pm 1, \pm \infty \), and ‘fro’ (or ‘f’). Thus,

\[
\|A\| = \begin{cases}
 \max_i \sum_j |a_{ij}| & \text{ord} = \infty \\
 \min_i \sum_j |a_{ij}| & \text{ord} = -\infty \\
 \max_j \sum_i |a_{ij}| & \text{ord} = 1 \\
 \min_j \sum_i |a_{ij}| & \text{ord} = -1 \\
 \max \sigma_i & \text{ord} = 2 \\
 \min \sigma_i & \text{ord} = -2 \\
 \sqrt{\text{trace}(A^H A)} & \text{ord} = \text{‘fro’}
\end{cases}
\]

where \(\sigma_i \) are the singular values of \(A \).

Examples:

```python
>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1, 2], [3, 4]])
>>> A
```

(continues on next page)
array([[1, 2],
 [3, 4]])

```python
>>> linalg.norm(A)
5.4772255750516612
```

```python
>>> linalg.norm(A, 'fro')  # frobenius norm is the default
5.4772255750516612
```

```python
>>> linalg.norm(A, 1)  # L1 norm (max column sum)
6
```

```python
>>> linalg.norm(A, -1)
4
```

```python
>>> linalg.norm(A, np.inf)  # L inf norm (max row sum)
7
```

Solving linear least-squares problems and pseudo-inverses

Linear least-squares problems occur in many branches of applied mathematics. In this problem, a set of linear scaling coefficients is sought that allows a model to fit the data. In particular, it is assumed that data \(y_i \) is related to data \(x_i \) through a set of coefficients \(c_j \) and model functions \(f_j(x_i) \) via the model

\[
y_i = \sum_j c_j f_j(x_i) + \epsilon_i,
\]

where \(\epsilon_i \) represents uncertainty in the data. The strategy of least squares is to pick the coefficients \(c_j \) to minimize

\[
J(c) = \sum_i \left| y_i - \sum_j c_j f_j(x_i) \right|^2.
\]

Theoretically, a global minimum will occur when

\[
\frac{\partial J}{\partial c_n^*} = 0 = \sum_i \left(y_i - \sum_j c_j f_j(x_i)\right) (-f_n^*(x_i))
\]

or

\[
\sum_j c_j \sum_i f_j(x_i) f_n^*(x_i) = \sum_i y_i f_n^*(x_i)
\]

\[
A^H A c = A^H y
\]

, where

\[
\{A\}_{ij} = f_j(x_i).
\]

When \(A^H A \) is invertible, then

\[
c = (A^H A)^{-1} A^H y = A^\dagger y,
\]

where \(A^\dagger \) is called the pseudo-inverse of \(A \). Notice that using this definition of \(A \) the model can be written

\[
y = A c + \epsilon.
\]

The command ```linalg.lstsq``` will solve the linear least-squares problem for \(c \) given \(A \) and \(y \). In addition, ```linalg.pinv``` or ```linalg.pinv2``` (uses a different method based on singular value decomposition) will find \(A^\dagger \) given \(A \).
The following example and figure demonstrate the use of `linalg.lstsq` and `linalg.pinv` for solving a data-fitting problem. The data shown below were generated using the model:

\[y_i = c_1 e^{-x_i} + c_2 x_i, \]

where \(x_i = 0.1i \) for \(i = 1 \ldots 10 \), \(c_1 = 5 \), and \(c_2 = 4 \). Noise is added to \(y_i \) and the coefficients \(c_1 \) and \(c_2 \) are estimated using linear least squares.

```python
>>> import numpy as np
>>> from scipy import linalg
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()

>>> c1, c2 = 5.0, 2.0
>>> i = np.r_[1:11]
>>> xi = 0.1*i
>>> yi = c1*np.exp(-xi) + c2*xi
>>> zi = yi + 0.05 * np.max(yi) * rng.standard_normal(len(yi))

>>> A = np.c_[np.exp(-xi)[:, np.newaxis], xi[:, np.newaxis]]
>>> c, resid, rank, sigma = linalg.lstsq(A, zi)

>>> xi2 = np.r_[0.1:1.0:100j]
>>> yi2 = c[0]*np.exp(-xi2) + c[1]*xi2

>>> plt.plot(xi,zi,'x',xi2,yi2)
>>> plt.axis([0,1.1,3.0,5.5])
>>> plt.xlabel('\$x_i\$')
>>> plt.title('Data fitting with linalg.lstsq')
>>> plt.show()
```

![Data fitting with linalg.lstsq](image)
Generalized inverse

The generalized inverse is calculated using the command `linalg.pinv` or `linalg.pinv2`. These two commands differ in how they compute the generalized inverse. The first uses the linalg.lstsq algorithm, while the second uses singular value decomposition. Let A be an $M \times N$ matrix, then if $M > N$, the generalized inverse is

$$A^\dagger = (A^HA)^{-1} A^H,$$

while if $M < N$ matrix, the generalized inverse is

$$A^\# = A^H (AA^H)^{-1}.$$

In the case that $M = N$, then

$$A^\dagger = A^\# = A^{-1},$$

as long as A is invertible.

2.8.4 Decompositions

In many applications, it is useful to decompose a matrix using other representations. There are several decompositions supported by SciPy.

Eigenvalues and eigenvectors

The eigenvalue-eigenvector problem is one of the most commonly employed linear algebra operations. In one popular form, the eigenvalue-eigenvector problem is to find for some square matrix A scalars λ and corresponding vectors v, such that

$$Av = \lambda v.$$

For an $N \times N$ matrix, there are N (not necessarily distinct) eigenvalues — roots of the (characteristic) polynomial

$$|A - \lambda I| = 0.$$

The eigenvectors, v, are also sometimes called right eigenvectors to distinguish them from another set of left eigenvectors that satisfy

$$v^H_L A = \lambda v^H_L$$

or

$$A^H v_L = \lambda^* v_L.$$

With its default optional arguments, the command `linalg.eig` returns λ and v. However, it can also return v_L and just λ by itself (`linalg.eigvals` returns just λ as well).

In addition, `linalg.eig` can also solve the more general eigenvalue problem

$$Av = \lambda Bv,$$

$$A^H v_L = \lambda^* B^H v_L$$

for square matrices A and B. The standard eigenvalue problem is an example of the general eigenvalue problem for $B = I$. When a generalized eigenvalue problem can be solved, it provides a decomposition of A as

$$A = B V \Lambda V^{-1},$$
where \(V \) is the collection of eigenvectors into columns and \(\Lambda \) is a diagonal matrix of eigenvalues.

By definition, eigenvectors are only defined up to a constant scale factor. In SciPy, the scaling factor for the eigenvectors is chosen so that \(\|v\|^2 = \sum_i v_i^2 = 1 \).

As an example, consider finding the eigenvalues and eigenvectors of the matrix

\[
A = \begin{bmatrix}
1 & 5 & 2 \\
2 & 4 & 1 \\
3 & 6 & 2
\end{bmatrix}.
\]

The characteristic polynomial is

\[
|A - \lambda I| = (1 - \lambda) [(4 - \lambda) (2 - \lambda) - 6] - 5 [2 (2 - \lambda) - 3] + 2 [12 - 3 (4 - \lambda)] = -\lambda^3 + 7\lambda^2 + 8\lambda - 3.
\]

The roots of this polynomial are the eigenvalues of \(A \):

\[
\lambda_1 = 7.9579 \\
\lambda_2 = -1.2577 \\
\lambda_3 = 0.2997.
\]

The eigenvectors corresponding to each eigenvalue can be found using the original equation. The eigenvectors associated with these eigenvalues can then be found.

```python
>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1, 2], [3, 4]])
>>> la, v = linalg.eig(A)
>>> 11, 12 = la
>>> print(la) # eigenvalues
(-0.3722813232690143+0j) (5.372281323269014+0j)
>>> print(v[:, 0]) # first eigenvector
[-0.82456484 0.56576746]
>>> print(v[:, 1]) # second eigenvector
[-0.41597356 -0.90937671]
>>> print(np.sum(abs(v**2), axis=0)) # eigenvectors are unitary
[1. 1.]
>>> v1 = np.array(v[:, 0]).T
>>> print(linalg.norm(A.dot(v1) - 11*v1)) # check the computation
3.23682852457e-16
```

Singular value decomposition

Singular value decomposition (SVD) can be thought of as an extension of the eigenvalue problem to matrices that are not square. Let \(A \) be an \(M \times N \) matrix with \(M \) and \(N \) arbitrary. The matrices \(A^H A \) and \(AA^H \) are square hermitian matrices\(^1\) of size \(N \times N \) and \(M \times M \), respectively. It is known that the eigenvalues of square hermitian matrices are real and non-negative. In addition, there are at most \(\min(M, N) \) identical non-zero eigenvalues of \(A^H A \) and \(AA^H \). Define these positive eigenvalues as \(\sigma_i^2 \). The square-root of these are called singular values of \(A \). The eigenvectors of \(A^H A \) are collected by columns into an \(N \times N \) unitary\(^2\) matrix \(V \), while the eigenvectors of \(AA^H \) are collected by columns in

\(^1\) A hermitian matrix \(D \) satisfies \(D^H = D \).

\(^2\) A unitary matrix \(D \) satisfies \(D^H D = I = DD^H \) so that \(D^{-1} = D^H \).
the unitary matrix U, the singular values are collected in an $M \times N$ zero matrix Σ with main diagonal entries set to the singular values. Then

$$A = U \Sigma V^H$$

is the singular value decomposition of A. Every matrix has a singular value decomposition. Sometimes, the singular values are called the spectrum of A. The command `linalg.svd` will return U, V^H, and σ_i as an array of the singular values. To obtain the matrix Σ, use `linalg.diagsvd`. The following example illustrates the use of `linalg.svd`:

```python
>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1, 2, 3], [4, 5, 6]])
>>> A
array([[1, 2, 3],
       [4, 5, 6]])
>>> M,N = A.shape
>>> U,s,Vh = linalg.svd(A)
>>> Sig = linalg.diagsvd(s,M,N)
>>> U, Vh = U, Vh
>>> U
array([[-0.3863177 , -0.92236578],
       [-0.92236578, 0.3863177 ]])
>>> Sig
array([[ 9.508032 , 0. , 0. ],
       [ 0. , 0.77286964, 0. ]])
>>> Vh
array([[-0.42866713, -0.56630692, -0.7039467 ],
       [ 0.80596391, 0.11238241, -0.58119908],
       [ 0.40824829, -0.81649658, 0.40824829]])
>>> U.dot(Sig.dot(Vh)) #check computation
array([[ 1., 2., 3.],
       [ 4., 5., 6.]])

LU decomposition

The LU decomposition finds a representation for the $M \times N$ matrix $A$ as

$$A = P L U,$$

where $P$ is an $M \times M$ permutation matrix (a permutation of the rows of the identity matrix), $L$ is in $M \times K$ lower triangular or trapezoidal matrix ($K = \min(M,N)$) with unit-diagonal, and $U$ is an upper triangular or trapezoidal matrix. The SciPy command for this decomposition is `linalg.lu`.

Such a decomposition is often useful for solving many simultaneous equations where the left-hand side does not change but the right-hand side does. For example, suppose we are going to solve

$$A x_i = b_i$$

for many different $b_i$. The LU decomposition allows this to be written as

$$P L U x_i = b_i.$$

Because $L$ is lower-triangular, the equation can be solved for $U x_i$ and, finally, $x_i$ very rapidly using forward- and back-substitution. An initial time spent factoring $A$ allows for very rapid solution of similar systems of equations in the future. If the intent for performing LU decomposition is for solving linear systems, then the command `linalg.lu_factor` should be used followed by repeated applications of the command `linalg.lu_solve` to solve the system for each new right-hand side.
Cholesky decomposition

Cholesky decomposition is a special case of LU decomposition applicable to Hermitian positive definite matrices. When
\[ A = A^H \] and \[ x^H Ax \geq 0 \] for all \( x \), then decompositions of \( A \) can be found so that
\[ A = U^H U \]
\[ A = LL^H \]

, where \( L \) is lower triangular and \( U \) is upper triangular. Notice that \( L = U^H \). The command \texttt{linalg.cholesky} computes the Cholesky factorization. For using the Cholesky factorization to solve systems of equations, there are also \texttt{linalg.cho_factor} and \texttt{linalg.cho_solve} routines that work similarly to their LU decomposition counterparts.

QR decomposition

The QR decomposition (sometimes called a polar decomposition) works for any \( M \times N \) array and finds an \( M \times M \) unitary matrix \( Q \) and an \( M \times N \) upper-trapezoidal matrix \( R \), such that
\[ A = QR. \]

Notice that if the SVD of \( A \) is known, then the QR decomposition can be found.
\[ A = U\Sigma V^H = QR \]

implies that \( Q = U \) and \( R = \Sigma V^H \). Note, however, that in SciPy independent algorithms are used to find QR and SVD decompositions. The command for QR decomposition is \texttt{linalg.qr}.

Schur decomposition

For a square \( N \times N \) matrix, \( A \), the Schur decomposition finds (not necessarily unique) matrices \( T \) and \( Z \), such that
\[ A = ZTZ^H, \]

where \( Z \) is a unitary matrix and \( T \) is either upper triangular or quasi upper triangular, depending on whether or not a real Schur form or complex Schur form is requested. For a real Schur form both \( T \) and \( Z \) are real-valued when \( A \) is real-valued. When \( A \) is a real-valued matrix, the real Schur form is only quasi upper triangular because 2 \( \times \) 2 blocks extrude from the main diagonal corresponding to any complex-valued eigenvalues. The command \texttt{linalg.schur} finds the Schur decomposition, while the command \texttt{linalg.rsf2csf} converts \( T \) and \( Z \) from a real Schur form to a complex Schur form. The Schur form is especially useful in calculating functions of matrices.

The following example illustrates the Schur decomposition:

```python
>>> from scipy import linalg
>>> A = np.mat('[1 3 2; 1 4 5; 2 3 6]')
>>> T, Z = linalg.schur(A)
>>> T1, Z1 = linalg.schur(A, 'complex')
>>> T2, Z2 = linalg.rsf2csf(T, Z)
>>> T
array([[9.90012467, 1.78947961, -0.65498528],
 [0. , 0.54993766, -1.57754789],
 [0. , 0.51260928, 0.54993766]])
>>> T2
array([[9.90012467+0.00000000e+00j, -0.32436598+1.55463542e+00j, -0.65498528+0.00000000e+00j],
 [0. +0.00000000e+00j, 0.54993766+0.00000000e+00j, -1.57754789+0.00000000e+00j],
 [0. +0.00000000e+00j, 0.51260928+0.00000000e+00j, 0.54993766+0.00000000e+00j]])
```
>>> abs(T1 - T2)  # different
array([[ 1.06604538e-14, 2.06969555e+00, 1.69375747e+00],  # may vary
        [ 0.00000000e+00, 1.33688556e-15, 4.74146496e-01],
        [ 0.00000000e+00, 0.00000000e+00, 1.13220977e-15]])

```python
>>> abs(Z1 - Z2) # different
array([[0.06833781, 0.88091091, 0.79568503], # may vary
 [0.11857169, 0.44491892, 0.99594171],
 [0.12624999, 0.60264117, 0.77257633]])
```

```python
>>> T, Z, T1, Z1, T2, Z2 = map(np.mat,(T,Z,T1,Z1,T2,Z2))
```

```python
>>> abs(A - Z*H) # same
matrix([[5.55111512e-16, 1.77635684e-15, 2.22044605e-15],
 [0.00000000e+00, 3.99680289e-15, 8.88178420e-16],
 [1.11022302e-15, 4.44089210e-16, 3.55271368e-15]])
```

```python
>>> abs(A - Z1*T1*H) # same
matrix([[4.26993904e-15, 6.21793362e-15, 8.00007092e-15],
 [5.77945386e-15, 6.21798014e-15, 1.06653681e-14],
 [7.16681444e-15, 8.90271058e-15, 1.77635764e-14]])
```

```python
>>> abs(A - Z2*T2*H) # same
matrix([[6.02594127e-16, 1.77648931e-15, 2.22506907e-15],
 [2.46275555e-16, 3.99684548e-15, 8.91642616e-16],
 [8.88225111e-16, 8.88312432e-16, 4.44104848e-15]])
```

### Interpolative decomposition

`scipy.linalg.interpolative` contains routines for computing the interpolative decomposition (ID) of a matrix. For a matrix $A \in \mathbb{C}^{m \times n}$ of rank $k \leq \min\{m, n\}$ this is a factorization

$$ A \Pi = [A \Pi_1 \quad A \Pi_2] = A \Pi_1 [I \quad T], $$

where $\Pi = [\Pi_1, \Pi_2]$ is a permutation matrix with $\Pi_1 \in \{0, 1\}^{n \times k}$, i.e., $A \Pi_2 = A \Pi_1 T$. This can equivalently be written as $A = BP$, where $B = A \Pi_1$ and $P = [I; T] \Pi^T$ are the skeleton and interpolation matrices, respectively.

See also:

`scipy.linalg.interpolative` — for more information.

### 2.8.5 Matrix functions

Consider the function $f(x)$ with Taylor series expansion

$$ f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k. $$

A matrix function can be defined using this Taylor series for the square matrix $A$ as

$$ f(A) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} A^k. $$

While this serves as a useful representation of a matrix function, it is rarely the best way to calculate a matrix function.
Exponential and logarithm functions

The matrix exponential is one of the more common matrix functions. The preferred method for implementing the matrix exponential is to use scaling and a Padé approximation for \( e^x \). This algorithm is implemented as `linalg.expm`.

The inverse of the matrix exponential is the matrix logarithm defined as the inverse of the matrix exponential:

\[
A \equiv \exp(\log(A)).
\]

The matrix logarithm can be obtained with `linalg.logm`.

Trigonometric functions

The trigonometric functions, \( \sin \), \( \cos \), and \( \tan \), are implemented for matrices in `linalg.sinm`, `linalg.cosm`, and `linalg.tanm`, respectively. The matrix sine and cosine can be defined using Euler's identity as

\[
\sin(A) = \frac{e^{jA} - e^{-jA}}{2j},
\]

\[
\cos(A) = \frac{e^{jA} + e^{-jA}}{2}.
\]

The tangent is

\[
\tan(x) = \frac{\sin(x)}{\cos(x)} = [\cos(x)]^{-1} \sin(x)
\]

and so the matrix tangent is defined as

\[
[\cos(A)]^{-1} \sin(A).
\]

Hyperbolic trigonometric functions

The hyperbolic trigonometric functions, \( \sinh \), \( \cosh \), and \( \tanh \), can also be defined for matrices using the familiar definitions:

\[
\sinh(A) = \frac{e^A - e^{-A}}{2},
\]

\[
\cosh(A) = \frac{e^A + e^{-A}}{2},
\]

\[
\tanh(A) = [\cosh(A)]^{-1} \sinh(A).
\]

These matrix functions can be found using `linalg.sinhm`, `linalg.coshm`, and `linalg.tanhm`.

Arbitrary function

Finally, any arbitrary function that takes one complex number and returns a complex number can be called as a matrix function using the command `linalg.funm`. This command takes the matrix and an arbitrary Python function. It then implements an algorithm from Golub and Van Loan's book “Matrix Computations” to compute the function applied to the matrix using a Schur decomposition. Note that the function needs to accept complex numbers as input in order to work with this algorithm. For example, the following code computes the zeroth-order Bessel function applied to a matrix.
```python
>>> from scipy import special, linalg
>>> rng = np.random.default_rng()
>>> A = rng.random((3, 3))
>>> B = linalg.funm(A, lambda x: special.jv(0, x))
>>> A
array([[0.06369197, 0.90647174, 0.98024544],
 [0.68752227, 0.5604377 , 0.49142032],
 [0.86754578, 0.9746787 , 0.37932682]])
>>> B
array([[0.6929219 , -0.29728805, -0.15930896],
 [-0.16226043, 0.71967826, -0.22709386],
 [-0.19945564, -0.33379957, 0.70259022]])
>>> linalg.eigvals(A)
array([1.94835336+0.j, -0.72219681+0.j, -0.22270006+0.j])
>>> special.jv(0, linalg.eigvals(A))
array([0.25375345+0.j, 0.87379738+0.j, 0.98763955+0.j])
>>> linalg.eigvals(B)
array([0.25375345+0.j, 0.87379738+0.j, 0.98763955+0.j])
```

Note how, by virtue of how matrix analytic functions are defined, the Bessel function has acted on the matrix eigenvalues.

### 2.8.6 Special matrices

SciPy and NumPy provide several functions for creating special matrices that are frequently used in engineering and science.

<table>
<thead>
<tr>
<th>Type</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>block diagonal</td>
<td><code>scipy.linalg.block_diag</code></td>
<td>Create a block diagonal matrix from the provided arrays.</td>
</tr>
<tr>
<td>circulant</td>
<td><code>scipy.linalg.circulant</code></td>
<td>Create a circulant matrix.</td>
</tr>
<tr>
<td>companion</td>
<td><code>scipy.linalg.companion</code></td>
<td>Create a companion matrix.</td>
</tr>
<tr>
<td>convolution</td>
<td><code>scipy.linalg.convolution_matrix</code></td>
<td>Create a convolution matrix.</td>
</tr>
<tr>
<td>Discrete Fourier</td>
<td><code>scipy.linalg.dft</code></td>
<td>Create a discrete Fourier transform matrix.</td>
</tr>
<tr>
<td>Fiedler</td>
<td><code>scipy.linalg.fiedler</code></td>
<td>Create a symmetric Fiedler matrix.</td>
</tr>
<tr>
<td>Fiedler Companion</td>
<td><code>scipy.linalg.fiedler_companion</code></td>
<td>Create a Fiedler companion matrix.</td>
</tr>
<tr>
<td>Hadamard</td>
<td><code>scipy.linalg.hadamard</code></td>
<td>Create a Hadamard matrix.</td>
</tr>
<tr>
<td>Hankel</td>
<td><code>scipy.linalg.hankel</code></td>
<td>Create a Hankel matrix.</td>
</tr>
<tr>
<td>Helmhert</td>
<td><code>scipy.linalg.hilbert</code></td>
<td>Create a Helmhert matrix.</td>
</tr>
<tr>
<td>Hilbert</td>
<td><code>scipy.linalg.hilbert</code></td>
<td>Create a Hilbert matrix.</td>
</tr>
<tr>
<td>Inverse Hilbert</td>
<td><code>scipy.linalg.invhilbert</code></td>
<td>Create the inverse of a Hilbert matrix.</td>
</tr>
<tr>
<td>Leslie</td>
<td><code>scipy.linalg.leslie</code></td>
<td>Create a Leslie matrix.</td>
</tr>
<tr>
<td>Pascal</td>
<td><code>scipy.linalg.pascal</code></td>
<td>Create a Pascal matrix.</td>
</tr>
<tr>
<td>Inverse Pascal</td>
<td><code>scipy.linalg.invpascal</code></td>
<td>Create the inverse of a Pascal matrix.</td>
</tr>
<tr>
<td>Toeplitz</td>
<td><code>scipy.linalg.toeplitz</code></td>
<td>Create a Toeplitz matrix.</td>
</tr>
<tr>
<td>Van der Monde</td>
<td><code>numpy.vander</code></td>
<td>Create a Van der Monde matrix.</td>
</tr>
</tbody>
</table>

For examples of the use of these functions, see their respective docstrings.
2.9 Sparse eigenvalue problems with ARPACK

2.9.1 Introduction

ARPACK\(^1\) is a Fortran package which provides routines for quickly finding a few eigenvalues/eigenvectors of large sparse matrices. In order to find these solutions, it requires only left-multiplication by the matrix in question. This operation is performed through a reverse-communication interface. The result of this structure is that ARPACK is able to find eigenvalues and eigenvectors of any linear function mapping a vector to a vector.

All of the functionality provided in ARPACK is contained within the two high-level interfaces `scipy.sparse.linalg.eigs` and `scipy.sparse.linalg.eigsh`. `eigs` provides interfaces for finding the eigenvalues/vectors of real or complex nonsymmetric square matrices, while `eigsh` provides interfaces for real-symmetric or complex-hermitian matrices.

2.9.2 Basic functionality

ARPACK can solve either standard eigenvalue problems of the form

\[ Ax = \lambda x \]

or general eigenvalue problems of the form

\[ Ax = \lambda Mx. \]

The power of ARPACK is that it can compute only a specified subset of eigenvalue/eigenvector pairs. This is accomplished through the keyword `which`. The following values of `which` are available:

- `which = 'LM'`: Eigenvalues with largest magnitude (`eigs`, `eigsh`), that is, largest eigenvalues in the euclidean norm of complex numbers.
- `which = 'SM'`: Eigenvalues with smallest magnitude (`eigs`, `eigsh`), that is, smallest eigenvalues in the euclidean norm of complex numbers.
- `which = 'LR'`: Eigenvalues with largest real part (`eigs`).
- `which = 'SR'`: Eigenvalues with smallest real part (`eigs`).
- `which = 'LI'`: Eigenvalues with largest imaginary part (`eigs`).
- `which = 'SI'`: Eigenvalues with smallest imaginary part (`eigs`).
- `which = 'LA'`: Eigenvalues with largest algebraic value (`eigsh`), that is, largest eigenvalues inclusive of any negative sign.
- `which = 'SA'`: Eigenvalues with smallest algebraic value (`eigsh`), that is, smallest eigenvalues inclusive of any negative sign.
- `which = 'BE'`: Eigenvalues from both ends of the spectrum (`eigsh`).

Note that ARPACK is generally better at finding extremal eigenvalues, that is, eigenvalues with large magnitudes. In particular, using `which = 'SM'` may lead to slow execution time and/or anomalous results. A better approach is to use shift-invert mode.

\(^1\) [http://www.caam.rice.edu/software/ARPACK/](http://www.caam.rice.edu/software/ARPACK/)
2.9.3 Shift-invert mode

Shift-invert mode relies on the following observation. For the generalized eigenvalue problem

\[ Ax = \lambda M x, \]

it can be shown that

\[ (A - \sigma M)^{-1} M x = \nu x, \]

where

\[ \nu = \frac{1}{\lambda - \sigma}. \]

2.9.4 Examples

Imagine you’d like to find the smallest and largest eigenvalues and the corresponding eigenvectors for a large matrix. ARPACK can handle many forms of input: dense matrices, such as `numpy.ndarray` instances, sparse matrices, such as `scipy.sparse.csr_matrix`, or a general linear operator derived from `scipy.sparse.linalg.LinearOperator`. For this example, for simplicity, we’ll construct a symmetric, positive-definite matrix.

```python
>>> import numpy as np
>>> from scipy.linalg import eig, eigh
>>> from scipy.sparse.linalg import eigs, eigsh
>>> np.set_printoptions(suppress=True)
>>> rng = np.random.default_rng()
>>> X = rng.random((100, 100)) - 0.5
>>> X = np.dot(X, X.T) # create a symmetric matrix
```

We now have a symmetric matrix `X`, with which to test the routines. First, compute a standard eigenvalue decomposition using `eigh`:

```python
>>> evals_all, evecs_all = eigh(X)
```

As the dimension of `X` grows, this routine becomes very slow. Especially, if only a few eigenvectors and eigenvalues are needed, ARPACK can be a better option. First let’s compute the largest eigenvalues (`which = 'LM'`) of `X` and compare them to the known results:

```python
>>> evals_large, evecs_large = eigsh(X, 3, which='LM')
>>> print(evals_all[-3:])
[29.22435321 30.05590784 30.58591252]
>>> print(evals_large)
[29.22435321 30.05590784 30.58591252]
>>> print(np.dot(evecs_large.T, evecs_all[:, -3:]))
array([[[-1. 0. 0.], # may vary (signs)
 [0. 1. 0.],
 [-0. 0. -1.]]])
```

The results are as expected. ARPACK recovers the desired eigenvalues and they match the previously known results. Furthermore, the eigenvectors are orthogonal, as we’d expect. Now, let’s attempt to solve for the eigenvalues with smallest magnitude:

```python
```
Oops. We see that, as mentioned above, ARPACK is not quite as adept at finding small eigenvalues. There are a few ways this problem can be addressed. We could increase the tolerance (tol) to lead to faster convergence:

```
>>> evals_small, evecs_small = eigsh(X, 3, which='SM', tol=1E-2)
>>> evals_all[:3]
array([0.00053181, 0.00298319, 0.01387821])
>>> evals_small
array([0.00053181, 0.00298319, 0.01387821])
>>> np.dot(evecs_small.T, evecs_all[:, :3])
array([[0.99999999 0.00000024 -0.00000049],
 [-0.00000023 0.99999999 0.00000056],
 [0.00000031 -0.00000037 0.99999852]])
```

This works, but we lose the precision in the results. Another option is to increase the maximum number of iterations (maxiter) from 1000 to 5000:

```
>>> evals_small, evecs_small = eigsh(X, 3, which='SM', maxiter=5000)
>>> evals_all[:3]
array([0.00053181, 0.00298319, 0.01387821])
>>> evals_small
array([0.00053181, 0.00298319, 0.01387821])
>>> np.dot(evecs_small.T, evecs_all[:, :3])
array([[1. 0. 0.],
 [0. 1. 0.],
 [0. 0. -1.]])
```

We get the results we’d hoped for, but the computation time is much longer. Fortunately, ARPACK contains a mode that allows a quick determination of non-external eigenvalues: shift-invert mode. As mentioned above, this mode involves transforming the eigenvalue problem to an equivalent problem with different eigenvalues. In this case, we hope to find eigenvalues near zero, so we’ll choose sigma = 0. The transformed eigenvalues will then satisfy $\nu = 1/(\lambda - \sigma) = 1/\lambda$, so our small eigenvalues $\lambda$ become large eigenvalues $\nu$.

```
>>> evals_small, evecs_small = eigsh(X, 3, sigma=0, which='LM')
>>> evals_all[:3]
array([0.00053181, 0.00298319, 0.01387821])
>>> evals_small
array([0.00053181, 0.00298319, 0.01387821])
>>> np.dot(evecs_small.T, evecs_all[:, :3])
array([[1. 0. 0.],
 [0. -1. -0.],
 [-0. -0. 1.]])
```

We get the results we were hoping for, with much less computational time. Note that the transformation from $\nu \rightarrow \lambda$ takes place entirely in the background. The user need not worry about the details.

The shift-invert mode provides more than just a fast way to obtain a few small eigenvalues. Say, you desire to find internal eigenvalues and eigenvectors, e.g., those nearest to $\lambda = 1$. Simply set sigma = 1 and ARPACK will take care of the rest.
The eigenvalues come out in a different order, but they're all there. Note that the shift-invert mode requires the internal solution of a matrix inverse. This is taken care of automatically by `eigsh` and `eigs`, but the operation can also be specified by the user. See the docstring of `scipy.sparse.linalg.eigsh` and `scipy.sparse.linalg.eigs` for details.

### 2.9.5 Use of LinearOperator

We consider now the case where you’d like to avoid creating a dense matrix and use `scipy.sparse.linalg.LinearOperator` instead. Our first linear operator applies element-wise multiplication between the input vector and a vector $d$ provided by the user to the operator itself. This operator mimics a diagonal matrix with the elements of $d$ along the main diagonal and it has the main benefit that the forward and adjoint operations are simple element-wise multiplications other than matrix-vector multiplications. For a diagonal matrix, we expect the eigenvalues to be equal to the elements along the main diagonal, in this case $d$. The eigenvalues and eigenvectors obtained with `eigsh` are compared to those obtained by using `eigh` when applied to the dense matrix:

```python
>>> from scipy.sparse.linalg import LinearOperator
>>> class Diagonal(LinearOperator):
... def __init__(self, diag, dtype='float32'):
... self.diag = diag
... self.shape = (len(self.diag), len(self.diag))
... self.dtype = np.dtype(dtype)
... def _matvec(self, x):
... return self.diag*x
... def _rmatvec(self, x):
... return self.diag*x
```

```python
>>> N = 100
>>> rng = np.random.default_rng()
>>> d = rng.normal(0, 1, N).astype(np.float64)
>>> D = np.diag(d)
>>> Dop = Diagonal(d, dtype=np.float64)
```

```python
>>> evals_all, evecs_all = eigh(D)
>>> evals_large, evecs_large = eigsh(Dop, 3, which='LA', maxiter=1e3)
>>> evals_all[-3:]
array([1.53092498, 1.77243671, 2.00582508])
>>> evals_large
array([1.53092498, 1.77243671, 2.00582508])
>>> print(np.dot(evecs_large.T, evecs_all[:, -3:]))
array([[-1. 0. 0.], # may vary (signs)
 [-0. -0. 1.],
 [1. 0. 0.]])
```
In this case, we have created a quick and easy Diagonal operator. The external library PyLops provides similar capabilities in the Diagonal operator, as well as several other operators.

Finally, we consider a linear operator that mimics the application of a first-derivative stencil. In this case, the operator is equivalent to a real nonsymmetric matrix. Once again, we compare the estimated eigenvalues and eigenvectors with those from a dense matrix that applies the same first derivative to an input signal:

```python
>>> class FirstDerivative(LinearOperator):
... def __init__(self, N, dtype='float32'):
... self.N = N
... self.shape = (self.N, self.N)
... self.dtype = np.dtype(dtype)
... def _matvec(self, x):
... y = np.zeros(self.N, self.dtype)
... y[1:-1] = (0.5*x[2:]-0.5*x[0:-2])
... return y
... def _rmatvec(self, x):
... y = np.zeros(self.N, self.dtype)
... y[0:-2] = y[0:-2] - (0.5*x[1:-1])
... y[2:] = y[2:] + (0.5*x[1:-1])
... return y

>>> N = 21
>>> D = np.diag(0.5*np.ones(N-1), k=1) - np.diag(0.5*np.ones(N-1), k=-1)
>>> D[0] = D[-1] = 0 # take away edge effects
>>> Dop = FirstDerivative(N, dtype=np.float64)

>>> evals_all, evecs_all = eig(D)
>>> evals_large, evecs_large = eigs(Dop, 4, which='LI')
>>> evals_all_imag = evals_all.imag
>>> isort_imag = np.argsort(np.abs(evals_all_imag))
>>> evals_all_imag = evals_all_imag[isort_imag]
>>> evals_large_imag = evals_large.imag
>>> isort_imag = np.argsort(np.abs(evals_large_imag))
>>> evals_large_imag = evals_large_imag[isort_imag]
>>> evals_all_imag[-4:]
array([-0.95105652, 0.95105652, -0.98768834, 0.98768834])
>>> evals_large_imag
array([0.95105652, -0.95105652, 0.98768834, -0.98768834])
```

Note that the eigenvalues of this operator are all imaginary. Moreover, the keyword which='LI' of scipy.sparse.linalg.eigs produces the eigenvalues with largest absolute imaginary part (both positive and negative). Again, a more advanced implementation of the first-derivative operator is available in the PyLops library under the name of FirstDerivative operator.
2.9.6 References

2.10 Compressed Sparse Graph Routines (scipy.sparse.csgraph)

2.10.1 Example: Word Ladders

A Word Ladder is a word game invented by Lewis Carroll, in which players find paths between words by switching one letter at a time. For example, one can link “ape” and “man” in the following way:

ape → apt → ait → bit → big → bag → mag → man

Note that each step involves changing just one letter of the word. This is just one possible path from “ape” to “man”, but is it the shortest possible path? If we desire to find the shortest word-ladder path between two given words, the sparse graph submodule can help.

First, we need a list of valid words. Many operating systems have such a list built in. For example, on linux, a word list can often be found at one of the following locations:

```
/usr/share/dict
/var/lib/dict
```

Another easy source for words are the Scrabble word lists available at various sites around the internet (search with your favorite search engine). We'll first create this list. The system word lists consist of a file with one word per line. The following should be modified to use the particular word list you have available:

```python
>>> word_list = open('/usr/share/dict/words').readlines()
>>> word_list = map(str.strip, word_list)
```

We want to look at words of length 3, so let's select just those words of the correct length. We'll also eliminate words which start with upper-case (proper nouns) or contain non-alphanumeric characters, like apostrophes and hyphens. Finally, we'll make sure everything is lower-case for comparison later:

```python
>>> word_list = [word for word in word_list if len(word) == 3]
>>> word_list = [word for word in word_list if word[0].islower()]
>>> word_list = [word for word in word_list if word.isalpha()]
>>> word_list = list(map(str.lower, word_list))
```

```python
len(word_list)
586 # may vary
```

Now we have a list of 586 valid three-letter words (the exact number may change depending on the particular list used). Each of these words will become a node in our graph, and we will create edges connecting the nodes associated with each pair of words which differs by only one letter.

There are efficient ways to do this, and inefficient ways to do this. To do this as efficiently as possible, we're going to use some sophisticated numpy array manipulation:

```python
>>> import numpy as np
>>> word_list = np.asarray(word_list)
>>> word_list.dtype # these are unicode characters in Python 3
dtype('<U3')
>>> word_list.sort() # sort for quick searching later
```

We have an array where each entry is three unicode characters long. We'd like to find all pairs where exactly one character is different. We'll start by converting each word to a 3-D vector:
```python
>>> word_bytes = np.ndarray((word_list.size, word_list.itemsize),
... dtype='uint8',
... buffer=word_list.data)
>>> # each unicode character is four bytes long. We only need first byte
>>> # we know there are three characters in each word
>>> word_bytes = word_bytes[:, ::word_list.itemsize//3]
>>> word_bytes.shape
(586, 3) # may vary
```

Now, we’ll use the Hamming distance between each point to determine which pairs of words are connected. The Hamming distance measures the fraction of entries between two vectors which differ: any two words with a Hamming distance equal to $1/N$, where $N$ is the number of letters, are connected in the word ladder:

```python
>>> from scipy.spatial.distance import pdist, squareform
>>> from scipy.sparse import csr_matrix
>>> hamming_dist = pdist(word_bytes, metric='hamming')
>>> # there are three characters in each word
>>> graph = csr_matrix(squareform(hamming_dist < 1.5 / 3))
```

When comparing the distances, we don’t use an equality because this can be unstable for floating point values. The inequality produces the desired result, as long as no two entries of the word list are identical. Now, that our graph is set up, we’ll use a shortest path search to find the path between any two words in the graph:

```python
>>> i1 = word_list.searchsorted('ape')
>>> i2 = word_list.searchsorted('man')
>>> word_list[i1]
'ape'
>>> word_list[i2]
'man'
```

We need to check that these match, because if the words are not in the list, that will not be the case. Now, all we need is to find the shortest path between these two indices in the graph. We’ll use Dijkstra’s algorithm, because it allows us to find the path for just one node:

```python
>>> from scipy.sparse.csgraph import dijkstra
>>> distances, predecessors = dijkstra(graph, indices=i1,
... return_predecessors=True)
>>> print(distances[i2])
5.0 # may vary
```

So we see that the shortest path between “ape” and “man” contains only five steps. We can use the predecessors returned by the algorithm to reconstruct this path:

```python
>>> path = []
>>> i = 12
>>> while i != i1:
... path.append(word_list[i])
... i = predecessors[i]
>>> path.append(word_list[i1])
>>> print(path[::-1])
['ape', 'apt', 'opt', 'oat', 'mat', 'man'] # may vary
```

This is three fewer links than our initial example: the path from “ape” to “man” is only five steps.
Using other tools in the module, we can answer other questions. For example, are there three-letter words which are not linked in a word ladder? This is a question of connected components in the graph:

```python
>>> from scipy.sparse.csgraph import connected_components
>>> N_components, component_list = connected_components(graph)
>>> print(N_components)
15 # may vary
```

In this particular sample of three-letter words, there are 15 connected components: that is, 15 distinct sets of words with no paths between the sets. How many words are there in each of these sets? We can learn this from the list of components:

```python
>>> [np.sum(component_list == i) for i in range(N_components)]
[571, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # may vary
```

There is one large connected set and 14 smaller ones. Let's look at the words in the smaller ones:

```python
>>> [list(word_list[np.nonzero(component_list == i)]) for i in range(1, N_components)]
[['aha'], # may vary
 ['chi'],
 ['ebb'],
 ['ems', 'emu'],
 ['gnu'],
 ['ism'],
 ['khz'],
 ['nth'],
 ['ova'],
 ['qua'],
 ['ugh'],
 ['ups'],
 ['urn'],
 ['use']]
```

These are all the three-letter words which do not connect to others via a word ladder.

We might also be curious about which words are maximally separated. Which two words take the most links to connect? We can determine this by computing the matrix of all shortest paths. Note that, by convention, the distance between two non-connected points is reported to be infinity, so we'll need to remove these before finding the maximum:

```python
>>> distances, predecessors = dijkstra(graph, return_predecessors=True)
>>> max_distance = np.max(distances[~np.isinf(distances)])
>>> print(max_distance)
13.0 # may vary
```

So, there is at least one pair of words which takes 13 steps to get from one to the other! Let's determine which these are:

```python
>>> i1, i2 = np.nonzero(distances == max_distance)
>>> list(zip(word_list[i1], word_list[i2]))
[('imp', 'ohm'), # may vary
 ('imp', 'ohs'),
 ('ohm', 'imp'),
 ('ohm', 'ump'),
 ('ohs', 'imp'),
 ('ohs', 'ump'),
 ...]
```

(continues on next page)
We see that there are two pairs of words which are maximally separated from each other: ‘imp’ and ‘ump’ on the one hand, and ‘ohm’ and ‘ohs’ on the other. We can find the connecting list in the same way as above:

```python
>>> path = []
>>> i = i2[0]
>>> while i != i1[0]:
... path.append(word_list[i])
... i = predecessors[i1[0], i]
>>> path.append(word_list[i1[0]])
>>> print(path[:-1])
['imp', 'amp', 'asp', 'ass', 'ads', 'add', 'aid', 'mid', 'mod', 'moo', 'too', →'tho', 'oho', 'ohm'] # may vary
```

This gives us the path we desired to see.

Word ladders are just one potential application of scipy’s fast graph algorithms for sparse matrices. Graph theory makes appearances in many areas of mathematics, data analysis, and machine learning. The sparse graph tools are flexible enough to handle many of these situations.

### 2.11 Spatial data structures and algorithms (*scipy.spatial*)

*scipy.spatial* can compute triangulations, Voronoi diagrams, and convex hulls of a set of points, by leveraging the Qhull library.

Moreover, it contains *KDTree* implementations for nearest-neighbor point queries, and utilities for distance computations in various metrics.

#### 2.11.1 Delaunay triangulations

The Delaunay triangulation is a subdivision of a set of points into a non-overlapping set of triangles, such that no point is inside the circumcircle of any triangle. In practice, such triangulations tend to avoid triangles with small angles.

Delaunay triangulation can be computed using *scipy.spatial* as follows:

```python
>>> from scipy.spatial import Delaunay
>>> points = np.array([[0, 0], [0, 1.1], [1, 0], [1, 1]])
>>> tri = Delaunay(points)
```

We can visualize it:

```python
>>> import matplotlib.pyplot as plt
>>> plt.triplot(points[:,0], points[:,1], tri.simplices)
>>> plt.plot(points[:,0], points[:,1], 'o')
```

And add some further decorations:

```python
>>> for j, p in enumerate(points):
... plt.text(p[0]-0.03, p[1]+0.03, j, ha='right') # label the points
```
The structure of the triangulation is encoded in the following way: the `simplices` attribute contains the indices of the points in the `points` array that make up the triangle. For instance:

```python
>>> 1 = 1
>>> tri.simplices[i, :]
array([3, 1, 0], dtype=int32)
>>> points[tri.simplices[i, :]]
array([[1., 1.],
 [0., 1.1],
 [0., 0.]])
```

Moreover, neighboring triangles can also be found:

```python
>>> tri.neighbors[i]
array([-1, 0, -1], dtype=int32)
```

What this tells us is that this triangle has triangle #0 as a neighbor, but no other neighbors. Moreover, it tells us that neighbor 0 is opposite the vertex 1 of the triangle:

```python
>>> points[tri.simplices[i, 1]]
array([0., 1.1])
```

Indeed, from the figure, we see that this is the case.

Qhull can also perform tessellations to simplices for higher-dimensional point sets (for instance, subdivision into tetrahedra in 3-D).
Coplanar points

It is important to note that not all points necessarily appear as vertices of the triangulation, due to numerical precision issues in forming the triangulation. Consider the above with a duplicated point:

```python
>>> points = np.array([[0, 0], [0, 1], [1, 0], [1, 1], [1, 1]])
>>> tri = Delaunay(points)
>>> np.unique(tri.simplices.ravel())
array([0, 1, 2, 3], dtype=int32)
```

Observe that point #4, which is a duplicate, does not occur as a vertex of the triangulation. That this happened is recorded:

```python
>>> tri.coplanar
array([[4, 0, 3]], dtype=int32)
```

This means that point 4 resides near triangle 0 and vertex 3, but is not included in the triangulation.

Note that such degeneracies can occur not only because of duplicated points, but also for more complicated geometrical reasons, even in point sets that at first sight seem well-behaved.

However, Qhull has the “QJ” option, which instructs it to perturb the input data randomly until degeneracies are resolved:

```python
>>> tri = Delaunay(points, qhull_options="QJ Pp")
```

Two new triangles appeared. However, we see that they are degenerate and have zero area.

### 2.11.2 Convex hulls

A convex hull is the smallest convex object containing all points in a given point set. These can be computed via the Qhull wrappers in `scipy.spatial` as follows:

```python
>>> from scipy.spatial import ConvexHull
>>> rng = np.random.default_rng()
>>> points = rng.random((30, 2)) # 30 random points in 2-D
>>> hull = ConvexHull(points)

The convex hull is represented as a set of N 1-D simplices, which in 2-D means line segments. The storage scheme is exactly the same as for the simplices in the Delaunay triangulation discussed above.

We can illustrate the above result:
>>> import matplotlib.pyplot as plt
>>> plt.plot(points[:,0], points[:,1], 'o')
>>> for simplex in hull.simplices:
... plt.plot(points[simplex,0], points[simplex,1], 'k-')
>>> plt.show()

The same can be achieved with `scipy.spatial.convex_hull_plot_2d`.

2.11.3 Voronoi diagrams

A Voronoi diagram is a subdivision of the space into the nearest neighborhoods of a given set of points.

There are two ways to approach this object using `scipy.spatial`. First, one can use the `KDTree` to answer the question “which of the points is closest to this one”, and define the regions that way:

```python
>>> from scipy.spatial import KDTree
>>> points = np.array([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], ...
...                     [2, 0], [2, 1], [2, 2]])
>>> tree = KDTree(points)
>>> tree.query([0.1, 0.1])
(0.14142135623730953, 0)
```

So the point (0.1, 0.1) belongs to region 0. In color:

```python
>>> x = np.linspace(-0.5, 2.5, 31)
>>> y = np.linspace(-0.5, 2.5, 33)
>>> xx, yy = np.meshgrid(x, y)
>>> xy = np.c_[xx.ravel(), yy.ravel()]
>>> import matplotlib.pyplot as plt
>>> dx_half, dy_half = np.diff(x[:2])[0] / 2., np.diff(y[:2])[0] / 2.
>>> x_edges = np.concatenate((x - dx_half, [x[-1] + dx_half]))
>>> y_edges = np.concatenate((y - dy_half, [y[-1] + dy_half]))
>>> plt.pcolormesh(x_edges, y_edges, tree.query(xy)[1].reshape(33, 31),...
...                shading='flat')
```

(continues on next page)
This does not, however, give the Voronoi diagram as a geometrical object.

The representation in terms of lines and points can be again obtained via the Qhull wrappers in `scipy.spatial`:

```python
>>> from scipy.spatial import Voronoi
>>> vor = Voronoi(points)
>>> vor.vertices
array([[0.5, 0.5],
       [0.5, 1.5],
       [1.5, 0.5],
       [1.5, 1.5]])
```

The Voronoi vertices denote the set of points forming the polygonal edges of the Voronoi regions. In this case, there are 9 different regions:

```python
>>> vor.regions
[[], [-1, 0], [-1, 1], [1, -1, 0], [3, -1, 2], [-1, 3], [-1, 2], [0, 1, 3, 2],
 [-1, -1], [2, -1, 0], [3, -1, 1]]
```

Negative value -1 again indicates a point at infinity. Indeed, only one of the regions, [0, 1, 3, 2], is bounded. Note here that due to similar numerical precision issues as in Delaunay triangulation above, there may be fewer Voronoi regions than input points.

The ridges (lines in 2-D) separating the regions are described as a similar collection of simplices as the convex hull pieces:

```python
>>> vor.ridge_vertices
[[-1, 0], [-1, 0], [-1, 1], [-1, 1], [0, 1], [-1, 3], [-1, 2], [2, 3], [-1,
 -3], [-1, 2], [1, 3], [0, 2]]
```

These numbers present the indices of the Voronoi vertices making up the line segments. -1 is again a point at infinity — only 4 of the 12 lines are a bounded line segment, while others extend to infinity.
The Voronoi ridges are perpendicular to the lines drawn between the input points. To which two points each ridge corresponds is also recorded:

```python
>>> vor.ridge_points
array([[0, 3],
       [0, 1],
       [2, 5],
       [2, 1],
       [1, 4],
       [7, 8],
       [7, 6],
       [7, 4],
       [8, 5],
       [6, 3],
       [4, 5],
       [4, 3]], dtype=int32)
```

This information, taken together, is enough to construct the full diagram.

We can plot it as follows. First, the points and the Voronoi vertices:

```python
>>> plt.plot(points[:, 0], points[:, 1], 'o')
>>> plt.plot(vor.vertices[:, 0], vor.vertices[:, 1], '*')
>>> plt.xlim(-1, 3); plt.ylim(-1, 3)
```

Plotting the finite line segments goes as for the convex hull, but now we have to guard for the infinite edges:

```python
>>> for simplex in vor.ridge_vertices:
...     simplex = np.asarray(simplex)
...     if np.all(simplex >= 0):
...         plt.plot(vor.vertices[simplex, 0], vor.vertices[simplex, 1], 'k-')
```  
```python
>>> center = points.mean(axis=0)
>>> for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices):
...     simplex = np.asarray(simplex)
...     i = simplex[simplex >= 0][0] # finite end Voronoi vertex
...     t = points[pointidx[1]] - points[pointidx[0]] # tangent
...     t = t / np.linalg.norm(t)
...     n = np.array([-t[1], t[0]]) # normal
...     midpoint = points[pointidx].mean(axis=0)
...     far_point = vor.vertices[i] + np.sign(np.dot(midpoint - center, -n)) * n * 100
...     plt.plot([vor.vertices[i, 0], far_point[0]],
...              [vor.vertices[i, 1], far_point[1]], 'k-')
>>> plt.show()
```

This plot can also be created using `scipy.spatial.voronoi_plot_2d`.

Voronoi diagrams can be used to create interesting generative art. Try playing with the settings of this `mandala` function to create your own!
```python
>>> import numpy as np
>>> from scipy import spatial
>>> import matplotlib.pyplot as plt

>>> def mandala(n_iter, n_points, radius):
    ...     """Creates a mandala figure using Voronoi tessellations.
    ...
    ...     Parameters
    ...     ----------
    ...     n_iter : int
    ...         Number of iterations, i.e. how many times the equidistant points will
    ...         be generated.
    ...     n_points : int
    ...         Number of points to draw per iteration.
    ...     radius : scalar
    ...         The radial expansion factor.
    ...
    ...
    ...     Returns
    ...     -------
    ...     fig : matplotlib.Figure instance
    ...
    ...
    ...     Notes
    ...     -----  
    ...     This code is adapted from the work of Audrey Roy Greenfeld [1] and Carlos
    ...     Focil-Espinosa [2], who created beautiful mandalas with Python code. That
    ...     code in turn was based on Antonio Sánchez Chinchón's R code [3].
    ...
    ...
    ...     References
    ...     -------
    ...
```
2.12 Statistics (scipy.stats)

2.12.1 Introduction

In this tutorial, we discuss many, but certainly not all, features of scipy.stats. The intention here is to provide a user with a working knowledge of this package. We refer to the reference manual for further details.

Note: This documentation is work in progress.
Discrete Statistical Distributions

Discrete random variables take on only a countable number of values. The commonly used distributions are included in SciPy and described in this document. Each discrete distribution can take one extra integer parameter: \(L \). The relationship between the general distribution \(p \) and the standard distribution \(p_0 \) is

\[
p(x) = p_0(x - L)
\]

which allows for shifting of the input. When a distribution generator is initialized, the discrete distribution can either specify the beginning and ending (integer) values \(a \) and \(b \) which must be such that

\[
p_0(x) = 0 \quad x < a \text{ or } x > b
\]

in which case, it is assumed that the pdf function is specified on the integers \(a + mk \leq b \) where \(k \) is a non-negative integer (0, 1, 2, . . .) and \(m \) is a positive integer multiplier. Alternatively, the two lists \(x_k \) and \(p(x_k) \) can be provided directly in which case a dictionary is set up internally to evaluate probabilities and generate random variates.

Probability Mass Function (PMF)

The probability mass function of a random variable \(X \) is defined as the probability that the random variable takes on a particular value.

\[
p(x_k) = P[X = x_k]
\]

This is also sometimes called the probability density function, although technically

\[
f(x) = \sum_k p(x_k) \delta(x - x_k)
\]

is the probability density function for a discrete distribution\(^1\).

Cumulative Distribution Function (CDF)

The cumulative distribution function is

\[
F(x) = P[X \leq x] = \sum_{x_k \leq x} p(x_k)
\]

and is also useful to be able to compute. Note that

\[
F(x_k) - F(x_{k-1}) = p(x_k)
\]

Survival Function

The survival function is just

\[
S(x) = 1 - F(x) = P[X > k]
\]

the probability that the random variable is strictly larger than \(k \).

Percent Point Function (Inverse CDF)

The percent point function is the inverse of the cumulative distribution function and is

\[
G(q) = F^{-1}(q)
\]

for discrete distributions, this must be modified for cases where there is no \(x_k \) such that \(F(x_k) = q \). In these cases we choose \(G(q) \) to be the smallest value \(x_k = G(q) \) for which \(F(x_k) \geq q \). If \(q = 0 \) then we define \(G(0) = a - 1 \). This definition allows random variates to be defined in the same way as with continuous rv’s using the inverse cdf on a uniform distribution to generate random variates.

\(^1\) XXX: Unknown layout Plain Layout: Note that we will be using \(p \) to represent the probability mass function and a parameter (a XXX: probability). The usage should be obvious from context.
Inverse survival function

The inverse survival function is the inverse of the survival function

\[Z(\alpha) = S^{-1}(\alpha) = G(1 - \alpha) \]

and is thus the smallest non-negative integer \(k \) for which \(F(k) \geq 1 - \alpha \) or the smallest non-negative integer \(k \) for which \(S(k) \leq \alpha \).

Hazard functions

If desired, the hazard function and the cumulative hazard function could be defined as

\[h(x) = \frac{p(x)}{1 - F(x)} \]

and

\[H(x) = \sum_{x_k \leq x} h(x_k) = \sum_{x_k \leq x} \frac{F(x_k) - F(x_{k-1})}{1 - F(x_k)}. \]

Moments

Non-central moments are defined using the PDF

\[\mu'_m = E[X^m] = \sum_k x_k^m p(x_k). \]

Central moments are computed similarly \(\mu = \mu'_1 \)

\[\mu_m = E[(X - \mu)^m] = \sum_k (x_k - \mu)^m p(x_k) \]

\[= \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \mu^{m-k} \mu'_k \]

The mean is the first moment

\[\mu = \mu'_1 = E[X] = \sum_k x_k p(x_k) \]

the variance is the second central moment

\[\mu_2 = E[(X - \mu)^2] = \sum_{x_k} x_k^2 p(x_k) - \mu^2. \]

Skewness is defined as

\[\gamma_1 = \frac{\mu_3}{\mu_2^{3/2}} \]

while (Fisher) kurtosis is

\[\gamma_2 = \frac{\mu_4}{\mu_2^2} - 3, \]

so that a normal distribution has a kurtosis of zero.
Moment generating function

The moment generating function is defined as

\[M_X(t) = E[e^{Xt}] = \sum_{x_k} e^{x_k t} p(x_k) \]

Moments are found as the derivatives of the moment generating function evaluated at 0.

Fitting data

To fit data to a distribution, maximizing the likelihood function is common. Alternatively, some distributions have well-known minimum variance unbiased estimators. These will be chosen by default, but the likelihood function will always be available for minimizing.

If \(f_i(k; \theta) \) is the PDF of a random-variable where \(\theta \) is a vector of parameters (e.g. \(L \) and \(S \)), then for a collection of \(N \) independent samples from this distribution, the joint distribution the random vector \(k \) is

\[f(k; \theta) = \prod_{i=1}^{N} f_i(k_i; \theta). \]

The maximum likelihood estimate of the parameters \(\theta \) are the parameters which maximize this function with \(x \) fixed and given by the data:

\[\hat{\theta} = \arg \max_{\theta} f(k; \theta) \]
\[= \arg \min_{\theta} l_k(\theta). \]

Where

\[l_k(\theta) = -\sum_{i=1}^{N} \log f(k_i; \theta) \]
\[= -N \log f(k_i; \theta) \]

Standard notation for mean

We will use

\[\overline{y(x)} = \frac{1}{N} \sum_{i=1}^{N} y(x_i) \]

where \(N \) should be clear from context.

Combinations

Note that

\[k! = k \cdot (k - 1) \cdot (k - 2) \cdot \ldots \cdot 1 = \Gamma(k + 1) \]

and has special cases of

\[0! \equiv 1 \]
\[k! \equiv 0 \quad k < 0 \]

and

\[\binom{n}{k} = \frac{n!}{(n-k)!k!} \]

If \(n < 0 \) or \(k < 0 \) or \(k > n \) we define \(\binom{n}{k} = 0 \)
Discrete Distributions in `scipy.stats`

Bernoulli Distribution

A Bernoulli random variable of parameter p takes one of only two values $X = 0$ or $X = 1$. The probability of success ($X = 1$) is p, and the probability of failure ($X = 0$) is $1 - p$. It can be thought of as a binomial random variable with $n = 1$. The PMF is $p(k) = 0$ for $k \neq 0, 1$ and

$$
p(k; p) = \begin{cases}
1 - p & k = 0 \\
p & k = 1
\end{cases}
$$

$$
F(x; p) = \begin{cases}
0 & x < 0 \\
1 - p & 0 \leq x < 1 \\
1 & 1 \leq x
\end{cases}
$$

$$
G(q; p) = \begin{cases}
0 & 0 \leq q < 1 - p \\
1 - p & 1 - p \leq q \leq 1
\end{cases}
$$

$$
\mu = p
$$

$$
\mu_2 = p(1 - p)
$$

$$
\gamma_3 = \frac{1 - 2p}{\sqrt{p(1 - p)}}
$$

$$
\gamma_4 = \frac{1 - 6p(1 - p)}{p(1 - p)}
$$

$$
M(t) = 1 - p(1 - e^t)
$$

$$
\mu'_m = p
$$

$$
h[X] = p \log p + (1 - p) \log (1 - p)
$$

Implementation: `scipy.stats.bernoulli`

Beta-Binomial Distribution

The beta-binomial distribution is a binomial distribution with a probability of success p that follows a beta distribution. The probability mass function for `betabinom`, defined for $0 \leq k \leq n$, is:

$$
f(k; n, a, b) = \binom{n}{k} \frac{B(k + a, n - k + b)}{B(a, b)}
$$

for k in $\{0, 1, \ldots, n\}$, where $B(a, b)$ is the Beta function.

In the limiting case of $a = b = 1$, the beta-binomial distribution reduces to a discrete uniform distribution:

$$
f(k; n, 1, 1) = \frac{1}{n + 1}
$$

In the limiting case of $n = 1$, the beta-binomial distribution reduces to a Bernoulli distribution with the shape parameter $p = a/(a + b)$:

$$
f(k; 1, a, b) = \begin{cases}
a/(a + b) & \text{if } k = 0 \\
b/(a + b) & \text{if } k = 1
\end{cases}
$$

Implementation: `scipy.stats.betabinom`
Binomial Distribution

A binomial random variable with parameters \((n, p)\) can be described as the sum of \(n\) independent Bernoulli random variables of parameter \(p\);

\[
Y = \sum_{i=1}^{n} X_i.
\]

Therefore, this random variable counts the number of successes in \(n\) independent trials of a random experiment where the probability of success is \(p\).

\[
p(k; n, p) = \binom{n}{k} p^k (1 - p)^{n-k} \quad k \in \{0, 1, \ldots, n\},
\]

\[
F(x; n, p) = \sum_{k \leq x} \binom{n}{k} p^k (1 - p)^{n-k} = I_{1-p} (n - \lfloor x \rfloor, \lfloor x \rfloor + 1) \quad x \geq 0
\]

where the incomplete beta integral is

\[
I_x(a, b) = \frac{\Gamma(a + b)}{\Gamma(a) \Gamma(b)} \int_0^x t^{a-1} (1 - t)^{b-1} dt.
\]

Now

\[
\mu = np
\]

\[
\mu_2 = np(1 - p)
\]

\[
\gamma_1 = \frac{1 - 2p}{\sqrt{np(1 - p)}}
\]

\[
\gamma_2 = \frac{1 - 6p(1 - p)}{np(1 - p)}.
\]

\[
M(t) = \left[1 - p \left(1 - e^t\right)\right]^n
\]

Implementation: \texttt{scipy.stats.binom}

Boltzmann (truncated Planck) Distribution

\[
p(k; N, \lambda) = \frac{1 - e^{-\lambda}}{1 - e^{-\lambda N}} \exp(-\lambda k) \quad k \in \{0, 1, \ldots, N - 1\}
\]

\[
F(x; N, \lambda) = \begin{cases}
0 & x < 0 \\
\frac{\exp(-\lambda \lfloor x \rfloor + 1)}{\exp(-\lambda N)} & 0 \leq x < N - 1 \\
1 - \exp(-\lambda N) & x \geq N - 1
\end{cases}
\]

\[
G(q, \lambda) = -\frac{1}{\lambda} \log \left[1 - q \left(1 - e^{-\lambda N}\right)\right] - 1
\]
Define $z = e^{-\lambda}$

\[
\begin{align*}
\mu & = \frac{z}{1-z} - \frac{Nz^N}{1-z^N} \\
\mu_2 & = \frac{z}{(1-z)^2} - \frac{N^2z^N}{(1-z^N)^2} \\
\gamma_1 & = \frac{z (1 + z) \left(\frac{1-z^N}{1-z} \right)^3 - N^3z^N (1 + z^N)}{\left[z \left(\frac{1-z^N}{1-z} \right)^2 - N^2z^N \right]^{3/2}} \\
\gamma_2 & = \frac{z \left(1 + 4z + z^2 \right) \left(\frac{1-z^N}{1-z} \right)^4 - N^4z^N (1 + 4z^N + z^2N)}{\left[z \left(\frac{1-z^N}{1-z} \right)^2 - N^2z^N \right]^2} \\
M (t) & = \frac{1 - e^{N(t-\lambda)}}{1 - e^{t-\lambda}} \frac{1 - e^{-\lambda}}{1 - e^{-\lambda N}}
\end{align*}
\]

Implementation: `scipy.stats.boltzmann`

Planck (discrete exponential) Distribution

Named Planck because of its relationship to the black-body problem he solved.

\[
\begin{align*}
p (k; \lambda) & = (1 - e^{-\lambda}) e^{-\lambda k} \quad k \lambda \geq 0 \\
F (x; \lambda) & = 1 - e^{-\lambda (\lfloor x \rfloor + 1)} \quad x \lambda \geq 0 \\
G (q; \lambda) & = \left\lfloor -\frac{1}{\lambda} \log [1 - q] - 1 \right\rfloor.
\end{align*}
\]

\[
\begin{align*}
\mu & = \frac{1}{e^\lambda - 1} \\
\mu_2 & = \frac{e^{-\lambda}}{(1 - e^{-\lambda})^2} \\
\gamma_1 & = 2 \cosh \left(\frac{\lambda}{2} \right) \\
\gamma_2 & = 4 + 2 \cosh (\lambda) \\
M (t) & = \frac{1 - e^{-\lambda}}{1 - e^{t-\lambda}} \\
h [X] & = \frac{\lambda e^{-\lambda}}{1 - e^{-\lambda}} - \log (1 - e^{-\lambda})
\end{align*}
\]

Implementation: `scipy.stats.planck`
Poisson Distribution

The Poisson random variable counts the number of successes in \(n \) independent Bernoulli trials in the limit as \(n \to \infty \) and \(p \to 0 \) where the probability of success in each trial is \(p \) and \(np = \lambda \geq 0 \) is a constant. It can be used to approximate the Binomial random variable or in its own right to count the number of events that occur in the interval \([0, t]\) for a process satisfying certain “sparsity” constraints. The functions are:

\[
p(k; \lambda) = e^{-\lambda} \frac{\lambda^k}{k!} \quad k \geq 0,
\]

\[
F(x; \lambda) = \sum_{n=0}^{\lfloor x \rfloor} e^{-\lambda} \frac{\lambda^n}{n!} = \frac{1}{\Gamma(\lfloor x \rfloor + 1)} \int_0^\infty t^{\lfloor x \rfloor} e^{-t} dt,
\]

\[
\mu = \lambda
\]
\[
\mu_2 = \lambda
\]
\[
\gamma_1 = \frac{1}{\sqrt{\lambda}}
\]
\[
\gamma_2 = \frac{1}{\lambda}
\]

\[M(t) = \exp[\lambda(e^t - 1)].\]

Implementation: `scipy.stats.poisson`

Geometric Distribution

The geometric random variable with parameter \(p \in (0, 1) \) can be defined as the number of trials required to obtain a success where the probability of success on each trial is \(p \). Thus,

\[
p(k; p) = (1-p)^{k-1} p \quad k \geq 1
\]
\[
F(x; p) = 1 - (1-p)^{\lfloor x \rfloor} \quad x \geq 1
\]
\[
G(q; p) = \begin{bmatrix} \log(1-q) \\ \log(1-p) \end{bmatrix}
\]

\[
\mu = \frac{1}{p}
\]
\[
\mu_2 = \frac{1-p}{p^2}
\]
\[
\gamma_1 = \frac{2-p}{\sqrt{1-p}}
\]
\[
\gamma_2 = \frac{p^2 - 6p + 6}{1-p}
\]

\[M(t) = \frac{p}{e^t - (1-p)}\]

Implementation: `scipy.stats.geom`
Negative Binomial Distribution

The negative binomial random variable with parameters n and $p \in (0, 1)$ can be defined as the number of extra independent trials (beyond n) required to accumulate a total of n successes where the probability of a success on each trial is p. Equivalently, this random variable is the number of failures encountered while accumulating n successes during independent trials of an experiment that succeeds with probability p. Thus,

$$
p(k; n, p) = \binom{k + n - 1}{n - 1} p^n (1 - p)^k \quad k \geq 0
$$

$$
F(x; n, p) = \sum_{i=0}^{\lfloor x \rfloor} \binom{i + n - 1}{i} p^n (1 - p)^i \quad x \geq 0
$$

$$
= I_p(n, \lfloor x \rfloor + 1) \quad x \geq 0
$$

$$
\mu = \frac{n (1 - p)}{p}
$$

$$
\mu_2 = \frac{n (1 - p)}{p^2}
$$

$$
\gamma_1 = \frac{2 - p}{\sqrt{n (1 - p)}}
$$

$$
\gamma_2 = \frac{p^2 + 6 (1 - p)}{n (1 - p)}.
$$

Recall that $I_p(a, b)$ is the incomplete beta integral.

Implementation: `scipy.stats.nbinom`

Hypergeometric Distribution

The hypergeometric random variable with parameters (M, n, N) counts the number of “good” objects in a sample of size N chosen without replacement from a population of M objects where n is the number of “good” objects in the total population.

$$
p(k; N, n, M) = \binom{n}{k} \binom{M - n}{N - k} \binom{M}{N} \quad N - (M - n) \leq k \leq \min(n, N)
$$

$$
F(x; N, n, M) = \sum_{k=0}^{\lfloor x \rfloor} \binom{m}{k} \binom{N - m}{n - k} \binom{N}{n},
$$

$$
\mu = \frac{nN}{M}
$$

$$
\mu_2 = \frac{nN (M - n) (M - N)}{M^2 (M - 1)}
$$

$$
\gamma_1 = \frac{(M - 2n) (M - 2N)}{M - 2} \sqrt{\frac{M - 1}{nN (M - m) (M - n)}}
$$

$$
\gamma_2 = \frac{g(N, n, M)}{nN (M - n) (M - 3) (M - 2) (N - M)}
$$
where (defining $m = M - n$)

$$g(N, n, M) = m^3 - m^5 + 3m^2n - 6m^3n + m^4n + 3mn^2$$

$$-12m^2n^2 + 8m^3n^2 + n^3 - 6mn^3 + 8m^2n^3$$

$$+mn^4 - n^5 - 6m^3N + 6m^4N + 18m^2nN$$

$$-6m^3nN + 18mn^2N - 24m^2n^2N - 6n^3N$$

$$-6mn^3N + 6n^4N + 6m^2N^2 - 6m^3N^2 - 24mnN^2$$

$$+12m^2N^2 + 6n^2N^2 + 12mn^2N^2 - 6n^3N^2.$$

Implementation: `scipy.stats.hypergeom`

Fisher’s Noncentral Hypergeometric Distribution

A random variable has Fisher’s Noncentral Hypergeometric distribution with parameters

$M \in \mathbb{N}, n \in [0, M], N \in [0, M], \omega > 0$,

if its probability mass function is given by

$$p(x; M, n, N, \omega) = \binom{n}{x} \binom{M-n}{N-x} \omega^x,$$

for $x \in [x_l, x_u]$, where $x_l = \max(0, N - (M - n))$, $x_u = \min(N, n)$,

$$P_k = \sum_{y=x_l}^{x_u} \binom{n}{y} \binom{M-n}{N-y} \omega^y y^k,$$

and the binomial coefficients are

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Other functions of this distribution are

$$\mu = \frac{P_0}{P_1},$$

$$\mu_2 = \frac{P_2}{P_0} - \left(\frac{P_1}{P_0}\right)^2.$$

References

- Agner Fog, “Biased Urn Theory”, https://cran.r-project.org/web/packages/BiasedUrn/vignettes/UrnTheory.pdf

Implementation: `scipy.stats.nchypergeom_fisher`
Wallenius’ Noncentral Hypergeometric Distribution

A random variable has Wallenius’ Noncentral Hypergeometric distribution with parameters $M \in \mathbb{N}, n \in [0, M], N \in [0, M], \omega > 0,$ if its probability mass function is given by

$$p(x; N, n, M) = \binom{n}{x} \binom{M-n}{N-x} \int_{0}^{1} \left(1 - \frac{t^\omega}{D} \right)^x \left(1 - \frac{t^1/D}{N-x} \right)^{N-x} dt$$

for $x \in [x_l, x_u]$, where $x_l = \max(0, N - (M - n)), x_u = \min(N, n)$,

$$D = \omega(n - x) + ((M - n) - (N - x)),$$

and the binomial coefficients are

$$\binom{n}{k} \equiv \frac{n!}{k!(n-k)!}.$$

References

Implementation: scipy.stats.nchypergeom_wallenius

Negative Hypergeometric Distribution

Consider a box containing M balls: n red and $M - n$ blue. We randomly sample balls from the box, one at a time and without replacement, until we have picked r blue balls. nhypergeom is the distribution of the number of red balls k we have picked.

$$p(k; M, n, r) = \binom{k+r-1}{k} \binom{M-r-k}{n-k} \binom{M}{n} 0 \leq k \leq M - n,$$

$$F(x; M, n, r) = \sum_{k=0}^{\lfloor x \rfloor} p(k; M, n, r),$$

$$\mu = \frac{rn}{M-n+1},$$

$$\mu_2 = \frac{rn(M + 1)}{(M-n+1)(M-n+2)} \left(1 - \frac{r}{M-n+1} \right)$$

for $k \in 0, 1, \ldots, n$, where the binomial coefficients are defined as,

$$\binom{n}{k} \equiv \frac{n!}{k!(n-k)!}.$$

The cumulative distribution, survivor function, hazard function, cumulative hazard function, inverse distribution function, moment generating function, and characteristic function on the support of k are mathematically intractable.

Implementation: scipy.stats.nhypergeom
Zipf (Zeta) Distribution

A random variable has the zeta distribution (also called the zipf distribution) with parameter $\alpha > 1$ if its probability mass function is given by

$$p(k; \alpha) = \frac{1}{\zeta(\alpha) k^\alpha} \quad k \geq 1$$

where

$$\zeta(\alpha) = \sum_{n=1}^{\infty} \frac{1}{n^\alpha}$$

is the Riemann zeta function. Other functions of this distribution are

$$F(x; \alpha) = \frac{1}{\zeta(\alpha)} \sum_{k=1}^{\lfloor x \rfloor} \frac{1}{k^\alpha}$$

$$\mu = \frac{\zeta_1}{\zeta_0} \quad \alpha > 2$$

$$\mu_2 = \frac{\zeta_2 \zeta_0 - \zeta_1^2}{\zeta_0^2} \quad \alpha > 3$$

$$\gamma_1 = \frac{\zeta_3 \zeta_0^2 - 3 \zeta_0 \zeta_1 \zeta_2 + 2 \zeta_1^3}{(\zeta_2 \zeta_0 - \zeta_1^2)^{3/2}} \quad \alpha > 4$$

$$\gamma_2 = \frac{\zeta_4 \zeta_0^3 - 4 \zeta_3 \zeta_1 \zeta_0^2 + 12 \zeta_2 \zeta_1^2 \zeta_0 - 6 \zeta_1^4 - 3 \zeta_2^2 \zeta_0^2}{(\zeta_2 \zeta_0 - \zeta_1^2)^2}$$

$$M(t) = \frac{\text{Li}_n(e^t)}{\zeta(\alpha)}$$

where $\zeta_i = \zeta(\alpha - i)$ and $\text{Li}_n(z)$ is the nth polylogarithm function of z defined as

$$\text{Li}_n(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^n}$$

$$\mu'_n = M^{(n)}(t) \bigg|_{t=0} = \frac{\text{Li}_{n-n}(e^t)}{\zeta(\alpha)} \bigg|_{t=0} = \frac{\zeta(\alpha - n)}{\zeta(\alpha)}$$

Implementation: `scipy.stats.zipf`

Zipfian Distribution

A random variable has the Zipfian distribution with parameters $s \geq 0$ and $N \in \{1, 2, 3, \ldots\}$ if its probability mass function is given by

$$p(k; s, N) = \frac{1}{H_{N,s} k^s} \quad k \in \{1, 2, \ldots, n-1, n\}$$

where

$$H_{N,s} = \sum_{n=1}^{N} \frac{1}{n^s}$$
is the N^{th} generalized harmonic number of order s. Other functions of this distribution are

$$ F(x; s, N) = \frac{H_{k,s}}{H_{N,s}} $$

$$ \mu = \frac{H_{N,s-1}}{H_{N,s}} $$

$$ \mu_2 = \frac{H_{N,s-2}}{H_{N,s}} - \frac{H_{N,s-1}^2}{H_{N,s}^2} $$

$$ \gamma_1 = \frac{H_{N,s-3}}{H_{N,s}} - \frac{3H_{N,s-1}H_{N,s-2}}{H_{N,s}^2} + \frac{2H_{N,s-1}^3}{H_{N,s}^3}, \quad \text{and} $$

$$ \gamma_2 = \frac{H_{N,s}^3 H_{N,s-4} - 4H_{N,s}^2 H_{N,s-1} H_{N,s-3} + 6H_{N,s} H_{N,s-1}^2 H_{N,s-2} - 3H_{N,s-1}^4}{(H_{N,s-2} H_{N,s} - H_{N,s-1}^2)^2}. $$

References

Implementation: scipy.stats.zipfian

Logarithmic (Log-Series, Series) Distribution

The logarithmic distribution with parameter p has a probability mass function with terms proportional to the Taylor series expansion of $\log (1 - p)$

$$ p(k; p) = -\frac{p^k}{k \log (1 - p)} \quad k \geq 1 $$

$$ F(x; p) = -\frac{1}{\log (1 - p)} \sum_{k=1}^{[x]} \frac{p^k}{k} = 1 + \frac{p^{1+[x]} \Phi(p, 1, 1+[x])}{\log (1 - p)} $$

where

$$ \Phi(z, s, a) = \sum_{k=0}^{\infty} \frac{z^k}{(a+k)^s} $$

is the Lerch Transcendent. Also define $r = \log (1 - p)$

$$ \mu = -\frac{p}{(1 - p) r} $$

$$ \mu_2 = -\frac{p [p + r]}{(1 - p)^2 r^2} $$

$$ \gamma_1 = -\frac{2p^2 + 3pr + (1 + p) r^2}{r (p + r) \sqrt{-p (p + r)}} $$

$$ \gamma_2 = -\frac{6p^3 + 12p^2 r + p (4p + 7) r^2 + (p^2 + 4p + 1) r^3}{p (p + r)^2}. $$
\[M(t) = -\frac{1}{\log (1-p)} \sum_{k=1}^{\infty} \frac{e^{tk} p^k}{k} = \frac{\log (1 - pe^t)}{\log (1 - p)} \]

Thus,
\[\mu'_n = M^{(n)}(t) \bigg|_{t=0} = \frac{\text{Li}_{1-n}(pe^t)}{\log (1 - p)} \bigg|_{t=0} = -\frac{\text{Li}_{1-n}(p)}{\log (1 - p)}. \]

Implementation: `scipy.stats.logser`

Discrete Uniform (randint) Distribution

The discrete uniform distribution with parameters \((a, b)\) constructs a random variable that has an equal probability of being any one of the integers in the half-open range \([a, b)\). If \(a\) is not given it is assumed to be zero and the only parameter is \(b\). Therefore,

\[p(k, a, b) = \frac{1}{b-a} \quad a \leq k < b \]

\[F(x; a, b) = \frac{|x| - a}{b - a} \quad a \leq x < b \]

\[G(q; a, b) = \frac{q(b - a) + a}{b + a - 1} \]

\[\mu = \frac{(b - a - 1)(b - a + 1)}{2} \]

\[\mu_2 = \frac{(b - a - 1)(b - a + 1)}{12} \]

\[\gamma_1 = 0 \]

\[\gamma_2 = -\frac{6}{5} \frac{(b - a)^2 + 1}{(b - a - 1)(b - a + 1)}. \]

\[M(t) = \frac{1}{b-a} \sum_{k=a}^{b-1} e^{tk} = e^{bt} - e^{at} \]

\[\frac{(b-a)}{(b-a)(e^a - 1)} \]

Implementation: `scipy.stats.randint`

Discrete Laplacian Distribution

Defined over all integers for \(a > 0\)

\[p(k) = \tanh \left(\frac{a}{2} \right) e^{-a|k|}, \]

\[F(x) = \begin{cases} e^{ax} / (e^{ax} + 1) & |x| < 0, \\ 1 - e^{-(x+1)/a} & |x| \geq 0. \end{cases} \]

\[G(q) = \begin{cases} \frac{1}{a} \log \left[q \left(e^a + 1 \right) - 1 \right] & q < \frac{1}{1+e^a}, \\ \frac{1}{a} \log \left[(1 - q) (1 + e^a) \right] & q \geq \frac{1}{1+e^a}. \end{cases} \]
\[M(t) = \tanh \left(\frac{a}{2} \right) \sum_{k=\infty}^{\infty} e^{tk} e^{-a|k|} \]
\[= C \left(1 + \sum_{k=1}^{\infty} e^{-(t+a)k} + \sum_{1}^{\infty} e^{(t-a)k} \right) \]
\[= \tanh \left(\frac{a}{2} \right) \left(1 + \frac{e^{-(t+a)}}{1-e^{-(t+a)}} + \frac{e^{t-a}}{1-e^{t-a}} \right) \]
\[= \frac{\tanh \left(\frac{a}{2} \right) \sinh a}{\cosh a - \cosh t}. \]

Thus,
\[\mu_n' = M^{(n)}(0) = [1 + (-1)^n] \text{Li}_{-n}(e^{-a}) \]

where \(\text{Li}_{-n}(z) \) is the polylogarithm function of order \(-n\) evaluated at \(z\).

\[h[X] = -\log \left(\tanh \left(\frac{a}{2} \right) \right) + \frac{a}{\sinh a} \]

Implementation: `scipy.stats.dlaplace`

Yule-Simon Distribution

A Yule-Simon random variable with parameter \(\alpha > 0 \) can be represented as a mixture of exponential random variates. To see this write \(W \) as an exponential random variate with rate \(\rho \) and a Geometric random variate \(K \) with probability \(1 - \exp(-W) \) then \(K \) marginally has a Yule-Simon distribution. The latent variable representation described above is used for random variate generation.

\[p(k; \alpha) = \frac{\Gamma(k) \Gamma(\alpha + 1)}{\Gamma(k + \alpha + 1)} \]
\[F(k; \alpha) = 1 - \frac{k \Gamma(k) \Gamma(\alpha + 1)}{\Gamma(k + \alpha + 1)} \]

for \(k = 1, 2, \ldots \).

Now
\[\mu = \frac{\alpha}{\alpha - 1} \]
\[\mu_2 = \frac{\alpha^2}{(\alpha - 1)^2(\alpha - 2)} \]
\[\gamma_1 = \frac{\sqrt{(\alpha - 2)(\alpha + 1)^2}}{\alpha(\alpha - 3)} \]
\[\gamma_2 = \frac{(\alpha + 3) + (\alpha^2 - 49\alpha - 22)}{\alpha(\alpha - 4)(\alpha - 3)} \]

for \(\alpha > 1 \) otherwise the mean is infinite and the variance does not exist. For the variance, \(\alpha > 2 \) otherwise the variance does not exist. Similarly, for the skewness and kurtosis to be finite, \(\alpha > 3 \) and \(\alpha > 4 \) respectively.

Implementation: `scipy.stats.yulesimon`
Continuous Statistical Distributions

Overview

All distributions will have location (L) and Scale (S) parameters along with any shape parameters needed, the names for the shape parameters will vary. Standard form for the distributions will be given where \(L = 0.0 \) and \(S = 1.0 \). The nonstandard forms can be obtained for the various functions using (note \(U \) is a standard uniform random variate).

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Standard Function</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative Distribution Function (CDF)</td>
<td>(F(x))</td>
<td>(F(x; L, S) = F\left(\frac{x-L}{S}\right))</td>
</tr>
<tr>
<td>Probability Density Function (PDF)</td>
<td>(f(x) = F'(x))</td>
<td>(f(x; L, S) = \frac{1}{S} f\left(\frac{x-L}{S}\right))</td>
</tr>
<tr>
<td>Percent Point Function (PPF)</td>
<td>(G(q) = F^{-1}(q))</td>
<td>(G(q; L, S) = L + SG(q))</td>
</tr>
<tr>
<td>Probability Sparsity Function (PSF)</td>
<td>(g(q) = G'(q))</td>
<td>(g(q; L, S) = Sg(q))</td>
</tr>
<tr>
<td>Hazard Function (HF)</td>
<td>(h_a(x) = \frac{f(x)}{1-F(x)})</td>
<td>(h_a(x; L, S) = \frac{1}{S} h_a\left(\frac{x-L}{S}\right))</td>
</tr>
<tr>
<td>Cumulative Hazard Function (CHF)</td>
<td>(H_a(x) = \log \frac{1}{1-F(x)})</td>
<td>(H_a(x; L, S) = H_a\left(\frac{x-L}{S}\right))</td>
</tr>
<tr>
<td>Survival Function (SF)</td>
<td>(S(x) = 1 - F(x))</td>
<td>(S(x; L, S) = S\left(\frac{x-L}{S}\right))</td>
</tr>
<tr>
<td>Inverse Survival Function (ISF)</td>
<td>(Z(\alpha) = S^{-1}(\alpha) = G(1-\alpha))</td>
<td>(Z(\alpha; L, S) = L + S Z(\alpha))</td>
</tr>
<tr>
<td>Moment Generating Function (MGF)</td>
<td>(M_Y(t) = E[e^{tX}])</td>
<td>(M_X(t) = e^{tL} M_Y(St))</td>
</tr>
<tr>
<td>Random Variates</td>
<td>(Y = G(U))</td>
<td>(X = L + SY)</td>
</tr>
<tr>
<td>(Differential) Entropy</td>
<td>(h(Y) = - \int f(y) \log f(y) , dy)</td>
<td>(h[X] = h[Y] + \log S)</td>
</tr>
<tr>
<td>(Non-central) Moments</td>
<td>(\mu_n = E[Y^n])</td>
<td>(E[X^n] = \frac{1}{n!} \sum_{k=0}^{\infty} \binom{n}{k} \left(\frac{S}{L} \right)^k \mu_k')</td>
</tr>
<tr>
<td>Central Moments</td>
<td>(\mu_n = E[(Y - \mu)^n])</td>
<td>(E[(X - \mu X)^n] = S^n \mu_n)</td>
</tr>
<tr>
<td>mean (mode, median), var</td>
<td>(\mu, \mu_2)</td>
<td>(L + S\mu, S^2 \mu_2)</td>
</tr>
<tr>
<td>skewness</td>
<td>(\gamma_1 = \frac{\mu_3}{(\mu_2)^{3/2}})</td>
<td>(\gamma_1)</td>
</tr>
<tr>
<td>kurtosis</td>
<td>(\gamma_2 = \frac{\mu_4}{(\mu_2)^2} - 3)</td>
<td>(\gamma_2)</td>
</tr>
</tbody>
</table>

Moments

Non-central moments are defined using the PDF

\[
\mu_n' = \int_{-\infty}^{\infty} x^n f(x) \, dx.
\]

Note, that these can always be computed using the PPF. Substitute \(x = G(q) \) in the above equation and get

\[
\mu_n' = \int_{0}^{1} G^n(q) \, dq
\]

which may be easier to compute numerically. Note that \(q = F(x) \) so that \(dq = f(x) \, dx \). Central moments are computed similarly \(\mu = \mu_1' \)

\[
\mu_n = \int_{-\infty}^{\infty} (x - \mu)^n f(x) \, dx
= \int_{0}^{1} (G(q) - \mu)^n \, dq
= \sum_{k=0}^{n} \binom{n}{k} (-\mu)^k \mu'_n \]
In particular

\[
\begin{align*}
\mu_3 &= \mu_3' - 3\mu_2' + 2\mu^3 \\
&= \mu_3' - 3\mu_2 - \mu^3 \\
\mu_4 &= \mu_4' - 4\mu_3' + 6\mu_2^2 - 3\mu^4 \\
&= \mu_4' - 4\mu_3 - 6\mu_2\mu_2 - \mu^4
\end{align*}
\]

Skewness is defined as

\[
\gamma_1 = \sqrt{\beta_1} = \frac{\mu_3}{\mu_2^{3/2}}
\]

while (Fisher) kurtosis is

\[
\gamma_2 = \frac{\mu_4}{\mu_2^2} - 3,
\]

so that a normal distribution has a kurtosis of zero.

Median and mode

The median, \(m_n \) is defined as the point at which half of the density is on one side and half on the other. In other words, \(F(m_n) = \frac{1}{2} \) so that

\[
m_n = G \left(\frac{1}{2} \right).
\]

In addition, the mode, \(m_d \), is defined as the value for which the probability density function reaches it’s peak

\[
m_d = \arg \max_x f(x).
\]

Fitting data

To fit data to a distribution, maximizing the likelihood function is common. Alternatively, some distributions have well-known minimum variance unbiased estimators. These will be chosen by default, but the likelihood function will always be available for minimizing.

If \(f(x; \theta) \) is the PDF of a random-variable where \(\theta \) is a vector of parameters (e.g. \(L \) and \(S \)), then for a collection of \(N \) independent samples from this distribution, the joint distribution the random vector \(x \) is

\[
f(x; \theta) = \prod_{i=1}^{N} f(x_i; \theta).
\]

The maximum likelihood estimate of the parameters \(\theta \) are the parameters which maximize this function with \(x \) fixed and given by the data:

\[
\theta_{es} = \arg \max_{\theta} f(x; \theta) = \arg \min_{\theta} l_x(\theta).
\]

Where

\[
l_x(\theta) = -\sum_{i=1}^{N} \log f(x_i; \theta) = -N \log f(x_i; \theta)
\]
Note that if θ includes only shape parameters, the location and scale parameters can be fit by replacing x_i with $(x_i - L) / S$ in the log-likelihood function adding $N \log S$ and minimizing, thus

$$
\ln_x (L, S; \theta) = N \log S - \sum_{i=1}^{N} \log f \left(\frac{x_i - L}{S}; \theta \right)
$$

$$
= N \log S + \ln_{x-s} (\theta)
$$

If desired, sample estimates for L and S (not necessarily maximum likelihood estimates) can be obtained from samples estimates of the mean and variance using

$$
\hat{S} = \sqrt{\frac{\mu_2}{\mu_2}}
$$

$$
\hat{L} = \mu - \hat{S} \mu
$$

where μ and μ_2 are assumed known as the mean and variance of the untransformed distribution (when $L = 0$ and $S = 1$) and

$$
\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i = \bar{x}
$$

$$
\hat{\mu_2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2 = \frac{N}{N-1} (\bar{x} - \mu)^2
$$

Standard notation for mean

We will use

$$
y(x) = \frac{1}{N} \sum_{i=1}^{N} y(x_i)
$$

where N should be clear from context as the number of samples x_i

References

- Documentation for ranlib, rv2, cdflib

In the tutorials several special functions appear repeatedly and are listed here.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma(s,x)$</td>
<td>lower incomplete Gamma function</td>
<td>$\int_0^x t^{s-1} e^{-t} , dt$</td>
</tr>
<tr>
<td>$\Gamma(s,x)$</td>
<td>upper incomplete Gamma function</td>
<td>$\int_x^\infty t^{s-1} e^{-t} , dt$</td>
</tr>
<tr>
<td>$B(x;a,b)$</td>
<td>incomplete Beta function</td>
<td>$\int_0^x t^{a-1} (1-t)^{b-1} , dt$</td>
</tr>
<tr>
<td>$I(x;a,b)$</td>
<td>regularized incomplete Beta function</td>
<td>$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^x t^{a-1} (1-t)^{b-1} , dt$</td>
</tr>
<tr>
<td>$\phi(x)$</td>
<td>PDF for normal distribution</td>
<td>$\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$</td>
</tr>
<tr>
<td>$\Phi(x)$</td>
<td>CDF for normal distribution</td>
<td>$\frac{1}{2} + \frac{1}{2} \text{erf} \left(\frac{x}{\sqrt{2}} \right)$</td>
</tr>
<tr>
<td>$\psi(z)$</td>
<td>digamma function</td>
<td>$\frac{d}{dz} \log (\Gamma(z))$</td>
</tr>
<tr>
<td>$\psi_n(z)$</td>
<td>polygamma function</td>
<td>$\frac{d^n}{dz^n} \log (\Gamma(z))$</td>
</tr>
<tr>
<td>$I_\nu(y)$</td>
<td>modified Bessel function of the first kind</td>
<td>$\frac{\exp(-y\sqrt{2}))}{\sqrt{2\pi}x}$</td>
</tr>
<tr>
<td>$E_i(z)$</td>
<td>exponential integral</td>
<td>$-\int_0^\infty \frac{e^{-zt}}{t} , dt$</td>
</tr>
<tr>
<td>$\zeta(n)$</td>
<td>Riemann zeta function</td>
<td>$\sum_{k=1}^\infty \frac{1}{k^n}$</td>
</tr>
<tr>
<td>$\zeta(n,z)$</td>
<td>Hurwitz zeta function</td>
<td>$\sum_{k=0}^\infty \frac{(k+z)^{-n}}{k!}$</td>
</tr>
<tr>
<td>$pF_q(a_1, \ldots, a_p; b_1, \ldots, b_q; z)$</td>
<td>Hypergeometric function</td>
<td>$\sum_{n=0}^\infty \frac{(a_1){n} \cdots (a_p){n}}{(b_1){n} \cdots (b_q){n}} \frac{z^n}{n!}$</td>
</tr>
</tbody>
</table>

Continuous Distributions in `scipy.stats`

Alpha Distribution

One shape parameter $\alpha > 0$ (parameter β in DATAPLOT is a scale-parameter). The support for the standard form is $x > 0$.

$$f(x;\alpha) = \frac{1}{x^2\Phi(\alpha)\sqrt{2\pi}} \exp \left(-\frac{1}{2} \left(\alpha - \frac{1}{x} \right)^2 \right)$$

$$F(x;\alpha) = \frac{\Phi(\alpha - \frac{1}{x})}{\Phi(\alpha)}$$

$$G(q;\alpha) = \left[\alpha - \Phi^{-1}(q\Phi(\alpha)) \right]^{-1}$$

$$M(t) = \frac{1}{\Phi(\alpha)\sqrt{2\pi}} \int_0^\infty \frac{e^{xt}}{x^2} \exp \left(-\frac{1}{2} \left(\alpha - \frac{1}{x} \right)^2 \right) \, dx$$

No moments?

$$l_x(\alpha) = N \log \left[\Phi(\alpha) \sqrt{2\pi} \right] + 2N \log x + \frac{N}{2} \alpha^2 - \alpha x^{-1} + \frac{1}{2} x^{-2}$$

Implementation: `scipy.stats.alpha`

Anglit Distribution

Defined over $x \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$.

$$f(x) = \sin \left(2x + \frac{\pi}{2} \right) = \cos (2x)$$

$$F(x) = \sin^2 \left(x + \frac{\pi}{4} \right)$$

$$G(q) = \arcsin \left(\sqrt{q} \right) - \frac{\pi}{4}$$
\[\mu = 0 \]
\[\mu_2 = \frac{\pi^2}{16} - \frac{1}{2} \]
\[\gamma_1 = 0 \]
\[\gamma_2 = -2 \frac{\pi^4 - 96}{(\pi^2 - 8)^2} \]

\[h[X] = 1 - \log 2 \approx 0.30685281944005469058 \]

\[M(t) = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos(2x)e^{xt}dx \]
\[= \frac{4 \cosh(\frac{\pi t}{4})}{t^2 + 4} \]

\[l_x(\cdot) = -N \log[\cos(2x)] \]

Implementation: \texttt{scipy.stats.anglit}

Arcsine Distribution

Defined over \(x \in [0, 1] \). To get the definition presented in Johnson, Kotz, and Balakrishnan, substitute \(x = \frac{u+1}{2} \), i.e. \(L = -1 \) and \(S = 2 \).

\[f(x) = \frac{1}{\pi \sqrt{x(1-x)}} \]
\[F(x) = \frac{2}{\pi} \arcsin(\sqrt{x}) \]
\[G(q) = \sin^2\left(\frac{\pi}{2} q\right) \]

\[M(t) = 1 + \sum_{k=1}^{\infty} \left(\frac{k-1}{\prod_{r=0}^{k-1} \frac{2r+1}{2r+2}} \right) \frac{t^k}{k!} \]

\[\mu'_n = \frac{1}{\pi} \int_0^1 x^{n-1/2} (1-x)^{-1/2} \, dx \]
\[= \frac{1}{\pi} B\left(\frac{1}{2}, n + \frac{1}{2}\right) = \frac{(2n-1)!!}{2^n n!} \]

\[\mu = \frac{1}{2} \]
\[\mu_2 = \frac{1}{8} \]
\[\gamma_1 = 0 \]
\[\gamma_2 = -\frac{3}{2} \]

\[h[X] = \log\left(\frac{\pi}{4}\right) \approx -0.2415644752704904468 \]

\[l_x(\cdot) = N \log \pi + \frac{N}{2} \log x + \frac{N}{2} \log (1-x) \]
References

Implementation: scipy.stats.arcsine

Beta Distribution

There are two shape parameters \(a, b > 0 \) and the support is \(x \in [0, 1] \).

\[
\begin{align*}
 f(x; a, b) &= \frac{\Gamma(a + b)}{\Gamma(a) \Gamma(b)} x^{a-1} (1 - x)^{b-1} \\
 F(x; a, b) &= \int_0^x f(y; a, b) \, dy = I(x; a, b) \\
 G(q; a, b) &= I^{-1}(q; a, b) \\
 M(t) &= \frac{\Gamma(a)}{\Gamma(a + b)} \, _1F_1(a; a + b; t) \\
 \mu &= \frac{a}{a + b} \\
 \mu_2 &= \frac{ab(a + b + 1)}{(a + b)^2} \\
 \gamma_1 &= 2 \frac{b - a}{a + b + 2} \sqrt{\frac{a + b + 1}{ab}} \\
 \gamma_2 &= \frac{6 (a^2 + a^2 (1 - 2b) + b^2 (b + 1) - 2ab (b + 2))}{ab(a + b + 2)(a + b + 3)} \\
 m_d &= \frac{(a - 1)}{(a + b - 2)} a + b \neq 2
\end{align*}
\]

where \(I(x; a, b) \) is the regularized incomplete Beta function. \(f(x; a, 1) \) is also called the Power-function distribution.

\[
l_x(a, b) = -N \log \Gamma(a + b) + N \log \Gamma(a) + N \log \Gamma(b) - N(a - 1) \log x - N(b - 1) \log (1 - x)
\]

Implementation: scipy.stats.beta

Beta Prime Distribution

There are two shape parameters \(a, b > 0 \) and the support is \(x \in [0, \infty) \). Note the CDF evaluation uses Eq. 3.194.1 on pg. 313 of Gradshteyn & Ryzhik (sixth edition).

\[
\begin{align*}
 f(x; \alpha, \beta) &= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1} (1 + x)^{-\alpha - \beta} \\
 F(x; \alpha, \beta) &= \frac{\Gamma(\alpha + \beta)}{\alpha \Gamma(\alpha) \Gamma(\beta)} x^{\alpha-2} F_1(\alpha + \beta, \alpha; 1 + \alpha; -x) \\
 G(q; \alpha, \beta) &= F^{-1}(x; \alpha, \beta) \\
 \mu'_n &= \left\{ \begin{array}{ll}
 \frac{\Gamma(n+\alpha)\Gamma(\beta-n)}{\Gamma(\alpha)\Gamma(\beta)} & \beta > n \\
 \frac{(\alpha)_n}{(\beta-n)_n} & \text{otherwise}
 \end{array} \right.
\end{align*}
\]
Therefore,

\[\mu = \frac{\alpha}{\beta - 1} \quad \text{for } \beta > 1 \]

\[\mu_2 = \frac{\alpha (\alpha + 1)}{(\beta - 2) (\beta - 1)} - \frac{\alpha^2}{(\beta - 1)^2} \quad \text{for } \beta > 2 \]

\[\gamma_1 = \frac{\alpha (\alpha + 1) (\alpha + 2) - 3\mu_2 - \mu^3}{\mu_2^{3/2}} \quad \text{for } \beta > 3 \]

\[\gamma_2 = \frac{\mu_4}{\mu_2^2} - 3 \mu_4 \quad \text{for } \beta > 4 \]

\[\mu_4 = \frac{\alpha (\alpha + 1) (\alpha + 2) (\alpha + 3)}{(\beta - 4) (\beta - 3) (\beta - 2) (\beta - 1)} - 4\mu_3 - 6\mu_2 \mu_2 - \mu^4 \quad \text{for } \beta > 4 \]

Implementation: `scipy.stats.betaprime`

Bradford Distribution

There is one shape parameter, \(c > 0 \), and the support is \(x \in [0, 1] \).

Let \(k = \log (1 + c) \)

Then

\[f(x; c) = \frac{c}{k (1 + cx)} \]

\[F(x; c) = \frac{\log (1 + cx)}{k} \]

\[G(q; c) = \frac{(1 + c)^q - 1}{c} \]

\[M(t) = \frac{1}{k} e^{-t/c} \left[\text{Ei} \left(t + \frac{t}{c} \right) - \text{Ei} \left(\frac{t}{c} \right) \right] \]

\[\mu = \frac{c - k}{ek} \]

\[\mu_2 = \frac{(c + 2)k - 2c}{2ck^2} \]

\[\gamma_1 = \frac{\sqrt{2} \left(12c^2 - 9kc(c + 2) + 2k^2 (c(c + 3) + 3) \right)}{\sqrt{c(c(k - 2) + 2k) (3c(k - 2) + 6k)}} \]

\[\gamma_2 = \frac{c^3 (k - 3) (k (3k - 16) + 24) + 12kc^2 (k - 4) (k - 3) + 6ck^2 (3k - 14) + 12k^3}{3c (c(k - 2) + 2k)^2} \]

\[m_d = 0 \]

\[m_n = \sqrt{1 + c - 1} \]

\[h[X] = \frac{1}{2} \log (1 + c) - \log \left(\frac{c}{\log (1 + c)} \right) \]

where \(\text{Ei} (z) \) is the exponential integral function.

Implementation: `scipy.stats.bradford`
Burr Distribution

There are two shape parameters \(c, d > 0 \) and the support is \(x \in [0, \infty) \).

Let

\[
\mu = \frac{\Gamma (1 - \frac{1}{c}) \Gamma \left(\frac{1}{c} + d \right)}{\Gamma (d)}
\]

\[
\mu_2 = \frac{k}{\Gamma^2 (d)}
\]

\[
\gamma_1 = \frac{1}{\sqrt{k^3}} \left[2 \Gamma^3 \left(1 - \frac{1}{c} \right) \Gamma^3 \left(\frac{1}{c} + d \right) + \Gamma^2 (d) \Gamma \left(1 - \frac{3}{c} \right) \Gamma \left(\frac{3}{c} + d \right)
- 3 \Gamma (d) \Gamma \left(1 - \frac{2}{c} \right) \Gamma \left(1 - \frac{1}{c} \right) \Gamma \left(\frac{1}{c} + d \right) \Gamma \left(\frac{2}{c} + d \right) \right]
\]

\[
\gamma_2 = -3 + \frac{1}{k^2} \left[6 \Gamma (d) \Gamma \left(1 - \frac{2}{c} \right) \Gamma^2 \left(1 - \frac{1}{c} \right) \Gamma^2 \left(\frac{1}{c} + d \right) \Gamma \left(\frac{2}{c} + d \right)
- 3 \Gamma^4 \left(1 - \frac{1}{c} \right) \Gamma^4 \left(\frac{1}{c} + d \right) + \Gamma^3 (d) \Gamma \left(1 - \frac{4}{c} \right) \Gamma \left(\frac{4}{c} + d \right)
- 4 \Gamma^2 (d) \Gamma \left(1 - \frac{3}{c} \right) \Gamma \left(1 - \frac{1}{c} \right) \Gamma \left(\frac{1}{c} + d \right) \Gamma \left(\frac{3}{c} + d \right) \right]
\]

\[
m_d = \left(\frac{cd - 1}{c + 1} \right)^{1/c} \quad \text{if } cd > 1, \text{ otherwise } 0
\]

\[
m_n = \left(q^{1/d} - 1 \right)^{-1/c}
\]

Implementation: \texttt{scipy.stats.burr}
Burr12 Distribution

There are two shape parameters $c, d > 0$ and the support is $x \in [0, \infty)$. The Burr12 distribution is also known as the Singh-Maddala distribution.

$$f(x; c, d) = cd \frac{x^{c-1}}{(1 + x^c)^{d+1}}$$
$$F(x; c, d) = 1 - (1 + x^c)^{-d}$$
$$G(q; c, d) = \left((1 - q)^{-1/d} - 1 \right)^{-1/c}$$
$$S(x; c, d) = (1 + x^c)^{-d}$$

$$\mu = dB \left(d - \frac{1}{c}, 1 + \frac{1}{c} \right)$$
$$\mu_n = dB \left(d - \frac{n}{c}, 1 + \frac{n}{c} \right)$$
$$m_d = \left(\frac{c-1}{cd+1} \right)^{1/c} \text{ if } c > 1, \text{ otherwise } 0$$
$$m_n = \left(2^{1/d} - 1 \right)^{-1/c}$$

where $B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ is the Beta function.

Implementation: `scipy.stats.burr12`

Cauchy Distribution

The support is $x \in \mathbb{R}$.

$$f(x) = \frac{1}{\pi (1 + x^2)}$$
$$F(x) = \frac{1}{2} + \frac{1}{\pi} \tan^{-1} x$$
$$G(q) = \tan \left(\pi q - \frac{\pi}{2} \right)$$

$$m_d = 0$$
$$m_n = 0$$

No finite moments. This is the t distribution with one degree of freedom.

$$h[X] = \log (4\pi)$$
$$\approx 2.5310242469692907930.$$}

Implementation: `scipy.stats.cauchy`
Skewed Cauchy Distribution

This distribution is a generalization of the Cauchy distribution. It has a single shape parameter $-1 < a < 1$ that skews the distribution. The special case $a = 0$ yields the Cauchy distribution.

Functions

\[
 f(x, a) = \begin{cases}
 \frac{1}{\pi \left((ax+1)^2 + 1 \right)}, & x \geq 0; \\
 \frac{1}{\pi \left((-ax+1)^2 + 1 \right)}, & x < 0.
\end{cases}
\]

\[
 F(x, a) = \begin{cases}
 \frac{1}{2} + \frac{1+a}{\pi} \arctan \left(\frac{x}{1+a} \right), & x \geq 0; \\
 \frac{1}{2} + \frac{1-a}{\pi} \arctan \left(\frac{x}{1-a} \right), & x < 0.
\end{cases}
\]

The mean, variance, skewness, and kurtosis are all undefined.

References

Implementation: scipy.stats.skewcauchy
Chi Distribution

Generated by taking the (positive) square-root of chi-squared variates. The one shape parameter is \(\nu \), a positive integer, the degrees of freedom. The support is \(x \geq 0 \).

\[
 f(x; \nu) = \frac{x^{\nu-1}e^{-x^2/2}}{2^{\nu/2-1}\Gamma(\frac{\nu}{2})}
\]

\[
 F(x; \nu) = \frac{\gamma\left(\frac{\nu}{2}, \frac{x^2}{2}\right)}{\Gamma(\frac{\nu}{2})}
\]

\[
 G(q; \nu) = \sqrt{2\gamma^{-1}\left(\frac{\nu}{2}, q\Gamma(\frac{\nu}{2})\right)}
\]

\[
 M(t) = \Gamma\left(\frac{\nu}{2}\right)_1F_1\left(\frac{\nu}{2}, \frac{1}{2}; \frac{t^2}{2}\right) + \frac{t}{\sqrt{2}}\Gamma\left(\frac{1+\nu}{2}\right)_1F_1\left(\frac{1+\nu}{2}, \frac{3}{2}; \frac{t^2}{2}\right)
\]

\[
 \mu = \frac{\sqrt{2\Gamma(\frac{\nu+1}{2})}}{\Gamma(\frac{\nu}{2})}
\]

\[
 \mu_2 = \nu - \mu^2
\]

\[
 \gamma_1 = \frac{2\mu^3 + \mu (1-2\nu)}{\mu_2^{3/2}}
\]

\[
 \gamma_2 = \frac{2\nu (1-\nu) - 6\mu^4 + 4\mu^2 (2\nu - 1)}{\mu_2^2}
\]

\[
 m_d = \sqrt{\nu - 1} \quad \nu \geq 1
\]

\[
 m_n = \sqrt{2\gamma^{-1}\left(\frac{\nu}{2}, \frac{1}{2}; \Gamma\left(\frac{\nu}{2}\right)\right)}
\]

Implementation: \texttt{scipy.stats.chi}

Chi-squared Distribution

This is the gamma distribution with \(L = 0.0 \) and \(S = 2.0 \) and \(\alpha = \nu/2 \) where \(\nu \) is called the degrees of freedom. If \(Z_1 \dots Z_\nu \) are all standard normal distributions, then \(W = \sum_k Z_k^2 \) has (standard) chi-square distribution with \(\nu \) degrees of freedom.

The standard form (most often used in standard form only) has support \(x \geq 0 \).

\[
 f(x; \alpha) = \frac{1}{2\Gamma(\frac{\alpha}{2})}\left(\frac{x}{2}\right)^{\alpha/2-1}e^{-x/2}
\]

\[
 F(x; \alpha) = \frac{\gamma\left(\frac{\alpha}{2}, \frac{x}{2}\right)}{\Gamma(\frac{\alpha}{2})}
\]

\[
 G(q; \alpha) = 2\gamma^{-1}\left(\frac{\alpha}{2}, q\Gamma(\frac{\alpha}{2})\right)
\]

where \(\gamma \) is the lower incomplete gamma function, \(\gamma(s, x) = \int_0^x t^{s-1}e^{-t}dt \).

\[
 M(t) = \frac{\Gamma\left(\frac{\alpha}{2}\right)}{\left(\frac{1}{2} - t\right)^{\alpha/2}}
\]
\[
\mu = \nu
\]
\[
\mu_2 = 2\nu
\]
\[
\gamma_1 = \frac{2\sqrt{2}}{\sqrt{\nu}}
\]
\[
\gamma_2 = \frac{12}{\nu}
\]
\[
m_d = \frac{\nu}{2} - 1
\]

Implementation: \texttt{scipy.stats.chi2}

Cosine Distribution

Approximation to the normal distribution. The support is \([-\pi, \pi]\).

\[
f(x) = \frac{1}{2\pi} (1 + \cos x)
\]
\[
F(x) = \frac{1}{2\pi} (\pi + x + \sin x)
\]
\[
G(q) = F^{-1}(q)
\]
\[
M(t) = \frac{\sinh (\pi t)}{\pi t (1 + t^2)}
\]
\[
\mu = m_d = m_n = 0
\]
\[
\mu_2 = \frac{\pi^2}{3} - 2
\]
\[
\gamma_1 = 0
\]
\[
\gamma_2 = -6 \left(\pi^4 - 90 \right)
\]
\[
\frac{5 \left(\pi^2 - 6 \right)^2}
\]

\[
h[X] = \log (4\pi) - 1
\]
\[
\approx 1.5310242469692907930.
\]

Implementation: \texttt{scipy.stats.cosine}

Double Gamma Distribution

The double gamma is the signed version of the Gamma distribution. For \(\alpha > 0\):

\[
f(x; \alpha) = \frac{1}{2\Gamma(\alpha)} |x|^{\alpha-1} e^{-|x|}
\]
\[
F(x; \alpha) = \begin{cases}
 \frac{1}{2} - \frac{\gamma(\alpha, x)}{2\Gamma(\alpha)} & x \leq 0 \\
 \frac{1}{2} + \frac{\gamma(\alpha, x)}{2\Gamma(\alpha)} & x > 0
\end{cases}
\]
\[
G(q; \alpha) = \begin{cases}
 -\gamma^{-1}(\alpha, |2q - 1| \Gamma(\alpha)) & q \leq \frac{1}{2} \\
 \gamma^{-1}(\alpha, |2q - 1| \Gamma(\alpha)) & q > \frac{1}{2}
\end{cases}
\]
\[
M(t) = \frac{1}{2(1 - t)^\alpha} + \frac{1}{2(1 + t)^\alpha}
\]
\[
\begin{align*}
\mu &= m_n &= 0 \\
\mu_2 &= \alpha (\alpha + 1) \\
\gamma_1 &= 0 \\
\gamma_2 &= \frac{(\alpha + 2)(\alpha + 3)}{\alpha(\alpha + 1)} - 3 \\
m_d &= NA
\end{align*}
\]

Implementation: \texttt{scipy.stats.dgamma}

Double Weibull Distribution

This is a signed form of the Weibull distribution. There is one shape parameter \(c > 0 \). Support is \(x \in \mathbb{R} \).

\[
\begin{align*}
f(x;c) &= \frac{c}{2} |x|^c \exp(-|x|^c) \\
F(x;c) &= \begin{cases} \\
\frac{1}{2} \exp(-|x|^c) & x \leq 0 \\
1 - \frac{1}{2} \exp(-|x|^c) & x > 0
\end{cases} \\
G(q;c) &= \begin{cases} \\
-\log^{1/c} \left(\frac{1}{2q} \right) & q \leq \frac{1}{2} \\
\log^{1/c} \left(\frac{1}{2-1} \right) & q > \frac{1}{2}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\mu' &= \mu_n &= \begin{cases} \\
\Gamma \left(1 + \frac{n}{c} \right) & n \text{ even} \\
0 & n \text{ odd}
\end{cases} \\
m_n &= m &= 0 \\
\mu_2 &= \Gamma \left(\frac{c + 2}{c} \right) \\
\gamma_1 &= 0 \\
\gamma_2 &= \frac{\Gamma \left(1 + \frac{2}{c} \right)}{\Gamma^2 \left(1 + \frac{2}{c} \right)} \\
m_d &= NA \text{ bimodal}
\end{align*}
\]

Implementation: \texttt{scipy.stats.dweibull}

Erlang Distribution

This is just the Gamma distribution with shape parameter \(\alpha = n \) an integer.

Implementation: \texttt{scipy.stats.erlang}

Exponential Distribution

This is a special case of the Gamma (and Erlang) distributions with shape parameter \(\alpha = 1 \) and the same location and scale parameters. The standard form is therefore \(x \geq 0 \).

\[
\begin{align*}
f(x) &= e^{-x} \\
F(x) &= \gamma(1,x) = 1 - e^{-x} \\
G(q) &= -\log(1-q) \\
\mu' &= n!
\end{align*}
\]
\[M(t) = \frac{1}{1-t} \]

\[\mu = 1 \]
\[\mu_2 = 1 \]
\[\gamma_1 = 2 \]
\[\gamma_2 = 6 \]
\[m_d = 0 \]
\[h[X] = 1. \]

Implementation: `scipy.stats.expon`

Exponentiated Weibull Distribution

Two positive shape parameters \(a, c > 0 \), and the support is \(x \in [0, \infty) \).

\[f(x; a, c) = ac[1 - \exp(-x^c)]^{a-1}\exp(-x^c)x^{c-1} \]
\[F(x; a, c) = [1 - \exp(-x^c)]^a \]
\[G(q; a, c) = \left[-\log\left(1 - q^{1/a}\right) \right]^{1/c} \]

Implementation: `scipy.stats.exponweib`

Exponential Power Distribution

One positive shape parameter \(b \). The support is \(x \geq 0 \).

\[f(x; b) = ebx^{b-1}\exp\left(x^b - e^b\right) \]
\[F(x; b) = 1 - \exp\left(1 - e^b\right) \]
\[G(q; b) = \log(1 - \log(1 - q))^{1/b} \]

Implementation: `scipy.stats.exponpow`

Fatigue Life (Birnbaum-Saunders) Distribution

This distribution’s pdf is the average of the inverse-Gaussian \((\mu = 1)\) and reciprocal inverse-Gaussian pdf \((\mu = 1)\). We follow the notation of JKB here with \(\beta = S \). There is one shape parameter \(c > 0 \), and the support is \(x \geq 0 \).

\[f(x; c) = \frac{x + 1}{2c\sqrt{2\pi}x^3}\exp\left(-\frac{(x - 1)^2}{2xc^2}\right) \]
\[F(x; c) = \Phi\left(\frac{1}{c}\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)\right) \]
\[G(q; c) = \frac{1}{4}\left[c\Phi^{-1}(q) + \sqrt{c^2\left(\Phi^{-1}(q)\right)^2 + 4}\right]^2 \]
\[M(t) = cv\sqrt{2\pi}\exp\left(\frac{1}{c^2}\left(1 - \sqrt{1 - 2c^2t}\right)\right) \left(1 + \frac{1}{\sqrt{1 - 2c^2t}}\right) \]
\[
\mu = \frac{c^2}{2} + 1 \\
\mu_2 = c^2 \left(\frac{5}{4}c^2 + 1 \right) \\
\gamma_1 = \frac{4c\sqrt{11c^2 + 6}}{(5c^2 + 4)^{3/2}} \\
\gamma_2 = \frac{6c^2 (93c^2 + 41)}{(5c^2 + 4)^2}
\]

Implementation: `scipy.stats.fatiguelife`

Fisk (Log Logistic) Distribution

Special case of the Burr distribution with \(d = 1 \). There is are one shape parameter \(c > 0 \) and the support is \(x \in [0, \infty) \).

Let \(k = \Gamma \left(1 - \frac{2}{c} \right) \Gamma \left(\frac{2}{c} + 1 \right) - \Gamma^2 \left(1 - \frac{1}{c} \right) \Gamma \left(\frac{1}{c} + 1 \right) \)

\[
f(x; c, d) = \frac{cx^{c-1}}{(1 + x^c)^d}
\]

\[
F(x; c, d) = (1 + x^{-c})^{-1}
\]

\[
G(q; c, d) = (q^{-1} - 1)^{-1/c}
\]

\[
\mu = \Gamma \left(1 - \frac{1}{c} \right) \Gamma \left(\frac{1}{c} + 1 \right)
\]

\[
\mu_2 = k
\]

\[
\gamma_1 = \frac{1}{\sqrt{k^3}} \left[2 \Gamma^3 \left(1 - \frac{1}{c} \right) \Gamma \left(\frac{1}{c} + 1 \right) + \Gamma \left(1 - \frac{3}{c} \right) \Gamma \left(\frac{3}{c} + 1 \right) \\
-3 \Gamma \left(1 - \frac{2}{c} \right) \Gamma \left(1 - \frac{1}{c} \right) \Gamma \left(\frac{1}{c} + 1 \right) \Gamma \left(\frac{2}{c} + 1 \right) \right]
\]

\[
\gamma_2 = -3 + \frac{1}{k^2} \left[6 \Gamma \left(1 - \frac{2}{c} \right) \Gamma \left(1 - \frac{1}{c} \right) \Gamma \left(\frac{1}{c} + 1 \right) \Gamma \left(\frac{2}{c} + 1 \right) \\
-3 \Gamma^4 \left(1 - \frac{1}{c} \right) \Gamma \left(\frac{1}{c} + 1 \right) + \Gamma \left(1 - \frac{4}{c} \right) \Gamma \left(\frac{4}{c} + 1 \right) \\
-4 \Gamma \left(1 - \frac{3}{c} \right) \Gamma \left(1 - \frac{1}{c} \right) \Gamma \left(\frac{1}{c} + 1 \right) \Gamma \left(\frac{3}{c} + 1 \right) \right]
\]

\[
m_d = \left(\frac{c - 1}{c + 1} \right)^{1/c} \text{ if } c > 1, \text{ otherwise } 0
\]

\[
m_n = 1
\]

\[
h[X] = 2 - \log c
\]

Implementation: `scipy.stats.fisk`
Folded Cauchy Distribution

This formula can be expressed in terms of the standard formulas for the Cauchy distribution (call the cdf $C(x)$ and the pdf $d(x)$). If Y is cauchy then $|Y|$ is folded cauchy. There is one shape parameter c and the support is $x \geq 0$.

\[
\begin{align*}
 f(x; c) &= \frac{1}{\pi (1 + (x - c)^2)} + \frac{1}{\pi (1 + (x + c)^2)} \\
 F(x; c) &= \frac{1}{\pi} \tan^{-1}(x - c) + \frac{1}{\pi} \tan^{-1}(x + c) \\
 G(q; c) &= F^{-1}(q; c)
\end{align*}
\]

No moments

Implementation: `scipy.stats.foldcauchy`

Folded Normal Distribution

If Z is Normal with mean L and $\sigma = S$, then $|Z|$ is a folded normal with shape parameter $c = |L|/S$, location parameter 0 and scale parameter S. This is a special case of the non-central chi distribution with one-degree of freedom and non-centrality parameter c^2. Note that $c \geq 0$. The standard form of the folded normal is

\[
\begin{align*}
 f(x; c) &= \sqrt{\frac{2}{\pi}} \cosh(cx) \exp \left(-\frac{x^2 + c^2}{2}\right) \\
 F(x; c) &= \Phi(x - c) - \Phi(-x - c) = \Phi(x - c) + \Phi(x + c) - 1 \\
 G(q; c) &= F^{-1}(q; c) \\
 M(t) &= \exp \left(\frac{t}{2} (t - 2c)\right) (1 + e^{2ct}) \\
 k &= \text{erf} \left(\frac{c}{\sqrt{2}}\right) \\
 p &= \exp \left(-\frac{c^2}{2}\right) \\
 \mu &= \sqrt{\frac{2}{\pi}} p + ck \\
 \mu_2 &= c^2 + 1 - \mu^2 \\
 \gamma_1 &= \frac{\pi p^3 \left(4 - \frac{\pi}{p^2} (2c^2 + 1)\right) + 2ck \left(6p^2 + 3cpk \sqrt{2\pi} + \pi c (k^2 - 1)\right)}{\pi \mu_2^{3/2}} \\
 \gamma_2 &= \frac{e^4 + 6c^2 + 3 + 6 (c^2 + 1) \mu^2 - 3\mu^4 - 4p\mu \left(\sqrt{\frac{2}{\pi}} (c^2 + 2) + \frac{ck}{\pi} (c^2 + 3)\right)}{\mu_2^2}
\end{align*}
\]

Implementation: `scipy.stats.foldnorm`
Fratio (or F) Distribution

The distribution of \((X_1/X_2)\) if \(X_1\) is chi-squared with \(v_1\) degrees of freedom and \(X_2\) is chi-squared with \(v_2\) degrees of freedom. The support is \(x \geq 0\).

\[
\begin{align*}
 f \left(x; v_1, v_2 \right) &= \frac{\nu_2^{\nu_2/2} \nu_1^{\nu_1/2} x^{\nu_1/2 - 1}}{(\nu_2 + \nu_1 x)^{(\nu_1 + \nu_2)/2}} B \left(\frac{\nu_1}{2}, \frac{\nu_2}{2} \right) \\
 F \left(x; v_1, v_2 \right) &= I \left(\frac{\nu_1 x}{\nu_2 + \nu_1 x}, \frac{\nu_1}{2}, \frac{\nu_2}{2} \right) \\
 G \left(q; v_1, v_2 \right) &= \left(\frac{\nu_2}{I^{-1} \left(q; \nu_1/2, \nu_2/2 \right)} - \frac{\nu_1}{\nu_2} \right)^{-1} \\
 \mu &= \frac{\nu_2}{\nu_2 - 2} \quad \text{for } \nu_2 > 2 \\
 \mu_2 &= \frac{2\nu_2^2 (\nu_1 + \nu_2 - 2)}{\nu_1 (\nu_2 - 2)^2 (\nu_2 - 4)} \quad \text{for } \nu_2 > 4 \\
 \gamma_1 &= 2 \left(\frac{2\nu_1 + \nu_2 - 2}{\nu_2 - 6} \right) \sqrt{\frac{2 (\nu_2 - 4)}{\nu_1 (\nu_1 + \nu_2 - 2)}} \quad \text{for } \nu_2 > 6 \\
 \gamma_2 &= 3 \left(\frac{8 + (\nu_2 - 6) \gamma_1^2}{2
u - 16} \right) \quad \text{for } \nu_2 > 8
\end{align*}
\]

where \(I (x; a, b) = I_x (a, b)\) is the regularized incomplete Beta function.

Implementation: \texttt{scipy.stats.f}

Gamma Distribution

The standard form for the gamma distribution is \((\alpha > 0)\) valid for \(x \geq 0\).

\[
\begin{align*}
 f \left(x; \alpha \right) &= \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} \\
 F \left(x; \alpha \right) &= \frac{\gamma (\alpha, x)}{\Gamma(\alpha)} \\
 G \left(q; \alpha \right) &= \gamma^{-1} (\alpha, q\Gamma(\alpha))
\end{align*}
\]

where \(\gamma\) is the lower incomplete gamma function, \(\gamma (s, x) = \int_0^x \frac{ts^{-1} e^{-t}}{\Gamma(s)} dt\).

\[
\begin{align*}
 M \left(t \right) &= \frac{1}{\left(1 - t \right)^\alpha} \\
 \mu &= \alpha \\
 \mu_2 &= \alpha \sqrt{\alpha} \\
 \gamma_1 &= \frac{2}{\sqrt{\alpha}} \\
 \gamma_2 &= \frac{6}{\alpha} \\
 m_d &= \alpha - 1 \\
 h \left[X \right] &= \Psi (\alpha) [1 - a] + a + \log \Gamma (\alpha)
\end{align*}
\]

where \(\Psi (\alpha) = \frac{\Gamma' (\alpha)}{\Gamma (\alpha)}\).

Implementation: \texttt{scipy.stats.gamma}
Generalized Logistic Distribution

Has been used in the analysis of extreme values. There is one shape parameter \(c > 0 \). The support is \(x \in \mathcal{R} \).

\[
\begin{align*}
 f (x; c) &= \frac{c \exp (-x)}{[1 + \exp (-x)]^c + 1} \\
 F (x; c) &= \frac{1}{[1 + \exp (-x)]^c} \\
 G (q; c) &= -\log \left(q^{1/c} - 1 \right) \\
 M (t) &= \frac{c}{1 - t} \, _2F_1 (1 + c, 1 - t; 2 - t; -1) \\
 \mu &= \gamma + \psi_0 (c) \\
 \mu_2 &= \frac{\pi^2}{6} + \psi_1 (c) \\
 \gamma_1 &= \frac{\psi_2 (c) + 2\zeta (3)}{\mu_2^{3/2}} \\
 \gamma_2 &= \frac{\left(\frac{\pi^4}{72} + \psi_3 (c) \right)}{\mu_2^2} \\
 m_d &= \log c \\
 m_n &= -\log \left(2^{1/c} - 1 \right)
\end{align*}
\]

Note that the polygamma function is

\[
\psi_n (z) = \frac{d^{n+1}}{dz^{n+1}} \log \Gamma (z) = (-1)^{n+1} n! \sum_{k=0}^{\infty} \frac{1}{(z + k)^{n+1}} = (-1)^{n+1} n! \zeta (n + 1, z)
\]

where \(\zeta (k, x) \) is a generalization of the Riemann zeta function called the Hurwitz zeta function. Note that \(\zeta (n) \equiv \zeta (n, 1) \).

Implementation: \texttt{scipy.stats.genlogistic}

Generalized Pareto Distribution

There is one shape parameter \(c \neq 0 \). The support is \(x \geq 0 \) if \(c > 0 \), and \(0 \leq x < \frac{1}{|c|} \) if \(c \) is negative.

\[
\begin{align*}
 f (x; c) &= (1 + cx)^{-1 - \frac{c}{|c|}} \\
 F (x; c) &= 1 - \frac{1}{(1 + cx)^{1/c}} \\
 G (q; c) &= \frac{1}{c} \left[\left(\frac{1}{1 - q} \right)^c - 1 \right] \\
 M (t) &= \left\{ \begin{array}{ll}
 (-\frac{1}{c})^{\frac{c}{|c|}} e^{-\frac{c}{|c|} \left[\Gamma \left(1 - \frac{1}{c} \right) + \gamma \left(-\frac{1}{c}, -\frac{1}{c} \right) / \Gamma \left(\frac{1}{c} \right) \right]} - \pi \csc \left(\frac{\pi}{c} \right) / \Gamma \left(\frac{1}{c} \right) & c > 0 \\
 \left(\frac{|c|}{T} \right)^{1/|c|} \Gamma \left(\frac{1}{|c|} \right) \left[\frac{T}{\Gamma \left(\frac{1}{c} \right)} \right] & c < 0
 \end{array} \right.
\end{align*}
\]
\[
\mu_n' = \frac{(-1)^n}{c^n} \sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^k}{1 - ck} \quad \text{if } cn < 1
\]

\[
\mu'_1 = \frac{1}{1 - c} \quad c < 1
\]

\[
\mu'_2 = \frac{2}{(1 - 2c)(1 - c)} \quad c < \frac{1}{2}
\]

\[
\mu'_3 = \frac{6}{(1 - c)(1 - 2c)(1 - 3c)} \quad c < \frac{1}{3}
\]

\[
\mu'_4 = \frac{24}{(1 - c)(1 - 2c)(1 - 3c)(1 - 4c)} \quad c < \frac{1}{4}
\]

Thus,

\[
\mu = \mu'_1
\]

\[
\mu_2 = \mu'_2 - \mu^2
\]

\[
\gamma_1 = \frac{\mu'_3 - 3\mu_2}{\mu_2^{3/2}}
\]

\[
\gamma_2 = \frac{\mu'_4 - 4\mu_3 - 6\mu^2\mu_2 - \mu^4}{\mu_2^2} - 3
\]

\[
h[X] = 1 + c \quad c > 0
\]

Implementation: \texttt{scipy.stats.genpareto}

Generalized Exponential Distribution

Three positive shape parameters \(a, b, c > 0\) with support \(x \geq 0\).

\[
f(x; a, b, c) = (a + b (1 - e^{-cx})) \exp \left(ax - bx + \frac{b}{c} (1 - e^{-cx}) \right)
\]

\[
F(x; a, b, c) = 1 - \exp \left(ax - bx + \frac{b}{c} (1 - e^{-cx}) \right)
\]

\[
G(q; a, b, c) = F^{-1}
\]

Implementation: \texttt{scipy.stats.genexpon}

Generalized Extreme Value Distribution

Extreme value distributions with one shape parameter \(c\).

If \(c > 0\), the support is \(-\infty < x \leq 1/c\). If \(c < 0\), the support is \(\frac{1}{c} \leq x < \infty\).

\[
f(x; c) = \exp \left(- (1 - cx)^{1/c} \right) (1 - cx)^{1/c - 1}
\]

\[
F(x; c) = \exp \left(- (1 - cx)^{1/c} \right)
\]

\[
G(q; c) = \frac{1}{c} (1 - (-\log q)^c)
\]

\[
\mu'_n = \frac{1}{c^n} \sum_{k=0}^{n} \binom{n}{k} (-1)^k \Gamma (ck + 1) \quad \text{if } cn > -1
\]
So,

\[
\begin{align*}
\mu_1' &= \frac{1}{c} (1 - \Gamma (1 + c)) \quad c > -1 \\
\mu_2' &= \frac{1}{c^2} (1 - 2\Gamma (1 + c) + \Gamma (1 + 2c)) \quad c > -\frac{1}{2} \\
\mu_3' &= \frac{1}{c^3} (1 - 3\Gamma (1 + c) + 3\Gamma (1 + 2c) - \Gamma (1 + 3c)) \quad c > -\frac{1}{3} \\
\mu_4' &= \frac{1}{c^4} (1 - 4\Gamma (1 + c) + 6\Gamma (1 + 2c) - 4\Gamma (1 + 3c) + \Gamma (1 + 4c)) \quad c > -\frac{1}{4}
\end{align*}
\]

For \(c = 0 \) the distribution is the same as the (left-skewed) Gumbel distribution, and the support is \(\mathbb{R} \).

\[
\begin{align*}
\mu &= \gamma = -\psi_0 (1) \\
\mu_2 &= \frac{\pi^2}{6} \\
\gamma_1 &= \frac{12\sqrt{6}}{\pi^3} \zeta (3) \\
\gamma_2 &= \frac{12}{5}
\end{align*}
\]

Implementation: \texttt{scipy.stats.genextreme}

Generalized Gamma Distribution

A general probability form that reduces to many common distributions. There are two shape parameters \(a > 0 \) and \(c \neq 0 \). The support is \(x \geq 0 \).

\[
\begin{align*}
f (x; a, c) &= \frac{|c| x^{ca-1}}{\Gamma (a)} \exp (-x^c) \\
F (x; a, c) &= \begin{cases}
\frac{\gamma(a,x^c)}{\Gamma(a)} & c > 0 \\
1 - \frac{\gamma(a,x^c)}{\Gamma(a)} & c < 0
\end{cases} \\
G (q; a, c) &= \begin{cases}
\gamma^{-1} (a, \Gamma (a) q)^{1/c} & c > 0 \\
\gamma^{-1} (a, \Gamma (a) (1 - q))^{1/c} & c < 0
\end{cases}
\end{align*}
\]
where γ is the lower incomplete gamma function, $\gamma(s, x) = \int_0^x t^{s-1} e^{-t} dt$.

$$
\begin{align*}
\mu'_n &= \frac{\Gamma(a + \frac{n}{c})}{\Gamma(a)} \\
\mu &= \frac{\Gamma(a + \frac{1}{c})}{\Gamma(a)} \\
\mu_2 &= \frac{\Gamma(a + \frac{2}{c})}{\Gamma(a)} - \mu^2 \\
\gamma_1 &= \frac{\Gamma(a + \frac{3}{c})}{\Gamma(a)} \mu_2 \left(\frac{\mu_3^{3/2}}{\mu_2^2} \right) - 3 \\
\gamma_2 &= \frac{\Gamma(a + \frac{4}{c})}{\Gamma(a)} \mu_2 \left(\frac{\mu_3^{3/2}}{\mu_2^2} \right) - 3 \\
\mu_d &= \left(\frac{ac - 1}{c} \right)^{1/c} \\
\end{align*}
$$

Special cases are Weibull ($a = 1$), half-normal ($a = 1/2, c = 2$) and ordinary gamma distributions $c = 1$. If $c = -1$ then it is the inverted gamma distribution.

$$
h[X] = a - a\Psi(a) + \frac{1}{c}\Psi(a) + \log \Gamma(a) - \log |c|.
$$

Implementation: \texttt{scipy.stats.gengamma}

Generalized Half-Logistic Distribution

One shape parameter $c > 0$ and support $x \in [0, 1/c]$.

$$
\begin{align*}
\frac{f(x; c)}{dx} &= \frac{2(1 - cx)^{\frac{1}{c} - 1}}{(1 + (1 - cx)^{1/c})^2} \\
F(x; c) &= \frac{1 - (1 - cx)^{1/c}}{1 + (1 - cx)^{1/c}} \\
G(q; c) &= \frac{1}{c} \left[1 - \left(\frac{1 - q}{1 + q} \right)^c \right] \\
h[X] &= 2 - (2c + 1) \log 2.
\end{align*}
$$

Implementation: \texttt{scipy.stats.genhalflogistic}

Generalized Hyperbolic Distribution

The Generalized Hyperbolic Distribution is defined as the normal variance-mean mixture with Generalized Inverse Gaussian distribution as the mixing distribution. The “hyperbolic” characterization refers to the fact that the shape of the log-probability distribution can be described as a hyperbola. Hyperbolic distributions are sometime referred to as semifat tailed because their probability density decrease slower than “sub-hyperbolic” distributions (e.g. normal distribution, whose log-probability decreases quadratically), but faster than other “extreme value” distributions (e.g. pareto distribution, whose log-probability decreases logarithmically).
Functions

Different parameterizations exist in the literature; SciPy implements the “4th parametrization” in Prause (1999).

\[f(x, p, a, b) = \frac{(a^2 - b^2)^{p/2}}{\sqrt{2\pi a}p^{-0.5}K_p\left(\sqrt{a^2 - b^2}\right)} e^{bx} \times K_{p-1/2}(a\sqrt{1 + x^2}) \left(\frac{1}{\sqrt{1 + x^2}}\right)^{1/2-p} \]

for:

- \(x, p \in (-\infty; \infty) \)
- \(|b| < a \) if \(p \geq 0 \)
- \(|b| \leq a \) if \(p < 0 \)
- \(K_p(.) \) denotes the modified Bessel function of the second kind and order \(p \) (scipy.special.kn)

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, \(f(x, p, a, b, \text{loc}, \text{scale}) \) is identically equivalent to \(\frac{1}{\text{scale}} f(y, p, a, b) \) with \(y = \frac{1}{\text{scale}}(x - \text{loc}) \).

This parameterization derives from the original \((\lambda, \alpha, \beta, \delta, \mu)\) parameterization in Barndorff (1978) by setting:

- \(\lambda = p \)
- \(\alpha = \frac{a}{\delta} = \frac{\hat{\alpha}}{\delta} \)
- \(\beta = \frac{b}{\delta} = \frac{\hat{\beta}}{\delta} \)
- \(\delta = \text{scale} \)
- \(\mu = \text{location} \)

Random variates for the scipy.stats.genhyperbolic can be efficiently sampled from the above-mentioned normal variance-mean mixture where scipy.stats.geninvgauss is parametrized as \(\text{GIG}(p = p, b = \sqrt{\hat{\alpha}^2 - \hat{\beta}^2}, \text{loc} = \text{location}, \text{scale} = \frac{1}{\sqrt{\hat{\alpha}^2 - \hat{\beta}^2}}) \) so that: \(GH(p, \hat{\alpha}, \hat{\beta}) = \hat{\beta} \cdot \text{GIG} + \sqrt{\text{GIG}} \cdot N(0, 1) \)

The “generalized” characterization suggests the fact that this distribution is a superclass of several other probability distributions, for instance:

- \(f(p = -\nu/2, a = 0, b = 0, \text{loc} = 0, \text{scale} = \sqrt{\nu}) \) has a Student’s t-distribution (scipy.stats.t) with \(\nu \) degrees of freedom.
- \(f(p = 1, a = \hat{\alpha}, b = \hat{\beta}, \text{loc} = \mu, \text{scale} = \delta) \) has a Hyperbolic Distribution.
- \(f(p = -1/2, a = \hat{\alpha}, b = \hat{\beta}, \text{loc} = \mu, \text{scale} = \delta) \) has a Normal Inverse Gaussian Distribution (scipy.stats.norminvgauss).
- \(f(p = 1, a = \delta, b = 0, \text{loc} = \mu, \text{scale} = \delta) \) has a Laplace Distribution (scipy.stats.laplace) for \(\delta \to 0 \)

Examples

It is useful to understand how the parameters affect the shape of the distribution. While it is fairly straightforward to interpret the meaning of \(b \) as the skewness, understanding the difference between \(a \) and \(p \) is not as obvious, as both affect the kurtosis of the distribution. \(a \) can be interpreted as the speed of the decay of the probability density (where \(a > 1 \) the asymptotic decay is faster than \(\log \) and vice versa) or - equivalently - as the slope of the log-probability hyperbola asymptote (where \(a > 1 \) decay is faster than \(|1| \) and vice versa). \(p \) can be seen as the width of the shoulders of the probability density distribution (where \(p < 1 \) results in narrow shoulders and vice versa) or - equivalently - as the shape of the log-probability hyperbola, which is convex for \(p < 1 \) and concave otherwise.
import numpy as np
from matplotlib import pyplot as plt
from scipy import stats

p, a, b, loc, scale = 1, 1, 0, 0, 1
x = np.linspace(-10, 10, 100)

plot GH for different values of p
plt.figure(0)
plt.title("Generalized Hyperbolic | -10 < p < 10")
plt.plot(x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),
 label = 'GH(p=1, a=1, b=0, loc=0, scale=1)')
plt.plot(x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),
 color = 'red', alpha = 0.5, label='GH(p>1, a=1, b=0, loc=0, scale=1)')
[plt.plot(x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),
 color = 'red', alpha = 0.1) for p in np.linspace(1, 10, 10)]
plt.plot(x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),
 color = 'blue', alpha = 0.5, label='GH(p<1, a=1, b=0, loc=0, scale=1)')
plt.plot(x, stats.pareto.pdf(x+1, 1, loc, scale),
 label = 'Pareto(a=1, loc=0, scale=1)')
plt.yscale('log')
plt.legend(bbox_to_anchor=(1.1, 1))
plt.subplots_adjust(right=0.5)

plot GH for different values of a
plt.figure(1)
plt.title("Generalized Hyperbolic | 0 < a < 10")
plt.plot(x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),
 label = 'GH(p=1, a=1, b=0, loc=0, scale=1)')
plt.plot(x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),
 color = 'blue', alpha = 0.5, label='GH(p=1, a>1, b=0, loc=0, scale=1)')
[plt.plot(x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),
 color = 'blue', alpha = 0.1) for a in np.linspace(1, 10, 10)]
plt.plot(x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),
 color = 'red', alpha = 0.5, label='GH(p=1, 0<a<1, b=0, loc=0, scale=1)')
[plt.plot(x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),
 color = 'red', alpha = 0.1) for a in np.linspace(0, 1, 10)]
plt.plot(x, stats.norm.pdf(x, loc, scale), label = 'N(loc=0, scale=1)')
plt.plot(x, stats.laplace.pdf(x, loc, scale), label = 'Laplace(loc=0, scale=1)')
plt.yscale('log')
plt.ylim(1e-15, 1e2)
plt.legend()
\begin{verbatim}
plt.legend(bbox_to_anchor=(1.1, 1))
plt.subplots_adjust(right=0.5)
plt.show()
\end{verbatim}

References

Implementation: \texttt{scipy.stats.genhyperbolic}

Generalized Inverse Gaussian Distribution

The probability density function is given by:

\[f(x; p, b) = x^{p-1} \exp(-b(x + 1/x)/2)/(2K_p(b)), \]

where \(x > 0 \) is a real number and the parameters \(p, b \) satisfy \(b > 0 \). \(K_v \) is the modified Bessel function of second kind of order \(v \) (\texttt{scipy.special.kv}).

If \(X \) is \texttt{geninvgauss}(p, b), then the distribution of \(1/X \) is \texttt{geninvgauss}(-p, b). The inverse Gaussian distribution (\texttt{scipy.stats.invgauss}) is a special case with \(p=-1/2 \).

Implementation: \texttt{scipy.stats.geninvgauss}

Generalized Normal Distribution

This distribution is also known as the exponential power distribution. It has a single shape parameter \(\beta > 0 \). It reduces to a number of common distributions.

Functions

\[f(x; \beta) = \frac{\beta}{2\Gamma(1/\beta)} e^{-|x|^\beta} \]

\[F(x; \beta) = \frac{1}{2} + \text{sgn}(x) \frac{\gamma(1/\beta, x^\beta)}{2\Gamma(1/\beta)} \]
\(\gamma \) is the lower incomplete gamma function. \(\gamma (s, x) = \int_0^x t^{s-1}e^{-t}dt. \)

\[
h [X; \beta] = \frac{1}{\beta} - \log \left(\frac{\beta}{2 \Gamma (1/\beta)} \right)
\]

Moments

\[
\mu = 0 \\
m_n = 0 \\
m_d = 0 \\
\mu_2 = \frac{\Gamma (3/\beta)}{\gamma (1/\beta)} \\
\gamma_1 = 0 \\
\gamma_2 = \frac{\Gamma (5/\beta) \Gamma (1/\beta)}{\Gamma (3/\beta)^2} - 3
\]

Special Cases

- Laplace distribution (\(\beta = 1 \))
- Normal distribution with \(\mu_2 = 1/2 \) (\(\beta = 2 \))
- Uniform distribution over the interval \([-1, 1]\) (\(\beta \to \infty \))

Sources

- https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
- https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_Gamma_function

Implementation: scipy.stats.gennorm

Gilbrat Distribution

Special case of the log-normal with \(\sigma = 1 \) and \(S = 1.0 \), typically also \(L = 0.0 \).)

\[
f (x; \sigma) = \frac{1}{x \sqrt{2\pi}} \exp \left(-\frac{1}{2} (\log x)^2 \right) \\
F (x; \sigma) = \Phi (\log x) = \frac{1}{2} \left(1 + \text{erf} \left(\frac{\log x}{\sqrt{2}} \right) \right) \\
G (q; \sigma) = \exp (\Phi^{-1} (q))
\]

\[
\mu = \sqrt{e} \\
\mu_2 = e [e - 1] \\
\gamma_1 = \sqrt{e - 1} (2 + e) \\
\gamma_2 = e^4 + 2e^3 + 3e^2 - 6
\]
\[h[X] = \log \left(\sqrt{2\pi e} \right) \approx 1.4189385332046727418 \]

Implementation: `scipy.stats.gilbrat`

Gompertz (Truncated Gumbel) Distribution

For \(x \geq 0 \) and \(c > 0 \). In JKB the two shape parameters \(b, a \) are reduced to the single shape-parameter \(c = b/a \). As \(a \) is just a scale parameter when \(a \neq 0 \). If \(a = 0 \), the distribution reduces to the exponential distribution scaled by \(1/b \). Thus, the standard form is given as

\[
\begin{align*}
 f(x; c) &= e^x \exp \left(-c(e^x - 1) \right) \\
 F(x; c) &= 1 - \exp \left(-c(e^x - 1) \right) \\
 G(q; c) &= \log \left(1 - \frac{1}{c} \log (1 - q) \right)
\end{align*}
\]

\[h[X] = 1 - \log (c) - e^c \text{Ei} (1, c), \]

where

\[
\text{Ei} (n, x) = \int_1^{\infty} t^{-n} \exp (-xt) \, dt
\]

Implementation: `scipy.stats.gompertz`

Gumbel (LogWeibull, Fisher-Tippett, Type I Extreme Value) Distribution

One of a class of extreme value distributions (right-skewed).

\[
\begin{align*}
 f(x) &= \exp \left(- (x + e^{-x}) \right) \\
 F(x) &= \exp (-e^{-x}) \\
 G(q) &= -\log (-\log (q))
\end{align*}
\]

\[M(t) = \Gamma (1 - t) \]

\[
\begin{align*}
 \mu &= \gamma = -\psi_0 (1) \\
 \mu_2 &= \frac{\pi^2}{6} \\
 \gamma_1 &= \frac{12\sqrt{6}}{\pi^3} \zeta (3) \\
 \gamma_2 &= \frac{12}{5} \\
 m_d &= 0 \\
 m_n &= -\log (\log 2)
\end{align*}
\]

\[h[X] \approx 1.0608407169541684911 \]

Implementation: `scipy.stats.gumbel_r`
Gumbel Left-skewed (for minimum order statistic) Distribution

\[f(x) = \exp(x - e^x) \]
\[F(x) = 1 - \exp(-e^x) \]
\[G(q) = \log(-\log(1-q)) \]
\[M(t) = \Gamma(1+t) \]

Note, that \(\mu \) is negative the mean for the right-skewed distribution. Similar for median and mode. All other moments are the same.

\[h[X] \approx 1.0608407169541684911. \]

Implementation: `scipy.stats.gumbel_l`

HalfCauchy Distribution

If \(Z \) is Hyperbolic Secant distributed then \(e^Z \) is Half-Cauchy distributed. Also, if \(W \) is (standard) Cauchy distributed, then \(|W|\) is Half-Cauchy distributed. Special case of the Folded Cauchy distribution with \(c = 0 \). The support is \(x \geq 0 \). The standard form is

\[f(x) = \frac{2}{\pi (1 + x^2)} \]
\[F(x) = \frac{2}{\pi} \arctan(x) \]
\[G(q) = \tan\left(\frac{\pi}{2} q\right) \]
\[M(t) = \cos t + \frac{2}{\pi} \left[\text{Si}(t) \cos t - \text{Ci}(-t) \sin t \right] \]

where \(\text{Si}(t) = \int_0^t \frac{\sin x}{x} dx \), \(\text{Ci}(t) = -\int_t^\infty \frac{\cos x}{x} dx \).

\[m_d = 0 \]
\[m_m = \tan\left(\frac{\pi}{4}\right) \]

No moments, as the integrals diverge.

\[h[X] = \log(2\pi) \]
\[\approx 1.8378770664093454836. \]

Implementation: `scipy.stats.halfcauchy`

HalfNormal Distribution

This is a special case of the chi distribution with \(L = a \) and \(S = b \) and \(\nu = 1 \). This is also a special case of the folded normal with shape parameter \(c = 0 \) and \(S = S \). If \(Z \) is (standard) normally distributed then, \(|Z|\) is half-normal. The standard form is

\[f(x) = \sqrt{\frac{2}{\pi}} e^{-x^2/2} \]
\[F(x) = 2\Phi(x) - 1 \]
\[G(q) = \Phi^{-1}\left(\frac{1+q}{2}\right) \]
\[M(t) = \sqrt{2\pi e^{2/2}} \Phi(t) \]

\[\mu = \sqrt{\frac{2}{\pi}} \]

\[\mu_2 = 1 - \frac{2}{\pi} \]

\[\gamma_1 = \sqrt{\frac{2(4 - \pi)}{(\pi - 2)^{3/2}}} \]

\[\gamma_2 = \frac{8(\pi - 3)}{(\pi - 2)^2} \]

\[m_d = 0 \]

\[m_n = \Phi^{-1}\left(\frac{3}{4}\right) \]

\[h[X] = \log\left(\sqrt{\frac{\pi e}{2}}\right) \approx 0.72579135264472743239. \]

Implementation: \texttt{scipy.stats.halfnorm}

Half-Logistic Distribution

In the limit as \(c \to \infty \) for the generalized half-logistic we have the half-logistic defined over \(x \geq 0 \). Also, the distribution of \(|X|\) where \(X \) has logistic distribution.

\[f(x) = \frac{2e^{-x}}{(1 + e^{-x})^2} = \frac{1}{2}\text{sech}^2\left(\frac{x}{2}\right) \]

\[F(x) = \frac{1 - e^{-x}}{1 + e^{-x}} = \tanh\left(\frac{x}{2}\right) \]

\[G(q) = \log\left(\frac{1 + q}{1 - q}\right) = 2\text{arctanh}(q) \]

\[M(t) = 1 - t\psi_0\left(\frac{1}{2} - \frac{t}{2}\right) + t\psi_0\left(1 - \frac{t}{2}\right) \]

where \(\psi_m \) is the polygamma function \(\psi_m(z) = \frac{d^{m+1}}{dz^{m+1}} \log(\Gamma(z)) \).

\[\mu'_n = 2\left(1 - 2^{1-n}\right)n!\zeta(n) \quad n \neq 1 \]

\[\mu'_1 = 2\log(2) \]

\[\mu'_2 = 2\zeta(2) = \frac{\pi^2}{3} \]

\[\mu'_3 = 9\zeta(3) \]

\[\mu'_4 = 42\zeta(4) = \frac{7\pi^4}{15} \]

\[h[X] = 2 - \log(2) \approx 1.3068528194400546906. \]

Implementation: \texttt{scipy.stats.halflogistic}
Hyperbolic Secant Distribution

Related to the logistic distribution and used in lifetime analysis. Standard form is (defined over all \(x \))

\[
\begin{align*}
 f(x) &= \frac{1}{\pi} \text{sech}(x) \\
 F(x) &= \frac{2}{\pi} \arctan(e^x) \\
 G(q) &= \log\left(\tan\left(\frac{\pi}{2} q\right)\right) \\
 M(t) &= \sec\left(\frac{\pi}{2} t\right)
\end{align*}
\]

\[
\mu'_n = \frac{1 + (-1)^n}{2\pi^2} n! \left[\zeta\left(n + 1, \frac{1}{4}\right) - \zeta\left(n + 1, \frac{3}{4}\right) \right]
\]

where \(C_m \) is an integer given by

\[
C_m = \frac{(2m)! \left[\zeta\left(2m + 1, \frac{1}{4}\right) - \zeta\left(2m + 1, \frac{3}{4}\right) \right]}{\pi^{2m+1} 2^{2m}}
\]

\[
= 4 (-1)^{m-1} \frac{16^m}{2m+1} B_{2m+1}\left(\frac{1}{4}\right)
\]

where \(B_{2m+1}\left(\frac{1}{4}\right) \) is the Bernoulli polynomial of order \(2m + 1 \) evaluated at \(1/4 \). Thus

\[
\mu'_n = \begin{cases}
 0 & n \text{ odd} \\
 C_{n/2} \pi^n & n \text{ even}
\end{cases}
\]

Gauss Hypergeometric Distribution

The four shape parameters are \(\alpha > 0, \beta > 0, -\infty < \gamma < \infty, \) and \(z > -1 \). The support is \(x \in [0, 1] \).

Let \(C = \frac{1}{B(\alpha, \beta)} \frac{\Gamma(\gamma \alpha + \beta)}{\Gamma(\alpha + \beta)} \frac{\Gamma(\gamma)}{\Gamma(\gamma + n)} \frac{\Gamma(\gamma + n + \alpha + \beta)}{\Gamma(\gamma + n + \alpha + \beta + n)} \frac{B_n(\gamma, \alpha + n; \alpha + \beta; -z)}{\Gamma(\gamma + n + \alpha + \beta; -z)} \)

\[
\begin{align*}
 f(x; \alpha, \beta, \gamma, z) &= C x^{\alpha-1} (1-x)^{\beta-1} \\
 \mu'_n &= \frac{B(n + \alpha, \beta)}{B(\alpha, \beta)} \frac{\Gamma(\gamma + n + \alpha + \beta)}{\Gamma(\gamma + n + \alpha + \beta + n)} \frac{\Gamma(\gamma + n + \alpha + \beta + n)}{\Gamma(\gamma + n + \alpha + \beta + n + \alpha + \beta)} \frac{B_n(\gamma, \alpha + n; \alpha + \beta; -z)}{\Gamma(\gamma + n + \alpha + \beta; -z)}
\end{align*}
\]

Implementation: \texttt{scipy.stats.hypsecant}

Implementation: \texttt{scipy.stats.gausshyper}
Inverted Gamma Distribution

Special case of the generalized Gamma distribution with \(c = -1 \) and \(a > 0 \) and support \(x \geq 0 \).

\[
\begin{align*}
 f (x; a) &= \frac{x^{-a-1}}{\Gamma(a)} \exp \left(-\frac{1}{x} \right) \\
 F (x; a) &= \frac{\Gamma \left(a, \frac{1}{x} \right)}{\Gamma(a)} \\
 G (q; a) &= \left\{ \Gamma^{-1} \left(a, \Gamma(a) q \right) \right\}^{-1} \\
 \mu'_n &= \frac{\Gamma(a-n)}{\Gamma(a)} \quad a > n
\end{align*}
\]

\[
\begin{align*}
 \mu &= \frac{1}{a-1} \quad a > 1 \\
 \mu_2 &= \frac{1}{(a-2)(a-1)} - \mu^2 \quad a > 2 \\
 \gamma_1 &= \frac{1}{(a-3)(a-2)(a-1)} - 3\mu_2 - \mu^3 \\
 \gamma_2 &= \frac{1}{(a-4)(a-3)(a-2)(a-1)} - 4\mu_3 - 6\mu^2\mu_2 - \mu^4 - 3 \\
 m_d &= \frac{1}{a+1} \\
 h [X] &= a - (a+1) \psi(a) + \log \Gamma(a).
\end{align*}
\]

where \(\Psi \) is the digamma function \(\psi(z) = \frac{d}{dz} \log(\Gamma(z)) \).

Implementation: \texttt{scipy.stats.invgamma}

Inverse Normal (Inverse Gaussian) Distribution

The standard form involves the shape parameter \(\mu \) (in most definitions, \(L = 0.0 \) is used). (In terms of the regress documentation \(\mu = A/B \) and \(B = S \) and \(L \) is not a parameter in that distribution. A standard form is \(x > 0 \)

\[
\begin{align*}
 f (x; \mu) &= \frac{1}{\sqrt{2\pi} x^3} \exp \left(-\frac{(x - \mu)^2}{2x\mu^2} \right). \\
 F (x; \mu) &= \Phi \left(\frac{1}{\sqrt{x}} \frac{x - \mu}{\mu} \right) + \exp \left(\frac{2}{\mu} \right) \Phi \left(-\frac{1}{\sqrt{x}} \frac{x + \mu}{\mu} \right) \\
 G (q; \mu) &= F^{-1} (q; \mu)
\end{align*}
\]

\[
\begin{align*}
 \mu &= \mu \\
 \mu_2 &= \mu^3 \\
 \gamma_1 &= 3\sqrt{\mu} \\
 \gamma_2 &= 15\mu \\
 m_d &= \frac{\mu}{2} \left(\sqrt{9\mu^2 + 4} - 3\mu \right)
\end{align*}
\]

This is related to the canonical form or JKB “two-parameter” inverse Gaussian when written in it's full form with scale parameter \(S \) and location parameter \(L \) by taking \(L = 0 \) and \(S \equiv \lambda \), then \(\mu S \) is equal to \(\mu_2 \) where \(\mu_2 \) is the parameter
used by JKB. We prefer this form because of its consistent use of the scale parameter. Notice that in JKB the skew \((\sqrt{\beta_1})\) and the kurtosis \((\beta_2 - 3)\) are both functions only of \(\mu_2/\lambda = \mu S/S = \mu\) as shown here, while the variance and mean of the standard form here are transformed appropriately.

Implementation: `scipy.stats.invgauss`

Inverted Weibull Distribution

There is one shape parameter \(c > 0\) and the support is \(x \geq 0\). Then

\[
\begin{align*}
 f(x; c) &= cx^{-c-1} \exp(-x^{-c}) \\
 F(x; c) &= \exp(-x^{-c}) \\
 G(q; c) &= (-\log q)^{-1/c} \\
 h[X] &= 1 + \gamma + \frac{\gamma}{c} - \log(c)
\end{align*}
\]

where \(\gamma\) is Euler’s constant.

Implementation: `scipy.stats.invweibull`

Johnson SB Distribution

There are two shape parameters \(a \in \mathbb{R}\) and \(b > 0\), and the support is \(x \in [0, 1]\).

\[
\begin{align*}
 f(x; a, b) &= \frac{b}{x(1-x)} \phi\left(a + b \log \frac{x}{1-x}\right) \\
 F(x; a, b) &= \Phi\left(a + b \log \frac{x}{1-x}\right) \\
 G(q; a, b) &= \frac{1}{1 + \exp\left(-\frac{1}{b} (\Phi^{-1}(q) - a)\right)}
\end{align*}
\]

Implementation: `scipy.stats.johnsonsb`

Johnson SU Distribution

There are two shape parameters \(a \in \mathbb{R}\) and \(b > 0\), and the support is \(x \in \mathbb{R}\).

\[
\begin{align*}
 f(x; a, b) &= \frac{b}{\sqrt{x^2 + 1}} \phi\left(a + b \log\left(x + \sqrt{x^2 + 1}\right)\right) \\
 F(x; a, b) &= \Phi\left(a + b \log\left(x + \sqrt{x^2 + 1}\right)\right) \\
 G(q; a, b) &= \sinh\left(\frac{\Phi^{-1}(q) - a}{b}\right)
\end{align*}
\]

Implementation: `scipy.stats.johnsonsu`
KSone Distribution

This is the distribution of maximum positive differences between an empirical distribution function, computed from \(n\) samples or observations, and a comparison (or target) cumulative distribution function.

Writing \(D_{n}^{+} = \sup_{t} (F_{\text{empirical},n}(t) - F_{\text{target}}(t))\), \texttt{ksone} is the distribution of the \(D_{n}^{+}\) values. (The distribution of \(D_{n}^{-} = \sup_{t} (F_{\text{target}}(t) - F_{\text{empirical},n}(t))\) differences follows the same distribution, so \texttt{ksone} can be used for one-sided tests on either side.)

There is one shape parameter \(n\), a positive integer, and the support is \(x \in [0,1]\).

\[
F(n,x) = 1 - \sum_{j=0}^{\lfloor n(1-x) \rfloor} \binom{n}{j} x^j \left(1 - \frac{j}{n}\right)^{n-j} = 1 - \text{scipy.special.smirnov}(n,x)
\]

\[
\lim_{n \to \infty} F\left(n, \frac{x}{\sqrt{n}}\right) = e^{-2x^2}
\]

References

Implementation: \texttt{scipy.stats.ksone}

KStwo Distribution

This is the distribution of the maximum absolute differences between an empirical distribution function, computed from \(n\) samples or observations, and a comparison (or target) cumulative distribution function, which is assumed to be continuous. (The “two” in the name is because this is the two-sided difference. \texttt{ksone} is the distribution of the positive differences, \(D_{n}^{+}\), hence it concerns one-sided differences. \texttt{kstwo} is the limiting distribution of the \textit{normalized} maximum absolute differences \(\sqrt{n}D_{n}\).)

Writing \(D_{n} = \sup_{t} |F_{\text{empirical},n}(t) - F_{\text{target}}(t)|\), \texttt{kstwo} is the distribution of the \(D_{n}\) values.

\texttt{kstwo} can also be used with the differences between two empirical distribution functions, for sets of observations with \(m\) and \(n\) samples respectively. Writing \(D_{m,n} = \sup_{t} |F_{1,m}(t) - F_{2,n}(t)|\), where \(F_{1,m}\) and \(F_{2,n}\) are the two empirical distribution functions, then \(\Pr(D_{m,n} \leq x) \approx \Pr(D_{N} \leq x)\) under appropriate conditions, where \(N = \sqrt{\frac{mN}{m+n}}\).

There is one shape parameter \(n\), a positive integer, and the support is \(x \in [0,1]\).

The implementation follows Simard & L’Ecuyer, which combines exact algorithms of Durbin and Pomeranz with asymptotic estimates of Li-Chien, Pelz and Good to compute the CDF with 5-15 accurate digits.
Examples

```python
>>> from scipy.stats import kstwo

Show the probability of a gap at least as big as 0, 0.5 and 1.0 for a sample of size 5

```python
>>> kstwo.sf([0, 0.5, 1.0], 5)
array([1. , 0.112, 0.])
```

Compare a sample of size 5 drawn from a source N(0.5, 1) distribution against a target N(0, 1) CDF.

```python
>>> from scipy.stats import norm

```python
>>> n = 5

```python
>>> gendist = norm(0.5, 1) # Normal distribution, mean 0.5, stddev 1
```

```python
>>> x = np.sort(gendist.rvs(size=n, random_state=np.random.default_rng()))
```

```python
>>> x
array([-1.59113056, -0.66335147, 0.54791569, 0.78009321, 1.27641365])
```

```python
>>> target = norm(0)
```

```python
>>> cdfs = target.cdf(x)
```

```python
>>> cdfs
array([0.0557901 , 0.25355274, 0.7081251 , 0.78233199, 0.89909533])
```

```python
Construct the Empirical CDF and the K-S statistics (Dn+, Dn-, Dn)
>>> ecdfs = np.arange(n+1, dtype=float)/n
>>> cols = np.column_stack([x, ecdfs[1:], cdfs, cdfs - ecdfs[:n], ecdfs[1:] - cdfs])
```

```python
>>> np.set_printoptions(precision=3)
>>> cols
array([[[-1.591, 0.2 , 0.056, 0.056, 0.144],
 [-0.663, 0.4 , 0.254, 0.054, 0.146],
 [0.548, 0.6 , 0.708, 0.308, -0.108],
 [0.78 , 0.8 , 0.782, 0.182, 0.018],
 [1.276, 1. , 0.899, 0.099, 0.101]]])
```

```python
>>> gaps = cols[:, -2:]
```

```python
>>> Dnmp = np.max(gaps, axis=0)
```

```python
>>> Dn = np.max(Dnmp)
```

```python
>>> iminus, iplus = np.argmax(gaps, axis=0)
```

```python
>>> print('Dn- = %f (at x=%.2f)' % (Dnmp[0], x[iminus]))
Dn- = 0.308125 (at x=0.55)
```

```python
>>> print('Dn+ = %f (at x=%.2f)' % (Dnmp[1], x[iplus]))
Dn+ = 0.146447 (at x=-0.66)
```

```python
>>> print('Dn = %f' % (Dn))
Dn = 0.308125
```

```python
>>> probs = kstwo.sf(Dn, n)
```

```python
>>> print(chr(10).join(['For a sample of size %d drawn from a N(0, 1) distribution:' % n,
... 'Kolmogorov-Smirnov 2-sided n=%d: Prob(Dn >= %f) = %.4f' % (n, Dn,
... probs)])
```

For a sample of size 5 drawn from a N(0, 1) distribution:
Kolmogorov-Smirnov 2-sided n=5: Prob(Dn >= 0.308125) = 0.6319

Plot the Empirical CDF against the target N(0, 1) CDF
Writing is the distribution of the unnormalized positive differences, $D_n$. Implementation:

```python
>>> import matplotlib.pyplot as plt
>>> plt.step(np.concatenate([[-3], x]), ecdfs, where='post', label='Empirical CDF')
>>> x3 = np.linspace(-3, 3, 100)
>>> plt.plot(x3, target.cdf(x3), label='CDF for N(0, 1)')
>>> plt.ylim([0, 1]); plt.grid(True); plt.legend();
>>> plt.vlines([x[iminus]], ecdfs[iminus], cdfs[iminus], color='r', linestyle='--', lw=4)
>>> plt.vlines([x[iplus]], cdfs[iplus], ecdfs[iplus+1], color='m', linestyle='--', lw=4)
>>> plt.annotate('Dn-', xy=(x[iminus], (ecdfs[iminus] + cdfs[iminus])/2), xytext=(x[iminus] + 1, (ecdfs[iminus] + cdfs[iminus])/2 - 0.02), arrowprops=dict(facecolor='white', edgecolor='r', shrink=0.05), size=15, color='r');
>>> plt.annotate('Dn+', xy=(x[iplus], (ecdfs[iplus] + cdfs[iplus])/2), xytext=(x[iplus] - 2, (ecdfs[iplus] + cdfs[iplus])/2 - 0.02), arrowprops=dict(facecolor='white', edgecolor='m', shrink=0.05), size=15, color='m');
>>> plt.show()
```

References


Implementation: `scipy.stats.kstwo`

**KStwobign Distribution**

This is the limiting distribution of the normalized maximum absolute differences between an empirical distribution function, computed from $n$ samples or observations, and a comparison (or target) cumulative distribution function. (ksone is the distribution of the unnormalized positive differences, $D_n^+$.)

Writing $D_n = \sup_t |F_{\text{empirical}, n}(t) - F_{\text{target}}(t)|$, the normalization factor is $\sqrt{n}$, and kstwobign is the limiting distribution of the $\sqrt{n}D_n$ values as $n \to \infty$.

Note that $D_n = \max(D_n^+, D_n^-)$, but $D_n^+$ and $D_n^-$ are not independent.

kstwobign can also be used with the differences between two empirical distribution functions, for sets of observations with $m$ and $n$ samples respectively, where $m$ and $n$ are “big”. Writing $D_{m,n} = \sup_t |F_{1,m}(t) - F_{2,n}(t)|$, where...
$F_{1,m}$ and $F_{2,n}$ are the two empirical distribution functions, then $\text{kstwobign}$ is also the limiting distribution of the

$$\sqrt{\frac{mn}{m+n}} D_{m,n} \text{ values, as } m, n \to \infty \text{ and } m/n \to a \neq 0, \infty.$$ 

There are no shape parameters, and the support is $x \in [0, \infty)$.

$$F(x) = 1 - 2 \sum_{k=1}^{\infty} (-1)^k e^{-2k^2 x^2}$$

$$= \sqrt{2\pi} x \sum_{k=1}^{\infty} e^{-(2k-1)^2 \pi^2/(8x^2)}$$

$$= 1 - \text{scipy.special.kolmogorov}(n, x)$$

$$f(x) = 8x \sum_{k=1}^{\infty} (-1)^{k-1} k^2 e^{-2k^2 x^2}$$

References


Implementation: scipy.stats.kstwobign

Laplace (Double Exponential, Bilateral Exponential) Distribution

$$f(x) = \frac{1}{2} e^{-|x|}$$

$$F(x) = \begin{cases} \frac{1}{2} e^x & x \leq 0 \\ 1 - \frac{1}{2} e^{-x} & x > 0 \end{cases}$$

$$G(q) = \begin{cases} \log (2q) & q \leq \frac{1}{2} \\ -\log (2 - 2q) & q > \frac{1}{2} \end{cases}$$

$$m_d = m_n = \mu = 0$$

$$\mu_2 = 2$$

$$\gamma_1 = 0$$

$$\gamma_2 = 3$$

The ML estimator of the location parameter is

$$\hat{L} = \text{median} (X_i)$$

where $X_i$ is a sequence of $N$ mutually independent Laplace RV’s and the median is some number between the $\frac{1}{2} N$th and the $(N/2 + 1)$th order statistic ( e.g. take the average of these two) when $N$ is even. Also,

$$\hat{S} = \frac{1}{N} \sum_{j=1}^{N} |X_j - \hat{L}|.$$
Replace \( \hat{L} \) with \( L \) if it is known. If \( L \) is known then this estimator is distributed as \( (2N)^{-1} S \cdot \chi_{2N}^2 \).

\[
h[X] = \log(2e) \\
\approx 1.6931471805599453094.
\]

Implementation: `scipy.stats.laplace`

Asymmetric Laplace Distribution

This distribution is a generalization of the Laplace distribution. It has a single shape parameter \( \kappa > 0 \) that species the distribution’s asymmetry. The special case \( \kappa = 1 \) yields the Laplace distribution.

Functions

\[
F(x, \kappa) = \begin{cases} 
1 - \frac{\kappa^{-1}}{\kappa + \kappa^{-1}} \exp(-x\kappa), & x \geq 0; \\
\frac{\kappa}{\kappa + \kappa^{-1}} \exp(x/\kappa), & x < 0.
\end{cases}
\]

\[
f(x, \kappa) = \begin{cases} 
\frac{1}{\kappa + \kappa^{-1}} \exp(-x\kappa), & x \geq 0; \\
\frac{1}{\kappa + \kappa^{-1}} \exp(x/\kappa), & x < 0.
\end{cases}
\]

\[
\mu = \kappa^{-1} - \kappa \\
\mu_2 = \kappa^{-2} + \kappa^2 \\
\gamma_1 = \frac{2(1 - \kappa^6)}{(1 + \kappa^4)^{3/2}} \\
\gamma_2 = \frac{6(1 + \kappa^8)}{(1 + \kappa^4)^2}
\]

References


Implementation: `scipy.stats.laplace_asymmetric`

Left-skewed Lévy Distribution

Special case of Lévy-stable distribution with \( \alpha = \frac{1}{2} \) and \( \beta = -1 \). The support is \( x \leq 0 \). In standard form

\[
f(x) = \frac{1}{|x|\sqrt{2\pi|x|}} \exp\left(-\frac{1}{2|x|}\right) \\
F(x) = 2\Phi\left(\frac{1}{\sqrt{|x|}}\right) - 1 \\
G(q) = \left[\Phi^{-1}\left(q + \frac{1}{2}\right)\right]^{-2}.
\]
No moments.

Implementation: `scipy.stats.levy_1`

**Lévy Distribution**

A special case of Lévy-stable distributions with $\alpha = \frac{1}{2}$ and $\beta = 1$ and support $x \geq 0$. In standard form it is defined for $x > 0$ as

$$
\begin{align*}
f(x) &= \frac{1}{x \sqrt{2\pi x}} \exp \left( -\frac{1}{2x} \right) \\
F(x) &= 2 \left[ 1 - \Phi \left( \frac{1}{\sqrt{x}} \right) \right] \\
G(q) &= \left[ \Phi^{-1} \left( 1 - \frac{q}{2} \right) \right]^{-2}.
\end{align*}
$$

It has no finite moments.

Implementation: `scipy.stats.levy`

**Logistic (Sech-squared) Distribution**

A special case of the Generalized Logistic distribution with $c = 1$. The support is $x \in \mathbb{R}$.

This distribution function has a direct connection with the Fermi-Dirac distribution via its survival function. I.e. `scipy.stats.logistic.sf` is equivalent to the Fermi-Dirac distribution.

$$
\begin{align*}
f(x) &= \frac{\exp(-x)}{(1 + \exp(-x))^2} \\
F(x) &= \frac{1}{1 + \exp(-x)} \\
G(q) &= -\log(1/q - 1) \\
S(x) &= n_F(x) = \frac{1}{1 + \exp(x)}
\end{align*}
$$

$$
\begin{align*}
\mu &= \gamma + \psi_0(1) = 0 \\
\mu_2 &= \frac{\pi^2}{6} + \psi_1(1) = \frac{\pi^2}{3} \\
\gamma_1 &= \frac{\psi_2(1) + 2\zeta(3)}{\mu_2^{3/2}} = 0 \\
\gamma_2 &= \frac{\left( \frac{\pi^4}{15} + \psi_3(1) \right)}{\mu_2^2} = 6 \\
m_d &= \log 1 = 0 \\
m_n &= -\log(2 - 1) = 0
\end{align*}
$$

where $\psi_m$ is the polygamma function $\psi_m(z) = \frac{d^{m+1}}{dz^{m+1}} \log(\Gamma(z))$.

$$h[X] = 1.$$
Log Double Exponential (Log-Laplace) Distribution

One shape parameter \( c > 0 \). The support is \( x \geq 0 \).

\[
\begin{align*}
f(x; c) &= \begin{cases} 
\frac{c^2 x^{c-1}}{\Gamma(c)} & 0 < x < 1 \\
\frac{x^c}{\Gamma(c)} & x \geq 1
\end{cases} \\
F(x; c) &= \begin{cases} 
\frac{1}{2} x^c & 0 < x < 1 \\
1 - \frac{x^c}{\Gamma(c)} & x \geq 1
\end{cases} \\
G(q; c) &= \begin{cases} 
\left(\frac{2q}{\Gamma(c)}\right)^{1/c} & 0 \leq q < \frac{1}{2} \\
\left(\frac{2 - 2q}{\Gamma(c)}\right)^{-1/c} & \frac{1}{2} \leq q \leq 1
\end{cases}
\end{align*}
\]

\[h(X) = \log \left(\frac{2e}{c}\right)\]

Implementation: \texttt{scipy.stats.loglaplace}

Log Gamma Distribution

A single shape parameter \( c > 0 \). The support is \( x \in \mathbb{R} \).

\[
\begin{align*}
f(x; c) &= \frac{\exp(cx - e^x)}{\Gamma(c)} \\
F(x; c) &= \frac{\gamma(c, e^x)}{\Gamma(c)} \\
G(q; c) &= \log \left(\frac{\gamma^{-1}(c, q\Gamma(c))}{\gamma(c, e^x)}\right)
\end{align*}
\]

where \( \gamma \) is the lower incomplete gamma function, \( \gamma(s, x) = \int_0^x t^{s-1}e^{-t}dt \).

\[
\begin{align*}
\mu'_n &= \int_0^\infty [\log y]^n y^{c-1} \exp(-y) \, dy. \\
\mu &= \mu'_1 \\
\mu_2 &= \mu'_2 - \mu^2 \\
\gamma_1 &= \frac{\mu'_3 - 3\mu\mu_2 - \mu^3}{\mu_2^{3/2}} \\
\gamma_2 &= \frac{\mu'_4 - 4\mu\mu_3 - 6\mu^2\mu_2 - \mu^4}{\mu_2^2} - 3
\end{align*}
\]

Implementation: \texttt{scipy.stats.loggamma}

Log Normal (Cobb-Douglass) Distribution

Has one shape parameter \( \sigma > 0 \). (Notice that the “Regress” \( A = \log S \) where \( S \) is the scale parameter and \( A \) is the mean of the underlying normal distribution). The support is \( x \geq 0 \).

\[
\begin{align*}
f(x; \sigma) &= \frac{1}{\sigma x \sqrt{2\pi}} \exp \left( -\frac{1}{2} \left( \frac{\log x}{\sigma} \right)^2 \right) \\
F(x; \sigma) &= \Phi \left( \frac{\log x}{\sigma} \right) \\
G(q; \sigma) &= \exp \left( \sigma \Phi^{-1}(q) \right)
\end{align*}
\]
\[ \mu = \exp(\sigma^2/2) \]
\[ \mu_2 = \exp(\sigma^2) \left[ \exp(\sigma^2) - 1 \right] \]
\[ \gamma_1 = \sqrt{p - 1} (2 + p) \]
\[ \gamma_2 = p^4 + 2p^3 + 3p^2 - 6 \quad p = e^{\sigma^2} \]

Notice that using JKB notation we have \( \theta = L, \zeta = \log S \) and we have given the so-called antilognormal form of the distribution. This is more consistent with the location, scale parameter description of general probability distributions.

\[ h[X] = \frac{1}{2} \left[ 1 + \log(2\pi) + 2\log \sigma \right]. \]

Also, note that if \( X \) is a log-normally distributed random-variable with \( L = 0 \) and \( S \) and shape parameter \( \sigma \). Then, \( \log X \) is normally distributed with variance \( \sigma^2 \) and mean \( \log S \).

Implementation: `scipy.stats.lognorm`

**Log-Uniform Distribution**

This random variable is log-uniform. That is, if \( \text{loguniform}(10**-1, 10**1) \) is specified, \( 0.1, 1, 10 \) are all equally likely.

There are two shape parameters \( a, b > 0 \) and the support is \( x \in [a, b] \).

\[ f(x; a, b) = \frac{1}{x \log(b/a)} \]
\[ F(x; a, b) = \frac{\log(x/a)}{\log(b/a)} \]
\[ G(q; a, b) = a \exp(q \log(b/a)) = a \left( \frac{b}{a} \right)^q \]

\[ d = \log(a/b) \]
\[ \mu = \frac{a - b}{d} \]
\[ \mu_2 = \frac{a + b}{2} - \mu^2 = \left( a - b \right) \left[ a(d - 2) + b(d + 2) \right] \]
\[ \gamma_1 = \sqrt{\frac{12d(a - b)^2 + d^2 \left( a^2 (2d - 9) + 2abd + b^2 (2d + 9) \right)}{3d\sqrt{a - b} \left[ a(d - 2) + b(d + 2) \right]^{3/2}}} \]
\[ \gamma_2 = -36(a - b)^3 + 36d(a - b)^2(a + b) - 16d^2(a^2 - b^3) + 3d^3(a^2 + b^2)(a + b) - 3 \]
\[ m_d = \frac{a}{3(a - b) \left[ a(d - 2) + b(d + 2) \right]^2} \]
\[ m_n = \frac{\sqrt{ab}}{3(a - b) \left[ a(d - 2) + b(d + 2) \right]^2} \]

\[ h[X] = \frac{1}{2} \log(ab) + \log \left[ \log \left( \frac{b}{a} \right) \right]. \]

Implementation: `scipy.stats.loguniform`
Maxwell Distribution

This is a special case of the Chi distribution with $L = 0$ and $S = \frac{1}{\sqrt{a}}$ and $\nu = 3$. The support is $x \geq 0$.

\[
f(x) = \sqrt{\frac{2}{\pi}} x e^{-x^2/2} \]

\[
F(x) = \frac{\gamma(\frac{3}{2}, \frac{x^2}{2})}{\Gamma(\frac{3}{2})} \]

\[
G(q) = \sqrt{2\gamma^{-1}\left(\frac{3}{2}, q\Gamma(\frac{3}{2})\right)} \]

\[
\mu = 2\sqrt{\frac{2}{\pi}} \]

\[
\mu_2 = 3 - \frac{8}{\pi} \]

\[
\gamma_1 = \sqrt{2} \frac{32 - 10\pi}{(3\pi - 8)^{3/2}} \]

\[
\gamma_2 = -12\pi^2 + 160\pi - 384 \]

\[
m_d = \sqrt{2} \]

\[
m_n = \sqrt{2}\gamma^{-1}\left(\frac{3}{2}, \frac{1}{2}\Gamma(\frac{3}{2})\right) \]

\[h[X] = \log\left(\sqrt{\frac{2\pi}{e}}\right) + \gamma.\]

Implementation: \texttt{scipy.stats.maxwell}

Mielke's Beta-Kappa Distribution

A generalized F distribution. Two shape parameters $\kappa$ and $\theta$, with support $x \geq 0$. The $\beta$ in the DATAPLOT reference is a scale parameter.

\[
f(x; \kappa, \theta) = \frac{\kappa x^{\kappa-1}}{(1 + x^\theta)^{1+\frac{\kappa}{\theta}}} \]

\[
F(x; \kappa, \theta) = \frac{x^\kappa}{(1 + x^\theta)^{\kappa/\theta}} \]

\[
G(q; \kappa, \theta) = \left(\frac{q^{\theta/\kappa}}{1 - q^{\theta/\kappa}}\right)^{1/\theta} \]

Implementation: \texttt{scipy.stats.mielke}
Nakagami Distribution

Generalization of the chi distribution. Shape parameter is $\nu > 0$. The support is $x \geq 0$.

$$f(x; \nu) = \frac{2\nu^\nu}{\Gamma(\nu)} x^{2\nu-1} \exp \left(-\nu x^2\right)$$

$$F(x; \nu) = \frac{\gamma(\nu, \nu x^2)}{\Gamma(\nu)}$$

$$G(q; \nu) = \sqrt{\frac{1}{\nu} \Gamma^{-1}(\nu, q \Gamma(\nu))}$$

where $\gamma$ is the lower incomplete gamma function, $\gamma(\nu, x) = \int_0^x t^{\nu-1} e^{-t} dt$.

$$\mu = \frac{\Gamma(\nu + \frac{1}{2})}{\sqrt{\nu} \Gamma(\nu)}$$

$$\mu_2 = [1 - \mu^2]$$

$$\gamma_1 = \frac{\mu(1 - 4\nu \mu_2)}{2\nu \mu_2^2}$$

$$\gamma_2 = -6\mu^4 + (8\nu - 2) \mu^2 - 2\nu + 1$$

Implementation: scipy.stats.nakagami

MLE of the Nakagami Distribution in SciPy (nakagami.fit)

The probability density function of the nakagami distribution in SciPy is

$$f(x; \nu, \mu, \sigma) = \frac{2\nu^\nu}{\sigma^\nu \Gamma(\nu)} \left(\frac{x - \mu}{\sigma}\right)^{2\nu-1} \exp \left(-\nu \left(\frac{x - \mu}{\sigma}\right)^2\right)$$

for $x$ such that $\frac{x - \mu}{\sigma} \geq 0$, where $\nu \geq \frac{1}{2}$ is the shape parameter, $\mu$ is the location, and $\sigma$ is the scale.

The log-likelihood function is therefore

$$l(\nu, \mu, \sigma) = \sum_{i=1}^{N} \log \left(2\nu^\nu \frac{x_i - \mu}{\sigma^\nu \Gamma(\nu)} \left(\frac{x_i - \mu}{\sigma}\right)^{2\nu-1} \exp \left(-\nu \left(\frac{x_i - \mu}{\sigma}\right)^2\right)\right),$$

which can be expanded as

$$l(\nu, \mu, \sigma) = N \log(2) + N \nu \log(\nu) - N \log(\Gamma(\nu)) - 2N \nu \log(\sigma) + (2\nu - 1) \sum_{i=1}^{N} \log(x_i - \mu) - \nu \sigma^{-2} \sum_{i=1}^{N} (x_i - \mu)^2,$$

Leaving supports constraints out, the first-order condition for optimality on the likelihood derivatives gives estimates of parameters:

$$\frac{\partial l}{\partial \nu}(\nu, \mu, \sigma) = N \left(1 + \log(\nu) - \psi^{(0)}(\nu)\right) + 2 \sum_{i=1}^{N} \log \left(\frac{x_i - \mu}{\sigma}\right) - \sum_{i=1}^{N} \left(\frac{x_i - \mu}{\sigma}\right)^2 = 0$$

$$\frac{\partial l}{\partial \mu}(\nu, \mu, \sigma) = (1 - 2\nu) \sum_{i=1}^{N} \frac{1}{x_i - \mu} + 2\nu \sigma^{-2} \sum_{i=1}^{N} x_i - \mu = 0$$

$$\frac{\partial l}{\partial \sigma}(\nu, \mu, \sigma) = -2N\nu \frac{1}{\sigma} + 2\nu \sigma^{-3} \sum_{i=1}^{N} (x_i - \mu)^2 = 0$$

2.12. Statistics (scipy.stats) 187
where \( \psi^{(0)} \) is the polygamma function of order 0; i.e., \( \psi^{(0)}(\nu) = \frac{d}{d\nu} \log \Gamma(\nu) \).

However, the support of the distribution is the values of \( x \) for which \( \frac{x-\mu}{\sigma} \geq 0 \), and this provides an additional constraint that
\[
\mu \leq \min_i x_i. \tag{7}
\]
For \( \nu = \frac{1}{2} \), the partial derivative of the log-likelihood with respect to \( \mu \) reduces to:
\[
\frac{\partial l}{\partial \mu}(\nu, \mu, \sigma) = \sigma^2 \sum_{i=1}^{N} (x_i - \mu), \tag{2.10}
\]
which is positive when the support constraint is satisfied. Because the partial derivative with respect to \( \mu \) is positive, increasing \( \mu \) increases the log-likelihood, and therefore the constraint is active at the maximum likelihood estimate for \( \mu = \min_i x_i \). \( \tag{8} \)

For \( \nu \) sufficiently greater than \( \frac{1}{2} \), the likelihood equation \( \frac{\partial l}{\partial \mu}(\nu, \mu, \sigma) = 0 \) has a solution, and this solution provides the maximum likelihood estimate for \( \mu \). In either case, however, the condition \( \mu = \min_i x_i \) provides a reasonable initial guess for numerical optimization.

Furthermore, the likelihood equation for \( \sigma \) can be solved explicitly, and it provides the maximum likelihood estimate
\[
\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}. \tag{9}
\]
Hence, the \_fitstart method for \texttt{nakagami} uses
\[
\mu_0 = \min_i x_i \quad \text{and} \quad \sigma_0 = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu_0)^2}{N}} \tag{2.11}
\]
as initial guesses for numerical optimization accordingly.

### Noncentral chi-squared Distribution

The distribution of \( \sum_{i=1}^{\nu} (Z_i + \delta_i)^2 \) where \( Z_i \) are independent standard normal variables and \( \delta_i \) are constants. \( \lambda = \sum_{i=1}^{\nu} \delta_i^2 > 0 \). (In communications it is called the Marcum-Q function). It can be thought of as a Generalized Rayleigh-Rice distribution.

The two shape parameters are \( \nu \), a positive integer, and \( \lambda \), a positive real number. The support is \( x \geq 0 \).
\[
f(x; \nu, \lambda) = e^{-(\lambda+x)/2} \frac{1}{2} \left( \frac{x}{\lambda} \right)^{(\nu-2)/4} I_{(\nu-2)/2} \left( \sqrt{\lambda x} \right)
\]
\[
F(x; \nu, \lambda) = \sum_{j=0}^{\infty} \left\{ \frac{(\lambda/2)^j}{j!} e^{-\lambda/2} \right\} \Pr [\lambda_{\nu+2j}^2 \leq x]
\]
\[
G(q; \nu, \lambda) = F^{-1}(q; \nu, \lambda)
\]
\[
\mu = \nu + \lambda
\]
\[
\mu_2 = 2(\nu + 2\lambda)
\]
\[
\gamma_1 = \sqrt{8(\nu + 3\lambda)} \quad \frac{1}{(\nu + 2\lambda)^{3/2}}
\]
\[
\gamma_2 = 12(\nu + 4\lambda) \quad \frac{1}{(\nu + 2\lambda)^2}
\]
where \( I_\nu(y) \) is a modified Bessel function of the first kind.
Noncentral F Distribution

The distribution of \((X_1/X_2) (\nu_2/\nu_1)\) if \(X_1\) is non-central chi-squared with \(\nu_1\) degrees of freedom and parameter \(\lambda\), and \(X_2\) is chi-squared with \(\nu_2\) degrees of freedom.

There are 3 shape parameters: the degrees of freedom \(\nu_1 > 0\) and \(\nu_2 > 0\); and \(\lambda \geq 0\).

\[
f(x; \lambda, \nu_1, \nu_2) = \exp \left[ \frac{\lambda}{2} + \frac{(\lambda \nu_1 x)}{2(\nu_1 x + \nu_2)} \right] \nu_1^{\nu_1/2} \nu_2^{\nu_2/2} x^{\nu_1/2-1} \times (\nu_2 + \nu_1 x)^{-(\nu_1+\nu_2)/2} \frac{\Gamma \left( \frac{\nu_2}{2} \right) \Gamma \left( 1 + \frac{\nu_2}{2} \right) L_{\nu_2/2}^{\nu_1/2-1} \left( -\frac{\lambda \nu_1 x}{2(\nu_1 x + \nu_2)} \right)}{B \left( \frac{\nu_1}{2}, \frac{\nu_2}{2} \right) \Gamma \left( \frac{\nu_1+\nu_2}{2} \right)}
\]

where \(L_{\nu_2/2}^{\nu_1/2-1}(x)\) is an associated Laguerre polynomial.

If \(\lambda = 0\), the distribution becomes equivalent to the Fisher distribution with \(\nu_1\) and \(\nu_2\) degrees of freedom.

Implementation: \texttt{scipy.stats.ncf}

Noncentral t Distribution

The distribution of the ratio

\[
\frac{U + \lambda}{\chi_{\nu}/\sqrt{\nu}}
\]
where $U$ and $\chi_\nu$ are independent and distributed as a standard normal and chi with $\nu$ degrees of freedom. Note $\lambda > 0$ and $\nu > 0$.

\[
\begin{align*}
    f(x; \lambda, \nu) &= \frac{\nu^{\nu/2} \Gamma(\nu + 1)}{2^{\nu/2} \lambda^{\nu/2} (\nu + x^2)^{\nu/2} \Gamma(\nu/2)} \\
    &\quad \times \left\{ \frac{\sqrt{2} \lambda x \text{F}_1 \left( \frac{\nu}{2} + 1; \frac{1}{2}; \frac{\lambda^2 x^2}{2(\nu + x^2)} \right)}{(\nu + x^2) \Gamma \left( \frac{\nu + 1}{2} \right)} \\
    &\quad - \frac{\text{F}_1 \left( \frac{\nu + 1}{2}; \frac{1}{2}; \frac{\lambda^2 x^2}{2(\nu + x^2)} \right)}{\sqrt{\nu + x^2} \Gamma \left( \frac{\nu}{2} + 1 \right)} \right\} \\
    &= \frac{\Gamma(\nu + 1)}{2^{(\nu-1)/2} \sqrt{\pi} \Gamma(\nu/2)} \exp \left[ -\frac{\nu \lambda^2}{\nu + x^2} \right] \\
    &\quad \times \left( \frac{\nu}{\nu + x^2} \right)^{(\nu-1)/2} H_{\nu} \left( -\frac{\lambda x}{\sqrt{\nu + x^2}} \right)
\end{align*}
\]

\[
F(x; \lambda, \nu) = \begin{cases} 
    \tilde{F}_{\nu, \mu}(x) & x \geq 0 \\
    1 - \tilde{F}_{\nu, -\mu}(x) & x < 0
\end{cases}
\]

where

\[
\begin{align*}
    \tilde{F}_{\nu, \mu}(x) &= \Phi(-\mu) + \frac{1}{2} \sum_{j=0}^{\infty} [p_j I_y \left( j + 1; \frac{\nu}{2} \right) + q_j I_y \left( j + 1; \frac{\nu}{2} \right)] \\
    y &= \frac{x^2}{\nu^2 + \nu} \\
    p_j &= \frac{e^{-\mu^2/2}}{j!} \left( \frac{\mu^2}{2} \right)^j \\
    q_j &= \frac{\mu e^{-\mu^2/2}}{\sqrt{2} \Gamma(j + 3/2)} \left( \frac{\mu^2}{2} \right)^j
\end{align*}
\]

where $I_y(a, b)$ is the regularized incomplete beta function and Airy’s $Hh$ function is $H_{\nu}(x) = \frac{1}{\Gamma(\nu+1)} \int_0^\infty t^{\nu} e^{-\frac{(t+x)^2}{2}} dt$.

Implementation: `scipy.stats.nct`

**Normal Distribution**

\[
\begin{align*}
    f(x) &= \frac{e^{-x^2/2}}{\sqrt{2\pi}} \\
    F(x) &= \Phi(x) = \frac{1}{2} + \frac{1}{2} \text{erf} \left( \frac{x}{\sqrt{2}} \right) \\
    G(q) &= \Phi^{-1}(q)
\end{align*}
\]

\[
\begin{align*}
    m_d &= m_n = \mu = 0 \\
    \mu_2 &= 1 \\
    \gamma_1 &= 0 \\
    \gamma_2 &= 0
\end{align*}
\]
\[ h[X] = \log \left( \sqrt{2\pi e} \right) \approx 1.4189385332046727418 \]

Implementation: \texttt{scipy.stats.norm}

**Normal Inverse Gaussian Distribution**

The probability density function is given by:

\[
f(x; a, b) = \frac{a \exp \left( \sqrt{a^2 - b^2 + bx} \right)}{\pi \sqrt{1 + x^2}} K_1 \left( a \sqrt{1 + x^2} \right),
\]

where \(x\) is a real number, the parameter \(a\) is the tail heaviness and \(b\) is the asymmetry parameter satisfying \(a > 0\) and \(|b| \leq a\). \(K_1\) is the modified Bessel function of second kind (\texttt{scipy.special.k1}).

A normal inverse Gaussian random variable with parameters \(a\) and \(b\) can be expressed as \(X = bV + \sqrt(V)X\) where \(X\) is \texttt{norm(0,1)} and \(V\) is \texttt{invgauss(mu=1/sqrt(a**2 - b**2))}. Hence, the normal inverse Gaussian distribution is a special case of normal variance-mean mixtures.

Another common parametrization of the distribution is given by the following expression of the pdf:

\[
g(x, \alpha, \beta, \delta, \mu) = \frac{\alpha \delta K_1 \left( \alpha \sqrt{\delta^2 + (x - \mu)^2} \right)}{\pi \sqrt{\delta^2 + (x - \mu)^2}} e^{\delta \sqrt{\alpha^2 - \beta^2 + \beta(x-\mu)}}
\]

In SciPy, this corresponds to \(a = \alpha \delta, b = \beta \delta, \text{loc} = \mu, \text{scale} = \delta\).

Implementation: \texttt{scipy.stats.norminvgauss}

**Pareto Distribution**

One shape parameter \(b > 0\) and support \(x \geq 1\). The standard form is

\[
f(x; b) = \frac{b}{x^{b+1}}
\]

\[
F(x; b) = 1 - \frac{1}{x^b}
\]

\[
G(q; b) = (1 - q)^{-1/b}
\]

\[
\mu = \frac{b}{b - 1} \quad b > 1
\]

\[
\mu_2 = \frac{b}{(b - 2)(b - 1)^2} \quad b > 2
\]

\[
\gamma_1 = \frac{2(b + 1)\sqrt{b - 2}}{(b - 3)\sqrt{b}} \quad b > 3
\]

\[
\gamma_2 = \frac{6(b^3 + b^2 - 6b - 2)}{b(b^2 - 7b + 12)} \quad b > 4
\]

\[
h(X) = \frac{1}{c} + 1 - \log(c)
\]

Implementation: \texttt{scipy.stats.pareto}
Pareto Second Kind (Lomax) Distribution

This is Pareto of the first kind with \( L = -1.0 \). There is one shape parameter \( c > 0 \) and support \( x \geq 0 \).

\[
\begin{align*}
  f(x;c) &= \frac{c}{(1+x)^{c+1}} \\
  F(x;c) &= 1 - \frac{1}{(1+x)^c} \\
  G(q;c) &= (1-q)^{-1/c} - 1 \\
  h[X] &= \frac{1}{c} + 1 - \log(c).
\end{align*}
\]

Implementation: \texttt{scipy.stats.lomax}

Power Log Normal Distribution

A generalization of the log-normal distribution with shape parameters \( \sigma > 0, c > 0 \) and support \( x \geq 0 \).

\[
\begin{align*}
  f(x;\sigma,c) &= \frac{c}{x\sigma} \phi \left( \frac{\log x}{\sigma} \right) \left( \Phi \left( -\frac{\log x}{\sigma} \right) \right)^{c-1} \\
  F(x;\sigma,c) &= 1 - \left( \Phi \left( -\frac{\log x}{\sigma} \right) \right)^c \\
  G(q;\sigma,c) &= \exp \left( -\sigma \Phi^{-1} \left( (1-q)^{1/c} \right) \right) \\
  \mu'_n &= \int_0^1 \exp \left( -n\sigma \Phi^{-1} \left( y^{1/c} \right) \right) dy \\
  \mu &= \mu'_1 \\
  \mu_2 &= \mu'_2 - \mu^2 \\
  \gamma_1 &= \frac{\mu'_3 - 3\mu\mu_2 - \mu^3}{\mu_2^2} \\
  \gamma_2 &= \frac{\mu'_4 - 4\mu\mu'_3 - 6\mu^2\mu_2 - \mu^4}{\mu_2^2} - 3
\end{align*}
\]

This distribution reduces to the log-normal distribution when \( c = 1 \).

Implementation: \texttt{scipy.stats.powerlognorm}

Power Normal Distribution

A generalization of the normal distribution, with one shape parameter \( c > 0 \) and support \( x \geq 0 \).

\[
\begin{align*}
  f(x;c) &= c\phi(x) \left( \Phi \left( -x \right) \right)^{c-1} \\
  F(x;c) &= 1 - \left( \Phi \left( -x \right) \right)^c \\
  G(q;c) &= -\Phi^{-1} \left( (1-q)^{1/c} \right) \\
  \mu'_n &= (-1)^n \int_0^1 \left[ \Phi^{-1} \left( y^{1/c} \right) \right]^n dy
\end{align*}
\]
\[
\begin{align*}
\mu &= \mu_1' \\
\mu_2 &= \mu_1' - \mu_2 \\
\gamma_1 &= \frac{\mu_3' - 3\mu_2' - \mu_3}{\mu_2^{3/2}} \\
\gamma_2 &= \frac{\mu_4' - 4\mu_3' - 6\mu_2' - \mu_4}{\mu_2^2} - 3
\end{align*}
\]

For \( c = 1 \) this reduces to the normal distribution.

Implementation: \texttt{scipy.stats.powernorm}

**Power-function Distribution**

A special case of the beta distribution with \( b = 1 \). There is one shape parameter \( a > 0 \) and support \( x \in [0, 1] \).

\[
\begin{align*}
\mu &= \frac{a}{a+1} \\
\mu_2 &= \frac{a(a+2)}{(a+1)^2} \\
\gamma_1 &= 2(1-a)\sqrt{\frac{a+2}{a(a+3)}} \\
\gamma_2 &= \frac{6(a^3-a^2-6a+2)}{a(a+3)(a+4)} \\
m_d &= 1 \\
&= 1 - \frac{1}{a} - \log(a)
\end{align*}
\]

Implementation: \texttt{scipy.stats.powerlaw}

**R-distribution Distribution**

A general-purpose distribution with a variety of shapes controlled by one shape parameter \( c > 0 \). The support of the standard distribution is \( x \in [-1, 1] \).

\[
\begin{align*}
\mu &= \frac{(1-x^2)^{c/2-1}}{B\left(\frac{1}{2}, \frac{c}{2}\right)} \\
F(x;c) &= \frac{1}{2} + \frac{x}{B\left(\frac{1}{2}, \frac{c}{2}\right)} {}_2F_1\left(\frac{1}{2}, 1 - \frac{c}{2}; \frac{3}{2}; x^2\right) \\
\mu'_n &= \frac{(1+(-1)^n)}{2} \frac{B\left(\frac{n+1}{2}, \frac{c}{2}\right)}{B\left(\frac{n}{2}, \frac{c}{2}\right)}
\end{align*}
\]

The R-distribution with parameter \( n \) is the distribution of the correlation coefficient of a random sample of size \( n \) drawn from a bivariate normal distribution with \( \rho = 0 \). The mean of the standard distribution is always zero and as the sample size grows, the distribution’s mass concentrates more closely about this mean.

Implementation: \texttt{scipy.stats.rdist}
Rayleigh Distribution

This is a special case of the Chi distribution with $L = 0.0$ and $\nu = 2$ (no location parameter is generally used), the mode of the distribution is $S$.

$$f(r) = re^{-r^2/2}$$
$$F(r) = 1 - e^{-r^2/2}$$
$$G(q) = \sqrt{-2\log(1-q)}$$

$$\mu = \sqrt{\frac{\pi}{2}}$$
$$\mu_2 = \frac{4 - \pi}{2}$$
$$\gamma_1 = \frac{2(\pi - 3)\sqrt{\pi}}{(4 - \pi)^{3/2}}$$
$$\gamma_2 = \frac{24\pi - 6\pi^2 - 16}{(4 - \pi)^2}$$
$$m_d = 1$$
$$m_n = \sqrt{2\log(2)}$$
$$h[X] = \frac{\gamma}{2} + \log\left(\frac{e}{\sqrt{2}}\right)$$
$$\mu_n' = \sqrt{2\pi}\Gamma\left(\frac{n}{2} + 1\right)$$

Implementation: `scipy.stats.rayleigh`

Rice Distribution

There is one shape parameter $b \geq 0$ (the “distance from the origin”) and the support is $x \geq 0$.

$$f(x; b) = x\exp\left(-\frac{x^2 + b^2}{2}\right)I_0(xb)$$
$$F(x; b) = \int_0^x \alpha\exp\left(-\frac{\alpha^2 + b^2}{2}\right)I_0(ab)\,d\alpha$$

were $I_0(y)$ is the modified Bessel function of the first kind of order 0.

$$\mu_n' = \sqrt{2\pi}\Gamma\left(1 + \frac{n}{2}\right)\Phi\left(-\frac{n}{2}; 1; -\frac{b^2}{2}\right)$$

Implementation: `scipy.stats.rice`

Reciprocal Inverse Gaussian Distribution

The pdf is found from the inverse gaussian (IG), $f_{RIG}(x; \mu) = \frac{1}{x}f_{IG}\left(\frac{1}{x}; \mu\right)$ defined for $x \geq 0$ as

$$f_{IG}(x; \mu) = \frac{1}{\sqrt{2\pi x^3}}\exp\left(-\frac{(x - \mu)^2}{2x\mu^2}\right),$$
$$F_{IG}(x; \mu) = \Phi\left(\frac{\mu - x}{\sqrt{x}/\mu}\right) + \exp\left(\frac{2}{\mu}\right)\Phi\left(-\frac{1}{\sqrt{x}}\frac{x + \mu}{\mu}\right)$$
\[ f_{RIG}(x; \mu) = \frac{1}{\sqrt{2\pi x}} \exp\left(-\frac{(1-\mu x)^2}{2x\mu^2}\right) \]

\[ F_{RIG}(x; \mu) = 1 - F_{IG}\left(\frac{1}{x}, \mu\right) \]

\[ = 1 - \Phi\left(\frac{1}{\sqrt{x}} \frac{1-\mu x}{\mu}\right) - \exp\left(\frac{2}{\mu}\right) \Phi\left(-\frac{1}{\sqrt{x}} \frac{1 + \mu x}{\mu}\right) \]

Implementation: \texttt{scipy.stats.recipinvgauss}

**Semicircular Distribution**

Defined on \( x \in [-1, 1] \)

\[ f(x) = \frac{2}{\pi} \sqrt{1-x^2} \]

\[ F(x) = \frac{1}{2} + \frac{1}{\pi} \left[ x\sqrt{1-x^2} + \arcsin x \right] \]

\[ G(q) = F^{-1}(q) \]

\[ m_d = m_n = \mu = 0 \]

\[ \mu_2 = \frac{1}{4} \]

\[ \gamma_1 = 0 \]

\[ \gamma_2 = -1 \]

\[ h[X] = 0.64472988584940017414. \]

Implementation: \texttt{scipy.stats.semicircular}

**Studentized Range Distribution**

This distribution has two shape parameters, \( k > 1 \) and \( \nu > 0 \), and the support is \( x \geq 0 \).

\[ f(x; k, \nu) = \frac{k(k-1)\nu^{\nu/2}}{\Gamma(\nu/2)2^{\nu/2-1}} \int_0^\infty \int_{-\infty}^\infty s^{\nu-1}e^{-\nu s^2/2}\phi(z)\phi(sx + z)[\Phi(sx + z) - \Phi(z)]^{k-2}dz\,ds \]

\[ F(q; k, \nu) = \frac{k\nu^{\nu/2}}{\Gamma(\nu/2)2^{\nu/2-1}} \int_0^\infty \int_{-\infty}^\infty s^{\nu-1}e^{-\nu s^2/2}\phi(z)[\Phi(sq + z) - \Phi(z)]^{k-1}dz\,ds \]

Note: \( \phi(z) \) and \( \Phi(z) \) represent the normal PDF and normal CDF, respectively.

When \( \nu \) exceeds 100,000, the asymptotic approximation of \( F(x; k, \nu = \infty) \) is used:

\[ F(x; k, \nu = \infty) = k \int_{-\infty}^\infty \phi(z)[\Phi(x + z) - \Phi(z)]^{k-1}dz \]

Implementation: \texttt{scipy.stats.studentized_range}
Student t Distribution

There is one shape parameter $\nu > 0$ and the support is $x \in \mathbb{R}$.

$$\begin{align*}
  f(x;\nu) &= \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2}) \left[1 + \frac{x^2}{\nu}\right]^\frac{\nu+1}{2}} \\
  F(x;\nu) &= \begin{cases} 
  \frac{1}{2} I \left(\frac{\nu}{\nu+x^2}; \frac{\nu}{2}, \frac{1}{2}\right) & x \leq 0 \\
  1 - \frac{1}{2} I \left(\frac{\nu}{\nu+x^2}; \frac{\nu}{2}, \frac{1}{2}\right) & x \geq 0 
\end{cases} \\
  G(q;\nu) &= \begin{cases} 
  \frac{1}{\nu} \left[ I^{-1}(2q, \frac{\nu}{2}) - I^{-1}(2q, \frac{\nu}{2}, \frac{1}{2}) \right] & q \leq \frac{1}{2} \\
  \frac{1}{\nu} \left[ I^{-1}(2q, \frac{\nu}{2}, \frac{1}{2}) - I^{-1}(2q, \frac{\nu}{2}) \right] & q \geq \frac{1}{2}
\end{cases}
\end{align*}$$

where $I(a; x) = \frac{\Gamma(a+1)}{\Gamma(a)} \int_0^x t^{a-1} (1-t)^{a-1} dt$ is the incomplete beta integral and $I^{-1}(a, b; x) = y$ is the inverse incomplete beta function. As $\nu \to \infty$, this distribution approaches the standard normal distribution.

$$h[X] = \frac{\nu+1}{2} \left[ \psi\left(\frac{1+\nu}{2}\right) - \psi\left(\frac{\nu}{2}\right) \right] + \ln \left[ \sqrt{n} B\left(\frac{\nu}{2}, \frac{1}{2}\right) \right]$$

where $\psi(x)$ is the digamma function and $B(x, y)$ is the beta function.

References


Implementation: scipy.stats.t

Trapezoidal Distribution

Two shape parameters $c \in [0, 1], d \in [0, 1]$ giving the distances to the first and second modes as a percentage of the total extent of the non-zero portion. The location parameter is the start of the non-zero portion, and the scale-parameter is the width of the non-zero portion. In standard form we have $x \in [0, 1]$.

$$\begin{align*}
  u(c,d) &= \frac{2}{d-c+1} \\
  f(x;c,d) &= \begin{cases} 
  \frac{u}{x} & x < c \\
  u & c \leq x \leq d \\
  u \frac{1-x}{d-x} & x > d
\end{cases} \\
  F(x;c,d) &= \begin{cases} 
  \frac{uc}{x} + u(x-c) & x < c \\
  1 - u(1-x)^2 & c \leq x \leq d \\
  \frac{\sqrt{qc(d-c+1)}}{x} & x > d
\end{cases} \\
  G(q;c,d) &= \begin{cases} 
  \frac{q}{n} + \frac{c}{d} & q \leq c \\
  1 - \frac{2(1-q)(1-d)}{u} & q > d
\end{cases}
\end{align*}$$

Implementation: scipy.stats.trapezoid
Triangular Distribution

One shape parameter $c \in [0, 1]$ giving the distance to the peak as a percentage of the total extent of the non-zero portion. The location parameter is the start of the non-zero portion, and the scale-parameter is the width of the non-zero portion. In standard form we have $x \in [0, 1]$.

$$
 f(x; c) = \begin{cases} 
 \frac{2x}{c} & x < c \\
 \frac{1-x}{1-c} & x \geq c 
\end{cases} \\
 F(x; c) = \begin{cases} 
 \frac{x^2}{c^2} & x < c \\
 \frac{x^2 - 2x + x}{c^2} & x \geq c 
\end{cases} \\
 G(q; c) = \begin{cases} 
 \frac{\sqrt{cq}}{1 - \sqrt{(1-c)(1-q)}} & q < c \\
 1 - \sqrt{(1-c)(1-q)} & q \geq c 
\end{cases}
$$

$$
\mu = \frac{c}{3} + \frac{1}{3} \\
\mu_2 = \frac{1 - c + c^2}{18} \\
\gamma_1 = \frac{\sqrt{2}(2c-1)(c+1)(c-2)}{5(1-c+c^2)^{3/2}} \\
\gamma_2 = -\frac{3}{5} \\

h(X) = \log \left( \frac{1}{2} \sqrt{e} \right) \\
\approx -0.19314718055994530942.
$$

Implementation: `scipy.stats.triang`

Truncated Exponential Distribution

This is an exponential distribution defined only over a certain region $0 \leq x \leq B$. In standard form this is

$$
 f(x; B) = \frac{e^{-x}}{1 - e^{-B}} \\
 F(x; B) = \frac{1 - e^{-x}}{1 - e^{-B}} \\
 G(q; B) = -\log\left(1 - q + qe^{-B}\right) \\

\mu'_n = \Gamma(1+n) - \Gamma(1+n,B) \\

h[X] = \log\left(e^B - 1\right) + \frac{1 + e^B (B - 1)}{1 - e^B}.
$$

Implementation: `scipy.stats.truncexpon`
Truncated Normal Distribution

A normal distribution restricted to lie within a certain range given by two parameters \( A \) and \( B \). Notice that this \( A \) and \( B \) correspond to the bounds on \( x \) in standard form. For \( x \in [A, B] \) we get

\[
\begin{align*}
  f(x; A, B) &= \frac{\phi(x)}{\Phi(B) - \Phi(A)} \\
  F(x; A, B) &= \frac{\Phi(x) - \Phi(A)}{\Phi(B) - \Phi(A)} \\
  G(q; A, B) &= \Phi^{-1}(q\Phi(B) + \Phi(A)(1-q))
\end{align*}
\]

where

\[
\begin{align*}
  \phi(x) &= \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \\
  \Phi(x) &= \int_{-\infty}^{x} \phi(u) du.
\end{align*}
\]

\[
\begin{align*}
  \mu &= \frac{\phi(A) - \phi(B)}{\Phi(B) - \Phi(A)} \\
  \mu_2 &= 1 + \frac{A\phi(A) - B\phi(B)}{\Phi(B) - \Phi(A)} - \left(\frac{\phi(A) - \phi(B)}{\Phi(B) - \Phi(A)}\right)^2
\end{align*}
\]

Implementation: scipy.stats.truncnorm

Tukey-Lambda Distribution

There is one shape parameter \( \lambda \). The support is \( x \in \mathbb{R} \).

\[
\begin{align*}
  f(x; \lambda) &= F'(x; \lambda) = \frac{1}{G'(F(x; \lambda); \lambda)} = \frac{1}{F^{-1}(x; \lambda) + [1 - F(x; \lambda)]^{\lambda-1}} \\
  F(x; \lambda) &= G^{-1}(x; \lambda) \\
  G(p; \lambda) &= \frac{p^\lambda - (1-p)^\lambda}{\lambda}
\end{align*}
\]

\[
\begin{align*}
  \mu &= 0 \\
  \mu_2 &= \int_0^1 G^2(p; \lambda) \, dp \\
  &= \frac{2\Gamma(\lambda + \frac{3}{2}) - \lambda^2 - 4\lambda \sqrt{\pi} \Gamma(\lambda)(1 - 2\lambda)}{\lambda^2 (1 + 2\lambda) \Gamma(\lambda + \frac{3}{2})} \\
  \gamma_1 &= 0 \\
  \gamma_2 &= \frac{\mu_4}{\mu_2^2} - 3 \\
  \mu_4 &= \frac{3\Gamma(\lambda) \Gamma(\lambda + \frac{1}{2}) 2^{-2\lambda}}{\lambda^3 \Gamma(2\lambda + \frac{3}{2})} + \frac{2}{\lambda^4 (1 + 4\lambda)} - \frac{2\sqrt{3}\Gamma(\lambda) 2^{-6\lambda} 3^\lambda \Gamma(\lambda + \frac{1}{2}) \Gamma(\lambda + \frac{2}{3})}{\lambda^3 \Gamma(2\lambda + \frac{3}{2}) \Gamma(\lambda + \frac{1}{2})}.\]
\]
Notice that the \( \lim_{\lambda \to 0} G(p; \lambda) = \log \frac{p}{1-p} \)

\[
\log \left( \frac{p}{1-p} \right) = \log \left( \frac{\mu}{\mu^2} \right)
\]

\[
h[X] = \int_0^1 \log |G'(p)| dp
\]

\[
= \int_0^1 \log \left[ p^{\lambda-1} + (1-p)^{\lambda-1} \right] dp.
\]

Implementation: `scipy.stats.tukeylambda`

### Uniform Distribution

Standard form \( x \in [0, 1] \). In general form, the lower limit is \( L \), the upper limit is \( S + L \).

\[
f(x) = 1
\]

\[
F(x) = x
\]

\[
G(q) = q
\]

\[
\mu = \frac{1}{2}
\]

\[
\mu_2 = \frac{1}{12}
\]

\[
\gamma_1 = 0
\]

\[
\gamma_2 = -\frac{6}{5}
\]

\[
h[X] = 0
\]

Implementation: `scipy.stats.uniform`

### Von Mises Distribution

There is one shape parameter \( \kappa > 0 \), with support \( x \in [-\pi, \pi] \). For values of \( \kappa < 100 \) the PDF and CDF formulas below are used. Otherwise, a normal approximation with variance \( 1/\kappa \) is used. [Note that the PDF and CDF functions below are periodic with period \( 2\pi \). If an input outside \( x \in [-\pi, \pi] \) is given, it is converted to the equivalent angle in this range.]

\[
f(x; \kappa) = \frac{e^{\kappa \cos x}}{2\pi I_0(\kappa)}
\]

\[
F(x; \kappa) = \frac{1}{2} + \frac{x}{2\pi} + \sum_{k=1}^{\infty} \frac{I_k(\kappa) \sin(kx)}{I_0(\kappa)} \pi k
\]

\[
G(q; \kappa) = F^{-1}(x; \kappa)
\]

where \( I_k(\kappa) \) is a modified Bessel function of the first kind.

\[
\mu = 0
\]

\[
\mu_2 = \int_{-\pi}^{\pi} x^2 f(x; \kappa) dx
\]

\[
\gamma_1 = 0
\]

\[
\gamma_2 = \frac{\int_{-\pi}^{\pi} x^4 f(x; \kappa) dx}{\mu_2^2} - 3
\]

This can be used for defining circular variance.

Implementation: `scipy.stats.vonmises`
Wald Distribution

Special case of the Inverse Normal with shape parameter set to 1.0. It has support $x \geq 0$.

$$
\begin{align*}
f(x) &= \frac{1}{\sqrt{2\pi x^3}} \exp \left( -\frac{(x-1)^2}{2x} \right).
F(x) &= \Phi \left( \frac{x-1}{\sqrt{x}} \right) + \exp(2) \Phi \left( -\frac{x+1}{\sqrt{x}} \right)
G(q; \mu) &= F^{-1}(q; \mu)
\end{align*}
$$

$\mu = 1$
$\mu_2 = 1$
$\gamma_1 = 3$
$\gamma_2 = 15$
$m_d = \frac{1}{2} (\sqrt{13} - 3)$

Implementation: scipy.stats.wald

Weibull Maximum Extreme Value Distribution

Defined for $x < 0$ and $c > 0$.

$$
\begin{align*}
f(x; c) &= c (-x)^{c-1} \exp (-(-x)^c)
F(x; c) &= \exp (-(-x)^c)
G(q; c) &= -(-\log q)^{1/c}
\end{align*}
$$

The mean is the negative of the right-skewed Frechet distribution given above, and the other statistical parameters can be computed from

$$
\begin{align*}
\mu_n &= (-1)^n \Gamma \left( 1 + \frac{n}{c} \right).
\mu &= -\Gamma \left( 1 + \frac{1}{c} \right)
\mu_2 &= \Gamma \left( 1 + \frac{2}{c} \right) - \Gamma^2 \left( 1 + \frac{1}{c} \right)
\gamma_1 &= -\Gamma \left( 1 + \frac{1}{c} \right) - 3 \Gamma \left( 1 + \frac{2}{c} \right) \Gamma \left( 1 + \frac{1}{c} \right) + 2 \Gamma^3 \left( 1 + \frac{1}{c} \right)
\gamma_2 &= \frac{\Gamma \left( 1 + \frac{2}{c} \right) - 4 \Gamma \left( 1 + \frac{1}{c} \right) \Gamma \left( 1 + \frac{3}{c} \right) + 6 \Gamma^2 \left( 1 + \frac{1}{c} \right) \Gamma \left( 1 + \frac{2}{c} \right) - 3 \Gamma^4 \left( 1 + \frac{1}{c} \right)}{\mu_2^2} - 3
m_d &= \begin{cases} 
- \left( \frac{c-1}{c} \right)^{\frac{1}{2}} & \text{if } c > 1 \\
0 & \text{if } c \leq 1 
\end{cases}
m_n &= -\ln (2)^{\frac{1}{2}}
\end{align*}
$$

$h[X] = -\frac{\gamma}{c} - \log(c) + \gamma + 1$

where $\gamma$ is Euler’s constant and equal to

$\gamma \approx 0.57721566490153286061$.

Implementation: scipy.stats.weibull_max
Weibull Minimum Extreme Value Distribution

A type of extreme-value distribution with a lower bound. Defined for \( x > 0 \) and \( c > 0 \)

\[
\begin{align*}
f(x; c) &= cx^{c-1} \exp(-x^c) \\
F(x; c) &= 1 - \exp(-x^c) \\
G(q; c) &= [-\log(1 - q)]^{1/c}
\end{align*}
\]

\[
\mu'_n = \Gamma \left( 1 + \frac{n}{c} \right)
\]

\[
\begin{align*}
\mu &= \Gamma \left( 1 + \frac{1}{c} \right) \\
\mu_2 &= \Gamma \left( 1 + \frac{2}{c} \right) - \Gamma^2 \left( 1 + \frac{1}{c} \right) \\
\gamma_1 &= \frac{\mu_3/2}{\mu_2^3/2} \\
\gamma_2 &= \frac{\mu_4}{\mu_2^2} - 3 \left( 1 + \frac{1}{c} \right) \\
m_d &= \begin{cases} 
\left( \frac{c-1}{c} \right)^{1/2} & \text{if } c > 1 \\
0 & \text{if } c \leq 1
\end{cases} \\
m_n &= \ln \left( 2^{1/2} \right)
\end{align*}
\]

\[
h[X] = -\frac{\gamma}{c} - \log(c) + \gamma + 1
\]

where \( \gamma \) is Euler’s constant and equal to \( \gamma \approx 0.57721566490153286061 \).

Implementation: `scipy.stats.weibull_min`

Wrapped Cauchy Distribution

There is one shape parameter \( c \in (0, 1) \) with support \( x \in [0, 2\pi] \).

\[
\begin{align*}
f(x; c) &= \frac{1 - c^2}{2\pi (1 + c^2 - 2c \cos x)} \\
g_c(x) &= \frac{1}{\pi} \arctan \left( \frac{1 + c \tan \left( \frac{x}{2} \right)}{1 - c} \right) \\
r_c(q) &= 2 \arctan \left( \frac{1 - c}{1 + c} \tan(\pi q) \right) \\
F(x; c) &= \begin{cases} 
g_c(x) & 0 \leq x < \pi \\
1 - g_c(2\pi - x) & \pi \leq x \leq 2\pi
\end{cases} \\
G(q; c) &= \begin{cases} 
r_c(q) & 0 \leq q < \frac{1}{2} \\
2\pi - r_c(1 - q) & \frac{1}{2} \leq q \leq 1
\end{cases}
\end{align*}
\]

\[
h[X] = \log \left( 2\pi \left( 1 - c^2 \right) \right).
\]

Implementation: `scipy.stats.wrapcauchy`
Universal Non-Uniform Random Number Sampling in SciPy

SciPy provides an interface to many universal non-uniform random number generators to sample random variates from a wide variety of univariate continuous and discrete distributions. Implementations of a fast C library called UNU.RAN are used for speed and performance. Please look at UNU.RAN's documentation for an in-depth explanation of these methods. It is heavily referred to for writing this tutorial and the documentation of all the generators.

Introduction

Random variate generation is the small field of research that deals with algorithms to generate random variates from various distributions. It is common to assume that a uniform random number generator is available. This is a program that produces a sequence of independent and identically distributed continuous U(0,1) random variates (i.e. uniform random variates on the interval (0,1)). Of course, real-world computers can never generate ideal random numbers and they cannot produce numbers of arbitrary precision but state-of-the-art uniform random number generators come close to this aim. Thus random variate generation deals with the problem of transforming such a sequence of U(0,1) random numbers into non-uniform random variates. These methods are universal and work in a black-box fashion.

Some methods to do that are:

- The Inversion method: When the inverse $F^{-1}$ of the cumulative distribution function is known, then random variate generation is easy. We just generate a uniformly U(0,1) distributed random number $U$ and return $X = F^{-1}(U)$. As closed form solutions for the inverse are rarely available, one usually needs to rely on approximations of the inverse (e.g. ndtri, stdtrit). In general, the implementation of special functions is quite slow compared to the inversion methods in UNU.RAN.

- The Rejection Method: The rejection method, often called acceptance-rejection method, has been suggested by John von Neumann in 1951\(^1\). It involves computing an upper bound to the PDF (also called the hat function) and using the inversion method to generate a random variate, say $Y$, from this bound. Then a uniform random number can be drawn between 0 to the value of the upper bound at $Y$. If this number is less than the PDF at $Y$, return the sample otherwise reject it. See TransformedDensityRejection.

- The Ratio-of-Uniforms Method: This is a type of acceptance-rejection method which uses minimal bounding rectangles to construct the hat function. See scipy.stats.rvs_ratio_uniforms.

- Inversion for Discrete Distributions: The difference compared to the continuous case is that $F$ is now a step-function. To realize this in a computer, a search algorithm is used, the simplest of which is sequential search. A uniform random number is generated from U(0, 1) and probabilities are summed until the cumulative probability exceeds the uniform random number. The index at which this happens is the required random variate and is returned.

More details on these algorithms can be found in the appendix of the UNU.RAN user manual.

When generating random variates of a distribution, two factors are important to determine the speed of a generator: the setup step and the actual sampling. Depending on the situation, different generators can be optimal. For example, if one repeatedly needs to draw large samples from a given distribution with a fixed shape parameter, a slow setup is acceptable if the sampling is fast. This is called the fixed parameter case. If one aims to generate samples of a distribution for different shape parameters (the varying parameter case), an expensive setup that needs to be repeated for each parameter would lead to very poor performance. In such a situation, a fast setup is crucial to achieve good performance. An overview of the setup and sampling speed of the different methods is shown in the table below.

---
### Methods for continuous distributions

<table>
<thead>
<tr>
<th>Method</th>
<th>Required Inputs</th>
<th>Optional Inputs</th>
<th>Setup Speed</th>
<th>Sampling Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>TransformedDensityRejection</td>
<td>pdf, dpdf</td>
<td>none</td>
<td>slow</td>
<td>fast</td>
</tr>
<tr>
<td>NumericalInverseHermite</td>
<td>cdf</td>
<td>pdf, dpdf</td>
<td>(very) slow</td>
<td>(very) fast</td>
</tr>
<tr>
<td>NumericalInversePolynomial</td>
<td>pdf</td>
<td>cdf</td>
<td>(very) slow</td>
<td>(very) fast</td>
</tr>
<tr>
<td>SimpleRatioUniforms</td>
<td>pdf</td>
<td>none</td>
<td>fast</td>
<td>slow</td>
</tr>
</tbody>
</table>

where

- pdf: probability density function
- dpdf: derivative of the pdf
- cdf: cumulative distribution function

### Methods for discrete distributions

<table>
<thead>
<tr>
<th>Method</th>
<th>Required Inputs</th>
<th>Optional Inputs</th>
<th>Setup Speed</th>
<th>Sampling Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiscreteAliasUrn</td>
<td>pv</td>
<td>pmf</td>
<td>slow</td>
<td>very fast</td>
</tr>
<tr>
<td>DiscreteGuideTable</td>
<td>pv</td>
<td>pmf</td>
<td>slow</td>
<td>very fast</td>
</tr>
</tbody>
</table>

where

- pv: probability vector
- pmf: probability mass function

For more details on the generators implemented in UNU.RAN, please refer to\(^2\) and\(^3\).

### Basic concepts of the Interface

Every generator needs to be set up before one can start sampling from it. This can be done by instantiating an object of that class. Most of the generators take a distribution object as input which contains the implementation of required methods like PDF, CDF, etc. In addition to the distribution object, one can also pass parameters used to set up the generator. It is also possible to truncate the distributions using a `domain` parameter. All generators need a stream of uniform random numbers that are transformed into random variates of the given distribution. This is done by passing a `random_state` parameter with a NumPy BitGenerator as the uniform random number generator. `random_state` can either be an integer, `np.random.Generator`, or `np.random.RandomState`.

**Warning:** Use of NumPy < 1.19.0 is discouraged as it doesn’t have a fast Cython API for generating uniform random numbers and might be too slow for practical use.

All the generators have a common `rvs` method that can be used to draw samples from the given distribution.

An example of this interface is shown below:

```python
>>> from scipy.stats.sampling import TransformedDensityRejection
>>> from math import exp

>>> class StandardNormal:
... def pdf(self, x: float) -> float:
```


As shown in the example, we first initialize a distribution object that contains an implementation of the methods required by the generator. In our case, we use the `TransformedDensityRejection` (TDR) method which requires a PDF and its derivative w.r.t. \( x \) (i.e. the variate).

**Note:** Note that the methods of the distribution (i.e. pdf, dpdf, etc) need not be vectorized. They should accept and return floats.

**Note:** One can also pass the SciPy distributions as arguments. However, note that the object doesn’t always have all the information required by some generators like the derivative of PDF for the TDR method. Relying on SciPy distributions might also reduce performance due to the vectorization of the methods like pdf and cdf. In both cases, one can implement a custom distribution object that contains all the required methods and that is not vectorized as shown in the example above.

In the above example, we have set up an object of the `TransformedDensityRejection` method to sample from a standard normal distribution. Now, we can start sampling from our distribution by calling the rvs method:

```
>>> rng.rvs()
-1.526829048388144
>>> rng.rvs((5, 3))
array([[2.06206883, 0.15205036, 1.11587367],
 [-0.30775562, 0.29879802, -0.61858268],
 [-1.01049115, 0.78853694, -0.23060766],
 [-0.60954752, 0.29071797, -0.57167182],
 [0.9331694 , -0.95605208, 1.72195199]])
```

We can also check that the samples are drawn from the correct distribution by visualizing the histogram of the samples:

```
>>> import matplotlib.pyplot as plt
>>> from scipy.stats import norm
>>> from scipy.stats.sampling import TransformedDensityRejection
>>> from math import exp

>>> class StandardNormal:
... def pdf(self, x: float) -> float:
... # note that the normalization constant isn't required
... return exp(-0.5 * x*x)
... def dpdf(self, x: float) -> float:
... return -x * exp(-0.5 * x*x)

>>> dist = StandardNormal()
>>> urng = np.random.default_rng()
>>> rng = TransformedDensityRejection(dist, random_state=urng)
>>> import matplotlib.pyplot as plt
>>> from scipy.stats import norm
>>> from scipy.stats.sampling import TransformedDensityRejection
>>> from math import exp

>>> class StandardNormal:
... def pdf(self, x: float) -> float:
... # note that the normalization constant isn't required
... return exp(-0.5 * x*x)
... def dpdf(self, x: float) -> float:
... return -x * exp(-0.5 * x*x)

>>> dist = StandardNormal()
>>> urng = np.random.default_rng()
>>> rng = TransformedDensityRejection(dist, random_state=urng)
>>> import matplotlib.pyplot as plt
>>> from scipy.stats import norm
>>> from scipy.stats.sampling import TransformedDensityRejection
>>> from math import exp

>>> class StandardNormal:
... def pdf(self, x: float) -> float:
... # note that the normalization constant isn't required
... return exp(-0.5 * x*x)
... def dpdf(self, x: float) -> float:
... return -x * exp(-0.5 * x*x)
```

(continues on next page)
```python
>>> dist = StandardNormal()
>>> urng = np.random.default_rng()
>>> rng = TransformedDensityRejection(dist, random_state=urng)
>>> rvs = rng.rvs(size=1000)
>>> x = np.linspace(rvs.min()-0.1, rvs.max()+0.1, num=1000)
>>> fx = norm.pdf(x)
>>> plt.plot(x, fx, 'r-', lw=2, label='true distribution')
>>> plt.hist(rvs, bins=20, density=True, alpha=0.8, label='random variates')
>>> plt.xlabel('x')
>>> plt.ylabel('PDF(x)')
>>> plt.title('Transformed Density Rejection Samples')
>>> plt.legend()
>>> plt.show()
```

Note: Please note the difference between the rvs method of the distributions present in `scipy.stats` and the one provided by these generators. UNU.RAN generators must be considered independent in a sense that they will generally produce a different stream of random numbers than the one produced by the equivalent distribution in `scipy.stats` for any seed. The implementation of rvs in `scipy.stats.rv_continuous` usually relies on the NumPy module `np.random` for well-known distributions (e.g., for the normal distribution, the beta distribution) and transformations of other distributions (e.g., normal inverse Gaussian `scipy.stats.norminvgauss` and the lognormal `scipy.stats.lognorm` distribution). If no specific method is implemented, `scipy.stats.rv_continuous` defaults to a numerical inversion method of the CDF that is very slow. As UNU.RAN transforms uniform random numbers differently than SciPy or NumPy, the resulting stream of RVs is different even for the same stream of uniform random numbers. For example, the random number stream of SciPy's `scipy.stats.norm` and UNU.RAN's `TransformedDensityRejection` would not be the same even for the same `random_state`:

```python
>>> from scipy.stats.sampling import norm, TransformedDensityRejection
>>> from copy import copy
>>> dist = StandardNormal()
>>> urng1 = np.random.default_rng()
>>> urng1_copy = copy(urng1)
>>> rng = TransformedDensityRejection(dist, random_state=urng1)
>>> urng2 = np.random.default_rng()
>>> urng2_copy = copy(urng2)
>>> rng = TransformedDensityRejection(dist, random_state=urng2)
```

(continues on next page)
We can pass a domain parameter to truncate the distribution:

```python
>>> rng = TransformedDensityRejection(dist, domain=(-1, 1), random_state=urng)
>>> rng.rvs((5, 3))
array([[-0.99865691, 0.38104014, 0.31633526],
 [0.88433909, -0.45181849, 0.78574461],
 [0.3337244 , 0.12924307, 0.40499404],
 [-0.51865761, 0.43252222, -0.6514866],
 [-0.82666174, 0.71525582, 0.49006743]])
```

Invalid and bad arguments are handled either by SciPy or by UNU.RAN. The latter throws a **UNURANError** that follows a common format:

**UNURANError:** [**objet id:** <object id>] <error code>: <reason> => <type of error>

where:

- **<object id>** is the ID of the object given by UNU.RAN
- **<error code>** is an error code representing a type of error.
- **<reason>** is the reason why the error occurred.
- **<type of error>** is a short description of the type of error.

The <reason> shows what caused the error. This, by itself, should contain enough information to help debug the error. In addition, <error id> and <type of error> can be used to investigate different classes of error in UNU.RAN. A complete list of all the error codes and their descriptions can be found in the Section 8.4 of the UNU.RAN user manual.

An example of an error generated by UNU.RAN is shown below:

**UNURANError:** [**objet id:** TDR.003] 50 : PDF(x) < 0.! => (generator) (possible) invalid data

This shows that UNU.RAN failed to initialize an object with ID **TDR.003** because the PDF was < 0. i.e. negative. This falls under the type “possible invalid data for the generator” and has error code 50.

Warnings thrown by UNU.RAN also follow the same format.

**Generators in scipy.stats.sampling**

**Transformed Density Rejection (TDR)**

- Required: T-concave PDF, dPDF
- Optional: mode, center
- Speed:
  - Set-up: slow
  - Sampling: fast
TDR is an acceptance/rejection method that uses the concavity of a transformed density to construct hat function and squeezes automatically. Such PDFs are called T-concave. Currently the following transformations are implemented:

\[
c = 0 : T(x) = \log(x)
\]

\[
c = -0.5 : T(x) = \frac{1}{\sqrt{x}} \text{ (Default)}
\]

In addition to the PDF, it also requires the derivative of the PDF w.r.t \( x \) (i.e. the variate). These functions must be present as methods of a python object which can then be passed to the generators to instantiate their object. The variant that is implemented uses squeezes proportional to hat function \(^1\).

An example of using this method is shown below:

```python
>>> from scipy.stats.sampling import TransformedDensityRejection
>>> from scipy.stats import norm

>>> class StandardNormal:
... def pdf(self, x):
... # note that the normalization constant is not required
... return np.exp(-0.5 * x*x)
... def dpdf(self, x):
... return -x * np.exp(-0.5 * x*x)
...

>>> dist = StandardNormal()
>>> urng = np.random.default_rng()
>>> rng = TransformedDensityRejection(dist, random_state=urng)
>>> rng.rvs()
-1.526829048388144
```

In the above example, we have used the TDR method to sample from the standard normal distribution. Note that we can drop the normalization constant while computing the PDF. This usually helps speed up the sampling stage. Also, note that the PDF doesn’t need to be vectorized. It should accept and return a scalar.

It is also possible to evaluate the inverse of the CDF of the hat distribution directly using the `ppf_hat` method.

```python
>>> rng.ppf_hat(0.5)
-0.00018050266342362759
>>> norm.ppf(0.5)
0.0

>>> u = np.linspace(0, 1, num=10)
>>> rng.ppf_hat(u)
array([-inf, -1.22227372, -0.7656556 , -0.43135731, -0.14002921,
 0.13966423, 0.43096141, 0.76517113, 1.22185606, inf])
```

Apart from the PPF method, other attributes can be accessed to see how well the generator fits the given distribution. These are:

- ‘squeeze_hat_ratio’: (area below squeeze) / (area below hat) for the generator. It is a number between 0 and 1. Closer to 1 means that the hat and the squeeze functions tightly envelop the distribution and fewer PDF evaluations are required to generate samples. The expected number of evaluations of the density is bounded by \( 1/ \)

\(^1\) UNU-RAN reference manual, Section 5.3.16, “TDR - Transformed Density Rejection”, http://statmath.wu.ac.at/software/unuran/doc/unuran.html#TDR
squeeze_hat_ratio) - 1 per sample. By default, it is kept above 0.99 but that can be changed by passing a max_squeeze_hat_ratio parameter.

- ’hat_area’: area below the hat for the generator.
- ’squeeze_area’: area below the squeeze for the generator.

```python
>>> rng.squeeze_hat_ratio
0.9947024204884917
>>> rng.hat_area
2.510253139791547
>>> rng.squeeze_area
2.4969548741894876
>>> rng.squeeze_hat_ratio == rng.squeeze_area / rng.hat_area
True
```

The distribution can be truncated by passing a domain parameter:

```python
>>> urng = np.random.default_rng()
>>> rng = TransformedDensityRejection(dist, domain=[0, 1], random_state=urng)
>>> rng.rvs(10)
array([0.05452512, 0.97251362, 0.49955877, 0.82789729, 0.33048885,
 0.55558548, 0.23168323, 0.13423275, 0.73176575, 0.35739799])
```

If the domain is not specified, the support method of the dist object is used to determine the domain:

```python
>>> class StandardNormal:
... def pdf(self, x):
... return np.exp(-0.5 * x*x)
... def dpdf(self, x):
... return -x * np.exp(-0.5 * x*x)
... def support(self):
... return -np.inf, np.inf
... >>> dist = StandardNormal()
>>> urng = np.random.default_rng()
>>> rng = TransformedDensityRejection(dist, random_state=urng)
>>> rng.rvs(10)
array([-1.52682905, 2.06206883, 0.15205036, 1.11587367, -0.30775562,
 0.29879802, -0.61858268, -1.01049115, 0.78853694, -0.23060766])
```

If the dist object does not provide a support method, the domain is assumed to be (-np.inf, np.inf).

To increase squeeze_hat_ratio, pass max_squeeze_hat_ratio:

```python
>>> dist = StandardNormal()
>>> rng = TransformedDensityRejection(dist, max_squeeze_hat_ratio=0.999,
... random_state=urng)
>>> rng.squeeze_hat_ratio
0.999364900465214
```

Let's see how this affects the callbacks to the PDF method of the distribution:

```python
>>> from copy import copy
>>> class StandardNormal:
... ```
... def __init__(self):
... self.callbacks = 0
... def pdf(self, x):
... self.callbacks += 1
... return np.exp(-0.5 * x * x)
... def dpdf(self, x):
... return -x * np.exp(-0.5 * x * x)

>>> dist1 = StandardNormal()
>>> urng1 = np.random.default_rng()
>>> urng2 = copy(urng1)
>>> rng1 = TransformedDensityRejection(dist1, random_state=urng1)
>>> dist1.callbacks # evaluations during setup
139
>>> dist1.callbacks = 0 # don't consider evaluations during setup
>>> rvs = rng1.rvs(100000)
>>> dist1.callbacks # evaluations during sampling
527
>>> dist2 = StandardNormal()
>>> # use the same stream of uniform random numbers
>>> rng2 = TransformedDensityRejection(dist2, max_squeeze_hat_ratio=0.999,
... random_state=urng2)
>>> dist2.callbacks # evaluations during setup
467
>>> dist2.callbacks = 0 # don't consider evaluations during setup
>>> rvs = rng2.rvs(100000)
>>> dist2.callbacks # evaluations during sampling
84

As we can see, far fewer PDF evaluations are required during sampling when we increase the `squeeze_hat_ratio`. The PPF-hat function is also more accurate:

```python
>>> abs(norm.ppf(0.975) - rng1.ppf_hat(0.975))
0.0027054565421578136
>>> abs(norm.ppf(0.975) - rng2.ppf_hat(0.975))
0.0004782408447630044
```

Though, notice that this comes at the cost of increased PDF evaluations during setup.

For densities with modes not close to 0, it is suggested to set either the mode or the center of the distribution by passing `mode` or `center` parameters. The latter is the approximate location of the mode or the mean of the distribution. This location provides some information about the main part of the PDF and is used to avoid numerical problems.

```python
>>> # mode = 0 for our distribution
>>> # if exact mode is not available, pass 'center' parameter instead
>>> rng = TransformedDensityRejection(dist, mode=0.)
```

By default, the method uses 30 construction points to construct the hat. This can be changed by passing a `construction_points` parameter which can either be an array of construction points or an integer representing the number of construction points to use.

```python
>>> rng = TransformedDensityRejection(dist,
...    construction_points=[-5, 0, 5])
```
This method accepts many other set-up parameters. See the documentation for an exclusive list. More information of the parameters and the method can be found in Section 5.3.16 of the UNU.RAN user manual.

Please see Page 207, 1 and 2 for more details on this method.

References

Discrete Alias Urn (DAU)

- Required: probability vector (PV) or the PMF along with a finite domain
- Speed:
 - Set-up: slow (linear with the vector-length)
 - Sampling: very fast

DAU samples from distributions with arbitrary but finite probability vectors (PV) of length N. The algorithm is based on an ingenious method by A.J. Walker and requires a table of size (at least) N. It needs one random number and only one comparison for each generated random variate. The setup time for constructing the tables is O(N).

```python
>>> import numpy as np
>>> from scipy.stats.sampling import DiscreteAliasUrn
>>> pv = [0.18, 0.02, 0.8]
>>> urng = np.random.default_rng()
>>> rng = DiscreteAliasUrn(pv, random_state=urng)
>>> rng.rvs()
0
```

By default, the probability vector is indexed starting at 0. However, this can be changed by passing a domain parameter. When domain is given in combination with the PV, it has the effect of relocating the distribution from \((0, \text{len}(pv))\) to \((\text{domain}[0], \text{domain}[0] + \text{len}(pv))\). domain[1] is ignored in this case.

```python
>>> rng = DiscreteAliasUrn(pv, domain=(10, 13), random_state=urng)
>>> rng.rvs()
12
```

The method also works when no probability vector but a PMF is given. In that case, a bounded (finite) domain must also be given either by passing the domain parameter explicitly or by providing a support method in the distribution object:

```python
>>> class Distribution:
...     def __init__(self, c):
...         self.c = c
...     def pmf(self, x):
...         return x**self.c
...     def support(self):
...         return (0, 10)
... >>> dist = Distribution(2)
... >>> rng = DiscreteAliasUrn(dist, random_state=urng)
```

```python
>>> rng.rvs()
10

>>> import matplotlib.pyplot as plt
>>> from scipy.stats.sampling import DiscreteAliasUrn
>>> class Distribution:
...     def __init__(self, c):
...         self.c = c
...     def pmf(self, x):
...         return x**self.c
...     def support(self):
...         return (0, 10)
...
>>> dist = Distribution(2)
>>> urng = np.random.default_rng()
>>> rng = DiscreteAliasUrn(dist, random_state=urng)
>>> rvs = rng.rvs(1000)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> x = np.arange(1, 11)
>>> fx = dist.pmf(x)
>>> fx = fx / fx.sum()
>>> ax.plot(x, fx, 'bo', label='true distribution')
>>> ax.vlines(x, 0, fx, lw=2)
>>> ax.hist(rvs, bins=np.r_[x, 11]-0.5, density=True, alpha=0.5, color='r', label='samples')
>>> ax.set_xlabel('x')
>>> ax.set_ylabel('PMF(x)')
>>> ax.set_title('Discrete Alias Urn Samples')
>>> plt.legend()
>>> plt.show()
```
Note: As `DiscreteAliasUrn` expects PMF with signature `def pmf(self, x: float) -> float`, it first vectorizes the PMF using `np.vectorize` and then evaluates it over all the points in the domain. But if the PMF is already vectorized, it is much faster to just evaluate it at each point in the domain and pass the obtained PV instead along with the domain. For example, `pmf` methods of SciPy’s discrete distributions are vectorized and a PV can be obtained by doing:

```python
>>> from scipy.stats import binom
>>> from scipy.stats.sampling import DiscreteAliasUrn
>>> dist = binom(10, 0.2)  # distribution object
>>> domain = dist.support()  # the domain of your distribution
>>> x = np.arange(domain[0], domain[1] + 1)
>>> pv = dist.pmf(x)
>>> rng = DiscreteAliasUrn(pv, domain=domain)
```

Domain is required here to relocate the distribution.

The performance can be slightly influenced by setting the size of the used table which can be changed by passing a `urn_factor` parameter.

```python
>>> # use a table twice the length of PV.
>>> urn_factor = 2
>>> rng = DiscreteAliasUrn(pv, urn_factor=urn_factor, random_state=urng)
>>> rng.rvs()
2
```

Note: It is recommended to keep this parameter under 2.

Please see\(^1\) and\(^2\) for more details on this method.

References

Polynomial interpolation based INVersion of CDF (PINV)

- Required: PDF
- Optional: CDF, mode, center
- Speed:
 - Set-up: (very) slow
 - Sampling: (very) fast

Polynomial interpolation based INVersion of CDF (PINV) is an inversion method that only requires the density function to sample from a distribution. It is based on Polynomial interpolation of the PPF and Gauss-Lobatto integration of the PDF. It provides control over the interpolation error and integration error. Its primary purpose is to provide very fast sampling which is nearly the same for any given distribution at the cost of moderate to slow setup time. It is the fastest known inversion method for the fixed-parameter case.

The inversion method is the simplest and most flexible to sample nonuniform random variates. For a target distribution with CDF F and a uniform random variate U sampled from Uniform$(0, 1)$, a random variate X is generated by transforming the uniform random variate U using the PPF (inverse CDF) of the distribution:

$$X = F^{-1}(U)$$

This method is suitable for stochastic simulations because of its advantages. Some of the most attractive are:

- It preserves the structural properties of the uniform random number sampler.
- Transforms a uniform random variate U one-to-one into non-uniform random variates X.
- Easy and efficient sampling from truncated distributions.

Unfortunately, the PPF is rarely available in closed form or too slow when available. For many distributions, the CDF is also not easy to obtain. This method addresses both the shortcomings. The user only has to provide the PDF and optionally a point near the mode (called “center”) together with the size of the maximal acceptable error. It uses a combination of an adaptive and a simple Gauss-Lobatto quadrature to obtain the CDF and Newton’s interpolation to obtain the PPF. The method is not exact, as it only produces random variates of the approximated distribution. Nevertheless, the maximal tolerated approximation error can be set close to the machine precision. The concept of u-error is used to measure and control the error. It is defined as:

$$\epsilon_u(u) = |u - F(F_a^{-1}(u))|$$

where $u \in (0, 1)$ is a quantile where we want to measure the error and F_a^{-1} is the approximated PPF of the given distribution.

The maximal u-error is the criterion for approximation errors when calculating the CDF and PPF numerically. The maximal tolerated u-error of an algorithm is called the u-resolution of the algorithm and denoted by ϵ_u:

$$\sup_{u \in (0, 1)} |u - F(F_a^{-1}(u))| \leq \epsilon_u$$

The main advantage of the u-error is that it can be easily computed if the CDF is available. We refer to\(^1\) for a more detailed discussion.

Also, the method only works for bounded distributions. In case of infinite tails, the ends of the tails are cut off such that the area under them is less than or equal to $0.05 \epsilon_u$.

There are some restrictions for the given distribution:

- The support of the distribution (i.e., the region where the PDF is strictly positive) must be connected. In practice this means, that the region where PDF is “not too small” must be connected. Unimodal densities satisfy this condition. If this condition is violated then the domain of the distribution might be truncated.
- When the PDF is integrated numerically, then the given PDF must be continuous and should be smooth.
- The PDF must be bounded.
- The algorithm has problems when the distribution has heavy tails (as then the inverse CDF becomes very steep at 0 or 1) and the requested u-resolution is very small. E.g., the Cauchy distribution is likely to show this problem when the requested u-resolution is less then 1.e-12.

| Warning: | This method does not work for densities with constant parts (e.g. uniform distribution) and segmentation faults if such a density is passed to the constructor. It is recommended to use the composition method to sample from such distributions. |

Following four steps are carried out by the algorithm during setup:

• Computing the end points of the distribution: If a finite support is given, this step is skipped. Otherwise, the ends of the tails are cut off such that the area under them is less than or equal to $0.05\epsilon_u$.

• The domain is divided into subintervals to compute the CDF and PPF.

• The CDF is computed using Gauss-Lobatto quadrature such that the integration error is at most $0.05 I_0\epsilon_u$ where I_0 is approximately the total area under the PDF.

• The PPF is computed using Newton’s interpolating formula with maximum interpolation error $0.9\epsilon_u$.

To initialize the generator to sample from a standard normal distribution, do:

```python
>>> from scipy.stats.sampling import NumericalInversePolynomial
>>> class StandardNormal:
...     def pdf(self, x):
...         return np.exp(-0.5 * x*x)
...
>>> dist = StandardNormal()
>>> urng = np.random.default_rng()
>>> rng = NumericalInversePolynomial(dist, random_state=urng)
```

The generator has been set up and we can start sampling from our distribution:

```python
>>> rng.rvs((5, 3))
aray([[-1.52449963,  1.31933688,  2.05884468],
      [ 0.48883931,  0.15207903, -0.02150773],
      [ 1.11486463,  1.95449597, -0.30724928],
      [ 0.98546430,  0.29867424,  0.75603041],
      [-0.61776203,  0.16033378, -1.00933003]])
```

We can look at the histogram of the random variates to check how well they fit our distribution:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.stats import norm
>>> from scipy.stats.sampling import NumericalInversePolynomial
>>> class StandardNormal:
...     def pdf(self, x):
...         return np.exp(-0.5 * x*x)
...
>>> dist = StandardNormal()
>>> urng = np.random.default_rng()
>>> rng = NumericalInversePolynomial(dist, random_state=urng)
>>> rvs = rng.rvs(10000)
>>> x = np.linspace(rvs.min()-0.1, rvs.max()+0.1, num=10000)
>>> fx = norm.pdf(x)
>>> plt.plot(x, fx, "r-", label="pdf")
>>> plt.hist(rvs, bins=50, density=True, alpha=0.8, label="rvs")
>>> plt.xlabel("x")
>>> plt.ylabel("PDF(x)")
>>> plt.title("Samples drawn using PINV method.")
>>> plt.legend()
>>> plt.show()
```

The maximum tolerated error (i.e. u-resolution) can be changed by passing the `u_resolution` keyword during initialization:
Samples drawn using PINV method.

```python
>>> rng = NumericalInversePolynomial(dist, u_resolution=1e-12,
...                                          random_state=urng)
```

This leads to a more accurate approximation of the PPF and the generated RVs follow the exact distribution more closely. Although, note that it comes at the cost of an expensive setup.

The setup time mainly depends on the number of times the PDF is evaluated. It is more costly for PDFs that are difficult to evaluate. Note that we can ignore the normalization constant to speed up the evaluations of the PDF. PDF evaluations increase during setup for small values of `u_resolution`.

```python
>>> from scipy.stats.sampling import NumericalInversePolynomial
>>> class StandardNormal:
...     def __init__(self):
...         selfcallbacks = 0
...     def pdf(self, x):
...         self.callbacks += 1
...         return np.exp(-0.5 * x*x)
...
>>> dist = StandardNormal()
>>> urng = np.random.default_rng()
>>> # u_resolution = 10^-8
>>> # => less PDF evaluations required
>>> # => faster setup
>>> rng = NumericalInversePolynomial(dist, u_resolution=1e-8,
...                                          random_state=urng)
>>> dist.callbacks
4095
>>> dist.callbacks = 0  # reset the number of callbacks
>>> # u_resolution = 10^-10 (default)
>>> # => more PDF evaluations required
>>> # => slow setup
>>> rng = NumericalInversePolynomial(dist, u_resolution=1e-10,
...                                          random_state=urng)
>>> dist.callbacks
(continues on next page)
As we can see, the number of PDF evaluations required is very high and a fast PDF is critical to the algorithm. Though, this helps reduce the number of subintervals required to achieve the error goal which saves memory and makes sampling fast. *NumericalInverseHermite* is a similar inversion method that inverts the CDF based on Hermite interpolation and provides control over the maximum tolerated error via u-resolution. But it makes use of a lot more intervals compared to *NumericalInversePolynomial*:

```python
from scipy.stats.sampling import NumericalInverseHermite
>>> rng_hermite = NumericalInverseHermite(norm(), tol=1e-12)
>>> rng_hermite.intervals
3000
>>> rng_poly = NumericalInversePolynomial(norm(), u_resolution=1e-12)
>>> rng_poly.intervals
252
```

When exact CDF of a distribution is available, one can estimate the u-error achieved by the algorithm by calling the `u_error` method:

```python
from scipy.special import ndtr
class StandardNormal:
 def pdf(self, x):
 return np.exp(-0.5 * x*x)
 def cdf(self, x):
 return ndtr(x)

>>> dist = StandardNormal()
>>> rng = NumericalInversePolynomial(dist, random_state=urng)
>>> rng.u_error(sample_size=100_000)
UError(max_error=8.785949745515609e-11, mean_absolute_error=2.9307548109436816e-11)
```

*u_error* runs a monte carlo simulation with a given number of samples to estimate the u-error. In the above example, 100,000 samples are used by the simulation to approximate the u-error. It returns the maximum u-error (*max_error*) and the mean absolute u-error (*mean_absolute_error*) in a *UError* namedtuple. As we can see, *max_error* is below the default u_resolution (1e-10).

It is also possible to evaluate the PPF of the given distribution once the generator is initialized:

```python
>>> rng.ppf(0.975)
1.959963985701268
>>> norm.ppf(0.975)
1.959963984540054
```
We can use this, for example, to check the maximum and mean absolute u-error:

```python
>>> u = np.linspace(0.001, 0.999, num=1_000_000)
>>> u_errors = np.abs(u - dist.cdf(rng.ppf(u)))
>>> u_errors.max()
8.78600525666684e-11
>>> u_errors.mean()
2.932144940323206e-11
```

The approximate PPF method provided by the generator is much faster to evaluate than the exact PPF of the distribution. During setup, a table of CDF points is stored that can be used to approximate the CDF once the generator has been created:

```python
>>> rng.cdf(1.959963984540054)
0.9750000000004245
>>> norm.cdf(1.959963984540054)
0.975
```

We can use this to check if the integration error while computing the CDF exceeds $0.05I_0\epsilon_u$. Here $I_0$ is $\sqrt{2\pi}$ (the normalization constant for the standard normal distribution):

```python
>>> x = np.linspace(-10, 10, num=100_000)
>>> x_error = np.abs(dist.cdf(x) - rng.cdf(x))
>>> x_error.max()
4.506062190046123e-12
>>> I0 = np.sqrt(2*np.pi)
>>> max_integration_error = 0.05 * I0 * 1e-10
>>> x_error.max() <= max_integration_error
True
```

The CDF table computed during setup is used to evaluate the CDF and only some further fine-tuning is required. This reduces the calls to the PDF but as the fine-tuning step uses the simple Gauss-Lobatto quadrature, the PDF is called several times, slowing down the computation.

References

Discrete Guide Table (DGT)

- Required: probability vector (PV) or the PMF along with a finite domain
- Speed:
  - Set-up: slow (linear with the vector-length)
  - Sampling: very fast

DGT samples from arbitrary but finite probability vectors. Random numbers are generated by the inversion method, i.e.

1. Generate a random number $U \sim U(0,1)$.
2. Find smallest integer $I$ such that $F(I) = P(X<=I) >= U$.

Step (2) is the crucial step. Using sequential search requires $O(E(X))$ comparisons, where $E(X)$ is the expectation of the distribution. Indexed search, however, uses a guide table to jump to some $I' \leq I$ near $I$ to find $X$ in constant time. Indeed the expected number of comparisons is reduced to 2, when the guide table has the same size as the probability vector.
(this is the default). For larger guide tables this number becomes smaller (but is always larger than 1), for smaller tables it becomes larger.

On the other hand the setup time for guide table is O(N), where N denotes the length of the probability vector (for size 1 no preprocessing is required). Moreover, for very large guide tables memory effects might even reduce the speed of the algorithm. So we do not recommend to use guide tables that are more than three times larger than the given probability vector. If only a few random numbers have to be generated, (much) smaller table sizes are better. The size of the guide table relative to the length of the given probability vector can be set by the `guide_factor` parameter:

```python
>>> import numpy as np
>>> from scipy.stats.sampling import DiscreteGuideTable
>>> pv = [0.18, 0.02, 0.8]
>>> urng = np.random.default_rng()
>>> rng = DiscreteGuideTable(pv, random_state=urng)
>>> rng.rvs()
2
```

By default, the probability vector is indexed starting at 0. However, this can be changed by passing a `domain` parameter. When `domain` is given in combination with the PV, it has the effect of relocating the distribution from \((0, \text{len}(pv))\) to \((\text{domain}[0], \text{domain}[0] + \text{len}(pv))\). `domain[1]` is ignored in this case.

```python
>>> rng = DiscreteGuideTable(pv, random_state=urng, domain=(10, 13))
>>> rng.rvs()
10
```

The method also works when no probability vector but a PMF is given. In that case, a bounded (finite) domain must also be given either by passing the `domain` parameter explicitly or by providing a `support` method in the distribution object:

```python
>>> class Distribution:
... def __init__(self, c):
... self.c = c
... def pmf(self, x):
... return x ** self.c
... def support(self):
... return 0, 10
... >>> dist = Distribution(2)
>>> rng = DiscreteGuideTable(dist, random_state=urng)
>>> rng.rvs()
9
```

**Note:** As `DiscreteGuideTable` expects PMF with signature `def pmf(self, x: float) -> float`, it first vectorizes the PMF using `np.vectorize` and then evaluates it over all the points in the domain. But if the PMF is already vectorized, it is much faster to just evaluate it at each point in the domain and pass the obtained PV instead along with the domain. For example, `pmf` methods of SciPy's discrete distributions are vectorized and a PV can be obtained by doing:

```python
>>> from scipy.stats import binom
>>> dist = binom(10, 0.2) # distribution object
>>> domain = dist.support() # the domain of your distribution
>>> x = np.arange(domain[0], domain[1] + 1)
```

(continues on next page)
Domain is required here to relocate the distribution

The size of the guide table relative to the probability vector may be set using the `guide_factor` parameter. Larger guide tables result in faster generation time but require a more expensive setup.

```
>>> guide_factor = 2
>>> rng = DiscreteGuideTable(pv, random_state=urng, guide_factor=guide_factor)
>>> rng.rvs()
2
```

Unfortunately, the PPF is rarely available in closed form or too slow when available. The user only has to provide the probability vector and the PPF (inverse CDF) can be evaluated using `ppf` method. This method calculates the (exact) PPF of the given distribution.

For example to calculate the PPF of a binomial distribution with \( n = 4 \) and \( p = 0.1 \): we can set up a guide table as follows:

```
>>> n, p = 4, 0.1
>>> dist = stats.binom(n, p)
>>> rng = DiscreteGuideTable(dist, random_state=42)
>>> rng.ppf(0.5)
0.0
```

Please see\(^1\) and\(^2\) for more details on this method.

### References

**Hermite interpolation based INVersion of CDF (HINV)**

- **Required**: CDF
- **Optional**: PDF, dPDF
- **Speed**:
  - **Set-up**: (very) slow
  - **Sampling**: (very) fast

HINV is a variant of numerical inversion, where the inverse CDF is approximated using Hermite interpolation, i.e., the interval \([0,1]\) is split into several intervals and in each interval the inverse CDF is approximated by polynomials constructed by means of values of the CDF and PDF at interval boundaries. This makes it possible to improve the accuracy by splitting a particular interval without recomputations in unaffected intervals. Three types of splines are implemented: linear, cubic, and quintic interpolation. For linear interpolation only the CDF is required. Cubic interpolation also requires PDF and quintic interpolation PDF and its derivative.

These splines have to be computed in a setup step. However, it only works for distributions with bounded domain; for distributions with unbounded domain the tails are chopped off such that the probability for the tail regions is small compared to the given \(u\)-resolution.

---

\(^{1}\) UNU.RAN reference manual, Section 5.8.4, “DGT - (Discrete) Guide Table method (indexed search)” https://statmath.wu.ac.at/unuran/doc/unuran.html#DGT

The method is not exact, as it only produces random variates of the approximated distribution. Nevertheless, the maximal numerical error in “u-direction” (i.e. $|U - CDF(X)|$ where $X$ is the approximate percentile corresponding to the quantile $U$, i.e. $X = approx_{ppf}(U)$) can be set to the required resolution (within machine precision). Notice that very small values of the u-resolution are possible but may increase the cost for the setup step.

**NumericalInverseHermite** approximates the inverse of a continuous statistical distribution’s CDF with a Hermite spline. Order of the hermite spline can be specified by passing the `order` parameter.

As described in\(^1\), it begins by evaluating the distribution’s PDF and CDF at a mesh of quantiles $x$ within the distribution’s support. It uses the results to fit a Hermite spline $H$ such that $H(p) == x$, where $p$ is the array of percentiles corresponding with the quantiles $x$. Therefore, the spline approximates the inverse of the distribution’s CDF to machine precision at the percentiles $p$, but typically, the spline will not be as accurate at the midpoints between the percentile points:

$$p_{\text{mid}} = (p[-1] + p[1:]) / 2$$

so the mesh of quantiles is refined as needed to reduce the maximum “u-error”:

$$u_{\text{error}} = \text{np.max(np.abs(dist.cdf(H(p_mid)) - p_mid))}$$

below the specified tolerance $u_{\text{resolution}}$. Refinement stops when the required tolerance is achieved or when the number of mesh intervals after the next refinement could exceed the maximum allowed number of intervals (100000).

```python
from scipy.stats.sampling import NumericalInverseHermite
from scipy.stats import norm, genexpon
from scipy.special import ndtr
```

To create a generator to sample from the standard normal distribution, do:

```python
>>> class StandardNormal:
... def pdf(self, x):
... return 1/np.sqrt(2*np.pi) * np.exp(-x**2 / 2)
... def cdf(self, x):
... return ndtr(x)
...>>> dist = StandardNormal()
>>> urng = np.random.default_rng()
>>> rng = NumericalInverseHermite(dist, random_state=urng)
```

The **NumericalInverseHermite** has a method that approximates the PPF of the distribution.

```python
>>> rng = NumericalInverseHermite(dist)
>>> p = np.linspace(0.01, 0.99, 99) # percentiles from 1% to 99%
>>> np.allclose(rng.ppf(p), norm.ppf(p))
True
```

Depending on the implementation of the distribution’s random sampling method, the random variates generated may be nearly identical, given the same random state.

```python
>>> dist = genexpon(9, 16, 3)
>>> rng = NumericalInverseHermite(dist)
>>> # `seed` ensures identical random streams are used by each `rvs` method
>>> seed = 500072020
>>> rvs1 = dist.rvs(size=100, random_state=np.random.default_rng(seed))
```

To check that the random variates closely follow the given distribution, we can look at its histogram:

```python
>>> dist = StandardNormal()
>>> urng = np.random.default_rng()
>>> rng = NumericalInverseHermite(dist, random_state=urng)
>>> rvs = rvs(10000)
>>> x = np.linspace(rvs.min()-0.1, rvs.max()+0.1, 1000)
>>> fx = norm.pdf(x)
>>> plt.plot(x, fx, 'r-', lw=2, label='true distribution')
>>> plt.hist(rvs, bins=20, density=True, alpha=0.8, label='random variates')
>>> plt.xlabel('x')
>>> plt.ylabel('PDF(x)')
>>> plt.title('Numerical Inverse Hermite Samples')
>>> plt.legend()
>>> plt.show()
```

Given the derivative of the PDF w.r.t the variate (i.e. \(x\)), we can use quintic Hermite interpolation to approximate the PPF by passing the `order` parameter:

```python
>>> class StandardNormal:
... def pdf(self, x):
... return 1/np.sqrt(2*np.pi) * np.exp(-x**2 / 2)
... def dpdf(self, x):
... return -1/np.sqrt(2*np.pi) * x * np.exp(-x**2 / 2)
... def cdf(self, x):
... return ndtr(x)
... >>> dist = StandardNormal()
>>> urng = np.random.default_rng()
```
```python
>>> rng = NumericalInverseHermite(dist, order=5, random_state=urng)
```

Higher orders result in a fewer number of intervals:

```python
>>> rng3 = NumericalInverseHermite(dist, order=3)
>>> rng5 = NumericalInverseHermite(dist, order=5)
>>> rng3.intervals, rng5.intervals
(3000, 522)
```

The u-error can be estimated by calling the `u_error` method. It runs a small Monte-Carlo simulation to estimate the u-error. By default, 100,000 samples are used. This can be changed by passing the `sample_size` argument:

```python
>>> rng1 = NumericalInverseHermite(dist, u_resolution=1e-10)
>>> rng1.u_error(sample_size=1000000) # uses one million samples
UError(max_error=9.53167544892608e-11, mean_absolute_error=2.4501362916864e-11)
```

This returns a named tuple which contains the maximum u-error and the mean absolute u-error.

The u-error can be reduced by decreasing the u-resolution (maximum allowed u-error):

```python
>>> rng2 = NumericalInverseHermite(dist, u_resolution=1e-13)
>>> rng2.u_error(sample_size=1000000)
UError(max_error=9.32027892364129e-14, mean_absolute_error=1.5194172675685075e-14)
```

Note that this comes at the cost of computation time as a result of the increased setup time and number of intervals.

```python
>>> rng1.intervals
1022
>>> rng2.intervals
5687
```

```python
from timeit import timeit
>>> f = lambda: NumericalInverseHermite(dist, u_resolution=1e-10)
>>> timeit(f, number=1)
0.017409582000254886 # may vary
>>> f = lambda: NumericalInverseHermite(dist, u_resolution=1e-13)
>>> timeit(f, number=1)
0.08671202100003939 # may vary
```

See Page 220 and 2 for more details on this method.

---


2. Page 220.
References

Simple Ratio-of-Uniforms (SROU)

- Required: PDF, area under PDF if different than 1
- Optional: mode, CDF at mode
- Speed:
  - Set-up: fast
  - Sampling: slow

SROU is based on the ratio-of-uniforms method that uses universal inequalities for constructing a (universal) bounding rectangle. It works for T-concave distributions with $T(x) = -1/\sqrt{x}$.

```python
>>> from scipy.stats.sampling import SimpleRatioUniforms
```

Suppose we have the normal distribution:

```python
>>> class StdNorm:
... def pdf(self, x):
... return np.exp(-0.5 * x**2)
```

Notice that the PDF doesn’t integrate to 1. We can either pass the exact area under the PDF during initialization of the generator or an upper bound to the exact area under the PDF. Also, it is recommended to pass the mode of the distribution to speed up the setup:

```python
>>> urng = np.random.default_rng()
>>> dist = StdNorm()
>>> rng = SimpleRatioUniforms(dist, mode=0,
... pdf_area=np.sqrt(2*np.pi),
... random_state=urng)
```

Now, we can use the `rvs` method to generate samples from the distribution:

```python
>>> rvs = rng.rvs(10)
```

If the CDF at mode is available, it can be set to improve the performance of `rvs`:

```python
>>> from scipy.stats import norm
>>> rng = SimpleRatioUniforms(dist, mode=0,
... pdf_area=np.sqrt(2*np.pi),
... cdf_at_mode=norm.cdf(0),
... random_state=urng)
>>> rvs = rng.rvs(1000)
```

We can check that the samples are from the given distribution by visualizing its histogram:

```python
>>> from scipy.stats.sampling import SimpleRatioUniforms
>>> from scipy.stats import norm
>>> import matplotlib.pyplot as plt
>>> class StdNorm:
... def pdf(self, x):
... return np.exp(-0.5 * x**2)
```

(continues on next page)
The main advantage of the method is a fast setup. This can be beneficial if one repeatedly needs to generate small to moderate samples of a distribution with different shape parameters. In such a situation, the setup step of `sampling.NumericalInverseHermite` or `sampling.NumericalInversePolynomial` will lead to poor performance. As an example, assume we are interested to generate 100 samples for the Gamma distribution with 1000 different shape parameters given by `np.arange(1.5, 5, 1000).

```python
>>> import math
>>> class GammaDist:
... def __init__(self, p):
... self.p = p
... def pdf(self, x):
... return x**(self.p-1) * np.exp(-x)

>>> urng = np.random.default_rng()
```
```python
>>> p = np.arange(1.5, 5, 1000)
>>> res = np.empty((1000, 100))
>>> for i in range(1000):
... dist = GammaDist(p[i])
... rng = SimpleRatioUniforms(dist, mode=p[i]-1,
... pdf_area=math.gamma(p[i]),
... random_state=urng)
... with np.suppress_warnings() as sup:
... sup.filter(RuntimeWarning, "invalid value encountered in double_
... scalars")
... sup.filter(RuntimeWarning, "overflow encountered in exp")
... res[i] = rng.rvs(100)
```

See¹,², and³ for more details.

References

2.12.2 Random variables

There are two general distribution classes that have been implemented for encapsulating *continuous random variables* and *discrete random variables*. Over 80 continuous random variables (RVs) and 10 discrete random variables have been implemented using these classes. Besides this, new routines and distributions can be easily added by the end user. (If you create one, please contribute it.)

All of the statistics functions are located in the sub-package `scipy.stats` and a fairly complete listing of these functions can be obtained using `info(stats)`. The list of the random variables available can also be obtained from the docstring for the stats sub-package.

In the discussion below, we mostly focus on continuous RVs. Nearly everything also applies to discrete variables, but we point out some differences here: *Specific points for discrete distributions*.

In the code samples below, we assume that the `scipy.stats` package is imported as

```python
>>> from scipy import stats
```

and in some cases we assume that individual objects are imported as

```python
>>> from scipy.stats import norm
```

---


Getting help

First of all, all distributions are accompanied with help functions. To obtain just some basic information, we print the relevant docstring:

```python
print(stats.norm.__doc__)
```

To find the support, i.e., upper and lower bounds of the distribution, call:

```python
>>> print('bounds of distribution lower: %s, upper: %s' % norm.support())
bounds of distribution lower: -inf, upper: inf
```

We can list all methods and properties of the distribution with `dir(norm)`. As it turns out, some of the methods are private, although they are not named as such (their names do not start with a leading underscore), for example `vecdf`, are only available for internal calculation (those methods will give warnings when one tries to use them, and will be removed at some point).

To obtain the real main methods, we list the methods of the frozen distribution. (We explain the meaning of a frozen distribution below).

```python
>>> rv = norm()
>>> dir(rv) # reformatted
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__',
 '_format__', '__ge__', '__getattribute__', '__gt__', '__hash__',
 '_init__', '__le__', '__lt__', '__module__', '__ne__', '__new__',
 '_reduce__', '_reduce_ex__', '_repr__', '_setattr__', '_sizeof__',
 '_str__', '_subclasshook__', '_weakref__', 'a', 'args', 'b', 'cdf',
 'dist', 'entropy', 'expect', 'interval', 'isf', 'kwsds', 'logcdf',
 'logpdf', 'logpmf', 'logsf', 'mean', 'median', 'moment', 'pdf', 'pmf',
 'ppf', 'random_state', 'rvs', 'sf', 'stats', 'std', 'var']
```

Finally, we can obtain the list of available distribution through introspection:

```python
>>> dist_continu = [d for d in dir(stats) if...
... isinstance(getattr(stats, d), stats.rv_continuous)]
>>> dist_discrete = [d for d in dir(stats) if...
... isinstance(getattr(stats, d), stats.rv_discrete)]
>>> print('number of continuous distributions: %d' % len(dist_continu))
number of continuous distributions: 104
>>> print('number of discrete distributions: %d' % len(dist_discrete))
number of discrete distributions: 19
```

Common methods

The main public methods for continuous RVs are:

- `rvs`: Random Variates
- `pdf`: Probability Density Function
- `cdf`: Cumulative Distribution Function
- `sf`: Survival Function (1-CDF)
- `ppf`: Percent Point Function (Inverse of CDF)
- `isf`: Inverse Survival Function (Inverse of SF)
- `stats`: Return mean, variance, (Fisher’s) skew, or (Fisher’s) kurtosis
• moment: non-central moments of the distribution

Let’s take a normal RV as an example.

```python
>>> norm.cdf(0)
0.5
```

To compute the cdf at a number of points, we can pass a list or a numpy array.

```python
>>> norm.cdf([-1., 0, 1])
array([0.15865525, 0.5, 0.84134475])
>>> import numpy as np
>>> norm.cdf(np.array([-1., 0, 1]))
array([0.15865525, 0.5, 0.84134475])
```

Thus, the basic methods, such as pdf, cdf, and so on, are vectorized.

Other generally useful methods are supported too:

```python
>>> norm.mean(), norm.std(), norm.var()
(0.0, 1.0, 1.0)
>>> norm.stats(moments="mv")
(array(0.0), array(1.0))
```

To find the median of a distribution, we can use the percent point function `ppf`, which is the inverse of the cdf:

```python
>>> norm.ppf(0.5)
0.0
```

To generate a sequence of random variates, use the `size` keyword argument:

```python
>>> norm.rvs(size=3)
array([-0.35687759, 1.34347647, -0.11710531]) # random
```

Don’t think that `norm.rvs(5)` generates 5 variates:

```python
>>> norm.rvs(5)
5.471435163732493 # random
```

Here, 5 with no keyword is being interpreted as the first possible keyword argument, `loc`, which is the first of a pair of keyword arguments taken by all continuous distributions. This brings us to the topic of the next subsection.

### Random number generation

Drawing random numbers relies on generators from `numpy.random` package. In the examples above, the specific stream of random numbers is not reproducible across runs. To achieve reproducibility, you can explicitly `seed` a random number generator. In NumPy, a generator is an instance of `numpy.random.Generator`. Here is the canonical way to create a generator:

```python
>>> from numpy.random import default_rng
>>> rng = default_rng()
```

And fixing the seed can be done like this:

```python
>>> # do NOT copy this value
>>> rng = default_rng(30143931238479871608357552876690613766)
```
Warning: Do not use this number or common values such as 0. Using just a small set of seeds to instantiate larger state spaces means that there are some initial states that are impossible to reach. This creates some biases if everyone uses such values. A good way to get a seed is to use a `numpy.random.SeedSequence`:

```python
>>> from numpy.random import SeedSequence
>>> print(SeedSequence().entropy)
301439351238479871608357552876690613766 # random
```

The `random_state` parameter in distributions accepts an instance of `numpy.random.Generator` class, or an integer, which is then used to seed an internal `Generator` object:

```python
>>> norm.rvs(size=5, random_state=rng)
array([-1.19097569, 1.43270697, -0.3126519 , -0.72058873, 0.47143516]) # random
```

For further info, see NumPy’s documentation.

To learn more about the random number samplers implemented in SciPy, see non-uniform random number sampling tutorial and quasi monte carlo tutorial

### Shifting and scaling

All continuous distributions take `loc` and `scale` as keyword parameters to adjust the location and scale of the distribution, e.g., for the standard normal distribution, the location is the mean and the scale is the standard deviation.

```python
>>> norm.stats(loc=3, scale=4, moments="mv")
(array(3.0), array(16.0))
```

In many cases, the standardized distribution for a random variable $X$ is obtained through the transformation $(X - \text{loc}) / \text{scale}$. The default values are $\text{loc} = 0$ and $\text{scale} = 1$.

Smart use of `loc` and `scale` can help modify the standard distributions in many ways. To illustrate the scaling further, the $cdf$ of an exponentially distributed RV with mean $1/\lambda$ is given by

$$F(x) = 1 - \exp(-\lambda x)$$

By applying the scaling rule above, it can be seen that by taking $\text{scale} = 1./\lambda$ we get the proper scale.

```python
>>> from scipy.stats import expon
>>> expon.mean(scale=3.)
3.0
```

**Note:** Distributions that take shape parameters may require more than simple application of `loc` and/or `scale` to achieve the desired form. For example, the distribution of 2-D vector lengths given a constant vector of length $R$ perturbed by independent $N(0, \sigma^2)$ deviations in each component is $\text{rice}(R/\sigma, \text{scale} = \sigma)$. The first argument is a shape parameter that needs to be scaled along with $x$.

The uniform distribution is also interesting:

```python
>>> from scipy.stats import uniform
>>> uniform.cdf([0, 1, 2, 3, 4, 5], loc=1, scale=4)
array([0. , 0. , 0.25, 0.5 , 0.75, 1.])
```
Finally, recall from the previous paragraph that we are left with the problem of the meaning of `norm.rvs(5)`. As it turns out, calling a distribution like this, the first argument, i.e., the 5, gets passed to set the `loc` parameter. Let’s see:

```python
>>> np.mean(norm.rvs(5, size=500))
5.0098355106969992 # random
```

Thus, to explain the output of the example of the last section: `norm.rvs(5)` generates a single normally distributed random variate with mean ```loc=5, because of the default size=1.

We recommend that you set `loc` and `scale` parameters explicitly, by passing the values as keywords rather than as arguments. Repetition can be minimized when calling more than one method of a given RV by using the technique of **Freezing a Distribution**, as explained below.

**Shape parameters**

While a general continuous random variable can be shifted and scaled with the `loc` and `scale` parameters, some distributions require additional shape parameters. For instance, the gamma distribution with density

$$
\gamma(x,a) = \frac{\lambda^a x^{a-1} e^{-\lambda x}}{\Gamma(a)}
$$

requires the shape parameter `a`. Observe that setting `\lambda` can be obtained by setting the `scale` keyword to `1/\lambda`.

Let’s check the number and name of the shape parameters of the gamma distribution. (We know from the above that this should be 1.)

```python
>>> from scipy.stats import gamma
>>> gamma.numargs
1
>>> gamma.shapes
'a'
```

Now, we set the value of the shape variable to 1 to obtain the exponential distribution, so that we compare easily whether we get the results we expect.

```python
>>> gamma(a=1, scale=2.).stats(moments="mv")
(array(2.0), array(4.0))
```

Notice that we can also specify shape parameters as keywords:

```python
>>> gamma(a=1, scale=2.).stats(moments="mv")
(array(2.0), array(4.0))
```

**Freezing a distribution**

Passing the `loc` and `scale` keywords time and again can become quite bothersome. The concept of **freezing** a RV is used to solve such problems.

```python
>>> rv = gamma(1, scale=2.)
```

By using `rv` we no longer have to include the scale or the shape parameters anymore. Thus, distributions can be used in one of two ways, either by passing all distribution parameters to each method call (such as we did earlier) or by freezing the parameters for the instance of the distribution. Let us check this:
>>> rv.mean(), rv.std()
(2.0, 2.0)

This is, indeed, what we should get.

**Broadcasting**

The basic methods `pdf`, and so on, satisfy the usual NumPy broadcasting rules. For example, we can calculate the critical values for the upper tail of the $t$ distribution for different probabilities and degrees of freedom.

```python
>>> stats.t.isf([0.1, 0.05, 0.01], [[10], [11]])
array([[1.37218364, 1.81246112, 2.76376946],
 [1.36343032, 1.79588482, 2.71807918]])
```

Here, the first row contains the critical values for 10 degrees of freedom and the second row for 11 degrees of freedom (d.o.f.). Thus, the broadcasting rules give the same result of calling `isf` twice:

```python
>>> stats.t.isf([0.1, 0.05, 0.01], 10)
array([1.37218364, 1.81246112, 2.76376946])
>>> stats.t.isf([0.1, 0.05, 0.01], 11)
array([1.36343032, 1.79588482, 2.71807918])
```

If the array with probabilities, i.e., [0.1, 0.05, 0.01] and the array of degrees of freedom i.e., [10, 11, 12], have the same array shape, then element-wise matching is used. As an example, we can obtain the 10% tail for 10 d.o.f., the 5% tail for 11 d.o.f. and the 1% tail for 12 d.o.f. by calling

```python
>>> stats.t.isf([0.1, 0.05, 0.01], [10, 11, 12])
array([1.37218364, 1.79588482, 2.68099799])
```

**Specific points for discrete distributions**

Discrete distributions have mostly the same basic methods as the continuous distributions. However `pdf` is replaced by the probability mass function `pmf`, no estimation methods, such as `fit`, are available, and `scale` is not a valid keyword parameter. The location parameter, keyword `loc`, can still be used to shift the distribution.

The computation of the cdf requires some extra attention. In the case of continuous distribution, the cumulative distribution function is, in most standard cases, strictly monotonic increasing in the bounds $(a,b)$ and has, therefore, a unique inverse. The cdf of a discrete distribution, however, is a step function, hence the inverse cdf, i.e., the percent point function, requires a different definition:

$$\text{ppf}(q) = \min(x : \text{cdf}(x) \geq q, x \text{ integer})$$

For further info, see the docs [here](#).

We can look at the hypergeometric distribution as an example

```python
>>> from scipy.stats import hypergeom
>>> [M, n, N] = [20, 7, 12]
```

If we use the cdf at some integer points and then evaluate the ppf at those cdf values, we get the initial integers back, for example...
```python
>>> x = np.arange(4) * 2
array([0, 2, 4, 6])
>>> prb = hypergeom.cdf(x, M, n, N)
array([1.03199174e-04, 5.21155831e-02, 6.08359133e-01, 9.89783282e-01])
>>> hypergeom.ppf(prb, M, n, N)
array([0., 2., 4., 6.])

If we use values that are not at the kinks of the cdf step function, we get the next higher integer back:

```python
>>> hypergeom.ppf(prb + 1e-8, M, n, N)
array([ 1., 3., 5., 7.])
>>> hypergeom.ppf(prb - 1e-8, M, n, N)
array([ 0., 2., 4., 6.])
```

Fitting distributions

The main additional methods of the not frozen distribution are related to the estimation of distribution parameters:

- `fit`: maximum likelihood estimation of distribution parameters, including location and scale
- `fit_loc_scale`: estimation of location and scale when shape parameters are given
- `nllf`: negative log likelihood function
- `expect`: calculate the expectation of a function against the pdf or pmf

Performance issues and cautionary remarks

The performance of the individual methods, in terms of speed, varies widely by distribution and method. The results of a method are obtained in one of two ways: either by explicit calculation, or by a generic algorithm that is independent of the specific distribution.

Explicit calculation, on the one hand, requires that the method is directly specified for the given distribution, either through analytic formulas or through special functions in `scipy.special` or `numpy.random` for `rvs`. These are usually relatively fast calculations.

The generic methods, on the other hand, are used if the distribution does not specify any explicit calculation. To define a distribution, only one of pdf or cdf is necessary; all other methods can be derived using numeric integration and root finding. However, these indirect methods can be very slow. As an example, `rgh = stats.gausshyper.rvs(0.5, 2, 2, 2, size=100)` creates random variables in a very indirect way and takes about 19 seconds for 100 random variables on my computer, while one million random variables from the standard normal or from the t distribution take just above one second.
Remaining issues

The distributions in scipy.stats have recently been corrected and improved and gained a considerable test suite; however, a few issues remain:

- The distributions have been tested over some range of parameters; however, in some corner ranges, a few incorrect results may remain.
- The maximum likelihood estimation in `fit` does not work with default starting parameters for all distributions and the user needs to supply good starting parameters. Also, for some distribution using a maximum likelihood estimator might inherently not be the best choice.

2.12.3 Building specific distributions

The next examples show how to build your own distributions. Further examples show the usage of the distributions and some statistical tests.

Making a continuous distribution, i.e., subclassing `rv_continuous`

Making continuous distributions is fairly simple.

```python
>>> from scipy import stats
>>> class deterministic_gen(stats.rv_continuous):
...     def _cdf(self, x):
...         return np.where(x < 0, 0., 1.)
...     def _stats(self):
...         return 0., 0., 0., 0.

>>> deterministic = deterministic_gen(name="deterministic")
>>> deterministic.cdf(np.arange(-3, 3, 0.5))
array([ 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1.])
```

Interestingly, the `pdf` is now computed automatically:

```python
>>> deterministic.pdf(np.arange(-3, 3, 0.5))
array([ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        5.83333333e+04, 4.16333634e-12, 4.16333634e-12,
        4.16333634e-12, 4.16333634e-12])
```

Be aware of the performance issues mentioned in Performance issues and cautionary remarks. The computation of unspecified common methods can become very slow, since only general methods are called, which, by their very nature, cannot use any specific information about the distribution. Thus, as a cautionary example:

```python
>>> from scipy.integrate import quad
>>> quad(deterministic.pdf, -1e-1, 1e-1)
(4.163336342344337e-13, 0.0)
```

But this is not correct: the integral over this pdf should be 1. Let’s make the integration interval smaller:

```python
>>> quad(deterministic.pdf, -1e-3, 1e-3)  # warning removed
(1.00007687229173, 0.0010625571718182458)
```
This looks better. However, the problem originated from the fact that the pdf is not specified in the class definition of the deterministic distribution.

Subclassing `rv_discrete`

In the following, we use `stats.rv_discrete` to generate a discrete distribution that has the probabilities of the truncated normal for the intervals centered around the integers.

General info

From the docstring of `rv_discrete`, `help(stats.rv_discrete),`

> “You can construct an arbitrary discrete rv where \(P\{X=x_k\} = p_k \) by passing to the `rv_discrete` initialization method (through the `values=` keyword) a tuple of sequences \((x_k, p_k)\) which describes only those values of \(X \) (\(x_k \)) that occur with nonzero probability (\(p_k \))."

Next to this, there are some further requirements for this approach to work:

- The keyword `name` is required.
- The support points of the distribution \(x_k \) have to be integers.
- The number of significant digits (decimals) needs to be specified.

In fact, if the last two requirements are not satisfied, an exception may be raised or the resulting numbers may be incorrect.

An example

Let's do the work. First:

```python
>>> npoints = 20  # number of integer support points of the distribution...
     # minus 1
>>> npointsh = npoints // 2
>>> npointshf = float(npoints)
>>> nbound = 4  # bounds for the truncated normal
>>> normbound = (1+1/npointshf) * nbound  # actual bounds of truncated normal
>>> grid = np.arange(-npointsh, npointsh+2, 1)  # integer grid
>>> gridlimitsnorm = (grid-0.5) / npointsh * nbound  # bin limits for the_
     # truncnorm
>>> gridlimits = grid - 0.5  # used later in the analysis
>>> grid = grid[:-1]
>>> probs = np.diff(stats.truncnorm.cdf(gridlimitsnorm, -normbound, _
     #normbound))
>>> gridint = grid
```

And, finally, we can subclass `rv_discrete`:

```python
>>> normdiscrete = stats.rv_discrete(values=(gridint, ...
     ... np.round(probs, decimals=7)), name='normdiscrete')
```

Now that we have defined the distribution, we have access to all common methods of discrete distributions.

```python
>>> print('mean = $6.4f$, variance = $6.4f$, skew = $6.4f$, kurtosis = $6.4f$ %
     ... normdiscrete.stats(moments='mvsk'))
mean = -0.0000, variance = 6.3302, skew = 0.0000, kurtosis = -0.0076
```

```python
>>> nd_std = np.sqrt(normdiscrete.stats(moments='v'))
```
Testing the implementation

Let's generate a random sample and compare observed frequencies with the probabilities.

```python
>>> n_sample = 500
>>> rvs = normdiscrete.rvs(size=n_sample)
>>> f, l = np.histogram(rvs, bins=gridlimits)
>>> sfreq = np.vstack([gridint, f, probs*n_sample]).T
>>> print(sfreq)
[[[-1.00000000e+01  0.00000000e+00  2.95019349e-02] # random
  [-9.00000000e+00  0.00000000e+00  1.32294142e-01]
  [-8.00000000e+00  0.00000000e+00  5.06497902e-01]
  [-7.00000000e+00  2.00000000e+00  1.65568919e+00]
  [-6.00000000e+00  1.00000000e+00  4.62125309e+00]
  [-5.00000000e+00  9.00000000e+00  1.10137298e+01]
  [-4.00000000e+00  2.60000000e+01  2.24137683e+01]
  [-3.00000000e+00  3.70000000e+01  3.89503370e+01]
  [-2.00000000e+00  5.10000000e+01  5.78004747e+01]
  [-1.00000000e+00  7.10000000e+01  7.32455414e+01]
  [  0.00000000e+00  7.40000000e+01  7.92618251e+01]
  [  1.00000000e+00  8.90000000e+01  7.32455414e+01]
  [  2.00000000e+00  5.50000000e+01  5.78004747e+01]
  [  3.00000000e+00  5.00000000e+01  3.89503370e+01]
  [  4.00000000e+00  1.70000000e+01  2.24137683e+01]
  [  5.00000000e+00  1.10000000e+01  1.10137298e+01]
  [  6.00000000e+00  4.00000000e+00  4.62125309e+00]
  [  7.00000000e+00  3.00000000e+00  1.65568919e+00]
  [  8.00000000e+00  0.00000000e+00  5.06497902e-01]
  [  9.00000000e+00  0.00000000e+00  1.32294142e-01]
  [ 1.00000000e+01  0.00000000e+00  2.95019349e-02]]
```

Next, we can test whether our sample was generated by our norm-discrete distribution. This also verifies whether the random numbers were generated correctly.

The chisquare test requires that there are a minimum number of observations in each bin. We combine the tail bins into larger bins so that they contain enough observations.
The p-value in this case is high, so we can be quite confident that our random sample was actually generated by the distribution.

2.12.4 Analysing one sample

First, we create some random variables. We set a seed so that in each run we get identical results to look at. As an example we take a sample from the Student t distribution:

```python
>>> x = stats.t.rvs(10, size=1000)
```

Here, we set the required shape parameter of the t distribution, which in statistics corresponds to the degrees of freedom, to 10. Using size=1000 means that our sample consists of 1000 independently drawn (pseudo) random numbers. Since we did not specify the keyword arguments `loc` and `scale`, those are set to their default values zero and one.

Descriptive statistics

`x` is a numpy array, and we have direct access to all array methods, e.g.,

```python
>>> print(x.min())  # equivalent to np.min(x)
-3.78975572422  # random
>>> print(x.max())  # equivalent to np.max(x)
5.26327732981   # random
>>> print(x.mean()) # equivalent to np.mean(x)
```

(continues on next page)
How do the sample properties compare to their theoretical counterparts?

```python
>>> m, v, s, k = stats.t.stats(10, moments='mvsk')
>>> n, (smin, smax), sm, sv, ss, sk = stats.describe(x)
```
However, the standard normal distribution has a variance of 1, while our sample has a variance of 1.29. If we standardize our sample and test it against the normal distribution, then the p-value is again large enough that we cannot reject the hypothesis that the sample came from the normal distribution.

```python
>>> d, pval = stats.kstest((x - x.mean()) / x.std(), 'norm')
>>> print('KS-statistic D = %.3f pvalue = %.4f' % (d, pval))
KS-statistic D = 0.032 pvalue = 0.2397 # random
```

Note: The Kolmogorov-Smirnov test assumes that we test against a distribution with given parameters, since, in the last case, we estimated mean and variance, this assumption is violated and the distribution of the test statistic, on which the p-value is based, is not correct.

Tails of the distribution

Finally, we can check the upper tail of the distribution. We can use the percent point function `ppf`, which is the inverse of the cdf function, to obtain the critical values, or, more directly, we can use the inverse of the survival function

```python
>>> crit01, crit05, crit10 = stats.t.ppf([1-0.01, 1-0.05, 1-0.10], 10)
>>> print('critical values from ppf at 1%, 5% and 10% %.4f %.4f %.4f' % (crit01, crit05, crit10))
critical values from ppf at 1%, 5% and 10% 2.7638 1.8125 1.3722
```

In all three cases, our sample has more weight in the top tail than the underlying distribution. We can briefly check a larger sample to see if we get a closer match. In this case, the empirical frequency is quite close to the theoretical probability, but if we repeat this several times, the fluctuations are still pretty large.

```python
>>> freq05l = np.sum(stats.t.rvs(10, size=10000) > crit05) / 10000.0 * 100
>>> print('larger sample % frequency at 5% tail %.4f' % freq05l)
larger sample % frequency at 5% tail 4.8000 # random
```

We can also compare it with the tail of the normal distribution, which has less weight in the tails:

```python
>>> print('tail prob. of normal at 1%, 5% and 10% %.4f %.4f %.4f %.4f' %
...     tuple(stats.norm.sf([crit01, crit05, crit10]*100)))
tail prob. of normal at 1%, 5% and 10% 0.2857 3.4957 8.5003
```

The chisquare test can be used to test whether for a finite number of bins, the observed frequencies differ significantly from the probabilities of the hypothesized distribution.
We see that the standard normal distribution is clearly rejected, while the standard t-distribution cannot be rejected. Since
the variance of our sample differs from both standard distributions, we can again redo the test taking the estimate for scale
and location into account.

The fit method of the distributions can be used to estimate the parameters of the distribution, and the test is repeated
using probabilities of the estimated distribution.

Taking account of the estimated parameters, we can still reject the hypothesis that our sample came from a normal
distribution (at the 5% level), but again, with a p-value of 0.95, we cannot reject the t-distribution.

Special tests for normal distributions

Since the normal distribution is the most common distribution in statistics, there are several additional functions available
to test whether a sample could have been drawn from a normal distribution.

First, we can test if skew and kurtosis of our sample differ significantly from those of a normal distribution:

These two tests are combined in the normality test
In all three tests, the p-values are very low and we can reject the hypothesis that the our sample has skew and kurtosis of the normal distribution.

Since skew and kurtosis of our sample are based on central moments, we get exactly the same results if we test the standardized sample:

```python
>>> print('normaltest teststat = %6.3f pvalue = %6.4f' %
      ... stats.normaltest((x-x.mean())/x.std()))
normaltest teststat = 30.379 pvalue = 0.0000 # random
```

Because normality is rejected so strongly, we can check whether the normaltest gives reasonable results for other cases:

```python
>>> print('normaltest teststat = %6.3f pvalue = %6.4f' %
      ... stats.normaltest(stats.t.rvs(10, size=100)))
normaltest teststat = 4.698 pvalue = 0.0955 # random
>>> print('normaltest teststat = %6.3f pvalue = %6.4f' %
      ... stats.normaltest(stats.norm.rvs(size=1000)))
normaltest teststat = 0.613 pvalue = 0.7361 # random
```

When testing for normality of a small sample of t-distributed observations and a large sample of normal-distributed observations, then in neither case can we reject the null hypothesis that the sample comes from a normal distribution. In the first case, this is because the test is not powerful enough to distinguish a t and a normally distributed random variable in a small sample.

2.12.5 Comparing two samples

In the following, we are given two samples, which can come either from the same or from different distribution, and we want to test whether these samples have the same statistical properties.

Comparing means

Test with sample with identical means:

```python
>>> rvs1 = stats.norm.rvs(loc=5, scale=10, size=500)
>>> rvs2 = stats.norm.rvs(loc=5, scale=10, size=500)
>>> stats.ttest_ind(rvs1, rvs2)
Ttest_indResult(statistic=-0.5489, pvalue=0.5832) # random
```

Test with sample with different means:

```python
>>> rvs3 = stats.norm.rvs(loc=8, scale=10, size=500)
>>> stats.ttest_ind(rvs1, rvs3)
Ttest_indResult(statistic=-4.5334, pvalue=6.5071e-06) # random
```
Kolmogorov-Smirnov test for two samples \texttt{ks_2samp}

For the example, where both samples are drawn from the same distribution, we cannot reject the null hypothesis, since the pvalue is high

\begin{verbatim}
>>> stats.ks_2samp(rvs1, rvs2)
KstestResult(statistic=0.026, pvalue=0.9959527565364388) # random
\end{verbatim}

In the second example, with different location, i.e., means, we can reject the null hypothesis, since the pvalue is below 1%

\begin{verbatim}
>>> stats.ks_2samp(rvs1, rvs3)
KstestResult(statistic=0.114, pvalue=0.00299005061044668) # random
\end{verbatim}

2.12.6 Kernel density estimation

A common task in statistics is to estimate the probability density function (PDF) of a random variable from a set of data samples. This task is called density estimation. The most well-known tool to do this is the histogram. A histogram is a useful tool for visualization (mainly because everyone understands it), but doesn’t use the available data very efficiently. Kernel density estimation (KDE) is a more efficient tool for the same task. The \texttt{gaussian_kde} estimator can be used to estimate the PDF of univariate as well as multivariate data. It works best if the data is unimodal.

Univariate estimation

We start with a minimal amount of data in order to see how \texttt{gaussian_kde} works and what the different options for bandwidth selection do. The data sampled from the PDF are shown as blue dashes at the bottom of the figure (this is called a rug plot):

\begin{verbatim}
>>> from scipy import stats
>>> import matplotlib.pyplot as plt

>>> x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float64)
>>> kde1 = stats.gaussian_kde(x1)
>>> kde2 = stats.gaussian_kde(x1, bw_method='silverman')

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)

>>> ax.plot(x1, np.zeros(x1.shape), 'b+', ms=20) # rug plot
>>> x_eval = np.linspace(-10, 10, num=200)
>>> ax.plot(x_eval, kde1(x_eval), 'k-', label="Scott's Rule")
>>> ax.plot(x_eval, kde2(x_eval), 'r-', label="Silverman's Rule")

>>> plt.show()
\end{verbatim}

We see that there is very little difference between Scott’s Rule and Silverman’s Rule, and that the bandwidth selection with a limited amount of data is probably a bit too wide. We can define our own bandwidth function to get a less smoothed-out result.

\begin{verbatim}
>>> def my_kde_bandwidth(obj, fac=1./5):
... """We use Scott's Rule, multiplied by a constant factor.""
... return np.power(obj.n, -1./(obj.d+4)) * fac
\end{verbatim}
We see that if we set bandwidth to be very narrow, the obtained estimate for the probability density function (PDF) is simply the sum of Gaussians around each data point.

We now take a more realistic example and look at the difference between the two available bandwidth selection rules. Those rules are known to work well for (close to) normal distributions, but even for unimodal distributions that are quite
strongly non-normal they work reasonably well. As a non-normal distribution we take a Student’s T distribution with 5
degrees of freedom.

```python
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

rng = np.random.default_rng()
x1 = rng.normal(size=200) # random data, normal distribution
xs = np.linspace(x1.min()-1, x1.max()+1, 200)

kde1 = stats.gaussian_kde(x1)
kde2 = stats.gaussian_kde(x1, bw_method='silverman')

fig = plt.figure(figsize=(8, 6))
ax1 = fig.add_subplot(211)
ax1.plot(x1, np.zeros(x1.shape), 'b+', ms=12) # rug plot
ax1.plot(xs, kde1(xs), 'k-', label="Scott's Rule")
ax1.plot(xs, kde2(xs), 'b-', label="Silverman's Rule")
ax1.plot(xs, stats.norm.pdf(xs), 'r--', label="True PDF")

ax1.set_xlabel('x')
ax1.set_ylabel('Density')
ax1.set_title("Normal (top) and Student's T$_{(df=5)}$ (bottom) distributions")
ax1.legend(loc=1)

x2 = stats.t.rvs(5, size=200, random_state=rng) # random data, T distribution
xs = np.linspace(x2.min()-1, x2.max()+1, 200)

kde3 = stats.gaussian_kde(x2)
kde4 = stats.gaussian_kde(x2, bw_method='silverman')

ax2 = fig.add_subplot(212)
ax2.plot(x2, np.zeros(x2.shape), 'b+', ms=12) # rug plot
ax2.plot(xs, kde3(xs), 'k-', label="Scott's Rule")
ax2.plot(xs, kde4(xs), 'b-', label="Silverman's Rule")
ax2.plot(xs, stats.t.pdf(xs, 5), 'r--', label="True PDF")

ax2.set_xlabel('x')
ax2.set_ylabel('Density')
plt.show()
```

We now take a look at a bimodal distribution with one wider and one narrower Gaussian feature. We expect that this will be a more difficult density to approximate, due to the different bandwidths required to accurately resolve each feature.

```python
>>> from functools import partial

>>> loc1, scale1, size1 = (-2, 1, 175)
>>> loc2, scale2, size2 = (2, 0.2, 50)
>>> x2 = np.concatenate([np.random.normal(loc=loc1, scale=scale1, size=size1),
  (continues on next page)
Normal (top) and Student's $T_{\nu=5}$ (bottom) distributions

- Scott's Rule
- Silverman's Rule
- True PDF
>>> x_eval = np.linspace(x2.min() - 1, x2.max() + 1, 500)

>>> kde = stats.gaussian_kde(x2)
>>> kde2 = stats.gaussian_kde(x2, bw_method='silverman')
>>> kde3 = stats.gaussian_kde(x2, bw_method=partial(my_kde_bandwidth, fac=0.2))
>>> kde4 = stats.gaussian_kde(x2, bw_method=partial(my_kde_bandwidth, fac=0.5))

>>> pdf = stats.norm.pdf
>>> bimodal_pdf = pdf(x_eval, loc=loc1, scale=scale1) * float(size1) / x2.size + \\
... pdf(x_eval, loc=loc2, scale=scale2) * float(size2) / x2.size

As expected, the KDE is not as close to the true PDF as we would like due to the different characteristic size of the two features of the bimodal distribution. By halving the default bandwidth (Scott * 0.5), we can do somewhat better, while using a factor 5 smaller bandwidth than the default doesn’t smooth enough. What we really need, though, in this case, is a non-uniform (adaptive) bandwidth.

Multivariate estimation

With {gaussian_kde} we can perform multivariate, as well as univariate estimation. We demonstrate the bivariate case. First, we generate some random data with a model in which the two variates are correlated.

```python
>>> def measure(n):
... """Measurement model, return two coupled measurements.""
... m1 = np.random.normal(size=n)
... m2 = np.random.normal(scale=0.5, size=n)
... return m1+m2, m1-m2
```
2.12. Statistics (scipy.stats)
Then we apply the KDE to the data:

```python
>>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
>>> positions = np.vstack([X.ravel(), Y.ravel()])
>>> values = np.vstack([m1, m2])
>>> kernel = stats.gaussian_kde(values)
>>> Z = np.reshape(kernel.evaluate(positions).T, X.shape)
```

Finally, we plot the estimated bivariate distribution as a colormap and plot the individual data points on top.

```python
>>> fig = plt.figure(figsize=(8, 6))
>>> ax = fig.add_subplot(111)
>>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
... extent=[xmin, xmax, ymin, ymax])
>>> ax.plot(m1, m2, 'k.', markersize=2)
>>> ax.set_xlim([xmin, xmax])
>>> ax.set_ylim([ymin, ymax])
>>> plt.show()
```

**Multiscale Graph Correlation (MGC)**

With `multiscale_graphcorr`, we can test for independence on high dimensional and nonlinear data. Before we start, let’s import some useful packages:

```python
>>> import numpy as np
>>> import matplotlib.pyplot as plt; plt.style.use('classic')
>>> from scipy.stats import multiscale_graphcorr
```

Let’s use a custom plotting function to plot the data relationship:

```python
>>> import matplotlib.pyplot as plt
>>> def mgc_plot(x, y, sim_name, mgc_dict=None, only_viz=False, only_mgc=False):
... # simulation
... if not only_mgc:
... sim = np.random.random(len(x))
... if only_viz:
... # Plot sim and MGC-plot"
... plt.figure(figsize=(8, 8))
... ax = plt.gca()
... ax.set_title(sim_name + " Simulation", fontsize=20)
... ax.scatter(x, y)
... ax.set_xlabel('X', fontsize=15)
... ax.set_ylabel('Y', fontsize=15)
... ax.axis('equal')
```

(continues on next page)
2.12. Statistics (scipy.stats)
Let's look at some linear data first:

```python
>>> rng = np.random.default_rng()
>>> x = np.linspace(-1, 1, num=100)
>>> y = x + 0.3 * rng.random(x.size)
```

The simulation relationship can be plotted below:

```python
>>> mgc_plot(x, y, "Linear", only_viz=True)
```

Now, we can see the test statistic, p-value, and MGC map visualized below. The optimal scale is shown on the map as a red "x":

```python
>>> stat, pvalue, mgc_dict = multiscale_graphcorr(x, y)
>>> print("MGC test statistic: ", round(stat, 1))
MGC test statistic: 1.0
>>> print("P-value: ", round(pvalue, 1))
P-value: 0.0
>>> mgc_plot(x, y, "Linear", mgc_dict, only_mgc=True)
```

It is clear from here, that MGC is able to determine a relationship between the input data matrices because the p-value is
Linear Simulation

![Linear Simulation Plot](image-url)
very low and the MGC test statistic is relatively high. The MGC-map indicates a **strongly linear relationship**. Intuitively, this is because having more neighbors will help in identifying a linear relationship between $x$ and $y$. The optimal scale in this case is **equivalent to the global scale**, marked by a red spot on the map.

The same can be done for nonlinear data sets. The following $x$ and $y$ arrays are derived from a nonlinear simulation:

```python
>>> unif = np.array(rng.uniform(0, 5, size=100))
>>> x = unif * np.cos(np.pi * unif)
>>> y = unif * np.sin(np.pi * unif) + 0.4 * rng.random(x.size)
```

The simulation relationship can be plotted below:

```python
>>> mgc_plot(x, y, "Spiral", only_viz=True)
```

Now, we can see the test statistic, p-value, and MGC map visualized below. The optimal scale is shown on the map as a
red “x”:

```python
>>> stat, pvalue, mgc_dict = multiscale_graphcorr(x, y)
>>> print("MGC test statistic: ", round(stat, 1))
MGC test statistic: 0.2 # random
>>> print("P-value: ", round(pvalue, 1))
P-value: 0.0
>>> mgc_plot(x, y, "Spiral", mgc_dict, only_mgc=True)
```

It is clear from here, that MGC is able to determine a relationship again because the p-value is very low and the MGC test statistic is relatively high. The MGC-map indicates a strongly nonlinear relationship. The optimal scale in this case is equivalent to the local scale, marked by a red spot on the map.
2.12.7 Quasi-Monte Carlo

Before talking about Quasi-Monte Carlo (QMC), a quick introduction about Monte Carlo (MC). MC methods, or MC experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. They are often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other approaches. MC methods are mainly used in three problem classes: optimization, numerical integration, and generating draws from a probability distribution.

Generating random numbers with specific properties is a more complex problem than it sounds. Simple MC methods are designed to sample points to be independent and identically distributed (IID). But generating multiple sets of random points can produce radically different results.

In both cases in the plot above, points are generated randomly without any knowledge about previously drawn points. It is clear that some regions of the space are left unexplored - which can cause problems in simulations as a particular set of points might trigger a totally different behaviour.

A great benefit of MC is that it has known convergence properties. Let’s look at the mean of the squared sum in 5 dimensions:

\[ f(x) = \left( \sum_{j=1}^{5} x_j \right)^2, \]

with \( x_j \sim U(0, 1) \). It has a known mean value, \( \mu = 5/3 + 5(5 - 1)/4 \). Using MC sampling, we can compute that mean numerically, and the approximation error follows a theoretical rate of \( O(n^{-1/2}) \).

Although the convergence is ensured, practitioners tend to want to have an exploration process which is more deterministic. With normal MC, a seed can be used to have a repeatable process. But fixing the seed would break the convergence property: a given seed could work for a given class of problem and break for another one.

What is commonly done to walk through the space in a deterministic manner, is to use a regular grid spanning all parameter dimensions, also called a saturated design. Let’s consider the unit-hypercube, with all bounds ranging from 0 to 1. Now, having a distance of 0.1 between points, the number of points required to fill the unit interval would be 10. In a 2-dimensional hypercube the same spacing would require 100, and in 3 dimensions 1,000 points. As the number of dimensions grows, the number of experiments which is required to fill the space rises exponentially as the dimensionality of the space increases. This exponential growth is called “the curse of dimensionality”.
To mitigate this issue, QMC methods have been designed. They are deterministic, have a good coverage of the space and some of them can be continued and retain good properties. The main difference with MC methods is that the points are not IID but they know about previous points. Hence, some methods are also referred to as sequences.

This figure presents 2 sets of 256 points. The design of the left is a plain MC whereas the design of the right is a QMC design using the Sobol’ method. We clearly see that the QMC version is more uniform. The points sample better near the boundaries and there are less clusters or gaps.

One way to assess the uniformity is to use a measure called the discrepancy. Here the discrepancy of Sobol’ points is better than crude MC.

Coming back to the computation of the mean, QMC methods also have better rates of convergence for the error. They can achieve $O(n^{-1})$ for this function, and even better rates on very smooth functions. This figure shows that the Sobol’ method has a rate of $O(n^{-1})$:
MC—$C^2 = 0.0035$

Sobol'—$C^2 = 1.1e-05$

2.12. Statistics (scipy.stats)
We refer to the documentation of `scipy.stats.qmc` for more mathematical details.

**Calculate the discrepancy**

Let’s consider two sets of points. From the figure below, it is clear that the design on the left covers more of the space than the design on the right. This can be quantified using a discrepancy measure. The lower the discrepancy, the more uniform a sample is.

```python
>>> import numpy as np
>>> from scipy.stats import qmc
>>> space_1 = np.array([[1, 3], [2, 6], [3, 2], [4, 5], [5, 1], [6, 4]])
>>> space_2 = np.array([[1, 5], [2, 4], [3, 3], [4, 2], [5, 1], [6, 6]])
>>> l_bounds = [0.5, 0.5]
>>> u_bounds = [6.5, 6.5]
>>> space_1 = qmc.scale(space_1, l_bounds, u_bounds, reverse=True)
>>> space_2 = qmc.scale(space_2, l_bounds, u_bounds, reverse=True)
>>> qmc.discrepancy(space_1)
0.008142039609053464
>>> qmc.discrepancy(space_2)
0.010456854423869011
```

![Discrepancy plots](image)

**Using a QMC engine**

Several QMC samplers/engines are implemented. Here we look at two of the most used QMC methods: *Sobol* and *Halton* sequences.

```python
"""Sobol' and Halton sequences."""
from scipy.stats import qmc
import numpy as np
import matplotlib.pyplot as plt
```

(continues on next page)
rng = np.random.default_rng()
n_sample = 256
dim = 2
sample = {}

# Sobol'
engine = qmc.Sobol(d=dim, seed=rng)
sample['Sobol'] = engine.random(n_sample)

# Halton
engine = qmc.Halton(d=dim, seed=rng)
sample['Halton'] = engine.random(n_sample)

fig, axs = plt.subplots(1, 2, figsize=(8, 4))

for i, kind in enumerate(sample):
    axs[i].scatter(sample[kind][:, 0], sample[kind][:, 1])
    axs[i].set_aspect('equal')
    axs[i].set_xlabel(r'$x_1$')
    axs[i].set_ylabel(r'$x_2$')
    axs[i].set_title(f'{kind}—$C^2 = {qmc.discrepancy(sample[kind]):.2f}$')

plt.tight_layout()
plt.show()}
Warning: QMC methods require particular care and the user must read the documentation to avoid common pitfalls. *Sobol'* for instance requires a number of points following a power of 2. Also, thinning, burning or other point selection can break the properties of the sequence and result in a set of points which would not be better than MC.

QMC engines are state-aware. Meaning that you can continue the sequence, skip some points, or reset it. Let's take 5 points from *Halton*. And then ask for a second set of 5 points:

```python
>>> from scipy.stats import qmc
>>> engine = qmc.Halton(d=2)
>>> engine.random(5)
array([[0.22166437, 0.07980522], # random
 [0.72166437, 0.93165708],
 [0.47166437, 0.41313856],
 [0.97166437, 0.19091633],
 [0.01853937, 0.74647189]])
>>> engine.random(5)
array([[0.51853937, 0.52424967], # random
 [0.26853937, 0.30202745],
 [0.76853937, 0.857583],
 [0.14353937, 0.63536078],
 [0.64353937, 0.01807683]])
```

Now we reset the sequence. Asking for 5 points leads to the same first 5 points:

```python
>>> engine.reset()
>>> engine.random(5)
array([[0.22166437, 0.07980522], # random
 [0.72166437, 0.93165708],
 [0.47166437, 0.41313856],
 [0.97166437, 0.19091633],
 [0.01853937, 0.74647189]])
```

And here we advance the sequence to get the same second set of 5 points:

```python
>>> engine.reset()
>>> engine.fast_forward(5)
>>> engine.random(5)
array([[0.51853937, 0.52424967], # random
 [0.26853937, 0.30202745],
 [0.76853937, 0.857583],
 [0.14353937, 0.63536078],
 [0.64353937, 0.01807683]])
```

Note: By default, both *Sobol* and *Halton* are scrambled. The convergence properties are better, and it prevents the appearance of fringes or noticeable patterns of points in high dimensions. There should be no practical reason not to use the scrambled version.
Making a QMC engine, i.e., subclassing QMCEngine

To make your own QMCEngine, a few methods have to be defined. Following is an example wrapping numpy.random.Generator.

```python
>>> import numpy as np
>>> from scipy.stats import qmc
>>> class RandomEngine(qmc.QMCEngine):
... def __init__(self, d, seed=None):
... super().__init__(d=d, seed=seed)
... self.rng = np.random.default_rng(self.rng_seed)

... def random(self, n=1):
... self.num_generated += n
... return self.rng.random((n, self.d))

... def reset(self):
... self.rng = np.random.default_rng(self.rng_seed)
... self.num_generated = 0
... return self

... def fast_forward(self, n):
... self.random(n)
... return self
```

Then we use it as any other QMC engine:

```python
>>> engine = RandomEngine(2)
>>> engine.random(5)
array([[0.22733602, 0.31675834], # random
 [0.79736546, 0.67625467],
 [0.39110955, 0.33281393],
 [0.59830875, 0.18673419],
 [0.67275604, 0.94180287]])
>>> engine.reset()
>>> engine.random(5)
array([[0.22733602, 0.31675834], # random
 [0.79736546, 0.67625467],
 [0.39110955, 0.33281393],
 [0.59830875, 0.18673419],
 [0.67275604, 0.94180287]])
```
Guidelines on using QMC

- QMC has rules! Be sure to read the documentation or you might have no benefit over MC.
- Use Sobol if you need exactly $2^m$ points.
- Halton allows to sample, or skip, an arbitrary number of points. This is at the cost of a slower rate of convergence than Sobol.
- Never remove the first points of the sequence. It will destroy the properties.
- Scrambling is always better.
- If you use LHS based methods, you cannot add points without losing the LHS properties. (There are some methods to do so, but this is not implemented.)

2.13 Multidimensional image processing (scipy.ndimage)

2.13.1 Introduction

Image processing and analysis are generally seen as operations on 2-D arrays of values. There are, however, a number of fields where images of higher dimensionality must be analyzed. Good examples of these are medical imaging and biological imaging. numpy is suited very well for this type of applications due to its inherent multidimensional nature. The scipy.ndimage packages provides a number of general image processing and analysis functions that are designed to operate with arrays of arbitrary dimensionality. The packages currently includes: functions for linear and non-linear filtering, binary morphology, B-spline interpolation, and object measurements.

2.13.2 Properties shared by all functions

All functions share some common properties. Notably, all functions allow the specification of an output array with the output argument. With this argument, you can specify an array that will be changed in-place with the result with the operation. In this case, the result is not returned. Usually, using the output argument is more efficient, since an existing array is used to store the result.

The type of arrays returned is dependent on the type of operation, but it is, in most cases, equal to the type of the input. If, however, the output argument is used, the type of the result is equal to the type of the specified output argument. If no output argument is given, it is still possible to specify what the result of the output should be. This is done by simply assigning the desired numpy type object to the output argument. For example:

```python
>>> from scipy.ndimage import correlate
>>> correlate(np.arange(10), [1, 2.5])
array([0, 2, 6, 9, 13, 16, 20, 23, 27, 30])
>>> correlate(np.arange(10), [1, 2.5], output=np.float64)
array([0., 2.5, 6., 9.5, 13., 16.5, 20., 23.5, 27., 30.5])
```
2.13.3 Filter functions

The functions described in this section all perform some type of spatial filtering of the input array: the elements in the output are some function of the values in the neighborhood of the corresponding input element. We refer to this neighborhood of elements as the filter kernel, which is often rectangular in shape but may also have an arbitrary footprint. Many of the functions described below allow you to define the footprint of the kernel by passing a mask through the footprint parameter. For example, a cross-shaped kernel can be defined as follows:

```python
>>> footprint = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
```

```
>>>
```

Usually, the origin of the kernel is at the center calculated by dividing the dimensions of the kernel shape by two. For instance, the origin of a 1-D kernel of length three is at the second element. Take, for example, the correlation of a 1-D array with a filter of length 3 consisting of ones:

```python
>>> from scipy.ndimage import correlate1d
>>> a = [0, 0, 0, 1, 0, 0, 0]
>>> correlate1d(a, [1, 1, 1])
array([0, 0, 1, 1, 1, 0, 0])
```

Sometimes, it is convenient to choose a different origin for the kernel. For this reason, most functions support the origin parameter, which gives the origin of the filter relative to its center. For example:

```python
>>> a = [0, 0, 0, 1, 0, 0, 0]
>>> correlate1d(a, [1, 1, 1], origin = -1)
array([0, 1, 1, 1, 0, 0, 0])
```

The effect is a shift of the result towards the left. This feature will not be needed very often, but it may be useful, especially for filters that have an even size. A good example is the calculation of backward and forward differences:

```python
>>> a = [0, 0, 0, 1, 1, 0, 0]
>>> correlate1d(a, [-1, 1]) # backward difference
array([0, 0, 1, 0, 0, -1, 0])
>>> correlate1d(a, [-1, 1], origin = -1) # forward difference
array([0, 1, 0, 0, -1, 0, 0])
```

We could also have calculated the forward difference as follows:

```python
>>> correlate1d(a, [0, -1, 1])
array([0, 1, 0, 0, -1, 0, 0])
```

However, using the origin parameter instead of a larger kernel is more efficient. For multidimensional kernels, origin can be a number, in which case the origin is assumed to be equal along all axes, or a sequence giving the origin along each axis.

Since the output elements are a function of elements in the neighborhood of the input elements, the borders of the array need to be dealt with appropriately by providing the values outside the borders. This is done by assuming that the arrays are extended beyond their boundaries according to certain boundary conditions. In the functions described below, the boundary conditions can be selected using the mode parameter, which must be a string with the name of the boundary condition. The following boundary conditions are currently supported:
<table>
<thead>
<tr>
<th>mode</th>
<th>description</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>“nearest”</td>
<td>use the value at the boundary</td>
<td>[1 2 3] -&gt; [1 2 3 3]</td>
</tr>
<tr>
<td>“wrap”</td>
<td>periodically replicate the array</td>
<td>[1 2 3] -&gt; [3 1 2 3 1]</td>
</tr>
<tr>
<td>“reflect”</td>
<td>reflect the array at the boundary</td>
<td>[1 2 3] -&gt; [1 2 3 3]</td>
</tr>
<tr>
<td>“mirror”</td>
<td>mirror the array at the boundary</td>
<td>[1 2 3] -&gt; [2 1 2 3 2]</td>
</tr>
<tr>
<td>“constant”</td>
<td>use a constant value, default is 0.0</td>
<td>[1 2 3] -&gt; [0 1 2 3 0]</td>
</tr>
</tbody>
</table>

The following synonyms are also supported for consistency with the interpolation routines:

<table>
<thead>
<tr>
<th>mode</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“grid-constant”</td>
<td>equivalent to “constant”*</td>
</tr>
<tr>
<td>“grid-mirror”</td>
<td>equivalent to “reflect”</td>
</tr>
<tr>
<td>“grid-wrap”</td>
<td>equivalent to “wrap”</td>
</tr>
</tbody>
</table>

* “grid-constant” and “constant” are equivalent for filtering operations, but have different behavior in interpolation functions. For API consistency, the filtering functions accept either name.

The “constant” mode is special since it needs an additional parameter to specify the constant value that should be used.

Note that modes mirror and reflect differ only in whether the sample at the boundary is repeated upon reflection. For mode mirror, the point of symmetry is exactly at the final sample, so that value is not repeated. This mode is also known as whole-sample symmetric since the point of symmetry falls on the final sample. Similarly, reflect is often refered to as half-sample symmetric as the point of symmetry is half a sample beyond the array boundary.

Note: The easiest way to implement such boundary conditions would be to copy the data to a larger array and extend the data at the borders according to the boundary conditions. For large arrays and large filter kernels, this would be very memory consuming, and the functions described below, therefore, use a different approach that does not require allocating large temporary buffers.

**Correlation and convolution**

- The `correlate1d` function calculates a 1-D correlation along the given axis. The lines of the array along the given axis are correlated with the given `weights`. The `weights` parameter must be a 1-D sequence of numbers.
- The function `correlate` implements multidimensional correlation of the input array with a given kernel.
- The `convolve1d` function calculates a 1-D convolution along the given axis. The lines of the array along the given axis are convoluted with the given `weights`. The `weights` parameter must be a 1-D sequence of numbers.
- The function `convolve` implements multidimensional convolution of the input array with a given kernel.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the `origin` parameter behaves differently than in the case of a correlation: the results is shifted in the opposite direction.
Smoothing filters

- The `gaussian_filter1d` function implements a 1-D Gaussian filter. The standard deviation of the Gaussian filter is passed through the parameter `sigma`. Setting `order = 0` corresponds to convolution with a Gaussian kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second, or third derivatives of a Gaussian. Higher-order derivatives are not implemented.

- The `gaussian_filter` function implements a multidimensional Gaussian filter. The standard deviations of the Gaussian filter along each axis are passed through the parameter `sigma` as a sequence or numbers. If `sigma` is not a sequence but a single number, the standard deviation of the filter is equal along all directions. The order of the filter can be specified separately for each axis. An order of 0 corresponds to convolution with a Gaussian kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second, or third derivatives of a Gaussian. Higher-order derivatives are not implemented. The `order` parameter must be a number, to specify the same order for all axes, or a sequence of numbers to specify a different order for each axis. The example below shows the filter applied on test data with different values of `sigma`. The `order` parameter is kept at 0.

Note: The multidimensional filter is implemented as a sequence of 1-D Gaussian filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a lower precision, the results may be imprecise because intermediate results may be stored with insufficient precision. This can be prevented by specifying a more precise output type.

- The `uniform_filter1d` function calculates a 1-D uniform filter of the given `size` along the given axis.

- The `uniform_filter` implements a multidimensional uniform filter. The sizes of the uniform filter are given for each axis as a sequence of integers by the `size` parameter. If `size` is not a sequence, but a single number, the sizes along all axes are assumed to be equal.

Note: The multidimensional filter is implemented as a sequence of 1-D uniform filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a lower precision, the results may
be imprecise because intermediate results may be stored with insufficient precision. This can be prevented by specifying a more precise output type.

Filters based on order statistics

• The \texttt{minimum_filter1d} function calculates a 1-D minimum filter of the given size along the given axis.

• The \texttt{maximum_filter1d} function calculates a 1-D maximum filter of the given size along the given axis.

• The \texttt{minimum_filter} function calculates a multidimensional minimum filter. Either the sizes of a rectangular kernel or the footprint of the kernel must be provided. The \texttt{size} parameter, if provided, must be a sequence of sizes or a single number, in which case the size of the filter is assumed to be equal along each axis. The \texttt{footprint}, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

• The \texttt{maximum_filter} function calculates a multidimensional maximum filter. Either the sizes of a rectangular kernel or the footprint of the kernel must be provided. The \texttt{size} parameter, if provided, must be a sequence of sizes or a single number, in which case the size of the filter is assumed to be equal along each axis. The \texttt{footprint}, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

• The \texttt{rank_filter} function calculates a multidimensional rank filter. The \texttt{rank} may be less than zero, i.e., \texttt{rank} = -1 indicates the largest element. Either the sizes of a rectangular kernel or the footprint of the kernel must be provided. The \texttt{size} parameter, if provided, must be a sequence of sizes or a single number, in which case the size of the filter is assumed to be equal along each axis. The \texttt{footprint}, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

• The \texttt{percentile_filter} function calculates a multidimensional percentile filter. The \texttt{percentile} may be less than zero, i.e., \texttt{percentile} = -20 equals \texttt{percentile} = 80. Either the sizes of a rectangular kernel or the footprint of the kernel must be provided. The \texttt{size} parameter, if provided, must be a sequence of sizes or a single number, in which case the size of the filter is assumed to be equal along each axis. The \texttt{footprint}, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

• The \texttt{median_filter} function calculates a multidimensional median filter. Either the sizes of a rectangular kernel or the footprint of the kernel must be provided. The \texttt{size} parameter, if provided, must be a sequence of sizes or a single number, in which case the size of the filter is assumed to be equal along each axis. The \texttt{footprint} if provided, must be an array that defines the shape of the kernel by its non-zero elements.

Derivatives

Derivative filters can be constructed in several ways. The function \texttt{gaussian_filter1d}, described in \textit{Smoothing filters}, can be used to calculate derivatives along a given axis using the \texttt{order} parameter. Other derivative filters are the Prewitt and Sobel filters:

• The \texttt{prewitt} function calculates a derivative along the given axis.

• The \texttt{sobel} function calculates a derivative along the given axis.

The Laplace filter is calculated by the sum of the second derivatives along all axes. Thus, different Laplace filters can be constructed using different second-derivative functions. Therefore, we provide a general function that takes a function argument to calculate the second derivative along a given direction.

• The function \texttt{generic_laplace} calculates a Laplace filter using the function passed through \texttt{derivative2} to calculate second derivatives. The function \texttt{derivative2} should have the following signature

\begin{verbatim}
derivative2(input, axis, output, mode, cval, *extra_arguments, **extra_keywords)
\end{verbatim}
It should calculate the second derivative along the dimension `axis`. If `output` is not `None`, it should use that for the output and return `None`, otherwise it should return the result. `mode`, `cval` have the usual meaning.

The `extra_arguments` and `extra_keywords` arguments can be used to pass a tuple of extra arguments and a dictionary of named arguments that are passed to `derivative2` at each call.

For example

```python
def d2(input, axis, output, mode, cval):
 ... return correlate1d(input, [1, -2, 1], axis, output, mode, cval, 0)
... a = np.zeros((5, 5))
 a[2, 2] = 1
 from scipy.ndimage import generic_laplace
 generic_laplace(a, d2)
array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 1., -4., 1., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.]]
```

To demonstrate the use of the `extra_arguments` argument, we could do

```python
def d2(input, axis, output, mode, cval, weights):
 ... return correlate1d(input, weights, axis, output, mode, cval, 0,)
... a = np.zeros((5, 5))
 a[2, 2] = 1
 generic_laplace(a, d2, extra_arguments = ([1, -2, 1],))
array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 1., -4., 1., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.]]
```

or

```python
generic_laplace(a, d2, extra_keywords = {'weights': [1, -2, 1]})
array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 1., -4., 1., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.]]
```

The following two functions are implemented using `generic_laplace` by providing appropriate functions for the second-derivative function:

- The function `laplace` calculates the Laplace using discrete differentiation for the second derivative (i.e., convolution with `[1, -2, 1]`).
- The function `gaussian_laplace` calculates the Laplace filter using `gaussian_filter` to calculate the second derivatives. The standard deviations of the Gaussian filter along each axis are passed through the parameter `sigma` as a sequence or numbers. If `sigma` is not a sequence but a single number, the standard deviation of the filter is equal along all directions.

The gradient magnitude is defined as the square root of the sum of the squares of the gradients in all directions. Similar to the generic Laplace function, there is a `generic_gradient_magnitude` function that calculates the gradient.
magnitude of an array.

- The function `generic_gradient_magnitude` calculates a gradient magnitude using the function passed through `derivative` to calculate first derivatives. The function `derivative` should have the following signature

```python
derivative(input, axis, output, mode, cval, *extra_arguments, **extra_keywords)
```

It should calculate the derivative along the dimension `axis`. If `output` is not `None`, it should use that for the output and return `None`, otherwise it should return the result. `mode`, `cval` have the usual meaning.

The `extra_arguments` and `extra_keywords` arguments can be used to pass a tuple of extra arguments and a dictionary of named arguments that are passed to `derivative` at each call.

For example, the `sobel` function fits the required signature

```python
>>> a = np.zeros((5, 5))
>>> a[2, 2] = 1
>>> from scipy.ndimage import sobel, generic_gradient_magnitude
>>> generic_gradient_magnitude(a, sobel)
array([[0., 0., 0., 0., 0.],
 [0., 1.41421356, 2., 1.41421356, 0.],
 [0., 2., 0., 2., 0.],
 [0., 1.41421356, 2., 1.41421356, 0.],
 [0., 0., 0., 0., 0.]])
```

See the documentation of `generic_laplace` for examples of using the `extra_arguments` and `extra_keywords` arguments.

The `sobel` and `prewitt` functions fit the required signature and can, therefore, be used directly with `generic_gradient_magnitude`.

- The function `gaussian_gradient_magnitude` calculates the gradient magnitude using `gaussian_filter` to calculate the first derivatives. The standard deviations of the Gaussian filter along each axis are passed through the parameter `sigma` as a sequence or numbers. If `sigma` is not a sequence but a single number, the standard deviation of the filter is equal along all directions.

**Generic filter functions**

To implement filter functions, generic functions can be used that accept a callable object that implements the filtering operation. The iteration over the input and output arrays is handled by these generic functions, along with such details as the implementation of the boundary conditions. Only a callable object implementing a callback function that does the actual filtering work must be provided. The callback function can also be written in C and passed using a `PyCapsule` (see Extending scipy.ndimage in C for more information).

- The `generic_filter1d` function implements a generic 1-D filter function, where the actual filtering operation must be supplied as a python function (or other callable object). The `generic_filter1d` function iterates over the lines of an array and calls `function` at each line. The arguments that are passed to `function` are 1-D arrays of the `numpy.float64` type. The first contains the values of the current line. It is extended at the beginning and the end, according to the `filter_size` and `origin` arguments. The second array should be modified in-place to provide the output values of the line. For example, consider a correlation along one dimension:

```python
>>> a = np.arange(12).reshape(3,4)
>>> correlate1d(a, [1, 2, 3])
array([[3, 8, 14, 17],
 [13, 18, 24, 27],
 [23, 28, 34, 37]])
```
The same operation can be implemented using `generic_filter1d`, as follows:

```python
>>> def fnc(iline, oline):
... oline[:] = iline[:-2] + 2 * iline[1:-1] + 3 * iline[2:]
... >>> from scipy.ndimage import generic_filter1d
>>> generic_filter1d(a, fnc, 3)
array([[3, 8, 14, 17],
 [27, 32, 38, 41],
 [51, 56, 62, 65]])
```

Here, the origin of the kernel was (by default) assumed to be in the middle of the filter of length 3. Therefore, each input line had been extended by one value at the beginning and at the end, before the function was called.

Optionally, extra arguments can be defined and passed to the filter function. The `extra_arguments` and `extra_keywords` arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument

```python
>>> def fnc(iline, oline, a, b):
... oline[:] = iline[:-2] + a * iline[1:-1] + b * iline[2:]
... >>> generic_filter1d(a, fnc, 3, extra_arguments=(2, 3))
array([[3, 8, 14, 17],
 [27, 32, 38, 41],
 [51, 56, 62, 65]])
```

or

```python
>>> generic_filter1d(a, fnc, 3, extra_keywords={'a':2, 'b':3})
array([[3, 8, 14, 17],
 [27, 32, 38, 41],
 [51, 56, 62, 65]])
```

- The `generic_filter` function implements a generic filter function, where the actual filtering operation must be supplied as a python function (or other callable object). The `generic_filter` function iterates over the array and calls `function` at each element. The argument of `function` is a 1-D array of the `numpy.float64` type that contains the values around the current element that are within the footprint of the filter. The function should return a single value that can be converted to a double precision number. For example, consider a correlation:

```python
>>> a = np.arange(12).reshape(3,4)
>>> correlate(a, [[1, 0], [0, 3]])
array([[0, 3, 7, 11],
 [12, 15, 19, 23],
 [28, 31, 35, 39]])
```

The same operation can be implemented using `generic_filter`, as follows:

```python
>>> def fnc(buffer):
... return (buffer * np.array([1, 3])).sum()
... ```
from scipy.ndimage import generic_filter

generic_filter(a, fnc, footprint=[[1, 0], [0, 1]])
array([[0, 3, 7, 11],
 [12, 15, 19, 23],
 [28, 31, 35, 39]])

Here, a kernel footprint was specified that contains only two elements. Therefore, the filter function receives a buffer of length equal to two, which was multiplied with the proper weights and the result summed.

When calling `generic_filter`, either the sizes of a rectangular kernel or the footprint of the kernel must be provided. The `size` parameter, if provided, must be a sequence of sizes or a single number, in which case the size of the filter is assumed to be equal along each axis. The `footprint`, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

Optionally, extra arguments can be defined and passed to the filter function. The `extra_arguments` and `extra_keywords` arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument

```
>>> def fnc(buffer, weights):
...     weights = np.asarray(weights)
...     return (buffer * weights).sum()
... >>> generic_filter(a, fnc, footprint=[[1, 0], [0, 1]],
...     extra_arguments=(1, 3))
array([[ 0,  3,  7, 11],
       [12, 15, 19, 23],
       [28, 31, 35, 39]])
```

or

```
>>> generic_filter(a, fnc, footprint=[[1, 0], [0, 1]],
                     extra_keywords={'weights': [1, 3]})
array([[ 0,  3,  7, 11],
       [12, 15, 19, 23],
       [28, 31, 35, 39]])
```

These functions iterate over the lines or elements starting at the last axis, i.e., the last index changes the fastest. This order of iteration is guaranteed for the case that it is important to adapt the filter depending on spatial location. Here is an example of using a class that implements the filter and keeps track of the current coordinates while iterating. It performs the same filter operation as described above for `generic_filter`, but additionally prints the current coordinates:

```
>>> a = np.arange(12).reshape(3,4)
>>> class fnc_class:
...     def __init__(self, shape):
...         # store the shape:
...         self.shape = shape
...         # initialize the coordinates:
...         self.coordinates = [0] * len(shape)
...     def filter(self, buffer):
...         result = (buffer * np.array([1, 3])).sum()
...         print(self.coordinates)
...         # calculate the next coordinates:
...         # (continues on next page)
```
... axes = list(range(len(self.shape)))
... axes.reverse()
... for jj in axes:
... if self.coordinates[jj] < self.shape[jj] - 1:
... self.coordinates[jj] += 1
... break
... else:
... self.coordinates[jj] = 0
... return result
...
>>> fnc = fnc_class(shape = (3, 4))
>>> generic_filter(a, fnc.filter, footprint = [[1, 0], [0, 1]])

... array([[0, 3, 7, 11],
 [12, 15, 19, 23],
 [28, 31, 35, 39]])

For the `generic_filter1d` function, the same approach works, except that this function does not iterate over the axis that is being filtered. The example for `generic_filter1d` then becomes this:

```python
>>> a = np.arange(12).reshape(3, 4)
>>> class fnc1d_class:
...
...
...
>>> fnc1d_class(shape = (3, 4))
>>> generic_filter1d(a, fnc1d.filter, axis = -1)

... array([[ 0, 3, 7, 11],
         [12, 15, 19, 23],
         [28, 31, 35, 39]])
```
... self.coordinates[jj] += 1
... break
... else:
... self.coordinates[jj] = 0
...
>>> fnc = fncld_class(shape = (3,4))
>>> generic_filter1d(a, fnc.filter, 3)
array([[3, 8, 14, 17],
 [27, 32, 38, 41],
 [51, 56, 62, 65]])

Fourier domain filters

The functions described in this section perform filtering operations in the Fourier domain. Thus, the input array of such a function should be compatible with an inverse Fourier transform function, such as the functions from the numpy.fft module. We, therefore, have to deal with arrays that may be the result of a real or a complex Fourier transform. In the case of a real Fourier transform, only half of the of the symmetric complex transform is stored. Additionally, it needs to be known what the length of the axis was that was transformed by the real fft. The functions described here provide a parameter n that, in the case of a real transform, must be equal to the length of the real transform axis before transformation. If this parameter is less than zero, it is assumed that the input array was the result of a complex Fourier transform. The parameter $axis$ can be used to indicate along which axis the real transform was executed.

- The fourier_shift function multiplies the input array with the multidimensional Fourier transform of a shift operation for the given shift. The shift parameter is a sequence of shifts for each dimension or a single value for all dimensions.

- The fourier_gaussian function multiplies the input array with the multidimensional Fourier transform of a Gaussian filter with given standard deviations sigma. The sigma parameter is a sequence of values for each dimension or a single value for all dimensions.

- The fourier_uniform function multiplies the input array with the multidimensional Fourier transform of a uniform filter with given sizes size. The size parameter is a sequence of values for each dimension or a single value for all dimensions.

- The fourier_ellipsoid function multiplies the input array with the multidimensional Fourier transform of an elliptically-shaped filter with given sizes size. The size parameter is a sequence of values for each dimension or a single value for all dimensions. This function is only implemented for dimensions 1, 2, and 3.

2.13.4 Interpolation functions

This section describes various interpolation functions that are based on B-spline theory. A good introduction to B-splines can be found in\(^1\) with detailed algorithms for image interpolation given in\(^5\).

Spline pre-filters

Interpolation using splines of an order larger than 1 requires a pre-filtering step. The interpolation functions described in section Interpolation functions apply pre-filtering by calling \texttt{spline_filter}, but they can be instructed not to do this by setting the \texttt{prefilter} keyword equal to False. This is useful if more than one interpolation operation is done on the same array. In this case, it is more efficient to do the pre-filtering only once and use a pre-filtered array as the input of the interpolation functions. The following two functions implement the pre-filtering:

- The \texttt{spline_filter1d} function calculates a 1-D spline filter along the given axis. An output array can optionally be provided. The order of the spline must be larger than 1 and less than 6.
- The \texttt{spline_filter} function calculates a multidimensional spline filter.

\textbf{Note:} The multidimensional filter is implemented as a sequence of 1-D spline filters. The intermediate arrays are stored in the same data type as the output. Therefore, if an output with a limited precision is requested, the results may be imprecise because intermediate results may be stored with insufficient precision. This can be prevented by specifying a output type of high precision.

Interpolation boundary handling

The interpolation functions all employ spline interpolation to effect some type of geometric transformation of the input array. This requires a mapping of the output coordinates to the input coordinates, and therefore, the possibility arises that input values outside the boundaries may be needed. This problem is solved in the same way as described in Filter functions for the multidimensional filter functions. Therefore, these functions all support a \texttt{mode} parameter that determines how the boundaries are handled, and a \texttt{cval} parameter that gives a constant value in case that the ‘constant’ mode is used. The behavior of all modes, including at non-integer locations is illustrated below. Note the boundaries are not handled the same for all modes: \texttt{reflect} (aka grid-mirror) and \texttt{grid-wrap} involve symmetry or repetition about a point that is half way between image samples (dashed vertical lines) while modes \texttt{mirror} and \texttt{wrap} treat the image as if it's extent ends exactly at the first and last sample point rather than 0.5 samples past it.

The coordinates of image samples fall on integer sampling locations in the range from 0 to $\text{shape}[i] - 1$ along each axis, i. The figure below illustrates the interpolation of a point at location $(3.7, 3.3)$ within an image of shape $(7, 7)$. For an interpolation of order n, $n + 1$ samples are involved along each axis. The filled circles illustrate the sampling locations involved in the interpolation of the value at the location of the red x.

Interpolation functions

- The \texttt{geometric_transform} function applies an arbitrary geometric transform to the input. The given \texttt{mapping} function is called at each point in the output to find the corresponding coordinates in the input. \texttt{mapping} must be a callable object that accepts a tuple of length equal to the output array rank and returns the corresponding input coordinates as a tuple of length equal to the input array rank. The output shape and output type can optionally be provided. If not given, they are equal to the input shape and type.

For example:

```python
>>> a = np.arange(12).reshape(4, 3).astype(np.float64)
>>> def shift_func(output_coordinates):
...     return (output_coordinates[0] - 0.5, output_coordinates[1] - 0.5)
...
>>> from scipy.ndimage import geometric_transform
>>> geometric_transform(a, shift_func)
array([[ 0. ,  0. ,  0. ],
       [ 0. ,  0. ,  0. ]],
```

(continues on next page)
Interpolation (order = 2)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>1</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>2</td>
<td>o</td>
<td>o</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>3</td>
<td>o</td>
<td>o</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>4</td>
<td>o</td>
<td>o</td>
<td>●</td>
<td>x</td>
<td>●</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>5</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>6</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>

Interpolation (order = 3)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>1</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>2</td>
<td>o</td>
<td>o</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>o</td>
</tr>
<tr>
<td>3</td>
<td>o</td>
<td>o</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>o</td>
</tr>
<tr>
<td>4</td>
<td>o</td>
<td>o</td>
<td>●</td>
<td>x</td>
<td>●</td>
<td>●</td>
<td>o</td>
</tr>
<tr>
<td>5</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>6</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>
Optionally, extra arguments can be defined and passed to the filter function. The `extra_arguments` and `extra_keywords` arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments that are passed to derivative at each call. For example, we can pass the shifts in our example as arguments:

```python
>>> def shift_func(output_coordinates, s0, s1):
...     return (output_coordinates[0] - s0, output_coordinates[1] - s1)
...
```

```python
>>> geometric_transform(a, shift_func, extra_arguments = (0.5, 0.5))
array([[ 0. , 1.3625, 2.7375],
       [ 0. , 4.8125, 6.1875],
       [ 0. , 8.2625, 9.6375]])
```

or

```python
>>> geometric_transform(a, shift_func, extra_keywords = {'s0': 0.5, 's1': 0.5})
array([[ 0. , 1.3625, 2.7375],
       [ 0. , 4.8125, 6.1875],
       [ 0. , 8.2625, 9.6375]])
```

Note: The mapping function can also be written in C and passed using a `scipy.LowLevelCallable`. See [Extending scipy.ndimage in C](https://docs.scipy.org/doc/scipy/reference/extend.html) for more information.

- The function `map_coordinates` applies an arbitrary coordinate transformation using the given array of coordinates. The shape of the output is derived from that of the coordinate array by dropping the first axis. The parameter `coordinates` is used to find for each point in the output the corresponding coordinates in the input. The values of `coordinates` along the first axis are the coordinates in the input array at which the output value is found. (See also the numarray `coordinates` function.) Since the coordinates may be non-integer coordinates, the value of the input at these coordinates is determined by spline interpolation of the requested order.

Here is an example that interpolates a 2D array at (0.5, 0.5) and (1, 2):

```python
>>> a = np.arange(12).reshape(4, 3).astype(np.float64)
>>> a
array([[ 0.,  1.,  2.],
       [ 3.,  4.,  5.],
       [ 6.,  7.,  8.],
       [ 9., 10., 11.]])
```

```python
>>> from scipy.ndimage import map_coordinates
>>> map_coordinates(a, [[0.5, 2], [0.5, 1]])
array([ 1.3625,  7.])
```

- The `affine_transform` function applies an affine transformation to the input array. The given transformation `matrix` and `offset` are used to find for each point in the output the corresponding coordinates in the input. The value of the input at the calculated coordinates is determined by spline interpolation of the requested order. The transformation `matrix` must be 2-D or can also be given as a 1-D sequence or array. In the latter case, it is assumed
that the matrix is diagonal. A more efficient interpolation algorithm is then applied that exploits the separability of
the problem. The output shape and output type can optionally be provided. If not given, they are equal to the input
shape and type.

- The `shift` function returns a shifted version of the input, using spline interpolation of the requested `order`.
- The `zoom` function returns a rescaled version of the input, using spline interpolation of the requested `order`.
- The `rotate` function returns the input array rotated in the plane defined by the two axes given by the parameter `axes`, using spline interpolation of the requested `order`. The angle must be given in degrees. If `reshape` is true, then
 the size of the output array is adapted to contain the rotated input.

2.13.5 Morphology

Binary morphology

- The `generate_binary_structure` function generates a binary structuring element for use in binary mor-
 phology operations. The `rank` of the structure must be provided. The size of the structure that is returned is equal
to three in each direction. The value of each element is equal to one if the square of the Euclidean distance from the
element to the center is less than or equal to connectivity. For instance, 2-D 4-connected and 8-connected structures
 are generated as follows:

```python
>>> from scipy.ndimage import generate_binary_structure
>>> generate_binary_structure(2, 1)
array([[False,  True, False],
       [ True,  True,  True],
       [False,  True, False]], dtype=bool)
>>> generate_binary_structure(2, 2)
array([[ True,  True,  True],
       [ True,  True,  True],
       [ True,  True,  True]], dtype=bool)
```

Most binary morphology functions can be expressed in terms of the basic operations erosion and dilation.

- The `binary_erosion` function implements binary erosion of arrays of arbitrary rank with the given struct-
 uring element. The origin parameter controls the placement of the structuring element, as described in Filter
 functions. If no structuring element is provided, an element with connectivity equal to one is generated using
 `generate_binary_structure`. The `border_value` parameter gives the value of the array outside bound-
 aries. The erosion is repeated `iterations` times. If `iterations` is less than one, the erosion is repeated until the result
does not change anymore. If a `mask` array is given, only those elements with a true value at the corresponding mask
 element are modified at each iteration.

- The `binary_dilation` function implements binary dilation of arrays of arbitrary rank with the given struct-
 uring element. The origin parameter controls the placement of the structuring element, as described in Filter
 functions. If no structuring element is provided, an element with connectivity equal to one is generated using
 `generate_binary_structure`. The `border_value` parameter gives the value of the array outside bound-
 aries. The dilation is repeated `iterations` times. If `iterations` is less than one, the dilation is repeated until the result
does not change anymore. If a `mask` array is given, only those elements with a true value at the corresponding mask
 element are modified at each iteration.

Here is an example of using `binary_dilation` to find all elements that touch the border, by repeatedly dilating an
empty array from the border using the data array as the mask:

```python
>>> struct = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
>>> a = np.array([[1,0,0,0,0], [1,1,0,1,0], [0,0,1,1,0], [0,0,0,0,0]])
```
The `binary_erosion` and `binary_dilation` functions both have an `iterations` parameter, which allows the erosion or dilation to be repeated a number of times. Repeating an erosion or a dilation with a given structure \(n \) times is equivalent to an erosion or a dilation with a structure that is \(n-1 \) times dilated with itself. A function is provided that allows the calculation of a structure that is dilated a number of times with itself:

- The `iterate_structure` function returns a structure by dilation of the input structure \(\text{iteration} - 1 \) times with itself.

For instance:

```python
>>> struct = generate_binary_structure(2, 1)
>>> struct
array([[False,  True, False],
       [ True,  True,  True],
       [False,  True, False]], dtype=bool)
>>> from scipy.ndimage import iterate_structure
>>> iterate_structure(struct, 2)
array([[False, False,  True, False, False],
       [False,  True,  True,  True, False],
       [ True,  True,  True,  True,  True],
       [False,  True,  True, False, False],
       [False, False,  True, False, False]], dtype=bool)
```

If the origin of the original structure is equal to 0, then it is also equal to 0 for the iterated structure. If not, the origin must also be adapted if the equivalent of the `*iterations` erosions or dilations must be achieved with the iterated structure. The adapted origin is simply obtained by multiplying with the number of iterations. For convenience, the :func:`iterate_structure` also returns the adapted origin if the `*origin` parameter is not `None`:

```python
>>> iterate_structure(struct, 2, -1)
(array([[False, False,  True, False, False],
        [False,  True,  True,  True, False],
        [ True,  True,  True,  True,  True],
        [False,  True,  True, False, False],
        [False, False,  True, False, False]], dtype=bool), [-2, -2])
```

Other morphology operations can be defined in terms of erosion and dilation. The following functions provide a few of
these operations for convenience:

- The `binary_opening` function implements binary opening of arrays of arbitrary rank with the given structuring element. Binary opening is equivalent to a binary erosion followed by a binary dilation with the same structuring element. The origin parameter controls the placement of the structuring element, as described in Filter functions. If no structuring element is provided, an element with connectivity equal to one is generated using `generate_binary_structure`. The iterations parameter gives the number of erosions that is performed followed by the same number of dilations.

- The `binary_closing` function implements binary closing of arrays of arbitrary rank with the given structuring element. Binary closing is equivalent to a binary dilation followed by a binary erosion with the same structuring element. The origin parameter controls the placement of the structuring element, as described in Filter functions. If no structuring element is provided, an element with connectivity equal to one is generated using `generate_binary_structure`. The iterations parameter gives the number of dilations that is performed followed by the same number of erosions.

- The `binary_fill_holes` function is used to close holes in objects in a binary image, where the structure defines the connectivity of the holes. The origin parameter controls the placement of the structuring element, as described in Filter functions. If no structuring element is provided, an element with connectivity equal to one is generated using `generate_binary_structure`.

- The `binary_hit_or_miss` function implements a binary hit-or-miss transform of arrays of arbitrary rank with the given structuring elements. The hit-or-miss transform is calculated by erosion of the input with the first structure, erosion of the logical not of the input with the second structure, followed by the logical and of these two erosions. The origin parameters control the placement of the structuring elements, as described in Filter functions. If `origin2` equals `None`, it is set equal to the `origin1` parameter. If the first structuring element is not provided, a structuring element with connectivity equal to one is generated using `generate_binary_structure`. If `structure2` is not provided, it is set equal to the logical not of `structure1`.

Grey-scale morphology

Grey-scale morphology operations are the equivalents of binary morphology operations that operate on arrays with arbitrary values. Below, we describe the grey-scale equivalents of erosion, dilation, opening and closing. These operations are implemented in a similar fashion as the filters described in Filter functions, and we refer to this section for the description of filter kernels and footprints, and the handling of array borders. The grey-scale morphology operations optionally take a `structure` parameter that gives the values of the structuring element. If this parameter is not given, the structuring element is assumed to be flat with a value equal to zero. The shape of the structure can optionally be defined by the `footprint` parameter. If this parameter is not given, the structure is assumed to be rectangular, with sizes equal to the dimensions of the `structure` array, or by the `size` parameter if `structure` is not given. The `size` parameter is only used if both `structure` and `footprint` are not given, in which case the structuring element is assumed to be rectangular and flat with the dimensions given by `size`. The `size` parameter, if provided, must be a sequence of sizes or a single number in which case the size of the filter is assumed to be equal along each axis. The `footprint` parameter, if provided, must be an array that defines the shape of the kernel by its non-zero elements.

Similarly to binary erosion and dilation, there are operations for grey-scale erosion and dilation:

- The `grey_erosion` function calculates a multidimensional grey-scale erosion.
- The `grey_dilation` function calculates a multidimensional grey-scale dilation.

Grey-scale opening and closing operations can be defined similarly to their binary counterparts:

- The `grey_opening` function implements grey-scale opening of arrays of arbitrary rank. Grey-scale opening is equivalent to a grey-scale erosion followed by a grey-scale dilation.
- The `grey_closing` function implements grey-scale closing of arrays of arbitrary rank. Grey-scale opening is equivalent to a grey-scale dilation followed by a grey-scale erosion.
• The **morphological_gradient** function implements a grey-scale morphological gradient of arrays of arbitrary rank. The grey-scale morphological gradient is equal to the difference of a grey-scale dilation and a grey-scale erosion.

• The **morphological_laplace** function implements a grey-scale morphological laplace of arrays of arbitrary rank. The grey-scale morphological laplace is equal to the sum of a grey-scale dilation and a grey-scale erosion minus twice the input.

• The **white_tophat** function implements a white top-hat filter of arrays of arbitrary rank. The white top-hat is equal to the difference of the input and a grey-scale opening.

• The **black_tophat** function implements a black top-hat filter of arrays of arbitrary rank. The black top-hat is equal to the difference of a grey-scale closing and the input.

2.13.6 Distance transforms

Distance transforms are used to calculate the minimum distance from each element of an object to the background. The following functions implement distance transforms for three different distance metrics: Euclidean, city block, and chessboard distances.

• The function **distance_transform_cdt** uses a chamfer type algorithm to calculate the distance transform of the input, by replacing each object element (defined by values larger than zero) with the shortest distance to the background (all non-object elements). The structure determines the type of chamfering that is done. If the structure is equal to 'cityblock', a structure is generated using `generate_binary_structure` with a squared distance equal to 1. If the structure is equal to 'chessboard', a structure is generated using `generate_binary_structure` with a squared distance equal to the rank of the array. These choices correspond to the common interpretations of the city block and the chessboard distance metrics in two dimensions.

In addition to the distance transform, the feature transform can be calculated. In this case, the index of the closest background element is returned along the first axis of the result. The **return_distances**, and **return_indices** flags can be used to indicate if the distance transform, the feature transform, or both must be returned.

The **distances** and **indices** arguments can be used to give optional output arrays that must be of the correct size and type (both `numpy.int32`). The basics of the algorithm used to implement this function are described in².

• The function **distance_transform_edt** calculates the exact Euclidean distance transform of the input, by replacing each object element (defined by values larger than zero) with the shortest Euclidean distance to the background (all non-object elements).

In addition to the distance transform, the feature transform can be calculated. In this case, the index of the closest background element is returned along the first axis of the result. The **return_distances** and **return_indices** flags can be used to indicate if the distance transform, the feature transform, or both must be returned.

Optionally, the sampling along each axis can be given by the **sampling** parameter, which should be a sequence of length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes.

The **distances** and **indices** arguments can be used to give optional output arrays that must be of the correct size and type (`numpy.float64` and `numpy.int32`). The algorithm used to implement this function is described in³.

• The function **distance_transform_bf** uses a brute-force algorithm to calculate the distance transform of the input, by replacing each object element (defined by values larger than zero) with the shortest distance to the background (all non-object elements). The metric must be one of “euclidean”, “cityblock”, or “chessboard”.

In addition to the distance transform, the feature transform can be calculated. In this case, the index of the closest background element is returned along the first axis of the result. The **return_distances** and **return_indices** flags can be used to indicate if the distance transform, the feature transform, or both must be returned.

Optional, the sampling along each axis can be given by the `sampling` parameter, which should be a sequence of length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes. This parameter is only used in the case of the Euclidean distance transform.

The `distances` and `indices` arguments can be used to give optional output arrays that must be of the correct size and type (`numpy.float64` and `numpy.int32`).

Note: This function uses a slow brute-force algorithm, the function `distance_transform_cdt` can be used to more efficiently calculate city block and chessboard distance transforms. The function `distance_transform_edt` can be used to more efficiently calculate the exact Euclidean distance transform.

2.13.7 Segmentation and labeling

Segmentation is the process of separating objects of interest from the background. The most simple approach is, probably, intensity thresholding, which is easily done with `numpy` functions:

```python
>>> a = np.array([[1, 2, 2, 1, 1, 0],
                 ...               [0, 2, 3, 1, 2, 0],
                 ...               [1, 1, 1, 3, 3, 2],
                 ...               [1, 1, 1, 1, 2, 1]])
>>> np.where(a > 1, 1, 0)
array([[0, 1, 1, 0, 0, 0],
       [0, 1, 1, 0, 1, 0],
       [0, 0, 0, 1, 1, 1],
       [0, 0, 0, 0, 1, 0]])
```

The result is a binary image, in which the individual objects still need to be identified and labeled. The function `label` generates an array where each object is assigned a unique number:

- The `label` function generates an array where the objects in the input are labeled with an integer index. It returns a tuple consisting of the array of object labels and the number of objects found, unless the `output` parameter is given, in which case only the number of objects is returned. The connectivity of the objects is defined by a structuring element. For instance, in 2D using a 4-connected structuring element gives:

```python
>>> a = np.array([[0, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 1, -0]])
>>> s = [[0, 1, 0], [1, 1, 1], [0, 1, 0]]
>>> from scipy.ndimage import label
>>> label(a, s)
(array([[0, 1, 1, 0, 0, 0],
       [0, 1, 1, 0, 2, 0],
       [0, 0, 0, 2, 2, 2],
       [0, 0, 0, 0, 2, 0]]), 2)
```

These two objects are not connected because there is no way in which we can place the structuring element, such that it overlaps with both objects. However, an 8-connected structuring element results in only a single object:

```python
>>> a = np.array([[0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 1, -0]])
>>> s = [[1, 1, 1], [1, 1, 1], [1, 1, 1]]
>>> label(a, s)[0]
array([[0, 1, 1, 0, 0, 0],
       [0, 1, 1, 0, 1, 0],
       [0, 0, 0, 1, 1, 1],
       [0, 0, 0, 0, 1, 0]],
       dtype=int32)
```

(continues on next page)
If no structuring element is provided, one is generated by calling `generate_binary_structure` (see Binary morphology) using a connectivity of one (which in 2D is the 4-connected structure of the first example). The input can be of any type, any value not equal to zero is taken to be part of an object. This is useful if you need to 're-label' an array of object indices, for instance, after removing unwanted objects. Just apply the label function again to the index array. For instance:

```python
>>> l, n = label([[1, 0, 1, 0]],
               [0, 1, 1, 0],
               [0, 0, 0, 1, 1],
               [0, 0, 0, 0, 1])
```

Note: The structuring element used by `label` is assumed to be symmetric.

There is a large number of other approaches for segmentation, for instance, from an estimation of the borders of the objects that can be obtained by derivative filters. One such approach is watershed segmentation. The function `watershed_ift` generates an array where each object is assigned a unique label, from an array that localizes the object borders, generated, for instance, by a gradient magnitude filter. It uses an array containing initial markers for the objects:

- The `watershed_ift` function applies a watershed from markers algorithm, using Image Foresting Transform, as described in

- The inputs of this function are the array to which the transform is applied, and an array of markers that designate the objects by a unique label, where any non-zero value is a marker. For instance:

```python
>>> input = np.array([[0, 0, 0, 0, 0, 0],
                    [0, 1, 1, 1, 1, 0],
                    [0, 1, 0, 0, 0, 1],
                    [0, 1, 0, 0, 0, 1],
                    [0, 1, 1, 1, 1, 0],
                    [0, 0, 0, 0, 0, 0]], np.uint8)
>>> markers = np.array([[1, 0, 0, 0, 0, 0],
                      [0, 0, 0, 0, 0, 0],
                      [0, 0, 0, 2, 0, 0],
                      [0, 0, 0, 0, 0, 0],
                      [0, 0, 0, 0, 0, 0],
                      [0, 0, 0, 0, 0, 0]], np.int8)
>>> from scipy.ndimage import watershed_ift
>>> watershed_ift(input, markers)
```

Here, two markers were used to designate an object (marker = 2) and the background (marker = 1). The order in which these are processed is arbitrary: moving the marker for the background to the lower-right corner of the array yields a different result:

```python
>>> markers = np.array([[0, 0, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 0],
                       [0, 0, 0, 2, 0, 0],
                       [0, 0, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 0]], np.int8)
>>> watershed_ift(input, markers)
array([[1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1],
       [1, 2, 2, 2, 2, 1, 1],
       [1, 1, 2, 2, 2, 1, 1],
       [1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1]], dtype=int8)
```

The result is that the object (marker = 2) is smaller because the second marker was processed earlier. This may not be the desired effect if the first marker was supposed to designate a background object. Therefore, `watershed_ift` treats markers with a negative value explicitly as background markers and processes them after the normal markers. For instance, replacing the first marker by a negative marker gives a result similar to the first example:

```python
>>> markers = np.array([[0, 0, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 0]], np.int8)
>>> watershed_ift(input, markers)
array([[1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1],
       [1, 2, 2, 2, 2, 1, 1],
       [1, 1, 2, 2, 2, 1, 1],
       [1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1]], dtype=int8)
```

The connectivity of the objects is defined by a structuring element. If no structuring element is provided, one is generated by calling `generate_binary_structure` (see Binary morphology) using a connectivity of one (which in 2D is a 4-connected structure.) For example, using an 8-connected structure with the last example yields a different object:

```python
>>> markers = np.array([[0, 0, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 0]], np.int8)
>>> watershed_ift(input, markers)
array([[-1, -1, -1, -1, -1, -1],
       [-1, 2, 2, 2, -1, -1],
       [-1, 2, 2, 2, 2, -1],
       [-1, 2, 2, 2, 2, -1],
       [-1, 2, 2, 2, 2, -1],
       [-1, -1, 2, 2, -1, -1]], dtype=int8)
```
```python
>>> watershed_ift(input, markers,
...                     structure = [[1,1,1], [1,1,1], [1,1,1]])
array([[-1, -1, -1, -1, -1, -1, -1],
       [-1, 2, 2, 2, 2, 2, -1],
       [-1, 2, 2, 2, 2, 2, -1],
       [-1, 2, 2, 2, 2, 2, -1],
       [-1, 2, 2, 2, 2, 2, -1],
       [-1, -1, -1, -1, -1, -1, -1]], dtype=int8)
```

Note: The implementation of `watershed_ift` limits the data types of the input to `numpy.uint8` and `numpy.uint16`.

2.13.8 Object measurements

Given an array of labeled objects, the properties of the individual objects can be measured. The `find_objects` function can be used to generate a list of slices that for each object, give the smallest sub-array that fully contains the object:

- The `find_objects` function finds all objects in a labeled array and returns a list of slices that correspond to the smallest regions in the array that contains the object.

For instance:

```python
>>> a = np.array([[0, 1, 0, 0, 0, 0], [0, 1, 0, 1, 0, 0], [0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 1], [0]])
>>> l, n = label(a)
>>> from scipy.ndimage import find_objects
>>> f = find_objects(l)
>>> a[f[0]]
array([[1, 1],
       [1, 1]])
>>> a[f[1]]
array([[0, 1, 0],
       [1, 1, 1],
       [0, 1, 0]])
```

The function `find_objects` returns slices for all objects, unless the `max_label` parameter is larger then zero, in which case only the first `max_label` objects are returned. If an index is missing in the `label` array, `None` is return instead of a slice. For example:

```python
>>> from scipy.ndimage import find_objects
>>> find_objects([[1, 0, 3, 4], max_label = 3)
[(slice(0, 1, None),), None, (slice(2, 3, None),)]
```

The list of slices generated by `find_objects` is useful to find the position and dimensions of the objects in the array, but can also be used to perform measurements on the individual objects. Say, we want to find the sum of the intensities of an object in image:

```python
>>> image = np.arange(4 * 6).reshape(4, 6)
>>> mask = np.array([[0,1,1,0,0,0],[0,1,1,0,0,0],[0,0,0,1,1,1],[0,0,0,0,1,0]])
```
Then we can calculate the sum of the elements in the second object:

```python
>>> np.where(labels[slices[1]] == 2, image[slices[1]], 0).sum()
80
```

That is, however, not particularly efficient and may also be more complicated for other types of measurements. Therefore, a few measurements functions are defined that accept the array of object labels and the index of the object to be measured. For instance, calculating the sum of the intensities can be done by:

```python
>>> from scipy.ndimage import sum as ndi_sum
>>> ndi_sum(image, labels, 2)
80
```

For large arrays and small objects, it is more efficient to call the measurement functions after slicing the array:

```python
>>> ndi_sum(image[slices[1]], labels[slices[1]], 2)
80
```

Alternatively, we can do the measurements for a number of labels with a single function call, returning a list of results. For instance, to measure the sum of the values of the background and the second object in our example, we give a list of labels:

```python
>>> ndi_sum(image, labels, [0, 2])
array([178.0, 80.0])
```

The measurement functions described below all support the `index` parameter to indicate which object(s) should be measured. The default value of `index` is `None`. This indicates that all elements where the label is larger than zero should be treated as a single object and measured. Thus, in this case the `labels` array is treated as a mask defined by the elements that are larger than zero. If `index` is a number or a sequence of numbers it gives the labels of the objects that are measured. If `index` is a sequence, a list of the results is returned. Functions that return more than one result return their result as a tuple if `index` is a single number, or as a tuple of lists if `index` is a sequence.

- The `sum` function calculates the sum of the elements of the object with label(s) given by `index`, using the `labels` array for the object labels. If `index` is `None`, all elements with a non-zero label value are treated as a single object. If `label` is `None`, all elements of `input` are used in the calculation.

- The `mean` function calculates the mean of the elements of the object with label(s) given by `index`, using the `labels` array for the object labels. If `index` is `None`, all elements with a non-zero label value are treated as a single object. If `label` is `None`, all elements of `input` are used in the calculation.

- The `variance` function calculates the variance of the elements of the object with label(s) given by `index`, using the `labels` array for the object labels. If `index` is `None`, all elements with a non-zero label value are treated as a single object. If `label` is `None`, all elements of `input` are used in the calculation.

- The `standard_deviation` function calculates the standard deviation of the elements of the object with label(s) given by `index`, using the `labels` array for the object labels. If `index` is `None`, all elements with a non-zero label value are treated as a single object. If `label` is `None`, all elements of `input` are used in the calculation.

- The `minimum` function calculates the minimum of the elements of the object with label(s) given by `index`, using the `labels` array for the object labels. If `index` is `None`, all elements with a non-zero label value are treated as a single object. If `label` is `None`, all elements of `input` are used in the calculation.
• The maximum function calculates the maximum of the elements of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.

• The minimum_position function calculates the position of the minimum of the elements of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.

• The maximum_position function calculates the position of the maximum of the elements of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.

• The extrema function calculates the minimum, the maximum, and their positions, of the elements of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements of input are used in the calculation. The result is a tuple formed by the results of the functions minimum, maximum, minimum_position, and maximum_position that are described above.

• The center_of_mass function calculates the center of mass of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation.

• The histogram function calculates a histogram of the object with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If label is None, all elements of input are used in the calculation. Histograms are defined by their minimum (min), maximum (max), and the number of bins (bins). They are returned as 1-D arrays of type numpy.int32.

2.13.9 Extending scipy.ndimage in C

A few functions in scipy.ndimage take a callback argument. This can be either a python function or a scipy.LowLevelCallable containing a pointer to a C function. Using a C function will generally be more efficient, since it avoids the overhead of calling a python function on many elements of an array. To use a C function, you must write a C extension that contains the callback function and a Python function that returns a scipy.LowLevelCallable containing a pointer to the callback.

An example of a function that supports callbacks is geometric_transform, which accepts a callback function that defines a mapping from all output coordinates to corresponding coordinates in the input array. Consider the following python example, which uses geometric_transform to implement a shift function.

```python
from scipy import ndimage

def transform(output_coordinates, shift):
    input_coordinates = output_coordinates[0] - shift, output_coordinates[1] - shift
    return input_coordinates

im = np.arange(12).reshape(4, 3).astype(np.float64)
shift = 0.5
print(ndimage.geometric_transform(im, transform, extra_arguments=(shift,)))
```

We can also implement the callback function with the following C code:

```c
#include <Python.h>

/* example.c */
```

(continues on next page)
```c
#include <numpy/npy_common.h>

static int _transform(npy_intp *output_coordinates, double *input_coordinates,
   int output_rank, int input_rank, void *user_data)
{
    npy_intp i;
    double shift = *(double *)user_data;

    for (i = 0; i < input_rank; i++) {
        input_coordinates[i] = output_coordinates[i] - shift;
    }
    return 1;
}

static char *transform_signature = "int (npy_intp *, double *, int, int, void *)";

static PyObject *py_get_transform(PyObject *obj, PyObject *args)
{
    if (!PyArg_ParseTuple(args, "")) return NULL;
    return PyCapsule_New(_transform, transform_signature, NULL);
}

static PyMethodDef ExampleMethods[] = {
    {"get_transform", (PyCFunction)py_get_transform, METH_VARARGS, ""},
    {NULL, NULL, 0, NULL}
};

/* Initialize the module */
static struct PyModuleDef example = {
    PyModuleDef_HEAD_INIT,
    "example",
    NULL,
    -1,
    ExampleMethods,
    NULL,
    NULL,
    NULL,
    NULL
};

PyMODINIT_FUNC
PyInit_example(void)
{
    return PyModule_Create(&example);
}
```

More information on writing Python extension modules can be found [here](#). If the C code is in the file `example.c`, then it can be compiled with the following `setup.py`,

from distutils.core import setup, Extension
import numpy

shift = Extension('example',
 ['example.c'],
 include_dirs=[numpy.get_include()]
)

setup(name='example',
 ext_modules=[shift]
)

and now running the script

import ctypes
import numpy as np
from scipy import ndimage, LowLevelCallable

from example import get_transform

shift = 0.5

user_data = ctypes.c_double(shift)
ptr = ctypes.cast(ctypes.pointer(user_data), ctypes.c_void_p)
callback = LowLevelCallable(get_transform(), ptr)
im = np.arange(12).reshape(4, 3).astype(np.float64)
print(ndimage.geometric_transform(im, callback))

produces the same result as the original python script.

In the C version, _transform is the callback function and the parameters output_coordinates and input_coordinates play the same role as they do in the python version, while output_rank and input_rank provide the equivalents of len(output_coordinates) and len(input_coordinates). The variable shift is passed through user_data instead of extra_arguments. Finally, the C callback function returns an integer status, which is one upon success and zero otherwise.

The function py_transform wraps the callback function in a PyCapsule. The main steps are:

- Initialize a PyCapsule. The first argument is a pointer to the callback function.
- The second argument is the function signature, which must match exactly the one expected by ndimage.
- Above, we used scipy.LowLevelCallable to specify user_data that we generated with ctypes.

A different approach would be to supply the data in the capsule context, that can be set by PyCapsule_SetContext and omit specifying user_data in scipy.LowLevelCallable. However, in this approach we would need to deal with allocation/freeing of the data — freeing the data after the capsule has been destroyed can be done by specifying a non-NULL callback function in the third argument of PyCapsule_New.

C callback functions for ndimage all follow this scheme. The next section lists the ndimage functions that accept a C callback function and gives the prototype of the function.

See also:

The functions that support low-level callback arguments are:

generic_filter, generic_filter1d, geometric_transform

2.13. Multidimensional image processing (scipy.ndimage) 285
Below, we show alternative ways to write the code, using Numba, Cython, ctypes, or cffi instead of writing wrapper code in C.

Numba

Numba provides a way to write low-level functions easily in Python. We can write the above using Numba as:

```python
# example.py
import numpy as np
import ctypes
from scipy import ndimage, LowLevelCallable
from numba import cfunc, types, carray

@cfunc(types.intc(types.CPointer(types.intp),
           types.CPointer(types.double),
           types.intc,
           types.intc,
           types.voidptr))
def transform(output_coordinates_ptr, input_coordinates_ptr, output_rank, input_rank, user_data):
    input_coordinates = carray(input_coordinates_ptr, (input_rank,))
    output_coordinates = carray(output_coordinates_ptr, (output_rank,))
    shift = carray(user_data, (1,), types.double)[0]

    for i in range(input_rank):
        input_coordinates[i] = output_coordinates[i] - shift

    return 1

shift = 0.5

# Then call the function
user_data = ctypes.c_double(shift)
ptr = ctypes.cast(ctypes.pointer(user_data), ctypes.c_void_p)
callback = LowLevelCallable(transform.ctypes, ptr)

im = np.arange(12).reshape(4, 3).astype(np.float64)
print(ndimage.geometric_transform(im, callback))
```

Cython

Functionally the same code as above can be written in Cython with somewhat less boilerplate as follows:

```cython
# example.pyx

from numpy cimport npy_intp as intp
cdef api int transform(intp *output_coordinates, double *input_coordinates, int output_rank, int input_rank, void *user_data):
    cdef intp i
    cdef double shift = (<double *>user_data)[0]
```

(continues on next page)
```python
for i in range(input_rank):
    input_coordinates[i] = output_coordinates[i] - shift
return 1
```

cffi

With cffi, you can interface with a C function residing in a shared library (DLL). First, we need to write the shared library, which we do in C — this example is for Linux/OSX:

```c
/*
   example.c
   Needs to be compiled with "gcc -std=c99 -shared -fPIC -o example.so example.c"
   or similar
*/
#include <stdint.h>

int _transform(intptr_t *output_coordinates, double *input_coordinates,
               int output_rank, int input_rank, void *user_data)
{
    int i;
    double shift = *(double *)user_data;

    for (i = 0; i < input_rank; i++) {
        input_coordinates[i] = output_coordinates[i] - shift;
    }
    return 1;
}
```

The Python code calling the library is:

```python
import os
import numpy as np
```

(continues on next page)
from scipy import ndimage, LowLevelCallable
import cffi

Construct the FFI object, and copypaste the function declaration
ffi = cffi.FFI()
ffi.cdef(""
int _transform(intptr_t *output_coordinates, double *input_coordinates,
 int output_rank, int input_rank, void *user_data);
"")

Open library
lib = ffi.dlopen(os.path.abspath("example.so"))

Do the function call
user_data = ffi.new("double *", 0.5)
callback = LowLevelCallable(lib._transform, user_data)
im = np.arange(12).reshape(4, 3).astype(np.float64)
print(ndimage.geometric_transform(im, callback))

You can find more information in the cffi documentation.

c types

With c types, the C code and the compilation of the so/DLL is as for cffi above. The Python code is different:

script.py
import os
import cffi
import numpy as np
from scipy import ndimage, LowLevelCallable

lib = cffi.CDLL(os.path.abspath('example.so'))

shift = 0.5

user_data = cffi.c_double(shift)
ptr = cffi.cast(cffi.pointer(user_data), cffi.c_void_p)

Ctypes has no built-in intptr type, so override the signature
instead of trying to get it via ctypes
callback = LowLevelCallable(lib._transform, ptr,
 "int _transform(intptr_t *, double *, int, int, void *)")

Perform the call
im = np.arange(12).reshape(4, 3).astype(np.float64)
print(ndimage.geometric_transform(im, callback))

You can find more information in the ctypes documentation.
2.13.10 References

2.14 File IO (scipy.io)

See also:
NumPy IO routines

2.14.1 MATLAB files

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>loadmat</code></td>
<td>Load MATLAB file.</td>
</tr>
<tr>
<td><code>savemat</code></td>
<td>Save a dictionary of names and arrays into a MATLAB-style .mat file.</td>
</tr>
<tr>
<td><code>whosmat</code></td>
<td>List variables inside a MATLAB file.</td>
</tr>
</tbody>
</table>

The basic functions

We'll start by importing `scipy.io` and calling it `sio` for convenience:

```python
>>> import scipy.io as sio
```

If you are using IPython, try tab-completing on `sio`. Among the many options, you will find:

```python
sio.loadmat
sio.savemat
sio.whosmat
```

These are the high-level functions you will most likely use when working with MATLAB files. You'll also find:

```python
sio.matlab
```

This is the package from which `loadmat`, `savemat`, and `whosmat` are imported. Within `sio.matlab`, you will find the `mio` module. This module contains the machinery that `loadmat` and `savemat` use. From time to time you may find yourself re-using this machinery.

How do I start?

You may have a .mat file that you want to read into SciPy. Or, you want to pass some variables from SciPy / NumPy into MATLAB.

To save us using a MATLAB license, let's start in Octave. Octave has MATLAB-compatible save and load functions. Start Octave (octave at the command line for me):

```octave
octave:1> a = 1:12
a =
   1   2   3   4   5   6   7   8   9  10  11  12
octave:2> a = reshape(a, [1 3 4])
a =
```

(continues on next page)
ans(:,:1) =
 1 2 3
ans(:,:2) =
 4 5 6
ans(:,:3) =
 7 8 9
ans(:,:4) =
 10 11 12

octave:3> save -6 octave_a.mat a $ MATLAB 6 compatible
octave:4> ls octave_a.mat
octave_a.mat

Now, to Python:

```python
>>> mat_contents = sio.loadmat('octave_a.mat')
```

```plaintext
mat_contents
{'a': array([[[ 1.,  4.,  7., 10.],
              [ 2.,  5.,  8., 11.],
              [ 3.,  6.,  9., 12.]]]),
   '__version__': '1.0',
   '__header__': 'MATLAB 5.0 MAT-file, written by
Octave 3.6.3, 2013-02-17 21:02:11 UTC',
   '__globals__': []}
```

```python
>>> oct_a = mat_contents['a']
```

```python
>>> oct_a
array([[[ 1.,  4.,  7., 10.],
         [ 2.,  5.,  8., 11.],
         [ 3.,  6.,  9., 12.]]])
```

```python
>>> oct_a.shape
(1, 3, 4)
```

Now let’s try the other way round:

```python
>>> import numpy as np
```

```python
>>> vect = np.arange(10)
```

```python
>>> vect.shape
(10,)
```

```python
>>> sio.savemat('np_vector.mat', {'vect':vect})
```

Then back to Octave:

```octave
octave:8> load np_vector.mat
octave:9> vect
vect =
```

(continues on next page)
If you want to inspect the contents of a MATLAB file without reading the data into memory, use the `whosmat` command:

```matlab
>> sio.whosmat('octave_a.mat')
[('a', (1, 3, 4), 'double')]
```

`whosmat` returns a list of tuples, one for each array (or other object) in the file. Each tuple contains the name, shape and data type of the array.

MATLAB structs

MATLAB structs are a little bit like Python dicts, except the field names must be strings. Any MATLAB object can be a value of a field. As for all objects in MATLAB, structs are, in fact, arrays of structs, where a single struct is an array of shape (1, 1).

```matlab
>> my_struct = struct('field1', 1, 'field2', 2)
my_struct =
    { [1x1 struct] }
>> save -6 octave_struct.mat my_struct
```

We can load this in Python:

```python
>>> mat_contents = sio.loadmat('octave_struct.mat')
```

```python
>>> mat_contents
{'my_struct': array([[([1.0], [2.0])]
    dtype=[('field1', 'O'), ('field2', 'O')]), '__version__': '1.0', '__header__': 'MATLAB 5.0 MAT-file, written by Octave 3.6.3, 2013-02-17 21:23:14 UTC', '__globals__': []}
```

```python
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape
(1, 1)
>>> val = oct_struct[0,0]
```

```python
>>> val
array([([1.0], [2.0])])
```

```python
>>> val['field1']
array([[ 1.]])
```

```python
>>> val['field2']
array([[ 2.]])
```

```python
>>> val.dtype
dtype([('field1', 'O'), ('field2', 'O')))
```
In the SciPy versions from 0.12.0, MATLAB structs come back as NumPy structured arrays, with fields named for the struct fields. You can see the field names in the dtype output above. Note also:

```python
>>> val = oct_struct[0,0]
```

and:

```octave
octave:13> size(my_struct)
ans =
    1   1
```

So, in MATLAB, the struct array must be at least 2-D, and we replicate that when we read into SciPy. If you want all length 1 dimensions squeezed out, try this:

```python
>>> mat_contents = sio.loadmat('octave_struct.mat', squeeze_me=True)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape
()
```

Sometimes, it’s more convenient to load the MATLAB structs as Python objects rather than NumPy structured arrays - it can make the access syntax in Python a bit more similar to that in MATLAB. In order to do this, use the struct_as_record=False parameter setting to loadmat.

```python
>>> mat_contents = sio.loadmat('octave_struct.mat', struct_as_record=False)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct[0,0].field1
array([[ 1.]])
```

```python
struct_as_record=False works nicely with squeeze_me:
```

```python
>>> mat_contents = sio.loadmat('octave_struct.mat', struct_as_record=False,...
          squeeze_me=True)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape # but no - it's a scalar
Traceback (most recent call last):
  File "<stdin>"", line 1, in <module>
AttributeError: 'mat_struct' object has no attribute 'shape'
>>> type(oct_struct)
<class 'scipy.io.matlab.mio5_params.mat_struct'>
>>> oct_struct.field1
1.0
```

Saving struct arrays can be done in various ways. One simple method is to use dict:

```python
>>> a_dict = {'field1': 0.5, 'field2': 'a string'}
>>> sio.savemat('saved_struct.mat', {'a_dict': a_dict})
```

loaded as:

```octave
octave:21> load saved_struct
octave:22> a_dict
a_dict =
    scalar structure containing the fields:
```

(continues on next page)
field2 = a string
field1 = 0.50000

You can also save structs back again to MATLAB (or Octave in our case) like this:

```python
>> dt = [('f1', 'f8'), ('f2', 'S10')]
>> arr = np.zeros((2,), dtype=dt)
>> arr
array([(0.0, ''), (0.0, '')],
      dtype=[('f1', '<f8'), ('f2', 'S10')])
>> arr[0]['f1'] = 0.5
>> arr[0]['f2'] = 'python'
>> arr[1]['f1'] = 99
>> arr[1]['f2'] = 'not perl'
>> sio.savemat('np_struct_arr.mat', {'arr': arr})
```

MATLAB cell arrays

Cell arrays in MATLAB are rather like Python lists, in the sense that the elements in the arrays can contain any type of MATLAB object. In fact, they are most similar to NumPy object arrays, and that is how we load them into NumPy.

```octave
octave:14> my_cells = {1, [2, 3]}
my_cells =
  [1,1] = 1
  [1,2] =
    2 3

octave:15> save -6 octave_cells.mat my_cells
```

Back to Python:

```python
>>> mat_contents = sio.loadmat('octave_cells.mat')
>>> oct_cells = mat_contents['my_cells']
>>> print(oct_cells.dtype)
object
>>> val = oct_cells[0,0]
>>> val
array([[ 1.0]])
>>> print(val.dtype)
float64
```

Saving to a MATLAB cell array just involves making a NumPy object array:

```python
>>> obj_arr = np.zeros((2,), dtype=np.object)
>>> obj_arr[0] = 1
>>> obj_arr[1] = 'a string'
```
>>> obj_arr
array([[1, 'a string'], dtype=object])
>>> sio.savemat('np_cells.mat', {'obj_arr':obj_arr})

octave:16> load np_cells.mat
octave:17> obj_arr
obj_arr =
{
 [1,1] = 1
 [2,1] = a string
}

2.14.2 IDL files

\texttt{readsav(file_name[, idict, python_dict, ...])} \quad \text{Read an IDL .sav file.}

2.14.3 Matrix Market files

\texttt{mminfo(source)} \quad \text{Return size and storage parameters from Matrix Market file-like 'source'\text{.}}
\texttt{mmread(source)} \quad \text{Reads the contents of a Matrix Market file-like 'source' into a matrix.}
\texttt{mmwrite(target, a[, comment, field, ...])} \quad \text{Writes the sparse or dense array \textit{a} to Matrix Market file-like \textit{target}.}

2.14.4 Wav sound files (scipy.io.wavfile)

\texttt{read(filename[, mmap])} \quad \text{Open a WAV file.}
\texttt{write(filename, rate, data)} \quad \text{Write a NumPy array as a WAV file.}

2.14.5 Arff files (scipy.io.arff)

\texttt{loadarff(f)} \quad \text{Read an arff file.}
2.14.6 Netcdf

\texttt{netcdf_file(filename, mode, mmap, version, ...)} \hspace{1em} A file object for NetCDF data.

Allows reading of NetCDF files (version of \texttt{pupynere} package)
CHAPTER THREE

SCIPY API

3.1 Importing from SciPy

In Python the distinction between what is the public API of a library and what are private implementation details is not always clear. Unlike in other languages like Java, it is possible in Python to access “private” function or objects. Occasionally this may be convenient, but be aware that if you do so your code may break without warning in future releases. Some widely understood rules for what is and isn’t public in Python are:

• Methods / functions / classes and module attributes whose names begin with a leading underscore are private.
• If a class name begins with a leading underscore, none of its members are public, whether or not they begin with a leading underscore.
• If a module name in a package begins with a leading underscore none of its members are public, whether or not they begin with a leading underscore.
• If a module or package defines __all__, that authoritatively defines the public interface.
• If a module or package doesn’t define __all__, then all names that don’t start with a leading underscore are public.

Note: Reading the above guidelines one could draw the conclusion that every private module or object starts with an underscore. This is not the case; the presence of underscores do mark something as private, but the absence of underscores do not mark something as public.

In SciPy there are modules whose names don’t start with an underscore, but that should be considered private. To clarify which modules these are, we define below what the public API is for SciPy, and give some recommendations for how to import modules/functions/objects from SciPy.

3.2 Guidelines for importing functions from SciPy

The scipy namespace itself only contains functions imported from numpy. These functions still exist for backwards compatibility, but should be imported from numpy directly.

Everything in the namespaces of scipy submodules is public. In general, it is recommended to import functions from submodule namespaces. For example, the function curve_fit (defined in scipy/optimiz/_minpack_py.py) should be imported like this:

```python
from scipy import optimize
result = optimize.curve_fit(...)```

This form of importing submodules is preferred for all submodules except `scipy.io` (because `io` is also the name of a module in the Python stdlib):

```python
from scipy import interpolate
from scipy import integrate
import scipy.io as spio
```

In some cases, the public API is one level deeper. For example, the `scipy.sparse.linalg` module is public, and the functions it contains are not available in the `scipy.sparse` namespace. Sometimes it may result in more easily understandable code if functions are imported from one level deeper. For example, in the following it is immediately clear that `lomax` is a distribution if the second form is chosen:

```python
first form
from scipy import stats
stats.lomax(...)

second form
from scipy.stats import distributions
distributions.lomax(...)
```

In that case, the second form can be chosen if it is documented in the next section that the submodule in question is public.

### 3.3 API definition

Every submodule listed below is public. That means that these submodules are unlikely to be renamed or changed in an incompatible way, and if that is necessary, a deprecation warning will be raised for one SciPy release before the change is made.

- `scipy.cluster`
  - `scipy.cluster.vq`
  - `scipy.cluster.hierarchy`
- `scipy.constants`
- `scipy.fft`
- `scipy.fftpack`
- `scipy.integrate`
- `scipy.interpolate`
- `scipy.io`
  - `scipy.io.arff`
  - `scipy.io.matlab`
  - `scipy.io.wavfile`
- `scipy.linalg`
  - `scipy.linalg.blas`
  - `scipy.linalg.cython_blas`
  - `scipy.linalg.lapack`
  - `scipy.linalg.cython_lapack`
### 3.3.1 Clustering package (**scipy.cluster**)

**scipy.cluster.vq**

Clustering algorithms are useful in information theory, target detection, communications, compression, and other areas. The *vq* module only supports vector quantization and the k-means algorithms.

**scipy.cluster.hierarchy**

The *hierarchy* module provides functions for hierarchical and agglomerative clustering. Its features include generating hierarchical clusters from distance matrices, calculating statistics on clusters, cutting linkages to generate flat clusters, and visualizing clusters with dendrograms.

### 3.3.2 K-means clustering and vector quantization (**scipy.cluster.vq**)

Provides routines for k-means clustering, generating code books from k-means models and quantizing vectors by comparing them with centroids in a code book.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>whiten(obs[, check_finite])</code></td>
<td>Normalize a group of observations on a per feature basis.</td>
</tr>
<tr>
<td><code>vq(obs, code_book[, check_finite])</code></td>
<td>Assign codes from a code book to observations.</td>
</tr>
<tr>
<td><code>kmeans(obs, k_or_guess[, iter, thresh, ...])</code></td>
<td>Performs k-means on a set of observation vectors forming k clusters.</td>
</tr>
</tbody>
</table>

continues on next page
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>kmeans2</code></td>
<td>Classify a set of observations into k clusters using the k-means algorithm.</td>
</tr>
</tbody>
</table>

**scipy.cluster.vq.whiten**

`scipy.cluster.vq.whiten(obs, check_finite=True)`

Normalize a group of observations on a per feature basis.

Before running k-means, it is beneficial to rescale each feature dimension of the observation set by its standard deviation (i.e., “whiten” it - as in “white noise” where each frequency has equal power). Each feature is divided by its standard deviation across all observations to give it unit variance.

**Parameters**

- **obs** [ndarray] Each row of the array is an observation. The columns are the features seen during each observation.

  ```
 >>> # f0 f1 f2
 >>> obs = [[1., 1., 1.], # o0
 ... [2., 2., 2.], # o1
 ... [3., 3., 3.], # o2
 ... [4., 4., 4.]] # o3
  ```

- **check_finite** [bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: True

**Returns**

- **result** [ndarray] Contains the values in `obs` scaled by the standard deviation of each column.

**Examples**

```python
>>> from scipy.cluster.vq import whiten
>>> features = np.array([[1.9, 2.3, 1.7],
... [1.5, 2.5, 2.2],
... [0.8, 0.6, 1.7]])
>>> whiten(features)
array([[4.17944278, 2.69811351, 7.21248917],
 [3.29956009, 2.93273208, 9.33380951],
 [1.75976538, 0.7038557 , 7.21248917]])
```

**scipy.cluster.vq.vq**

`scipy.cluster.vq.vq(obs, code_book, check_finite=True)`

Assign codes from a code book to observations.

Assigns a code from a code book to each observation. Each observation vector in the ‘M’ by ‘N’ `obs` array is compared with the centroids in the code book and assigned the code of the closest centroid.

The features in `obs` should have unit variance, which can be achieved by passing them through the whiten function. The code book can be created with the k-means algorithm or a different encoding algorithm.
Parameters

**obs**

[ndarray] Each row of the ‘M’ x ‘N’ array is an observation. The columns are the “features” seen during each observation. The features must be whitened first using the `whiten` function or something equivalent.

**code_book**

[ndarray] The code book is usually generated using the k-means algorithm. Each row of the array holds a different code, and the columns are the features of the code.

```python
>>> # f0 f1 f2 f3
>>> code_book = [
... [1., 2., 3., 4.], #c0
... [1., 2., 3., 4.], #c1
... [1., 2., 3., 4.]] #c2
```

**check_finite**

[bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: True

Returns

**code**

[ndarray] A length M array holding the code book index for each observation.

**dist**

[ndarray] The distortion (distance) between the observation and its nearest code.

Examples

```python
>>> from numpy import array
>>> from scipy.cluster.vq import vq
>>> code_book = array([[1.,1.,1.],
... [2.,2.,2.]])
>>> features = array([[1.9,2.3,1.7],
... [1.5,2.5,2.2],
... [0.8,0.6,1.7]])
>>> vq(features,code_book)
(array([1, 1, 0], 'i'), array([0.43588989, 0.73484692, 0.83066239]))
```

**scipy.cluster.vq.kmeans**

`scipy.cluster.vq.kmeans( obs, k_or_guess, iter=20, thresh=1e-05, check_finite=True, *, seed=None)`

Performs k-means on a set of observation vectors forming k clusters.

The k-means algorithm adjusts the classification of the observations into clusters and updates the cluster centroids until the position of the centroids is stable over successive iterations. In this implementation of the algorithm, the stability of the centroids is determined by comparing the absolute value of the change in the average Euclidean distance between the observations and their corresponding centroids against a threshold. This yields a code book mapping centroids to codes and vice versa.

Parameters

**obs**

[ndarray] Each row of the M by N array is an observation vector. The columns are the features seen during each observation. The features must be whitened first with the `whiten` function.
k_or_guess

[int or ndarray] The number of centroids to generate. A code is assigned to each centroid, which is also the row index of the centroid in the code_book matrix generated. The initial k centroids are chosen by randomly selecting observations from the observation matrix. Alternatively, passing a k by N array specifies the initial k centroids.

iter

[int, optional] The number of times to run k-means, returning the codebook with the lowest distortion. This argument is ignored if initial centroids are specified with an array for the k_or_guess parameter. This parameter does not represent the number of iterations of the k-means algorithm.

thresh

[float, optional] Terminates the k-means algorithm if the change in distortion since the last k-means iteration is less than or equal to threshold.

check_finite

[bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: True

seed

[None, int, numpy.random.Generator, numpy.random.RandomState], optional

Seed for initializing the pseudo-random number generator. If seed is None (or numpy.random), the numpy.random.RandomState singleton is used. If seed is an int, a new RandomState instance is used, seeded with seed. If seed is already a Generator or RandomState instance then that instance is used. The default is None.

Returns

codebook

[ndarray] A k by N array of k centroids. The ith centroid codebook[i] is represented with the code i. The centroids and codes generated represent the lowest distortion seen, not necessarily the globally minimal distortion. Note that the number of centroids is not necessarily the same as the k_or_guess parameter, because centroids assigned to no observations are removed during iterations.

distortion

[float] The mean (non-squared) Euclidean distance between the observations passed and the centroids generated. Note the difference to the standard definition of distortion in the context of the k-means algorithm, which is the sum of the squared distances.

See also:

kmeans2

a different implementation of k-means clustering with more methods for generating initial centroids but without using a distortion change threshold as a stopping criterion.

whiten

must be called prior to passing an observation matrix to kmeans.

Notes

For more functionalities or optimal performance, you can use sklearn.cluster.KMeans. This is a benchmark result of several implementations.
Examples

```python
>>> from numpy import array
>>> from scipy.cluster.vq import vq, kmeans, whiten
>>> import matplotlib.pyplot as plt

>>> features = array([[1.9, 2.3],
 [1.5, 2.5],
 [0.8, 0.6],
 [0.4, 1.8],
 [0.1, 0.1],
 [0.2, 1.8],
 [2.0, 0.5],
 [0.3, 1.5],
 [1.0, 1.0]])

>>> whitened = whiten(features)
>>> book = np.array((whitened[0], whitened[2]))
>>> kmeans(whitened, book)
(array([[2.3110306 , 2.86287398],
 [0.93218041, 1.24398691]], 0.85684700941625547)

>>> codes = 3
>>> kmeans(whitened, codes)
(array([[2.3110306 , 2.86287398],
 [1.32544402, 0.65607529],
 [0.40782893, 2.02786907]], 0.5196582527686241)

>>> # Create 50 datapoints in two clusters a and b
>>> pts = 50
>>> rng = np.random.default_rng()
>>> a = rng.multivariate_normal([0, 0], [[4, 1], [1, 4]], size=pts)
>>> b = rng.multivariate_normal([30, 10],
 [[10, 2], [2, 1]],
 size=pts)
>>> features = np.concatenate((a, b))
>>> whitened = whiten(features)
>>> # Find 2 clusters in the data
>>> codebook, distortion = kmeans(whitened, 2)
>>> # Plot whitened data and cluster centers in red
>>> plt.scatter(whitened[:, 0], whitened[:, 1])
>>> plt.scatter(codebook[:, 0], codebook[:, 1], c='r')
>>> plt.show()
```
scipy.cluster.vq.kmeans2

Classify a set of observations into k clusters using the k-means algorithm.

The algorithm attempts to minimize the Euclidean distance between observations and centroids. Several initialization methods are included.

**Parameters**

- `data` ([ndarray]) A ‘M’ by ‘N’ array of ‘M’ observations in ‘N’ dimensions or a length ‘M’ array of ‘M’ 1-D observations.
- `k` ([int or ndarray]) The number of clusters to form as well as the number of centroids to generate. If `minit` initialization string is ‘matrix’, or if a ndarray is given instead, it is interpreted as initial cluster to use instead.
- `iter` ([int, optional]) Number of iterations of the k-means algorithm to run. Note that this differs in meaning from the *iters* parameter to the kmeans function.
- `thresh` ([float, optional]) (not used yet)
- `minit` ([str, optional]) Method for initialization. Available methods are ‘random’, ‘points’, ‘++’ and ‘matrix’:
  - ‘random’: generate k centroids from a Gaussian with mean and variance estimated from the data.
  - ‘points’: choose k observations (rows) at random from data for the initial centroids.
  - ‘++’: choose k observations accordingly to the kmeans++ method (careful seeding)
  - ‘matrix’: interpret the k parameter as a k by M (or length k array for 1-D data) array of initial centroids.
- `missing` ([str, optional]) Method to deal with empty clusters. Available methods are ‘warn’ and ‘raise’:
  - ‘warn’: give a warning and continue.
  - ‘raise’: raise an ClusterError and terminate the algorithm.
- `check_finite` ([bool, optional]) Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: True
- `seed` ([None, int, numpy.random.Generator, numpy.random.RandomState], optional)
Seed for initializing the pseudo-random number generator. If `seed` is None (or `numpy.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new `RandomState` instance is used, seeded with `seed`. If `seed` is already a `Generator` or `RandomState` instance then that instance is used. The default is None.

**Returns**

- `centroid` [ndarray] A ‘k’ by ‘N’ array of centroids found at the last iteration of k-means.
- `label` [ndarray] label[i] is the code or index of the centroid the ith observation is closest to.

See also:

- `kmeans`

References

[1]

**Examples**

```python
>>> from scipy.cluster.vq import kmeans2
>>> import matplotlib.pyplot as plt
```

Create `z`, an array with shape (100, 2) containing a mixture of samples from three multivariate normal distributions.

```python
>>> rng = np.random.default_rng()
>>> a = rng.multivariate_normal([0, 6], [[2, 1], [1, 1.5]], size=45)
>>> b = rng.multivariate_normal([2, 0], [[1, -1], [-1, 3]], size=30)
>>> c = rng.multivariate_normal([6, 4], [[5, 0], [0, 1.2]], size=25)
>>> z = np.concatenate((a, b, c))
>>> rng.shuffle(z)
```

Compute three clusters.

```python
>>> centroid, label = kmeans2(z, 3, minit='points')
>>> centroid
array([[2.22274463, -0.61666946],
 [0.54069047, 5.86541444],
 [6.73846769, 4.01991898]])
```

How many points are in each cluster?

```python
>>> counts = np.bincount(label)
>>> counts
array([29, 51, 20]) # may vary
```

Plot the clusters.

```python
>>> w0 = z[label == 0]
>>> w1 = z[label == 1]
>>> w2 = z[label == 2]
>>> plt.plot(w0[:, 0], w0[:, 1], 'o', alpha=0.5, label='cluster 0')
>>> plt.plot(w1[:, 0], w1[:, 1], 'd', alpha=0.5, label='cluster 1')
>>> plt.plot(w2[:, 0], w2[:, 1], 's', alpha=0.5, label='cluster 2')
```

(continues on next page)
Background information

The k-means algorithm takes as input the number of clusters to generate, k, and a set of observation vectors to cluster. It returns a set of centroids, one for each of the k clusters. An observation vector is classified with the cluster number or centroid index of the centroid closest to it.

A vector v belongs to cluster i if it is closer to centroid i than any other centroid. If v belongs to i, we say centroid i is the dominating centroid of v. The k-means algorithm tries to minimize distortion, which is defined as the sum of the squared distances between each observation vector and its dominating centroid. The minimization is achieved by iteratively reclassifying the observations into clusters and recalculating the centroids until a configuration is reached in which the centroids are stable. One can also define a maximum number of iterations.

Since vector quantization is a natural application for k-means, information theory terminology is often used. The centroid index or cluster index is also referred to as a “code” and the table mapping codes to centroids and, vice versa, is often referred to as a “code book”. The result of k-means, a set of centroids, can be used to quantize vectors. Quantization aims to find an encoding of vectors that reduces the expected distortion.

All routines expect obs to be an M by N array, where the rows are the observation vectors. The codebook is a k by N array, where the ith row is the centroid of code word i. The observation vectors and centroids have the same feature dimension.

As an example, suppose we wish to compress a 24-bit color image (each pixel is represented by one byte for red, one for blue, and one for green) before sending it over the web. By using a smaller 8-bit encoding, we can reduce the amount of data by two thirds. Ideally, the colors for each of the 256 possible 8-bit encoding values should be chosen to minimize distortion of the color. Running k-means with k=256 generates a code book of 256 codes, which fills up all possible 8-bit sequences. Instead of sending a 3-byte value for each pixel, the 8-bit centroid index (or code word) of the dominating centroid is transmitted. The code book is also sent over the wire so each 8-bit code can be translated back to a 24-bit pixel value representation. If the image of interest was of an ocean, we would expect many 24-bit blues to be represented by 8-bit codes. If it was an image of a human face, more flesh-tone colors would be represented in the code book.
3.3.3 Hierarchical clustering (scipy.cluster.hierarchy)

These functions cut hierarchical clusterings into flat clusterings or find the roots of the forest formed by a cut by providing the flat cluster ids of each observation.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fcluster(Z, t[, criterion, depth, R, monocrit])</td>
<td>Form flat clusters from the hierarchical clustering defined by the given linkage matrix.</td>
</tr>
<tr>
<td>fclusterdata(X, t[, criterion, metric, ...])</td>
<td>Cluster observation data using a given metric.</td>
</tr>
<tr>
<td>leaders(Z, T)</td>
<td>Return the root nodes in a hierarchical clustering.</td>
</tr>
</tbody>
</table>

**scipy.cluster.hierarchy.fcluster**

Form flat clusters from the hierarchical clustering defined by the given linkage matrix.

**Parameters**

- **Z** [ndarray] The hierarchical clustering encoded with the matrix returned by the `linkage` function.
- **t** [scalar]
  - For criteria ‘inconsistent’, ‘distance’ or ‘monocrit’, this is the threshold to apply when forming flat clusters.
  - For ‘maxclust’ or ‘maxclust_monocrit’ criteria, this would be max number of clusters requested.
- **criterion** [str, optional] The criterion to use in forming flat clusters. This can be any of the following values:
  - **inconsistent**: If a cluster node and all its descendants have an inconsistent value less than or equal to t, then all its leaf descendants belong to the same flat cluster. When no non-singleton cluster meets this criterion, every node is assigned to its own cluster. (Default)
  - **distance**: Forms flat clusters so that the original observations in each flat cluster have no greater a cophenetic distance than t.
  - **maxclust**: Finds a minimum threshold r so that the cophenetic distance between any two original observations in the same flat cluster is no more than r and no more than t flat clusters are formed.
  - **monocrit**: Forms a flat cluster from a cluster node c with index i when monocrit[j] <= t.
  
  For example, to threshold on the maximum mean distance as computed in the inconsistency matrix R with a threshold of 0.8 do:

  ```python
 MR = maxRstat(Z, R, 3)
 fcluster(Z, t=0.8, criterion='monocrit', ...monocrit=MR)
  ```

- **maxclust_monocrit**: Forms a flat cluster from a non-singleton cluster node c when monocrit[i] <= r for all cluster indices i below and including c. r is minimized such that no more than t flat clusters are formed. monocrit must be monotonic. For example, to minimize the threshold t on maximum inconsistency values so that no more than 3 flat clusters are formed, do:

```python
MR = maxRstat(Z, R, 3)
...monocrit=MR)
```
MI = maxinconsts(Z, R)
fcluster(Z, t=3, criterion='maxclust_monocrit', mono
crit=MI)

depth [int, optional] The maximum depth to perform the inconsistency calculation. It has no mean-
ing for the other criteria. Default is 2.

R [ndarray, optional] The inconsistency matrix to use for the ‘inconsistent’ criterion. This ma-
trix is computed if not provided.

monocrit [ndarray, optional] An array of length n-1. monocrit[i] is the statistics upon which non-
singleton i is thresholded. The monocrit vector must be monotonic, i.e., given a node c
with index i, for all node indices j corresponding to nodes below c, monocrit[i] >=
monocrit[j].

Returns

fcluster [ndarray] An array of length n. T[i] is the flat cluster number to which original observation
i belongs.

See also:

linkage

for information about hierarchical clustering methods work.

Examples

```python
>>> from scipy.cluster.hierarchy import ward, fcluster
>>> from scipy.spatial.distance import pdist

All cluster linkage methods - e.g., scipy.cluster.hierarchy.ward generate a linkage matrix Z as their
output:

>>> X = [[0., 0.], [0., 1.], [1., 0.],
 ... [0., 4.], [0., 3.], [1., 4.],
 ... [4., 0.], [3., 0.], [4., 1.],
 ... [4., 4.], [3., 4.], [4., 3.]]

>>> Z = ward(pdist(X))

>>> Z
array([[0. , 1. , 1. , 2.],
 [3. , 4. , 1. , 2.],
 [6. , 7. , 1. , 2.],
 [9. , 10. , 1. , 2.],
 [2. , 12. , 1.29099445, 3.],
 [5. , 13. , 1.29099445, 3.],
 [8. , 14. , 1.29099445, 3.],
 [11. , 15. , 1.29099445, 3.],
 [16. , 17. , 5.77350269, 6.],
 [18. , 19. , 5.77350269, 6.],
 [20. , 21. , 8.16496581, 12.]])
```

This matrix represents a dendrogram, where the first and second elements are the two clusters merged at each step,
the third element is the distance between these clusters, and the fourth element is the size of the new cluster - the
number of original data points included.

`scipy.cluster.hierarchy.fcluster` can be used to flatten the dendrogram, obtaining as a result an assignment of the original data points to single clusters.

This assignment mostly depends on a distance threshold $t$ - the maximum inter-cluster distance allowed:

```python
>>> fcluster(Z, t=0.9, criterion='distance')
array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32)
```

```python
>>> fcluster(Z, t=1.1, criterion='distance')
array([1, 1, 2, 3, 4, 5, 6, 7, 7, 8], dtype=int32)
```

```python
>>> fcluster(Z, t=3, criterion='distance')
array([1, 1, 1, 2, 2, 3, 3, 4, 4], dtype=int32)
```

```python
>>> fcluster(Z, t=9, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
```

In the first case, the threshold $t$ is too small to allow any two samples in the data to form a cluster, so 12 different clusters are returned.

In the second case, the threshold is large enough to allow the first 4 points to be merged with their nearest neighbors. So, here, only 8 clusters are returned.

The third case, with a much higher threshold, allows for up to 8 data points to be connected - so 4 clusters are returned here.

Lastly, the threshold of the fourth case is large enough to allow for all data points to be merged together - so a single cluster is returned.

**scipy.cluster.hierarchy.fclusterdata**

`scipy.cluster.hierarchy.fclusterdata(X, t, criterion='inconsistent', metric='euclidean', depth=2, method='single', R=None)`

Cluster observation data using a given metric.

Clusters the original observations in the n-by-m data matrix $X$ (n observations in m dimensions), using the euclidean distance metric to calculate distances between original observations, performs hierarchical clustering using the single linkage algorithm, and forms flat clusters using the inconsistency method with $t$ as the cut-off threshold.

A 1-D array $T$ of length $n$ is returned. $T[i]$ is the index of the flat cluster to which the original observation $i$ belongs.

### Parameters

- **X**
  - [(N, M) ndarray] N by M data matrix with N observations in M dimensions.
  - [scalar]

- **t**
  - [scalar]

  For criteria ‘inconsistent’, ‘distance’ or ‘monocrit’,
  this is the threshold to apply when forming flat clusters.

- **criterion**
  - [str, optional] Specifies the criterion for forming flat clusters. Valid values are ‘inconsistent’ (default), ‘distance’, or ‘maxclust’ cluster formation algorithms. See `fcluster` for descriptions.

- **metric**
  - [str or function, optional] The distance metric for calculating pairwise distances. See `distance.pdist` for descriptions and linkage to verify compatibility with the linkage method.

3.3. API definition 309
**depth** [int, optional] The maximum depth for the inconsistency calculation. See `inconsistent` for more information.

**method** [str, optional] The linkage method to use (single, complete, average, weighted, median centroid, ward). See `linkage` for more information. Default is “single”.

**R** [ndarray, optional] The inconsistency matrix. It will be computed if necessary if it is not passed.

**Returns**

**fclusterdata**

[numpy.ndarray] A vector of length n. T[i] is the flat cluster number to which original observation i belongs.

**See also:**

`scipy.spatial.distance.pdist` pairwise distance metrics

**Notes**

This function is similar to the MATLAB function `clusterdata`.

**Examples**

```python
>>> from scipy.cluster.hierarchy import fclusterdata
```

This is a convenience method that abstracts all the steps to perform in a typical SciPy’s hierarchical clustering workflow.

- Transform the input data into a condensed matrix with `scipy.spatial.distance.pdist`.
- Apply a clustering method.
- Obtain flat clusters at a user defined distance threshold t using `scipy.cluster.hierarchy.fcluster`.

```python
>>> X = [
 [0, 0], [0, 1], [1, 0],
 [0, 4], [0, 3], [1, 4],
 [4, 0], [3, 0], [4, 1],
 [4, 4], [3, 4], [4, 3]
]
```

```python
>>> fclusterdata(X, t=1)
array([[3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32)
```

The output here (for the dataset X, distance threshold t, and the default settings) is four clusters with three data points each.
scipy.cluster.hierarchy.leaders

scipy.cluster.hierarchy.leaders(Z, T)

Return the root nodes in a hierarchical clustering.

Returns the root nodes in a hierarchical clustering corresponding to a cut defined by a flat cluster assignment vector T. See the fcluster function for more information on the format of T.

For each flat cluster j of the k flat clusters represented in the n-sized flat cluster assignment vector T, this function finds the lowest cluster node i in the linkage tree Z, such that:

- leaf descendants belong only to flat cluster j (i.e., T[p] == j for all p in S(i), where S(i) is the set of leaf ids of descendant leaf nodes with cluster node i)
- there does not exist a leaf that is not a descendant with i that also belongs to cluster j (i.e., T[q] != j for all q not in S(i)). If this condition is violated, T is not a valid cluster assignment vector, and an exception will be thrown.

Parameters

Z [ndarray] The hierarchical clustering encoded as a matrix. See linkage for more information.
T [ndarray] The flat cluster assignment vector.

Returns

L [ndarray] The leader linkage node id's stored as a k-element 1-D array, where k is the number of flat clusters found in T.
M [ndarray] The leader linkage node id's stored as a k-element 1-D array, where k is the number of flat clusters found in T. This allows the set of flat cluster ids to be any arbitrary set of k integers.

L[j] = i is the linkage cluster node id that is the leader of flat cluster with id M[j]. If i < n, i corresponds to an original observation, otherwise it corresponds to a non-singleton cluster.

For example: if L[3]=2 and M[3]=8, the flat cluster with id 8's leader is linkage node 2.

See also:

fcluster

for the creation of flat cluster assignments.

Examples

>>> from scipy.cluster.hierarchy import ward, fcluster, leaders
>>> from scipy.spatial.distance import pdist

Given a linkage matrix Z - obtained after apply a clustering method to a dataset X - and a flat cluster assignment array T:

>>> X = [[0, 0], [0, 1], [1, 0],
...     [0, 4], [0, 3], [1, 4],
...     [4, 0], [3, 0], [4, 1],
...     [4, 4], [3, 4], [4, 3]]
```python
>>> Z = ward(pdist(X))
array([[0. , 1. , 1. , 2.],
 [3. , 4. , 1. , 2.],
 [6. , 7. , 1. , 2.],
 [9. , 10. , 1. , 2.],
 [2. , 12. , 1.29099445, 3.],
 [5. , 13. , 1.29099445, 3.],
 [8. , 14. , 1.29099445, 3.],
 [11. , 15. , 1.29099445, 3.],
 [16. , 17. , 5.77350269, 6.],
 [18. , 19. , 5.77350269, 6.],
 [20. , 21. , 8.16496581, 12.]])
>>> T = fcluster(Z, 3, criterion='distance')
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
```

`scipy.cluster.hierarchy.leaders` returns the indices of the nodes in the dendrogram that are the leaders of each flat cluster:

```python
>>> L, M = leaders(Z, T)
>>> L
array([16, 17, 18, 19], dtype=int32)
```

(remember that indices 0-11 point to the 12 data points in X, whereas indices 12-22 point to the 11 rows of Z)

`scipy.cluster.hierarchy.leaders` also returns the indices of the flat clusters in T:

```python
>>> M
array([1, 2, 3, 4], dtype=int32)
```

These are routines for agglomerative clustering.

- `linkage(y[, method, metric, optimal_ordering])` Perform hierarchical/agglomerative clustering.
- `single(y)` Perform single/min/nearest linkage on the condensed distance matrix y.
- `complete(y)` Perform complete/max/farthest point linkage on a condensed distance matrix.
- `average(y)` Perform average/UPGMA linkage on a condensed distance matrix.
- `weighted(y)` Perform weighted/WPGMA linkage on the condensed distance matrix.
- `centroid(y)` Perform centroid/UPGMC linkage.
- `median(y)` Perform median/WPGMC linkage.
- `ward(y)` Perform Ward's linkage on a condensed distance matrix.
Perform hierarchical/aggregate clustering.

The input y may be either a 1-D condensed distance matrix or a 2-D array of observation vectors.

If y is a 1-D condensed distance matrix, then y must be a \( \binom{n}{2} \) sized vector, where n is the number of original observations paired in the distance matrix. The behavior of this function is very similar to the MATLAB linkage function.

A \((n-1)\) by 4 matrix \( Z \) is returned. At the \( i \)-th iteration, clusters with indices \( Z[i, 0] \) and \( Z[i, 1] \) are combined to form cluster \( n+i \). A cluster with an index less than \( n \) corresponds to one of the \( n \) original observations. The distance between clusters \( Z[i, 0] \) and \( Z[i, 1] \) is given by \( Z[i, 2] \). The fourth value \( Z[i, 3] \) represents the number of original observations in the newly formed cluster.

The following linkage methods are used to compute the distance \( d(s, t) \) between two clusters \( s \) and \( t \). The algorithm begins with a forest of clusters that have yet to be used in the hierarchy being formed. When two clusters \( s \) and \( t \) from this forest are combined into a single cluster \( u \), \( s \) and \( t \) are removed from the forest, and \( u \) is added to the forest. When only one cluster remains in the forest, the algorithm stops, and this cluster becomes the root.

A distance matrix is maintained at each iteration. The \( d[i, j] \) entry corresponds to the distance between cluster \( i \) and \( j \) in the original forest.

At each iteration, the algorithm must update the distance matrix to reflect the distance of the newly formed cluster \( u \) with the remaining clusters in the forest.

Suppose there are \(|u| \) original observations \( u[0], \ldots, u[|u|-1] \) in cluster \( u \) and \(|v| \) original objects \( v[0], \ldots, v[|v|-1] \) in cluster \( v \). Recall, \( s \) and \( t \) are combined to form cluster \( u \). Let \( v \) be any remaining cluster in the forest that is not \( u \).

The following are methods for calculating the distance between the newly formed cluster \( u \) and each \( v \).

- **method='single'** assigns
  
  \[
  d(u, v) = \min(dist(u[i], v[j]))
  \]
  
  for all points \( i \) in cluster \( u \) and \( j \) in cluster \( v \). This is also known as the Nearest Point Algorithm.

- **method='complete'** assigns
  
  \[
  d(u, v) = \max(dist(u[i], v[j]))
  \]
  
  for all points \( i \) in cluster \( u \) and \( j \) in cluster \( v \). This is also known by the Farthest Point Algorithm or Voor Hees Algorithm.

- **method='average'** assigns
  
  \[
  d(u, v) = \frac{\sum_{ij} d(u[i], v[j])}{(|u| \cdot |v|)}
  \]
  
  for all points \( i \) and \( j \) where \(|u| \) and \(|v| \) are the cardinalities of clusters \( u \) and \( v \), respectively. This is also called the UPGMA algorithm.

- **method='weighted'** assigns
  
  \[
  d(u, v) = \frac{(dist(s, v) + dist(t, v))}{2}
  \]
  
  where cluster \( u \) was formed with cluster \( s \) and \( t \) and \( v \) is a remaining cluster in the forest (also called WPGMA).
• method=’centroid’ assigns

$$dist(s, t) = ||c_s - c_t||_2$$

where $c_s$ and $c_t$ are the centroids of clusters $s$ and $t$, respectively. When two clusters $s$ and $t$ are combined into a new cluster $u$, the new centroid is computed over all the original objects in clusters $s$ and $t$. The distance then becomes the Euclidean distance between the centroid of $u$ and the centroid of a remaining cluster $v$ in the forest. This is also known as the UPGMC algorithm.

• method=’median’ assigns $d(s, t)$ like the centroid method. When two clusters $s$ and $t$ are combined into a new cluster $u$, the average of centroids $s$ and $t$ give the new centroid $u$. This is also known as the WPGMC algorithm.

• method=’ward’ uses the Ward variance minimization algorithm. The new entry $d(u, v)$ is computed as follows,

$$d(u, v) = \sqrt{\frac{|v| + |s|}{T} d(v, s)^2 + \frac{|v| + |t|}{T} d(v, t)^2 - \frac{|v|}{T} d(s, t)^2}$$

where $u$ is the newly joined cluster consisting of clusters $s$ and $t$, $v$ is an unused cluster in the forest, $T = |v| + |s| + |t|$, and $|\ast|$ is the cardinality of its argument. This is also known as the incremental algorithm.

Warning: When the minimum distance pair in the forest is chosen, there may be two or more pairs with the same minimum distance. This implementation may choose a different minimum than the MATLAB version.

**Parameters**

**y** [ndarray] A condensed distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that pdist returns. Alternatively, a collection of $m$ observation vectors in $n$ dimensions may be passed as an $m$ by $n$ array. All elements of the condensed distance matrix must be finite, i.e., no NaNs or infs.

**method** [str, optional] The linkage algorithm to use. See the Linkage Methods section below for full descriptions.

**metric** [str or function, optional] The distance metric to use in the case that y is a collection of observation vectors; ignored otherwise. See the pdist function for a list of valid distance metrics. A custom distance function can also be used.

**optimal_ordering** [bool, optional] If True, the linkage matrix will be reordered so that the distance between successive leaves is minimal. This results in a more intuitive tree structure when the data are visualized. defaults to False, because this algorithm can be slow, particularly on large datasets [2]. See also the optimal_leaf_ordering function. New in version 1.0.0.

**Returns**

**Z** [ndarray] The hierarchical clustering encoded as a linkage matrix.

**See also:**

scipy.spatial.distance.pdist

pairwise distance metrics
Notes

1. For method `single`, an optimized algorithm based on minimum spanning tree is implemented. It has time complexity $O(n^2)$. For methods `complete`, `average`, `weighted` and `ward`, an algorithm called nearest-neighbors chain is implemented. It also has time complexity $O(n^2)$. For other methods, a naive algorithm is implemented with $O(n^3)$ time complexity. All algorithms use $O(n^2)$ memory. Refer to [1] for details about the algorithms.

2. Methods `centroid`, `median`, and `ward` are correctly defined only if Euclidean pairwise metric is used. If $y$ is passed as precomputed pairwise distances, then it is the user’s responsibility to assure that these distances are in fact Euclidean, otherwise the produced result will be incorrect.

References

[1], [2]

Examples

```python
>>> from scipy.cluster.hierarchy import dendrogram, linkage
>>> from matplotlib import pyplot as plt
>>> X = [[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]]

>>> Z = linkage(X, 'ward')
>>> fig = plt.figure(figsize=(25, 10))
>>> dn = dendrogram(Z)

>>> Z = linkage(X, 'single')
>>> fig = plt.figure(figsize=(25, 10))
>>> dn = dendrogram(Z)
>>> plt.show()
```
scipy.cluster.hierarchy.single

scipy.cluster.hierarchy.single(y)
Perform single/min/nearest linkage on the condensed distance matrix y.

Parameters

- y : [ndarray] The upper triangular of the distance matrix. The result of pdist is returned in this form.

Returns


See also:

- linkage
  for advanced creation of hierarchical clusterings.

- scipy.spatial.distance.pdist
  pairwise distance metrics

Examples

```python
>>> from scipy.cluster.hierarchy import single, fcluster
>>> from scipy.spatial.distance import pdist
```

First, we need a toy dataset to play with:

```
x x x x
x x
x x
```

```python
```
Then, we get a condensed distance matrix from this dataset:

```python
>>> y = pdist(X)
```

Finally, we can perform the clustering:

```python
>>> Z = single(y)
```

The linkage matrix Z represents a dendrogram - see `scipy.cluster.hierarchy.linkage` for a detailed explanation of its contents.

We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster each initial point would belong given a distance threshold:

```python
>>> fcluster(Z, 0.9, criterion='distance')
array([7, 8, 9, 10, 11, 12, 4, 5, 6, 1, 2, 3], dtype=int32)
```

```python
>>> fcluster(Z, 1, criterion='distance')
array([3, 3, 4, 4, 4, 2, 2, 1, 1, 1], dtype=int32)
```

```python
>>> fcluster(Z, 2, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
```

Also, `scipy.cluster.hierarchy.dendrogram` can be used to generate a plot of the dendrogram.

### scipy.cluster.hierarchy.complete

`scipy.cluster.hierarchy.complete(y)`

Perform complete/max/farthest point linkage on a condensed distance matrix.

**Parameters**

- **y** : [ndarray] The upper triangular of the distance matrix. The result of `pdist` is returned in this form.

**Returns**

- **Z** : [ndarray] A linkage matrix containing the hierarchical clustering. See the `linkage` function documentation for more information on its structure.

**See also:**

3.3. API definition
linkage
for advanced creation of hierarchical clusterings.

scipy.spatial.distance.pdist
pairwise distance metrics

Examples

```python
>>> from scipy.cluster.hierarchy import complete, fcluster
>>> from scipy.spatial.distance import pdist

First, we need a toy dataset to play with:

```
 x x   x x
 x     x
 x     x
 x x   x x
```

```python
>>> X = [[0, 0], [0, 1], [1, 0],
...       [0, 4], [0, 3], [1, 4],
...       [4, 0], [3, 0], [4, 1],
...       [4, 4], [3, 4], [4, 3]]
```

Then, we get a condensed distance matrix from this dataset:

```python
>>> y = pdist(X)
```

Finally, we can perform the clustering:

```python
>>> Z = complete(y)
```

```python
array([[ 0. , 1. , 1. , 2. ],
       [ 3. , 4. , 1. , 2. ],
       [ 6. , 7. , 1. , 2. ],
       [ 9. , 10. , 1. , 2. ],
       [ 2. , 12. , 1.41421356, 3. ],
       [ 5. , 13. , 1.41421356, 3. ],
       [ 8. , 14. , 1.41421356, 3. ],
       [11. , 15. , 1.41421356, 3. ],
       [16. , 17. , 4.12310563, 6. ],
       [18. , 19. , 4.12310563, 6. ],
       [20. , 21. , 5.65685425, 12. ]])
```

The linkage matrix \(Z \) represents a dendrogram - see `scipy.cluster.hierarchy.linkage` for a detailed explanation of its contents.

We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster each initial point would belong given a distance threshold:

```python
>>> fcluster(Z, 0.9, criterion='distance')
array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32)
```

```python
>>> fcluster(Z, 1.5, criterion='distance')
```

(continues on next page)
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)

>>> fcluster(Z, 4.5, criterion='distance')
array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2], dtype=int32)

>>> fcluster(Z, 6, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

Also, `scipy.cluster.hierarchy.dendrogram` can be used to generate a plot of the dendrogram.

scipy.cluster.hierarchy.average

scipy.cluster.hierarchy.average(y)

Perform average/UPGMA linkage on a condensed distance matrix.

Parameters

- **y** [ndarray] The upper triangular of the distance matrix. The result of `pdist` is returned in this form.

Returns

- **Z** [ndarray] A linkage matrix containing the hierarchical clustering. See `linkage` for more information on its structure.

See also:

linkage

for advanced creation of hierarchical clusterings.

scipy.spatial.distance.pdist

pairwise distance metrics

Examples

```python
>>> from scipy.cluster.hierarchy import average, fcluster

>>> from scipy.spatial.distance import pdist
```

First, we need a toy dataset to play with:

```python
x x x x
x x
x x
x x x x
```

```python
>>> X = [[0, 0], [0, 1], [1, 0],
...      [0, 4], [0, 3], [1, 4],
...      [4, 0], [3, 0], [4, 1],
...      [4, 4], [3, 4], [4, 3]]
```

Then, we get a condensed distance matrix from this dataset:

```python
>>> y = pdist(X)
```
Finally, we can perform the clustering:

```python
>>> Z = average(y)
>>> Z
array([[ 0. ,  1. ,  1. ,  2. ],
[ 3. ,  4. ,  1. ,  2. ],
[ 6. ,  7. ,  1. ,  2. ],
[ 9. , 10. ,  1. ,  2. ],
[ 2. , 12. , 1.20710678, 3. ],
[ 5. , 13. , 1.20710678, 3. ],
[ 8. , 14. , 1.20710678, 3. ],
[11. , 15. , 1.20710678, 3. ],
[16. , 17. , 3.39675184, 6. ],
[18. , 19. , 3.39675184, 6. ],
[20. , 21. , 4.09206523, 12. ]])
```

The linkage matrix Z represents a dendrogram - see `scipy.cluster.hierarchy.linkage` for a detailed explanation of its contents.

We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster each initial point would belong given a distance threshold:

```python
>>> fcluster(Z, 0.9, criterion='distance')
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32)
>>> fcluster(Z, 1.5, criterion='distance')
array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
>>> fcluster(Z, 4.0, criterion='distance')
array([1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2], dtype=int32)
>>> fcluster(Z, 6.0, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
```

Also, `scipy.cluster.hierarchy.dendrogram` can be used to generate a plot of the dendrogram.

scipy.cluster.hierarchy.weighted

`scipy.cluster.hierarchy.weighted(y)`

Perform weighted/WPGMA linkage on the condensed distance matrix.

See `linkage` for more information on the return structure and algorithm.

Parameters

- `y` [ndarray] The upper triangular of the distance matrix. The result of `pdist` is returned in this form.

Returns

- `Z` [ndarray] A linkage matrix containing the hierarchical clustering. See `linkage` for more information on its structure.

See also:

- `linkage`

 for advanced creation of hierarchical clusterings.

- `scipy.spatial.distance.pdist`

 pairwise distance metrics
Examples

```python
>>> from scipy.cluster.hierarchy import weighted, fcluster
>>> from scipy.spatial.distance import pdist
```

First, we need a toy dataset to play with:

```
  x  x  x  x
  x  x
  x  x
  x  x  x  x
```

```python
>>> X = [[0, 0], [0, 1], [1, 0],
      ... [0, 4], [0, 3], [1, 4],
      ... [4, 0], [3, 0], [4, 1],
      ... [4, 4], [3, 4], [4, 3]]
```

Then, we get a condensed distance matrix from this dataset:

```python
>>> y = pdist(X)
```

Finally, we can perform the clustering:

```
>>> Z = weighted(y)
>>> Z
array([[ 0. , 1. , 1. , 2. ],
       [ 6. , 7. , 1. , 2. ],
       [ 3. , 4. , 1. , 2. ],
       [ 9. , 11. , 1. , 2. ],
       [ 2. , 12. , 1.20710678, 3. ],
       [ 8. , 13. , 1.20710678, 3. ],
       [ 5. , 14. , 1.20710678, 3. ],
       [10. , 15. , 1.20710678, 3. ],
       [18. , 19. , 3.05595762, 6. ],
       [16. , 17. , 3.32379407, 6. ],
       [20. , 21. , 4.06357713, 12. ]])
```

The linkage matrix Z represents a dendogram - see `scipy.cluster.hierarchy.linkage` for a detailed explanation of its contents.

We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster each initial point would belong given a distance threshold:

```
>>> fcluster(Z, 0.9, criterion='distance')
array([ 7,  8,  9,  1,  2,  3, 10, 11, 12,  4,  6,  5], dtype=int32)
```

```
>>> fcluster(Z, 1.5, criterion='distance')
array([ 3,  3,  1,  1,  1,  4,  4,  4,  2,  2,  2,  2], dtype=int32)
```

```
>>> fcluster(Z, 4, criterion='distance')
array([ 2,  2,  2,  1,  1,  2,  2,  2,  1,  1,  1], dtype=int32)
```

```
>>> fcluster(Z, 6, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
```

Also, `scipy.cluster.hierarchy.dendrogram` can be used to generate a plot of the dendrogram.
scipy.cluster.hierarchy.centroid

scipy.cluster.hierarchy.centroid(y)
Perform centroid/UPGMC linkage.

See linkage for more information on the input matrix, return structure, and algorithm.

The following are common calling conventions:

1. \(Z = \text{centroid}(y) \)

 Performs centroid/UPGMC linkage on the condensed distance matrix \(y \).

2. \(Z = \text{centroid}(X) \)

 Performs centroid/UPGMC linkage on the observation matrix \(X \) using Euclidean distance as the distance metric.

Parameters

- **y** [ndarray] A condensed distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that pdist returns. Alternatively, a collection of \(m \) observation vectors in \(n \) dimensions may be passed as an \(m \) by \(n \) array.

Returns

- **Z** [ndarray] A linkage matrix containing the hierarchical clustering. See the linkage function documentation for more information on its structure.

See also:

- linkage

 for advanced creation of hierarchical clusterings.
- scipy.spatial.distance.pdist

 pairwise distance metrics

Examples

```python
>>> from scipy.cluster.hierarchy import centroid, fcluster
>>> from scipy.spatial.distance import pdist

First, we need a toy dataset to play with:

```
 x x x x
 x x
 x x
 x x x x
```

```python
>>> X = [[0, 0], [0, 1], [1, 0],
 ... [0, 4], [0, 3], [1, 4],
 ... [4, 0], [3, 0], [4, 1],
 ... [4, 4], [3, 4], [4, 3]]
```

Then, we get a condensed distance matrix from this dataset:
Finally, we can perform the clustering:

```python
>>> Z = centroid(y)
```

```
array([[0. , 1. , 1. , 2.],
 [3. , 4. , 1. , 2.],
 [9. , 10. , 1. , 2.],
 [6. , 7. , 1. , 2.],
 [2. , 12. , 1.11803399, 3.],
 [5. , 13. , 1.11803399, 3.],
 [8. , 15. , 1.11803399, 3.],
 [11. , 14. , 1.11803399, 3.],
 [18. , 19. , 3.33333333, 6.],
 [16. , 17. , 3.33333333, 6.],
 [20. , 21. , 3.33333333, 12.]])
```

The linkage matrix Z represents a dendrogram - see `scipy.cluster.hierarchy.linkage` for a detailed explanation of its contents.

We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster each initial point would belong given a distance threshold:

```python
>>> fcluster(Z, 0.9, criterion='distance')
array([7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6], dtype=int32)
>>> fcluster(Z, 1.1, criterion='distance')
array([5, 6, 7, 8, 1, 1, 2, 3, 3, 4], dtype=int32)
>>> fcluster(Z, 2, criterion='distance')
array([3, 3, 4, 4, 1, 1, 2, 2, 2], dtype=int32)
>>> fcluster(Z, 4, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
```

Also, `scipy.cluster.hierarchy.dendrogram` can be used to generate a plot of the dendrogram.

**scipy.cluster.hierarchy.median**

**scipy.cluster.hierarchy.median(y)**

Perform median/WPGMC linkage.

See `linkage` for more information on the return structure and algorithm.

The following are common calling conventions:

1. Z = median(y)
   Performs median/WPGMC linkage on the condensed distance matrix y. See `linkage` for more information on the return structure and algorithm.

2. Z = median(X)
   Performs median/WPGMC linkage on the observation matrix X using Euclidean distance as the distance metric. See `linkage` for more information on the return structure and algorithm.

**Parameters**

- **y** [ndarray] A condensed distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that `pdist` returns.
Alternatively, a collection of m observation vectors in n dimensions may be passed as an m by n array.

**Returns**

Z. [ndarray] The hierarchical clustering encoded as a linkage matrix.

See also:

- `linkage` for advanced creation of hierarchical clusterings.
- `scipy.spatial.distance.pdist` pairwise distance metrics

**Examples**

```python
>>> from scipy.cluster.hierarchy import median, fcluster
>>> from scipy.spatial.distance import pdist
```

First, we need a toy dataset to play with:

```
x x x x
x x
x x
x x x x
```

```python
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
```

Then, we get a condensed distance matrix from this dataset:

```python
>>> y = pdist(X)
```

Finally, we can perform the clustering:

```python
>>> Z = median(y)
>>> Z
array([[0. , 1. , 1. , 2.],
 [3. , 4. , 1. , 2.],
 [9. , 10. , 1. , 2.],
 [6. , 7. , 1. , 2.],
 [2. , 12. , 1.11803399, 3.],
 [5. , 13. , 1.11803399, 3.],
 [8. , 15. , 1.11803399, 3.],
 [11. , 14. , 1.11803399, 3.],
 [18. , 19. , 3. , 6.],
 [16. , 17. , 3.5 , 6.],
 [20. , 21. , 3.25 , 12.]])
```
The linkage matrix $Z$ represents a dendrogram - see `scipy.cluster.hierarchy.linkage` for a detailed explanation of its contents.

We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster each initial point would belong given a distance threshold:

```python
>>> fcluster(Z, 0.9, criterion='distance')
array([7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6], dtype=int32)
>>> fcluster(Z, 1.1, criterion='distance')
array([5, 5, 6, 7, 7, 8, 1, 1, 2, 3, 3, 4], dtype=int32)
>>> fcluster(Z, 2, criterion='distance')
array([3, 3, 4, 4, 4, 1, 1, 2, 2, 2], dtype=int32)
>>> fcluster(Z, 4, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
```

Also, `scipy.cluster.hierarchy.dendrogram` can be used to generate a plot of the dendrogram.

**scipy.cluster.hierarchy.ward**

`scipy.cluster.hierarchy.ward(y)`

Perform Ward’s linkage on a condensed distance matrix.

See `linkage` for more information on the return structure and algorithm.

The following are common calling conventions:

1. $Z = \text{ward}(y)$ Performs Ward’s linkage on the condensed distance matrix $y$.
2. $Z = \text{ward}(X)$ Performs Ward’s linkage on the observation matrix $X$ using Euclidean distance as the distance metric.

**Parameters**

- **y** [ndarray] A condensed distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that `pdist` returns. Alternatively, a collection of $m$ observation vectors in $n$ dimensions may be passed as an $m$ by $n$ array.

**Returns**

- **Z** [ndarray] The hierarchical clustering encoded as a linkage matrix. See `linkage` for more information on the return structure and algorithm.

See also:

- `linkage` for advanced creation of hierarchical clusterings.
- `scipy.spatial.distance.pdist` pairwise distance metrics
Examples

```python
>>> from scipy.cluster.hierarchy import ward, fcluster
>>> from scipy.spatial.distance import pdist
```

First, we need a toy dataset to play with:

```
x x x x
x x
x x
x x x x
```

```python
>>> X = [[0, 0], [0, 1], [1, 0],
 ... [0, 4], [0, 3], [1, 4],
 ... [4, 0], [3, 0], [4, 1],
 ... [4, 4], [3, 4], [4, 3]]
```

Then, we get a condensed distance matrix from this dataset:

```python
>>> y = pdist(X)
```

Finally, we can perform the clustering:

```python
>>> Z = ward(y)
```

```
array([[0. , 1. , 1. , 2.],
 [3. , 4. , 1. , 2.],
 [6. , 7. , 1. , 2.],
 [9. , 10. , 1. , 2.],
 [2. , 12. , 1.29099445, 3.],
 [5. , 13. , 1.29099445, 3.],
 [8. , 14. , 1.29099445, 3.],
 [11. , 15. , 1.29099445, 3.],
 [16. , 17. , 5.77350269, 6.],
 [18. , 19. , 5.77350269, 6.],
 [20. , 21. , 8.16496581, 12.]])
```

The linkage matrix `Z` represents a dendrogram - see `scipy.cluster.hierarchy.linkage` for a detailed explanation of its contents.

We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster each initial point would belong given a distance threshold:

```python
>>> fcluster(Z, 0.9, criterion='distance')
array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32)
```

```python
>>> fcluster(Z, 1.1, criterion='distance')
array([1, 1, 2, 3, 4, 5, 6, 7, 8], dtype=int32)
```

```python
>>> fcluster(Z, 3, criterion='distance')
array([1, 1, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
```

```python
>>> fcluster(Z, 9, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
```

Also, `scipy.cluster.hierarchy.dendrogram` can be used to generate a plot of the dendrogram.
These routines compute statistics on hierarchies.

**cophenet**

`cophenet(Z[, Y])`  
Calculate the cophenetic distances between each observation in the hierarchical clustering defined by the linkage `Z`.

**from_mlab_linkage**

`from_mlab_linkage(Z)`  
Convert a linkage matrix generated by MATLAB(TM) to a new linkage matrix compatible with this module.

**inconsistent**

`inconsistent(Z[, d])`  
Calculate inconsistency statistics on a linkage matrix.

**maxinconsts**

`maxinconsts(Z, R)`  
Return the maximum inconsistency coefficient for each non-singleton cluster and its children.

**maxdists**

`maxdists(Z)`  
Return the maximum distance between any non-singleton cluster.

**maxRstat**

`maxRstat(Z, R, i)`  
Return the maximum statistic for each non-singleton cluster and its children.

**to_mlab_linkage**

`to_mlab_linkage(Z)`  
Convert a linkage matrix to a MATLAB(TM) compatible one.

---

**scipy.cluster.hierarchy.cophenet**

**scipy.cluster.hierarchy.cophenet** *(Z, Y=None)*  
Calculate the cophenetic distances between each observation in the hierarchical clustering defined by the linkage `Z`.

Suppose `p` and `q` are original observations in disjoint clusters `s` and `t`, respectively and `s` and `t` are joined by a direct parent cluster `u`. The cophenetic distance between observations `i` and `j` is simply the distance between clusters `s` and `t`.

**Parameters**

- `Z`  
  [ndarray] The hierarchical clustering encoded as an array (see `linkage` function).
- `Y`  
  [ndarray (optional)] Calculates the cophenetic correlation coefficient `c` of a hierarchical clustering defined by the linkage matrix `Z` of a set of `n` observations in `m` dimensions. `Y` is the condensed distance matrix from which `Z` was generated.

**Returns**

- `c`  
  [ndarray] The cophenetic correlation distance (if `Y` is passed).
- `d`  
  [ndarray] The cophenetic distance matrix in condensed form. The `ij` th entry is the cophenetic distance between original observations `i` and `j`.

**See also:**

- `linkage`  
  for a description of what a linkage matrix is.
- `scipy.spatial.distance.squareform`  
  transforming condensed matrices into square ones.
Examples

```python
>>> from scipy.cluster.hierarchy import single, cophenet
>>> from scipy.spatial.distance import pdist, squareform
```

Given a dataset $X$ and a linkage matrix $Z$, the cophenetic distance between two points of $X$ is the distance between the largest two distinct clusters that each of the points:

```python
>>> X = [[0, 0], [0, 1], [1, 0],
 ... [0, 4], [0, 3], [1, 4],
 ... [4, 0], [3, 0], [4, 1],
 ... [4, 4], [3, 4], [4, 3]]

X corresponds to this dataset

```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
In this example, the cophenetic distance between points on X that are very close (i.e., in the same corner) is 1. For other pairs of points is 2, because the points will be located in clusters at different corners - thus, the distance between these clusters will be larger.

**scipy.cluster.hierarchy.from_mlab_linkage**

`scipy.cluster.hierarchy.from_mlab_linkage(Z)`

Convert a linkage matrix generated by MATLAB(TM) to a new linkage matrix compatible with this module.

The conversion does two things:

- the indices are converted from 1..N to 0..(N-1) form, and
- a fourth column $Z[:,3]$ is added where $Z[i,3]$ represents the number of original observations (leaves) in the non-singleton cluster $i$.

This function is useful when loading in linkages from legacy data files generated by MATLAB.

**Parameters**


**Returns**

$ZS$ [ndarray] A linkage matrix compatible with `scipy.cluster.hierarchy`.

**See also:**

`linkage` for a description of what a linkage matrix is.

`to_mlab_linkage` transform from SciPy to MATLAB format.

**Examples**

```python
>>> import numpy as np
>>> from scipy.cluster.hierarchy import ward, from_mlab_linkage
```

Given a linkage matrix in MATLAB format `mZ`, we can use `scipy.cluster.hierarchy.from_mlab_linkage` to import it into SciPy format:

```python
>>> mZ = np.array([[1, 2, 1], [4, 5, 1], [7, 8, 1],
 ... [10, 11, 1], [3, 13, 1.29099445],
 ... [6, 14, 1.29099445],
 ... [9, 15, 1.29099445],
 ... [12, 16, 1.29099445],
 ... [17, 18, 5.77350269],
 ... [19, 20, 5.77350269],
 ... [21, 22, 8.16496581]])
```
As expected, the linkage matrix $Z$ returned includes an additional column counting the number of original samples in each cluster. Also, all cluster indices are reduced by 1 (MATLAB format uses 1-indexing, whereas SciPy uses 0-indexing).

**scipy.cluster.hierarchy.inconsistent**

`scipy.cluster.hierarchy.inconsistent(Z, d=2)`

Calculate inconsistency statistics on a linkage matrix.

**Parameters**

- **$Z$** [ndarray] The $(n-1)$ by 4 matrix encoding the linkage (hierarchical clustering). See `linkage` documentation for more information on its form.
- **d** [int, optional] The number of links up to $d$ levels below each non-singleton cluster.

**Returns**

- **$R$** [ndarray] A $(n-1)$ by 4 matrix where the $i$'th row contains the link statistics for the non-singleton cluster $i$. The link statistics are computed over the link heights for links $d$ levels below the cluster $i$. $R[i,0]$ and $R[i,1]$ are the mean and standard deviation of the link heights, respectively; $R[i,2]$ is the number of links included in the calculation; and $R[i,3]$ is the inconsistency coefficient,

$$\frac{Z[i,2] - R[i,0]}{R[i,1]}$$

**Notes**

This function behaves similarly to the MATLAB(TM) inconsistent function.
Examples

```python
>>> from scipy.cluster.hierarchy import inconsistent, linkage
>>> from matplotlib import pyplot as plt
>>> X = [[1] for i in [2, 8, 0, 4, 1, 9, 9, 0]]
>>> Z = linkage(X, 'ward')
>>> print(Z)
[[5. 6. 0. 2.]
 [2. 7. 0. 2.]
 [0. 4. 1. 2.]
 [1. 8. 1.15470054 3.]
 [9. 10. 2.12132034 4.]
 [3. 12. 4.11096096 5.]
>>> inconsistent(Z)
array([[0. , 0. , 1. , 0.],
 [0. , 0. , 1. , 0.],
 [1. , 0. , 1. , 0.],
 [0.57735027, 0.81649658, 2. , 0.70710678],
 [1.04044011, 1.06123822, 3. , 1.01850858],
 [3.11614065, 1.40688837, 2. , 0.70710678],
 [6.44583366, 6.76770586, 3. , 1.12682288]])
```

**scipy.cluster.hierarchy.maxinconsts**

`scipy.cluster.hierarchy.maxinconsts(Z, R)`

Return the maximum inconsistency coefficient for each non-singleton cluster and its children.

**Parameters**

- **Z** ([ndarray]) The hierarchical clustering encoded as a matrix. See `linkage` for more information.
- **R** ([ndarray]) The inconsistency matrix.

**Returns**

- **MI** ([ndarray]) A monotonic \((n-1)\)-sized numpy array of doubles.

**See also:**

- `linkage`
  for a description of what a linkage matrix is.
- `inconsistent`
  for the creation of an inconsistency matrix.
Examples

```python
>>> from scipy.cluster.hierarchy import median, inconsistent, maxinconsts
>>> from scipy.spatial.distance import pdist

Given a data set \(X \), we can apply a clustering method to obtain a linkage matrix \(Z \). `scipy.cluster.hierarchy.inconsistent` can be used to obtain the inconsistency matrix \(R \) associated to this clustering process:

```python
>>> X = [[0, 0], [0, 1], [1, 0],
      ... [0, 4], [0, 3], [1, 4],
      ... [4, 0], [3, 0], [4, 1],
      ... [4, 4], [3, 4], [4, 3]]

>>> Z = median(pdist(X))
>>> R = inconsistent(Z)

Z
array([[ 0. ,  1. ,  1. ,  2. ],
       [ 3. ,  4. ,  1. ,  2. ],
       [ 9. , 10. ,  1. ,  2. ],
       [ 6. ,  7. ,  1. ,  2. ],
       [ 2. , 12. , 1.11803399, 3. ],
       [ 5. , 13. , 1.11803399, 3. ],
       [ 8. , 15. , 1.11803399, 3. ],
       [11. , 14. , 1.11803399, 3. ],
       [18. , 19. ,  3. ,  6. ],
       [16. , 17. ,  3.5 ,  6. ],
       [20. , 21. ,  3.25 , 12. ]])

R
array([[1. , 0. , 1. , 0. ],
       [1. , 0. , 1. , 0. ],
       [1. , 0. , 1. , 0. ],
       [1. , 0. , 1. , 0. ],
       [1.05901699, 0.08346263, 2. , 0.70710678],
       [1.05901699, 0.08346263, 2. , 0.70710678],
       [1.05901699, 0.08346263, 2. , 0.70710678],
       [1.05901699, 0.08346263, 2. , 0.70710678],
       [1.74535599, 1.08655358, 3. , 1.15470054],
       [1.91202266, 1.37522872, 3. , 1.15470054],
       [3.25 , 0.25 , 3. , 0. ]])
```

Here, `scipy.cluster.hierarchy.maxinconsts` can be used to compute the maximum value of the inconsistency statistic (the last column of \(R \)) for each non-singleton cluster and its children:

```python
>>> maxinconsts(Z, R)
array([0. , 0. , 0. , 0. , 0.70710678, 0.70710678, 0.70710678, 0.70710678, 1.15470054, 1.15470054, 1.15470054])
```
scipy.cluster.hierarchy.maxdists

scipy.cluster.hierarchy.maxdists(Z)

Return the maximum distance between any non-singleton cluster.

Parameters

Z [ndarray] The hierarchical clustering encoded as a matrix. See linkage for more information.

Returns

maxdists [ndarray] A \((n-1)\) sized numpy array of doubles; \(MD[i]\) represents the maximum distance between any cluster (including singletons) below and including the node with index \(i\). More specifically, \(MD[i] = Z[Q(i) - n, 2].max()\) where \(Q(i)\) is the set of all node indices below and including node \(i\).

See also:

linkage

for a description of what a linkage matrix is.

is_monotonic

for testing for monotonicity of a linkage matrix.

Examples

```python
>>> from scipy.cluster.hierarchy import median, maxdists
>>> from scipy.spatial.distance import pdist

Given a linkage matrix \(Z\), scipy.cluster.hierarchy.maxdists computes for each new cluster generated (i.e., for each row of the linkage matrix) what is the maximum distance between any two child clusters.

Due to the nature of hierarchical clustering, in many cases this is going to be just the distance between the two child clusters that were merged to form the current one - that is, \(Z[:,2]\).

However, for non-monotonic cluster assignments such as scipy.cluster.hierarchy.median clustering this is not always the case: There may be cluster formations were the distance between the two clusters merged is smaller than the distance between their children.

We can see this in an example:

```python
>>> X = [[0, 0], [0, 1], [1, 0],
 ... [0, 4], [0, 3], [1, 4],
 ... [4, 0], [3, 0], [4, 1],
 ... [4, 4], [3, 4], [4, 3]]
>>> Z = median(pdist(X))
>>> Z
array([[0. , 1. , 1. , 2.],
 [3. , 4. , 1. , 2.],
 [9. , 10. , 1. , 2.],
 [6. , 7. , 1. , 2.],
 [2. , 12. , 1.11803399, 3.],
 [5. , 13. , 1.11803399, 3.]],
 (continues on next page)
Note that while the distance between the two clusters merged when creating the last cluster is 3.25, there are two children (clusters 16 and 17) whose distance is larger (3.5). Thus, \texttt{scipy.cluster.hierarchy.maxdists} returns 3.5 in this case.

\texttt{scipy.cluster.hierarchy.maxRstat}

\texttt{scipy.cluster.hierarchy.maxRstat}(Z, R, i)

Return the maximum statistic for each non-singleton cluster and its children.

\textbf{Parameters}

\begin{itemize}
 \item \texttt{Z} [array_like] The hierarchical clustering encoded as a matrix. See \texttt{linkage} for more information.
 \item \texttt{R} [array_like] The inconsistency matrix.
 \item \texttt{i} [int] The column of \texttt{R} to use as the statistic.
\end{itemize}

\textbf{Returns}

\texttt{MR} [ndarray] Calculates the maximum statistic for the \texttt{i}th column of the inconsistency matrix \texttt{R} for each non-singleton cluster node. \texttt{MR[j]} is the maximum over \texttt{R[Q(j)-n, i]}, where \texttt{Q(j)} the set of all node ids corresponding to nodes below and including \texttt{j}.

\textbf{See also:}

\texttt{linkage}

for a description of what a linkage matrix is.

\texttt{inconsistent}

for the creation of an inconsistency matrix.

\textbf{Examples}

\begin{verbatim}
>>> from scipy.cluster.hierarchy import median, inconsistent, maxRstat
>>> from scipy.spatial.distance import pdist

Given a data set \texttt{X}, we can apply a clustering method to obtain a linkage matrix \texttt{Z}. \texttt{scipy.cluster.hierarchy.inconsistent} can be also used to obtain the inconsistency matrix \texttt{R} associated to this clustering process:

>>> X = [[0, 0], [0, 1], [1, 0],
 ... [0, 4], [0, 3], [1, 4],
 ... [4, 0], [3, 0], [4, 1],
 ... [4, 4], [3, 4], [4, 3]]
\end{verbatim}
>>> Z = median(pdist(X))
>>> R = inconsistent(Z)

```
array([[1. , 0. , 1. , 0. ],
       [1. , 0. , 1. , 0. ],
       [1. , 0. , 1. , 0. ],
       [1. , 0. , 1. , 0. ],
       [1.05901699, 0.08346263, 2. , 0. 70710678],
       [1.05901699, 0.08346263, 2. , 0. 70710678],
       [1.05901699, 0.08346263, 2. , 0. 70710678],
       [1.05901699, 0.08346263, 2. , 0. 70710678],
       [1.74535599, 1.08655358, 3. , 1.15470054],
       [1.91202266, 1.37522872, 3. , 1.15470054],
       [3.25 , 0.25 , 3. , 0. ]])
```

`scipy.cluster.hierarchy.maxRstat` can be used to compute the maximum value of each column of `R`, for each non-singleton cluster and its children:

```
>>> maxRstat(Z, R, 0)
a rray([1. , 1. , 1. , 1. , 1.05901699,
       1.05901699, 1.05901699, 1.05901699, 1.74535599, 1.91202266,
       3.25 ])
>>> maxRstat(Z, R, 1)
a rray([0. , 0. , 0. , 0. , 0.08346263,
       0.08346263, 0.08346263, 0.08346263, 1.08655358, 1.37522872125 ,
       1.37522872])
>>> maxRstat(Z, R, 3)
a rray([0. , 0. , 0. , 0. , 0.70710678,
       0.70710678, 0.70710678, 0.70710678, 1.15470054, 1.15470054,
       1.15470054])
```

`scipy.cluster.hierarchy.to_mlab_linkage`

`scipy.cluster.hierarchy.to_mlab_linkage(Z)`

Convert a linkage matrix to a MATLAB(TM) compatible one.

Converts a linkage matrix `Z` generated by the linkage function of this module to a MATLAB(TM) compatible one. The return linkage matrix has the last column removed and the cluster indices are converted to `1..N` indexing.

Parameters

`Z`

Returns

`to_mlab_linkage`
[ndarray] A linkage matrix compatible with MATLAB(TM)'s hierarchical clustering functions.

The return linkage matrix has the last column removed and the cluster indices are converted to `1..N` indexing.

See also:

`linkage`

for a description of what a linkage matrix is.
from_mlab_linkage

transform from Matlab to SciPy format.

Examples

```python
>>> from scipy.cluster.hierarchy import ward, to_mlab_linkage
>>> from scipy.spatial.distance import pdist

>>> X = [[0, 0], [0, 1], [1, 0],
     ... [0, 4], [0, 3], [1, 4],
     ... [4, 0], [3, 0], [4, 1],
     ... [4, 4], [3, 4], [4, 3]]

>>> Z = ward(pdist(X))
>>> Z
array([[ 0. ,  1. ,  1. ,  2. ],
       [ 3. ,  4. ,  1. ,  2. ],
       [ 6. ,  7. ,  1. ,  2. ],
       [ 9. , 10. ,  1. ,  2. ],
       [ 2. , 12. , 1.29099445, 3. ],
       [ 5. , 13. , 1.29099445, 3. ],
       [ 8. , 14. , 1.29099445, 3. ],
       [11. , 15. , 1.29099445, 3. ],
       [16. , 17. , 5.77350269, 6. ],
       [18. , 19. , 5.77350269, 6. ],
       [20. , 21. , 8.16496581, 12. ]])

After a linkage matrix \( Z \) has been created, we can use `scipy.cluster.hierarchy.to_mlab_linkage` to convert it into MATLAB format:

```python
>>> mZ = to_mlab_linkage(Z)
>>> mZ
array([[1. , 2. , 1.],
 [4. , 5. , 1.],
 [7. , 8. , 1.],
 [10. , 11. , 1.],
 [3. , 13. , 1.29099445],
 [6. , 14. , 1.29099445],
 [9. , 15. , 1.29099445],
 [12. , 16. , 1.29099445],
 [17. , 18. , 5.77350269],
 [19. , 20. , 5.77350269],
 [21. , 22. , 8.16496581]])
```

The new linkage matrix \( mZ \) uses 1-indexing for all the clusters (instead of 0-indexing). Also, the last column of the original linkage matrix has been dropped.

Routines for visualizing flat clusters.

```
 dendrogram(Z[, p, truncate_mode, ...])
```
Plot the hierarchical clustering as a dendrogram.

scipy.cluster.hierarchy.dendrogram

```
scipy.cluster.hierarchy.dendrogram (Z, p=30, truncate_mode=None, color_threshold=None, get_leaves=True, orientation='top', labels=None, count_sort=False, distance_sort=False, show_leaf_counts=True, no_plot=False, no_labels=False, leaf_font_size=None, leaf_rotation=None, leaf_label_func=None, show_contracted=False, link_color_func=None, ax=None, above_threshold_color='C0')
```

Plot the hierarchical clustering as a dendrogram.

The dendrogram illustrates how each cluster is composed by drawing a U-shaped link between a non-singleton cluster and its children. The top of the U-link indicates a cluster merge. The two legs of the U-link indicate which clusters were merged. The length of the two legs of the U-link represents the distance between the child clusters. It is also the cophenetic distance between original observations in the two children clusters.

**Parameters**

- **Z** [ndarray] The linkage matrix encoding the hierarchical clustering to render as a dendrogram. See the `linkage` function for more information on the format of Z.
- **p** [int, optional] The p parameter for `truncate_mode`. truncate_mode [str, optional] The dendrogram can be hard to read when the original observation matrix from which the linkage is derived is large. Truncation is used to condense the dendrogram. There are several modes:
  - **None** No truncation is performed (default). Note: 'none' is an alias for None that's kept for backward compatibility.
  - **'lastp'** The last p non-singleton clusters formed in the linkage are the only non-leaf nodes in the linkage; they correspond to rows Z[n-p-2:end] in Z. All other non-singleton clusters are contracted into leaf nodes.
  - **'level'** No more than p levels of the dendrogram tree are displayed. A “level” includes all nodes with p merges from the final merge. Note: 'mtica' is an alias for 'level' that’s kept for backward compatibility.
- **color_threshold** [double, optional] For brevity, let t be the color_threshold. Colors all the descendent links below a cluster node k the same color if k is the first node below the cut threshold t. All links connecting nodes with distances greater than or equal to the threshold are colored with the default matplotlib color 'C0'. If t is less than or equal to zero, all nodes are colored 'C0'. If color_threshold is None or 'default', corresponding with MATLAB(TM) behavior, the threshold is set to 0.7*max(Z[:,2]).
- **get_leaves** [bool, optional] Includes a list R['leaves']=H in the result dictionary. For each i, H[i] == j, cluster node j appears in position i in the left-to-right traversal of the leaves, where j < 2n − 1 and i < n.
- **orientation** [str, optional] The direction to plot the dendrogram, which can be any of the following strings:
  - **'top'** Plots the root at the top, and plot descendent links going downwards. (default).
  - **'bottom'** Plots the root at the bottom, and plot descendent links going upwards.
  - **'left'** Plots the root at the left, and plot descendent links going right.
  - **'right'** Plots the root at the right, and plot descendent links going left.
- **labels** [ndarray, optional] By default, labels is None so the index of the original observation is used to label the leaf nodes. Otherwise, this is an n-sized sequence, with n == Z.shape[0] + 1. The labels[i] value is the text to put under the i th leaf node only if it corresponds to an original observation and not a non-singleton cluster.
count_sort
[str or bool, optional] For each node n, the order (visually, from left-to-right) n’s two descendant links are plotted is determined by this parameter, which can be any of the following values:

**False** Nothing is done.

'ascending' or True

The child with the minimum number of original objects in its cluster is plotted first.

'descending'

The child with the maximum number of original objects in its cluster is plotted first.

Note, distance_sort and count_sort cannot both be True.

distance_sort
[str or bool, optional] For each node n, the order (visually, from left-to-right) n’s two descendant links are plotted is determined by this parameter, which can be any of the following values:

**False** Nothing is done.

'ascending' or True

The child with the minimum distance between its direct descendents is plotted first.

'descending'

The child with the maximum distance between its direct descendents is plotted first.

Note distance_sort and count_sort cannot both be True.

show_leaf_counts
[bool, optional] When True, leaf nodes representing $k > 1$ original observation are labeled with the number of observations they contain in parentheses.

no_plot
[bool, optional] When True, the final rendering is not performed. This is useful if only the data structures computed for the rendering are needed or if matplotlib is not available.

no_labels
[bool, optional] When True, no labels appear next to the leaf nodes in the rendering of the dendrogram.

leaf_rotation
[double, optional] Specifies the angle (in degrees) to rotate the leaf labels. When unspecified, the rotation is based on the number of nodes in the dendrogram (default is 0).

leaf_font_size
[int, optional] Specifies the font size (in points) of the leaf labels. When unspecified, the size based on the number of nodes in the dendrogram.

leaf_label_func
[lambda or function, optional] When leaf_label_func is a callable function, for each leaf with cluster index $k < 2n - 1$. The function is expected to return a string with the label for the leaf.

Indices $k < n$ correspond to original observations while indices $k \geq n$ correspond to non-singleton clusters.

For example, to label singletons with their node id and non-singletons with their id, count, and inconsistency coefficient, simply do:

```python
First define the leaf label function.
def llf(id):
 if id < n:
 return str(id)
 else:
 return '[%d %d %.2f]' % (id, count, R[n-id, 3])
```

(continues on next page)
# The text for the leaf nodes is going to be big so force
# a rotation of 90 degrees.
dendrogram(Z, leaf_label_func=llf, leaf_rotation=90)

# leaf_label_func can also be used together with...
# ... `truncate_mode` parameter,
# ... in which case you will get your leaves labeled after...
# ... truncation:
dendrogram(Z, leaf_label_func=llf, leaf_rotation=90,
          truncate_mode='level', p=2)

**show_contracted**

[bool, optional] When True the heights of non-singleton nodes contracted into a leaf node
are plotted as crosses along the link connecting that leaf node. This really is only useful when
truncation is used (see `truncate_mode` parameter).

**link_color_func**

[callable, optional] If given, `link_color_function` is called with each non-singleton id corre-
sponding to each U-shaped link it will paint. The function is expected to return the color to
paint the link, encoded as a matplotlib color string code. For example:

```python
dendrogram(Z, link_color_func=lambda k: colors[k])
```

colors the direct links below each untruncated non-singleton node `k` using `colors[k]`.

**ax**

[matplotlib Axes instance, optional] If None and `no_plot` is not True, the dendrogram will be
plotted on the current axes. Otherwise if `no_plot` is not True the dendrogram will be plotted
on the given Axes instance. This can be useful if the dendrogram is part of a more complex
figure.

**above_threshold_color**

[str, optional] This matplotlib color string sets the color of the links above the
color_threshold. The default is 'C0'.

**Returns**

R [dict] A dictionary of data structures computed to render the dendrogram. Its has the fol-
lowing keys:

- **'color_list'**
  A list of color names. The k'th element represents the color of the k'th link.

- **'icoord' and 'dcoord'**
  Each of them is a list of lists. Let `icoord = [I1, I2, ..., Ip]` where
  `Ik = [xk1, xk2, xk3, xk4]` and `dcoord = [D1, D2, ..., Dp]`
  where `Dk = [yk1, yk2, yk3, yk4]`, then the k'th link painted is
  `(xk1, yk1) - (xk2, yk2) - (xk3, yk3) - (xk4, yk4)`.

- **'ivl'**
  A list of labels corresponding to the leaf nodes.

- **'leaves'**
  For each i, H[i] == j, cluster node j appears in position i in the left-to-right
  traversal of the leaves, where j < 2n−1 and i < n. If j is less than n, the i-th
  leaf node corresponds to an original observation. Otherwise, it corresponds to
  a non-singleton cluster.

- **'leaves_color_list'**
  A list of color names. The k'th element represents the color of the k'th leaf.

See also:

- `linkage`
- `set_link_color_palette`
Notes

It is expected that the distances in $Z[:, 2]$ be monotonic, otherwise crossings appear in the dendrogram.

Examples

```python
>>> from scipy.cluster import hierarchy
>>> import matplotlib.pyplot as plt
```

A very basic example:

```python
>>> ytdist = np.array([662., 877., 255., 996., 295., 468., 268.,
 400., 754., 564., 138., 219., 869., 669.])
>>> Z = hierarchy.linkage(ytdist, 'single')
>>> plt.figure()
>>> dn = hierarchy.dendrogram(Z)
```

Now, plot in given axes, improve the color scheme and use both vertical and horizontal orientations:

```python
>>> hierarchy.set_link_color_palette(['m', 'c', 'y', 'k'])
>>> fig, axes = plt.subplots(1, 2, figsize=(8, 3))
>>> dn1 = hierarchy.dendrogram(Z, ax=axes[0], above_threshold_color='y',
 ... orientation='top')
>>> dn2 = hierarchy.dendrogram(Z, ax=axes[1],
 ... above_threshold_color='#bcbddc',
 ... orientation='right')
>>> hierarchy.set_link_color_palette(None) # reset to default after use
>>> plt.show()
```

These are data structures and routines for representing hierarchies as tree objects.
Table 6 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>leaves_list(Z)</code></td>
<td>Return a list of leaf node ids.</td>
</tr>
<tr>
<td><code>to_tree(Z[, rd])</code></td>
<td>Convert a linkage matrix into an easy-to-use tree object.</td>
</tr>
<tr>
<td><code>cut_tree(Z[, n_clusters, height])</code></td>
<td>Given a linkage matrix Z, return the cut tree.</td>
</tr>
<tr>
<td><code>optimal_leaf_ordering(Z, y[, metric])</code></td>
<td>Given a linkage matrix Z and distance, reorder the cut tree.</td>
</tr>
</tbody>
</table>

**scipy.cluster.hierarchy.ClusterNode**

```python
class scipy.cluster.hierarchy.ClusterNode (id, left=None, right=None, dist=0, count=1)
```

A tree node class for representing a cluster.

Leaf nodes correspond to original observations, while non-leaf nodes correspond to non-singleton clusters.

The `to_tree` function converts a matrix returned by the linkage function into an easy-to-use tree representation.

All parameter names are also attributes.

**Parameters**

- `id` [int] The node id.
- `left` [ClusterNode instance, optional] The left child tree node.
- `right` [ClusterNode instance, optional] The right child tree node.
- `dist` [float, optional] Distance for this cluster in the linkage matrix.
- `count` [int, optional] The number of samples in this cluster.

**See also:**

`to_tree` for converting a linkage matrix Z into a tree object.

**Methods**

- `get_count()` The number of leaf nodes (original observations) belonging to the cluster node nd.
- `get_id()` The identifier of the target node.
- `get_left()` Return a reference to the left child tree object.
- `get_right()` Return a reference to the right child tree object.
- `is_leaf()` Return True if the target node is a leaf.
- `pre_order([func])` Perform pre-order traversal without recursive function calls.

**scipy.cluster.hierarchy.ClusterNode.get_count**

The number of leaf nodes (original observations) belonging to the cluster node nd. If the target node is a leaf, 1 is returned.

**Returns**

- `get_count` [int] The number of leaf nodes below the target node.
scipy.cluster.hierarchy.ClusterNode.get_id

ClusterNode.get_id()  
The identifier of the target node.  

For 0 <= i < n, i corresponds to original observation i. For n <= i < 2n-1, i corresponds to non-singleton cluster formed at iteration i-n.  

Returns  
id  [int] The identifier of the target node.

scipy.cluster.hierarchy.ClusterNode.get_left

ClusterNode.get_left()  
Return a reference to the left child tree object.  

Returns  
left  [ClusterNode] The left child of the target node. If the node is a leaf, None is returned.

scipy.cluster.hierarchy.ClusterNode.get_right

ClusterNode.get_right()  
Return a reference to the right child tree object.  

Returns  
right  [ClusterNode] The left child of the target node. If the node is a leaf, None is returned.

scipy.cluster.hierarchy.ClusterNode.is_leaf

ClusterNode.is_leaf()  
Return True if the target node is a leaf.  

Returns  
leafness  [bool] True if the target node is a leaf node.
scipy.cluster.hierarchy.ClusterNode.pre_order

ClusterNode.pre_order(func=<function ClusterNode.<lambda>>)
Perform pre-order traversal without recursive function calls.

When a leaf node is first encountered, func is called with the leaf node as its argument, and its result is appended to the list.

For example, the statement:

```python
ids = root.pre_order(lambda x: x.id)
```

returns a list of the node ids corresponding to the leaf nodes of the tree as they appear from left to right.

Parameters

func [function] Applied to each leaf ClusterNode object in the pre-order traversal. Given the i-th leaf node in the pre-order traversal n[i], the result of func(n[i]) is stored in L[i]. If not provided, the index of the original observation to which the node corresponds is used.

Returns

L [list] The pre-order traversal.

scipy.cluster.hierarchy.leaves_list

scipy.cluster.hierarchy.leaves_list(Z)
Return a list of leaf node ids.

The return corresponds to the observation vector index as it appears in the tree from left to right. Z is a linkage matrix.

Parameters

Z [ndarray] The hierarchical clustering encoded as a matrix. Z is a linkage matrix. See linkage for more information.

Returns

leaves_list [ndarray] The list of leaf node ids.

See also:
dendrogram
for information about dendrogram structure.

Examples

```python
>>> from scipy.cluster.hierarchy import ward, dendrogram, leaves_list
>>> from scipy.spatial.distance import pdist
>>> from matplotlib import pyplot as plt

>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
```
```
>>> Z = ward(pdist(X))
```

The linkage matrix $Z$ represents a dendrogram, that is, a tree that encodes the structure of the clustering performed. `scipy.cluster.hierarchy.leaves_list` shows the mapping between indices in the $X$ dataset and leaves in the dendrogram:

```
>>> leaves_list(Z)
array([2, 0, 1, 5, 3, 4, 8, 6, 7, 11, 9, 10], dtype=int32)
```

```
>>> fig = plt.figure(figsize=(25, 10))
>>> dn = dendrogram(Z)
>>> plt.show()
```

`scipy.cluster.hierarchy.to_tree`

`scipy.cluster.hierarchy.to_tree(Z, rd=False)`

Convert a linkage matrix into an easy-to-use tree object.

The reference to the root `ClusterNode` object is returned (by default).

Each `ClusterNode` object has a `left`, `right`, `dist`, `id`, and `count` attribute. The left and right attributes point to `ClusterNode` objects that were combined to generate the cluster. If both are `None` then the `ClusterNode` object is a leaf node, its count must be 1, and its distance is meaningless but set to 0.

Note: This function is provided for the convenience of the library user. `ClusterNodes` are not used as input to any of the functions in this library.

**Parameters**

- **Z** ([ndarray]) The linkage matrix in proper form (see the `linkage` function documentation).
- **rd** ([bool, optional]) When False (default), a reference to the root `ClusterNode` object is returned. Otherwise, a tuple $(r, d)$ is returned. $r$ is a reference to the root node while $d$ is a list of `ClusterNode` objects - one per original entry in the linkage matrix plus entries for all clustering steps. If a cluster id is less than the number of samples $n$ in the data that the linkage matrix describes, then it corresponds to a singleton cluster (leaf node). See `linkage` for more information on the assignment of cluster ids to clusters.

**Returns**
tree  [ClusterNode or tuple (ClusterNode, list of ClusterNode)] If \( rd \) is False, a ClusterNode. If \( rd \) is True, a list of length \( 2^n - 1 \), with \( n \) the number of samples. See the description of \( rd \) above for more details.

See also:

linkage, is_valid_linkage, ClusterNode

Examples

```python
>>> from scipy.cluster import hierarchy
>>> rng = np.random.default_rng()
>>> x = rng.random((5, 2))
>>> Z = hierarchy.linkage(x)
>>> hierarchy.to_tree(Z)
<scipy.cluster.hierarchy.ClusterNode object at ...>
>>> rootnode, nodelist = hierarchy.to_tree(Z, rd=True)
>>> rootnode
<scipy.cluster.hierarchy.ClusterNode object at ...>
>>> len(nodelist)
9
```

### scipy.cluster.hierarchy.cut_tree

**scipy.cluster.hierarchy.cut_tree** \((Z, n\_clusters=None, height=None)\)

Given a linkage matrix \( Z \), return the cut tree.

**Parameters**

- **Z**  
  [scipy.cluster.linkage array] The linkage matrix.
- **n_clusters**  
  [array_like, optional] Number of clusters in the tree at the cut point.
- **height**  
  [array_like, optional] The height at which to cut the tree. Only possible for ultrametric trees.

**Returns**

- **cutree**  
  [array] An array indicating group membership at each agglomeration step. I.e., for a full cut tree, in the first column each data point is in its own cluster. At the next step, two nodes are merged. Finally, all singleton and non-singleton clusters are in one group. If \( n\_clusters \) or \( height \) are given, the columns correspond to the columns of \( n\_clusters \) or \( height \).

**Examples**

```python
>>> from scipy import cluster
>>> import numpy as np
>>> from numpy.random import default_rng
>>> rng = default_rng()
>>> X = rng.random((50, 4))
>>> Z = cluster.hierarchy.ward(X)
>>> cutree = cluster.hierarchy.cut_tree(Z, n_clusters=[5, 10])
>>> cutree[:10]
array([[0, 0],
 [1, 1],
 ...
```

(continues on next page)
scipy.cluster.hierarchy.optimal_leaf_ordering

`scipy.cluster.hierarchy.optimal_leaf_ordering(Z, y, metric='euclidean')`

Given a linkage matrix Z and distance, reorder the cut tree.

**Parameters**

- **Z** [ndarray] The hierarchical clustering encoded as a linkage matrix. See `linkage` for more information on the return structure and algorithm.
- **y** [ndarray] The condensed distance matrix from which Z was generated. Alternatively, a collection of m observation vectors in n dimensions may be passed as an m by n array.
- **metric** [str or function, optional] The distance metric to use in the case that y is a collection of observation vectors; ignored otherwise. See the `pdist` function for a list of valid distance metrics. A custom distance function can also be used.

**Returns**

- **Z_ordered** [ndarray] A copy of the linkage matrix Z, reordered to minimize the distance between adjacent leaves.

**Examples**

```python
>>> from scipy.cluster import hierarchy
>>> rng = np.random.default_rng()
>>> X = rng.standard_normal((10, 10))
>>> Z = hierarchy.ward(X)
>>> hierarchy.leaves_list(Z)
array([0, 3, 1, 9, 2, 5, 7, 4, 6, 8], dtype=int32)
>>> hierarchy.leaves_list(hierarchy.optimal_leaf_ordering(Z, X))
array([3, 0, 2, 5, 7, 4, 8, 6, 9, 1], dtype=int32)
```

These are predicates for checking the validity of linkage and inconsistency matrices as well as for checking isomorphism of two flat cluster assignments.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_valid_im(R[, warning, throw, name])</code></td>
<td>Return True if the inconsistency matrix passed is valid.</td>
</tr>
<tr>
<td><code>is_valid_linkage(Z[, warning, throw, name])</code></td>
<td>Check the validity of a linkage matrix.</td>
</tr>
<tr>
<td><code>is_isomorphic(T1, T2)</code></td>
<td>Determine if two different cluster assignments are equivalent.</td>
</tr>
<tr>
<td><code>is_monotonic(Z)</code></td>
<td>Return True if the linkage passed is monotonic.</td>
</tr>
<tr>
<td><code>correspond(Z, Y)</code></td>
<td>Check for correspondence between linkage and condensed distance matrices.</td>
</tr>
</tbody>
</table>
Table 8 – continued from previous page

<table>
<thead>
<tr>
<th>num_obs_linkage(Z)</th>
<th>Return the number of original observations of the linkage matrix passed.</th>
</tr>
</thead>
</table>

scipy.cluster.hierarchy.is_valid_im

scipy.cluster.hierarchy.is_valid_im(R, warning=False, throw=False, name=None)

Return True if the inconsistency matrix passed is valid.

It must be a $n \times 4$ array of doubles. The standard deviations $R[:,1]$ must be nonnegative. The link counts $R[:,2]$ must be positive and no greater than $n - 1$.

Parameters

- $R$ [ndarray] The inconsistency matrix to check for validity.
- warning [bool, optional] When True, issues a Python warning if the linkage matrix passed is invalid.
- throw [bool, optional] When True, throws a Python exception if the linkage matrix passed is invalid.
- name [str, optional] This string refers to the variable name of the invalid linkage matrix.

Returns

- $b$ [bool] True if the inconsistency matrix is valid.

See also:

- linkage
  for a description of what a linkage matrix is.
- inconsistent
  for the creation of a inconsistency matrix.

Examples

```python
>>> from scipy.cluster.hierarchy import ward, inconsistent, is_valid_im
>>> from scipy.spatial.distance import pdist
```

Given a data set $X$, we can apply a clustering method to obtain a linkage matrix $Z$. scipy.cluster.hierarchy.inconsistent can be also used to obtain the inconsistency matrix $R$ associated to this clustering process:

```python
>>> X = [[0, 0], [0, 1], [1, 0],
 [0, 4], [0, 3], [1, 4],
 [4, 0], [3, 0], [4, 1],
 [4, 4], [3, 4], [4, 3]]
```

```python
>>> Z = ward(pdist(X))
```

```python
>>> R = inconsistent(Z)
```

```python
>>> Z
array([[0. , 1. , 1. , 2.],
 [3. , 4. , 1. , 2.],
 [6. , 7. , 1. , 2.],
 [9. , 10. , 1. , 2.],
 [2. , 12. , 1.29099445, 3.]], dtype=object)
```

(continues on next page)
Now we can use `scipy.cluster.hierarchy.is_valid_im` to verify that `R` is correct:

```python
>>> is_valid_im(R)
True
```

However, if `R` is wrongly constructed (e.g., one of the standard deviations is set to a negative value), then the check will fail:

```python
>>> R[-1,1] = R[-1,1] * -1
>>> is_valid_im(R)
False
```

### `scipy.cluster.hierarchy.is_valid linkage`

`scipy.cluster.hierarchy.is_valid linkage(Z, warning=False, throw=False, name=None)`

Check the validity of a linkage matrix.

A linkage matrix is valid if it is a 2-D array (type double) with `n` rows and 4 columns. The first two columns must contain indices between 0 and `2n - 1`. For a given row `i`, the following two expressions have to hold:

\[ 0 \leq Z[i, 0] \leq i + n - 1 \leq Z[i, 1] \leq i + n - 1 \]

I.e., a cluster cannot join another cluster unless the cluster being joined has been generated.

**Parameters**

- `Z` : [array_like] Linkage matrix.
- `warning` : [bool, optional] When True, issues a Python warning if the linkage matrix passed is invalid.
- `throw` : [bool, optional] When True, throws a Python exception if the linkage matrix passed is invalid.
- `name` : [str, optional] This string refers to the variable name of the invalid linkage matrix.

**Returns**

- `b` : [bool] True if the inconsistency matrix is valid.

**See also:**
**linkage**

for a description of what a linkage matrix is.

**Examples**

```python
>>> from scipy.cluster.hierarchy import ward, is_valid_linkage
>>> from scipy.spatial.distance import pdist

All linkage matrices generated by the clustering methods in this module will be valid (i.e., they will have the appropriate dimensions and the two required expressions will hold for all the rows).

We can check this using `scipy.cluster.hierarchy.is_valid_linkage`:

```python
>>> X = [[0, 0], [0, 1], [1, 0],
       ... [0, 4], [0, 3], [1, 4],
       ... [4, 0], [3, 0], [4, 1],
       ... [4, 4], [3, 4], [4, 3]]

>>> Z = ward(pdist(X))
>>> Z
array([[ 0.,  1.,  1.,  2.],
       [ 3.,  4.,  1.,  2.],
       [ 6.,  7.,  1.,  2.],
       [ 9., 10.,  1.,  2.],
       [ 2., 12., 1.29099445, 3.],
       [ 5., 13., 1.29099445, 3.],
       [ 8., 14., 1.29099445, 3.],
       [11., 15., 1.29099445, 3.],
       [16., 17., 5.77350269, 6.],
       [18., 19., 5.77350269, 6.],
       [20., 21., 8.16496581, 12.]])
```

```python
>>> is_valid_linkage(Z)
True
```

However, if we create a linkage matrix in a wrong way — or if we modify a valid one in a way that any of the required expressions don’t hold anymore, then the check will fail:

```python
>>> Z[3][1] = 20     # the cluster number 20 is not defined at this point
>>> is_valid_linkage(Z)
False
```

scipy.cluster.hierarchy.is_isomorphic

scipy.cluster.hierarchy.is_isomorphic(T1, T2)

Determine if two different cluster assignments are equivalent.

Parameters

- **T1**
 - [array_like] An assignment of singleton cluster ids to flat cluster ids.

- **T2**
 - [array_like] An assignment of singleton cluster ids to flat cluster ids.

Returns

- **b**
 - [bool] Whether the flat cluster assignments T1 and T2 are equivalent.
See also:

linkage

for a description of what a linkage matrix is.

fcluster

for the creation of flat cluster assignments.

Examples

```python
>>> from scipy.cluster.hierarchy import fcluster, is_isomorphic
>>> from scipy.cluster.hierarchy import single, complete
>>> from scipy.spatial.distance import pdist

Two flat cluster assignments can be isomorphic if they represent the same cluster assignment, with different labels. For example, we can use the `scipy.cluster.hierarchy.single`: method and flatten the output to four clusters:

```python
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]

>>> Z = single(pdist(X))
>>> T = fcluster(Z, 1, criterion='distance')
>>> T
array([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32)
```

We can then do the same using the `scipy.cluster.hierarchy.complete`: method:

```python
>>> Z = complete(pdist(X))
>>> T_ = fcluster(Z, 1.5, criterion='distance')
>>> T_
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
```

As we can see, in both cases we obtain four clusters and all the data points are distributed in the same way - the only thing that changes are the flat cluster labels (3 => 1, 4 =>2, 2 =>3 and 4 =>1), so both cluster assignments are isomorphic:

```python
>>> is_isomorphic(T, T_)
```

True
**scipy.cluster.hierarchy.is_monotonic**

`scipy.cluster.hierarchy.is_monotonic(Z)`

Return True if the linkage passed is monotonic.

The linkage is monotonic if for every cluster $s$ and $t$ joined, the distance between them is no less than the distance between any previously joined clusters.

**Parameters**

- **Z**: [ndarray] The linkage matrix to check for monotonicity.

**Returns**

- **b**: [bool] A boolean indicating whether the linkage is monotonic.

**See also:**

`linkage` for a description of what a linkage matrix is.

**Examples**

```python
>>> from scipy.cluster.hierarchy import median, ward, is_monotonic
>>> from scipy.spatial.distance import pdist

By definition, some hierarchical clustering algorithms - such as `scipy.cluster.hierarchy.ward` - produce monotonic assignments of samples to clusters; however, this is not always true for other hierarchical methods - e.g. `scipy.cluster.hierarchy.median`.

Given a linkage matrix Z (as the result of a hierarchical clustering method) we can test programmatically whether it has the monotonicity property or not, using `scipy.cluster.hierarchy.is_monotonic`:

```python
>>> X = [[0, 0], [0, 1], [1, 0],
      ... [0, 4], [0, 3], [1, 4],
      ... [4, 0], [3, 0], [4, 1],
      ... [4, 4], [3, 4], [4, 3]]

>>> Z = ward(pdist(X))

>>> is_monotonic(Z)
True
```
>>> Z = median(pdist(X))
>>> Z
array([[0. , 1. , 1. , 2.],
 [3. , 4. , 1. , 2.],
 [9. , 10. , 1. , 2.],
 [6. , 7. , 1. , 2.],
 [2. , 12. , 1.11803399, 3.],
 [5. , 13. , 1.11803399, 3.],
 [8. , 15. , 1.11803399, 3.],
 [11. , 14. , 1.11803399, 3.],
 [18. , 19. , 3. , 6.],
 [16. , 17. , 3.5 , 6.],
 [20. , 21. , 3.25 , 12.]])
>>> is_monotonic(Z)
False

Note that this method is equivalent to just verifying that the distances in the third column of the linkage matrix appear in a monotonically increasing order.

scipy.cluster.hierarchy.correspond

scipy.cluster.hierarchy.correspond(Z, Y)

Check for correspondence between linkage and condensed distance matrices. They must have the same number of original observations for the check to succeed. This function is useful as a sanity check in algorithms that make extensive use of linkage and distance matrices that must correspond to the same set of original observations.

Parameters

- **Z** [array_like] The linkage matrix to check for correspondence.
- **Y** [array_like] The condensed distance matrix to check for correspondence.

Returns

- **b** [bool] A boolean indicating whether the linkage matrix and distance matrix could possibly correspond to one another.

See also:

linkage for a description of what a linkage matrix is.

Examples

```python
>>> from scipy.cluster.hierarchy import ward, correspond
>>> from scipy.spatial.distance import pdist
```

This method can be used to check if a given linkage matrix Z has been obtained from the application of a cluster method over a dataset X:
```python
>>> X = [[0, 0], [0, 1], [1, 0],
...      [0, 4], [0, 3], [1, 4],
...      [4, 0], [3, 0], [4, 1],
...      [4, 4], [3, 4], [4, 3]]
>>> X_condensed = pdist(X)
>>> Z = ward(X_condensed)

Here, we can compare Z and X (in condensed form):

```python
>>> correspond(Z, X_condensed)
True
```
**scipy.cluster.hierarchy.set_link_color_palette**

`scipy.cluster.hierarchy.set_link_color_palette(palette)`

Set list of matplotlib color codes for use by dendrogram.

Note that this palette is global (i.e., setting it once changes the colors for all subsequent calls to `dendrogram`) and that it affects only the the colors below `color_threshold`.

Note that `dendrogram` also accepts a custom coloring function through its `link_color_func` keyword, which is more flexible and non-global.

**Parameters**

- **palette** [list of str or None] A list of matplotlib color codes. The order of the color codes is the order in which the colors are cycled through when color thresholding in the dendrogram.

  If None, resets the palette to its default (which are matplotlib default colors C1 to C9).

**Returns**

None

See also:

dendrogram

**Notes**

Ability to reset the palette with None added in SciPy 0.17.0.

**Examples**

```python
>>> from scipy.cluster import hierarchy
>>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268.,
 ... 402., 754., 564., 138., 219., 869., 669.])
>>> Z = hierarchy.linkage(ytdist, 'single')
>>> dn = hierarchy.dendrogram(Z, no_plot=True)
>>> dn['color_list']
['C1', 'C0', 'C0', 'C0', 'C0']
>>> hierarchy.set_link_color_palette(['c', 'm', 'y', 'k'])
>>> dn = hierarchy.dendrogram(Z, no_plot=True, above_threshold_color='b')
>>> dn['color_list']
['c', 'b', 'b', 'b', 'b']
>>> dn = hierarchy.dendrogram(Z, no_plot=True, color_threshold=267,
 above_threshold_color='k')
>>> dn['color_list']
['c', 'm', 'k', 'k']
```

Now, reset the color palette to its default:

```python
>>> hierarchy.set_link_color_palette(None)
```

Utility classes:
DisjointSet([elements])

Disjoint set data structure for incremental connectivity queries.

**scipy.cluster.hierarchy.DisjointSet**

```python
class scipy.cluster.hierarchy.DisjointSet (elements=None)

Disjoint set data structure for incremental connectivity queries.
New in version 1.6.0.
```

**Notes**

This class implements the disjoint set \([1]\), also known as the union-find or merge-find data structure. The `find` operation (implemented in `__getitem__`) implements the path halving variant. The `merge` method implements the merge by size variant.

**References**

[1]

**Examples**

```python
>>> from scipy.cluster.hierarchy import DisjointSet

Initialize a disjoint set:

```python
>>> disjoint_set = DisjointSet([1, 2, 3, 'a', 'b'])
```

Merge some subsets:

```python
>>> disjoint_set.merge(1, 2)
True
>>> disjoint_set.merge(3, 'a')
True
>>> disjoint_set.merge('a', 'b')
True
>>> disjoint_set.merge('b', 'b')
False
```

Find root elements:

```python
>>> disjoint_set[2]
1
>>> disjoint_set['b']
3
```

Test connectivity:
List elements in disjoint set:

```python
>>> list(disjoint_set)
[1, 2, 3, 'a', 'b']
```

Get the subset containing ‘a’:

```python
>>> disjoint_set.subset('a')
{'a', 3, 'b'}
```

Get all subsets in the disjoint set:

```python
>>> disjoint_set.subsets()
[{{1, 2}, {'a', 3, 'b'}}]
```

Attributes

- **n_subsets** [int] The number of subsets.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add(x)</code></td>
<td>Add element x to disjoint set</td>
</tr>
<tr>
<td><code>merge(x, y)</code></td>
<td>Merge the subsets of x and y.</td>
</tr>
<tr>
<td><code>connected(x, y)</code></td>
<td>Test whether x and y are in the same subset.</td>
</tr>
<tr>
<td><code>subset(x)</code></td>
<td>Get the subset containing x.</td>
</tr>
<tr>
<td><code>subsets()</code></td>
<td>Get all the subsets in the disjoint set.</td>
</tr>
<tr>
<td><code>__getitem__(x)</code></td>
<td>Find the root element of x.</td>
</tr>
</tbody>
</table>

scipy.cluster.hierarchy.DisjointSet.add

DisjointSet.add(x)
Add element x to disjoint set

scipy.cluster.hierarchy.DisjointSet.merge

DisjointSet.merge(x, y)
Merge the subsets of x and y.

The smaller subset (the child) is merged into the larger subset (the parent). If the subsets are of equal size, the root element which was first inserted into the disjoint set is selected as the parent.

Parameters

- **x, y** [hashable object] Elements to merge.

Returns

- **merged** [bool] True if x and y were in disjoint sets, False otherwise.
scipy.cluster.hierarchy.DisjointSet.connected

DisjointSet.connected(x, y)
Test whether x and y are in the same subset.

Parameters
x, y [hashable object] Elements to test.

Returns
result [bool] True if x and y are in the same set, False otherwise.

scipy.cluster.hierarchy.DisjointSet.subset

DisjointSet.subset(x)
Get the subset containing x.

Parameters
x [hashable object] Input element.

Returns
result [set] Subset containing x.

scipy.cluster.hierarchy.DisjointSet.subsets

DisjointSet.subsets()
Get all the subsets in the disjoint set.

Returns
result [list] Subsets in the disjoint set.

scipy.cluster.hierarchy.DisjointSet.__getitem__

DisjointSet.__getitem__(x)
Find the root element of x.

Parameters
x [hashable object] Input element.

Returns
root [hashable object] Root element of x.

3.3.4 Constants (scipy.constants)

Physical and mathematical constants and units.
Mathematical constants

<table>
<thead>
<tr>
<th>variable</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pi</td>
<td>Pi</td>
</tr>
<tr>
<td>golden</td>
<td>Golden ratio</td>
</tr>
<tr>
<td>golden_ratio</td>
<td>Golden ratio</td>
</tr>
</tbody>
</table>

Physical constants

<table>
<thead>
<tr>
<th>variable</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>speed of light in vacuum</td>
</tr>
<tr>
<td>speed_of_light</td>
<td>speed of light in vacuum</td>
</tr>
<tr>
<td>mu_0</td>
<td>the magnetic constant μ_0</td>
</tr>
<tr>
<td>epsilon_0</td>
<td>the electric constant (vacuum permittivity), ϵ_0</td>
</tr>
<tr>
<td>h</td>
<td>the Planck constant h</td>
</tr>
<tr>
<td>Planck</td>
<td>the Planck constant h</td>
</tr>
<tr>
<td>hbar</td>
<td>$h = h/(2\pi)$</td>
</tr>
<tr>
<td>G</td>
<td>Newtonian constant of gravitation</td>
</tr>
<tr>
<td>gravitational_constant</td>
<td>Newtonian constant of gravitation</td>
</tr>
<tr>
<td>g</td>
<td>standard acceleration of gravity</td>
</tr>
<tr>
<td>e</td>
<td>elementary charge</td>
</tr>
<tr>
<td>elementary_charge</td>
<td>elementary charge</td>
</tr>
<tr>
<td>R</td>
<td>molar gas constant</td>
</tr>
<tr>
<td>gas_constant</td>
<td>molar gas constant</td>
</tr>
<tr>
<td>alpha</td>
<td>fine-structure constant</td>
</tr>
<tr>
<td>fine_structure</td>
<td>fine-structure constant</td>
</tr>
<tr>
<td>N_A</td>
<td>Avogadro constant</td>
</tr>
<tr>
<td>Avogadro</td>
<td>Avogadro constant</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>Boltzmann</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>sigma</td>
<td>Stefan-Boltzmann constant σ</td>
</tr>
<tr>
<td>Stefan_Boltzmann</td>
<td>Stefan-Boltzmann constant σ</td>
</tr>
<tr>
<td>Wien</td>
<td>Wien displacement law constant</td>
</tr>
<tr>
<td>Rydberg</td>
<td>Rydberg constant</td>
</tr>
<tr>
<td>m_e</td>
<td>electron mass</td>
</tr>
<tr>
<td>electron_mass</td>
<td>electron mass</td>
</tr>
<tr>
<td>m_p</td>
<td>proton mass</td>
</tr>
<tr>
<td>proton_mass</td>
<td>proton mass</td>
</tr>
<tr>
<td>m_n</td>
<td>neutron mass</td>
</tr>
<tr>
<td>neutron_mass</td>
<td>neutron mass</td>
</tr>
</tbody>
</table>

Constants database

In addition to the above variables, `scipy.constants` also contains the 2018 CODATA recommended values [CODATA2018] database containing more physical constants.

<table>
<thead>
<tr>
<th>value(key)</th>
<th>Value in physical_constants indexed by key</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit(key)</td>
<td>Unit in physical_constants indexed by key</td>
</tr>
<tr>
<td>precision(key)</td>
<td>Relative precision in physical_constants indexed by key</td>
</tr>
<tr>
<td>find([sub, displ])</td>
<td>Return list of physical_constant keys containing a given string.</td>
</tr>
</tbody>
</table>
Table 12 – continued from previous page

ConstantWarning

Accessing a constant no longer in current CODATA data set

scipy.constants.value

scipy.constants.value(key)

Value in `physical_constants` indexed by key

- **Parameters**
 - `key` ([Python string or unicode]) Key in dictionary `physical_constants`

- **Returns**
 - `value` ([float]) Value in `physical_constants` corresponding to `key`

Examples

```python
>>> from scipy import constants
>>> constants.value(u'elementary charge')
1.602176634e-19
```

scipy.constants.unit

scipy.constants.unit(key)

Unit in `physical_constants` indexed by key

- **Parameters**
 - `key` ([Python string or unicode]) Key in dictionary `physical_constants`

- **Returns**
 - `unit` ([Python string]) Unit in `physical_constants` corresponding to `key`

Examples

```python
>>> from scipy import constants
>>> constants.unit(u'proton mass')
'kg'
```

scipy.constants.precision

scipy.constants.precision(key)

Relative precision in `physical_constants` indexed by key

- **Parameters**
 - `key` ([Python string or unicode]) Key in dictionary `physical_constants`

- **Returns**
 - `prec` ([float]) Relative precision in `physical_constants` corresponding to `key`
Examples

```python
>>> from scipy import constants
>>> constants.precision(u'proton mass')
5.1e-37
```

scipy.constants.find

```
scipy.constants.find(sub=None, disp=False)
```

Return list of physical constant keys containing a given string.

Parameters

- `sub` [str, unicode] Sub-string to search keys for. By default, return all keys.
- `disp` [bool] If True, print the keys that are found and return None. Otherwise, return the list of keys without printing anything.

Returns

- `keys` [list or None] If `disp` is False, the list of keys is returned. Otherwise, None is returned.

Examples

```python
>>> from scipy.constants import find, physical_constants

Which keys in the `physical_constants` dictionary contain 'boltzmann'?

```python
>>> find('boltzmann')
['Boltzmann constant',
 'Boltzmann constant in Hz/K',
 'Boltzmann constant in eV/K',
 'Boltzmann constant in inverse meter per kelvin',
 'Stefan-Boltzmann constant']
```

Get the constant called 'Boltzmann constant in Hz/K':

```python
>>> physical_constants['Boltzmann constant in Hz/K']
(20836619120.0, 'Hz K^-1', 0.0)
```

Find constants with 'radius' in the key:

```python
>>> find('radius')
['Bohr radius',
 'classical electron radius',
 'deuteron rms charge radius',
 'proton rms charge radius']
```

```python
>>> physical_constants['classical electron radius']
(2.8179403262e-15, 'm', 1.3e-24)
```
scipy.constants.ConstantWarning

**exception** scipy.constants.ConstantWarning
Accessing a constant no longer in current CODATA data set

**with_traceback()**

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

scipy.constants.physical_constants
Dictionary of physical constants, of the format:

```
physical_constants[name] = (value, unit, uncertainty).
```

Available constants:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha particle mass</td>
<td>$6.6446573357 	imes 10^{-27}$ kg</td>
</tr>
<tr>
<td>alpha particle mass energy equivalent</td>
<td>$5.9719201914 	imes 10^{-10}$ J</td>
</tr>
<tr>
<td>alpha particle mass energy equivalent in MeV</td>
<td>$3727.3794066$ MeV</td>
</tr>
<tr>
<td>alpha particle mass in u</td>
<td>$4.001506179127$ u</td>
</tr>
<tr>
<td>alpha particle molar mass</td>
<td>$0.0040015061777$ kg mol⁻¹</td>
</tr>
<tr>
<td>alpha particle relative atomic mass</td>
<td>$4.001506179127$</td>
</tr>
<tr>
<td>alpha particle-electron mass ratio</td>
<td>$7294.29954142$</td>
</tr>
<tr>
<td>alpha particle-proton mass ratio</td>
<td>$3.97259969009$</td>
</tr>
<tr>
<td>Angstrom star</td>
<td>1.00001495×10⁻¹ m</td>
</tr>
<tr>
<td>atomic mass constant</td>
<td>$1.6605390666 	imes 10^{-27}$ kg</td>
</tr>
<tr>
<td>atomic mass constant energy equivalent</td>
<td>$1.4924180856 	imes 10^{-10}$ J</td>
</tr>
<tr>
<td>atomic mass constant energy equivalent in MeV</td>
<td>$931.49410242$ MeV</td>
</tr>
<tr>
<td>atomic mass unit-electron volt relationship</td>
<td>$931494102.42$ eV</td>
</tr>
<tr>
<td>atomic mass unit-hartree relationship</td>
<td>$34231776.874$ Eₜₚ</td>
</tr>
<tr>
<td>atomic mass unit-hertz relationship</td>
<td>$2.25234271871 	imes 10^{+23}$ Hz</td>
</tr>
<tr>
<td>atomic mass unit-inverse meter relationship</td>
<td>$751300661040000.0$ m⁻¹</td>
</tr>
<tr>
<td>atomic mass unit-joule relationship</td>
<td>$1.4924180856 	imes 10^{-10}$ J</td>
</tr>
<tr>
<td>atomic mass unit-kelvin relationship</td>
<td>$10890540191600.0$ K</td>
</tr>
<tr>
<td>atomic mass unit-kilogram relationship</td>
<td>$1.6605390666 	imes 10^{-27}$ kg</td>
</tr>
<tr>
<td>atomic unit of 1st hyperpolarizability</td>
<td>$3.2063613061 	imes 10^{-3}$ C m³ J⁻²</td>
</tr>
<tr>
<td>atomic unit of 2nd hyperpolarizability</td>
<td>$6.2353799905 	imes 65$ C m² J⁻³</td>
</tr>
<tr>
<td>atomic unit of action</td>
<td>$1.054571817 	imes 34$ J s</td>
</tr>
<tr>
<td>atomic unit of charge</td>
<td>$1.602176634 	imes 19$ C</td>
</tr>
<tr>
<td>atomic unit of charge density</td>
<td>$108120384570.0$ C m⁻³</td>
</tr>
<tr>
<td>atomic unit of current</td>
<td>$0.00662361823751$ A</td>
</tr>
<tr>
<td>atomic unit of electric dipole mom.</td>
<td>$8.478356255 	imes 30$ C m</td>
</tr>
<tr>
<td>atomic unit of electric field</td>
<td>$514220674763.0$ V m⁻¹</td>
</tr>
<tr>
<td>atomic unit of electric field gradient</td>
<td>$9.717362492 	imes 21$ V m⁻²</td>
</tr>
<tr>
<td>atomic unit of electric polarizability</td>
<td>$1.64877727436 	imes 41$ C² m² J⁻¹</td>
</tr>
<tr>
<td>atomic unit of electric potential</td>
<td>$27.211386245988$ V</td>
</tr>
<tr>
<td>atomic unit of electric quadrupole mom.</td>
<td>$4.4865512546 	imes 40$ C m²</td>
</tr>
<tr>
<td>atomic unit of energy</td>
<td>$4.359744722207 	imes 18$ J</td>
</tr>
<tr>
<td>atomic unit of force</td>
<td>$8.2387234983 	imes 08$ N</td>
</tr>
<tr>
<td>atomic unit of length</td>
<td>$5.29177210903 	imes 11$ m</td>
</tr>
<tr>
<td>atomic unit of mag. dipole mom.</td>
<td>$1.85480201566 	imes 23$ J T⁻¹</td>
</tr>
<tr>
<td>atomic unit of mag. flux density</td>
<td>$235051.7567$ T</td>
</tr>
<tr>
<td>atomic unit of magnetizability</td>
<td>$7.891036008 	imes 29$ J T⁻²</td>
</tr>
<tr>
<td>atomic unit of mass</td>
<td>$9.1093837015 	imes 31$ kg</td>
</tr>
</tbody>
</table>
Table 13 – continued from previous page

<table>
<thead>
<tr>
<th>Atomic/Physical Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic unit of momentum</td>
<td>1.9928519141e-24 kg m s^-1</td>
</tr>
<tr>
<td>Atomic unit of permittivity</td>
<td>1.11265005545e-10 F m^-1</td>
</tr>
<tr>
<td>Atomic unit of time</td>
<td>2.4188834265857e-17 s</td>
</tr>
<tr>
<td>Atomic unit of velocity</td>
<td>2187691.26364 m s^-1</td>
</tr>
<tr>
<td>Avogadro constant</td>
<td></td>
</tr>
<tr>
<td>Bohr magneton</td>
<td>6.02214076e+23 mol^-1</td>
</tr>
<tr>
<td>Bohr magneton in eV/T</td>
<td>5.78831806e-05 eV T^-1</td>
</tr>
<tr>
<td>Bohr magneton in Hz/T</td>
<td>13996244936.1 Hz T^-1</td>
</tr>
<tr>
<td>Bohr magneton in inverse meter per tesla</td>
<td>46.686447783 m^2-1 T^-1</td>
</tr>
<tr>
<td>Bohr magneton in K/T</td>
<td>0.67171381563 K T^-1</td>
</tr>
<tr>
<td>Bohr radius</td>
<td>5.29177210903e-11 m</td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>1.380649e-23 J K^-1</td>
</tr>
<tr>
<td>Boltzmann constant in eV/K</td>
<td>8.617332626e-05 eV K^-1</td>
</tr>
<tr>
<td>Boltzmann constant in Hz/K</td>
<td>20836619120.0 Hz K^-1</td>
</tr>
<tr>
<td>Boltzmann constant in inverse meter per kelvin</td>
<td>69.50348004 m^2-1 K^-1</td>
</tr>
<tr>
<td>Classical electron radius</td>
<td>2.817940326e-15 m</td>
</tr>
<tr>
<td>Compton wavelength</td>
<td>2.42631023867e-12 m</td>
</tr>
<tr>
<td>Conductance quantum</td>
<td>7.748091729e-05 S</td>
</tr>
<tr>
<td>Conventional value of ampere-90</td>
<td>1.00000008887 A</td>
</tr>
<tr>
<td>Conventional value of coulomb-90</td>
<td>1.00000008887 C</td>
</tr>
<tr>
<td>Conventional value of farad-90</td>
<td>0.999999982 F</td>
</tr>
<tr>
<td>Conventional value of henry-90</td>
<td>1.00000001779 H</td>
</tr>
<tr>
<td>Conventional value of Josephson constant</td>
<td>483597900000000.0 Hz V^-1</td>
</tr>
<tr>
<td>Conventional value of ohm-90</td>
<td>1.0000001779 ohm</td>
</tr>
<tr>
<td>Conventional value of volt-90</td>
<td>1.0000010666 V</td>
</tr>
<tr>
<td>Conventional value of von Klitzing constant</td>
<td>25812.807 ohm</td>
</tr>
<tr>
<td>Conventional value of watt-90</td>
<td>1.00000019553 W</td>
</tr>
<tr>
<td>Cu x unit</td>
<td>1.00207967e-13 m</td>
</tr>
<tr>
<td>Deuteron g factor</td>
<td>0.857342338</td>
</tr>
<tr>
<td>Deuteron mag. mom.</td>
<td>4.330735094e-27 J T^-1</td>
</tr>
<tr>
<td>Deuteron mag. mom. to Bohr magneton ratio</td>
<td>0.000466975457</td>
</tr>
<tr>
<td>Deuteron mag. mom. to nuclear magneton ratio</td>
<td>0.857342338</td>
</tr>
<tr>
<td>Deuteron mass</td>
<td>3.3435837724e-27 kg</td>
</tr>
<tr>
<td>Deuteron mass energy equivalent</td>
<td>3.0050632102e-10 J</td>
</tr>
<tr>
<td>Deuteron mass energy equivalent in MeV</td>
<td>1875.61294257 MeV</td>
</tr>
<tr>
<td>Deuteron mass in u</td>
<td>2.013553212745 u</td>
</tr>
<tr>
<td>Deuteron molar mass</td>
<td>0.00201355321205 kg mol^-1</td>
</tr>
<tr>
<td>Deuteron relative atomic mass</td>
<td>2.013553212745</td>
</tr>
<tr>
<td>Deuteron rms charge radius</td>
<td>2.12799e-15 m</td>
</tr>
<tr>
<td>Deuteron-electron mag. mom. ratio</td>
<td>-0.0004664345551</td>
</tr>
<tr>
<td>Deuteron-electron mass ratio</td>
<td>3670.48296788</td>
</tr>
<tr>
<td>Deuteron-neutron mag. mom. ratio</td>
<td>-0.44820653</td>
</tr>
<tr>
<td>Deuteron-proton mag. mom. ratio</td>
<td>0.30701220939</td>
</tr>
<tr>
<td>Deuteron-proton mass ratio</td>
<td>1.99900750139</td>
</tr>
<tr>
<td>Electron charge to mass quotient</td>
<td>-175882001076.0 C kg^-1</td>
</tr>
<tr>
<td>Electron g factor</td>
<td>-2.00231930436256</td>
</tr>
<tr>
<td>Electron gyromag. ratio</td>
<td>17608563023.0 s^-1 T^-1</td>
</tr>
<tr>
<td>Electron gyromag. ratio in MHz/T</td>
<td>28024.9514242 MHz T^-1</td>
</tr>
<tr>
<td>Electron mag. mom.</td>
<td>-9.2847647043e-24 J T^-1</td>
</tr>
<tr>
<td>Electron mag. mom. anomaly</td>
<td>0.00115965218128</td>
</tr>
</tbody>
</table>
Table 13 – continued from previous page

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron mag. mom. to Bohr magneton ratio</td>
<td>-1.00115965218128</td>
</tr>
<tr>
<td>electron mag. mom. to nuclear magneton ratio</td>
<td>-1838.28197188</td>
</tr>
<tr>
<td>electron mass</td>
<td>9.1093837015e-31 kg</td>
</tr>
<tr>
<td>electron mass energy equivalent</td>
<td>8.1871057769e-14 J</td>
</tr>
<tr>
<td>electron mass energy equivalent in MeV</td>
<td>0.51099895 MeV</td>
</tr>
<tr>
<td>electron mass in u</td>
<td>0.000548579909065 u</td>
</tr>
<tr>
<td>electron molar mass</td>
<td>5.4857990888e-07 kg mol^-1</td>
</tr>
<tr>
<td>electron relative atomic mass</td>
<td>0.000548579909065</td>
</tr>
<tr>
<td>electron to alpha particle mass ratio</td>
<td>0.000137093554787</td>
</tr>
<tr>
<td>electron to shielded helion mag. mom. ratio</td>
<td>864.058257</td>
</tr>
<tr>
<td>electron to shielded proton mag. mom. ratio</td>
<td>-658.2275971</td>
</tr>
<tr>
<td>electron volt</td>
<td>1.602176634e-19 J</td>
</tr>
<tr>
<td>electron volt-atomic mass unit relationship</td>
<td>1.07354410233e-09 u</td>
</tr>
<tr>
<td>electron volt-hartree relationship</td>
<td>0.036749322175655 E_h</td>
</tr>
<tr>
<td>electron volt-hertz relationship</td>
<td>241798924200000.0 Hz</td>
</tr>
<tr>
<td>electron volt-inverse meter relationship</td>
<td>806554.3937 m^-1</td>
</tr>
<tr>
<td>electron volt-joule relationship</td>
<td>1.602176634e-19 J</td>
</tr>
<tr>
<td>electron volt-kelvin relationship</td>
<td>11604.51812 K</td>
</tr>
<tr>
<td>electron volt-kilogram relationship</td>
<td>1.782661921e-36 kg</td>
</tr>
<tr>
<td>electron-deuteron mag. mom. ratio</td>
<td>-2143.9234915</td>
</tr>
<tr>
<td>electron-deuteron mass ratio</td>
<td>0.0002724437107462</td>
</tr>
<tr>
<td>electron-helion mass ratio</td>
<td>0.0001819543074573</td>
</tr>
<tr>
<td>electron-muon mag. mom. ratio</td>
<td>206.7669883</td>
</tr>
<tr>
<td>electron-muon mass ratio</td>
<td>0.00483633169</td>
</tr>
<tr>
<td>electron-neutron mag. mom. ratio</td>
<td>960.9205</td>
</tr>
<tr>
<td>electron-neutron mass ratio</td>
<td>0.00054386734424</td>
</tr>
<tr>
<td>electron-proton mag. mom. ratio</td>
<td>-658.21068789</td>
</tr>
<tr>
<td>electron-proton mass ratio</td>
<td>0.000544617021487</td>
</tr>
<tr>
<td>electron-tau mass ratio</td>
<td>0.000287585</td>
</tr>
<tr>
<td>electron-triton mass ratio</td>
<td>0.0001819200062251</td>
</tr>
<tr>
<td>elementary charge</td>
<td>1.602176634e-19 C</td>
</tr>
<tr>
<td>elementary charge over h-bar</td>
<td>1519264740000000.0 A J^-1</td>
</tr>
<tr>
<td>Faraday constant</td>
<td>96485.33212 C mol^-1</td>
</tr>
<tr>
<td>Fermi coupling constant</td>
<td>1.1663787e-05 GeV^-2</td>
</tr>
<tr>
<td>fine-structure constant</td>
<td>0.0072973525693</td>
</tr>
<tr>
<td>first radiation constant</td>
<td>3.741771852e-16 W m^-2</td>
</tr>
<tr>
<td>first radiation constant for spectral radiance</td>
<td>1.19104297e-16 W m^-2 sr^-1</td>
</tr>
<tr>
<td>Hartree energy</td>
<td>4.3597447222071e-18 J</td>
</tr>
<tr>
<td>Hartree energy in eV</td>
<td>27.211386245988 eV</td>
</tr>
<tr>
<td>hartree-atomic mass unit relationship</td>
<td>2.92126232205e-08 u</td>
</tr>
<tr>
<td>hartree-electron volt relationship</td>
<td>27.211386245988 eV</td>
</tr>
<tr>
<td>hartree-hertz relationship</td>
<td>65796839205020000.0 Hz</td>
</tr>
<tr>
<td>hartree-inverse meter relationship</td>
<td>21947463.13632 m^-1</td>
</tr>
<tr>
<td>hartree-joule relationship</td>
<td>4.3597447222071e-18 J</td>
</tr>
<tr>
<td>hartree-kilogram relationship</td>
<td>315776.02480407 K</td>
</tr>
<tr>
<td>hartree-kilogram relationship</td>
<td>4.8508702095432e-35 kg</td>
</tr>
<tr>
<td>helion g factor</td>
<td>-4.255250615</td>
</tr>
<tr>
<td>helion mag. mom.</td>
<td>-1.074617532e-26 J T^-1</td>
</tr>
<tr>
<td>helion mag. mom. to Bohr magneton ratio</td>
<td>-0.001158740958</td>
</tr>
<tr>
<td>helion mag. mom. to nuclear magneton ratio</td>
<td>-2.127625307</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helion mass</td>
<td>5.0064127796e-27 kg</td>
</tr>
<tr>
<td>Helion mass energy equivalent</td>
<td>4.4995394125e-10 J</td>
</tr>
<tr>
<td>Helion mass energy equivalent in MeV</td>
<td>2808.39160743 MeV</td>
</tr>
<tr>
<td>Helion mass in u</td>
<td>3.014932247175 u</td>
</tr>
<tr>
<td>Helion molar mass</td>
<td>0.00301493224613 kg mol^-1</td>
</tr>
<tr>
<td>Helion relative atomic mass</td>
<td>3.014932247175</td>
</tr>
<tr>
<td>Helion shielding shift</td>
<td>5.996743e-05</td>
</tr>
<tr>
<td>Helion-electron mass ratio</td>
<td>5495.88528007</td>
</tr>
<tr>
<td>Helion-proton mass ratio</td>
<td>2.99315267167</td>
</tr>
<tr>
<td>Hertz-atomic mass unit relationship</td>
<td>4.4398216652e-24 u</td>
</tr>
<tr>
<td>Hertz-electron volt relationship</td>
<td>4.135667696e-15 eV</td>
</tr>
<tr>
<td>Hertz-hartree relationship</td>
<td>1.519829846057e-16 E_h</td>
</tr>
<tr>
<td>Hertz-inverse meter relationship</td>
<td>3.3356409519815204e-09 m^-1</td>
</tr>
<tr>
<td>Hertz-joule relationship</td>
<td>6.62607015e-34 J</td>
</tr>
<tr>
<td>Hertz-kelvin relationship</td>
<td>4.799243073e-11 K</td>
</tr>
<tr>
<td>Hertz-kilogram relationship</td>
<td>7.372497323e-51 kg</td>
</tr>
<tr>
<td>Hyperfine transition frequency of Cs-133</td>
<td>9192631770.0 Hz</td>
</tr>
<tr>
<td>Inverse fine-structure constant</td>
<td>137.035999084</td>
</tr>
<tr>
<td>Inverse meter-atomic mass unit relationship</td>
<td>1.3310250501e-15 u</td>
</tr>
<tr>
<td>Inverse meter-electron volt relationship</td>
<td>1.239841984e-06 eV</td>
</tr>
<tr>
<td>Inverse meter-hartree relationship</td>
<td>4.55635252912e-08 E_h</td>
</tr>
<tr>
<td>Inverse meter-hertz relationship</td>
<td>29972458.0 Hz</td>
</tr>
<tr>
<td>Inverse meter-joule relationship</td>
<td>1.986445857e-25 J</td>
</tr>
<tr>
<td>Inverse meter-kelvin relationship</td>
<td>0.0143876877 K</td>
</tr>
<tr>
<td>Inverse meter-kilogram relationship</td>
<td>2.210219094e-42 kg</td>
</tr>
<tr>
<td>Inverse of conductance quantum</td>
<td>12906.40372 ohm</td>
</tr>
<tr>
<td>Josephson constant</td>
<td>483597848400000.0 Hz V^-1</td>
</tr>
<tr>
<td>Joule-atomic mass unit relationship</td>
<td>6700535256.5 u</td>
</tr>
<tr>
<td>Joule-electron volt relationship</td>
<td>6.241509074e+18 eV</td>
</tr>
<tr>
<td>Joule-hartree relationship</td>
<td>2.2937122783963e+17 E_h</td>
</tr>
<tr>
<td>Joule-hertz relationship</td>
<td>1.509190179e+33 Hz</td>
</tr>
<tr>
<td>Joule-inverse meter relationship</td>
<td>5.034116567e+24 m^-1</td>
</tr>
<tr>
<td>Joule-kelvin relationship</td>
<td>7.242970516e+22 K</td>
</tr>
<tr>
<td>Joule-kilogram relationship</td>
<td>1.112650050636185e-17 kg</td>
</tr>
<tr>
<td>Kelvin-atomic mass unit relationship</td>
<td>9.2510873014e-14 u</td>
</tr>
<tr>
<td>Kelvin-electron volt relationship</td>
<td>8.61733262e-05 eV</td>
</tr>
<tr>
<td>Kelvin-hartree relationship</td>
<td>3.1668115634556e-06 E_h</td>
</tr>
<tr>
<td>Kelvin-hertz relationship</td>
<td>20836619120.0 Hz</td>
</tr>
<tr>
<td>Kelvin-inverse meter relationship</td>
<td>69.50348004 m^-1</td>
</tr>
<tr>
<td>Kelvin-joule relationship</td>
<td>1.380649e-23 J</td>
</tr>
<tr>
<td>Kelvin-kilogram relationship</td>
<td>1.536179187e-40 kg</td>
</tr>
<tr>
<td>Kilogram-atomic mass unit relationship</td>
<td>6.0221407621e+26 u</td>
</tr>
<tr>
<td>Kilogram-electron volt relationship</td>
<td>5.609586603e+35 eV</td>
</tr>
<tr>
<td>Kilogram-hartree relationship</td>
<td>2.0614857887409e+34 E_h</td>
</tr>
<tr>
<td>Kilogram-hertz relationship</td>
<td>1.356392489e+50 Hz</td>
</tr>
<tr>
<td>Kilogram-inverse meter relationship</td>
<td>4.524338335e+41 m^-1</td>
</tr>
<tr>
<td>Kilogram-joule relationship</td>
<td>8.987551787368176e+16 J</td>
</tr>
<tr>
<td>Kilogram-kelvin relationship</td>
<td>6.50965726e+39 K</td>
</tr>
<tr>
<td>Lattice parameter of silicon</td>
<td>5.43102051e-10 m</td>
</tr>
<tr>
<td>Lattice spacing of ideal Si (220)</td>
<td>1.920157576e-10 m</td>
</tr>
</tbody>
</table>

continues on next page
Table 13 – continued from previous page

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loschmidt constant (273.15 K, 100 kPa)</td>
<td>2.651645804e+25 m^-3</td>
</tr>
<tr>
<td>Loschmidt constant (273.15 K, 101.325 kPa)</td>
<td>2.686780116e+25 m^-3</td>
</tr>
<tr>
<td>luminous efficacy</td>
<td>683.0 lm W^-1</td>
</tr>
<tr>
<td>mag. flux quantum</td>
<td>2.06733848e-15 Wb</td>
</tr>
<tr>
<td>Mo x unit</td>
<td>1.00209952e-13 m</td>
</tr>
<tr>
<td>molar gas constant</td>
<td>8.314462618 J mol^-1 K^-1</td>
</tr>
<tr>
<td>molar mass constant</td>
<td>0.00099999999965 kg mol^-1</td>
</tr>
<tr>
<td>molar mass of carbon-12</td>
<td>0.0119999999958 kg mol^-1</td>
</tr>
<tr>
<td>molar Planck constant</td>
<td>3.990312712e-10 J Hz^-1 mol^-1</td>
</tr>
<tr>
<td>molar volume of ideal gas (273.15 K, 100 kPa)</td>
<td>0.0221095464 m^3 mol^-1</td>
</tr>
<tr>
<td>molar volume of ideal gas (273.15 K, 101.325 kPa)</td>
<td>0.02241396954 m^3 mol^-1</td>
</tr>
<tr>
<td>molar volume of silicon</td>
<td>1.205883199e-05 m^3 mol^-1</td>
</tr>
<tr>
<td>muon Compton wavelength</td>
<td>1.17344411e-14 m</td>
</tr>
<tr>
<td>muon g factor</td>
<td>-0.0023318418</td>
</tr>
<tr>
<td>muon mag. mom.</td>
<td>-4.4904483e-26 J T^-1</td>
</tr>
<tr>
<td>muon mag. mom. anomaly</td>
<td>0.00116592089</td>
</tr>
<tr>
<td>muon mag. mom. to Bohr magneton ratio</td>
<td>-0.00484197047</td>
</tr>
<tr>
<td>muon mag. mom. to nuclear magneton ratio</td>
<td>-8.89059703</td>
</tr>
<tr>
<td>muon mass</td>
<td>1.885351627e-28 kg</td>
</tr>
<tr>
<td>muon mass energy equivalent</td>
<td>1.69283804e-11 J</td>
</tr>
<tr>
<td>muon mass energy equivalent in MeV</td>
<td>105.6583755 MeV</td>
</tr>
<tr>
<td>muon mass in u</td>
<td>0.1134289259 u</td>
</tr>
<tr>
<td>muon molar mass</td>
<td>0.0001134289259 kg mol^-1</td>
</tr>
<tr>
<td>muon-electron mass ratio</td>
<td>206.768283</td>
</tr>
<tr>
<td>muon-neutron mass ratio</td>
<td>0.112454517</td>
</tr>
<tr>
<td>muon-proton mag. mom. ratio</td>
<td>-3.183345142</td>
</tr>
<tr>
<td>muon-proton mass ratio</td>
<td>0.1126095264</td>
</tr>
<tr>
<td>muon-tau mass ratio</td>
<td>0.0594635</td>
</tr>
<tr>
<td>natural unit of action</td>
<td>1.054571817e-34 Js</td>
</tr>
<tr>
<td>natural unit of action in eV s</td>
<td>6.582119569e-16 eVs</td>
</tr>
<tr>
<td>natural unit of energy</td>
<td>8.1871057769e-14 J</td>
</tr>
<tr>
<td>natural unit of energy in MeV</td>
<td>0.51099895 MeV</td>
</tr>
<tr>
<td>natural unit of length</td>
<td>3.8615926796e-13 m</td>
</tr>
<tr>
<td>natural unit of mass</td>
<td>9.1093837015e-31 kg</td>
</tr>
<tr>
<td>natural unit of momentum</td>
<td>2.73092488e-22 kg m s^-1</td>
</tr>
<tr>
<td>natural unit of momentum in MeV/c</td>
<td>0.5109989461 MeV/c</td>
</tr>
<tr>
<td>natural unit of time</td>
<td>1.28808866819e-21 s</td>
</tr>
<tr>
<td>natural unit of velocity</td>
<td>299792458.0 m s^-1</td>
</tr>
<tr>
<td>neutron Compton wavelength</td>
<td>1.31959090581e-15 m</td>
</tr>
<tr>
<td>neutron g factor</td>
<td>-3.82608545</td>
</tr>
<tr>
<td>neutron gyromag. ratio</td>
<td>183247171.0 s^-1 T^-1</td>
</tr>
<tr>
<td>neutron gyromag. ratio in MHz/T</td>
<td>29.1646931 MHz T^-1</td>
</tr>
<tr>
<td>neutron mag. mom.</td>
<td>-9.6623651e-27 JT^-1</td>
</tr>
<tr>
<td>neutron mag. mom. to Bohr magneton ratio</td>
<td>-0.00104187563</td>
</tr>
<tr>
<td>neutron mag. mom. to nuclear magneton ratio</td>
<td>-1.91304273</td>
</tr>
<tr>
<td>neutron mass</td>
<td>1.67492749804e-27 kg</td>
</tr>
<tr>
<td>neutron mass energy equivalent</td>
<td>1.50534976287e-10 J</td>
</tr>
<tr>
<td>neutron mass energy equivalent in MeV</td>
<td>939.56542052 MeV</td>
</tr>
<tr>
<td>neutron mass in u</td>
<td>1.00866491595 u</td>
</tr>
<tr>
<td>neutron molar mass</td>
<td>0.0010086649156 kg mol^-1</td>
</tr>
</tbody>
</table>

continues on next page
Table 13 – continued from previous page

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutron relative atomic mass</td>
<td>1.00866491595</td>
</tr>
<tr>
<td>neutron to shielded proton mag. mom. ratio</td>
<td>-0.68499694</td>
</tr>
<tr>
<td>neutron-electron mag. mom. ratio</td>
<td>0.0010406682</td>
</tr>
<tr>
<td>neutron-electron mass ratio</td>
<td>1838.68366173</td>
</tr>
<tr>
<td>neutron-muon mass ratio</td>
<td>8.89248406</td>
</tr>
<tr>
<td>neutron-proton mag. mom. ratio</td>
<td>-0.68497934</td>
</tr>
<tr>
<td>neutron-proton mass difference</td>
<td>2.30557435e-30 kg</td>
</tr>
<tr>
<td>neutron-proton mass difference energy equivalent</td>
<td>2.07214689e-13 J</td>
</tr>
<tr>
<td>neutron-proton mass difference energy equivalent in MeV</td>
<td>1.29333236 MeV</td>
</tr>
<tr>
<td>neutron-proton mass difference in u</td>
<td>0.00138844933 u</td>
</tr>
<tr>
<td>neutron-proton mass ratio</td>
<td>1.00137841931</td>
</tr>
<tr>
<td>neutron-tau mass ratio</td>
<td>0.528779</td>
</tr>
<tr>
<td>Newtonian constant of gravitation</td>
<td>6.6743e-11 m^3 kg^-1 s^-2</td>
</tr>
<tr>
<td>Newtonian constant of gravitation over h-bar c</td>
<td>6.70883e-39 (GeV/c^2)^-1</td>
</tr>
<tr>
<td>nuclear magneton</td>
<td>5.0507837461e-27 J T^-1</td>
</tr>
<tr>
<td>nuclear magneton in eV/T</td>
<td>3.15245125844e-08 eV T^-1</td>
</tr>
<tr>
<td>nuclear magneton in inverse meter per tesla</td>
<td>0.0254262341353 m^-1 T^-1</td>
</tr>
<tr>
<td>nuclear magneton in K/T</td>
<td>0.00036582677756 K T^-1</td>
</tr>
<tr>
<td>nuclear magneton in MHz/T</td>
<td>7.6225932291 MHz T^-1</td>
</tr>
<tr>
<td>Planck constant</td>
<td>6.62607015e-34 J Hz^-1</td>
</tr>
<tr>
<td>Planck constant in eV/Hz</td>
<td>4.135667696e-15 eV Hz^-1</td>
</tr>
<tr>
<td>Planck length</td>
<td>1.616255e-35 m</td>
</tr>
<tr>
<td>Planck mass</td>
<td>2.176434e-08 kg</td>
</tr>
<tr>
<td>Planck mass energy equivalent in GeV</td>
<td>1.22089e+19 GeV</td>
</tr>
<tr>
<td>Planck temperature</td>
<td>1.416784e+32 K</td>
</tr>
<tr>
<td>Planck time</td>
<td>5.391247e-44 s</td>
</tr>
<tr>
<td>proton charge to mass quotient</td>
<td>95788313.56 C kg^-1</td>
</tr>
<tr>
<td>proton Compton wavelength</td>
<td>1.32140985539e-15 m</td>
</tr>
<tr>
<td>proton g factor</td>
<td>5.5856946893</td>
</tr>
<tr>
<td>proton gyromag. ratio</td>
<td>26752218.44 s^-1 T^-1</td>
</tr>
<tr>
<td>proton gyromag. ratio in MHz/T</td>
<td>42.57745815 MHz T^-1</td>
</tr>
<tr>
<td>proton mag. mom.</td>
<td>1.41060679736e-26 J T^-1</td>
</tr>
<tr>
<td>proton mag. mom. to Bohr magneton ratio</td>
<td>0.0015210322023</td>
</tr>
<tr>
<td>proton mag. mom. to nuclear magneton ratio</td>
<td>2.79284734463</td>
</tr>
<tr>
<td>proton mag. shielding correction</td>
<td>2.5689e-05</td>
</tr>
<tr>
<td>proton mass</td>
<td>1.6726219369e-27 kg</td>
</tr>
<tr>
<td>proton mass energy equivalent</td>
<td>1.50327761598e-10 J</td>
</tr>
<tr>
<td>proton mass energy equivalent in MeV</td>
<td>938.27208816 MeV</td>
</tr>
<tr>
<td>proton mass in u</td>
<td>1.007276466621 u</td>
</tr>
<tr>
<td>proton molar mass</td>
<td>0.00100727646627 kg mol^-1</td>
</tr>
<tr>
<td>proton relative atomic mass</td>
<td>1.00727646621</td>
</tr>
<tr>
<td>proton rms charge radius</td>
<td>8.414e-16 m</td>
</tr>
<tr>
<td>proton-electron mass ratio</td>
<td>1836.15267343</td>
</tr>
<tr>
<td>proton-muon mass ratio</td>
<td>8.88024337</td>
</tr>
<tr>
<td>proton-neutron mag. mom. ratio</td>
<td>-1.45989805</td>
</tr>
<tr>
<td>proton-neutron mass ratio</td>
<td>0.99862347812</td>
</tr>
<tr>
<td>proton-tau mass ratio</td>
<td>0.528051</td>
</tr>
<tr>
<td>quantum of circulation</td>
<td>0.00036369475516 m^2 s^-1</td>
</tr>
<tr>
<td>quantum of circulation times 2</td>
<td>0.000723738951032 m^2 s^-1</td>
</tr>
<tr>
<td>reduced Compton wavelength</td>
<td>3.8615926796e-13 m</td>
</tr>
</tbody>
</table>

continues on next page
Table 13 – continued from previous page

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduced muon Compton wavelength</td>
<td>1.867594306e-15 m</td>
</tr>
<tr>
<td>reduced neutron Compton wavelength</td>
<td>2.1001941552e-16 m</td>
</tr>
<tr>
<td>reduced Planck constant</td>
<td>1.054571817e-34 J s</td>
</tr>
<tr>
<td>reduced Planck constant in eV s</td>
<td>6.58219569e-16 eV s</td>
</tr>
<tr>
<td>reduced Planck constant times c in MeV fm</td>
<td>197.3269804 MeV fm</td>
</tr>
<tr>
<td>reduced proton Compton wavelength</td>
<td>2.1030891036e-16 m</td>
</tr>
<tr>
<td>reduced tau Compton wavelength</td>
<td>1.110538e-16 m</td>
</tr>
<tr>
<td>Rydberg constant</td>
<td>10973731.56816 m</td>
</tr>
<tr>
<td>Rydberg constant times c in Hz</td>
<td>3289841960250800.0 Hz</td>
</tr>
<tr>
<td>Rydberg constant times hc in eV</td>
<td>13.605693122994 eV</td>
</tr>
<tr>
<td>Rydberg constant times hc in J</td>
<td>2.1798723611035e-18 J</td>
</tr>
<tr>
<td>Sackur-Tetrode constant (1 K, 100 kPa)</td>
<td>-1.15170753706</td>
</tr>
<tr>
<td>Sackur-Tetrode constant (1 K, 101.325 kPa)</td>
<td>-1.16487052358</td>
</tr>
<tr>
<td>second radiation constant</td>
<td>0.01438776877 m K</td>
</tr>
<tr>
<td>shielded helium gyromag. ratio</td>
<td>203789456.9 s^-1 T^-1</td>
</tr>
<tr>
<td>shielded helium gyromag. ratio in MHz/T</td>
<td>32.43409942 MHz T^-1</td>
</tr>
<tr>
<td>shielded helium mag. mom.</td>
<td>-1.07455309e-26 J T^-1</td>
</tr>
<tr>
<td>shielded helium mag. mom. to Bohr magneton ratio</td>
<td>-0.001158671471</td>
</tr>
<tr>
<td>shielded helium to proton mag. mom. ratio</td>
<td>-2.127497719</td>
</tr>
<tr>
<td>shielded helium to shielded proton mag. mom. ratio</td>
<td>-0.7617665618</td>
</tr>
<tr>
<td>shielded proton gyromag. ratio</td>
<td>267515315.1 s^-1 T^-1</td>
</tr>
<tr>
<td>shielded proton gyromag. ratio in MHz/T</td>
<td>42.57638474 MHz T^-1</td>
</tr>
<tr>
<td>shielded proton mag. mom.</td>
<td>1.41057056e-26 J T^-1</td>
</tr>
<tr>
<td>shielded proton mag. mom. to Bohr magneton ratio</td>
<td>0.001520993128</td>
</tr>
<tr>
<td>shielded proton mag. mom. to nuclear magneton ratio</td>
<td>2.792775599</td>
</tr>
<tr>
<td>shielding difference of d and p in HD</td>
<td>2.02e-08</td>
</tr>
<tr>
<td>shielding difference of t and p in HT</td>
<td>2.414e-08</td>
</tr>
<tr>
<td>speed of light in vacuum</td>
<td>29972458.0 m s^-1</td>
</tr>
<tr>
<td>standard acceleration of gravity</td>
<td>9.80665 m s^-2</td>
</tr>
<tr>
<td>standard atmosphere</td>
<td>101325.0 Pa</td>
</tr>
<tr>
<td>standard-state pressure</td>
<td>100000.0 Pa</td>
</tr>
<tr>
<td>Stefan-Boltzmann constant</td>
<td>5.67034419e-8 W m^-2 K^-4</td>
</tr>
<tr>
<td>tau Compton wavelength</td>
<td>6.97771e-16 m</td>
</tr>
<tr>
<td>tau energy equivalent</td>
<td>1776.86 MeV</td>
</tr>
<tr>
<td>tau mass</td>
<td>3.16754e-27 kg</td>
</tr>
<tr>
<td>tau mass energy equivalent</td>
<td>2.84684e-10 J</td>
</tr>
<tr>
<td>tau mass in u</td>
<td>1.90754 u</td>
</tr>
<tr>
<td>tau molar mass</td>
<td>0.00190754 kg mol^-1</td>
</tr>
<tr>
<td>tau-electron mass ratio</td>
<td>3477.23</td>
</tr>
<tr>
<td>tau-muon mass ratio</td>
<td>16.817</td>
</tr>
<tr>
<td>tau-neutron mass ratio</td>
<td>1.89115</td>
</tr>
<tr>
<td>tau-proton mass ratio</td>
<td>1.89376</td>
</tr>
<tr>
<td>Thomson cross section</td>
<td>6.652487321e-29 m^2</td>
</tr>
<tr>
<td>triton g factor</td>
<td>5.957924931</td>
</tr>
<tr>
<td>triton mag. mom.</td>
<td>1.5046095202e-26 J T^-1</td>
</tr>
<tr>
<td>triton mag. mom. to Bohr magneton ratio</td>
<td>0.0016223936651</td>
</tr>
<tr>
<td>triton mag. mom. to nuclear magneton ratio</td>
<td>2.9789624656</td>
</tr>
<tr>
<td>triton mass</td>
<td>5.0073567446e-27 kg</td>
</tr>
<tr>
<td>triton mass energy equivalent</td>
<td>4.500387806e-10 J</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>triton mass energy equivalent in MeV</td>
<td>2808.92113298 MeV</td>
</tr>
<tr>
<td>triton mass in u</td>
<td>3.01550071621 u</td>
</tr>
<tr>
<td>triton molar mass</td>
<td>0.00301550071517 kg mol^-1</td>
</tr>
<tr>
<td>triton relative atomic mass</td>
<td>3.01550071621</td>
</tr>
<tr>
<td>triton to proton mag. mom. ratio</td>
<td>1.0666399191</td>
</tr>
<tr>
<td>triton-electron mass ratio</td>
<td>5496.92153573</td>
</tr>
<tr>
<td>triton-proton mass ratio</td>
<td>2.99371703414</td>
</tr>
<tr>
<td>unified atomic mass unit</td>
<td>1.6605390666e-27 kg</td>
</tr>
<tr>
<td>vacuum electric permittivity</td>
<td>8.8541878128e-12 F m^-1</td>
</tr>
<tr>
<td>vacuum mag. permeability</td>
<td>1.25663706212e-06 N A^-2</td>
</tr>
<tr>
<td>von Klitzing constant</td>
<td>25812.80745 ohm</td>
</tr>
<tr>
<td>W to Z mass ratio</td>
<td>0.88153</td>
</tr>
<tr>
<td>weak mixing angle</td>
<td>0.2229</td>
</tr>
<tr>
<td>Wien frequency displacement law constant</td>
<td>58789257570.0 Hz K^-1</td>
</tr>
<tr>
<td>Wien wavelength displacement law constant</td>
<td>0.002897771955 m K</td>
</tr>
</tbody>
</table>

**Units**

**SI prefixes**

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>yotta</td>
<td>y</td>
<td>10^24</td>
</tr>
<tr>
<td>zetta</td>
<td>z</td>
<td>10^21</td>
</tr>
<tr>
<td>exa</td>
<td>e</td>
<td>10^18</td>
</tr>
<tr>
<td>peta</td>
<td>p</td>
<td>10^15</td>
</tr>
<tr>
<td>tera</td>
<td>T</td>
<td>10^12</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>10^9</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>10^6</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>10^3</td>
</tr>
<tr>
<td>hecto</td>
<td>h</td>
<td>10^2</td>
</tr>
<tr>
<td>deka</td>
<td>da</td>
<td>10^1</td>
</tr>
<tr>
<td>deci</td>
<td>d</td>
<td>10^-1</td>
</tr>
<tr>
<td>centi</td>
<td>c</td>
<td>10^-2</td>
</tr>
<tr>
<td>milli</td>
<td>m</td>
<td>10^-3</td>
</tr>
<tr>
<td>micro</td>
<td>u</td>
<td>10^-6</td>
</tr>
<tr>
<td>nano</td>
<td>n</td>
<td>10^-9</td>
</tr>
<tr>
<td>pico</td>
<td>p</td>
<td>10^-12</td>
</tr>
<tr>
<td>femto</td>
<td>f</td>
<td>10^-15</td>
</tr>
<tr>
<td>atto</td>
<td>a</td>
<td>10^-18</td>
</tr>
<tr>
<td>zepto</td>
<td>z</td>
<td>10^-21</td>
</tr>
<tr>
<td>yocto</td>
<td>y</td>
<td>10^-24</td>
</tr>
</tbody>
</table>
### Binary prefixes

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Abbreviation</th>
<th>Binary Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kibi</td>
<td>kibi</td>
<td>$2^{10}$</td>
</tr>
<tr>
<td>mebi</td>
<td>mebi</td>
<td>$2^{20}$</td>
</tr>
<tr>
<td>gibi</td>
<td>gibi</td>
<td>$2^{30}$</td>
</tr>
<tr>
<td>tebi</td>
<td>tebi</td>
<td>$2^{40}$</td>
</tr>
<tr>
<td>pebi</td>
<td>pebi</td>
<td>$2^{50}$</td>
</tr>
<tr>
<td>exbi</td>
<td>exbi</td>
<td>$2^{60}$</td>
</tr>
<tr>
<td>zebi</td>
<td>zebi</td>
<td>$2^{70}$</td>
</tr>
<tr>
<td>yobi</td>
<td>yobi</td>
<td>$2^{80}$</td>
</tr>
</tbody>
</table>

### Mass

<table>
<thead>
<tr>
<th>Unit</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>gram</td>
<td>$10^{-3}$ kg</td>
</tr>
<tr>
<td>metric_ton</td>
<td>$10^3$ kg</td>
</tr>
<tr>
<td>grain</td>
<td>one grain in kg</td>
</tr>
<tr>
<td>lb</td>
<td>one pound (avoirdupois) in kg</td>
</tr>
<tr>
<td>pound</td>
<td>one pound (avoirdupois) in kg</td>
</tr>
<tr>
<td>blob</td>
<td>one inch version of a slug in kg (added in 1.0.0)</td>
</tr>
<tr>
<td>slinch</td>
<td>one inch version of a slug in kg (added in 1.0.0)</td>
</tr>
<tr>
<td>slug</td>
<td>one slug in kg (added in 1.0.0)</td>
</tr>
<tr>
<td>oz</td>
<td>one ounce in kg</td>
</tr>
<tr>
<td>ounce</td>
<td>one ounce in kg</td>
</tr>
<tr>
<td>stone</td>
<td>one stone in kg</td>
</tr>
<tr>
<td>grain</td>
<td>one grain in kg</td>
</tr>
<tr>
<td>long_ton</td>
<td>one long ton in kg</td>
</tr>
<tr>
<td>short_ton</td>
<td>one short ton in kg</td>
</tr>
<tr>
<td>troy_ounce</td>
<td>one Troy ounce in kg</td>
</tr>
<tr>
<td>troy_pound</td>
<td>one Troy pound in kg</td>
</tr>
<tr>
<td>carat</td>
<td>one carat in kg</td>
</tr>
<tr>
<td>m_u</td>
<td>atomic mass constant (in kg)</td>
</tr>
<tr>
<td>u</td>
<td>atomic mass constant (in kg)</td>
</tr>
<tr>
<td>atomic_mass</td>
<td>atomic mass constant (in kg)</td>
</tr>
</tbody>
</table>

### Angle

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree</td>
<td>degree in radians</td>
</tr>
<tr>
<td>arcmin</td>
<td>arc minute in radians</td>
</tr>
<tr>
<td>arcminute</td>
<td>arc minute in radians</td>
</tr>
<tr>
<td>arcsec</td>
<td>arc second in radians</td>
</tr>
<tr>
<td>arcsecond</td>
<td>arc second in radians</td>
</tr>
</tbody>
</table>
### Time

<table>
<thead>
<tr>
<th>Unit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>minute</td>
<td>one minute in seconds</td>
</tr>
<tr>
<td>hour</td>
<td>one hour in seconds</td>
</tr>
<tr>
<td>day</td>
<td>one day in seconds</td>
</tr>
<tr>
<td>week</td>
<td>one week in seconds</td>
</tr>
<tr>
<td>year</td>
<td>one year (365 days) in seconds</td>
</tr>
<tr>
<td>Julian_year</td>
<td>one Julian year (365.25 days) in seconds</td>
</tr>
</tbody>
</table>

### Length

<table>
<thead>
<tr>
<th>Unit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>inch</td>
<td>one inch in meters</td>
</tr>
<tr>
<td>foot</td>
<td>one foot in meters</td>
</tr>
<tr>
<td>yard</td>
<td>one yard in meters</td>
</tr>
<tr>
<td>mile</td>
<td>one mile in meters</td>
</tr>
<tr>
<td>mil</td>
<td>one mil in meters</td>
</tr>
<tr>
<td>pt</td>
<td>one point in meters</td>
</tr>
<tr>
<td>point</td>
<td>one point in meters</td>
</tr>
<tr>
<td>survey_foot</td>
<td>one survey foot in meters</td>
</tr>
<tr>
<td>survey_mile</td>
<td>one survey mile in meters</td>
</tr>
<tr>
<td>nautical_mile</td>
<td>one nautical mile in meters</td>
</tr>
<tr>
<td>fermi</td>
<td>one Fermi in meters</td>
</tr>
<tr>
<td>angstrom</td>
<td>one Angstrom in meters</td>
</tr>
<tr>
<td>micron</td>
<td>one micron in meters</td>
</tr>
<tr>
<td>au</td>
<td>one astronomical unit in meters</td>
</tr>
<tr>
<td>astronomical_unit</td>
<td>one astronomical unit in meters</td>
</tr>
<tr>
<td>light_year</td>
<td>one light year in meters</td>
</tr>
<tr>
<td>parsec</td>
<td>one parsec in meters</td>
</tr>
</tbody>
</table>

### Pressure

<table>
<thead>
<tr>
<th>Unit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>atm</td>
<td>standard atmosphere in pascals</td>
</tr>
<tr>
<td>atmosphere</td>
<td>standard atmosphere in pascals</td>
</tr>
<tr>
<td>bar</td>
<td>one bar in pascals</td>
</tr>
<tr>
<td>torr</td>
<td>one torr (mmHg) in pascals</td>
</tr>
<tr>
<td>mmHg</td>
<td>one torr (mmHg) in pascals</td>
</tr>
<tr>
<td>psi</td>
<td>one psi in pascals</td>
</tr>
</tbody>
</table>
Area

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hectare</td>
<td>one hectare in square meters</td>
</tr>
<tr>
<td>acre</td>
<td>one acre in square meters</td>
</tr>
</tbody>
</table>

Volume

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>liter</td>
<td>one liter in cubic meters</td>
</tr>
<tr>
<td>litre</td>
<td>one liter in cubic meters</td>
</tr>
<tr>
<td>gallon</td>
<td>one gallon (US) in cubic meters</td>
</tr>
<tr>
<td>gallon_US</td>
<td>one gallon (US) in cubic meters</td>
</tr>
<tr>
<td>gallon_imp</td>
<td>one gallon (UK) in cubic meters</td>
</tr>
<tr>
<td>fluid_ounce</td>
<td>one fluid ounce (US) in cubic meters</td>
</tr>
<tr>
<td>fluid_ounce_US</td>
<td>one fluid ounce (US) in cubic meters</td>
</tr>
<tr>
<td>fluid_ounce_imp</td>
<td>one fluid ounce (UK) in cubic meters</td>
</tr>
<tr>
<td>bbl</td>
<td>one barrel in cubic meters</td>
</tr>
<tr>
<td>barrel</td>
<td>one barrel in cubic meters</td>
</tr>
</tbody>
</table>

Speed

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kmh</td>
<td>kilometers per hour in meters per second</td>
</tr>
<tr>
<td>mph</td>
<td>miles per hour in meters per second</td>
</tr>
<tr>
<td>mach</td>
<td>one Mach (approx., at 15 C, 1 atm) in meters per second</td>
</tr>
<tr>
<td>speed_of_sound</td>
<td>one Mach (approx., at 15 C, 1 atm) in meters per second</td>
</tr>
<tr>
<td>knot</td>
<td>one knot in meters per second</td>
</tr>
</tbody>
</table>

Temperature

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero_Celsius</td>
<td>zero of Celsius scale in Kelvin</td>
</tr>
<tr>
<td>degree_Fahrenheit</td>
<td>one Fahrenheit (only differences) in Kelvins</td>
</tr>
</tbody>
</table>

convert_temperature(val, old_scale, new_scale)

Convert from a temperature scale to another one among Celsius, Kelvin, Fahrenheit, and Rankine scales.

Parameters

- **val**: [array_like] Value(s) of the temperature(s) to be converted expressed in the original scale.
- **old_scale**: str
  Specifies as a string the original scale from which the temperature value(s) will be converted. Supported scales are Celsius (‘Celsius’, ‘celsius’, ‘C’ or ‘c’), Kelvin (‘Kelvin’, ‘kelvin’, ‘K’, ‘k’), Fahrenheit (‘Fahrenheit’, ‘fahrenheit’, ‘F’ or ‘°F’), and Rankine (‘Rankine’, ‘rankine’, ‘R’, ‘°R’).
- **new_scale**: str
  Specifies as a string the new scale to which the temperature value(s) will be converted. Supported scales are Celsius (‘Celsius’, ‘celsius’, ‘C’ or ‘c’), Kelvin (‘Kelvin’, ‘kelvin’, ‘K’, ‘k’), Fahrenheit (‘Fahrenheit’, ‘fahrenheit’, ‘F’ or ‘°F’), and Rankine (‘Rankine’, ‘rankine’, ‘R’, ‘°R’).
Returns

res [float or array of floats] Value(s) of the converted temperature(s) expressed in the new scale.

Notes

New in version 0.18.0.

Examples

```python
>>> from scipy.constants import convert_temperature
>>> convert_temperature(np.array([-40, 40]), 'Celsius', 'Kelvin')
array([233.15, 313.15])
```

Energy

<table>
<thead>
<tr>
<th>Unit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>eV</td>
<td>one electron volt in Joules</td>
</tr>
<tr>
<td>electron_volt</td>
<td>one electron volt in Joules</td>
</tr>
<tr>
<td>calorie</td>
<td>one calorie (thermochemical) in Joules</td>
</tr>
<tr>
<td>calorie_th</td>
<td>one calorie (thermochemical) in Joules</td>
</tr>
<tr>
<td>calorie_IT</td>
<td>one calorie (International Steam Table calorie, 1956) in Joules</td>
</tr>
<tr>
<td>erg</td>
<td>one erg in Joules</td>
</tr>
<tr>
<td>Btu</td>
<td>one British thermal unit (International Steam Table) in Joules</td>
</tr>
<tr>
<td>Btu_IT</td>
<td>one British thermal unit (International Steam Table) in Joules</td>
</tr>
<tr>
<td>Btu_th</td>
<td>one British thermal unit (thermochemical) in Joules</td>
</tr>
<tr>
<td>ton_TNT</td>
<td>one ton of TNT in Joules</td>
</tr>
</tbody>
</table>

Power

<table>
<thead>
<tr>
<th>Unit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>hp</td>
<td>one horsepower in watts</td>
</tr>
<tr>
<td>horsepower</td>
<td>one horsepower in watts</td>
</tr>
</tbody>
</table>

Force

<table>
<thead>
<tr>
<th>Unit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>dyn</td>
<td>one dyne in newtons</td>
</tr>
<tr>
<td>dyne</td>
<td>one dyne in newtons</td>
</tr>
<tr>
<td>lbf</td>
<td>one pound force in newtons</td>
</tr>
<tr>
<td>pound_force</td>
<td>one pound force in newtons</td>
</tr>
<tr>
<td>kgf</td>
<td>one kilogram force in newtons</td>
</tr>
<tr>
<td>kilogram_force</td>
<td>one kilogram force in newtons</td>
</tr>
</tbody>
</table>
Optics

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{lambda2nu} ) (( \lambda ))</td>
<td>Convert wavelength to optical frequency</td>
</tr>
<tr>
<td>( \text{nu2lambda} ) (( \nu ))</td>
<td>Convert optical frequency to wavelength.</td>
</tr>
</tbody>
</table>

**scipy.constants.lambda2nu**

\[
\text{scipy.constants.lambda2nu} (\lambda) \\
\text{Convert wavelength to optical frequency}
\]

**Parameters**

- \( \lambda \) [array_like] Wavelength(s) to be converted.

**Returns**

- \( \nu \) [float or array of floats] Equivalent optical frequency.

**Notes**

Computes \( \nu = \frac{c}{\lambda} \) where \( c = 299792458.0 \), i.e., the (vacuum) speed of light in meters/second.

**Examples**

```python
>>> from scipy.constants import lambda2nu, speed_of_light
>>> lambda2nu(np.array((1, speed_of_light)))
array([2.99792458e+08, 1.00000000e+00])
```

**scipy.constants.nu2lambda**

\[
\text{scipy.constants.nu2lambda} (\nu) \\
\text{Convert optical frequency to wavelength.}
\]

**Parameters**

- \( \nu \) [array_like] Optical frequency to be converted.

**Returns**

- \( \lambda \) [float or array of floats] Equivalent wavelength(s).

**Notes**

Computes \( \lambda = \frac{c}{\nu} \) where \( c = 299792458.0 \), i.e., the (vacuum) speed of light in meters/second.
Examples

```python
>>> from scipy.constants import nu2lambda, speed_of_light
>>> nu2lambda(np.array((1, speed_of_light)))
array([2.99792458e+08, 1.00000000e+00])
```

References

3.3.5 Discrete Fourier transforms (scipy.fft)

Fast Fourier Transforms (FFTs)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fft(x[, n, axis, norm, overwrite_x, ...])</code></td>
<td>Compute the 1-D discrete Fourier Transform.</td>
</tr>
<tr>
<td><code>ifft(x[, n, axis, norm, overwrite_x, ...])</code></td>
<td>Compute the 1-D inverse discrete Fourier Transform.</td>
</tr>
<tr>
<td><code>fft2(x[, s, axes, norm, overwrite_x, ...])</code></td>
<td>Compute the 2-D discrete Fourier Transform.</td>
</tr>
<tr>
<td><code>ifft2(x[, s, axes, norm, overwrite_x, ...])</code></td>
<td>Compute the 2-D inverse discrete Fourier Transform.</td>
</tr>
<tr>
<td><code>fftn(x[, s, axes, norm, overwrite_x, ...])</code></td>
<td>Compute the N-D discrete Fourier Transform.</td>
</tr>
<tr>
<td><code>ifftn(x[, s, axes, norm, overwrite_x, ...])</code></td>
<td>Compute the N-D inverse discrete Fourier Transform.</td>
</tr>
<tr>
<td><code>rfft(x[, n, axis, norm, overwrite_x, ...])</code></td>
<td>Compute the 1-D discrete Fourier Transform for real input.</td>
</tr>
<tr>
<td><code>irfft(x[, n, axis, norm, overwrite_x, ...])</code></td>
<td>Computes the inverse of <code>rfft</code>.</td>
</tr>
<tr>
<td><code>rfft2(x[, s, axes, norm, overwrite_x, ...])</code></td>
<td>Compute the 2-D FFT of a real array.</td>
</tr>
<tr>
<td><code>irfft2(x[, s, axes, norm, overwrite_x, ...])</code></td>
<td>Computes the inverse of <code>rfft2</code>.</td>
</tr>
<tr>
<td><code>rfftn(x[, s, axes, norm, overwrite_x, ...])</code></td>
<td>Compute the N-D discrete Fourier Transform for real input.</td>
</tr>
<tr>
<td><code>irfftn(x[, s, axes, norm, overwrite_x, ...])</code></td>
<td>Computes the inverse of <code>rfftn</code>.</td>
</tr>
<tr>
<td><code>hfft(x[, n, axis, norm, overwrite_x, ...])</code></td>
<td>Compute the FFT of a signal that has Hermitian symmetry, i.e., a real spectrum.</td>
</tr>
<tr>
<td><code>ihfft(x[, n, axis, norm, overwrite_x, ...])</code></td>
<td>Compute the inverse FFT of a signal that has Hermitian symmetry.</td>
</tr>
<tr>
<td><code>hfft2(x[, s, axes, norm, overwrite_x, ...])</code></td>
<td>Compute the 2-D FFT of a Hermitian complex array.</td>
</tr>
<tr>
<td><code>ihfft2(x[, s, axes, norm, overwrite_x, ...])</code></td>
<td>Compute the 2-D inverse FFT of a real spectrum.</td>
</tr>
<tr>
<td><code>hfftn(x[, s, axes, norm, overwrite_x, ...])</code></td>
<td>Compute the N-D FFT of Hermitian symmetric complex input, i.e., a signal with a real spectrum.</td>
</tr>
<tr>
<td><code>ihfftn(x[, s, axes, norm, overwrite_x, ...])</code></td>
<td>Compute the N-D inverse discrete Fourier Transform for a real spectrum.</td>
</tr>
</tbody>
</table>

scipy.fft.fft

The function computes the 1-D $n$-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm [1].

**Parameters**

- **x** [array_like] Input array, can be complex.
- **n** [int, optional] Length of the transformed axis of the output. If $n$ is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If $n$ is not given, the length of the input along the axis specified by `axis` is used.
- **axis** [int, optional] Axis over which to compute the FFT. If not given, the last axis is used.
norm [[“backward”, “ortho”, “forward”], optional] Normalization mode. Default is “backward”, meaning no normalization on the forward transforms and scaling by $1/n$ on the ifft. “forward” instead applies the $1/n$ factor on the forward transform. For norm="ortho", both directions are scaled by $1/\sqrt{n}$.

New in version 1.6.0: norm={"forward", "backward"} options were added

overwrite_x [bool, optional] If True, the contents of x can be destroyed; the default is False. See the notes below for more details.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from os.cpu_count(). See below for more details.

plan [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy.

New in version 1.5.0.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated by axis, or the last one if axis is not specified.

Raises

IndexError

if axes is larger than the last axis of x.

See also:

ifft

The inverse of fft.

fft2

The 2-D FFT.

fftn

The N-D FFT.

rfftn

The N-D FFT of real input.

fftfreq

Frequency bins for given FFT parameters.

next_fast_len

Size to pad input to for most efficient transforms

Notes

FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently, by using symmetries in the calculated terms. The symmetry is highest when $n$ is a power of 2, and the transform is therefore most efficient for these sizes. For poorly factorizable sizes, scipy.fft uses Bluestein's algorithm [2] and so is never worse than $O(n \log n)$. Further performance improvements may be seen by zero-padding the input using next_fast_len.

If $x$ is a 1d array, then the fft is equivalent to

$$y[k] = \text{np.sum}(x * \text{np.exp}(-2j * \text{np.pi} * k * \text{np.arange}(n)/n))$$
The frequency term $f = k/n$ is found at $y[k]$. At $y[n/2]$ we reach the Nyquist frequency and wrap around to the negative-frequency terms. So, for an 8-point transform, the frequencies of the result are $[0, 1, 2, 3, -4, -3, -2, -1]$. To rearrange the fft output so that the zero-frequency component is centered, like $[-4, -3, -2, -1, 0, 1, 2, 3]$, use `fftshift`.

Transforms can be done in single, double, or extended precision (long double) floating point. Half precision inputs will be converted to single precision and non-floating-point inputs will be converted to double precision.

If the data type of $x$ is real, a “real FFT” algorithm is automatically used, which roughly halves the computation time. To increase efficiency a little further, use `rfft`, which does the same calculation, but only outputs half of the symmetrical spectrum. If the data are both real and symmetrical, the `dct` can again double the efficiency, by generating half of the spectrum from half of the signal.

When `overwrite_x=True` is specified, the memory referenced by $x$ may be used by the implementation in any way. This may include reusing the memory for the result, but this is in no way guaranteed. You should not rely on the contents of $x$ after the transform as this may change in future without warning.

The `workers` argument specifies the maximum number of parallel jobs to split the FFT computation into. This will execute independent 1-D FFTs within $x$. So, $x$ must be at least 2-D and the non-transformed axes must be large enough to split into chunks. If $x$ is too small, fewer jobs may be used than requested.

**References**

[1], [2]

**Examples**

```python
>>> import scipy.fftp
>>> scipy.fftp.fft(np.exp(2j * np.pi * np.arange(8) / 8))
array([-2.33486982e-16+1.14423775e-17j, 8.00000000e+00-1.25557246e-15j,
 2.33486982e-16+2.33486982e-16j, 0.00000000e+00+1.22464680e-16j,
 -1.14423775e-17+2.33486982e-16j, 0.00000000e+00+5.20784380e-16j,
 1.14423775e-17+1.14423775e-17j, 0.00000000e+00+1.22464680e-16j])
```

In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in the imaginary part:

```python
>>> from scipy.fft import fft, fftfreq, fftshift
>>> import matplotlib.pyplot as plt
>>> t = np.arange(256)
>>> sp = fftshift(fft(np.sin(t)))
>>> freq = fftfreq(t.shape[-1])
>>> plt.plot(freq, sp.real, freq, sp.imag)
[<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D...
>>> plt.show()
```
scipy.fft.ifft

scipy.fft.ifft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *, plan=None)

Compute the 1-D inverse discrete Fourier Transform.

This function computes the inverse of the 1-D n-point discrete Fourier transform computed by \textit{fft}. In other words, \textit{ifft}(\textit{fft}(x)) == x to within numerical accuracy.

The input should be ordered in the same way as is returned by \textit{fft}, i.e.,

- \( x[0] \) should contain the zero frequency term,
- \( x[1:n//2] \) should contain the positive-frequency terms,
- \( x[n//2 + 1:] \) should contain the negative-frequency terms, in increasing order starting from the most negative frequency.

For an even number of input points, \( x[n//2] \) represents the sum of the values at the positive and negative Nyquist frequencies, as the two are aliased together. See \textit{fft} for details.

Parameters

\( x \) [array_like] Input array, can be complex.
\( n \) [int, optional] Length of the transformed axis of the output. If \( n \) is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If \( n \) is not given, the length of the input along the axis specified by \( axis \) is used. See notes about padding issues.
\( axis \) [int, optional] Axis over which to compute the inverse DFT. If not given, the last axis is used.
\( norm \) [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see \textit{fft}). Default is “backward”.
\( overwrite_x \) [bool, optional] If True, the contents of \( x \) can be destroyed; the default is False. See \textit{fft} for more details.
\( workers \) [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from \textit{os.cpu_count()}. See \textit{fft} for more details.
\( plan \) [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy.

New in version 1.5.0.
**Returns**

- `out` [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified.

**Raises**

- `IndexError` If `axes` is larger than the last axis of `x`.

**See also:**

- `fft`
  - The 1-D (forward) FFT, of which `ifft` is the inverse.

- `ifft2`
  - The 2-D inverse FFT.

- `ifftn`
  - The N-D inverse FFT.

**Notes**

If the input parameter `n` is larger than the size of the input, the input is padded by appending zeros at the end. Even though this is the common approach, it might lead to surprising results. If a different padding is desired, it must be performed before calling `ifft`.

If `x` is a 1-D array, then the `ifft` is equivalent to

\[
y[k] = \frac{\text{np.sum}(x \times \text{np.exp}(2j \times \text{np.pi} \times k \times \text{np.arange}(n)/n))}{\text{len}(x)}
\]

As with `fft`, `ifft` has support for all floating point types and is optimized for real input.

**Examples**

```python
>>> import scipy.fft
>>> scipy.fft.ifft([0, 4, 0, 0])
array([1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) # may vary
```

Create and plot a band-limited signal with random phases:

```python
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> t = np.arange(400)
>>> n = np.zeros((400,), dtype=complex)
>>> n[40:60] = np.exp(1j*rng.uniform(0, 2*np.pi, (20,)))
>>> s = scipy.fft.ifft(n)
>>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--')
[<matplotlib.lines.Line2D object at ...>, <matplotlib.lines.Line2D object at ...>]
>>> plt.legend(('real', 'imaginary'))
<matplotlib.legend.Legend object at ...>
>>> plt.show()
```

scipy.fft.fft2

scipy.fft.fft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, *, plan=None)

Compute the 2-D discrete Fourier Transform

This function computes the N-D discrete Fourier Transform over any axes in an M-D array by means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of the input array, i.e., a 2-dimensional FFT.

Parameters

- **x** [array_like] Input array, can be complex
- **s** [sequence of ints, optional] Shape (length of each transformed axis) of the output (s[0] refers to axis 0, s[1] to axis 1, etc.). This corresponds to n for fft(x, n). Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if s is not given, the shape of the input along the axes specified by axes is used.
- **axes** [sequence of ints, optional] Axes over which to compute the FFT. If not given, the last two axes are used.
- **norm** [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see fft). Default is “backward”.
- **overwrite_x** [bool, optional] If True, the contents of x can be destroyed; the default is False. See fft for more details.
- **workers** [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from os.cpu_count(). See fft for more details.
- **plan** [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy. New in version 1.5.0.

Returns

- **out** [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated by axes, or the last two axes if axes is not given.

Raises

ValueError
If \( s \) and \( axes \) have different length, or \( axes \) not given and \( \text{len}(s) \neq 2 \).

**IndexError**
If an element of \( axes \) is larger than than the number of axes of \( x \).

See also:

**ifft2**
The inverse 2-D FFT.

**fft**
The 1-D FFT.

**fftn**
The N-D FFT.

**fftsift**
Shifts zero-frequency terms to the center of the array. For 2-D input, swaps first and third quadrants, and second and fourth quadrants.

**Notes**

**fft2** is just **fftn** with a different default for \( axes \).

The output, analogously to **fft**, contains the term for zero frequency in the low-order corner of the transformed axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative frequency.

See **fftn** for details and a plotting example, and **fft** for definitions and conventions used.

**Examples**

```python
>>> import scipy.fft
>>> x = np.mgrid[:5, :5][0]
>>> scipy.fft.fft2(x)
array([[50. +0.j , 0. +0.j , 0. +0.j , # may vary
 0. +0.j , 0. +0.j],
 [-12.5+17.20477401j, 0. +0.j , 0. +0.j ,
 0. +0.j , 0. +0.j],
 [-12.5+4.0614962j , 0. +0.j , 0. +0.j ,
 0. +0.j , 0. +0.j],
 [-12.5-4.0614962j , 0. +0.j , 0. +0.j ,
 0. +0.j , 0. +0.j],
 [-12.5-17.20477401j, 0. +0.j , 0. +0.j ,
 0. +0.j , 0. +0.j]])
```
scipy.fft.ifft2

scipy.fft.ifft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, *, plan=None)

Compute the 2-D inverse discrete Fourier Transform.

This function computes the inverse of the 2-D discrete Fourier Transform over any number of axes in an M-D array by means of the Fast Fourier Transform (FFT). In other words, ifft2(fft2(x)) == x to within numerical accuracy. By default, the inverse transform is computed over the last two axes of the input array.

The input, analogously to ifft, should be ordered in the same way as is returned by fft2, i.e., it should have the term for zero frequency in the low-order corner of the two axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of both axes, in order of decreasingly negative frequency.

Parameters

- **x** [array_like] Input array, can be complex.
- **s** [sequence of ints, optional] Shape (length of each axis) of the output (s[0] refers to axis 0, s[1] to axis 1, etc.). This corresponds to n for ifft(x, n). Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. If s is not given, the shape of the input along the axes specified by axes is used. See notes for issue on ifft zero padding.
- **axes** [sequence of ints, optional] Axes over which to compute the FFT. If not given, the last two axes are used.
- **norm** [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see fft). Default is “backward”.
- **overwrite_x** [bool, optional] If True, the contents of x can be destroyed; the default is False. See fft for more details.
- **workers** [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from os.cpu_count(). See fft for more details.
- **plan** [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy. New in version 1.5.0.

Returns

- **out** [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated by axes, or the last two axes if axes is not given.

Raises

- **ValueError** If s and axes have different length, or axes not given and len(s) != 2.
- **IndexError** If an element of axes is larger than than the number of axes of x.

See also:

- **fft2**
  The forward 2-D FFT, of which ifft2 is the inverse.
- **ifftn**
  The inverse of the N-D FFT.
- **fft**
  The 1-D FFT.
**ifft**

The 1-D inverse FFT.

**Notes**

`ifft2` is just `fftn` with a different default for `axes`.

See `fftn` for details and a plotting example, and `fft` for definition and conventions used.

Zero-padding, analogously with `ifft`, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before `ifft2` is called.

**Examples**

```python
>>> import scipy.fft
>>> x = 4 * np.eye(4)
>>> scipy.fft.ifft2(x)
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
 [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
 [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])
```

**scipy.fftn**

`scipy.fft.fftn` computes the N-D discrete Fourier Transform over any number of axes in an M-D array by means of the Fast Fourier Transform (FFT).

This function computes the N-D discrete Fourier Transform over any number of axes in an M-D array by means of the Fast Fourier Transform (FFT).

**Parameters**

- **x** [array_like] Input array, can be complex.
- **s** [sequence of ints, optional] Shape (length of each transformed axis) of the output (s[0] refers to axis 0, s[1] to axis 1, etc.). This corresponds to n for `fftn(x, n)`. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. If s is not given, the shape of the input along the axes specified by axes is used.
- **axes** [sequence of ints, optional] Axes over which to compute the FFT. If not given, the last len(s) axes are used, or all axes if s is also not specified.
- **norm** [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see `fft`). Default is “backward”.
- **overwrite_x** [bool, optional] If True, the contents of x can be destroyed; the default is False. See `fft` for more details.
- **workers** [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from `os.cpu_count()`. See `fft` for more details.
- **plan** [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy.

**Returns**
out  [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated by axes, or by a combination of s and x, as explained in the parameters section above.

Raises

ValueError
If s and axes have different length.

IndexError
If an element of axes is larger than than the number of axes of x.

See also:

ifftn
The inverse of fftn, the inverse N-D FFT.

fft
The 1-D FFT, with definitions and conventions used.

rfftn
The N-D FFT of real input.

fft2
The 2-D FFT.

fftshift
Shifts zero-frequency terms to centre of array.

Notes

The output, analogously to fft, contains the term for zero frequency in the low-order corner of all axes, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency.

Examples

```python
>>> import scipy.fft
>>> x = np.mgrid[:3, :3, :3][0]
>>> scipy.fft.fftn(x, axes=(1, 2))
array([[0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j],
 [9.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j],
 [18.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j]]))
>>> scipy.fft.fftn(x, (2, 2), axes=(0, 1))
array([[2.+0.j, 2.+0.j, 2.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j],
 [-2.+0.j, -2.+0.j, -2.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j]]))
```
```python
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12,
... 2 * np.pi * np.arange(200) / 34)
>>> S = np.sin(X) + np.cos(Y) + rng.uniform(0, 1, X.shape)
>>> FS = scipy.fft.fftn(S)
>>> plt.imshow(np.log(np.abs(scipy.fft.fftshift(FS))**2))
<matplotlib.image.AxesImage object at 0x...>
>>> plt.show()
```


**scipy.fft.ifftn**

`scipy.fft.ifftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *, plan=None)`

Compute the N-D inverse discrete Fourier Transform.

This function computes the inverse of the N-D discrete Fourier Transform over any number of axes in an M-D array by means of the Fast Fourier Transform (FFT). In other words, `ifftn(fftn(x)) == x` to within numerical accuracy.

The input, analogously to `ifft`, should be ordered in the same way as is returned by `fftn`, i.e., it should have the term for zero frequency in all axes in the low-order corner, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency.

**Parameters**

- `x` [array_like] Input array, can be complex.
- `s` [sequence of ints, optional] Shape (length of each transformed axis) of the output. `s[0]` refers to axis 0, `s[1]` to axis 1, etc.). This corresponds to `n` for `ifft(x, n)`. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. If `s` is not given, the shape of the input along the axes specified by `axes` is used. See notes for issue on `ifft` zero padding.
- `axes` [sequence of ints, optional] Axes over which to compute the IFFT. If not given, the last `len(s)` axes are used, or all axes if `s` is also not specified.
- `norm` [“backward”, “ortho”, “forward”), optional] Normalization mode (see `fft`). Default is “backward”.

---

384  Chapter 3. SciPy API
overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False. See `fft` for more details.

workers

[int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from `os.cpu_count()`. See `fft` for more details.

plan

[object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy. New in version 1.5.0.

Returns

out

[complex ndarray] The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` or `x`, as explained in the parameters section above.

Raises

ValueError

If `s` and `axes` have different length.

IndexError

If an element of `axes` is larger than than the number of axes of `x`.

See also:

`fftn`

The forward N-D FFT, of which `ifftn` is the inverse.

`ifft`

The 1-D inverse FFT.

`ifft2`

The 2-D inverse FFT.

`ifftshift`

Undoes `fftshift`, shifts zero-frequency terms to beginning of array.

Notes

Zero-padding, analogously with `ifft`, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before `ifftn` is called.

Examples

```python
>>> import scipy.fft
>>> x = np.eye(4)
>>> scipy.fft.ifftn(scipy.fft.fftn(x, axes=(0,)), axes=(1,))
tomake vary
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])
```

Create and plot an image with band-limited frequency content:
```python
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> n = np.zeros((200, 200), dtype=complex)
>>> n[60:80, 20:40] = np.exp(1j*rng.uniform(0, 2*np.pi, (20, 20)))
>>> im = scipy.fft.ifftn(n).real
>>> plt.imshow(im)
<matplotlib.image.AxesImage object at 0x...>
>>> plt.show()
```

### scipy.fft.rfft

`scipy.fft.rfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *, plan=None)`

Compute the 1-D discrete Fourier Transform for real input.

This function computes the 1-D $n$-point discrete Fourier Transform (DFT) of a real-valued array by means of an efficient algorithm called the Fast Fourier Transform (FFT).

**Parameters**

- **x** [array_like] Input array
- **n** [int, optional] Number of points along transformation axis in the input to use. If $n$ is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If $n$ is not given, the length of the input along the axis specified by `axis` is used.
- **axis** [int, optional] Axis over which to compute the FFT. If not given, the last axis is used.
- **norm** [{'backward', 'ortho', 'forward'}, optional] Normalization mode (see `fft`). Default is "backward".
- **overwrite_x** [bool, optional] If True, the contents of $x$ can be destroyed; the default is False. See `fft` for more details.
- **workers** [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from `os.cpu_count()`. See `fft` for more details.
- **plan** [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy. New in version 1.5.0.

**Returns**
out [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated by axis, or the last one if axis is not specified. If $n$ is even, the length of the transformed axis is $(n/2)+1$. If $n$ is odd, the length is $(n+1)/2$.

Raises

IndexError

If axis is larger than the last axis of $a$.

See also:

irfft

The inverse of rfft.

fft

The 1-D FFT of general (complex) input.

fftn

The N-D FFT.

rfft2

The 2-D FFT of real input.

rfftn

The N-D FFT of real input.

Notes

When the DFT is computed for purely real input, the output is Hermitian-symmetric, i.e., the negative frequency terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency terms are therefore redundant. This function does not compute the negative frequency terms, and the length of the transformed axis of the output is therefore $n//2 + 1$.

When $X = \text{rfft}(x)$ and $fs$ is the sampling frequency, $X[0]$ contains the zero-frequency term $0*fs$, which is real due to Hermitian symmetry.

If $n$ is even, $A[-1]$ contains the term representing both positive and negative Nyquist frequency ($+fs/2$ and $-fs/2$), and must also be purely real. If $n$ is odd, there is no term at $fs/2$; $A[-1]$ contains the largest positive frequency ($fs/2*(n-1)/n$), and is complex in the general case.

If the input $a$ contains an imaginary part, it is silently discarded.

Examples

```python
>>> import scipy.fft
>>> scipy.fft.fft([0, 1, 0, 0])
array([1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) # may vary
>>> scipy.fft.rfft([0, 1, 0, 0])
array([1.+0.j, 0.-1.j, -1.+0.j]) # may vary
```

Notice how the final element of the fft output is the complex conjugate of the second element, for real input. For rfft, this symmetry is exploited to compute only the non-negative frequency terms.
**scipy.fft.irfft**

`scipy.fft.irfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *, plan=None)`

Computes the inverse of `rfft`.

This function computes the inverse of the 1-D $n$-point discrete Fourier Transform of real input computed by `rfft`. In other words, $\text{irfft}(\text{rfft}(x), \text{len}(x)) = x$ to within numerical accuracy. (See Notes below for why `len(a)` is necessary here.)

The input is expected to be in the form returned by `rfft`, i.e., the real zero-frequency term followed by the complex positive frequency terms in order of increasing frequency. Since the discrete Fourier Transform of real input is Hermitian-symmetric, the negative frequency terms are taken to be the complex conjugates of the corresponding positive frequency terms.

**Parameters**

- `x` [array_like] The input array.
- `n` [int, optional] Length of the transformed axis of the output. For $n$ output points, $n/2+1$ input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If $n$ is not given, it is taken to be $2 \times (m-1)$, where $m$ is the length of the input along the axis specified by `axis`.
- `axis` [int, optional] Axis over which to compute the inverse FFT. If not given, the last axis is used.
- `norm` [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see `fft`). Default is “backward”.
- `overwrite_x` [bool, optional] If True, the contents of $x$ can be destroyed; the default is False. See `fft` for more details.
- `workers` [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from `os.cpu_count()`. See `fft` for more details.
- `plan` [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy. New in version 1.5.0.

**Returns**

- `out` [ndarray] The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is $n$, or, if $n$ is not given, $2 \times (m-1)$ where $m$ is the length of the transformed axis of the input. To get an odd number of output points, $n$ must be specified.

**Raises**

- `IndexError` If `axis` is larger than the last axis of $x$.

See also:

- `rfft` The 1-D FFT of real input, of which `irfft` is inverse.
- `fft` The 1-D FFT.
- `irfft2` The inverse of the 2-D FFT of real input.
- `irfftn` The inverse of the N-D FFT of real input.
Notes

Returns the real valued $n$-point inverse discrete Fourier transform of $x$, where $x$ contains the non-negative frequency terms of a Hermitian-symmetric sequence. $n$ is the length of the result, not the input.

If you specify an $n$ such that $a$ must be zero-padded or truncated, the extra/removed values will be added/removed at high frequencies. One can thus resample a series to $m$ points via Fourier interpolation by: $a_{\text{resamp}} = \text{irfft}(\text{rfft}(a), m)$.

The default value of $n$ assumes an even output length. By the Hermitian symmetry, the last imaginary component must be 0 and so is ignored. To avoid losing information, the correct length of the real input must be given.

Examples

```python
>>> import scipy.fft
>>> scipy.fft.ifft([1, -1j, -1, 1j])
array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) # may vary
>>> scipy.fft.irfft([1, -1j, -1])
array([0., 1., 0., 0.])
```

Notice how the last term in the input to the ordinary `ifft` is the complex conjugate of the second term, and the output has zero imaginary part everywhere. When calling `irfft`, the negative frequencies are not specified, and the output array is purely real.

`scipy.fft.rfft2`

`scipy.fft.rfft2` ($x$, $s$=None, $axes$=(-2, -1), $norm$=None, $overwrite_x$=False, $workers$=None, *, $plan$=None)

Compute the 2-D FFT of a real array.

Parameters

- $x$ [array] Input array, taken to be real.
- $s$ [sequence of ints, optional] Shape of the FFT.
- $axes$ [sequence of ints, optional] Axes over which to compute the FFT.
- $norm$ ["backward", "ortho", "forward"], optional] Normalization mode (see `fft`). Default is “backward”.
- $overwrite_x$ [bool, optional] If True, the contents of $x$ can be destroyed; the default is False. See `fft` for more details.
- $workers$ [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from `os.cpu_count()`. See `fft` for more details.
- $plan$ [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy. New in version 1.5.0.

Returns

- $out$ [ndarray] The result of the real 2-D FFT.

See also:

- `irfft2`
  The inverse of the 2-D FFT of real input.
- `rfft`
  The 1-D FFT of real input.
rfftn

Compute the N-D discrete Fourier Transform for real input.

Notes

This is really just \texttt{rfftn} with different default behavior. For more details see \texttt{rfftn}.

\texttt{scipy.fft.irfft2}

\texttt{scipy.fft.irfft2}(x, s=None, axes=(- 2, - 1), norm=None, overwrite_x=False, workers=None, *, plan=None)

Computes the inverse of \texttt{rfft2}

Parameters

\begin{itemize}
\item \texttt{x} [array_like] The input array
\item \texttt{s} [sequence of ints, optional] Shape of the real output to the inverse FFT.
\item \texttt{axes} [sequence of ints, optional] The axes over which to compute the inverse fft. Default is the last two axes.
\item \texttt{norm} [\{“backward”, “ortho”, “forward”\}, optional] Normalization mode (see \texttt{fft}). Default is “backward”.
\item \texttt{overwrite_x} [bool, optional] If True, the contents of \texttt{x} can be destroyed; the default is False. See \texttt{fft} for more details.
\item \texttt{workers} [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from \texttt{os.cpu_count()}. See \texttt{fft} for more details.
\item \texttt{plan} [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy. New in version 1.5.0.
\end{itemize}

Returns

\begin{itemize}
\item \texttt{out} [ndarray] The result of the inverse real 2-D FFT.
\end{itemize}

See also:

\begin{itemize}
\item \texttt{rfft2} The 2-D FFT of real input.
\item \texttt{irfft} The inverse of the 1-D FFT of real input.
\item \texttt{irfftn} The inverse of the N-D FFT of real input.
\end{itemize}

Notes

This is really \texttt{irfftn} with different defaults. For more details see \texttt{irfftn}.
scipy.fft.rfftn

scipy.fft.rfftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *, plan=None)

Compute the N-D discrete Fourier Transform for real input.

This function computes the N-D discrete Fourier Transform over any number of axes in an M-D real array by means of the Fast Fourier Transform (FFT). By default, all axes are transformed, with the real transform performed over the last axis, while the remaining transforms are complex.

Parameters

- **x** [array_like] Input array, taken to be real.
- **s** [sequence of ints, optional] Shape (length along each transformed axis) to use from the input. (s[0] refers to axis 0, s[1] to axis 1, etc.). The final element of s corresponds to n for rfft(x, n), while for the remaining axes, it corresponds to n for fft(x, n). Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. If s is not given, the shape of the input along the axes specified by axes is used.
- **axes** [sequence of ints, optional] Axes over which to compute the FFT. If not given, the last len(s) axes are used, or all axes if s is also not specified.
- **norm** [“backward”, “ortho”, “forward”, optional] Normalization mode (see fft). Default is “backward”.
- **overwrite_x** [bool, optional] If True, the contents of x can be destroyed; the default is False. See fft for more details.
- **workers** [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from os.cpu_count(). See fft for more details.
- **plan** [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy. New in version 1.5.0.

Returns

- **out** [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated by axes, or by a combination of s and x, as explained in the parameters section above. The length of the last axis transformed will be s[-1]//2+1, while the remaining transformed axes will have lengths according to s, or unchanged from the input.

Raises

- **ValueError** If s and axes have different length.
- **IndexError** If an element of axes is larger than than the number of axes of x.

See also:

- **irfftn**
  The inverse of rfftn, i.e., the inverse of the N-D FFT of real input.
- **fft**
  The 1-D FFT, with definitions and conventions used.
- **rfft**
  The 1-D FFT of real input.
- **fftn**
  The N-D FFT.
**rfft2**

The 2-D FFT of real input.

**Notes**

The transform for real input is performed over the last transformation axis, as by `rfft`, then the transform over the remaining axes is performed as by `fftn`. The order of the output is as for `rfft` for the final transformation axis, and as for `fftn` for the remaining transformation axes.

See `fft` for details, definitions and conventions used.

**Examples**

```python
>>> import scipy.fft
>>> x = np.ones((2, 2, 2))
>>> scipy.fft.rfftn(x)
array([[[[8.+0.j, 0.+0.j], # may vary
 [0.+0.j, 0.+0.j]],
 [[0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j]]]])
```

```python
>>> scipy.fft.rfftn(x, axes=(2, 0))
array([[[[4.+0.j, 0.+0.j], # may vary
 [4.+0.j, 0.+0.j]],
 [[0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j]]]])
```

**scipy.fft.irfftn**

*scipy.fft.irfftn*(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *, plan=None)

Computes the inverse of `rfftn`

This function computes the inverse of the N-D discrete Fourier Transform for real input over any number of axes in an M-D array by means of the Fast Fourier Transform (FFT). In other words, `irfftn(rfftn(x), x.shape) == x` to within numerical accuracy. (The `a.shape` is necessary like `len(a)` is for `irfft`, and for the same reason.)

The input should be ordered in the same way as is returned by `rfftn`, i.e., as for `irfft` for the final transformation axis, and as for `ifftn` along all the other axes.

**Parameters**

- `x` [array_like] Input array.
- `s` [sequence of ints, optional] Shape (length of each transformed axis) of the output (s[0] refers to axis 0, s[1] to axis 1, etc.). s is also the number of input points used along this axis, except for the last axis, where s[-1]/2+1 points of the input are used. Along any axis, if the shape indicated by s is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. If s is not given, the shape of the input along the axes specified by axes is used. Except for the last axis which is taken to be 2*(m-1), where m is the length of the input along that axis.
- `axes` [sequence of ints, optional] Axes over which to compute the inverse FFT. If not given, the last `len(s)` axes are used, or all axes if s is also not specified.
- `norm` [“backward”, “ortho”, “forward”), optional] Normalization mode (see `fft`). Default is “backward”.

392 Chapter 3. SciPy API
overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False. See fft for more details.

workers
[int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from os.cpu_count(). See fft for more details.

plan
[object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy.
New in version 1.5.0.

Returns
out
[ndarray] The truncated or zero-padded input, transformed along the axes indicated by axes, or by a combination of s or x, as explained in the parameters section above. The length of each transformed axis is as given by the corresponding element of s, or the length of the input in every axis except for the last one if s is not given. In the final transformed axis the length of the output when s is not given is $2^*(m-1)$, where m is the length of the final transformed axis of the input. To get an odd number of output points in the final axis, s must be specified.

Raises
ValueError
  If s and axes have different length.

IndexError
  If an element of axes is larger than the number of axes of x.

See also:
rfftn
  The forward N-D FFT of real input, of which ifftn is the inverse.

fft
  The 1-D FFT, with definitions and conventions used.

irfft
  The inverse of the 1-D FFT of real input.

irfft2
  The inverse of the 2-D FFT of real input.

Notes
See fft for definitions and conventions used.
See rfft for definitions and conventions used for real input.

The default value of s assumes an even output length in the final transformation axis. When performing the final complex to real transformation, the Hermitian symmetry requires that the last imaginary component along that axis must be 0 and so it is ignored. To avoid losing information, the correct length of the real input must be given.
Examples

```python
>>> import scipy.fft
>>> x = np.zeros((3, 2, 2))
>>> x[0, 0, 0] = 3 * 2 * 2
>>> scipy.fft.irfftn(x)
array([[[[1., 1.],
 [1., 1.]],
 [[1., 1.],
 [1., 1.]],
 [[1., 1.],
 [1., 1.]]]])
```

scipy.fft.hfft

**scipy.fft.hfft** *(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *, plan=None)*

Compute the FFT of a signal that has Hermitian symmetry, i.e., a real spectrum.

**Parameters**

- `x`  
  [array_like] The input array.

- `n`  
  [int, optional] Length of the transformed axis of the output. For `n` output points, `n//2 + 1` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is taken to be `2*(m-1)`, where `m` is the length of the input along the axis specified by `axis`.

- `axis`  
  [int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

- `norm`  
  [“backward”, “ortho”, “forward”, optional] Normalization mode (see `fft`). Default is “backward”.

- `overwrite_x`  
  [bool, optional] If True, the contents of `x` can be destroyed; the default is False. See `fft` for more details.

- `workers`  
  [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from `os.cpu_count()`. See `fft` for more details.

- `plan`  
  [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy.

**Returns**

- `out`  
  [ndarray] The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, `2*m - 2`, where `m` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified, for instance, as `2*m - 1` in the typical case.

**Raises**

- `IndexError`  
  If `axis` is larger than the last axis of `a`.

**See also:**

- `rfft`
  Compute the 1-D FFT for real input.

- `ihfft`
  The inverse of `hfft`.
hfftn

Compute the N-D FFT of a Hermitian signal.

Notes

*hfft/*ihfft* are a pair analogous to *rfft/*irfft*, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So, here, it’s *hfft*, for which you must supply the length of the result if it is to be odd. * even: ihfft(hfft(a, 2*len(a) - 2) == a, within roundoff error,* odd: ihfft(hfft(a, 2*len(a) - 1) == a, within roundoff error.

Examples

```python
>>> from scipy.fft import fft, hfft
>>> a = 2 * np.pi * np.arange(10) / 10
>>> signal = np.cos(a) + 3j * np.sin(3 * a)
>>> fft(signal).round(10)
array([-0.+0.j, 5.+0.j, -0.+0.j, 15.-0.j, 0.+0.j, 0.+0.j,
 -0.+0.j, -15.-0.j, 0.+0.j, 5.+0.j])
>>> hfft(signal[:6]).round(10) # Input first half of signal
array([0., 5., 0., 15., -0., 0., -15., -0., 5.])
>>> hfft(signal, 10) # Input entire signal and truncate
array([0., 5., 0., 15., -0., 0., -15., -0., 5.])
```

scipy.fft.ihfft

*scipy.fft.ihfft* (*x*, *n=None*, *axis=-1*, *norm=None*, *overwrite_x=False*, *workers=None*, *plan=None*)

Compute the inverse FFT of a signal that has Hermitian symmetry.

**Parameters**

- **x** : [array_like] Input array.
- **n** : [int, optional] Length of the inverse FFT, the number of points along transformation axis in the input to use. If *n* is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If *n* is not given, the length of the input along the axis specified by *axis* is used.
- **axis** : [int, optional] Axis over which to compute the inverse FFT. If not given, the last axis is used.
- **norm** : [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see *fft*). Default is “backward”.
- **overwrite_x** : [bool, optional] If True, the contents of *x* can be destroyed; the default is False. See *fft* for more details.
- **workers** : [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from *os.cpu_count()* See *fft* for more details.
- **plan** : [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy. New in version 1.5.0.

**Returns**

- **out** : [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated by *axis*, or the last one if *axis* is not specified. The length of the transformed axis is *n*/2 + 1.

See also:
**hfft, irfft**

**Notes**

**hfft/ihfft** are a pair analogous to **rfft/irfft**, but for the opposite case: here, the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So, here, it's **hfft**, for which you must supply the length of the result if it is to be odd: *even*: \( \text{ihfft}(\text{hfft}(a, 2*\text{len}(a) - 2)) = a \), within roundoff error, *odd*: \( \text{ihfft}(\text{hfft}(a, 2*\text{len}(a) - 1)) = a \), within roundoff error.

**Examples**

```python
>>> from scipy.fft import ifft, hfft
>>> spectrum = np.array([15, -4, 0, -1, 0, -4])
>>> ifft(spectrum)
array([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.+0.j]) # may vary
>>> ihfft(spectrum)
array([1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) # may vary
```

**scipy.fft.hfft2**

Compute the 2-D FFT of a Hermitian complex array.

**Parameters**

- **x**: [array] Input array, taken to be Hermitian complex.
- **s**: [sequence of ints, optional] Shape of the real output.
- **axes**: [sequence of ints, optional] Axes over which to compute the FFT.
- **norm**: [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see **fft**). Default is “backward”.
- **overwrite_x**: [bool, optional] If True, the contents of \( x \) can be destroyed; the default is False. See **fft** for more details.
- **workers**: [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from \( \text{os.cpu_count()} \). See **fft** for more details.
- **plan**: [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy. New in version 1.5.0.

**Returns**

- **out**: [ndarray] The real result of the 2-D Hermitian complex real FFT.

**See also:**

**hfftn**

Compute the N-D discrete Fourier Transform for Hermitian complex input.
Notes

This is really just `hfftn` with different default behavior. For more details see `hfftn`.

`scipy.fft.ihfft2`

`scipy.fft.ihfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, *, plan=None)`

Compute the 2-D inverse FFT of a real spectrum.

**Parameters**

- `x` [array_like] The input array.
- `s` [sequence of ints, optional] Shape of the real input to the inverse FFT.
- `axes` [sequence of ints, optional] The axes over which to compute the inverse fft. Default is the last two axes.
- `norm` [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see `fft`). Default is “backward”.
- `overwrite_x` [bool, optional] If True, the contents of `x` can be destroyed; the default is False. See `fft` for more details.
- `workers` [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from `os.cpu_count()`. See `fft` for more details.
- `plan` [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy. New in version 1.5.0.

**Returns**

- `out` [ndarray] The result of the inverse real 2-D FFT.

See also:

`ihfftn`

Compute the inverse of the N-D FFT of Hermitian input.

Notes

This is really `ihfftn` with different defaults. For more details see `ihfftn`.

`scipy.fft.hfftn`

`scipy.fft.hfftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *, plan=None)`

Compute the N-D FFT of Hermitian symmetric complex input, i.e., a signal with a real spectrum.

This function computes the N-D discrete Fourier Transform for a Hermitian symmetric complex input over any number of axes in an M-D array by means of the Fast Fourier Transform (FFT). In other words, `ihfftn(hfftn(x, s)) == x` to within numerical accuracy. (`s` here is `x.shape` with `s[-1] = x.shape[-1] * 2 - 1`, this is necessary for the same reason `x.shape` would be necessary for `irfft`.)

**Parameters**

- `x` [array_like] Input array.
- `s` [sequence of ints, optional] Shape (length of each transformed axis) of the output (`s[0]` refers to axis 0, `s[1]` to axis 1, etc.). `s` is also the number of input points used along this axis, except for the last axis, where `s[-1]//2+1` points of the input are used. Along any axis, if the shape indicated by `s` is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. If `s` is not given, the shape of the input along the axes
specified by axes is used. Except for the last axis which is taken to be \(2^{*} (m-1)\) where \(m\) is the length of the input along that axis.

- **axes**
  [sequence of ints, optional] Axes over which to compute the inverse FFT. If not given, the last \(\text{len}(s)\) axes are used, or all axes if \(s\) is also not specified.

- **norm**
  [\{“backward”, “ortho”, “forward”\}, optional] Normalization mode (see \(\text{fft}\)). Default is “backward”.

- **overwrite_x**
  [bool, optional] If True, the contents of \(x\) can be destroyed; the default is False. See \(\text{fft}\) for more details.

- **workers**
  [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from \(\text{os.cpu_count()}\). See \(\text{fft}\) for more details.

- **plan**
  [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy.

New in version 1.5.0.

**Returns**

- **out**
  [ndarray] The truncated or zero-padded input, transformed along the axes indicated by \(axes\), or by a combination of \(s\) or \(x\), as explained in the parameters section above. The length of each transformed axis is as given by the corresponding element of \(s\), or the length of the input in every axis except for the last one if \(s\) is not given. In the final transformed axis the length of the output when \(s\) is not given is \(2^{*} (m-1)\) where \(m\) is the length of the final transformed axis of the input. To get an odd number of output points in the final axis, \(s\) must be specified.

**Raises**

- **ValueError**
  If \(s\) and \(axes\) have different length.

- **IndexError**
  If an element of \(axes\) is larger than the number of axes of \(x\).

**See also:**

- **ihfftn**
  The inverse N-D FFT with real spectrum. Inverse of \(hfftn\).

- **fft**
  The 1-D FFT, with definitions and conventions used.

- **rfft**
  Forward FFT of real input.

**Notes**

For a 1-D signal \(x\) to have a real spectrum, it must satisfy the Hermitian property:

\[
x[i] = np.conj(x[-i]) \quad \text{for all} \quad i
\]

This generalizes into higher dimensions by reflecting over each axis in turn:

\[
x[i, j, k, \ldots] = np.conj(x[-i, -j, -k, \ldots]) \quad \text{for all} \quad i, j, k, \ldots
\]

This should not be confused with a Hermitian matrix, for which the transpose is its own conjugate:

\[
x[i, j] = np.conj(x[j, i]) \quad \text{for all} \quad i, j
\]
The default value of \( s \) assumes an even output length in the final transformation axis. When performing the final complex to real transformation, the Hermitian symmetry requires that the last imaginary component along that axis must be 0 and so it is ignored. To avoid losing information, the correct length of the real input must be given.

**Examples**

```python
>>> import scipy.fft
>>> x = np.ones((3, 2, 2))
>>> scipy.fft.hfftn(x)
array([[12., 0.],
 [0., 0.],
 [0., 0.],
 [0., 0.],
 [0., 0.],
 [0., 0.]])
```

**scipy.fft.ihfftn**

`scipy.fft.ihfftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *, plan=None)`

Computes the N-D inverse discrete Fourier Transform for a real spectrum.

This function computes the N-D inverse discrete Fourier Transform over any number of axes in an M-D real array by means of the Fast Fourier Transform (FFT). By default, all axes are transformed, with the real transform performed over the last axis, while the remaining transforms are complex.

**Parameters**

- `x` [array_like] Input array, taken to be real.
- `s` [sequence of ints, optional] Shape (length along each transformed axis) to use from the input. (`s[0]` refers to axis 0, `s[1]` to axis 1, etc.). Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. If `s` is not given, the shape of the input along the axes specified by `axes` is used.
- `axes` [sequence of ints, optional] Axes over which to compute the FFT. If not given, the last `len(s)` axes are used, or all axes if `s` is also not specified.
- `norm` [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see `fft`). Default is “backward”.
- `overwrite_x` [bool, optional] If True, the contents of `x` can be destroyed; the default is False. See `fft` for more details.
- `workers` [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from `os.cpu_count()`. See `fft` for more details.
- `plan` [object, optional] This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy. New in version 1.5.0.

**Returns**

- `out` [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` and `x`, as explained in the parameters section above. The length of the last axis transformed will be `s[-1]//2+1`, while the remaining transformed axes will have lengths according to `s`, or unchanged from the input.

**Raises**

- `ValueError` If `s` and `axes` have different length.

3.3. API definition 399
If an element of `axes` is larger than the number of axes of `x`.

See also:

**hfftn**

The forward N-D FFT of Hermitian input.

**hfft**

The 1-D FFT of Hermitian input.

**fft**

The 1-D FFT, with definitions and conventions used.

**fftn**

The N-D FFT.

**hfft2**

The 2-D FFT of Hermitian input.

Notes

The transform for real input is performed over the last transformation axis, as by `ihfft`, then the transform over the remaining axes is performed as by `ifftn`. The order of the output is the positive part of the Hermitian output signal, in the same format as `rfft`.

Examples

```python
>>> import scipy.fft
>>> x = np.ones((2, 2, 2))
>>> scipy.fft.ihfftn(x)
array([[1.+0.j, 0.+0.j], # may vary
 [0.+0.j, 0.+0.j]],
 [[0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j]])
>>> scipy.fft.ihfftn(x, axes=(2, 0))
array([[1.+0.j, 0.+0.j], # may vary
 [1.+0.j, 0.+0.j]],
 [[0.+0.j, 0.+0.j],
 [0.+0.j, 0.+0.j]])
```

Discrete Sin and Cosine Transforms (DST and DCT)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dct(x[, type, n, axis, norm, overwrite_x, ...])</code></td>
<td>Return the Discrete Cosine Transform of arbitrary type sequence <code>x</code>.</td>
</tr>
<tr>
<td><code>idct(x[, type, n, axis, norm, overwrite_x, ...])</code></td>
<td>Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.</td>
</tr>
<tr>
<td><code>dctn(x[, type, s, axes, norm, overwrite_x, ...])</code></td>
<td>Return multidimensional Discrete Cosine Transform along the specified axes.</td>
</tr>
</tbody>
</table>

continues on next page
Table 17 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>idctn</td>
<td>Return multidimensional Inverse Discrete Cosine Transform along the specified axes.</td>
</tr>
<tr>
<td>dst</td>
<td>Return the Discrete Sine Transform of arbitrary type sequence x.</td>
</tr>
<tr>
<td>idst</td>
<td>Return the Inverse Discrete Sine Transform of an arbitrary type sequence.</td>
</tr>
<tr>
<td>dstn</td>
<td>Return multidimensional Discrete Sine Transform along the specified axes.</td>
</tr>
<tr>
<td>idstn</td>
<td>Return multidimensional Inverse Discrete Sine Transform along the specified axes.</td>
</tr>
</tbody>
</table>

```python
scipy.fft.dct
```

Return the Discrete Cosine Transform of arbitrary type sequence x.

**Parameters**

- `x` [array_like] The input array.
- `type` [{1, 2, 3, 4}, optional] Type of the DCT (see Notes). Default type is 2.
- `n` [int, optional] Length of the transform. If `n < x.shape[axis]`, x is truncated. If `n > x.shape[axis]`, x is zero-padded. The default results in `n = x.shape[axis]`.
- `axis` [int, optional] Axis along which the dct is computed; the default is over the last axis (i.e., `axis=-1`).
- `norm` [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see Notes). Default is “backward”.
- `overwrite_x` [bool, optional] If True, the contents of x can be destroyed; the default is False.
- `workers` [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from `os.cpu_count()`. See `fft` for more details.
- `orthogonalize` [bool, optional] Whether to use the orthogonalized DCT variant (see Notes). Defaults to True when `norm=="ortho"` and False otherwise. New in version 1.8.0.

**Returns**

- `y` [ndarray of real] The transformed input array.

**See also:**

- `idct` Inverse DCT
Notes

For a single dimension array \( x \), \( \text{dct}(x, \text{norm}='\text{ortho}') \) is equal to MATLAB \( \text{dct}(x) \).

**Warning:** For \( \text{type} \in \{1, 2, 3\}, \text{norm}='\text{ortho}' \) breaks the direct correspondence with the direct Fourier transform. To recover it you must specify \( \text{orthogonalize=False} \).

For \( \text{norm}='\text{ortho}' \) both the \text{dct} and \text{idct} are scaled by the same overall factor in both directions. By default, the transform is also orthogonalized which for types 1, 2 and 3 means the transform definition is modified to give orthogonality of the DCT matrix (see below).

For \( \text{norm}='\text{backward}' \), there is no scaling on \text{dct} and the \text{idct} is scaled by \( 1/N \) where \( N \) is the “logical” size of the DCT. For \( \text{norm}='\text{forward}' \) the \( 1/N \) normalization is applied to the forward \text{dct} instead and the \text{idct} is unnormalized.

There are, theoretically, 8 types of the DCT, only the first 4 types are implemented in SciPy. The DCT generally refers to DCT type 2, and ‘the’ Inverse DCT generally refers to DCT type 3.

**Type I**

There are several definitions of the DCT-I; we use the following (for \( \text{norm}='\text{backward}' \))

\[
y_k = x_0 + (-1)^k x_{N-1} + \sum_{n=1}^{N-2} x_n \cos \left( \frac{\pi kn}{N-1} \right)
\]

If \( \text{orthogonalize=True} \), \( x[0] \) and \( x[N-1] \) are multiplied by a scaling factor of \( \sqrt{2} \), and \( y[0] \) and \( y[N-1] \) are divided by \( \sqrt{2} \). When combined with \( \text{norm}='\text{ortho}' \), this makes the corresponding matrix of coefficients orthonormal (\( O \cdot O^\top = \text{np.eye}(N) \)).

**Note:** The DCT-I is only supported for input size \( > 1 \).

**Type II**

There are several definitions of the DCT-II; we use the following (for \( \text{norm}='\text{backward}' \))

\[
y_k = 2 \sum_{n=0}^{N-1} x_n \cos \left( \frac{\pi k(2n+1)}{2N} \right)
\]

If \( \text{orthogonalize=True} \), \( y[0] \) is divided by \( \sqrt{2} \) which, when combined with \( \text{norm}='\text{ortho}' \), makes the corresponding matrix of coefficients orthonormal (\( O \cdot O^\top = \text{np.eye}(N) \)).

**Type III**

There are several definitions, we use the following (for \( \text{norm}='\text{backward}' \))

\[
y_k = x_0 + 2 \sum_{n=1}^{N-1} x_n \cos \left( \frac{\pi (2k+1)n}{2N} \right)
\]

If \( \text{orthogonalize=True} \), \( x[0] \) terms are multiplied by \( \sqrt{2} \) which, when combined with \( \text{norm}='\text{ortho}' \), makes the corresponding matrix of coefficients orthonormal (\( O \cdot O^\top = \text{np.eye}(N) \)).

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor \( 2N \). The orthonormalized DCT-III is exactly the inverse of the orthonormalized DCT-II.

**Type IV**
There are several definitions of the DCT-IV; we use the following (for \( \text{norm} = \text{"backward"} \))

\[
y_k = 2 \sum_{n=0}^{N-1} x_n \cos \left( \frac{\pi(2k+1)(2n+1)}{4N} \right)
\]

orthogonalize has no effect here, as the DCT-IV matrix is already orthogonal up to a scale factor of \( 2N \).

References

[1], [2]

Examples

The Type 1 DCT is equivalent to the FFT (though faster) for real, even-symmetrical inputs. The output is also real and even-symmetrical. Half of the FFT input is used to generate half of the FFT output:

```python
>>> from scipy.fft import fft, dct
>>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
array([30., -8., 6., -2., 6., -8.])
>>> dct(np.array([4., 3., 5., 10.]), 1)
array([30., -8., 6., -2.])
```

**scipy.fft.idct**

`scipy.fft.idct` \( (x, \text{type}=2, n=\text{None}, \text{axis}=\text{1}, \text{norm}=\text{None}, \text{overwrite}_x=\text{False}, \text{workers}=\text{None}, \text{orthogonalize}=\text{None}) \)

Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.

**Parameters**

- \( x \) [array_like] The input array.
- \( \text{type} \) [[1, 2, 3, 4], optional] Type of the DCT (see Notes). Default type is 2.
- \( n \) [int, optional] Length of the transform. If \( n < x.\text{shape}[\text{axis}] \), \( x \) is truncated. If \( n > x.\text{shape}[\text{axis}] \), \( x \) is zero-padded. The default results in \( n = x.\text{shape}[\text{axis}] \).
- \( \text{axis} \) [int, optional] Axis along which the idct is computed; the default is over the last axis (i.e., \( \text{axis} = \text{1} \)).
- \( \text{norm} \) [['backward', 'ortho', 'forward'], optional] Normalization mode (see Notes). Default is “backward”.
- \( \text{overwrite}_x \) [bool, optional] If True, the contents of \( x \) can be destroyed; the default is False.
- \( \text{workers} \) [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from `os.cpu_count()`. See `fft` for more details.
- \( \text{orthogonalize} \) [bool, optional] Whether to use the orthogonalized IDCT variant (see Notes). Defaults to True when \( \text{norm} = \text{"ortho"} \) and False otherwise. New in version 1.8.0.

**Returns**

- \( \text{idct} \) [ndarray of real] The transformed input array.

See also:

- \( \text{dct} \)
  Forward DCT
Notes

For a single dimension array \( x \), \( \text{idct}(x, \text{norm='ortho'}) \) is equal to MATLAB \( \text{idct}(x) \).

**Warning:** For type in \{1, 2, 3\}, \text{norm='ortho'} breaks the direct correspondence with the inverse direct Fourier transform. To recover it you must specify \text{orthogonalize=False}.

For \text{norm='ortho'} both the \text{dct} and \text{idct} are scaled by the same overall factor in both directions. By default, the transform is also orthogonalized which for types 1, 2 and 3 means the transform definition is modified to give orthogonality of the IDCT matrix (see \text{dct} for the full definitions).

‘The’ IDCT is the IDCT-II, which is the same as the normalized DCT-III.

The IDCT is equivalent to a normal DCT except for the normalization and type. DCT type 1 and 4 are their own inverse and DCTs 2 and 3 are each other’s inverses.

Examples

The Type 1 DCT is equivalent to the DFT for real, even-symmetrical inputs. The output is also real and even-symmetrical. Half of the IFFT input is used to generate half of the IFFT output:

```python
>>> from scipy.fft import ifft, idct
>>> idct(np.array([30., -8., 6., -2., 6., -8.])).real
array([4., 3., 5., 10., 5., 3.])
```

`scipy.fft.dctn`

`scipy.fft.dctn (x, type=2, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *, orthogonalize=None)`

Return multidimensional Discrete Cosine Transform along the specified axes.

**Parameters**

- \( x \) [array_like] The input array.
- \( \text{type} \) [[1, 2, 3, 4], optional] Type of the DCT (see Notes). Default type is 2.
- \( s \) [int or array_like of ints or None, optional] The shape of the result. If both \( s \) and \( \text{axes} \) (see below) are None, \( s \) is \( x \).shape; if \( s \) is None but \( \text{axes} \) is not None, then \( s \) is \numpy.take(x.shape, axes, axis=0). \) If \( s[i] > x.shape[i] \), the ith dimension is padded with zeros. If \( s[i] < x.shape[i] \), the ith dimension is truncated to length \( s[i] \). If any element of \( s \) is -1, the size of the corresponding dimension of \( x \) is used.
- \( \text{axes} \) [int or array_like of ints or None, optional] Axes over which the DCT is computed. If not given, the last \( \text{len} (s) \) axes are used, or all axes if \( s \) is also not specified.
- \( \text{norm} \) [[“backward”, “ortho”, “forward”], optional] Normalization mode (see Notes). Default is “backward”.
- \( \text{overwrite}_x \) [bool, optional] If True, the contents of \( x \) can be destroyed; the default is False.
- \( \text{workers} \) [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from \os.cpu_count(). \) See \text{fft} for more details.
- \( \text{orthogonalize} \) [bool, optional] Whether to use the orthogonalized DCT variant (see Notes). Defaults to \text{True} when \text{norm='ortho'} and \text{False} otherwise. New in version 1.8.0.
Returns

\(y\) [ndarray of real] The transformed input array.

See also:

idctn

Inverse multidimensional DCT

Notes

For full details of the DCT types and normalization modes, as well as references, see \(\text{dct}\).

Examples

```python
>>> from scipy.fft import dctn, idctn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idctn(dctn(y)))
True
```

\texttt{scipy.fft.idctn}

\texttt{scipy.fft.idctn}(x, type=2, s=None, axes=None, norm=None, overwrite_x=False, workers=None, orthogonalize=None)

Return multidimensional Inverse Discrete Cosine Transform along the specified axes.

Parameters

- \(x\) [array_like] The input array.
- \(\text{type}\) [{1, 2, 3, 4}, optional] Type of the DCT (see Notes). Default type is 2.
- \(s\) [int or array_like of ints or None, optional] The shape of the result. If both \(s\) and \(axes\) (see below) are None, \(s\) is \(x.shape\); if \(s\) is None but \(axes\) is not None, then \(s\) is \(\text{numpy.take(x.shape, axes, axis=0)}\). If \(s[i] > x.shape[i]\), the \(i\)th dimension is padded with zeros. If \(s[i] < x.shape[i]\), the \(i\)th dimension is truncated to length \(s[i]\). If any element of \(s\) is -1, the size of the corresponding dimension of \(x\) is used.
- \(axes\) [int or array_like of ints or None, optional] Axes over which the IDCT is computed. If not given, the last \(\text{len(s)}\) axes are used, or all axes if \(s\) is also not specified.
- \(\text{norm}\) [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see Notes). Default is “backward”.
- \(\text{overwrite}_x\) [bool, optional] If True, the contents of \(x\) can be destroyed; the default is False.
- \(\text{workers}\) [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from \(\text{os.cpu_count()}\). See \texttt{fft} for more details.
- \(\text{orthogonalize}\) [bool, optional] Whether to use the orthogonalized IDCT variant (see Notes). Defaults to \(\text{True}\) when \(\text{norm}==\text{"ortho"}\) and \(\text{False}\) otherwise.

New in version 1.8.0.

Returns

- \(y\) [ndarray of real] The transformed input array.

See also:
dctn

multidimensional DCT

Notes

For full details of the IDCT types and normalization modes, as well as references, see \texttt{idct}.

Examples

```python
>>> from scipy.fft import dctn, idctn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idctn(dctn(y)))
True
```

\texttt{scipy.fft.dst}

\texttt{scipy.fft.dst}(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, orthogonalize=None)

Return the Discrete Sine Transform of arbitrary type sequence \(x\).

\textbf{Parameters}

- \texttt{x} [array_like] The input array.
- \texttt{type} [[1, 2, 3, 4], optional] Type of the DST (see Notes). Default type is 2.
- \texttt{n} [int, optional] Length of the transform. If \(n < x.shape[axis]\), \(x\) is truncated. If \(n > x.shape[axis]\), \(x\) is zero-padded. The default results in \(n = x.shape[axis]\).
- \texttt{axis} [int, optional] Axis along which the dst is computed; the default is over the last axis (i.e., \texttt{axis=-1}).
- \texttt{norm} [{'backward', 'ortho', 'forward'}, optional] Normalization mode (see Notes). Default is “backward”.
- \texttt{overwrite_x} [bool, optional] If True, the contents of \(x\) can be destroyed; the default is False.
- \texttt{workers} [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from \texttt{os.cpu_count()}. See \texttt{fft} for more details.
- \texttt{orthogonalize} [bool, optional] Whether to use the orthogonalized DST variant (see Notes). Defaults to True when \texttt{norm="ortho"} and False otherwise. New in version 1.8.0.

\textbf{Returns}

- \texttt{dst} [ndarray of reals] The transformed input array.

\textbf{See also:}

\texttt{idst}

Inverse DST
For `norm="ortho"` both the `dst` and `idst` are scaled by the same overall factor in both directions. By default, the transform is also orthogonalized which for types 2 and 3 means the transform definition is modified to give orthogonality of the DST matrix (see below).

For `norm="backward"`, there is no scaling on the `dst` and the `idst` is scaled by $1/N$ where $N$ is the “logical” size of the DST.

There are, theoretically, 8 types of the DST for different combinations of even/odd boundary conditions and boundary offsets [1], only the first 4 types are implemented in SciPy.

**Type I**

There are several definitions of the DST-I; we use the following for `norm="backward"`. DST-I assumes the input is odd around $n = -1$ and $n = N$.

$$y_k = 2 \sum_{n=0}^{N-1} x_n \sin \left( \frac{\pi (k + 1)(n + 1)}{N + 1} \right)$$

Note that the DST-I is only supported for input size > 1. The (unnormalized) DST-I is its own inverse, up to a factor $2(N + 1)$. The orthonormalized DST-I is exactly its own inverse.

`orthogonalize` has no effect here, as the DST-I matrix is already orthogonal up to a scale factor of $2N$.

**Type II**

There are several definitions of the DST-II; we use the following for `norm="backward"`. DST-II assumes the input is odd around $n = -1/2$ and $n = N - 1/2$; the output is odd around $k = -1$ and even around $k = N - 1$

$$y_k = 2 \sum_{n=0}^{N-1} x_n \sin \left( \frac{\pi (k + 1)(2n + 1)}{2N} \right)$$

If `orthogonalize=True`, $y[0]$ is divided by $\sqrt{2}$ which, when combined with `norm="ortho"`, makes the corresponding matrix of coefficients orthonormal ($O \otimes O^T = np.eye(N)$).

**Type III**

There are several definitions of the DST-III, we use the following (for `norm="backward"`). DST-III assumes the input is odd around $n = -1$ and even around $n = N - 1$

$$y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin \left( \frac{\pi (2k + 1)(n + 1)}{2N} \right)$$

If `orthogonalize=True`, $x[0]$ is multiplied by $\sqrt{2}$ which, when combined with `norm="ortho"`, makes the corresponding matrix of coefficients orthonormal ($O \otimes O^T = np.eye(N)$).

The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up to a factor $2N$. The orthonormalized DST-III is exactly the inverse of the orthonormalized DST-II.

**Type IV**

There are several definitions of the DST-IV, we use the following (for `norm="backward"`). DST-IV assumes the input is odd around $n = -0.5$ and even around $n = N - 0.5$

$$y_k = 2 \sum_{n=0}^{N-1} x_n \sin \left( \frac{\pi (2k + 1)(2n + 1)}{4N} \right)$$

3.3. API definition
orthogonalize has no effect here, as the DST-IV matrix is already orthogonal up to a scale factor of $2N$.

The (unnormalized) DST-IV is its own inverse, up to a factor $2N$. The orthonormalized DST-IV is exactly its own inverse.

References

[1]

scipy.fft.idst

scipy.fft.idst($x$, type=2, $n$=None, axis=-1, norm=None, overwrite_x=False, workers=None, orthogonalize=None)

Return the Inverse Discrete Sine Transform of an arbitrary type sequence.

Parameters

- **x** [array_like] The input array.
- **type** [{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.
- **n** [int, optional] Length of the transform. If $n < x.shape[axis], x$ is truncated. If $n > x.shape[axis], x$ is zero-padded. The default results in $n = x.shape[axis]$.
- **axis** [int, optional] Axis along which the idst is computed; the default is over the last axis (i.e., axis=-1).
- **norm** [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see Notes). Default is “backward”.
- **overwrite_x** [bool, optional] If True, the contents of $x$ can be destroyed; the default is False.
- **workers** [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from os.cpu_count(). See fft for more details.
- **orthogonalize** [bool, optional] Whether to use the orthogonalized IDST variant (see Notes). Defaults to True when norm=”ortho” and False otherwise.

New in version 1.8.0.

Returns

- **idst** [ndarray of real] The transformed input array.

See also:

dst

Forward DST

Notes

**Warning:** For type in {2, 3}, norm="ortho" breaks the direct correspondence with the inverse direct Fourier transform.

For norm="ortho" both the dst and idst are scaled by the same overall factor in both directions. By default, the transform is also orthogonalized which for types 2 and 3 means the transform definition is modified to give orthogonality of the DST matrix (see dst for the full definitions).

‘The’ IDST is the IDST-II, which is the same as the normalized DST-III.
The IDST is equivalent to a normal DST except for the normalization and type. DST type 1 and 4 are their own inverse and DSTs 2 and 3 are each other’s inverses.

**scipy.fft.dstn**

```python
scipy.fft.dstn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False, workers=None, orthogonalize=None)
```

Return multidimensional Discrete SineTransform along the specified axes.

**Parameters**

- **x**
  - [array_like] The input array.
- **type**
  - [{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.
- **s**
  - [int or array_like of ints or None, optional] The shape of the result. If both s and axes (see below) are None, s is x.shape; if s is None but axes is not None, then s is numpy.take(x.shape, axes, axis=0). If s[i] > x.shape[i], the ith dimension is padded with zeros. If s[i] < x.shape[i], the ith dimension is truncated to length s[i]. If any element of shape is -1, the size of the corresponding dimension of x is used.
- **axes**
  - [int or array_like of ints or None, optional] Axes over which the DST is computed. If not given, the last len(s) axes are used, or all axes if s is also not specified.
- **norm**
  - [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see Notes). Default is “backward”.
- **overwrite_x**
  - [bool, optional] If True, the contents of x can be destroyed; the default is False.
- **workers**
  - [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from os.cpu_count(). See fft for more details.
- **orthogonalize**
  - [bool, optional] Whether to use the orthogonalized DST variant (see Notes). Defaults to True when norm=”ortho” and False otherwise. New in version 1.8.0.

**Returns**

- **y**
  - [ndarray of real] The transformed input array.

See also:

**idstn**

Inverse multidimensional DST

**Notes**

For full details of the DST types and normalization modes, as well as references, see dst.

**Examples**

```python
>>> from scipy.fft import dstn, idstn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idstn(dstn(y)))
True
```
scipy.fft.idstn

scipy.fft.idstn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False, workers=None, orthogonalize=None)

Return multidimensional Inverse Discrete Sine Transform along the specified axes.

Parameters

- x [array_like] The input array.
- type [{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.
- s [int or array_like of ints or None, optional] The shape of the result. If both s and axes (see below) are None, s is x.shape; if s is None but axes is not None, then s is numpy.take(x.shape, axes, axis=0). If s[i] > x.shape[i], the ith dimension is padded with zeros. If s[i] < x.shape[i], the ith dimension is truncated to length s[i]. If any element of s is -1, the size of the corresponding dimension of x is used.
- axes [int or array_like of ints or None, optional] Axes over which the IDST is computed. If not given, the last len(s) axes are used, or all axes if s is also not specified.
- norm [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see Notes). Default is “backward”.
- overwrite_x [bool, optional] If True, the contents of x can be destroyed; the default is False.
- workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the value wraps around from os.cpu_count(). See fft for more details.
- orthogonalize [bool, optional] Whether to use the orthogonalized IDST variant (see Notes). Defaults to True when norm="ortho" and False otherwise. New in version 1.8.0.

Returns

- y [ndarray of real] The transformed input array.

See also:

dstn

multidimensional DST

Notes

For full details of the IDST types and normalization modes, as well as references, see idst.

Examples

```python
>>> from scipy.fft import dstn, idstn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idstn(dstn(y)))
True
```
Fast Hankel Transforms

\[ fht(a, dln, mu[, offset, bias]) \]
Compute the fast Hankel transform.

\[ ifht(A, dln, mu[, offset, bias]) \]
Compute the inverse fast Hankel transform.

\[ \text{scipy.fft.fht} \]
\[ \text{scipy.fft.fht}(a, dln, mu[, offset, bias]) \]
Compute the fast Hankel transform.

Computes the discrete Hankel transform of a logarithmically spaced periodic sequence using the FFTLog algorithm [1], [2].

**Parameters**

- **a** [array_like (…, n)] Real periodic input array, uniformly logarithmically spaced. For multi-dimensional input, the transform is performed over the last axis.
- **dln** [float] Uniform logarithmic spacing of the input array.
- **mu** [float] Order of the Hankel transform, any positive or negative real number.
- **offset** [float, optional] Offset of the uniform logarithmic spacing of the output array.
- **bias** [float, optional] Exponent of power law bias, any positive or negative real number.

**Returns**

- **A** [array_like (…, n)] The transformed output array, which is real, periodic, uniformly logarithmically spaced, and of the same shape as the input array.

**See also:**

- **ifht**
  The inverse of \textit{fht}.

- **fhtoffset**
  Return an optimal offset for \textit{fht}.

**Notes**

This function computes a discrete version of the Hankel transform

\[ A(k) = \int_{0}^{\infty} a(r) J_\mu(kr) r \, dr , \]

where \( J_\mu \) is the Bessel function of order \( \mu \). The index \( \mu \) may be any real number, positive or negative.

The input array \( a \) is a periodic sequence of length \( n \), uniformly logarithmically spaced with spacing \( dln \),

\[ a_j = a(r_j) , \quad r_j = r_c \exp[(j - j_c) dln] \]

centred about the point \( r_c \). Note that the central index \( j_c = (n + 1)/2 \) is half-integral if \( n \) is even, so that \( r_c \) falls between two input elements. Similarly, the output array \( A \) is a periodic sequence of length \( n \), also uniformly logarithmically spaced with spacing \( dln \)

\[ A_j = A(k_j) , \quad k_j = k_c \exp[(j - j_c) dln] \]

centred about the point \( k_c \).
The centre points $r_c$ and $k_c$ of the periodic intervals may be chosen arbitrarily, but it would be usual to choose the product $k_c r_c = k_j r_{n-1-j} = k_{n-1-j} r_j$ to be unity. This can be changed using the `offset` parameter, which controls the logarithmic offset $\log(k_c) = \text{offset} - \log(r_c)$ of the output array. Choosing an optimal value for `offset` may reduce ringing of the discrete Hankel transform.

If the `bias` parameter is nonzero, this function computes a discrete version of the biased Hankel transform

$$A(k) = \int_{0}^{\infty} a_q(r) (kr)^q J_{\mu}(kr) \, k \, dr$$

where $q$ is the value of `bias`, and a power law bias $a_q(r) = a(r) (kr)^{-q}$ is applied to the input sequence. Biasing the transform can help approximate the continuous transform of $a(r)$ if there is a value $q$ such that $a_q(r)$ is close to a periodic sequence, in which case the resulting $A(k)$ will be close to the continuous transform.

References

[1], [2]

`scipy.fft.ifht`

`scipy.fft.ifht(A, dln, mu, offset=0.0, bias=0.0)`

Compute the inverse fast Hankel transform.

Computes the discrete inverse Hankel transform of a logarithmically spaced periodic sequence. This is the inverse operation to `fht`.

Parameters

- `A` [array_like (…, n)] Real periodic input array, uniformly logarithmically spaced. For multi-dimensional input, the transform is performed over the last axis.
- `dln` [float] Uniform logarithmic spacing of the input array.
- `mu` [float] Order of the Hankel transform, any positive or negative real number.
- `offset` [float, optional] Offset of the uniform logarithmic spacing of the output array.
- `bias` [float, optional] Exponent of power law bias, any positive or negative real number.

Returns

- `a` [array_like (…, n)] The transformed output array, which is real, periodic, uniformly logarithmically spaced, and of the same shape as the input array.

See also:

- `fht` Definition of the fast Hankel transform.
- `fhtoffset` Return an optimal offset for `ifht`. 

412 Chapter 3. SciPy API
Notes

This function computes a discrete version of the Hankel transform

$$a(r) = \int_0^\infty A(k) J_\mu(kr) r \, dk,$$

where $J_\mu$ is the Bessel function of order $\mu$. The index $\mu$ may be any real number, positive or negative.

See \texttt{fht} for further details.

Helper functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{fftshift}(x[, axes])</td>
<td>Shift the zero-frequency component to the center of the spectrum.</td>
</tr>
<tr>
<td>\texttt{ifftshift}(x[, axes])</td>
<td>The inverse of \texttt{fftshift}.</td>
</tr>
<tr>
<td>\texttt{fftfreq}(n[, d])</td>
<td>Return the Discrete Fourier Transform sample frequencies.</td>
</tr>
<tr>
<td>\texttt{rfftfreq}(n[, d])</td>
<td>Return the Discrete Fourier Transform sample frequencies (for usage with \texttt{rfft}, \texttt{irfft}).</td>
</tr>
<tr>
<td>\texttt{fhtoffset}(dln, mu[, initial, bias])</td>
<td>Return optimal offset for a fast Hankel transform.</td>
</tr>
<tr>
<td>\texttt{next_fast_len}</td>
<td>Find the next fast size of input data to \texttt{fft}, for zero-padding, etc.</td>
</tr>
<tr>
<td>\texttt{set_workers}(workers)</td>
<td>Context manager for the default number of workers used in \texttt{scipy.fft}</td>
</tr>
<tr>
<td>\texttt{get_workers}()</td>
<td>Returns the default number of workers within the current context.</td>
</tr>
</tbody>
</table>

\texttt{scipy.fft.fftshift}

\texttt{scipy.fft.fftshift}(x, axes=None)

Shift the zero-frequency component to the center of the spectrum.

This function swaps half-spaces for all axes listed (defaults to all). Note that $y[0]$ is the Nyquist component only if \texttt{len(x)} is even.

Parameters

- \textit{x} [array_like] Input array.
- \textit{axes} [int or shape tuple, optional] Axes over which to shift. Default is None, which shifts all axes.

Returns

- \textit{y} [ndarray] The shifted array.

See also:

- \texttt{ifftshift}

The inverse of \texttt{fftshift}.
Examples

```python
>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([0., 1., 2., ..., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
```

Shift the zero-frequency component only along the second axis:

```python
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[0., 1., 2.],
 [3., 4., -4.],
 [-3., -2., -1.]])
>>> np.fft.fftshift(freqs, axes=(1,))
array([[2., 0., 1.],
 [-4., 3., 4.],
 [-1., -3., -2.]])
```

**scipy.fft.ifftshift**

The inverse of `fftshift`. Although identical for even-length `x`, the functions differ by one sample for odd-length `x`.

**Parameters**
- `x` [array_like] Input array.
- `axes` [int or shape tuple, optional] Axes over which to calculate. Defaults to None, which shifts all axes.

**Returns**

**See also:**

- `fftshift`
  Shift zero-frequency component to the center of the spectrum.

Examples

```python
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[0., 1., 2.],
 [3., 4., -4.],
 [-3., -2., -1.]])
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[0., 1., 2.],
 [3., 4., -4.],
 [-3., -2., -1.]])
```
**scipy.fft.fftfreq**

```python
scipy.fft.fftfreq(n, d=1.0)
```

Return the Discrete Fourier Transform sample frequencies.

The returned float array $f$ contains the frequency bin centers in cycles per unit of the sample spacing (with zero at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length $n$ and a sample spacing $d$:

$$
f = \begin{cases} 
0, 1, \ldots, \frac{n}{2} - 1, \frac{-n}{2}, \ldots, -1 & \text{if } n \text{ is even} \\
0, 1, \ldots, \frac{(n-1)}{2}, -\frac{(n-1)}{2}, \ldots, -1 & \text{if } n \text{ is odd}
\end{cases} / (d \times n)
$$

**Parameters**
- $n$ [int] Window length.
- $d$ [scalar, optional] Sample spacing (inverse of the sampling rate). Defaults to 1.

**Returns**
- $f$ [ndarray] Array of length $n$ containing the sample frequencies.

**Examples**

```python
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
array([0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])
```

**scipy.fft.rfftfreq**

```python
scipy.fft.rfftfreq(n, d=1.0)
```

Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).

The returned float array $f$ contains the frequency bin centers in cycles per unit of the sample spacing (with zero at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length $n$ and a sample spacing $d$:

$$
f = \begin{cases} 
0, 1, \ldots, \frac{n-1}{2}, \frac{-n}{2}, \ldots, -1 & \text{if } n \text{ is odd}
\end{cases} / (d \times n)
$$

Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`) the Nyquist frequency component is considered to be positive.

**Parameters**
- $n$ [int] Window length.
- $d$ [scalar, optional] Sample spacing (inverse of the sampling rate). Defaults to 1.

**Returns**
- $f$ [ndarray] Array of length $n//2 + 1$ containing the sample frequencies.
Examples

```python
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
>>> fourier = np.fft.rfft(signal)
>>> n = signal.size
>>> sample_rate = 100
>>> freq = np.fft.fftfreq(n, d=1./sample_rate)
>>> freq
array([0., 10., 20., ..., -30., -20., -10.])
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
>>> freq
array([0., 10., 20., 30., 40., 50.])
```

**scipy.fft.fhtoffset**

`scipy.fft.fhtoffset(dln, mu, initial=0.0, bias=0.0)`

Return optimal offset for a fast Hankel transform.

Returns an offset close to `initial` that fulfills the low-ringing condition of [1] for the fast Hankel transform \(fht\) with logarithmic spacing `dln`, order `mu` and bias `bias`.

**Parameters**

- `dln` [float] Uniform logarithmic spacing of the transform.
- `mu` [float] Order of the Hankel transform, any positive or negative real number.
- `initial` [float, optional] Initial value for the offset. Returns the closest value that fulfills the low-ringing condition.
- `bias` [float, optional] Exponent of power law bias, any positive or negative real number.

**Returns**

- `offset` [float] Optimal offset of the uniform logarithmic spacing of the transform that fulfills a low-ringing condition.

**See also:**

- `fht`

  Definition of the fast Hankel transform.

**References**

[1]

**scipy.fft.next_fast_len**

`scipy.fft.next_fast_len()`

Find the next fast size of input data to `fft`, for zero-padding, etc.

SciPy's FFT algorithms gain their speed by a recursive divide and conquer strategy. This relies on efficient functions for small prime factors of the input length. Thus, the transforms are fastest when using composites of the prime factors handled by the `fft` implementation. If there are efficient functions for all radices \(\leq n\), then the result will be a number \(x \geq \text{target}\) with only prime factors \(< n\). (Also known as \(n\)-smooth numbers)

**Parameters**

- `target` [int] Length to start searching from. Must be a positive integer.
- `real` [bool, optional] True if the FFT involves real input or output (e.g., `rfft` or `hfft` but not `fft`). Defaults to False.
**Returns**

| out    | [int] The smallest fast length greater than or equal to target. |

**Notes**

The result of this function may change in future as performance considerations change, for example, if new prime factors are added.

Calling `fft` or `ifft` with real input data performs an 'R2C' transform internally.

**Examples**

On a particular machine, an FFT of prime length takes 11.4 ms:

```python
>>> from scipy import fft
>>> rng = np.random.default_rng()
>>> min_len = 93059 # prime length is worst case for speed
>>> a = rng.standard_normal(min_len)
>>> b = fft.fft(a)
```

Zero-padding to the next regular length reduces computation time to 1.6 ms, a speedup of 7.3 times:

```python
>>> fft.next_fast_len(min_len, real=True)
93312
>>> b = fft.fft(a, 93312)
```

Rounding up to the next power of 2 is not optimal, taking 3.0 ms to compute; 1.9 times longer than the size given by `next_fast_len`:

```python
>>> b = fft.fft(a, 131072)
```

**scipy.fft.set_workers**

`scipy.fft.set_workers(workers)`

Context manager for the default number of workers used in `scipy.fft`

**Parameters**

| workers | [int] The default number of workers to use |

**Examples**

```python
>>> from scipy import fft, signal
>>> rng = np.random.default_rng()
>>> x = rng.standard_normal((128, 64))
>>> with fft.set_workers(4):
... y = signal.fftconvolve(x, x)
```
**scipy.fft.get_workers**

`scipy.fft.get_workers()`

Returns the default number of workers within the current context

**Examples**

```python
>>> from scipy import fft
>>> fft.get_workers()
1
>>> with fft.set_workers(4):
... fft.get_workers()
4
```

**Backend control**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>set_backend(backend[, coerce, only])</code></td>
<td>Context manager to set the backend within a fixed scope.</td>
</tr>
<tr>
<td><code>skip_backend(backend)</code></td>
<td>Context manager to skip a backend within a fixed scope.</td>
</tr>
<tr>
<td><code>set_global_backend(backend[, coerce, only,...])</code></td>
<td>Sets the global fft backend</td>
</tr>
<tr>
<td><code>register_backend(backend)</code></td>
<td>Register a backend for permanent use.</td>
</tr>
</tbody>
</table>

**scipy.fft.set_backend**

`scipy.fft.set_backend(backend, coerce=False, only=False)`

Context manager to set the backend within a fixed scope.

Upon entering the `with` statement, the given backend will be added to the list of available backends with the highest priority. Upon exit, the backend is reset to the state before entering the scope.

**Parameters**

- `backend` [{object, ‘scipy’}] The backend to use. Can either be a string containing the name of a known backend (‘scipy’) or an object that implements the uarray protocol.
- `coerce` [bool, optional] Whether to allow expensive conversions for the `x` parameter. e.g., copying a NumPy array to the GPU for a CuPy backend. Implies `only`.
- `only` [bool, optional] If `only` is `True` and this backend returns `NotImplemented`, then a BackendNotImplemented error will be raised immediately. Ignoring any lower priority backends.

**Examples**

```python
>>> import scipy.fft as fft
>>> with fft.set_backend('scipy', only=True):
... fft.fft([1]) # Always calls the scipy implementation
array([1.+0.j])
```
**scipy.fft.skip_backend**

`scipy.fft.skip_backend(backend)`

Context manager to skip a backend within a fixed scope.

Within the context of a `with` statement, the given backend will not be called. This covers backends registered both locally and globally. Upon exit, the backend will again be considered.

**Parameters**

- `backend` [{object, 'scipy'}] The backend to skip. Can either be a `str` containing the name of a known backend `{scipy}` or an object that implements the uarray protocol.

**Examples**

```python
>>> import scipy.fft as fft
>>> fft.fft([[1]]) # Calls default SciPy backend
array([1.+0.j])
>>> with fft.skip_backend('scipy'): # We explicitly skip the SciPy...
 ... fft.fft([[1]]) # leaving no implementation available
Traceback (most recent call last):
 ... BackendNotImplementedError: No selected backends had an implementation ...
```

**scipy.fft.set_global_backend**

`scipy.fft.set_global_backend(backend, coerce=False, only=False, try_last=False)`

Sets the global fft backend

This utility method replaces the default backend for permanent use. It will be tried in the list of backends automatically, unless the `only` flag is set on a backend. This will be the first tried backend outside the `set_backend` context manager.

**Parameters**

- `backend` [{object, 'scipy'}] The backend to use. Can either be a `str` containing the name of a known backend `{scipy}` or an object that implements the uarray protocol.
- `coerce` [bool] Whether to coerce input types when trying this backend.
- `only` [bool] If True, no more backends will be tried if this fails. Implied by `coerce=True`.
- `try_last` [bool] If True, the global backend is tried after registered backends.

**Raises**

- `ValueError`: If the backend does not implement `numpy.scipy.fft`.

**Notes**

This will overwrite the previously set global backend, which, by default, is the SciPy implementation.
Examples

We can set the global fft backend:

```python
>>> from scipy.fft import fft, set_global_backend
>>> set_global_backend("scipy") # Sets global backend. "scipy" is the default backend.
>>> fft([1]) # Calls the global backend
array([1.+0.j])
```

`scipy.fft.register_backend`

`scipy.fft.register_backend(backend)`
Register a backend for permanent use.

Registered backends have the lowest priority and will be tried after the global backend.

**Parameters**

- `backend` ([object, 'scipy']) The backend to use. Can either be a str containing the name of a known backend ('scipy') or an object that implements the uarray protocol.

**Raises**

- `ValueError`: If the backend does not implement `numpy.scipy.fft`.

Examples

We can register a new fft backend:

```python
>>> from scipy.fft import fft, register_backend, set_global_backend
>>> class NoopBackend: # Define an invalid Backend
... __ua_domain__ = "numpy.scipy.fft"
... def __ua_function__(self, func, args, kwargs):
... return NotImplemented
>>> set_global_backend(NoopBackend()) # Set the invalid backend as global
>>> register_backend("scipy") # Register a new backend
>>> fft([1]) # The registered backend is called because the global backend returns `NotImplemented`
array([1.+0.j])
>>> set_global_backend("scipy") # Restore global backend to default
```

3.3.6 Legacy discrete Fourier transforms (`scipy.fftpack`)

**Warning:** This submodule is now considered legacy, new code should use `scipy.fft`.

Fast Fourier Transforms (FFTs)

```
fft(x, n, axis, overwrite_x)
```
Return discrete Fourier transform of real or complex sequence.

continues on next page
Table 21 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ifft(x[, n, axis, overwrite_x])</code></td>
<td>Return discrete inverse Fourier transform of real or complex sequence.</td>
</tr>
<tr>
<td><code>fft2(x[, shape, axes, overwrite_x])</code></td>
<td>2-D discrete Fourier transform.</td>
</tr>
<tr>
<td><code>ifft2(x[, shape, axes, overwrite_x])</code></td>
<td>2-D discrete inverse Fourier transform of real or complex sequence.</td>
</tr>
<tr>
<td><code>fftn(x[, shape, axes, overwrite_x])</code></td>
<td>Return multidimensional discrete Fourier transform.</td>
</tr>
<tr>
<td><code>ifftn(x[, shape, axes, overwrite_x])</code></td>
<td>Return inverse multidimensional discrete Fourier transform.</td>
</tr>
<tr>
<td><code>rfft(x[, n, axis, overwrite_x])</code></td>
<td>Discrete Fourier transform of a real sequence.</td>
</tr>
<tr>
<td><code>irfft(x[, n, axis, overwrite_x])</code></td>
<td>Return inverse discrete Fourier transform of real sequence.</td>
</tr>
<tr>
<td><code>dct(x[, type, n, axis, norm, overwrite_x])</code></td>
<td>Return the Discrete Cosine Transform of arbitrary type sequence x.</td>
</tr>
<tr>
<td><code>idct(x[, type, n, axis, norm, overwrite_x])</code></td>
<td>Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.</td>
</tr>
<tr>
<td><code>dctn(x[, type, shape, axes, norm, overwrite_x])</code></td>
<td>Return multidimensional Discrete Cosine Transform along the specified axes.</td>
</tr>
<tr>
<td><code>idctn(x[, type, shape, axes, norm, overwrite_x])</code></td>
<td>Return multidimensional Discrete Cosine Transform along the specified axes.</td>
</tr>
<tr>
<td><code>dst(x[, type, n, axis, norm, overwrite_x])</code></td>
<td>Return the Discrete Sine Transform of arbitrary type sequence x.</td>
</tr>
<tr>
<td><code>idst(x[, type, n, axis, norm, overwrite_x])</code></td>
<td>Return the Inverse Discrete Sine Transform of an arbitrary type sequence.</td>
</tr>
<tr>
<td><code>dstn(x[, type, shape, axes, norm, overwrite_x])</code></td>
<td>Return multidimensional Discrete Sine Transform along the specified axes.</td>
</tr>
<tr>
<td><code>idstn(x[, type, shape, axes, norm, overwrite_x])</code></td>
<td>Return multidimensional Discrete Sine Transform along the specified axes.</td>
</tr>
</tbody>
</table>

scipy.fftpack.fft

`scipy.fftpack.fft(x, n=None, axis=-1, overwrite_x=False)`

Return discrete Fourier transform of real or complex sequence.

The returned complex array contains \( y(0), y(1), \ldots, y(n-1) \), where

\[
y(j) = (x * \exp(-2\pi i \sqrt{-1} j \cdot \text{np.arange}(n)/n)).\text{sum}().
\]

Parameters

- \( x \) [array_like] Array to Fourier transform.
- \( n \) [int, optional] Length of the Fourier transform. If \( n < x.\text{shape}[axis] \), \( x \) is truncated. If \( n > x.\text{shape}[axis] \), \( x \) is zero-padded. The default results in \( n = x.\text{shape}[axis] \).
- \( axis \) [int, optional] Axis along which the fft's are computed; the default is over the last axis (i.e., \( axis=-1 \)).
- \( overwrite_x \) [bool, optional] If True, the contents of \( x \) can be destroyed; the default is False.

Returns

- \( z \) [complex ndarray] with the elements:

  \[
  \begin{align*}
  & [y(0), y(1), \ldots, y(n/2), y(1-n/2), \ldots, y(-1)] & \text{if } n \text{ is even} \\
  & [y(0), y(1), \ldots, y((n-1)/2), y(-(n-1)/2), \ldots, y(-1)] & \text{if } n \text{ is odd}
  \end{align*}
  \]
where:

\[
y(j) = \sum_{k=0}^{n-1} x[k] \cdot \exp(-\sqrt{-1} \cdot j \cdot k \cdot 2\pi/n), \quad j_\rightarrow = 0..n-1
\]

See also:

- **ifft**
  
  Inverse FFT

- **rfft**
  
  FFT of a real sequence

Notes

The packing of the result is “standard”: If \( A = \text{fft}(a, n) \), then \( A[0] \) contains the zero-frequency term, \( A[1:n/2] \) contains the positive-frequency terms, and \( A[n/2:] \) contains the negative-frequency terms, in order of decreasingly negative frequency. So, for an 8-point transform, the frequencies of the result are \([0, 1, 2, 3, -4, -3, -2, -1]\). To rearrange the fft output so that the zero-frequency component is centered, like \([-4, -3, -2, -1, 0, 1, 2, 3]\), use \texttt{fftshift}.

Both single and double precision routines are implemented. Half precision inputs will be converted to single precision. Non-floating-point inputs will be converted to double precision. Long-double precision inputs are not supported.

This function is most efficient when \( n \) is a power of two, and least efficient when \( n \) is prime.

Note that if \( x \) is real-valued, then \( A[j] = A[n-j].\text{conjugate}() \). If \( x \) is real-valued and \( n \) is even, then \( A[n/2] \) is real.

If the data type of \( x \) is real, a “real FFT” algorithm is automatically used, which roughly halves the computation time. To increase efficiency a little further, use \texttt{rfft}, which does the same calculation, but only outputs half of the symmetrical spectrum. If the data is both real and symmetrical, the \texttt{dct} can again double the efficiency by generating half of the spectrum from half of the signal.

Examples

```python
>>> from scipy.fftpack import fft, ifft
>>> x = np.arange(5)
>>> np.allclose(fft(ifft(x)), x, atol=1e-15) # within numerical accuracy.
True
```

**scipy.fftpack.ifft**

\[
\text{scipy.fftpack.ifft}(x, n=None, axis=-1, overwrite_x=False)
\]

Return discrete inverse Fourier transform of real or complex sequence.

The returned complex array contains \( y(0), y(1), \ldots, y(n-1) \), where

\[
y(j) = (x * \exp(2\pi i \sqrt{-1} j \cdot \text{np.arange(n)}/n)).\text{mean}().
\]

**Parameters**

- \( x \)  
  
  [array_like] Transformed data to invert.
n  [int, optional] Length of the inverse Fourier transform. If \( n < x.\text{shape}[\text{axis}] \), \( x \) is truncated. If \( n > x.\text{shape}[\text{axis}] \), \( x \) is zero-padded. The default results in \( n = x.\text{shape}[\text{axis}] \).

axis  [int, optional] Axis along which the ifft's are computed; the default is over the last axis (i.e., \( \text{axis}=-1 \)).

overwrite_x  [bool, optional] If True, the contents of \( x \) can be destroyed; the default is False.

Returns

ifft  [ndarray of floats] The inverse discrete Fourier transform.

See also:

fft

Forward FFT

Notes

Both single and double precision routines are implemented. Half precision inputs will be converted to single precision. Non-floating-point inputs will be converted to double precision. Long-double precision inputs are not supported.

This function is most efficient when \( n \) is a power of two, and least efficient when \( n \) is prime.

If the data type of \( x \) is real, a “real IFFT” algorithm is automatically used, which roughly halves the computation time.

Examples

```python
>>> from scipy.fftpack import fft, ifft
>>> import numpy as np
>>> x = np.arange(5)
>>> np.allclose(ifft(fft(x)), x, atol=1e-15) # within numerical accuracy.
True
```

scipy.fftpack.fft2

`scipy.fftpack.fft2(x, shape=None, axes=(- 2, - 1), overwrite_x=False)`

2-D discrete Fourier transform.

Return the 2-D discrete Fourier transform of the 2-D argument \( x \).

See also:

fftn

for detailed information.
Examples

```python
>>> from scipy.fftpack import fft2, ifft2
>>> y = np.mgrid[:5, :5][0]
>>> y
array([[0, 0, 0, 0, 0],
 [1, 1, 1, 1, 1],
 [2, 2, 2, 2, 2],
 [3, 3, 3, 3, 3],
 [4, 4, 4, 4, 4]])
>>> np.allclose(y, ifft2(fft2(y)))
True
```

**scipy.fftpack.ifft2**

scipy.fftpack.ifft2(x, shape=None, axes=(-2, -1), overwrite_x=False)

2-D discrete inverse Fourier transform of real or complex sequence.

Return inverse 2-D discrete Fourier transform of arbitrary type sequence x.

See ifft for more information.

See also:

fft2, ifft

Examples

```python
>>> from scipy.fftpack import fft2, ifft2
>>> y = np.mgrid[:5, :5][0]
>>> y
array([[0, 0, 0, 0, 0],
 [1, 1, 1, 1, 1],
 [2, 2, 2, 2, 2],
 [3, 3, 3, 3, 3],
 [4, 4, 4, 4, 4]])
>>> np.allclose(y, fft2(ifft2(y)))
True
```

**scipy.fftpack.fftn**

scipy.fftpack.fftn(x, shape=None, axes=None, overwrite_x=False)

Return multidimensional discrete Fourier transform.

The returned array contains:

\[
y[j_1, \ldots, j_d] = \sum_{k_1=0}^{n_1-1} \ldots \sum_{k_d=0}^{n_d-1} x[k_1, \ldots, k_d] \times \prod_{i=1}^{d} \exp\left(-\sqrt{-1} \times 2 \times \pi / n_i \times j_i \times k_i\right)
\]

where \(d = \text{len}(x.shape)\) and \(n = x.shape\).

Parameters

- **x** [array_like] The (N-D) array to transform.
shape [int or array_like of ints or None, optional] The shape of the result. If both `shape` and `axes` (see below) are None, `shape` is `x.shape`; if `shape` is None but `axes` is not None, then `shape` is `numpy.take(x.shape, axes, axis=0)`. If `shape[i] > x.shape[i]`, the `i`th dimension is padded with zeros. If `shape[i] < x.shape[i]`, the `i`th dimension is truncated to length `shape[i]`. If any element of `shape` is -1, the size of the corresponding dimension of `x` is used.

axes [int or array_like of ints or None, optional] The axes of `x` (y if `shape` is not None) along which the transform is applied. The default is over all axes.

overwrite_x [bool, optional] If True, the contents of `x` can be destroyed. Default is False.

Returns

y [complex-valued N-D NumPy array] The (N-D) DFT of the input array.

See also:

`ifftn`

Notes

If `x` is real-valued, then `y[..., j_i, ...] == y[..., n_i-j_i, ...].conjugate()`. Both single and double precision routines are implemented. Half precision inputs will be converted to single precision. Non-floating-point inputs will be converted to double precision. Long-double precision inputs are not supported.

Examples

```python
>>> from scipy.fftpack import fftn, ifftn
>>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
>>> np.allclose(y, fftn(ifftn(y)))
True
```

scipy.fftpack.ifftn

`scipy.fftpack.ifftn(x, shape=None, axes=None, overwrite_x=False)`

Return inverse multidimensional discrete Fourier transform.

The sequence can be of an arbitrary type.

The returned array contains:

\[
y[j_1, \ldots, j_d] = \frac{1}{p} \sum_{k_1=0}^{n_1-1} \ldots \sum_{k_d=0}^{n_d-1} x[k_1, \ldots, k_d] \cdot \prod_{i=1}^{d} \exp(-1)^{2\pi i n_i^*} j_i \cdot k_i
\]

where \(d = \text{len}(x.shape)\), \(n = x.shape\), and \(p = \prod_{i=1}^{d} n_i\).

For description of parameters see `fftn`.

See also:

`fftn`

for detailed information.
Examples

```python
>>> from scipy.fftpack import fftn, ifftn
>>> import numpy as np
>>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
>>> np.allclose(y, ifftn(fftn(y)))
True
```

**scipy.fftpack.rfft**

`scipy.fftpack.rfft(x, n=None, axis=-1, overwrite_x=False)`

Discrete Fourier transform of a real sequence.

**Parameters**

- **x**  
  [array_like, real-valued] The data to transform.

- **n**  
  [int, optional] Defines the length of the Fourier transform. If `n` is not specified (the default) then `n = x.shape[axis]`. If `n < x.shape[axis]`, `x` is truncated, if `n > x.shape[axis]`, `x` is zero-padded.

- **axis**  
  [int, optional] The axis along which the transform is applied. The default is the last axis.

- **overwrite_x**  
  [bool, optional] If set to true, the contents of `x` can be overwritten. Default is False.

**Returns**

- **z**  
  [real ndarray] The returned real array contains:

```
[y(0), Re(y(1)), Im(y(1)), ..., Re(y(n/2))] if n_\text{is even}
[y(0), Re(y(1)), Im(y(1)), ..., Re(y(n/2)), Im(y(n/2))] if n_\text{is odd}
```

where:

\[
y(j) = \sum[k=0..n-1] x[k] \times \exp(-\sqrt{-1} \times j \times k \times 2 \times \pi / n) \quad \text{if } j = 0..n-1
\]

**See also:**

`fft, irfft, scipy.fft.rfft`

**Notes**

Within numerical accuracy, \( y = rfft(\text{irfft}(y)) \).

Both single and double precision routines are implemented. Half precision inputs will be converted to single precision. Non-floating-point inputs will be converted to double precision. Long-double precision inputs are not supported.

To get an output with a complex datatype, consider using the newer function `scipy.fft.rfft`.
Examples

```python
>>> from scipy.fftpack import fft, rfft
>>> a = [9, -9, 1, 3]
>>> fft(a)
array([4. +0.j, 8.+12.j, 16. +0.j, 8.-12.j])
>>> rfft(a)
array([4., 8., 12., 16.])
```

**scipy.fftpack.irfft**

`scipy.fftpack.irfft(x, n=None, axis=-1, overwrite_x=False)`

Return inverse discrete Fourier transform of real sequence `x`.

The contents of `x` are interpreted as the output of the `rfft` function.

**Parameters**

- `x` [array_like] Transformed data to invert.
- `n` [int, optional] Length of the inverse Fourier transform. If `n < x.shape[axis]`, `x` is truncated. If `n > x.shape[axis]`, `x` is zero-padded. The default results in `n = x.shape[axis].`
- `axis` [int, optional] Axis along which the ifft's are computed; the default is over the last axis (i.e., `axis=-1`).
- `overwrite_x` [bool, optional] If True, the contents of `x` can be destroyed; the default is False.

**Returns**


**See also:**

`rfft, ifft, scipy.fft.irfft`

**Notes**

The returned real array contains:

```
[y(0), y(1), ..., y(n-1)]
```

where for `n` is even:

```
y(j) = \frac{1}{n} (\sum_{k=1}^{n/2-1} (x[2*k-1]+\sqrt{-1}*x[2*k])
 * \exp(\sqrt{-1}*j*k* 2*pi/n)
 + \text{c.c.} + x[0] + (-1)^n (j) * x[n-1])
```

and for `n` is odd:

```
y(j) = \frac{1}{n} (\sum_{k=1}^{(n-1)/2} (x[2*k-1]+\sqrt{-1}*x[2*k])
 * \exp(\sqrt{-1}*j*k* 2*pi/n)
 + \text{c.c.} + x[0])
```

c.c. denotes complex conjugate of preceding expression.

For details on input parameters, see `rfft`.

To process (conjugate-symmetric) frequency-domain data with a complex datatype, consider using the newer function `scipy.fft.irfft`.
Examples

```python
>>> from scipy.fftpack import rfft, irfft
>>> a = [1.0, 2.0, 3.0, 4.0, 5.0]
>>> irfft(a)
array([2.6, -3.16405192, 1.24398433, -1.14955713, 1.46962473])
>>> irfft(rfft(a))
array([1., 2., 3., 4., 5.])
```

scipy.fftpack.dct

`scipy.fftpack.dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)`

Return the Discrete Cosine Transform of arbitrary type sequence `x`.

**Parameters**

- `x` [array_like] The input array.
- `type` [{1, 2, 3, 4}, optional] Type of the DCT (see Notes). Default type is 2.
- `n` [int, optional] Length of the transform. If `n < x.shape[axis]`, `x` is truncated. If `n > x.shape[axis]`, `x` is zero-padded. The default results in `n = x.shape[axis]`.
- `axis` [int, optional] Axis along which the dct is computed; the default is over the last axis (i.e., `axis=-1`).
- `norm` [{None,'ortho'},optional] Normalization mode (see Notes). Default is None.
- `overwrite_x` [bool,optional] If True, the contents of `x` can be destroyed; the default is False.

**Returns**

- `y` [ndarray of real] The transformed input array.

See also:

- `idct`

  Inverse DCT

**Notes**

For a single dimension array `x`, `dct(x, norm='ortho')` is equal to MATLAB `dct(x)`.

There are, theoretically, 8 types of the DCT, only the first 4 types are implemented in scipy. ‘The’ DCT generally refers to DCT type 2, and ‘the’ Inverse DCT generally refers to DCT type 3.

**Type I**

There are several definitions of the DCT-I; we use the following (for `norm=None`)

$$y_k = x_0 + (-1)^k x_{N-1} + 2 \sum_{n=1}^{N-2} x_n \cos \left(\frac{\pi kn}{N-1}\right)$$

If `norm='ortho'`, `x[0]` and `x[N-1]` are multiplied by a scaling factor of $\sqrt{2}$, and `y[k]` is multiplied by a scaling factor $f$

$$f = \begin{cases} 
\frac{1}{2} \sqrt{\frac{1}{N-1}}, & \text{if } k = 0 \text{ or } N - 1, \\
\frac{1}{2} \sqrt{\frac{2}{N-1}}, & \text{otherwise}
\end{cases}$$

New in version 1.2.0: Orthonormalization in DCT-I.
Note: The DCT-I is only supported for input size > 1.

Type II
There are several definitions of the DCT-II; we use the following (for norm=\text{None})

\[ y_k = 2 \sum_{n=0}^{N-1} x_n \cos \left( \frac{\pi k(2n+1)}{2N} \right) \]

If norm='ortho', \( y[k] \) is multiplied by a scaling factor \( f \)

\[ f = \begin{cases} \sqrt{\frac{1}{4N}} & \text{if } k = 0, \\ \sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases} \]

which makes the corresponding matrix of coefficients orthonormal (\( O @ O.T = np.eye(N) \)).

Type III
There are several definitions, we use the following (for norm=\text{None})

\[ y_k = x_0 + 2 \sum_{n=1}^{N-1} x_n \cos \left( \frac{\pi (2k+1)n}{2N} \right) \]

or, for norm='ortho'

\[ y_k = \frac{x_0}{\sqrt{N}} + \sqrt{\frac{2}{N}} \sum_{n=1}^{N-1} x_n \cos \left( \frac{\pi (2k+1)n}{2N} \right) \]

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor 2N. The orthonormalized DCT-III is exactly the inverse of the orthonormalized DCT-II.

Type IV
There are several definitions of the DCT-IV; we use the following (for norm=\text{None})

\[ y_k = 2 \sum_{n=0}^{N-1} x_n \cos \left( \frac{\pi (2k+1)(2n+1)}{4N} \right) \]

If norm='ortho', \( y[k] \) is multiplied by a scaling factor \( f \)

\[ f = \frac{1}{\sqrt{2N}} \]

New in version 1.2.0: Support for DCT-IV.

References

[1], [2]
Examples

The Type 1 DCT is equivalent to the FFT (though faster) for real, even-symmetrical inputs. The output is also real and even-symmetrical. Half of the FFT input is used to generate half of the FFT output:

```python
>>> from scipy.fftpack import fft, dct
>>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
array([30., -8., 6., -2., 6., -8.])
>>> dct(np.array([4., 3., 5., 10.]), 1)
array([30., -8., 6., -2.])
```

`scipy.fftpack.idct`

Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.

**Parameters**

- x: [array_like] The input array.
- type: [{1, 2, 3, 4}, optional] Type of the DCT (see Notes). Default type is 2.
- n: [int, optional] Length of the transform. If n < x.shape[axis], x is truncated. If n > x.shape[axis], x is zero-padded. The default results in n = x.shape[axis].
- axis: [int, optional] Axis along which the idct is computed; the default is over the last axis (i.e., axis=-1).
- norm: [{None, 'ortho'}, optional] Normalization mode (see Notes). Default is None.
- overwrite_x: [bool, optional] If True, the contents of x can be destroyed; the default is False.

**Returns**

- idct: [ndarray of real] The transformed input array.

See also:

- `dct`
  Forward DCT

**Notes**

For a single dimension array x, `idct(x, norm='ortho')` is equal to MATLAB `idct(x)`.

The’ IDCT is the IDCT of type 2, which is the same as DCT of type 3.

IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type 3, and IDCT of type 3 is the DCT of type 2. IDCT of type 4 is the DCT of type 4. For the definition of these types, see `dct`. 
Examples

The Type 1 DCT is equivalent to the DFT for real, even-symmetrical inputs. The output is also real and even-symmetrical. Half of the IFFT input is used to generate half of the IFFT output:

```python
>>> from scipy.fftpack import ifft, idct
>>> ifft(np.array([30., -8., 6., -2., 6., -8.])).real
array([4., 3., 5., 10., 5., 3.])
>>> idct(np.array([30., -8., 6., -2.]), 1) / 6
array([4., 3., 5., 10.])
```

**scipy.fftpack.dctn**

Return multidimensional Discrete Cosine Transform along the specified axes.

**Parameters**

- **x** [array_like] The input array.
- **type** [{1, 2, 3, 4}, optional] Type of the DCT (see Notes). Default type is 2.
- **shape** [int or array_like of ints or None, optional] The shape of the result. If both `shape` and `axes` (see below) are None, `shape` is `x.shape`; if `shape` is None but `axes` is not None, then `shape` is `numpy.take(x.shape, axes, axis=0)` If `shape[i] > x.shape[i]`, the ith dimension is padded with zeros. If `shape[i] < x.shape[i]`, the ith dimension is truncated to length `shape[i]`. If any element of `shape` is -1, the size of the corresponding dimension of `x` is used.
- **axes** [int or array_like of ints or None, optional] Axes along which the DCT is computed. The default is over all axes.
- **norm** [{None, 'ortho'}, optional] Normalization mode (see Notes). Default is None.
- **overwrite_x** [bool, optional] If True, the contents of `x` can be destroyed; the default is False.

**Returns**

- **y** [ndarray of real] The transformed input array.

See also:

- **idctn**

  Inverse multidimensional DCT

**Notes**

For full details of the DCT types and normalization modes, as well as references, see `dct`.
Examples

```python
>>> from scipy.fftpack import dctn, idctn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
True
```

**scipy.fftpack.idctn**

*scipy.fftpack.idctn*(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False)

Return multidimensional Discrete Cosine Transform along the specified axes.

**Parameters**

- **x** [array_like] The input array.
- **type** [{1, 2, 3, 4}, optional] Type of the DCT (see Notes). Default type is 2.
- **shape** [int or array_like of ints or None, optional] The shape of the result. If both shape and axes (see below) are None, shape is x.shape; if shape is None but axes is not None, then shape is numpy.take(x.shape, axes, axis=0). If shape[i] > x.shape[i], the ith dimension is padded with zeros. If shape[i] < x.shape[i], the ith dimension is truncated to length shape[i]. If any element of shape is -1, the size of the corresponding dimension of x is used.
- **axes** [int or array_like of ints or None, optional] Axes along which the IDCT is computed. The default is over all axes.
- **norm** [{None, 'ortho'}, optional] Normalization mode (see Notes). Default is None.
- **overwrite_x** [bool, optional] If True, the contents of x can be destroyed; the default is False.

**Returns**

- **y** [ndarray of real] The transformed input array.

See also:

- **dctn**
  multidimensional DCT

**Notes**

For full details of the IDCT types and normalization modes, as well as references, see *idct*.  

**Examples**

```python
>>> from scipy.fftpack import dctn, idctn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
True
```
scipy.fftpack.dst

scipy.fftpack.dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)

Return the Discrete Sine Transform of arbitrary type sequence x.

**Parameters**

- `x` : array_like
  The input array.
- `type` : {1, 2, 3, 4}, optional
  Type of the DST (see Notes). Default type is 2.
- `n` : int, optional
  Length of the transform. If `n < x.shape[axis]`, x is truncated. If `n > x.shape[axis]`, x is zero-padded. The default results in `n = x.shape[axis]`.
- `axis` : int, optional
  Axis along which the dst is computed; the default is over the last axis (i.e., `axis=-1`).
- `norm` : [{None, 'ortho'}, optional]
  Normalization mode (see Notes). Default is None.
- `overwrite_x` : bool, optional
  If True, the contents of x can be destroyed; the default is False.

**Returns**

- `dst` : ndarray of reals
  The transformed input array.

**See also:**

- idst
  Inverse DST

**Notes**

For a single dimension array x.

There are, theoretically, 8 types of the DST for different combinations of even/odd boundary conditions and boundary offsets [1], only the first 4 types are implemented in scipy.

**Type I**

There are several definitions of the DST-I; we use the following for `norm=None`. DST-I assumes the input is odd around `n=-1` and `n=N`.

\[
y_k = 2 \sum_{n=0}^{N-1} x_n \sin \left( \frac{\pi (k + 1)(n + 1)}{N + 1} \right)
\]

Note that the DST-I is only supported for input size > 1. The (unnormalized) DST-I is its own inverse, up to a factor \(2(N+1)\). The orthonormalized DST-I is exactly its own inverse.

**Type II**

There are several definitions of the DST-II; we use the following for `norm=None`. DST-II assumes the input is odd around `n=-1/2` and `n=N-1/2`; the output is odd around `k = -1` and even around `k=N-1`.

\[
y_k = 2 \sum_{n=0}^{N-1} x_n \sin \left( \frac{\pi (k + 1)(2n + 1)}{2N} \right)
\]

if `norm='ortho'`, \(y[k]\) is multiplied by a scaling factor \(f\)

\[
f = \begin{cases} \sqrt{\frac{1}{2N}} & \text{if } k = 0, \\ \sqrt{\frac{1}{1N}} & \text{otherwise} \end{cases}
\]

**Type III**


There are several definitions of the DST-III, we use the following (for norm=None). DST-III assumes the input is odd around $n=-1$ and even around $n=N-1$

$$y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin \left( \frac{\pi(2k+1)(n+1)}{2N} \right)$$

The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up to a factor $2N$. The orthonormalized DST-III is exactly the inverse of the orthonormalized DST-II.

New in version 0.11.0.

Type IV

There are several definitions of the DST-IV, we use the following (for norm=None). DST-IV assumes the input is odd around $n=0.5$ and even around $n=N-0.5$

$$y_k = 2 \sum_{n=0}^{N-1} x_n \sin \left( \frac{\pi(2k+1)(2n+1)}{4N} \right)$$

The (unnormalized) DST-IV is its own inverse, up to a factor $2N$. The orthonormalized DST-IV is exactly its own inverse.

New in version 1.2.0: Support for DST-IV.

References

[1]

scipy.fftpack.idst

scipy.fftpack.idst ($x$, $type=2$, $n=None$, $axis=-1$, $norm=None$, $overwrite_x=False$)

Return the Inverse Discrete Sine Transform of an arbitrary type sequence.

Parameters

- **x** [array_like] The input array.
- **type** [{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.
- **n** [int, optional] Length of the transform. If $n < x$.shape[axis], $x$ is truncated. If $n > x$.shape[axis], $x$ is zero-padded. The default results in $n = x$.shape[axis].
- **axis** [int, optional] Axis along which the idst is computed; the default is over the last axis (i.e., axis=-1).
- **norm** [{None, 'ortho'}, optional] Normalization mode (see Notes). Default is None.
- **overwrite_x** [bool, optional] If True, the contents of $x$ can be destroyed; the default is False.

Returns

- **idst** [ndarray of real] The transformed input array.

See also:

- **dst**

  Forward DST
Notes

'The' IDST is the IDST of type 2, which is the same as DST of type 3.
IDST of type 1 is the DST of type 1, IDST of type 2 is the DST of type 3, and IDST of type 3 is the DST of type 2. For the definition of these types, see dst.
New in version 0.11.0.

scipy.fftpack.dstn

scipy.fftpack.dstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False)
Return multidimensional Discrete SineTransform along the specified axes.

Parameters

x [array_like] The input array.
type [{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.
shape [int or array_like of ints or None, optional] The shape of the result. If both shape and axes (see below) are None, shape is x.shape; if shape is None but axes is not None, then shape is numpy.take(x.shape, axes, axis=0). If shape[i] > x.shape[i], the ith dimension is padded with zeros. If shape[i] < x.shape[i], the ith dimension is truncated to length shape[i]. If any element of shape is -1, the size of the corresponding dimension of x is used.
axes [int or array_like of ints or None, optional] Axes along which the DCT is computed. The default is over all axes.
norm [{None, 'ortho'}, optional] Normalization mode (see Notes). Default is None.
overwrite_x [bool, optional] If True, the contents of x can be destroyed; the default is False.

Returns

y [ndarray of real] The transformed input array.

See also:

idstn

Inverse multidimensional DST

Notes

For full details of the DST types and normalization modes, as well as references, see dst.

Examples

>>> from scipy.fftpack import dstn, idstn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
True
```python
scipy.fftpack.idstn(
x, type=2, shape=None, axes=None, norm=None, overwrite_x=False)
```

Return multidimensional Discrete SineTransform along the specified axes.

**Parameters**
- `x` [array_like] The input array.
- `type` [{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.
- `shape` [int or array_like of ints or None, optional] The shape of the result. If both `shape` and `axes` (see below) are None, `shape` is `x.shape`; if `shape` is None but `axes` is not None, then `shape` is `numpy.take(x.shape, axes, axis=0)`.
  If `shape[i] > x.shape[i]`, the `i`th dimension is padded with zeros. If `shape[i] < x.shape[i]`, the `i`th dimension is truncated to length `shape[i]`. If any element of `shape` is -1, the size of the corresponding dimension of `x` is used.
- `axes` [int or array_like of ints or None, optional] Axes along which the IDST is computed. The default is over all axes.
- `norm` [{None, 'ortho'}, optional] Normalization mode (see Notes). Default is None.
- `overwrite_x` [bool, optional] If True, the contents of `x` can be destroyed; the default is False.

**Returns**
- `y` [ndarray of real] The transformed input array.

**See also:**
- `dstn`
  multidimensional DST

**Notes**

For full details of the IDST types and normalization modes, as well as references, see `idst`.

**Examples**

```python
>>> from scipy.fftpack import dstn, idstn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal((16, 16))
>>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
True
```

**Differential and pseudo-differential operators**

- `diff(x[, order, period, _cache])` Return kth derivative (or integral) of a periodic sequence `x`.
- `tilbert(x, h[, period, _cache])` Return h-Tilbert transform of a periodic sequence `x`.
- `itilbert(x, h[, period, _cache])` Return inverse h-Tilbert transform of a periodic sequence `x`.
- `hilbert(x[, _cache])` Return Hilbert transform of a periodic sequence `x`.

continues on next page
Table 22 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ilhilbert(x)</td>
<td>Return inverse Hilbert transform of a periodic sequence x.</td>
</tr>
<tr>
<td>cs_diff(x, a, b[, period, _cache])</td>
<td>Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence.</td>
</tr>
<tr>
<td>sc_diff(x, a, b[, period, _cache])</td>
<td>Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence.</td>
</tr>
<tr>
<td>ss_diff(x, a, b[, period, _cache])</td>
<td>Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence.</td>
</tr>
<tr>
<td>cc_diff(x, a, b[, period, _cache])</td>
<td>Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence.</td>
</tr>
<tr>
<td>shift(x, a[, period, _cache])</td>
<td>Shift periodic sequence x by a: y(u) = x(u+a).</td>
</tr>
</tbody>
</table>

**scipy.fftpack.diff**

scipy.fftpack.diff(x, order=1, period=None, _cache={})

Return kth derivative (or integral) of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

\[
y_j = \text{pow}(\sqrt{-1}^k \cdot 2 \cdot \pi / \text{period}, \text{order}) \cdot x_j
\]

\[
y_0 = 0 \text{ if order is not 0}.
\]

**Parameters**

- x [array_like] Input array.
- order [int, optional] The order of differentiation. Default order is 1. If order is negative, then integration is carried out under the assumption that x_0 == 0.
- period [float, optional] The assumed period of the sequence. Default period is 2*pi.

**Notes**

- If \( \text{sum}(x, \text{axis}=0) = 0 \) then \( \text{diff}(\text{diff}(x, k), -k) = x \) (within numerical accuracy).
- For odd order and even \( \text{len}(x) \), the Nyquist mode is taken zero.

**scipy.fftpack.tilbert**

scipy.fftpack.tilbert(x, h, period=None, _cache={})

Return h-Tilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

\[
y_j = \sqrt{-1}^k \cdot \coth(j \cdot h \cdot 2 \cdot \pi / \text{period}) \cdot x_j
\]

\[
y_0 = 0
\]

**Parameters**

- x [array_like] The input array to transform.
- h [float] Defines the parameter of the Tilbert transform.
- period [float, optional] The assumed period of the sequence. Default period is 2*pi.

**Returns**

- tilbert [ndarray] The result of the transform.
Notes

If \( \sum(x, \text{axis}=0) == 0 \) and \( n = \text{len}(x) \) is odd, then \( \text{tilbert}(\text{tilbert}(x)) == x \).

If \( 2 * \pi * h / \text{period} \) is approximately 10 or larger, then numerically \( \text{tilbert} == \text{hilbert} \) (theoretically \( \text{oo-Tilbert} == \text{Hilbert} \)).

For even \( \text{len}(x) \), the Nyquist mode of \( x \) is taken zero.

**scipy.fftpack.itilbert**

```
scipy.fftpack.itilbert(x, h, period=None, _cache={})
```

Return inverse h-Tilbert transform of a periodic sequence \( x \).

If \( x_j \) and \( y_j \) are Fourier coefficients of periodic functions \( x \) and \( y \), respectively, then:

\[
\begin{align*}
y_j &= -\sqrt{-1} \tan(jh \cdot 2\pi/\text{period}) \cdot x_j \\
y_0 &= 0
\end{align*}
\]

For more details, see \( \text{tilbert} \).

**scipy.fftpack.hilbert**

```
scipy.fftpack.hilbert(x, _cache={})
```

Return Hilbert transform of a periodic sequence \( x \).

If \( x_j \) and \( y_j \) are Fourier coefficients of periodic functions \( x \) and \( y \), respectively, then:

\[
\begin{align*}
y_j &= \sqrt{-1} \cdot \text{sign}(j) \cdot x_j \\
y_0 &= 0
\end{align*}
\]

**Parameters**

- \( x \) [array_like] The input array, should be periodic.
- \( _\text{cache} \) [dict, optional] Dictionary that contains the kernel used to do a convolution with.

**Returns**

- \( y \) [ndarray] The transformed input.

**See also:**

**scipy.signal.hilbert**

Compute the analytic signal, using the Hilbert transform.

**Notes**

If \( \sum(x, \text{axis}=0) == 0 \) then \( \text{hilbert}(\text{ihilbert}(x)) == x \).

For even \( \text{len}(x) \), the Nyquist mode of \( x \) is taken zero.

The sign of the returned transform does not have a factor -1 that is more often than not found in the definition of the Hilbert transform. Note also that \( \text{scipy.signal.hilbert} \) does have an extra -1 factor compared to this function.
**scipy.fftpack.ihilbert**

`scipy.fftpack.ihilbert(x)`  
Return inverse Hilbert transform of a periodic sequence `x`.

If `x_j` and `y_j` are Fourier coefficients of periodic functions `x` and `y`, respectively, then:

\[
\begin{align*}
y_j &= -\sqrt{-1} \cdot \text{sign}(j) \cdot x_j \\
y_0 &= 0
\end{align*}
\]

**scipy.fftpack.cs_diff**

`scipy.fftpack.cs_diff(x, a, b, period=None, _cache={})`  
Return `(a, b)`-cosh/sinh pseudo-derivative of a periodic sequence.

If `x_j` and `y_j` are Fourier coefficients of periodic functions `x` and `y`, respectively, then:

\[
\begin{align*}
y_j &= -\sqrt{-1} \cdot \cosh(j \cdot a^2 \cdot \pi / \text{period}) / \sinh(j \cdot b^2 \cdot \pi / \text{period}) \cdot x_j \\
y_0 &= 0
\end{align*}
\]

**Parameters**  
- `x` : array_like  
  The array to take the pseudo-derivative from.  
- `a`, `b` : float  
  Defines the parameters of the cosh/sinh pseudo-differential operator.  
- `period` : float, optional  
  The period of the sequence. Default is `2*pi`.  

**Returns**  
- `cs_diff` : ndarray  
  Pseudo-derivative of periodic sequence `x`.  

**Notes**  
For even `len(x)`, the Nyquist mode of `x` is taken as zero.

**scipy.fftpack.sc_diff**

`scipy.fftpack.sc_diff(x, a, b, period=None, _cache={})`  
Return `(a, b)`-sinh/cosh pseudo-derivative of a periodic sequence `x`.

If `x_j` and `y_j` are Fourier coefficients of periodic functions `x` and `y`, respectively, then:

\[
\begin{align*}
y_j &= \sqrt{-1} \cdot \sinh(j \cdot a^2 \cdot \pi / \text{period}) / \cosh(j \cdot b^2 \cdot \pi / \text{period}) \cdot x_j \\
y_0 &= 0
\end{align*}
\]

**Parameters**  
- `x` : array_like  
  Input array.  
- `a`, `b` : float  
  Defines the parameters of the sinh/cosh pseudo-differential operator.  
- `period` : float, optional  
  The period of the sequence `x`. Default is `2*pi`.  

---

3.3. API definition  
439


Notes

\[ \text{sc} \text{d}_{\text{iff}}(\text{cs} \text{d}_{\text{iff}}(x, a, b), b, a) = x \] For even \( \text{len}(x) \), the Nyquist mode of \( x \) is taken as zero.

**scipy.fftpack.ss_diff**

`scipy.fftpack.ss_diff(x, a, b, period=None, _cache={})`

Return \((a, b)\)-sinh/sinh pseudo-derivative of a periodic sequence \( x \).

If \( x_j \) and \( y_j \) are Fourier coefficients of periodic functions \( x \) and \( y \), respectively, then:

\[
\begin{align*}
y_j &= \frac{\sinh(j \cdot a \cdot 2 \cdot \pi / \text{period})}{\sinh(j \cdot b \cdot 2 \cdot \pi / \text{period})} \times x_j \\
y_0 &= \frac{a}{b} \times x_0
\end{align*}
\]

**Parameters**

- \( x \) [array_like] The array to take the pseudo-derivative from.
- \( a, b \) Defines the parameters of the sinh/sinh pseudo-differential operator.
- \( \text{period} \) [float, optional] The period of the sequence \( x \). Default is \( 2 \cdot \pi \).

**Notes**

\[ \text{ss} \text{d}_{\text{iff}}(\text{ss} \text{d}_{\text{iff}}(x, a, b), b, a) = x \]

**scipy.fftpack.cc_diff**

`scipy.fftpack.cc_diff(x, a, b, period=None, _cache={})`

Return \((a, b)\)-cosh/cosh pseudo-derivative of a periodic sequence.

If \( x_j \) and \( y_j \) are Fourier coefficients of periodic functions \( x \) and \( y \), respectively, then:

\[
\begin{align*}
y_j &= \frac{\cosh(j \cdot a \cdot 2 \cdot \pi / \text{period})}{\cosh(j \cdot b \cdot 2 \cdot \pi / \text{period})} \times x_j \\
y_0 &= \frac{a}{b} \times x_0
\end{align*}
\]

**Parameters**

- \( x \) [array_like] The array to take the pseudo-derivative from.
- \( a, b \) [float] Defines the parameters of the sinh/sinh pseudo-differential operator.
- \( \text{period} \) [float, optional] The period of the sequence \( x \). Default is \( 2 \cdot \pi \).

**Returns**

- \( \text{cc} \text{d}_{\text{iff}} \) [ndarray] Pseudo-derivative of periodic sequence \( x \).

**Notes**

\[ \text{cc} \text{d}_{\text{iff}}(\text{cc} \text{d}_{\text{iff}}(x, a, b), b, a) = x \]
scipy.fftpack.shift

scipy.fftpack.shift(x, a, period=None, _cache=())
Shift periodic sequence x by a: y(u) = x(u+a).
If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:
\[ y_j = \exp(j \cdot a \cdot 2 \cdot \pi / \text{period} \cdot \sqrt{-1}) \cdot x_f \]

Parameters
- x: [array_like] The array to take the pseudo-derivative from.
- a: [float] Defines the parameters of the sinh/sinh pseudo-differential
- period: [float, optional] The period of the sequences x and y. Default period is 2*pi.

Helper functions

- fftshift(x[, axes]): Shift the zero-frequency component to the center of the spectrum.
- ifftshift(x[, axes]): The inverse of fftshift.
- fftfreq(n[, d]): Return the Discrete Fourier Transform sample frequencies.
- rfftfreq(n[, d]): DFT sample frequencies (for usage with rfft, irfft).
- next_fast_len(target): Find the next fast size of input data to fft, for zero-padding, etc.

scipy.fftpack.fftshift

scipy.fftpack.fftshift(x, axes=None)
Shift the zero-frequency component to the center of the spectrum.
This function swaps half-spaces for all axes listed (defaults to all). Note that y[0] is the Nyquist component only if len(x) is even.

Parameters
- x: [array_like] Input array.
- axes: [int or shape tuple, optional] Axes over which to shift. Default is None, which shifts all axes.

Returns
- y: [ndarray] The shifted array.

See also:
- ifftshift
  The inverse of fftshift.
Examples

```python
>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([0., 1., 2., ..., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
```

Shift the zero-frequency component only along the second axis:

```python
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[0., 1., 2.],
 [3., 4., -4.],
 [-3., -2., -1.]])
>>> np.fft.fftshift(freqs, axes=(1,))
array([[2., 0., 1.],
 [-4., 3., 4.],
 [-1., -3., -2.]])
```

`scipy.fftpack.ifftshift`

`scipy.fftpack.ifftshift(x, axes=None)`

The inverse of `fftshift`. Although identical for even-length `x`, the functions differ by one sample for odd-length `x`.

**Parameters**

- `x` [array_like] Input array.
- `axes` [int or shape tuple, optional] Axes over which to calculate. Defaults to None, which shifts all axes.

**Returns**


**See also:**

`fftshift`

Shift zero-frequency component to the center of the spectrum.

Examples

```python
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[0., 1., 2.],
 [3., 4., -4.],
 [-3., -2., -1.]])
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[0., 1., 2.],
 [3., 4., -4.],
 [-3., -2., -1.]])
```
scipy.fftpack.fftfreq

**scipy.fftpack.fftfreq**\( (n, d=1.0) \)

Return the Discrete Fourier Transform sample frequencies.

The returned float array \( f \) contains the frequency bin centers in cycles per unit of the sample spacing (with zero at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length \( n \) and a sample spacing \( d \):

\[
\begin{align*}
f &= [0, 1, \ldots, n/2-1, -n/2, \ldots, -1] / (d \times n) \quad \text{if } n \text{ is even} \\
f &= [0, 1, \ldots, (n-1)/2, -(n-1)/2, \ldots, -1] / (d \times n) \quad \text{if } n \text{ is odd}
\end{align*}
\]

**Parameters**

\( n \)  
[int] Window length.

\( d \)  
[scalar, optional] Sample spacing (inverse of the sampling rate). Defaults to 1.

**Returns**

\( f \)  
[ndarray] Array of length \( n \) containing the sample frequencies.

**Examples**

```python
generate code here
```

scipy.fftpack.rfftfreq

**scipy.fftpack.rfftfreq**\( (n, d=1.0) \)

DFT sample frequencies (for usage with rfft, irfft).

The returned float array contains the frequency bins in cycles/unit (with zero at the start) given a window length \( n \) and a sample spacing \( d \):

\[
\begin{align*}
f &= [0,1,1,2,2,\ldots,n/2-1,n/2-1,n/2]/(d \times n) \quad \text{if } n \text{ is even} \\
f &= [0,1,1,2,2,\ldots,n/2-1,n/2-1,n/2,n/2]/(d \times n) \quad \text{if } n \text{ is odd}
\end{align*}
\]

**Parameters**

\( n \)  
[int] Window length.

\( d \)  
[scalar, optional] Sample spacing. Default is 1.

**Returns**

\( out \)  
[ndarray] The array of length \( n \), containing the sample frequencies.
Examples

```python
>> from scipy import fftpack
>> sig = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>> sig_fft = fftpack.rfft(sig)
>> n = sig_fft.size
>> timestep = 0.1
>> freq = fftpack.rfftfreq(n, d=timestep)
>> freq
array([0. , 1.25, 1.25, 2.5 , 2.5 , 3.75, 3.75, 5.])
```

`scipy.fftpack.next_fast_len`

`scipy.fftpack.next_fast_len(target)`

Find the next fast size of input data to `fft`, for zero-padding, etc.

SciPy's FFTPACK has efficient functions for radix \(2, 3, 4, 5\), so this returns the next composite of the prime factors 2, 3, and 5 which is greater than or equal to `target`. (These are also known as 5-smooth numbers, regular numbers, or Hamming numbers.)

**Parameters**

- `target` [int] Length to start searching from. Must be a positive integer.

**Returns**

- `out` [int] The first 5-smooth number greater than or equal to `target`.

**Notes**

New in version 0.18.0.

**Examples**

On a particular machine, an FFT of prime length takes 133 ms:

```python
>>> from scipy import fftpack
>>> rng = np.random.default_rng()
>>> min_len = 10007 # prime length is worst case for speed
>>> a = rng.standard_normal(min_len)
>>> b = fftpack.fft(a)
```

Zero-padding to the next 5-smooth length reduces computation time to 211 us, a speedup of 630 times:

```python
>>> fftpack.next_fast_len(min_len)
10125
>>> b = fftpack.fft(a, 10125)
```

Rounding up to the next power of 2 is not optimal, taking 367 us to compute, 1.7 times as long as the 5-smooth size:

```python
>>> b = fftpack.fft(a, 16384)
```

Note that `fftshift`, `ifftshift` and `fftfreq` are numpy functions exposed by `fftpack`; importing them from numpy should be preferred.
Convolutions (scipy.fftpack.convolve)

```python
convolve(x, omega[, swap_real_imag, overwrite_x])
```
Wrapper for `convolve`.

```python
convolve_z(x, omega_real, omega_imag[, overwrite_x])
```
Wrapper for `convolve_z`.

```python
init_convolution_kernel(...)
```
Wrapper for `init_convolution_kernel`.

```python
destroy_convolve_cache
```

**scipy.fftpack.convolve.convolve**

`scipy.fftpack.convolve.convolve(x, omega[, swap_real_imag, overwrite_x])`
Wrapper for `convolve`.

**Parameters**

- `x` : [input rank-1 array('d') with bounds (n)]
- `omega` : [input rank-1 array('d') with bounds (n)]

**Returns**

- `y` : [rank-1 array('d') with bounds (n) and x storage]

**Other Parameters**

- `overwrite_x` : [input int, optional] Default: 0
- `swap_real_imag` : [input int, optional] Default: 0

**scipy.fftpack.convolve.convolve_z**

`scipy.fftpack.convolve.convolve_z(x, omega_real, omega_imag[, overwrite_x])`
Wrapper for `convolve_z`.

**Parameters**

- `x` : [input rank-1 array('d') with bounds (n)]
- `omega_real` : [input rank-1 array('d') with bounds (n)]
- `omega_imag` : [input rank-1 array('d') with bounds (n)]

**Returns**

- `y` : [rank-1 array('d') with bounds (n) and x storage]

**Other Parameters**

- `overwrite_x` : [input int, optional] Default: 0
**scipy.fftpack.convolve.init_convolution_kernel**

```python
scipy.fftpack.convolve.init_convolution_kernel(n, kernel_func[, d, zero_nyquist, kernel_func_extra_args])
```

Wrapper for `init_convolution_kernel`.

**Parameters**

- `n` [input int]
- `kernel_func` [call-back function]

**Returns**

- `omega` [rank-1 array('d') with bounds (n)]

**Other Parameters**

- `d` [input int, optional] Default: 0
- `kernel_func_extra_args` [input tuple, optional] Default: ()
- `zero_nyquist` [input int, optional] Default: d%2

**Notes**

Call-back functions:

```python
def kernel_func(k):
 return kernel_func

Required arguments:
 k : input int

Return objects:
 kernel_func : float
```

**scipy.fftpack.convolve.destroy_convolve_cache**

```python
scipy.fftpack.convolve.destroy_convolve_cache()
```

### 3.3.7 Integration and ODEs (**scipy.integrate**)

Integrating functions, given function object

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>quad</code></td>
<td>Compute a definite integral.</td>
</tr>
<tr>
<td><code>quad_vec</code></td>
<td>Adaptive integration of a vector-valued function.</td>
</tr>
<tr>
<td><code>dblquad</code></td>
<td>Compute a double integral.</td>
</tr>
<tr>
<td><code>tplquad</code></td>
<td>Compute a triple (definite) integral.</td>
</tr>
<tr>
<td><code>nquad</code></td>
<td>Integration over multiple variables.</td>
</tr>
<tr>
<td><code>fixed_quad</code></td>
<td>Compute a definite integral using fixed-order Gaussian quadrature.</td>
</tr>
<tr>
<td><code>quadrature</code></td>
<td>Compute a definite integral using fixed-tolerance Gaussian quadrature.</td>
</tr>
<tr>
<td><code>romberg</code></td>
<td>Romberg integration of a callable function or method.</td>
</tr>
<tr>
<td><code>quad_explain</code></td>
<td>Print extra information about integrate.quad() parameters and returns.</td>
</tr>
</tbody>
</table>

continues on next page
newton_cotes(rn[, equal])

Return weights and error coefficient for Newton-Cotes integration.

IntegrationWarning

Warning on issues during integration.

AccuracyWarning


Table 25 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>newton_cotes</td>
<td>Return weights and error coefficient for Newton-Cotes integration.</td>
</tr>
<tr>
<td>IntegrationWarning</td>
<td>Warning on issues during integration.</td>
</tr>
<tr>
<td>AccuracyWarning</td>
<td></td>
</tr>
</tbody>
</table>

**scipy.integrate.quad**

Compute a definite integral.

Integrate func from a to b (possibly infinite interval) using a technique from the Fortran library QUADPACK.

**Parameters**

- **func**: [[function, scipy.LowLevelCallable]] A Python function or method to integrate. If func takes many arguments, it is integrated along the axis corresponding to the first argument. If the user desires improved integration performance, then f may be a scipy.LowLevelCallable with one of the signatures:
  
  - double func(double x)
  - double func(double x, void *user_data)
  - double func(int n, double *xx)
  - double func(int n, double *xx, void *user_data)

  The user_data is the data contained in the scipy.LowLevelCallable. In the call forms with xx, n is the length of the xx array which contains xx[0] == x and the rest of the items are numbers contained in the args argument of quad.

  In addition, certain ctypes call signatures are supported for backward compatibility, but those should not be used in new code.

- **a**: [float] Lower limit of integration (use numpy.inf for -infinity).
- **b**: [float] Upper limit of integration (use numpy.inf for +infinity).
- **args**: [tuple, optional] Extra arguments to pass to func.
- **full_output**: [int, optional] Non-zero to return a dictionary of integration information. If non-zero, warning messages are also suppressed and the message is appended to the output tuple.

**Returns**

- **y**: [float] The integral of func from a to b.
- **abserr**: [float] An estimate of the absolute error in the result.
- **infodict**: [dict] A dictionary containing additional information. Run scipy.integrate.quad_explain() for more information.
- **message**: A convergence message.
- **explain**: Appended only with ‘cos’ or ‘sin’ weighting and infinite integration limits, it contains an explanation of the codes in infodict[‘ierlst’]

**Other Parameters**

- **epsabs**: [float or int, optional] Absolute error tolerance. Default is 1.49e-8. quad tries to obtain an accuracy of abs(i-result) <= max(epsabs, epsrel*abs(i)) where i = integral of func from a to b, and result is the numerical approximation. See epsrel below.
- **epsrel**: [float or int, optional] Relative error tolerance. Default is 1.49e-8. If epsabs <= 0, epsrel must be greater than both 5e-29 and 50 * (machine epsilon). See epsabs above.
- **limit**: [float or int, optional] An upper bound on the number of subintervals used in the adaptive algorithm.
points  [(sequence of floats, ints), optional] A sequence of break points in the bounded integration interval where local difficulties of the integrand may occur (e.g., singularities, discontinu-
ities). The sequence does not have to be sorted. Note that this option cannot be used in conjunction with weight.

weight  [float or int, optional] String indicating weighting function. Full explanation for this and the remaining arguments can be found below.

wvar  [optional] Variables for use with weighting functions.

wopts  [optional] Optional input for reusing Chebyshev moments.

maxp1  [float or int, optional] An upper bound on the number of Chebyshev moments.

limlst  [int, optional] Upper bound on the number of cycles (>=3) for use with a sinusoidal weighting and an infinite end-point.

See also:

dblquad
double integral

tplquad
triple integral

nquad
n-dimensional integrals (uses quad recursively)

fixed_quad
fixed-order Gaussian quadrature

quadrature
adaptive Gaussian quadrature

odeint
ODE integrator

ode
ODE integrator

simpson
integrator for sampled data

romb
integrator for sampled data

scipy.special
for coefficients and roots of orthogonal polynomials
Notes

Extra information for quad() inputs and outputs

If full_output is non-zero, then the third output argument (infodict) is a dictionary with entries as tabulated below. For infinite limits, the range is transformed to (0,1) and the optional outputs are given with respect to this transformed range. Let M be the input argument limit and let K be infodict['last']. The entries are:

'neval'

The number of function evaluations.

'last'

The number, K, of subintervals produced in the subdivision process.

'alist'

A rank-1 array of length M, the first K elements of which are the left end points of the subintervals in the partition of the integration range.

'blist'

A rank-1 array of length M, the first K elements of which are the right end points of the subintervals.

'rlist'

A rank-1 array of length M, the first K elements of which are the integral approximations on the subintervals.

'elist'

A rank-1 array of length M, the first K elements of which are the moduli of the absolute error estimates on the subintervals.

'iord'

A rank-1 integer array of length M, the first L elements of which are pointers to the error estimates over the subintervals with $L = K$ if $K \leq M/2 + 2$ or $L = M + 1 - K$ otherwise. Let $I$ be the sequence infodict['iord'] and let $E$ be the sequence infodict['elist']. Then $E[I[1]], \ldots, E[I[L]]$ forms a decreasing sequence.

If the input argument points is provided (i.e., it is not None), the following additional outputs are placed in the output dictionary. Assume the points sequence is of length $P$.

'pts'

A rank-1 array of length $P+2$ containing the integration limits and the break points of the intervals in ascending order. This is an array giving the subintervals over which integration will occur.

'level'

A rank-1 integer array of length $M (=limit)$, containing the subdivision levels of the subintervals, i.e., if $(aa, bb)$ is a subinterval of $(pts[1], pts[2])$ where $pts[0]$ and $pts[2]$ are adjacent elements of infodict['pts'], then $(aa, bb)$ has level $l$ if $|bb-aa| = |pts[2]-pts[1]| * 2^{*(-l)}$.

'ndin'

A rank-1 integer array of length $P+2$. After the first integration over the intervals $(pts[1], pts[2])$, the error estimates over some of the intervals may have been increased artificially in order to put their subdivision forward. This array has ones in slots corresponding to the subintervals for which this happens.

Weighting the integrand

The input variables, weight and wvar, are used to weight the integrand by a select list of functions. Different integration methods are used to compute the integral with these weighting functions, and these do not support specifying break points. The possible values of weight and the corresponding weighting functions are.
wvar holds the parameter w, (alpha, beta), or c depending on the weight selected. In these expressions, a and b are the integration limits.

For the ‘cos’ and ‘sin’ weighting, additional inputs and outputs are available.

For finite integration limits, the integration is performed using a Clenshaw-Curtis method which uses Chebyshev moments. For repeated calculations, these moments are saved in the output dictionary:

‘momcom’

The maximum level of Chebyshev moments that have been computed, i.e., if \( M_c \) is infodict[‘momcom’] then the moments have been computed for intervals of length \(|b-a| * 2**(-l)|\), \( l=0,1,\ldots,M_c \).

‘nnlog’

A rank-1 integer array of length \( M(=\text{limit}) \), containing the subdivision levels of the subintervals, i.e., an element of this array is equal to \( l \) if the corresponding subinterval is \(|b-a|* 2**(-l)|\).

‘chebmo’

A rank-2 array of shape (25, maxp1) containing the computed Chebyshev moments. These can be passed on to an integration over the same interval by passing this array as the second element of the sequence wopts and passing infodict[‘momcom’] as the first element.

If one of the integration limits is infinite, then a Fourier integral is computed (assuming w neq 0). If full_output is 1 and a numerical error is encountered, besides the error message attached to the output tuple, a dictionary is also appended to the output tuple which translates the error codes in the array info[‘ierlst’] to English messages. The output information dictionary contains the following entries instead of ‘last’, ‘alist’, ‘blist’, ‘rlist’, and ‘elist’:

‘lst’

The number of subintervals needed for the integration (call it \( K_f \)).

‘rslist’

A rank-1 array of length \( M_f=\text{limlst} \), whose first \( K_f \) elements contain the integral contribution over the interval \((a+(k-1)c, a+kc)\) where \( c = (2*\text{floor}(|w|) + 1) * \pi / |w| \) and \( k=1,2,\ldots,K_f \).

‘erlst’

A rank-1 array of length \( M_f \) containing the error estimate corresponding to the interval in the same position in infodict[‘rslist’].

‘ierlst’

A rank-1 integer array of length \( M_f \) containing an error flag corresponding to the interval in the same position in infodict[‘rslist’]. See the explanation dictionary (last entry in the output tuple) for the meaning of the codes.
Examples

Calculate $\int_0^4 x^2 \, dx$ and compare with an analytic result

```python
>>> from scipy import integrate
>>> x2 = lambda x: x**2
>>> integrate.quad(x2, 0, 4)
(21.333333333333332, 2.3684757858670003e-13)
>>> print(4**3 / 3.) # analytical result
21.3333333333
```

Calculate $\int_0^\infty e^{-x} \, dx$

```python
>>> invexp = lambda x: np.exp(-x)
>>> integrate.quad(invexp, 0, np.inf)
(1.0, 5.842605999138044e-11)
```

Calculate $\int_0^{1} x^2 + y^2 \, dx$ with ctypes, holding y parameter as 1:

```python
testlib.c =>
 double func(int n, double args[n]){
 return args[0]*args[0] + args[1]*args[1];
 }
compile to library testlib.*
```

```python
from scipy import integrate
import ctypes
lib = ctypes.CDLL('/home/.../testlib.*') #use absolute path
lib.func.restype = ctypes.c_double
lib.func.argtypes = (ctypes.c_int, ctypes.c_double)
integrate.quad(lib.func, 0, 1, (1))
#(1.3333333333333333, 1.4802973661668752e-14)
print((1.0**3/3.0 + 1.0) - (0.0**3/3.0 + 0.0)) #Analytic result
1.3333333333333333
```

Be aware that pulse shapes and other sharp features as compared to the size of the integration interval may not be integrated correctly using this method. A simplified example of this limitation is integrating a y-axis reflected step function with many zero values within the integrals bounds.

```python
>>> y = lambda x: 1 if x<=0 else 0
>>> integrate.quad(y, -1, 1)
(1.0, 1.1102230246251565e-14)
>>> integrate.quad(y, -1, 100)
(1.0000000000000002199108, 1.0189464580163188e-08)
>>> integrate.quad(y, -1, 10000)
(0.0, 0.0)
```
Adaptive integration of a vector-valued function.

**Parameters**

- `f` [callable] Vector-valued function $f(x)$ to integrate.
- `a` [float] Initial point.
- `b` [float] Final point.
- `epsabs` [float, optional] Absolute tolerance.
- `epsrel` [float, optional] Relative tolerance.
- `norm` [{'max', '2'}, optional] Vector norm to use for error estimation.
- `cache_size` [int, optional] Number of bytes to use for memoization.
- `workers` [int or map-like callable, optional] If `workers` is an integer, part of the computation is done in parallel subdivided to this many tasks (using `multiprocessing.pool.Pool`). Supply -1 to use all cores available to the Process. Alternatively, supply a map-like callable, such as `multiprocessing.pool.Pool.map` for evaluating the population in parallel. This evaluation is carried out as `workers(func, iterable)`.
- `points` [list, optional] List of additional breakpoints.
- `full_output` [bool, optional] Return an additional info dictionary.
- `args` [tuple, optional] Extra arguments to pass to function, if any.

New in version 1.8.0.

**Returns**

- `res` [[float, array-like]] Estimate for the result
- `err` [float] Error estimate for the result in the given norm
- `info` [dict] Returned only when `full_output=True`. Info dictionary. Is an object with the attributes:
  - `status` [int] Indicator for convergence, success (0), failure (1), and failure due to rounding error (2).
  - `neval` [int] Number of function evaluations.
  - `intervals` [ndarray, shape (num_intervals, 2)] Start and end points of subdivision intervals.
  - `integrals` [ndarray, shape (num_intervals, …)] Integral for each interval. Note that at most `cache_size` values are recorded, and the array may contains `nan` for missing items.
  - `errors` [ndarray, shape (num_intervals,)] Estimated integration error for each interval.
Notes

The algorithm mainly follows the implementation of QUADPACK’s DQAG* algorithms, implementing global error control and adaptive subdivision.

The algorithm here has some differences to the QUADPACK approach:

Instead of subdividing one interval at a time, the algorithm subdivides N intervals with largest errors at once. This enables (partial) parallelization of the integration.

The logic of subdividing “next largest” intervals first is then not implemented, and we rely on the above extension to avoid concentrating on “small” intervals only.

The Wynn epsilon table extrapolation is not used (QUADPACK uses it for infinite intervals). This is because the algorithm here is supposed to work on vector-valued functions, in an user-specified norm, and the extension of the epsilon algorithm to this case does not appear to be widely agreed. For max-norm, using elementwise Wynn epsilon could be possible, but we do not do this here with the hope that the epsilon extrapolation is mainly useful in special cases.

References


Examples

We can compute integrations of a vector-valued function:

```python
>>> from scipy.integrate import quad_vec
>>> import matplotlib.pyplot as plt
>>> alpha = np.linspace(0.0, 2.0, num=30)
>>> f = lambda x: x**alpha
>>> x0, x1 = 0, 2
>>> y, err = quad_vec(f, x0, x1)
>>> plt.plot(alpha, y)
>>> plt.xlabel(r'α')
>>> plt.ylabel(r'$\int_0^2 x^\alpha dx$')
>>> plt.show()
```

`scipy.integrate.dblquad`

`scipy.integrate.dblquad`(`func`, `a`, `b`, `gfun`, `hfun`, `args=()`, `epsabs=1.49e-08`, `epsrel=1.49e-08`)  
Compute a double integral.

Return the double (definite) integral of `func(y, x)` from `x = a..b` and `y = gfun(x) .. hfun(x).

Parameters

- **func**  
  [callable] A Python function or method of at least two variables: y must be the first argument and x the second argument.
- **a, b**  
  [float] The limits of integration in x: `a < b`
- **gfun**  
  [callable or float] The lower boundary curve in y which is a function taking a single floating point argument (x) and returning a floating point result or a float indicating a constant boundary curve.
- **hfun**  
  [callable or float] The upper boundary curve in y (same requirements as `gfun`).
- **args**  
  [sequence, optional] Extra arguments to pass to `func`. 

3.3. API definition 453

epsabs  [float, optional] Absolute tolerance passed directly to the inner 1-D quadrature integration. Default is 1.49e-8. *dblquad* tries to obtain an accuracy of \( \text{abs}(i - \text{result}) \leq \max(\text{epsabs}, \text{epsrel} \times \text{abs}(i)) \) where \( i \) is the inner integral of \( \text{func}(y, x) \) from \( gfun(x) \) to \( hfun(x) \), and \( \text{result} \) is the numerical approximation. See *epsrel* below.

epsrel  [float, optional] Relative tolerance of the inner 1-D integrals. Default is 1.49e-8. If \( \text{epsabs} \leq 0 \), \( \text{epsrel} \) must be greater than both 5e-29 and 50 \times \text{(machine epsilon)}. See *epsabs* above.

Returns

\text{y}  [float] The resultant integral.
\text{abserr}  [float] An estimate of the error.

See also:

quad  single integral
tplquad  triple integral
nquad  N-dimensional integrals
fixed_quad  fixed-order Gaussian quadrature
quadrature  adaptive Gaussian quadrature
odeint  ODE integrator
ode  ODE integrator
**simpson**
integrator for sampled data

**romb**
integrator for sampled data

**scipy.special**
for coefficients and roots of orthogonal polynomials

**Examples**

Compute the double integral of $x \cdot y^2$ over the box $x$ ranging from 0 to 2 and $y$ ranging from 0 to 1.

```python
>>> from scipy import integrate
>>> f = lambda y, x: x * y**2
>>> integrate.dblquad(f, 0, 2, lambda x: 0, lambda x: 1)
(0.6666666666666667, 7.401486830834377e-15)
```

**scipy.integrate.tplquad**

Compute a triple (definite) integral.

Return the triple integral of $\func(z, y, x)$ from $x = a..b$, $y = gfun(x) .. hfun(x)$, and $z = qfun(x,y) .. rfun(x,y)$.

**Parameters**

- **func** [function] A Python function or method of at least three variables in the order $(z, y, x)$.
- **a, b** [float] The limits of integration in $x$: $a < b$
- **gfun** [function or float] The lower boundary curve in $y$ which is a function taking a single floating point argument ($x$) and returning a floating point result or a float indicating a constant boundary curve.
- **hfun** [function or float] The upper boundary curve in $y$ (same requirements as `gfun`).
- **qfun** [function or float] The lower boundary surface in $z$. It must be a function that takes two floats in the order ($x, y$) and returns a float or a float indicating a constant boundary surface.
- **rfun** [function or float] The upper boundary surface in $z$. (Same requirements as `qfun`).
- **args** [tuple, optional] Extra arguments to pass to `func`.
- **epsabs** [float, optional] Absolute tolerance passed directly to the innermost 1-D quadrature integration. Default is 1.49e-8.
- **epsrel** [float, optional] Relative tolerance of the innermost 1-D integrals. Default is 1.49e-8.

**Returns**

- **y** [float] The resultant integral.
- **abserr** [float] An estimate of the error.

**See also:**

- **quad**
  Adaptive quadrature using QUADPACK
- **quadrature**
  Adaptive Gaussian quadrature
fixed_quad
    Fixed-order Gaussian quadrature
dblquad
    Double integrals
nquad
    N-dimensional integrals
romb
    Integrators for sampled data
simpson
    Integrators for sampled data
ode
    ODE integrators
odeint
    ODE integrators
scipy.special
    For coefficients and roots of orthogonal polynomials

Examples

Compute the triple integral of $x \cdot y \cdot z$, over $x$ ranging from 1 to 2, $y$ ranging from 2 to 3, $z$ ranging from 0 to 1.

```python
>>> from scipy import integrate
>>> f = lambda z, y, x: x * y * z
>>> integrate.tplquad(f, 1, 2, lambda x: 2, lambda x: 3, ...
 lambda x, y: 0, lambda x, y: 1)
(1.875, 3.324644794257407e-14)
```

scipy.integrate.nquad

scipy.integrate.nquad(func, ranges, args=None, opts=None, full_output=False)

Integration over multiple variables.

Wraps `quad` to enable integration over multiple variables. Various options allow improved integration of discontinuous functions, as well as the use of weighted integration, and generally finer control of the integration process.

**Parameters**

- **func**
  - `func` ([callable, scipy.LowLevelCallable]) The function to be integrated. Has arguments of $x_0$, $x_n$, $t_0$, ..., $t_m$, where integration is carried out over $x_0$, $x_n$, which must be floats. Where `$t_0$, ..., $t_m$' are extra arguments passed in `args`. Function signature should be `func(x0, x1, ..., xn, t0, t1, ..., tm)`. Integration is carried out in order. That is, integration over $x_0$ is the innermost integral, and $x_n$ is the outermost. If the user desires improved integration performance, then $f$ may be a `scipy.LowLevelCallable` with one of the signatures:
double func(int n, double *xx)
double func(int n, double *xx, void *user_data)

where \( n \) is the number of variables and args. The \( xx \) array contains the coordinates and extra arguments. \( \texttt{user
data} \) is the data contained in the \( \texttt{scipy.LowLevelCallable} \).

**ranges**

[iterable object] Each element of ranges may be either a sequence of 2 numbers, or else a callable that returns such a sequence. \( \texttt{ranges[0]} \) corresponds to integration over \( x_0 \) and so on. If an element of ranges is a callable, then it will be called with all of the integration arguments available, as well as any parametric arguments. e.g., if \( \text{func} = f(x_0, x_1, x_2, t_0, t_1) \), then \( \texttt{ranges[0]} \) may be defined as either \( (a, b) \) or else as \( (a, b) = \text{range0}(x_1, x_2, t_0, t_1) \).

**args**

[iterable object, optional] Additional arguments \( t_0, \ldots, t_n \), required by \( \text{func}, \text{ranges}, \) and \( \text{opts} \).

**opts**

[iterable object or dict, optional] Options to be passed to \( \texttt{quad} \). May be empty, a dict, or a sequence of dicts or functions that return a dict. If empty, the default options from \( \texttt{scipy.integrate.quad} \) are used. If a dict, the same options are used for all levels of integration. If a sequence, then each element of the sequence corresponds to a particular integration. e.g., \( \texttt{opts[0]} \) corresponds to integration over \( x_0 \), and so on. If a callable, the signature must be the same as for \( \text{ranges} \). The available options together with their default values are:

- \( \text{epsabs} = 1.49e-08 \)
- \( \text{epsrel} = 1.49e-08 \)
- \( \text{limit} = 50 \)
- \( \text{points} = \text{None} \)
- \( \text{weight} = \text{None} \)
- \( \text{wvar} = \text{None} \)
- \( \text{wopts} = \text{None} \)

For more information on these options, see \( \texttt{quad} \) and \( \texttt{quad_explain} \).

**full_output**

[bool, optional] Partial implementation of \( \texttt{full_output} \) from \( \texttt{scipy.integrate.quad} \). The number of integrand function evaluations \( \text{neval} \) can be obtained by setting \( \texttt{full_output=True} \) when calling \( \texttt{nquad} \).

**Returns**

- result [float] The result of the integration.
- abserr [float] The maximum of the estimates of the absolute error in the various integration results.
- out_dict [dict, optional] A dict containing additional information on the integration.

See also:

- \( \texttt{quad} \)
  1-D numerical integration
- \( \texttt{dblquad, tplquad} \)
  double and triple integrals
- \( \texttt{fixed_quad} \)
  fixed-order Gaussian quadrature
- \( \texttt{quadrature} \)
  adaptive Gaussian quadrature
Examples

```python
>>> from scipy import integrate
>>> func = lambda x0,x1,x2,x3 : x0**2 + x1*x2 - x3**3 + np.sin(x0) + (1 if x0-.2*x3-.5-.25*x1>0 else 0)
>>> def opts0(*args, **kwargs):
... return {'points':[0.2*args[2] + 0.5 + 0.25*args[0]]}
>>> integrate.nquad(func, [[0,1], [-1,1], [.13,.8], [-.15,1]],
... opts=[opts0,{}],{}), full_output=True)
(1.5267454070738633, 2.9437360001402324e-14, {'neval': 388962})
>>> scale = .1
>>> def func2(x0, x1, x2, x3, t0, t1):
... return x0*x1*x3**2 + np.sin(x2) + 1 + (1 if x0+t1*x1-t0>0 else 0)
>>> def lim0(x1, x2, x3, t0, t1):
... return [scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) - 1,
... scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) + 1]
>>> def lim1(x2, x3, t0, t1):
... return [scale * (t0*x2 + t1*x3) - 1,
... scale * (t0*x2 + t1*x3) + 1]
>>> def lim2(x3, t0, t1):
... return [scale * (x3 + t0**2*t1**3) - 1,
... scale * (x3 + t0**2*t1**3) + 1]
>>> def lim3(t0, t1):
... return [scale * (t0+t1) - 1, scale * (t0+t1) + 1]
>>> def opts0(x1, x2, x3, t0, t1):
... return {'points' : [t0 - t1*x1]}
>>> def opts1(x2, x3, t0, t1):
... return {}
>>> def opts2(x3, t0, t1):
... return {}
>>> def opts3(t0, t1):
... return {}
>>> integrate.nquad(func2, [lim0, lim1, lim2, lim3], args=(0,0),
... opts=[opts0, opts1, opts2, opts3])
(25.066666666666666, 2.782959048393725e-13)
```

**scipy.integrate.fixed_quad**

`scipy.integrate.fixed_quad(func, a, b, args=(), n=5)`

Compute a definite integral using fixed-order Gaussian quadrature.

Integrate `func` from `a` to `b` using Gaussian quadrature of order `n`.

**Parameters**

- `func` [callable] A Python function or method to integrate (must accept vector inputs). If integrating a vector-valued function, the returned array must have shape \((..., \text{len}(x))\).
- `a` [float] Lower limit of integration.
- `b` [float] Upper limit of integration.
- `args` [tuple, optional] Extra arguments to pass to function, if any.
- `n` [int, optional] Order of quadrature integration. Default is 5.

**Returns**

- `val` [float] Gaussian quadrature approximation to the integral.
None [None] Statically returned value of None

See also:

quad
adaptive quadrature using QUADPACK
dblquad
double integrals
tplquad
triple integrals
romberg
adaptive Romberg quadrature
quad
ture
adaptive Gaussian quadrature
romb
integrators for sampled data
simps
integrators for sampled data
cumulative_trapezoid
cumulative integration for sampled data
de
ODE integrator
deint
ODE integrator

Examples

```python
>>> from scipy import integrate
>>> f = lambda x: x**8
>>> integrate.fixed_quad(f, 0.0, 1.0, n=4)
(0.1110884353741496, None)
>>> integrate.fixed_quad(f, 0.0, 1.0, n=5)
(0.1111111111111102, None)
>>> print(1/9.0) # analytical result
0.1111111111111111
```

```python
>>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=4)
(0.9999999771971152, None)
>>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=5)
(1.000000000039565, None)
>>> np.sin(np.pi/2)-np.sin(0) # analytical result
1.0
```
**scipy.integrate.quadrature**

*scipy.integrate.quadrature*(func, a, b, args=(), tol=1.49e-08, rtol=1.49e-08, maxiter=50, vec_func=True, miniter=1)

Compute a definite integral using fixed-tolerance Gaussian quadrature.

Integrate func from a to b using Gaussian quadrature with absolute tolerance tol.

**Parameters**

- **func** [function] A Python function or method to integrate.
- **a** [float] Lower limit of integration.
- **b** [float] Upper limit of integration.
- **args** [tuple, optional] Extra arguments to pass to function.
- **tol, rtol** [float, optional] Iteration stops when error between last two iterates is less than tol OR the relative change is less than rtol.
- **maxiter** [int, optional] Maximum order of Gaussian quadrature.
- **vec_func** [bool, optional] True or False if func handles arrays as arguments (is a “vector” function). Default is True.
- **miniter** [int, optional] Minimum order of Gaussian quadrature.

**Returns**

- **val** [float] Gaussian quadrature approximation (within tolerance) to integral.
- **err** [float] Difference between last two estimates of the integral.

**See also:**

- **romberg**
  adaptive Romberg quadrature
- **fixed_quad**
  fixed-order Gaussian quadrature
- **quad**
  adaptive quadrature using QUADPACK
- **dblquad**
  double integrals
- **tplquad**
  triple integrals
- **romb**
  integrator for sampled data
- **simpson**
  integrator for sampled data
- **cumulative_trapezoid**
  cumulative integration for sampled data
- **ode**
  ODE integrator
- **odeint**
  ODE integrator
Examples

```python
>>> from scipy import integrate
>>> f = lambda x: x**8
>>> integrate.quadrature(f, 0.0, 1.0)
(0.11111111111111106, 4.16333634234337e-17)
>>> print(1/9.0) # analytical result
0.1111111111111111

>>> integrate.quadrature(np.cos, 0.0, np.pi/2)
(0.9999999999999536, 3.9611425250996035e-11)
>>> np.sin(np.pi/2)-np.sin(0) # analytical result
1.0
```

scipy.integrate.romberg

scipy.integrate.romberg (function, a, b, args=(), tol=1.48e-08, rtol=1.48e-08, show=False, divmax=10, vec_func=False)

Romberg integration of a callable function or method.

Returns the integral of function (a function of one variable) over the interval (a, b).

If show is 1, the triangular array of the intermediate results will be printed. If vec_func is True (default is False), then function is assumed to support vector arguments.

Parameters

- function: [callable] Function to be integrated.
- a: [float] Lower limit of integration.
- b: [float] Upper limit of integration.

Returns

- results: [float] Result of the integration.

Other Parameters

- args: [tuple, optional] Extra arguments to pass to function. Each element of args will be passed as a single argument to func. Default is to pass no extra arguments.
- tol, rtol: [float, optional] The desired absolute and relative tolerances. Defaults are 1.48e-8.
- show: [bool, optional] Whether to print the results. Default is False.
- vec_func: [bool, optional] Whether func handles arrays as arguments (i.e., whether it is a “vector” function). Default is False.

See also:

- fixed_quad
  Fixed-order Gaussian quadrature.
- quad
  Adaptive quadrature using QUADPACK.
- dblquad
  Double integrals.
**tplquad**

Triple integrals.

**romb**

Integrators for sampled data.

**simpson**

Integrators for sampled data.

**cumulative_trapezoid**

Cumulative integration for sampled data.

**ode**

ODE integrator.

**odeint**

ODE integrator.

References

[1]

Examples

Integrate a gaussian from 0 to 1 and compare to the error function.

```python
>>> from scipy import integrate
>>> from scipy.special import erf
>>> gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)
>>> result = integrate.romberg(gaussian, 0, 1, show=True)
Romberg integration of <function vfunc at ...> from [0, 1]

<table>
<thead>
<tr>
<th>Steps</th>
<th>StepSize</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000000</td>
<td>0.385872</td>
</tr>
<tr>
<td>2</td>
<td>0.500000</td>
<td>0.412631</td>
</tr>
<tr>
<td>4</td>
<td>0.250000</td>
<td>0.419184</td>
</tr>
<tr>
<td>8</td>
<td>0.125000</td>
<td>0.420810</td>
</tr>
<tr>
<td>16</td>
<td>0.062500</td>
<td>0.421350</td>
</tr>
<tr>
<td>32</td>
<td>0.031250</td>
<td>0.421350</td>
</tr>
</tbody>
</table>

The final result is 0.421350396475 after 33 function evaluations.

```python
>>> print("%g %g" % (2*result, erf(1)))
0.842701 0.842701
```
scipy.integrate.quad_explain

`scipy.integrate.quad_explain(output=<_io.TextIOWrapper name='<stdout>' mode='w', encoding='utf-8'>)`

Print extra information about `integrate.quad` parameters and returns.

Parameters

- `output` [instance with “write” method, optional] Information about `quad` is passed to `output.write()`. Default is `sys.stdout`.

Returns

- `None`

Examples

We can show detailed information of the `integrate.quad` function in stdout:

```python
>>> from scipy.integrate import quad_explain
>>> quad_explain()
```

scipy.integrate.newton_cotes

`scipy.integrate.newton_cotes(rn, equal=0)`

Return weights and error coefficient for Newton-Cotes integration.

Suppose we have \((N+1)\) samples of \(f\) at the positions \(x_0, x_1, \ldots, x_N\). Then an \(N\)-point Newton-Cotes formula for the integral between \(x_0\) and \(x_N\) is:

\[
\int_{x_0}^{x_N} f(x) \, dx = \Delta x \sum_{i=0}^{N} a_i f(x_i) + B_N (\Delta x)^{N+2} f^{N+1}(\xi)
\]

where \(\xi \in [x_0, x_N]\) and \(\Delta x = \frac{x_N - x_0}{N}\) is the average samples spacing.

If the samples are equally-spaced and \(N\) is even, then the error term is \(B_N (\Delta x)^{N+3} f^{N+2}(\xi)\).

Parameters

- `rn` [int] The integer order for equally-spaced data or the relative positions of the samples with the first sample at 0 and the last at \(N\), where \(N+1\) is the length of \(rn\). \(N\) is the order of the Newton-Cotes integration.
- `equal` [int, optional] Set to 1 to enforce equally spaced data.

Returns

- `an` [ndarray] 1-D array of weights to apply to the function at the provided sample positions.
- `B` [float] Error coefficient.

Notes

Normally, the Newton-Cotes rules are used on smaller integration regions and a composite rule is used to return the total integral.

3.3. API definition 463
Examples

Compute the integral of sin(x) in [0, π]:

```python
>>> from scipy.integrate import newton_cotes
>>> def f(x):
...     return np.sin(x)
>>> a = 0
>>> b = np.pi
>>> exact = 2
>>> for N in [2, 4, 6, 8, 10]:
...     x = np.linspace(a, b, N + 1)
...     an, B = newton_cotes(N, 1)
...     dx = (b - a) / N
...     quad = dx * np.sum(an * f(x))
...     error = abs(quad - exact)
...     print('{:2d} {:10.9f} {:.5e}'.format(N, quad, error))
... 2 2.094395102 9.43951e-02
 4 1.998570732 1.42927e-03
 6 2.000017814 1.78136e-05
 8 1.999999835 1.64725e-07
10 2.000000001 1.14677e-09
```

scipy.integrate.IntegrationWarning

exception scipy.integrate.IntegrationWarning

Warning on issues during integration.

```python
with_traceback()
    Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

scipy.integrate.AccuracyWarning

exception scipy.integrate.AccuracyWarning

```python
with_traceback()
    Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

Integrating functions, given fixed samples

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>trapezoid</code></td>
<td>Integrate along the given axis using the composite trapezoidal rule.</td>
</tr>
<tr>
<td><code>cumulative_trapezoid</code></td>
<td>Cumulatively integrate y(x) using the composite trapezoidal rule.</td>
</tr>
<tr>
<td><code>simpson</code></td>
<td>Integrate y(x) using samples along the given axis and the composite Simpson's rule.</td>
</tr>
<tr>
<td><code>romb</code></td>
<td>Romberg integration using samples of a function.</td>
</tr>
</tbody>
</table>
scipy.integrate.trapezoid

`scipy.integrate.trapezoid(y, x=None, dx=1.0, axis=-1)`
Integrate along the given axis using the composite trapezoidal rule.

If `x` is provided, the integration happens in sequence along its elements - they are not sorted.

Integrate `y(x)` along each 1d slice on the given axis, compute $\int y(x) dx$. When `x` is specified, this integrates along the parametric curve, computing $\int_{t_0}^{t_f} y(t) \frac{dx}{dt} |_{x=x(t)} dt$.

Parameters

- **y** ([array_like]) Input array to integrate.
- **x** ([array_like, optional]) The sample points corresponding to the `y` values. If `x` is None, the sample points are assumed to be evenly spaced `dx` apart. The default is None.
- **dx** ([scalar, optional]) The spacing between sample points when `x` is None. The default is 1.
- **axis** ([int, optional]) The axis along which to integrate.

Returns

- **trapz** ([float or ndarray]) Definite integral of `y` = n-dimensional array as approximated along a single axis by the trapezoidal rule. If `y` is a 1-dimensional array, then the result is a float. If `n` is greater than 1, then the result is an ‘n-1’ dimensional array.

See also:

- `numpy.cumsum`

Notes

Image [2] illustrates trapezoidal rule – y-axis locations of points will be taken from `y` array, by default x-axis distances between points will be 1.0, alternatively they can be provided with `x` array or with `dx` scalar. Return value will be equal to combined area under the red lines.

References

[1], [2]

Examples

```python
>>> np.trapz([1, 2, 3])
4.0
>>> np.trapz([1, 2, 3], x=[4, 6, 8])
8.0
>>> np.trapz([1, 2, 3], dx=2)
8.0
```

Using a decreasing `x` corresponds to integrating in reverse:

```python
>>> np.trapz([1, 2, 3], x=[8, 6, 4])
-8.0
```

More generally `x` is used to integrate along a parametric curve. This finds the area of a circle, noting we repeat the sample which closes the curve:
```python
>>> theta = np.linspace(0, 2 * np.pi, num=1000, endpoint=True)
>>> np.trapz(np.cos(theta), x=np.sin(theta))
3.141571941375841

>>> a = np.arange(6).reshape(2, 3)
>>> a
array([[0, 1, 2],
       [3, 4, 5]])
>>> np.trapz(a, axis=0)
array([1.5, 2.5, 3.5])
>>> np.trapz(a, axis=1)
array([2., 8.])
```

scipy.integrate.cumulative_trapezoid

`scipy.integrate.cumulative_trapezoid(y, x=None, dx=1.0, axis=-1, initial=None)`

Cumulatively integrate y(x) using the composite trapezoidal rule.

Parameters

- **y**
 [array_like] Values to integrate.
- **x**
 [array_like, optional] The coordinate to integrate along. If None (default), use spacing `dx` between consecutive elements in `y`.
- **dx**
 [float, optional] Spacing between elements of `y`. Only used if `x` is None.
- **axis**
 [int, optional] Specifies the axis to cumulate. Default is -1 (last axis).
- **initial**
 [scalar, optional] If given, insert this value at the beginning of the returned result. Typically this value should be 0. Default is None, which means no value at `x[0]` is returned and `res` has one element less than `y` along the axis of integration.

Returns

- **res**
 [ndarray] The result of cumulative integration of `y` along `axis`. If `initial` is None, the shape is such that the axis of integration has one less value than `y`. If `initial` is given, the shape is equal to that of `y`.

See also:

- `numpy.cumsum`
- `numpy.cumprod`
- `quad`
 adaptive quadrature using QUADPACK
- `romberg`
 adaptive Romberg quadrature
- `quadrature`
 adaptive Gaussian quadrature
- `fixed_quad`
 fixed-order Gaussian quadrature
- `dblquad`
 double integrals
- `tplquad`
 triple integrals
Examples

```python
>>> from scipy import integrate
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-2, 2, num=20)
>>> y = x
>>> y_int = integrate.cumulative_trapezoid(y, x, initial=0)
>>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-')
>>> plt.show()
```

scipy.integrate.simps

`scipy.integrate.simps(y, x=None, dx=1.0, axis=-1, even='avg')`

Integrate y(x) using samples along the given axis and the composite Simpson’s rule. If x is None, spacing of dx is assumed.

If there are an even number of samples, N, then there are an odd number of intervals (N-1), but Simpson’s rule requires an even number of intervals. The parameter ‘even’ controls how this is handled.

Parameters

- `y` [array_like] Array to be integrated.
- `x` [array_like, optional] If given, the points at which y is sampled.
dx
[float, optional] Spacing of integration points along axis of x. Only used when x is None. Default is 1.

axis
[int, optional] Axis along which to integrate. Default is the last axis.

even
[str {'avg', 'first', 'last'}. optional]

- **‘avg’**
 [Average two results: 1) use the first N-2 intervals with] a trapezoidal rule on the last interval and 2) use the last N-2 intervals with a trapezoidal rule on the first interval.

- **‘first’**
 [Use Simpson's rule for the first N-2 intervals with] a trapezoidal rule on the last interval.

- **‘last’**
 [Use Simpson's rule for the last N-2 intervals with a] trapezoidal rule on the first interval.

See also:

- **quad**
 adaptive quadrature using QUADPACK

- **romberg**
 adaptive Romberg quadrature

- **quadrature**
 adaptive Gaussian quadrature

- **fixed_quad**
 fixed-order Gaussian quadrature

- **dblquad**
 double integrals

- **tplquad**
 triple integrals

- **romb**
 integrators for sampled data

- **cumulative_trapezoid**
 cumulative integration for sampled data

- **ode**
 ODE integrators

- **odeint**
 ODE integrators
Notes

For an odd number of samples that are equally spaced the result is exact if the function is a polynomial of order 3 or less. If the samples are not equally spaced, then the result is exact only if the function is a polynomial of order 2 or less.

Examples

```python
>>> from scipy import integrate
>>> x = np.arange(0, 10)
>>> y = np.arange(0, 10)

>>> integrate.simps(y, x)
40.5

>>> y = np.power(x, 3)
>>> integrate.simps(y, x)
1642.5
>>> integrate.quad(lambda x: x**3, 0, 9)[0]
1640.25

>>> integrate.simps(y, x, even='first')
1644.5
```

scipy.integrate.romb

`scipy.integrate.romb(y, dx=1.0, axis=-1, show=False)`

Romberg integration using samples of a function.

Parameters

- `y` [array_like] A vector of $2^k + 1$ equally-spaced samples of a function.
- `dx` [float, optional] The sample spacing. Default is 1.
- `axis` [int, optional] The axis along which to integrate. Default is -1 (last axis).
- `show` [bool, optional] When `y` is a single 1-D array, then if this argument is True print the table showing Richardson extrapolation from the samples. Default is False.

Returns

- `romb` [ndarray] The integrated result for `axis`.

See also:

- `quad` adaptive quadrature using QUADPACK
- `romberg` adaptive Romberg quadrature
- `quadrature` adaptive Gaussian quadrature
- `fixed_quad` fixed-order Gaussian quadrature
dblquad
 double integrals
tplquad
 triple integrals
simpson
 integrators for sampled data
cumulative_trapezoid
 cumulative integration for sampled data
ode
 ODE integrators
odeint
 ODE integrators

Examples

>>> from scipy import integrate
>>> x = np.arange(10, 14.25, 0.25)
>>> y = np.arange(3, 12)

>>> integrate.romb(y)
56.0

>>> y = np.sin(np.power(x, 2.5))
>>> integrate.romb(y)
-0.742561336672229

>>> integrate.romb(y, show=True)
Richardson Extrapolation Table for Romberg Integration
==
<table>
<thead>
<tr>
<th></th>
<th>4.63862</th>
<th>6.45674</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.10581</td>
<td>-3.02062</td>
<td>-3.65245</td>
</tr>
<tr>
<td>-2.57379</td>
<td>-3.06311</td>
<td>-3.05695</td>
</tr>
<tr>
<td>-1.34093</td>
<td>-0.92997</td>
<td>-0.78776</td>
</tr>
<tr>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
-0.742561336672229

See also:
scipy.special for orthogonal polynomials (special) for Gaussian quadrature roots and weights for other weighting factors and regions.
Solving initial value problems for ODE systems

The solvers are implemented as individual classes, which can be used directly (low-level usage) or through a convenience function.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>solve_ivp</code></td>
<td>Solve an initial value problem for a system of ODEs.</td>
</tr>
<tr>
<td><code>RK23</code></td>
<td>Explicit Runge-Kutta method of order 3(2).</td>
</tr>
<tr>
<td><code>RK45</code></td>
<td>Explicit Runge-Kutta method of order 5(4).</td>
</tr>
<tr>
<td><code>Radau</code></td>
<td>Implicit Runge-Kutta method of Radau II A family of order 5.</td>
</tr>
<tr>
<td><code>BDF</code></td>
<td>Implicit method based on backward-differentiation formulas.</td>
</tr>
<tr>
<td><code>LSODA</code></td>
<td>Adams/BDF method with automatic stiffness detection and switching.</td>
</tr>
<tr>
<td><code>OdeSolver</code></td>
<td>Base class for ODE solvers.</td>
</tr>
<tr>
<td><code>DenseOutput</code></td>
<td>Base class for local interpolant over step made by an ODE solver.</td>
</tr>
<tr>
<td><code>OdeSolution</code></td>
<td>Continuous ODE solution.</td>
</tr>
</tbody>
</table>

scipy.integrate.solve_ivp

```python
scipy.integrate.solve_ivp(fun, t_span, y0[, method='RK45', t_eval=None, dense_output=False, events=None, vectorized=False, args=None, **options])
```

Solve an initial value problem for a system of ODEs.

This function numerically integrates a system of ordinary differential equations given an initial value:

\[
\frac{dy}{dt} = f(t, y) \\
y(t_0) = y_0
\]

Here \(t\) is a 1-D independent variable (time), \(y(t)\) is an \(N\)-D vector-valued function (state), and an \(N\)-D vector-valued function \(f(t, y)\) determines the differential equations. The goal is to find \(y(t)\) approximately satisfying the differential equations, given an initial value \(y(t_0) = y_0\).

Some of the solvers support integration in the complex domain, but note that for stiff ODE solvers, the right-hand side must be complex-differentiable (satisfy Cauchy-Riemann equations [11]). To solve a problem in the complex domain, pass \(y_0\) with a complex data type. Another option always available is to rewrite your problem for real and imaginary parts separately.

Parameters

- **fun** [callable] Right-hand side of the system. The calling signature is `fun(t, y)`. Here \(t\) is a scalar, and there are two options for the ndarray \(y\): It can either have shape (n,); then `fun` must return array-like with shape (n). Alternatively, it can have shape (n, k); then `fun` must return an array-like with shape (n, k), i.e., each column corresponds to a single column in \(y\). The choice between the two options is determined by `vectorized` argument (see below). The vectorized implementation allows a faster approximation of the Jacobian by finite differences (required for stiff solvers).

- **t_span** [2-tuple of floats] Interval of integration \((t_0, tf)\). The solver starts with \(t = t_0\) and integrates until it reaches \(t = tf\).

- **y0** [array_like, shape (n,)] Initial state. For problems in the complex domain, pass \(y_0\) with a complex data type (even if the initial value is purely real).

- **method** [string or `OdeSolver`, optional] Integration method to use:
 - ‘RK45’ (default): Explicit Runge-Kutta method of order 5(4) [1]. The error is controlled assuming accuracy of the fourth-order method, but steps are taken using the fifth-order
accurate formula (local extrapolation is done). A quartic interpolation polynomial is used for the dense output [2]. Can be applied in the complex domain.

- **'RK23':** Explicit Runge-Kutta method of order 3(2) [3]. The error is controlled assuming accuracy of the second-order method, but steps are taken using the third-order accurate formula (local extrapolation is done). A cubic Hermite polynomial is used for the dense output. Can be applied in the complex domain.

- **'DOP853':** Explicit Runge-Kutta method of order 8 [13]. Python implementation of the “DOP853” algorithm originally written in Fortran [14]. A 7-th order interpolation polynomial accurate to 7-th order is used for the dense output. Can be applied in the complex domain.

- **'Radau':** Implicit Runge-Kutta method of the Radau IIA family of order 5 [4]. The error is controlled with a third-order accurate embedded formula. A cubic polynomial which satisfies the collocation conditions is used for the dense output.

- **'BDF':** Implicit multi-step variable-order (1 to 5) method based on a backward differentiation formula for the derivative approximation [5]. The implementation follows the one described in [6]. A quasi-constant step scheme is used and accuracy is enhanced using the NDF modification. Can be applied in the complex domain.

- **'LSODA':** Adams/BDF method with automatic stiffness detection and switching [7], [8]. This is a wrapper of the Fortran solver from ODEPACK. Explicit Runge-Kutta methods ('RK23', 'RK45', 'DOP853') should be used for non-stiff problems and implicit methods ('Radau', 'BDF') for stiff problems [9]. Among Runge-Kutta methods, ‘DOP853’ is recommended for solving with high precision (low values of rtol and atol).

If not sure, first try to run ‘RK45’. If it makes unusually many iterations, diverges, or fails, your problem is likely to be stiff and you should use ‘Radau’ or ‘BDF’. ‘LSODA’ can also be a good universal choice, but it might be somewhat less convenient to work with as it wraps old Fortran code.

You can also pass an arbitrary class derived from `OdeSolver` which implements the solver.

t_eval
[array_like or None, optional] Times at which to store the computed solution, must be sorted and lie within t_span. If None (default), use points selected by the solver.

dense_output
[bool, optional] Whether to compute a continuous solution. Default is False.

events
[callable, or list of callables, optional] Events to track. If None (default), no events will be tracked. Each event occurs at the zeros of a continuous function of time and state. Each function must have the signature `event(t, y)` and return a float. The solver will find an accurate value of `t` at which `event(t, y(t)) = 0` using a root-finding algorithm. By default, all zeros will be found. The solver looks for a sign change over each step, so if multiple zero crossings occur within one step, events may be missed. Additionally each `event` function might have the following attributes:

- **terminal**: `bool`, `optional`
 Whether to terminate integration if this event occurs. Implicitly False if not assigned.

- **direction**: `float`, `optional`
 Direction of a zero crossing. If `direction` is positive, `event` will only trigger when going from negative to positive, and vice versa if `direction` is negative. If 0, then either direction will trigger event. Implicitly 0 if not assigned.

You can assign attributes like `event.terminal = True` to any function in Python.

vectorized
[bool, optional] Whether `fun` is implemented in a vectorized fashion. Default is False.

args
[tuple, optional] Additional arguments to pass to the user-defined functions. If given, the additional arguments are passed to all user-defined functions. So if, for example, `fun` has the signature `fun(t, y, a, b, c)`, then `jac` (if given) and any event functions must have the same signature, and `args` must be a tuple of length 3.

options
Options passed to a chosen solver. All options available for already implemented solvers are listed below.
first_step [float or None, optional] Initial step size. Default is None which means that the algorithm should choose.

max_step [float, optional] Maximum allowed step size. Default is np.inf, i.e., the step size is not bounded and determined solely by the solver.

rtol, atol [float or array_like, optional] Relative and absolute tolerances. The solver keeps the local error estimates less than atol + rtol * abs(y). Here rtol controls a relative accuracy (number of correct digits), while atol controls absolute accuracy (number of correct decimal places). To achieve the desired rtol, set atol to be lower than the lowest value that can be expected from rtol * abs(y) so that rtol dominates the allowable error. If atol is larger than rtol * abs(y) the number of correct digits is not guaranteed. Conversely, to achieve the desired atol set rtol such that rtol * abs(y) is always lower than atol. If components of y have different scales, it might be beneficial to set different atol values for different components by passing array_like with shape (n,) for atol. Default values are 1e-3 for rtol and 1e-6 for atol.

jac [array_like, sparse_matrix, callable or None, optional] Jacobian matrix of the right-hand side of the system with respect to y, required by the ‘Radau’, ‘BDF’ and ‘LSODA’ method. The Jacobian matrix has shape (n, n) and its element (i, j) is equal to \(\frac{\partial f_i}{\partial y_j} \). There are three ways to define the Jacobian:

- If array_like or sparse_matrix, the Jacobian is assumed to be constant. Not supported by ‘LSODA’.
- If callable, the Jacobian is assumed to depend on both t and y; it will be called as \(jac(t, y) \), as necessary. For ‘Radau’ and ‘BDF’ methods, the return value might be a sparse matrix.
- If None (default), the Jacobian will be approximated by finite differences. It is generally recommended to provide the Jacobian rather than relying on a finite-difference approximation.

jac_sparsity [array_like, sparse_matrix or None, optional] Defines a sparsity structure of the Jacobian matrix for a finite-difference approximation. Its shape must be (n, n). This argument is ignored if jac is not None. If the Jacobian has only few non-zero elements in each row, providing the sparsity structure will greatly speed up the computations [10]. A zero entry means that a corresponding element in the Jacobian is always zero. If None (default), the Jacobian is assumed to be dense. Not supported by ‘LSODA’, see lband and uband instead.

lband, uband [int or None, optional] Parameters defining the bandwidth of the Jacobian for the ‘LSODA’ method, i.e., \(jac[i, j] \neq 0 \) only for \(i - lband \leq j \leq i + uband \). Default is None. Setting these requires your jac routine to return the Jacobian in the packed format: the returned array must have n columns and uband + lband + 1 rows in which Jacobian diagonals are written. Specifically \(jac_packed[uband + i - j, j] = jac[i, j] \). The same format is used in scipy.linalg.solve_banded (check for an illustration). These parameters can be also used with jac=None to reduce the number of Jacobian elements estimated by finite differences.

min_step [float, optional] The minimum allowed step size for ‘LSODA’ method. By default min_step is zero.

Returns

- Bunch object with the following fields defined:
 - t [ndarray, shape (n_points,)] Time points.
 - y [ndarray, shape (n, n_points)] Values of the solution at t.
 - sol [OdeSolution or None] Found solution as OdeSolution instance; None if dense_output was set to False.
 - t_events [list of ndarray or None] Contains for each event type a list of arrays at which an event of that type event was detected. None if events was None.

SciPy Reference Guide, Release 1.8.0

y_events	[list of ndarray or None] For each value of t_events, the corresponding value of the solution. None if events was None.
nfev	[int] Number of evaluations of the right-hand side.
njev	[int] Number of evaluations of the Jacobian.
nlu	[int] Number of LU decompositions.
status	[int] Reason for algorithm termination:
	• -1: Integration step failed.
	• 0: The solver successfully reached the end of tspan.
	• 1: A termination event occurred.
message	[string] Human-readable description of the termination reason.
success	[bool] True if the solver reached the interval end or a termination event occurred (status >= 0).

References

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]

Examples

Basic exponential decay showing automatically chosen time points.

```python
>>> from scipy.integrate import solve_ivp
>>> def exponential_decay(t, y):
...     return -0.5 * y
>>> sol = solve_ivp(exponential_decay, [0, 10], [2, 4, 8])
>>> print(sol.t)
[ 0. 0.11487653 1.26364188 3.06061781 4.81611105 6.57445806
 8.33328988 10.]
>>> print(sol.y)
[[2. 1.88836035 1.06327177 0.43319312 0.18017253 0.07483045
 0.03107158 0.01350781]
 [4. 3.7767207 2.12654355 0.86638624 0.36034507 0.14966091
 0.06214316 0.02701561]
 [8. 7.5534414 4.25308709 1.73277247 0.72069014 0.29932181
 0.12428631 0.05403123]]
```

Specifying points where the solution is desired.

```python
>>> sol = solve_ivp(exponential_decay, [0, 10], [2, 4, 8],
...                   t_eval=[0, 1, 2, 4, 10])
>>> print(sol.t)
[ 0 1 2 4 10]
>>> print(sol.y)
[[2. 1.21305369 0.73534021 0.27066736 0.01350938]
 [4. 2.42610739 1.47068043 0.54133472 0.02701876]
 [8. 4.85221478 2.94136085 1.08266944 0.05403753]]
```

Cannon fired upward with terminal event upon impact. The terminal and direction fields of an event are applied by monkey patching a function. Here y[0] is position and y[1] is velocity. The projectile starts at position 0 with velocity +10. Note that the integration never reaches t=100 because the event is terminal.

```python
>>> def upward_cannon(t, y):
...     return [y[1], -0.5]
>>> def hit_ground(t, y):
...     return y[0]
```

(continues on next page)
Use `dense_output` and `events` to find position, which is 100, at the apex of the cannonball’s trajectory. Apex is not defined as terminal, so both apex and hit_ground are found. There is no information at t=20, so the sol attribute is used to evaluate the solution. The sol attribute is returned by setting `dense_output=True`. Alternatively, the `y_events` attribute can be used to access the solution at the time of the event.

As an example of a system with additional parameters, we’ll implement the Lotka-Volterra equations [12].

We pass in the parameter values a=1.5, b=1, c=3 and d=1 with the `args` argument.

Compute a dense solution and plot it.

3.3. API definition 475
scipy.integrate.RK23

class scipy.integrate.RK23(fun, t0, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06, vectorized=False, first_step=None, **extraneous)

Explicit Runge-Kutta method of order 3(2).

This uses the Bogacki-Shampine pair of formulas [1]. The error is controlled assuming accuracy of the second-order method, but steps are taken using the third-order accurate formula (local extrapolation is done). A cubic Hermite polynomial is used for the dense output.

Can be applied in the complex domain.

Parameters

fun [callable] Right-hand side of the system. The calling signature is fun(t, y). Here t is a scalar and there are two options for ndarray y. It can either have shape (n,), then fun must return array_like with shape (n,). Or alternatively it can have shape (n, k), then fun must return array_like with shape (n, k), i.e. each column corresponds to a single column in y. The choice between the two options is determined by vectorized argument (see below).

t0 [float] Initial time.

y0 [array_like, shape (n,)] Initial state.

t_bound [float] Boundary time - the integration won’t continue beyond it. It also determines the direction of the integration.

first_step [float or None, optional] Initial step size. Default is None which means that the algorithm should choose.

max_step [float, optional] Maximum allowed step size. Default is np.inf, i.e., the step size is not bounded and determined solely by the solver.

rtol, atol [float and array_like, optional] Relative and absolute tolerances. The solver keeps the local error estimates less than atol + rtol * abs(y). Here rtol controls a relative accuracy (number of correct digits), while atol controls absolute accuracy (number of correct decimal places). To achieve the desired rtol, set atol to be lower than the lowest value that can be expected from rtol * abs(y) so that rtol dominates the allowable error. If atol is larger than rtol * abs(y) the number of correct digits is not guaranteed. Conversely, to achieve the desired atol set rtol such that rtol * abs(y) is always lower than atol. If components of y have different scales, it might be beneficial to set different atol values for different components by passing array_like with shape (n,) for atol. Default values are 1e-3 for rtol and 1e-6 for atol.
vectorized [bool, optional] Whether fun is implemented in a vectorized fashion. Default is False.

References

[1]

Attributes

n [int] Number of equations.
status [string] Current status of the solver: 'running', 'finished' or 'failed'.
t_bound [float] Boundary time.
direction [float] Integration direction: +1 or -1.
t [float] Current time.
y [ndarray] Current state.
t_old [float] Previous time. None if no steps were made yet.
step_size [float] Size of the last successful step. None if no steps were made yet.
nfev [int] Number of evaluations of the system's right-hand side.
njcv [int] Number of evaluations of the Jacobian. Is always 0 for this solver as it does not use the Jacobian.
nlu [int] Number of LU decompositions. Is always 0 for this solver.

Methods

dense_output() Compute a local interpolant over the last successful step.

step() Perform one integration step.

scipy.integrate.RK23.dense_output

RK23.dense_output() Compute a local interpolant over the last successful step.

Returns

sol [DenseOutput] Local interpolant over the last successful step.

scipy.integrate.RK23.step

RK23.step() Perform one integration step.

Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is 'failed' after the step was taken or None otherwise.
Explicit Runge-Kutta method of order 5(4).

This uses the Dormand-Prince pair of formulas [1]. The error is controlled assuming accuracy of the fourth-order method accuracy, but steps are taken using the fifth-order accurate formula (local extrapolation is done). A quartic interpolation polynomial is used for the dense output [2].

Can be applied in the complex domain.

Parameters

- **fun** [callable] Right-hand side of the system. The calling signature is `fun(t, y)`. Here `t` is a scalar, and there are two options for the ndarray `y`: It can either have shape (n,); then `fun` must return array_like with shape (n,). Alternatively it can have shape (n, k); then `fun` must return an array_like with shape (n, k), i.e., each column corresponds to a single column in `y`. The choice between the two options is determined by `vectorized` argument (see below).
- **t0** [float] Initial time.
- **y0** [array_like, shape (n,)] Initial state.
- **t_bound** [float] Boundary time - the integration won’t continue beyond it. It also determines the direction of the integration.
- **first_step** [float or None, optional] Initial step size. Default is `None` which means that the algorithm should choose.
- **max_step** [float, optional] Maximum allowed step size. Default is `np.inf`, i.e., the step size is not bounded and determined solely by the solver.
- **rtol, atol** [float and array_like, optional] Relative and absolute tolerances. The solver keeps the local error estimates less than `atol + rtol * abs(y)`. Here `rtol` controls a relative accuracy (number of correct digits), while `atol` controls absolute accuracy (number of correct decimal places). To achieve the desired `rtol`, set `atol` to be lower than the lowest value that can be expected from `rtol * abs(y)` so that `rtol` dominates the allowable error. If `atol` is larger than `rtol * abs(y)` the number of correct digits is not guaranteed. Conversely, to achieve the desired `atol` set `rtol` such that `rtol * abs(y)` is always lower than `atol`. If components of `y` have different scales, it might be beneficial to set different `atol` values for different components by passing array_like with shape (n,) for `atol`. Default values are `1e-3` for `rtol` and `1e-6` for `atol`.
- **vectorized** [bool, optional] Whether `fun` is implemented in a vectorized fashion. Default is `False`.

References

[1], [2]

Attributes

- **n** [int] Number of equations.
- **t_bound** [float] Boundary time.
- **direction** [float] Integration direction: +1 or -1.
- **t** [float] Current time.
- **y** [ndarray] Current state.
- **t_old** [float] Previous time. None if no steps were made yet.
- **step_size** [float] Size of the last successful step. None if no steps were made yet.
- **nfev** [int] Number evaluations of the system’s right-hand side.
- **njev** [int] Number of evaluations of the Jacobian. Is always 0 for this solver as it does not use the Jacobian.
- **nlu** [int] Number of LU decompositions. Is always 0 for this solver.
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dense_output()</code></td>
<td>Compute a local interpolant over the last successful step.</td>
</tr>
<tr>
<td><code>step()</code></td>
<td>Perform one integration step.</td>
</tr>
</tbody>
</table>

`scipy.integrate.RK45.dense_output`

RK45.dense_output()

Compute a local interpolant over the last successful step.

Returns

- `sol` [DenseOutput] Local interpolant over the last successful step.

`scipy.integrate.RK45.step`

RK45.step()

Perform one integration step.

Returns

- `message` [string or None] Report from the solver. Typically a reason for a failure if `self.status` is ‘failed’ after the step was taken or None otherwise.

`scipy.integrate.DOP853`

class scipy.integrate.DOP853 (fun, t0, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06, vectorized=False, first_step=None, **extraneous)

Explicit Runge-Kutta method of order 8.

This is a Python implementation of “DOP853” algorithm originally written in Fortran [1], [2]. Note that this is not a literate translation, but the algorithmic core and coefficients are the same.

Can be applied in the complex domain.

Parameters

- `fun` [callable] Right-hand side of the system. The calling signature is `fun(t, y)`. Here, `t` is a scalar, and there are two options for the `ndarray` `y`: It can either have shape (n,); then `fun` must return `array_like` with shape (n,). Alternatively it can have shape (n, k); then `fun` must return an `array_like` with shape (n, k), i.e. each column corresponds to a single column in `y`. The choice between the two options is determined by `vectorized` argument (see below).
- `t0` [float] Initial time.
- `y0` [array_like, shape (n,)] Initial state.
- `t_bound` [float] Boundary time - the integration won’t continue beyond it. It also determines the direction of the integration.
- `first_step` [float or None, optional] Initial step size. Default is None which means that the algorithm should choose.
- `max_step` [float, optional] Maximum allowed step size. Default is np.inf, i.e. the step size is not bounded and determined solely by the solver.
- `rtol, atol` [float and array_like, optional] Relative and absolute tolerances. The solver keeps the local error estimates less than `atol + rtol * abs(y)`. Here `rtol` controls a relative accuracy (number of correct digits), while `atol` controls absolute accuracy (number of correct decimal places). To achieve the desired `rtol`, set `atol` to be lower than the lowest value that can be
expected from \(rtol \ast \text{abs}(y) \) so that \(rtol \) dominates the allowable error. If \(atol \) is larger than \(rtol \ast \text{abs}(y) \) the number of correct digits is not guaranteed. Conversely, to achieve the desired \(atol \) set \(rtol \) such that \(rtol \ast \text{abs}(y) \) is always lower than \(atol \). If components of \(y \) have different scales, it might be beneficial to set different \(atol \) values for different components by passing \(\text{array_like} \) with shape \((n,)\) for \(atol \). Default values are 1e-3 for \(rtol \) and 1e-6 for \(atol \).

\[\text{vectorized} \quad \text{[bool, optional]} \quad \text{Whether \(fun \) is implemented in a vectorized fashion. Default is False.} \]

References

\[1\], \[2\]

Attributes

\[n \quad \text{[int]} \quad \text{Number of equations.} \]
\[status \quad \text{[string]} \quad \text{Current status of the solver: ‘running’, ‘finished’ or ‘failed’}. \]
\[t_bound \quad \text{[float]} \quad \text{Boundary time}. \]
\[direction \quad \text{[float]} \quad \text{Integration direction: +1 or -1}. \]
\[t \quad \text{[float]} \quad \text{Current time}. \]
\[y \quad \text{[ndarray]} \quad \text{Current state}. \]
\[t_old \quad \text{[float]} \quad \text{Previous time. None if no steps were made yet}. \]
\[step_size \quad \text{[float]} \quad \text{Size of the last successful step. None if no steps were made yet}. \]
\[nfev \quad \text{[int]} \quad \text{Number evaluations of the system’s right-hand side}. \]
\[njev \quad \text{[int]} \quad \text{Number of evaluations of the Jacobian. Is always 0 for this solver as it does not use the Jacobian}. \]
\[nlu \quad \text{[int]} \quad \text{Number of LU decompositions. Is always 0 for this solver}. \]

Methods

\[\text{dense_output()} \quad \text{Compute a local interpolant over the last successful step}. \]
\[step() \quad \text{Perform one integration step}. \]

\[\text{scipy.integrate.DOP853.dense_output} \]

\[\text{DOP853.dense_output()} \]
\[\text{Compute a local interpolant over the last successful step}. \]

\[\text{Returns} \]
\[\text{sol} \quad \text{[DenseOutput]} \quad \text{Local interpolant over the last successful step}. \]
scipy.integrate.DOP853.step

DOP853.step()
Perform one integration step.

Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is ‘failed’ after the step was taken or None otherwise.

scipy.integrate.Radau

class scipy.integrate.Radau (fun, t0, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06, jac=None, jac_sparsity=None, vectorized=False, first_step=None, **extraneous)

Implicit Runge-Kutta method of RadauIIA family of order 5.

The implementation follows [1]. The error is controlled with a third-order accurate embedded formula. A cubic polynomial which satisfies the collocation conditions is used for the dense output.

Parameters

fun [callable] Right-hand side of the system. The calling signature is fun(t, y). Here t is a scalar, and there are two options for the ndarray y: It can either have shape (n,); then fun must return array_like with shape (n,). Alternatively it can have shape (n, k); then fun must return an array_like with shape (n, k), i.e., each column corresponds to a single column in y. The choice between the two options is determined by vectorized argument (see below). The vectorized implementation allows a faster approximation of the Jacobian by finite differences (required for this solver).

t0 [float] Initial time.

y0 [array_like, shape(n,)] Initial state.

t_bound [float] Boundary time - the integration won’t continue beyond it. It also determines the direction of the integration.

first_step [float or None, optional] Initial step size. Default is None which means that the algorithm should choose.

max_step [float, optional] Maximum allowed step size. Default is np.inf, i.e., the step size is not bounded and determined solely by the solver.

rtol, atol [float and array_like, optional] Relative and absolute tolerances. The solver keeps the local error estimates less than atol + rtol * abs(y). Here rtol controls a relative accuracy (number of correct digits), while atol controls absolute accuracy (number of correct decimal places). To achieve the desired rtol, set atol to be lower than the lowest value that can be expected from rtol * abs(y) so that rtol dominates the allowable error. If atol is larger than rtol * abs(y) the number of correct digits is not guaranteed. Conversely, to achieve the desired atol set rtol such that rtol * abs(y) is always lower than atol. If components of y have different scales, it might be beneficial to set different atol values for different components by passing array_like with shape (n,) for atol. Default values are 1e-3 for rtol and 1e-6 for atol.

jac [{None, array_like, sparse_matrix, callable}, optional] Jacobian matrix of the right-hand side of the system with respect to y, required by this method. The Jacobian matrix has shape (n, n) and its element (i, j) is equal to d f_i / d y_j. There are three ways to define the Jacobian:
 • If array_like or sparse_matrix, the Jacobian is assumed to be constant.
 • If callable, the Jacobian is assumed to depend on both t and y; it will be called as jac(t, y) as necessary. For the ‘Radau’ and ‘BDF’ methods, the return value might be a sparse matrix.
 • If None (default), the Jacobian will be approximated by finite differences.

It is generally recommended to provide the Jacobian rather than relying on a finite-difference approximation.

5.3. API definition 481
jac_sparsity

[None, array_like, sparse matrix], optional] Defines a sparsity structure of the Jacobian matrix for a finite-difference approximation. Its shape must be (n, n). This argument is ignored if jac is not None. If the Jacobian has only few non-zero elements in each row, providing the sparsity structure will greatly speed up the computations [2]. A zero entry means that a corresponding element in the Jacobian is always zero. If None (default), the Jacobian is assumed to be dense.

vectorized

[bool, optional] Whether fun is implemented in a vectorized fashion. Default is False.

References

[1], [2]

Attributes

- n [int] Number of equations.
- status [string] Current status of the solver: 'running', 'finished' or 'failed'.
- t_bound [float] Boundary time.
- direction [float] Integration direction: +1 or -1.
- t [float] Current time.
- y [ndarray] Current state.
- t_old [float] Previous time. None if no steps were made yet.
- step_size [float] Size of the last successful step. None if no steps were made yet.
- nfev [int] Number of evaluations of the right-hand side.
- njev [int] Number of evaluations of the Jacobian.
- nlu [int] Number of LU decompositions.

Methods

<table>
<thead>
<tr>
<th>dense_output()</th>
<th>Compute a local interpolant over the last successful step.</th>
</tr>
</thead>
<tbody>
<tr>
<td>step()</td>
<td>Perform one integration step.</td>
</tr>
</tbody>
</table>

scipy.integrate.Radau.dense_output

Radau.dense_output()

Compute a local interpolant over the last successful step.

Returns

- sol [DenseOutput] Local interpolant over the last successful step.
scipy.integrate.Radau.step

Radau.step()

Perform one integration step.

Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is ‘failed’ after the step was taken or None otherwise.

scipy.integrate.BDF

class scipy.integrate.BDF (fun, t0, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06, jac=None, jac_sparsity=None, vectorized=False, first_step=None, **extraneous)

Implicit method based on backward-differentiation formulas.

This is a variable order method with the order varying automatically from 1 to 5. The general framework of the BDF algorithm is described in [1]. This class implements a quasi-constant step size as explained in [2]. The error estimation strategy for the constant-step BDF is derived in [3]. An accuracy enhancement using modified formulas (NDF) [2] is also implemented.

Can be applied in the complex domain.

Parameters

fun [callable] Right-hand side of the system. The calling signature is fun(t, y). Here t is a scalar, and there are two options for the ndarray y: It can either have shape (n,); then fun must return array_like with shape (n,). Alternatively it can have shape (n, k); then fun must return an array_like with shape (n, k), i.e. each column corresponds to a single column in y. The choice between the two options is determined by vectorized argument (see below). The vectorized implementation allows a faster approximation of the Jacobian by finite differences (required for this solver).

t0 [float] Initial time.

y0 [array_like, shape (n,)] Initial state.

t_bound [float] Boundary time - the integration won’t continue beyond it. It also determines the direction of the integration.

first_step [float or None, optional] Initial step size. Default is None which means that the algorithm should choose.

max_step [float, optional] Maximum allowed step size. Default is np.inf, i.e., the step size is not bounded and determined solely by the solver.

rtol, atol [float and array_like, optional] Relative and absolute tolerances. The solver keeps the local error estimates less than atol + rtol * abs(y). Here rtol controls a relative accuracy (number of correct digits), while atol controls absolute accuracy (number of correct decimal places). To achieve the desired rtol, set atol to be lower than the lowest value that can be expected from rtol * abs(y) so that rtol dominates the allowable error. If atol is larger than rtol * abs(y) the number of correct digits is not guaranteed. Conversely, to achieve the desired atol set rtol such that rtol * abs(y) is always lower than atol. If components of y have different scales, it might be beneficial to set different atol values for different components by passing array_like with shape (n,) for atol. Default values are 1e-3 for rtol and 1e-6 for atol.

jac [{None, array_like, sparse_matrix, callable}, optional] Jacobian matrix of the right-hand side of the system with respect to y, required by this method. The Jacobian matrix has shape (n, n) and its element (i, j) is equal to d f_i / d y_j. There are three ways to define the Jacobian:
- If array_like or sparse_matrix, the Jacobian is assumed to be constant.
• If callable, the Jacobian is assumed to depend on both \(t \) and \(y \); it will be called as \(\text{jac}(t, y) \) as necessary. For the 'Radau' and 'BDF' methods, the return value might be a sparse matrix.

• If None (default), the Jacobian will be approximated by finite differences. It is generally recommended to provide the Jacobian rather than relying on a finite-difference approximation.

\(\text{jac} \) _sparsity_

[{None, array_like, sparse matrix}, optional] Defines a sparsity structure of the Jacobian matrix for a finite-difference approximation. Its shape must be (n, n). This argument is ignored if \(\text{jac} \) is not None. If the Jacobian has only few non-zero elements in each row, providing the sparsity structure will greatly speed up the computations [4]. A zero entry means that a corresponding element in the Jacobian is always zero. If None (default), the Jacobian is assumed to be dense.

\(\text{vectorized} \) [bool, optional] Whether \(\text{fun} \) is implemented in a vectorized fashion. Default is False.

References

[1], [2], [3], [4]

Attributes

- \(n \) [int] Number of equations.
- \(\text{t_bound} \) [float] Boundary time.
- \(\text{direction} \) [float] Integration direction: +1 or -1.
- \(t \) [float] Current time.
- \(y \) [ndarray] Current state.
- \(\text{t_old} \) [float] Previous time. None if no steps were made yet.
- \(\text{step_size} \) [float] Size of the last successful step. None if no steps were made yet.
- \(\text{nfev} \) [int] Number of evaluations of the right-hand side.
- \(\text{njev} \) [int] Number of evaluations of the Jacobian.
- \(\text{nlu} \) [int] Number of LU decompositions.

Methods

- \(\text{dense_output}() \) Compute a local interpolant over the last successful step.
- \(\text{step}() \) Perform one integration step.

scipy.integrate.BDF.dense_output

\[\text{BDF.dense_output()} \]

Compute a local interpolant over the last successful step.

Returns

- \(\text{sol} \) [DenseOutput] Local interpolant over the last successful step.
scipy.integrate.BDF.step

BDF.step()

Perform one integration step.

Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is ‘failed’ after the step was taken or None otherwise.

scipy.integrate.LSODA

class scipy.integrate.LSODA (fun, t0, y0, t_bound, first_step=None, min_step=0.0, max_step=inf,
rtol=0.001, atol=1e-06, jac=None, lband=None, uband=None,
vectorized=False, **extraneous)

Adams/BDF method with automatic stiffness detection and switching.

This is a wrapper to the Fortran solver from ODEPACK [1]. It switches automatically between the nonstiff Adams method and the stiff BDF method. The method was originally detailed in [2].

Parameters

fun [callable] Right-hand side of the system. The calling signature is fun(t, y). Here t is a scalar, and there are two options for the ndarray y: It can either have shape (n,); then fun must return array_like with shape (n,). Alternatively it can have shape (n, k); then fun must return an array_like with shape (n, k), i.e. each column corresponds to a single column in y. The choice between the two options is determined by vectorized argument (see below). The vectorized implementation allows a faster approximation of the Jacobian by finite differences (required for this solver).

t0 [float] Initial time.

y0 [array_like, shape(n,)] Initial state.

t_bound [float] Boundary time - the integration won’t continue beyond it. It also determines the direction of the integration.

first_step [float or None, optional] Initial step size. Default is None which means that the algorithm should choose.

min_step [float, optional] Minimum allowed step size. Default is 0.0, i.e., the step size is not bounded and determined solely by the solver.

max_step [float, optional] Maximum allowed step size. Default is np.inf, i.e., the step size is not bounded and determined solely by the solver.

rtol, atol [float and array_like, optional] Relative and absolute tolerances. The solver keeps the local error estimates less than atol + rtol * abs(y). Here rtol controls a relative accuracy (number of correct digits), while atol controls absolute accuracy (number of correct decimal places). To achieve the desired rtol, set atol to be lower than the lowest value that can be expected from rtol * abs(y) so that rtol dominates the allowable error. If atol is larger than rtol * abs(y) the number of correct digits is not guaranteed. Conversely, to achieve the desired atol set rtol such that rtol * abs(y) is always lower than atol. If components of y have different scales, it might be beneficial to set different atol values for different components by passing array_like with shape (n,) for atol. Default values are 1e-3 for rtol and 1e-6 for atol.

jac [None or callable, optional] Jacobian matrix of the right-hand side of the system with respect to y. The Jacobian matrix has shape (n, n) and its element (i, j) is equal to \(\frac{\partial f_i}{\partial y_j} \). The function will be called as jac(t, y). If None (default), the Jacobian will be approximated by finite differences. It is generally recommended to provide the Jacobian rather than relying on a finite-difference approximation.

lband, uband [int or None] Parameters defining the bandwidth of the Jacobian, i.e., jac[i, j] != 0 only for i - lband <= j <= i + uband. Setting these requires your jac

3.3. API definition
routine to return the Jacobian in the packed format: the returned array must have \(n \) columns and \(\text{uband} + \text{lband} + 1 \) rows in which Jacobian diagonals are written. Specifically

\[
\text{jac}_\text{packed}[\text{uband} + i - j, j] = \text{jac}[i, j].
\]

The same format is used in \texttt{scipy.linalg.solve_banded} (check for an illustration). These parameters can be also used with \texttt{jac=None} to reduce the number of Jacobian elements estimated by finite differences.

\textbf{vectorized} [bool, optional] Whether \texttt{fun} is implemented in a vectorized fashion. A vectorized implementation offers no advantages for this solver. Default is \texttt{False}.

\section*{References}

[1], [2]

\section*{Attributes}

- \textbf{n} [int] Number of equations.
- \textbf{t_bound} [float] Boundary time.
- \textbf{direction} [float] Integration direction: +1 or -1.
- \textbf{t} [float] Current time.
- \textbf{y} [ndarray] Current state.
- \textbf{t_old} [float] Previous time. None if no steps were made yet.
- \textbf{nfev} [int] Number of evaluations of the right-hand side.
- \textbf{njev} [int] Number of evaluations of the Jacobian.

\section*{Methods}

- \texttt{dense_output()} Compute a local interpolant over the last successful step.
- \texttt{step()} Perform one integration step.

\begin{verbatim}
scipy.integrate.LSODA.dense_output

LSODA.dense_output()
Compute a local interpolant over the last successful step.

Returns

sol [DenseOutput] Local interpolant over the last successful step.

scipy.integrate.LSODA.step

LSODA.step()
Perform one integration step.

Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is ‘failed’ after the step was taken or None otherwise.
\end{verbatim}
scipy.integrate.OdeSolver

class scipy.integrate.OdeSolver (fun, t0, y0, t_bound, vectorized, support_complex=False)

Base class for ODE solvers.

In order to implement a new solver you need to follow the guidelines:

1. A constructor must accept parameters presented in the base class (listed below) along with any other parameters specific to a solver.

2. A constructor must accept arbitrary extraneous arguments **extraneous**, but warn that these arguments are irrelevant using common.warn_extraneous function. Do not pass these arguments to the base class.

3. A solver must implement a private method _step_impl(self) which propagates a solver one step further. It must return tuple (success, message), where success is a boolean indicating whether a step was successful, and message is a string containing description of a failure if a step failed or None otherwise.

4. A solver must implement a private method _dense_output_impl(self), which returns a DenseOutput object covering the last successful step.

5. A solver must have attributes listed below in Attributes section. Note that t_old and step_size are updated automatically.

6. Use fun(self, t, y) method for the system rhs evaluation, this way the number of function evaluations (nfev) will be tracked automatically.

7. For convenience, a base class provides fun_single(self, t, y) and fun_vectorized(self, t, y) for evaluating the rhs in non-vectorized and vectorized fashions respectively (regardless of how fun from the constructor is implemented). These calls don't increment nfev.

8. If a solver uses a Jacobian matrix and LU decompositions, it should track the number of Jacobian evaluations (njev) and the number of LU decompositions (nlu).

9. By convention, the function evaluations used to compute a finite difference approximation of the Jacobian should not be counted in nfev, thus use fun_single(self, t, y) or fun_vectorized(self, t, y) when computing a finite difference approximation of the Jacobian.

Parameters

- **fun** [callable] Right-hand side of the system. The calling signature is fun(t, y). Here t is a scalar and there are two options for ndarray y. It can either have shape (n,), then fun must return array_like with shape (n,). Or, alternatively, it can have shape (n, n_points), then fun must return array_like with shape (n, n_points) (each column corresponds to a single column in y). The choice between the two options is determined by vectorized argument (see below).

- t0 [float] Initial time.

- y0 [array_like, shape(n,)] Initial state.

- t_bound [float] Boundary time — the integration won’t continue beyond it. It also determines the direction of the integration.

- vectorized [bool] Whether fun is implemented in a vectorized fashion.

- support_complex [bool, optional] Whether integration in a complex domain should be supported. Generally determined by a derived solver class capabilities. Default is False.

Attributes

- n [int] Number of equations.

- t_bound [float] Boundary time.

- direction [float] Integration direction: +1 or -1.

- t [float] Current time.

- y [ndarray] Current state.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_old</td>
<td>[float] Previous time. None if no steps were made yet.</td>
</tr>
<tr>
<td>step_size</td>
<td>[float] Size of the last successful step. None if no steps were made yet.</td>
</tr>
<tr>
<td>nfev</td>
<td>[int] Number of the system’s rhs evaluations.</td>
</tr>
<tr>
<td>njev</td>
<td>[int] Number of the Jacobian evaluations.</td>
</tr>
<tr>
<td>nlu</td>
<td>[int] Number of LU decompositions.</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dense_output()</td>
<td>Compute a local interpolant over the last successful step.</td>
</tr>
<tr>
<td>step()</td>
<td>Perform one integration step.</td>
</tr>
</tbody>
</table>

scipy.integrate.OdeSolver.dense_output

OdeSolver.dense_output()

Compute a local interpolant over the last successful step.

Returns

sol [DenseOutput] Local interpolant over the last successful step.

scipy.integrate.OdeSolver.step

OdeSolver.step()

Perform one integration step.

Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is ‘failed’ after the step was taken or None otherwise.

scipy.integrate.DenseOutput

class scipy.integrate.DenseOutput(t_old, t)

Base class for local interpolant over step made by an ODE solver.

It interpolates between t_min and t_max (see Attributes below). Evaluation outside this interval is not forbidden, but the accuracy is not guaranteed.

Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_min, t_max</td>
<td>[float] Time range of the interpolation.</td>
</tr>
</tbody>
</table>
Methods

```python
__call__(t) Evaluate the interpolant.
```

scipy.integrate.DenseOutput.__call__

```python
DenseOutput.__call__(t)
Evaluate the interpolant.

Parameters
- `t` [float or array_like with shape (n_points,)] Points to evaluate the solution at.

Returns
- `y` [ndarray, shape (n,) or (n, n_points)] Computed values. Shape depends on whether `t` was a scalar or a 1-D array.
```

scipy.integrate.OdeSolution

```python
class scipy.integrate.OdeSolution(ts, interpolants)
Continuous ODE solution.

It is organized as a collection of DenseOutput objects which represent local interpolants. It provides an algorithm to select a right interpolant for each given point.

The interpolants cover the range between $t_{min}$ and $t_{max}$ (see Attributes below). Evaluation outside this interval is not forbidden, but the accuracy is not guaranteed.

When evaluating at a breakpoint (one of the values in `ts`) a segment with the lower index is selected.

Parameters
- `ts` [array_like, shape (n_segments + 1,)] Time instants between which local interpolants are defined. Must be strictly increasing or decreasing (zero segment with two points is also allowed).
- `interpolants` [list of DenseOutput with n_segments elements] Local interpolants. An i-th interpolant is assumed to be defined between $t_{s}[i]$ and $t_{s}[i + 1]$.

Attributes
- `t_min, t_max` [float] Time range of the interpolation.

Methods

```python
__call__(t) Evaluate the solution.
```
scipy.integrate.OdeSolution.__call__

OdeSolution.__call__(t)
Evaluates the solution.

Parameters

- **t** ([float or array_like with shape (n_points,)]) Points to evaluate at.

Returns

- **y** ([ndarray, shape (n_states,) or (n_states, n_points)]) Computed values. Shape depends on whether \( t \) is a scalar or a 1-D array.

Old API

These are the routines developed earlier for SciPy. They wrap older solvers implemented in Fortran (mostly ODEPACK). While the interface to them is not particularly convenient and certain features are missing compared to the new API, the solvers themselves are of good quality and work fast as compiled Fortran code. In some cases, it might be worth using this old API.

```
odeint(func, y0, t[, args, Dfun, col_deriv, ...]) Integrate a system of ordinary differential equations.
ode(f[, jac]) A generic interface class to numeric integrators.
complex_ode(f[, jac]) A wrapper of ode for complex systems.
```

scipy.integrate.odeint

```
scipy.integrate.odeint (func, y0, t[, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0, tfirst=False])
```

Integrate a system of ordinary differential equations.

**Note:** For new code, use **scipy.integrate.solve_ivp** to solve a differential equation.

Solve a system of ordinary differential equations using lsoda from the FORTRAN library odepack.

Solves the initial value problem for stiff or non-stiff systems of first order ode-s:

\[
\frac{dy}{dt} = \text{func}(y, t, ...) \quad \text{or} \quad \text{func}(t, y, ...)
\]

where \( y \) can be a vector.

**Note:** By default, the required order of the first two arguments of \text{func} are in the opposite order of the arguments in the system definition function used by the **scipy.integrate.ode** class and the function **scipy.integrate.solve_ivp**. To use a function with the signature \text{func}(t, y, ...), the argument \text{tfirst} must be set to True.

**Parameters**

- **func** ([callable(y, t, ...) or callable(t, y, ...)]) Computes the derivative of \( y \) at \( t \). If the signature is \text{callable}(t, y, ...), then the argument \text{tfirst} must be set True.
- **y0** ([array]) Initial condition on \( y \) (can be a vector).
`t` [array] A sequence of time points for which to solve for `y`. The initial value point should be the first element of this sequence. This sequence must be monotonically increasing or monotonically decreasing; repeated values are allowed.

`args` [tuple, optional] Extra arguments to pass to function.

`Dfun` [callable(y, t, ...) or callable(t, y, ...)] Gradient (Jacobian) of `func`. If the signature is `callable(t, y, ...)`, then the argument `tfirst` must be set `True`.

`col_deriv` [bool, optional] True if `Dfun` defines derivatives down columns (faster), otherwise `Dfun` should define derivatives across rows.

`full_output` [bool, optional] True if to return a dictionary of optional outputs as the second output

`printmessg` [bool, optional] Whether to print the convergence message

`tfirst` [bool, optional]
If `True`, the first two arguments of `func` (and `Dfun`, if given) must `t, y` instead of the default `y, t`.

New in version 1.1.0.

**Returns**

`y` [array, shape (len(t), len(y0))] Array containing the value of `y` for each desired time in `t`, with the initial value `y0` in the first row.

`infodict` [dict, only returned if `full_output == True`] Dictionary containing additional output information

<table>
<thead>
<tr>
<th>key</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>hu</code></td>
<td>vector of step sizes successfully used for each time step</td>
</tr>
<tr>
<td><code>tcur</code></td>
<td>vector with the value of <code>t</code> reached for each time step (will always be at least as large as the input times)</td>
</tr>
<tr>
<td><code>tolst</code></td>
<td>vector of tolerance scale factors, greater than 1.0, computed when a request for too much accuracy was detected</td>
</tr>
<tr>
<td><code>tsw</code></td>
<td>value of <code>t</code> at the time of the last method switch (given for each time step)</td>
</tr>
<tr>
<td><code>nst</code></td>
<td>cumulative number of time steps</td>
</tr>
<tr>
<td><code>nfe</code></td>
<td>cumulative number of function evaluations for each time step</td>
</tr>
<tr>
<td><code>nje</code></td>
<td>cumulative number of jacobian evaluations for each time step</td>
</tr>
<tr>
<td><code>nqu</code></td>
<td>a vector of method orders for each successful step</td>
</tr>
<tr>
<td><code>imxer</code></td>
<td>index of the component of largest magnitude in the weighted local error vector <code>(e / ewt)</code> on an error return, -1 otherwise</td>
</tr>
<tr>
<td><code>lenrw</code></td>
<td>the length of the double work array required</td>
</tr>
<tr>
<td><code>leniw</code></td>
<td>the length of integer work array required</td>
</tr>
</tbody>
</table>

`mused` a vector of method indicators for each successful time step: 1: adams (nonstiff), 2: bdf (stiff)

**Other Parameters**

`ml, mu` [int, optional] If either of these are not None or non-negative, then the Jacobian is assumed to be banded. These give the number of lower and upper non-zero diagonals in this banded matrix. For the banded case, `Dfun` should return a matrix whose rows contain the non-zero bands (starting with the lowest diagonal). Thus, the return matrix `jac` from `Dfun` should have shape `(ml + mu + 1, len(y0))` when `ml >=0` or `mu >=0`. The data in `jac` must be stored such that `jac[i - j + mu, j]` holds the derivative of the `i`th equation with respect to the `j`th state variable. If `col_deriv` is True, the transpose of this `jac` must be returned.

`rtol, atol` [float, optional] The input parameters `rtol` and `atol` determine the error control performed by the solver. The solver will control the vector, `e`, of estimated local errors in `y`, according to an inequality of the form $\max-norm \ of \ (e / \ ewt) \leq 1$, where `ewt` is a vector of.
positive error weights computed as $\text{ewt} = \text{rtol} \times \text{abs}(y) + \text{atol}$. rtol and atol can be either vectors the same length as y or scalars. Defaults to $1.49012e-8$.

tcrit
[ndarray, optional] Vector of critical points (e.g., singularities) where integration care should be taken.

h0
[float, (0: solver-determined), optional] The step size to be attempted on the first step.

hmax
[float, (0: solver-determined), optional] The maximum absolute step size allowed.

hmin
[float, (0: solver-determined), optional] The minimum absolute step size allowed.

ixpr
[bool, optional] Whether to generate extra printing at method switches.

mxstep
[int, (0: solver-determined), optional] Maximum number of (internally defined) steps allowed for each integration point in $t$.

mxhnil
[int, (0: solver-determined), optional] Maximum number of messages printed.

mxordn
[int, (0: solver-determined), optional] Maximum order to be allowed for the non-stiff (Adams) method.

mxords
[int, (0: solver-determined), optional] Maximum order to be allowed for the stiff (BDF) method.

See also:

solve_ivp
solve an initial value problem for a system of ODEs

dode
a more object-oriented integrator based on VODE

quad
for finding the area under a curve

Examples

The second order differential equation for the angle $\theta$ of a pendulum acted on by gravity with friction can be written:

$$ \theta''(t) + b\theta'(t) + c\sin(\theta(t)) = 0 $$

where $b$ and $c$ are positive constants, and a prime (') denotes a derivative. To solve this equation with odeint, we must first convert it to a system of first order equations. By defining the angular velocity $\omega(t) = \theta'(t)$, we obtain the system:

$$ \theta'(t) = \omega(t) $$
$$ \omega'(t) = -b\omega(t) - c\sin(\theta(t)) $$

Let $y$ be the vector $[\theta, \omega]$. We implement this system in Python as:

```python
>>> def pend(y, t, b, c):
... theta, omega = y
... dydt = [omega, -b*omega - c*np.sin(theta)]
... return dydt
...
```

We assume the constants are $b = 0.25$ and $c = 5.0$:

```python
>>> b = 0.25
>>> c = 5.0
```
For initial conditions, we assume the pendulum is nearly vertical with \( \theta(0) = \pi - 0.1 \), and is initially at rest, so \( \omega(0) = 0 \). Then the vector of initial conditions is

```python
>>> y0 = [np.pi - 0.1, 0.0]
```

We will generate a solution at 101 evenly spaced samples in the interval \( 0 \leq t \leq 10 \). So our array of times is:

```python
>>> t = np.linspace(0, 10, 101)
```

Call `odeint` to generate the solution. To pass the parameters \( b \) and \( c \) to `pend`, we give them to `odeint` using the `args` argument.

```python
>>> from scipy.integrate import odeint
>>> sol = odeint(pend, y0, t, args=(b, c))
```

The solution is an array with shape (101, 2). The first column is \( \theta(t) \), and the second is \( \omega(t) \). The following code plots both components.

```python
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, sol[:, 0], 'b', label='\theta(t)')
>>> plt.plot(t, sol[:, 1], 'g', label='\omega(t)')
>>> plt.legend(loc='best')
>>> plt.xlabel('t')
>>> plt.grid()
>>> plt.show()
```
scipy.integrate.ode

class scipy.integrate.ode(f, jac=None)

A generic interface class to numeric integrators.

Solve an equation system \( y'(t) = f(t, y) \) with (optional) \( \text{jac} = \frac{df}{dy} \).

Note: The first two arguments of \( f(t, y, \ldots) \) are in the opposite order of the arguments in the system
definition function used by scipy.integrate.odeint.

Parameters

f [callable f(t, y, *f_args)] Right-hand side of the differential equation. t is a scalar,
\( y\.shape == (n,) \). f_args is set by calling set_f_params(*args). f should
return a scalar, array or list (not a tuple).

jac [callable jac(t, y, *jac_args), optional] Jacobian of the right-hand side, \( jac[i, j] = \frac{df[i]}{dy[j]} \). jac_args is set by calling set_jac_params(*args).

See also:

odeint

an integrator with a simpler interface based on Isoda from ODEPACK

quad

for finding the area under a curve

Notes

Available integrators are listed below. They can be selected using the set_integrator method.

“vode”

Real-valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient imple-
mentation. It provides implicit Adams method (for non-stiff problems) and a method based on backward
differentiation formulas (BDF) (for stiff problems).

Source: http://www.netlib.org/ode/vode.f

Warning: This integrator is not re-entrant. You cannot have two ode instances using the “vode” inte-
grator at the same time.

This integrator accepts the following parameters in set_integrator method of the ode class:
- atol : float or sequence absolute tolerance for solution
- rtol : float or sequence relative tolerance for solution
- lband : None or int
- uband : None or int Jacobian band width, \( jac[i,j] != 0 \) for \( i-lband <= j <= i+uband \). Setting these
requires your jac routine to return the jacobian in packed format, \( jac\_packed[i-j+uband, j] = jac[i,j] \).
The dimension of the matrix must be (lband+uband+1, len(y)).
- method: ‘adams’ or ‘bdf’ Which solver to use, Adams (non-stiff) or BDF (stiff)
- with_jacobian : bool This option is only considered when the user has not supplied a Jacobian function
and has not indicated (by setting either band) that the Jacobian is banded. In this case, with_jacobian
specifies whether the iteration method of the ODE solver’s correction step is chord iteration with an
internally generated full Jacobian or functional iteration with no Jacobian.
- nsteps : int Maximum number of (internally defined) steps allowed during one call to the solver.
- first_step : float
- min_step : float
• max_step : float Limits for the step sizes used by the integrator.
• order : int Maximum order used by the integrator, order <= 12 for Adams, <= 5 for BDF.

“zvode”

Complex-valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient implementation. It provides implicit Adams method (for non-stiff problems) and a method based on backward differentiation formulas (BDF) (for stiff problems).

Source: http://www.netlib.org/ode/zvode.f

**Warning:** This integrator is not re-entrant. You cannot have two ode instances using the “zvode” integrator at the same time.

This integrator accepts the same parameters in set_integrator as the “vode” solver.

**Note:** When using ZVODE for a stiff system, it should only be used for the case in which the function f is analytic, that is, when each f(i) is an analytic function of each y(j). Analyticity means that the partial derivative df(i)/dy(j) is a unique complex number, and this fact is critical in the way ZVODE solves the dense or banded linear systems that arise in the stiff case. For a complex stiff ODE system in which f is not analytic, ZVODE is likely to have convergence failures, and for this problem one should instead use DVODE on the equivalent real system (in the real and imaginary parts of y).

“lsoda”

Real-valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient implementation. It provides automatic method switching between implicit Adams method (for non-stiff problems) and a method based on backward differentiation formulas (BDF) (for stiff problems).

Source: http://www.netlib.org/odepack

**Warning:** This integrator is not re-entrant. You cannot have two ode instances using the “lsoda” integrator at the same time.

This integrator accepts the following parameters in set_integrator method of the ode class:

• atol : float or sequence absolute tolerance for solution
• rtol : float or sequence relative tolerance for solution
• lband : None or int
• uband : None or int Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+uband. Setting these requires your jac routine to return the jacobian in packed format, jac_packed[i-j+uband, j] = jac[i,j].
• with_jacobian : bool Not used.
• nsteps : int Maximum number of (internally defined) steps allowed during one call to the solver.
• first_step : float
• min_step : float
• max_step : float Limits for the step sizes used by the integrator.
• max_order_ns : int Maximum order used in the nonstiff case (default 12).
• max_order_s : int Maximum order used in the stiff case (default 5).
• max_hnil : int Maximum number of messages reporting too small step size (t + h = t) (default 0)
• ixpr : int Whether to generate extra printing at method switches (default False).

“dopri5”

This is an explicit runge-kutta method of order (4)5 due to Dormand & Prince (with stepsize control and dense output).

Authors:
E. Hairer and G. Wanner Universite de Geneve, Dept. de Mathematiques CH-1211 Geneve 24, Switzerland e-mail: ernst.hairer@math.unige.ch, gerhard.wanner@math.unige.ch

3.3. API definition
This code is described in [HNW93].

This integrator accepts the following parameters in set_integrator() method of the ode class:

- **atol**: float or sequence absolute tolerance for solution
- **rtol**: float or sequence relative tolerance for solution
- **nsteps**: int Maximum number of (internally defined) steps allowed during one call to the solver.
- **first_step**: float
- **max_step**: float
- **safety**: float Safety factor on new step selection (default 0.9)
- **ifactor**: float
- **dfactor**: float Maximum factor to increase/decrease step size by in one step
- **beta**: float Beta parameter for stabilised step size control.
- **verbosity**: int Switch for printing messages (< 0 for no messages).

“dop853”

This is an explicit runge-kutta method of order 8(5,3) due to Dormand & Prince (with stepsize control and dense output).

Options and references the same as “dopri5”.

**References**

[HNW93]

**Examples**

A problem to integrate and the corresponding jacobian:

```python
>>> from scipy.integrate import ode
>>> y0, t0 = [1.0j, 2.0], 0
>>> def f(t, y, arg1):
... return [1j*arg1*y[0] + y[1], -arg1*y[1]**2]
>>> def jac(t, y, arg1):
... return [[1j*arg1, 1], [0, -arg1*2*y[1]]]
```

The integration:

```python
>>> r = ode(f, jac).set_integrator('zvode', method='bdf')
>>> r.set_initial_value(y0, t0).set_f_params(2.0).set_jac_params(2.0)
>>> t1 = 10
>>> dt = 1
>>> while r.successful() and r.t < t1:
... print(r.t+dt, r.integrate(r.t+dt))
1 [-0.71038232+0.23749653j 0.40000271+0.j]
2.0 [0.19098503-0.52359246j 0.22222356+0.j]
3.0 [0.47153208+0.52701229j 0.15384681+0.j]
4.0 [-0.61905937+0.30726255j 0.11764744+0.j]
5.0 [0.02340997-0.61418799j 0.09523835+0.j]
6.0 [0.58643071+0.3398191j 0.08006018+0.j]
7.0 [-0.52070105+0.44525141j 0.06896565+0.j]
8.0 [-0.15986733-0.61234476j 0.06060616+0.j]
```

(continues on next page)
9.0 [0.64850462+0.15048982j 0.05405414+0.j]
10.0 [-0.38404699+0.56382299j 0.04878055+0.j]

Attributes

- **t** [float] Current time.
- **y** [ndarray] Current variable values.

Methods

- `get_return_code()` Extracts the return code for the integration to enable better control if the integration fails.
- `integrate(t[, step, relax])` Find $y = y(t)$, set $y$ as an initial condition, and return $y$.
- `set_f_params(*args)` Set extra parameters for user-supplied function $f$.
- `set_initial_value(y[, t])` Set initial conditions $y(t) = y$.
- `set_integrator(name, **integrator_params)` Set integrator by name.
- `set_jac_params(*args)` Set extra parameters for user-supplied function $jac$.
- `set_solout(solout)` Set callable to be called at every successful integration step.
- `successful()` Check if integration was successful.

`scipy.integrate.ode.get_return_code`

`ode.get_return_code()`

Extracts the return code for the integration to enable better control if the integration fails.

In general, a return code $> 0$ implies success, while a return code $< 0$ implies failure.

Notes

This section describes possible return codes and their meaning, for available integrators that can be selected by `set_integrator` method.

“vode”

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Integration successful.</td>
</tr>
<tr>
<td>-1</td>
<td>Excess work done on this call. (Perhaps wrong MF.)</td>
</tr>
<tr>
<td>-2</td>
<td>Excess accuracy requested. (Tolerances too small.)</td>
</tr>
<tr>
<td>-3</td>
<td>Illegal input detected. (See printed message.)</td>
</tr>
<tr>
<td>-4</td>
<td>Repeated error test failures. (Check all input.)</td>
</tr>
<tr>
<td>-5</td>
<td>Repeated convergence failures. (Perhaps bad Jacobian supplied or wrong choice of MF or tolerances.)</td>
</tr>
<tr>
<td>-6</td>
<td>Error weight became zero during problem. (Solution component i vanished, and ATOL or ATOL(i) = 0.)</td>
</tr>
</tbody>
</table>

“zvode”
### Table of Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Integration successful.</td>
</tr>
<tr>
<td>-1</td>
<td>Excess work done on this call. (Perhaps wrong MF.)</td>
</tr>
<tr>
<td>-2</td>
<td>Excess accuracy requested. (Tolerances too small.)</td>
</tr>
<tr>
<td>-3</td>
<td>Illegal input detected. (See printed message.)</td>
</tr>
<tr>
<td>-4</td>
<td>Repeated error test failures. (Check all input.)</td>
</tr>
<tr>
<td>-5</td>
<td>Repeated convergence failures. (Perhaps bad Jacobian supplied or wrong choice of MF or tolerances.)</td>
</tr>
<tr>
<td>-6</td>
<td>Error weight became zero during problem. (Solution component i vanished, and ATOL or ATOL(i) = 0.)</td>
</tr>
</tbody>
</table>

### “dopri5”

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Integration successful.</td>
</tr>
<tr>
<td>2</td>
<td>Integration successful (interrupted by solout).</td>
</tr>
<tr>
<td>-1</td>
<td>Input is not consistent.</td>
</tr>
<tr>
<td>-2</td>
<td>Larger nsteps is needed.</td>
</tr>
<tr>
<td>-3</td>
<td>Step size becomes too small.</td>
</tr>
<tr>
<td>-4</td>
<td>Problem is probably stiff (interrupted).</td>
</tr>
</tbody>
</table>

### “dop853”

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Integration successful.</td>
</tr>
<tr>
<td>2</td>
<td>Integration successful (interrupted by solout).</td>
</tr>
<tr>
<td>-1</td>
<td>Input is not consistent.</td>
</tr>
<tr>
<td>-2</td>
<td>Larger nsteps is needed.</td>
</tr>
<tr>
<td>-3</td>
<td>Step size becomes too small.</td>
</tr>
<tr>
<td>-4</td>
<td>Problem is probably stiff (interrupted).</td>
</tr>
</tbody>
</table>

### “lsoda”

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Integration successful.</td>
</tr>
<tr>
<td>-1</td>
<td>Excess work done on this call (perhaps wrong Dfun type).</td>
</tr>
<tr>
<td>-2</td>
<td>Excess accuracy requested (tolerances too small).</td>
</tr>
<tr>
<td>-3</td>
<td>Illegal input detected (internal error).</td>
</tr>
<tr>
<td>-4</td>
<td>Repeated error test failures (internal error).</td>
</tr>
<tr>
<td>-5</td>
<td>Repeated convergence failures (perhaps bad Jacobian or tolerances).</td>
</tr>
<tr>
<td>-6</td>
<td>Error weight became zero during problem.</td>
</tr>
<tr>
<td>-7</td>
<td>Internal workspace insufficient to finish (internal error).</td>
</tr>
</tbody>
</table>
scipy.integrate.ode.integrate

ode.integrate(t, step=False, relax=False)
Find y=y(t), set y as an initial condition, and return y.

Parameters
- t [float] The endpoint of the integration step.
- step [bool] If True, and if the integrator supports the step method, then perform a single integration step and return. This parameter is provided in order to expose internals of the implementation, and should not be changed from its default value in most cases.
- relax [bool] If True and if the integrator supports the run_relax method, then integrate until t_1 >= t and return. relax is not referenced if step=True. This parameter is provided in order to expose internals of the implementation, and should not be changed from its default value in most cases.

Returns
- y [float] The integrated value at t

scipy.integrate.ode.set_f_params

ode.set_f_params(*args)
Set extra parameters for user-supplied function f.

scipy.integrate.ode.set_initial_value

ode.set_initial_value(y, t=0.0)
Set initial conditions y(t) = y.

scipy.integrate.ode.set_integrator

ode.set_integrator(name, **integrator_params)
Set integrator by name.

Parameters
- name [str] Name of the integrator.
- integrator_params Additional parameters for the integrator.

scipy.integrate.ode.set_jac_params

ode.set_jac_params(*args)
Set extra parameters for user-supplied function jac.
scipy.integrate.ode.set_solout

ode.set_solout(solout)
Set callable to be called at every successful integration step.

Parameters
solout  [callable] solout(t, y) is called at each internal integrator step, t is a scalar providing the current independent position y is the current solution y.shape == (n,)
solout should return -1 to stop integration otherwise it should return None or 0

scipy.integrate.ode.successful

ode.successful()
Check if integration was successful.

scipy.integrate.complex_ode

class scipy.integrate.complex_ode(f, jac=None)
A wrapper of ode for complex systems.

This functions similarly as ode, but re-maps a complex-valued equation system to a real-valued one before using the integrators.

Parameters
f    [callable f(t, y, *f_args)] Rhs of the equation. t is a scalar, y.shape == (n,).
f_args is set by calling set_f_params(*args).

jac  [callable jac(t, y, *jac_args)] Jacobian of the rhs, jac[i,j] = d f[i] / d y[j]. jac_args is set by calling set_f_params(*args).

Examples
For usage examples, see ode.

Attributes
    t    [float] Current time.
    y    [ndarray] Current variable values.

Methods

get_return_code()  Extracts the return code for the integration to enable better control if the integration fails.
integrate(t, step, relax)  Find y=y(t), set y as an initial condition, and return y.
set_f_params(*args)  Set extra parameters for user-supplied function f.
set_initial_value(y[, t])  Set initial conditions y(t) = y.
set_integrator(name, **integrator_params)  Set integrator by name.
set_jac_params(*args)  Set extra parameters for user-supplied function jac.
set_solout(solout)  Set callable to be called at every successful integration step.

continues on next page
successful()  
Check if integration was successful.

**scipy.integrate.complex_ode.get_return_code**

complex_ode.get_return_code()  
Extracts the return code for the integration to enable better control if the integration fails.

In general, a return code > 0 implies success, while a return code < 0 implies failure.

**Notes**

This section describes possible return codes and their meaning, for available integrators that can be selected by `set_integrator` method.

"vode"

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Integration successful.</td>
</tr>
<tr>
<td>-1</td>
<td>Excess work done on this call. (Perhaps wrong MF.)</td>
</tr>
<tr>
<td>-2</td>
<td>Excess accuracy requested. (Tolerances too small.)</td>
</tr>
<tr>
<td>-3</td>
<td>Illegal input detected. (See printed message.)</td>
</tr>
<tr>
<td>-4</td>
<td>Repeated error test failures. (Check all input.)</td>
</tr>
<tr>
<td>-5</td>
<td>Repeated convergence failures. (Perhaps bad Jacobian supplied or wrong choice of MF or tolerances.)</td>
</tr>
<tr>
<td>-6</td>
<td>Error weight became zero during problem. (Solution component i vanished, and ATOL or ATOL(i) = 0.)</td>
</tr>
</tbody>
</table>

"zvode"

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Integration successful.</td>
</tr>
<tr>
<td>-1</td>
<td>Excess work done on this call. (Perhaps wrong MF.)</td>
</tr>
<tr>
<td>-2</td>
<td>Excess accuracy requested. (Tolerances too small.)</td>
</tr>
<tr>
<td>-3</td>
<td>Illegal input detected. (See printed message.)</td>
</tr>
<tr>
<td>-4</td>
<td>Repeated error test failures. (Check all input.)</td>
</tr>
<tr>
<td>-5</td>
<td>Repeated convergence failures. (Perhaps bad Jacobian supplied or wrong choice of MF or tolerances.)</td>
</tr>
<tr>
<td>-6</td>
<td>Error weight became zero during problem. (Solution component i vanished, and ATOL or ATOL(i) = 0.)</td>
</tr>
</tbody>
</table>

"dopri5"
<table>
<thead>
<tr>
<th>Return Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Integration successful.</td>
</tr>
<tr>
<td>2</td>
<td>Integration successful (interrupted by solout).</td>
</tr>
<tr>
<td>-1</td>
<td>Input is not consistent.</td>
</tr>
<tr>
<td>-2</td>
<td>Larger nsteps is needed.</td>
</tr>
<tr>
<td>-3</td>
<td>Step size becomes too small.</td>
</tr>
<tr>
<td>-4</td>
<td>Problem is probably stiff (interrupted).</td>
</tr>
</tbody>
</table>

"dop853"

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Integration successful.</td>
</tr>
<tr>
<td>2</td>
<td>Integration successful (interrupted by solout).</td>
</tr>
<tr>
<td>-1</td>
<td>Input is not consistent.</td>
</tr>
<tr>
<td>-2</td>
<td>Larger nsteps is needed.</td>
</tr>
<tr>
<td>-3</td>
<td>Step size becomes too small.</td>
</tr>
<tr>
<td>-4</td>
<td>Problem is probably stiff (interrupted).</td>
</tr>
</tbody>
</table>

"lsoda"

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Integration successful.</td>
</tr>
<tr>
<td>-1</td>
<td>Excess work done on this call (perhaps wrong Dfun type).</td>
</tr>
<tr>
<td>-2</td>
<td>Excess accuracy requested (tolerances too small).</td>
</tr>
<tr>
<td>-3</td>
<td>Illegal input detected (internal error).</td>
</tr>
<tr>
<td>-4</td>
<td>Repeated error test failures (internal error).</td>
</tr>
<tr>
<td>-5</td>
<td>Repeated convergence failures (perhaps bad Jacobian or tolerances).</td>
</tr>
<tr>
<td>-6</td>
<td>Error weight became zero during problem.</td>
</tr>
<tr>
<td>-7</td>
<td>Internal workspace insufficient to finish (internal error).</td>
</tr>
</tbody>
</table>

**scipy.integrate.complex_ode.integrate**

`complex_ode.integrate(t, step=False, relax=False)`

Find y=y(t), set y as an initial condition, and return y.

**Parameters**

- `t` [float] The endpoint of the integration step.
- `step` [bool] If True, and if the integrator supports the step method, then perform a single integration step and return. This parameter is provided in order to expose internals of the implementation, and should not be changed from its default value in most cases.
- `relax` [bool] If True and if the integrator supports the run_relax method, then integrate until t_1 >= t and return. relax is not referenced if step=True. This parameter is provided in order to expose internals of the implementation, and should not be changed from its default value in most cases.

**Returns**

- `y` [float] The integrated value at t
**scipy.integrate.complex_ode.set_f_params**

```python
complex_ode.set_f_params(*args)
```
Set extra parameters for user-supplied function $f$.

**scipy.integrate.complex_ode.set_initial_value**

```python
complex_ode.set_initial_value(y, t=0.0)
```
Set initial conditions $y(t) = y$.

**scipy.integrate.complex_ode.set_integrator**

```python
complex_ode.set_integrator(name, **integrator_params)
```
Set integrator by name.

**Parameters**
- `name` : [str] Name of the integrator
- `integrator_params` : Additional parameters for the integrator.

**scipy.integrate.complex_ode.set_jac_params**

```python
complex_ode.set_jac_params(*args)
```
Set extra parameters for user-supplied function $jac$.

**scipy.integrate.complex_ode.set_solout**

```python
complex_ode.set_solout(solout)
```
Set callable to be called at every successful integration step.

**Parameters**
- `solout` : [callable] $solout(t, y)$ is called at each internal integrator step, $t$ is a scalar providing the current independent position $y$ is the current solution $y.shape == (n,)$. $solout$ should return -1 to stop integration otherwise it should return None or 0.

**scipy.integrate.complex_ode.successful**

```python
complex_ode.successful()
```
Check if integration was successful.
Solving boundary value problems for ODE systems

```
solve_bvp(fun, bc, x, y[, p, S, fun_jac, ...])
```

Solve a boundary value problem for a system of ODEs.

### scipy.integrate.solve_bvp

This function numerically solves a first order system of ODEs subject to two-point boundary conditions:

\[
\frac{dy}{dx} = f(x, y, p) + S \cdot y / (x - a), \quad a \leq x \leq b
\]

\[
bc(y(a), y(b), p) = 0
\]

Here \(x\) is a 1-D independent variable, \(y(x)\) is an N-D vector-valued function and \(p\) is a k-D vector of unknown parameters which is to be found along with \(y(x)\). For the problem to be determined, there must be \(n + k\) boundary conditions, i.e., \(bc\) must be an \((n + k)\)-D function.

The last singular term on the right-hand side of the system is optional. It is defined by an \(n\)-by-\(n\) matrix \(S\), such that the solution must satisfy \(S \cdot y(a) = 0\). This condition will be forced during iterations, so it must not contradict boundary conditions. See [2] for the explanation how this term is handled when solving BVPs numerically.

Problems in a complex domain can be solved as well. In this case, \(y\) and \(p\) are considered to be complex, and \(f\) and \(bc\) are assumed to be complex-valued functions, but \(x\) stays real. Note that \(f\) and \(bc\) must be complex differentiable (satisfy Cauchy-Riemann equations [4]), otherwise you should rewrite your problem for real and imaginary parts separately. To solve a problem in a complex domain, pass an initial guess for \(y\) with a complex data type (see below).

### Parameters

- **fun**
  - [callable] Right-hand side of the system. The calling signature is \(f(x, y, p)\) if parameters are present. All arguments are ndarray: \(x\) with shape \((m,)\), \(y\) with shape \((n, m)\), meaning that \(y[:, i]\) corresponds to \(x[i]\), and \(p\) with shape \((k,)\). The return value must be an array with shape \((n, m)\) and with the same layout as \(y\).

- **bc**
  - [callable] Function evaluating residuals of the boundary conditions. The calling signature is \(bc(y(a), y(b), p)\) if parameters are present. All arguments are ndarray: \(ya\) and \(yb\) with shape \((n,)\), and \(p\) with shape \((k,)\). The return value must be an array with shape \((n + k,)\).

- **x**
  - [array_like, shape \((m,)\)] Initial mesh. Must be a strictly increasing sequence of real numbers with \(x[0] = a\) and \(x[-1] = b\).

- **y**
  - [array_like, shape \((n, m)\)] Initial guess for the function values at the mesh nodes, ith column corresponds to \(x[i]\). For problems in a complex domain pass \(y\) with a complex data type (even if the initial guess is purely real).

- **p**
  - [array_like with shape \((k,)\) or None, optional] Initial guess for the unknown parameters. If None (default), it is assumed that the problem doesn’t depend on any parameters.

- **S**
  - [array_like with shape \((n, n)\) or None] Matrix defining the singular term. If None (default), the problem is solved without the singular term.

- **fun_jac**
  - [callable or None, optional] Function computing derivatives of \(f\) with respect to \(y\) and \(p\). The calling signature is \(f_{jac}(x, y, p)\) if parameters are present. The return must contain 1 or 2 elements in the following order:
    * \(df_{dy} : array\_like\ with\ shape\ (n, n, m)\), where an element \((i, j, q)\) equals to \(df_i(x, q, y, p) / df_j(y, q, p)\).
    * \(df_{dp} : array\_like\ with\ shape\ (n, k, m)\), where an element \((i, j, q)\) equals to \(df_i(x, q, y, p) / dp_j\).
Here q numbers nodes at which x and y are defined, whereas i and j number vector components. If the problem is solved without unknown parameters, df_dp should not be returned.

If fun_jac is None (default), the derivatives will be estimated by the forward finite differences.

bc_jac
[callable or None, optional] Function computing derivatives of bc with respect to ya, yb, and p. The calling signature is bc_jac(ya, yb), or bc_jac(ya, yb, p) if parameters are present. The return must contain 2 or 3 elements in the following order:
• dbc_dya : array_like with shape (n, n), where an element (i, j) equals to d bc_i(ya, yb, p) / d ya_j.
• dbc_dyb : array_like with shape (n, n), where an element (i, j) equals to d bc_i(ya, yb, p) / d yb_j.
• dbc_dp: array_like with shape (n, k), where an element (i, j) equals to d bc_i(ya, yb, p) / d p_j.
If the problem is solved without unknown parameters, dbc_dp should not be returned.

If bc_jac is None (default), the derivatives will be estimated by the forward finite differences.

tol
[float, optional] Desired tolerance of the solution. If we define $r = y' - f(x, y)$, where y is the found solution, then the solver tries to achieve on each mesh interval $\text{norm}(r / (1 + abs(f)) < tol$, where norm is estimated in a root mean squared sense (using a numerical quadrature formula). Default is 1e-3.

max_nodes
[int, optional] Maximum allowed number of the mesh nodes. If exceeded, the algorithm terminates. Default is 1000.

verbose
[0, 1, 2], optional] Level of algorithm’s verbosity:
• 0 (default): work silently.
• 1: display a termination report.
• 2: display progress during iterations.

bc_tol
[float, optional] Desired absolute tolerance for the boundary condition residuals: bc value should satisfy $\text{abs(bc)} < bc_tol$ component-wise. Equals to tol by default. Up to 10 iterations are allowed to achieve this tolerance.

Returns
Bunch object with the following fields defined:
sol
[PPoly] Found solution for y as scipy.interpolate.PPoly instance, a C1 continuous cubic spline.

p
[ndarray or None, shape (k,)] Found parameters. None, if the parameters were not present in the problem.

x
[ndarray, shape (m,)] Nodes of the final mesh.

y
[ndarray, shape (n, m)] Solution values at the mesh nodes.

yp
[ndarray, shape (n, m)] Solution derivatives at the mesh nodes.

rms_residuals
[ndarray, shape (m - 1,)] RMS values of the relative residuals over each mesh interval (see the description of tol parameter).

niter
[int] Number of completed iterations.

status
[int] Reason for algorithm termination:
• 0: The algorithm converged to the desired accuracy.
• 1: The maximum number of mesh nodes is exceeded.
• 2: A singular Jacobian encountered when solving the collocation system.

message
[string] Verbal description of the termination reason.

success
[bool] True if the algorithm converged to the desired accuracy (status=0).
Notes

This function implements a 4th order collocation algorithm with the control of residuals similar to [1]. A collocation system is solved by a damped Newton method with an affine-invariant criterion function as described in [3].

Note that in [1] integral residuals are defined without normalization by interval lengths. So, their definition is different by a multiplier of h**0.5 (h is an interval length) from the definition used here.

New in version 0.18.0.

References

[1], [2], [3], [4]

Examples

In the first example, we solve Bratu's problem:

\[
\begin{align*}
    y'' + k \cdot \exp(y) &= 0 \\
    y(0) &= y(1) = 0 
\end{align*}
\]

for k = 1.

We rewrite the equation as a first-order system and implement its right-hand side evaluation:

\[
\begin{align*}
    y_1' &= y_2 \\
    y_2' &= -\exp(y_1) 
\end{align*}
\]

```python
>>> def fun(x, y):
... return np.vstack((y[1], -np.exp(y[0])))
```

Implement evaluation of the boundary condition residuals:

```python
>>> def bc(ya, yb):
... return np.array([ya[0], yb[0]])
```

Define the initial mesh with 5 nodes:

```python
>>> x = np.linspace(0, 1, 5)
```

This problem is known to have two solutions. To obtain both of them, we use two different initial guesses for y. We denote them by subscripts a and b.

```python
>>> y_a = np.zeros((2, x.size))
>>> y_b = np.zeros((2, x.size))
>>> y_b[0] = 3
```

Now we are ready to run the solver.

```python
>>> from scipy.integrate import solve_bvp
>>> res_a = solve_bvp(fun, bc, x, y_a)
>>> res_b = solve_bvp(fun, bc, x, y_b)
```

Let's plot the two found solutions. We take an advantage of having the solution in a spline form to produce a smooth plot.
We see that the two solutions have similar shape, but differ in scale significantly.

In the second example, we solve a simple Sturm-Liouville problem:

\[ y'' + k^2 y = 0 \]
\[ y(0) = y(1) = 0 \]

It is known that a non-trivial solution \( y = A \sin(k \cdot x) \) is possible for \( k = \pi \cdot n \), where \( n \) is an integer. To establish the normalization constant \( A = 1 \) we add a boundary condition:

\[ y'(0) = k \]

Again, we rewrite our equation as a first-order system and implement its right-hand side evaluation:

\[ y_1' = y_2 \]
\[ y_2' = -k^2 \cdot y_1 \]

```python
>>> def fun(x, y, p):
... k = p[0]
... return np.vstack((y[1], -k**2 * y[0]))
```

Note that parameters \( p \) are passed as a vector (with one element in our case).
Implement the boundary conditions:
```python
>>> def bc(ya, yb, p):
... k = p[0]
... return np.array([ya[0], yb[0], ya[1] - k])
```

Set up the initial mesh and guess for $y$. We aim to find the solution for $k = 2 \pi$, to achieve that we set values of $y$ to approximately follow $\sin(2 \pi x)$:

```python
>>> x = np.linspace(0, 1, 5)
>>> y = np.zeros((2, x.size))
>>> y[0, 1] = 1
>>> y[0, 3] = -1
```

Run the solver with 6 as an initial guess for $k$.

```python
>>> sol = solve_bvp(fun, bc, x, y, p=[6])
```

We see that the found $k$ is approximately correct:

```python
>>> sol.p[0]
6.28329460046
```

And, finally, plot the solution to see the anticipated sinusoid:

```python
>>> x_plot = np.linspace(0, 1, 100)
>>> y_plot = sol.sol(x_plot)[0]
>>> plt.plot(x_plot, y_plot)
>>> plt.xlabel("x")
>>> plt.ylabel("y")
>>> plt.show()
```
3.3.8 Interpolation (scipy.interpolate)

Sub-package for objects used in interpolation.

As listed below, this sub-package contains spline functions and classes, 1-D and multidimensional (univariate and multi-variate) interpolation classes, Lagrange and Taylor polynomial interpolators, and wrappers for FITPACK and DFITPACK functions.

Univariate interpolation

- **interp1d**
  - **BarycentricInterpolator**(xi[, yi, axis])
  - **KroghInterpolator**(xi, yi[, axis])
  - **barycentric_interpolate**(xi, yi, x[, axis])
  - **krogh_interpolate**(xi, yi, x[, der, axis])
  - **pchip_interpolate**(xi, yi, x[, der, axis])
  - **CubicHermiteSpline**(x, y, dydx[, axis,...])
  - **PchipInterpolator**(x, y[, axis, extrapolate])
  - **Akima1DInterpolator**(x, y[, axis])
  - **CubicSpline**(x, y[, axis,bc_type,extrapolate])
  - **PPoly**(c,x[, extrapolate, axis])
  - **BPoly**(c,x[, extrapolate, axis])

**scipy.interpolate.interp1d**

```
class scipy.interpolate.interp1d(x, y[, kind, axis, copy, ...])
```

Interpolate a 1-D function.

Parameters:
- **x**
- **y**
  - [(…,N,…) array_like] A N-D array of real values. The length of y along the interpolation axis must be equal to the length of x.
- **kind**
  - [str or int, optional] Specifies the kind of interpolation as a string or as an integer specifying the order of the spline interpolator to use. The string has to be one of 'linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'previous', or 'next'. 'zero', 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of zeroth, first, second or third order; 'previous' and 'next' simply return the previous or next value of the point; 'nearest-up' and 'nearest' differ when interpolating half-integers (e.g. 0.5, 1.5) in that 'nearest-up' rounds up and 'nearest' rounds down. Default is 'linear'.
- **axis**
  - [int, optional] Specifies the axis of y along which to interpolate. Interpolation defaults to the last axis of y.
- **copy**
  - [bool, optional] If True, the class makes internal copies of x and y. If False, references to x and y are used. The default is to copy.
- **bounds_error**
  - [bool, optional] If True, a ValueError is raised any time extrapolation is attempted on a value outside of the range of x (where extrapolation is necessary). If False, out
of bounds values are assigned `fill_value`. By default, an error is raised unless `fill_value="extrapolate"`.

**fill_value**  
[array-like or (array-like, array_like) or “extrapolate”, optional]

- If a ndarray (or float), this value will be used to fill in for requested points outside of the data range. If not provided, then the default is NaN. The array-like must broadcast properly to the dimensions of the non-interpolation axes.
- If a two-element tuple, then the first element is used as a fill value for \(x_{\text{new}} < x[0]\) and the second element is used for \(x_{\text{new}} > x[-1]\). Anything that is not a 2-element tuple (e.g., list or ndarray, regardless of shape) is taken to be a single array-like argument meant to be used for both bounds as below, `above = fill_value, fill_value`. Using a two-element tuple or ndarray requires `bounds_error=False`. New in version 0.17.0.
- If “extrapolate”, then points outside the data range will be extrapolated.
  New in version 0.17.0.

**assume_sorted**  
[bool, optional] If False, values of \(x\) can be in any order and they are sorted first. If True, \(x\) has to be an array of monotonically increasing values.

See also:

- `splrep`, `splev`  
  Spline interpolation/smoothing based on FITPACK.

**UnivariateSpline**  
An object-oriented wrapper of the FITPACK routines.

**interp2d**  
2-D interpolation

Notes

Calling `interp1d` with NaNs present in input values results in undefined behaviour.

Input values \(x\) and \(y\) must be convertible to float values like `int` or `float`.

If the values in \(x\) are not unique, the resulting behavior is undefined and specific to the choice of `kind`, i.e., changing `kind` will change the behavior for duplicates.

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate
>>> x = np.arange(0, 10)
>>> y = np.exp(-x/3.0)
>>> f = interpolate.interp1d(x, y)

>>> xnew = np.arange(0, 9, 0.1)
>>> ynew = f(xnew) # use interpolation function returned by `interp1d`
>>> plt.plot(x, y, 'o', xnew, ynew, '-')
>>> plt.show()
```

Attributes
fill_value

The fill value.

Methods

__call__(x) Evaluate the interpolant

scipy.interpolate.interp1d.__call__

interp1d.__call__(x)
Evaluate the interpolant

Parameters

x [array_like] Points to evaluate the interpolant at.

Returns

y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x.

Notes

Input values x must be convertible to float values like int or float.
class `scipy.interpolate.BarycentricInterpolator`(xi, yi=None, axis=0)

The interpolating polynomial for a set of points

Constructs a polynomial that passes through a given set of points. Allows evaluation of the polynomial, efficient changing of the y values to be interpolated, and updating by adding more x values. For reasons of numerical stability, this function does not compute the coefficients of the polynomial.

The values yi need to be provided before the function is evaluated, but none of the preprocessing depends on them, so rapid updates are possible.

**Parameters**

- **xi**: 1-D array of x coordinates of the points the polynomial should pass through
- **yi**: [array_like, optional] The y coordinates of the points the polynomial should pass through. If None, the y values will be supplied later via the `set_yi` method.
- **axis**: [int, optional] Axis in the yi array corresponding to the x-coordinate values.

**Notes**

This class uses a “barycentric interpolation” method that treats the problem as a special case of rational function interpolation. This algorithm is quite stable, numerically, but even in a world of exact computation, unless the x coordinates are chosen very carefully - Chebyshev zeros (e.g., \(\cos(i\pi/n)\)) are a good choice - polynomial interpolation itself is a very ill-conditioned process due to the Runge phenomenon.

Based on Berrut and Trefethen 2004, “Barycentric Lagrange Interpolation”.

**Attributes**

- **dtype**

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>call</strong>(x)</td>
<td>Evaluate the interpolating polynomial at the points x</td>
</tr>
<tr>
<td>add_xi(xi[, yi])</td>
<td>Add more x values to the set to be interpolated</td>
</tr>
<tr>
<td>set_yi(yi[, axis])</td>
<td>Update the y values to be interpolated</td>
</tr>
</tbody>
</table>

**scipy.interpolate.BarycentricInterpolator.__call__**

Evaluate the interpolating polynomial at the points x

**Parameters**

- **x**: [array_like] Points to evaluate the interpolant at.

**Returns**

- **y**: [array_like] Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x.
Notes

Currently the code computes an outer product between x and the weights, that is, it constructs an intermediate array of size N by len(x), where N is the degree of the polynomial.

**scipy.interpolate.BarycentricInterpolator.add_xi**

BarycentricInterpolator.add_xi(xi, yi=None)

Add more x values to the set to be interpolated

The barycentric interpolation algorithm allows easy updating by adding more points for the polynomial to pass through.

**Parameters**

- **xi**
  - [array_like] The x coordinates of the points that the polynomial should pass through.
- **yi**
  - [array_like, optional] The y coordinates of the points the polynomial should pass through. Should have shape (xi.size, R); if R > 1 then the polynomial is vector-valued. If yi is not given, the y values will be supplied later. yi should be given if and only if the interpolator has y values specified.

**scipy.interpolate.BarycentricInterpolator.set_yi**

BarycentricInterpolator.set_yi(yi, axis=None)

Update the y values to be interpolated

The barycentric interpolation algorithm requires the calculation of weights, but these depend only on the xi. The yi can be changed at any time.

**Parameters**

- **yi**
  - [array_like] The y coordinates of the points the polynomial should pass through. If None, the y values will be supplied later.
- **axis**
  - [int, optional] Axis in the yi array corresponding to the x-coordinate values.

**scipy.interpolate.KroghInterpolator**

class scipy.interpolate.KroghInterpolator(xi, yi, axis=0)

Interpolating polynomial for a set of points.

The polynomial passes through all the pairs (xi,yi). One may additionally specify a number of derivatives at each point xi; this is done by repeating the value xi and specifying the derivatives as successive yi values.

Allows evaluation of the polynomial and all its derivatives. For reasons of numerical stability, this function does not compute the coefficients of the polynomial, although they can be obtained by evaluating all the derivatives.

**Parameters**

- **xi**
  - [array_like, length N] Known x-coordinates. Must be sorted in increasing order.
- **yi**
  - [array_like] Known y-coordinates. When an xi occurs two or more times in a row, the corresponding yi's represent derivative values.
- **axis**
  - [int, optional] Axis in the yi array corresponding to the x-coordinate values.
Notes

Be aware that the algorithms implemented here are not necessarily the most numerically stable known. Moreover, even in a world of exact computation, unless the x coordinates are chosen very carefully - Chebyshev zeros (e.g., \(\cos(i*\pi/n)\)) are a good choice - polynomial interpolation itself is a very ill-conditioned process due to the Runge phenomenon. In general, even with well-chosen x values, degrees higher than about thirty cause problems with numerical instability in this code.

Based on [1].

References

[1]

Examples

To produce a polynomial that is zero at 0 and 1 and has derivative 2 at 0, call

```python
>>> from scipy.interpolate import KroghInterpolator
>>> KroghInterpolator([0,0,1],[0,2,0])
```

This constructs the quadratic \(2*X^2-2*X\). The derivative condition is indicated by the repeated zero in the xi array; the corresponding yi values are 0, the function value, and 2, the derivative value.

For another example, given xi, yi, and a derivative ypi for each point, appropriate arrays can be constructed as:

```python
>>> rng = np.random.default_rng()
>>> xi = np.linspace(0, 1, 5)
>>> yi, ypi = rng.random((2, 5))
>>> xi_k, yi_k = np.repeat(xi, 2), np.ravel(np.dstack((yi,ypi)))
>>> KroghInterpolator(xi_k, yi_k)
```

To produce a vector-valued polynomial, supply a higher-dimensional array for yi:

```python
>>> KroghInterpolator([0,1],[[2,3],[4,5]])
```

This constructs a linear polynomial giving (2,3) at 0 and (4,5) at 1.

Attributes
dtype

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>call</strong>(x)</td>
<td>Evaluate the interpolant</td>
</tr>
<tr>
<td>derivative(x[, \text{der}])</td>
<td>Evaluate one derivative of the polynomial at the point x</td>
</tr>
<tr>
<td>derivatives(x[, \text{der}])</td>
<td>Evaluate many derivatives of the polynomial at the point x</td>
</tr>
</tbody>
</table>
scipy.interpolate.KroghInterpolator.__call__

KroghInterpolator.__call__ (x)
Evaluate the interpolant

Parameters
x [array_like] Points to evaluate the interpolant at.

Returns
y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x.

Notes
Input values x must be convertible to float values like int or float.

scipy.interpolate.KroghInterpolator.derivative

KroghInterpolator.derivative (x, der=1)
Evaluate one derivative of the polynomial at the point x

Parameters
x [array_like] Point or points at which to evaluate the derivatives

der [integer, optional] Which derivative to extract. This number includes the function value as 0th derivative.

Returns
d [ndarray] Derivative interpolated at the x-points. Shape of d is determined by replacing the interpolation axis in the original array with the shape of x.

Notes
This is computed by evaluating all derivatives up to the desired one (using self.derivatives()) and then discarding the rest.

scipy.interpolate.KroghInterpolator.derivatives

KroghInterpolator.derivatives (x, der=None)
Evaluate many derivatives of the polynomial at the point x

Parameters
x [array_like] Point or points at which to evaluate the derivatives

der [int or None, optional] How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points). This number includes the function value as 0th derivative.

Returns

d  [ndarray] Array with derivatives; d[j] contains the jth derivative. Shape of d[j] is determined by replacing the interpolation axis in the original array with the shape of x.

Examples

```python
>>> from scipy.interpolate import KroghInterpolator
>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives(0)
array([1.0,2.0,3.0])
>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives([0,0])
array([[1.0,1.0],
 [2.0,2.0],
 [3.0,3.0]])
```

scipy.interpolate.barycentric_interpolate

```python
scipy.interpolate.barycentric_interpolate(xi, yi, x, axis=0)
```

Convenience function for polynomial interpolation.

Constructs a polynomial that passes through a given set of points, then evaluates the polynomial. For reasons of numerical stability, this function does not compute the coefficients of the polynomial.

This function uses a “barycentric interpolation” method that treats the problem as a special case of rational function interpolation. This algorithm is quite stable, numerically, but even in a world of exact computation, unless the x coordinates are chosen very carefully - Chebyshev zeros (e.g., cos(i*pi/n)) are a good choice - polynomial interpolation itself is a very ill-conditioned process due to the Runge phenomenon.

**Parameters**

- **xi**  
  [array_like] 1-D array of x coordinates of the points the polynomial should pass through.

- **yi**  
  [array_like] The y coordinates of the points the polynomial should pass through.

- **x**  
  [scalar or array_like] Points to evaluate the interpolator at.

- **axis**  
  [int, optional] Axis in the yi array corresponding to the x-coordinate values.

**Returns**

- **y**  
  [scalar or array_like] Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x.

See also:

BarycentricInterpolator

Bary centric interpolator

**Notes**

Construction of the interpolation weights is a relatively slow process. If you want to call this many times with the same xi (but possibly varying yi or x) you should use the class BarycentricInterpolator. This is what this function uses internally.
Examples

We can interpolate 2D observed data using barycentric interpolation:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import barycentric_interpolate
>>> x_observed = np.linspace(0.0, 10.0, 11)
>>> y_observed = np.sin(x_observed)
>>> x = np.linspace(min(x_observed), max(x_observed), num=100)
>>> y = barycentric_interpolate(x_observed, y_observed, x)
>>> plt.plot(x_observed, y_observed, 'o', label='observation')
>>> plt.plot(x, y, label='barycentric interpolation')
>>> plt.legend()
>>> plt.show()
```

```python
scipy.interpolate.krogh_interpolate
```

Convenience function for polynomial interpolation.

See *KroghInterpolator* for more details.

**Parameters**

- **xi**
  - [array_like] Known x-coordinates.

- **yi**
  - [array_like] Known y-coordinates, of shape (xi.size, R). Interpreted as vectors of length R, or scalars if R=1.

- **x**
  - [array_like] Point or points at which to evaluate the derivatives.

- **der**
  - [int or list, optional] How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points), or a list of derivatives to extract. This number includes the function value as 0th derivative.

- **axis**
  - [int, optional] Axis in the yi array corresponding to the x-coordinate values.

**Returns**

- **d**
  - [ndarray] If the interpolator's values are R-D then the returned array will be the number of derivatives by N by R. If x is a scalar, the middle dimension will be dropped; if the yi are
scalars then the last dimension will be dropped.

See also:

**KroghInterpolator**

Krogh interpolator

Notes

Construction of the interpolating polynomial is a relatively expensive process. If you want to evaluate it repeatedly consider using the class KroghInterpolator (which is what this function uses).

Examples

We can interpolate 2D observed data using krogh interpolation:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import krogh_interpolate
>>> x_observed = np.linspace(0.0, 10.0, 11)
>>> y_observed = np.sin(x_observed)
>>> x = np.linspace(min(x_observed), max(x_observed), num=100)
>>> y = krogh_interpolate(x_observed, y_observed, x)
>>> plt.plot(x_observed, y_observed, "o", label="observation")
>>> plt.plot(x, y, label="krogh interpolation")
>>> plt.legend()
>>> plt.show()
```

![Plot showing observed data and krogh interpolation](image_url)
scipy.interpolate.pchip_interpolate

`scipy.interpolate.pchip_interpolate(xi, yi, x, der=0, axis=0)`

Convenience function for pchip interpolation.

xi and yi are arrays of values used to approximate some function f, with \( yi = f(xi) \). The interpolant uses monotonic cubic splines to find the value of new points x and the derivatives there.

See `scipy.interpolate.PchipInterpolator` for details.

**Parameters**

- `xi` [array_like] A sorted list of x-coordinates, of length N.
- `yi` [array_like] A 1-D array of real values. yi’s length along the interpolation axis must be equal to the length of xi. If N-D array, use axis parameter to select correct axis.
- `x` [scalar or array_like] Of length M.
- `der` [int or list, optional] Derivatives to extract. The 0th derivative can be included to return the function value.
- `axis` [int, optional] Axis in the yi array corresponding to the x-coordinate values.

**Returns**

- `y` [scalar or array_like] The result, of length R or length M or M by R.

See also:

- `PchipInterpolator`
  
PCHIP 1-D monotonic cubic interpolator.

**Examples**

We can interpolate 2D observed data using pchip interpolation:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import pchip_interpolate
>>> x_observed = np.linspace(0.0, 10.0, 11)
>>> y_observed = np.sin(x_observed)
>>> x = np.linspace(min(x_observed), max(x_observed), num=100)
>>> y = pchip_interpolate(x_observed, y_observed, x)
>>> plt.plot(x_observed, y_observed, "o", label="observation")
>>> plt.plot(x, y, label="pchip interpolation")
>>> plt.legend()
>>> plt.show()
```

scipy.interpolate.CubicHermiteSpline

class `scipy.interpolate.CubicHermiteSpline(x, y, dydx, axis=0, extrapolate=None)`

Piecewise-cubic interpolator matching values and first derivatives.

The result is represented as a `PPoly` instance.

**Parameters**

- `x` [array_like, shape (n,)] 1-D array containing values of the independent variable. Values must be real, finite and in strictly increasing order.
- `y` [array_like] Array containing values of the dependent variable. It can have arbitrary number of dimensions, but the length along `axis` (see below) must match the length of `x`. Values must be finite.
[array_like] Array containing derivatives of the dependent variable. It can have arbitrary number of dimensions, but the length along axis (see below) must match the length of x. Values must be finite.

axis
[int, optional] Axis along which y is assumed to be varying. Meaning that for x[i] the corresponding values are np.take(y, i, axis=axis). Default is 0.

extrapolate
[bool, 'periodic', None], optional] If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), it is set to True.

See also:

Akima1DInterpolator
Akima 1D interpolator.

PchipInterpolator
PCHIP 1-D monotonic cubic interpolator.

CubicSpline
Cubic spline data interpolator.

PPoly
Piecewise polynomial in terms of coefficients and breakpoints
Notes

If you want to create a higher-order spline matching higher-order derivatives, use `BPoly.from_derivatives`.

References

[1]

Attributes

- **x** [ndarray, shape (n,)] Breakpoints. The same `x` which was passed to the constructor.
- **c** [ndarray, shape (4, n-1, ...)] Coefficients of the polynomials on each segment. The trailing dimensions match the dimensions of `y`, excluding `axis`. For example, if `y` is 1-D, then `c[k, i]` is a coefficient for \((x-x[i])^{(3-k)}\) on the segment between `x[i]` and `x[i+1]`.
- **axis** [int] Interpolation axis. The same axis which was passed to the constructor.

Methods

- **__call__(x, nu=0, extrapolate=None)** Evaluate the piecewise polynomial or its derivative.
- **derivative(nu)** Construct a new piecewise polynomial representing the derivative.
- **antiderivative(nu)** Construct a new piecewise polynomial representing the antiderivative.
- **integrate(a, b, extrapolate=None)** Compute a definite integral over a piecewise polynomial.
- **roots([discontinuity, extrapolate])** Find real roots of the the piecewise polynomial.

```python
scipy.interpolate.CubicHermiteSpline.__call__(x, nu=0, extrapolate=None)
```

Evaluate the piecewise polynomial or its derivative.

**Parameters**

- **x** [array_like] Points to evaluate the interpolant at.
- **nu** [int, optional] Order of derivative to evaluate. Must be non-negative.
- **extrapolate** [{bool, ‘periodic’, None}, optional] If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrapolation is used. If None (default), use `self.extrapolate`.

**Returns**

- **y** [array_like] Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of `x`.
Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, $[a, b)$, except for the last interval which is closed $[a, b]$.

scipy.interpolate.CubicHermiteSpline.derivative

CubicHermiteSpline.derivative(nu=1)

Construct a new piecewise polynomial representing the derivative.

Parameters

<table>
<thead>
<tr>
<th>nu</th>
<th>[int, optional] Order of derivative to evaluate. Default is 1, i.e., compute the first derivative. If negative, the antiderivative is returned.</th>
</tr>
</thead>
</table>

Returns

<table>
<thead>
<tr>
<th>pp</th>
<th>[PPoly] Piecewise polynomial of order $k2 = k - n$ representing the derivative of this polynomial.</th>
</tr>
</thead>
</table>

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, $[a, b)$, except for the last interval which is closed $[a, b]$.

scipy.interpolate.CubicHermiteSpline.antiderivative

CubicHermiteSpline.antiderivative(nu=1)

Construct a new piecewise polynomial representing the antiderivative.

Antiderivative is also the indefinite integral of the function, and derivative is its inverse operation.

Parameters

<table>
<thead>
<tr>
<th>nu</th>
<th>[int, optional] Order of antiderivative to evaluate. Default is 1, i.e., compute the first integral. If negative, the derivative is returned.</th>
</tr>
</thead>
</table>

Returns

<table>
<thead>
<tr>
<th>pp</th>
<th>[PPoly] Piecewise polynomial of order $k2 = k + n$ representing the antiderivative of this polynomial.</th>
</tr>
</thead>
</table>

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order $n-1$, up to floating point rounding error.

If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of the initially given x interval is difficult.
**scipy.interpolate.CubicHermiteSpline.integrate**

CubicHermiteSpline.integrate\(a, b, \text{extrapolate}=\text{None}\)

Compute a definite integral over a piecewise polynomial.

- **Parameters**
  - \(a\) [float] Lower integration bound
  - \(b\) [float] Upper integration bound
  - \(\text{extrapolate}\) [[bool, ‘periodic’, None], optional] If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrapolation is used. If None (default), use self.extrapolate.

- **Returns**
  - \(\text{ig}\) [array_like] Definite integral of the piecewise polynomial over \([a, b]\)

**scipy.interpolate.CubicHermiteSpline.roots**

CubicHermiteSpline.roots\(\text{discontinuity}=\text{True}, \text{extrapolate}=\text{None}\)

Find real roots of the piecewise polynomial.

- **Parameters**
  - \(\text{discontinuity}\) [bool, optional] Whether to report sign changes across discontinuities at breakpoints as roots.
  - \(\text{extrapolate}\) [[bool, ‘periodic’, None], optional] If bool, determines whether to return roots from the polynomial extrapolated based on first and last intervals, ‘periodic’ works the same as False. If None (default), use self.extrapolate.

- **Returns**
  - \(\text{roots}\) [ndarray] Roots of the polynomial(s).
  - If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots.

**See also:**

PPoly.solve

**scipy.interpolate.PchipInterpolator**

class scipy.interpolate.PchipInterpolator\(x, y, \text{axis}=0, \text{extrapolate}=\text{None}\)

PCHIP 1-D monotonic cubic interpolation.

\(x\) and \(y\) are arrays of values used to approximate some function \(f\), with \(y=f(x)\). The interpolant uses monotonic cubic splines to find the value of new points. (PCHIP stands for Piecewise Cubic Hermite Interpolating Polynomial).

- **Parameters**
  - \(x\) [ndarray] A 1-D array of monotonically increasing real values. \(x\) cannot include duplicate values (otherwise \(f\) is overspecified)
  - \(y\) [ndarray] A 1-D array of real values. \(y\)'s length along the interpolation axis must be equal to the length of \(x\). If N-D array, use axis parameter to select correct axis.
  - \(\text{axis}\) [int, optional] Axis in the \(y\) array corresponding to the \(x\)-coordinate values.
extrapolate

[bool, optional] Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs.

See also:

CubicHermiteSpline

Piecewise-cubic interpolator.

Akima1DInterpolator

Akima 1D interpolator.

CubicSpline

Cubic spline data interpolator.

PPoly

Piecewise polynomial in terms of coefficients and breakpoints.

Notes

The interpolator preserves monotonicity in the interpolation data and does not overshoot if the data is not smooth. The first derivatives are guaranteed to be continuous, but the second derivatives may jump at \( x_k \).

Determines the derivatives at the points \( x_k, f_k' \), by using PCHIP algorithm [1].

Let \( h_k = x_{k+1} - x_k \), and \( d_k = (y_{k+1} - y_k)/h_k \) are the slopes at internal points \( x_k \). If the signs of \( d_k \) and \( d_{k-1} \) are different or either of them equals zero, then \( f_k' = 0 \). Otherwise, it is given by the weighted harmonic mean

\[
\frac{w_1 + w_2}{f_k'} = \frac{w_1}{d_{k-1}} + \frac{w_2}{d_k}
\]

where \( w_1 = 2h_k + h_{k-1} \) and \( w_2 = h_k + 2h_{k-1} \).

The end slopes are set using a one-sided scheme [2].

References

[1], [2]

Attributes

- axis
- c
- extrapolate
- x
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>call</strong>(x[, nu, extrapolate])</td>
<td>Evaluate the piecewise polynomial or its derivative.</td>
</tr>
<tr>
<td>derivative[nu])</td>
<td>Construct a new piecewise polynomial representing the derivative.</td>
</tr>
<tr>
<td>antiderivative[nu])</td>
<td>Construct a new piecewise polynomial representing the antiderivative.</td>
</tr>
<tr>
<td>roots([discontinuity, extrapolate])</td>
<td>Find real roots of the the piecewise polynomial.</td>
</tr>
</tbody>
</table>

**scipy.interpolate.PchipInterpolator.__call__**

PchipInterpolator.__call__(x, nu=0, extrapolate=None)

Evaluate the piecewise polynomial or its derivative.

**Parameters**

- **x** [array_like] Points to evaluate the interpolant at.
- **nu** [int, optional] Order of derivative to evaluate. Must be non-negative.
- **extrapolate** [{bool, ‘periodic’, None}, optional] If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrapolation is used. If None (default), use self.extrapolate.

**Returns**

- **y** [array_like] Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x.

**Notes**

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, \([a, b)\), except for the last interval which is closed \([a, b]\).

**scipy.interpolate.PchipInterpolator.derivative**

PchipInterpolator.derivative(nu=1)

Construct a new piecewise polynomial representing the derivative.

**Parameters**

- **nu** [int, optional] Order of derivative to evaluate. Default is 1, i.e., compute the first derivative. If negative, the antiderivative is returned.

**Returns**

- **pp** [PPoly] Piecewise polynomial of order \(k2 = k - n\) representing the derivative of this polynomial.
Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, \([a, \, b)\), except for the last interval which is closed \([a, \, b]\).

**scipy.interpolate.PchipInterpolator.antiderivative**

PchipInterpolator\texttt{.antiderivative}(\texttt{nu}=1)

Construct a new piecewise polynomial representing the antiderivative.

Antiderivative is also the indefinite integral of the function, and derivative is its inverse operation.

**Parameters**

- \(\texttt{nu}\) [int, optional] Order of antiderivative to evaluate. Default is 1, i.e., compute the first integral. If negative, the derivative is returned.

**Returns**

- \(\texttt{pp}\) [PPoly] Piecewise polynomial of order \(k2 = k + n\) representing the antiderivative of this polynomial.

**Notes**

The antiderivative returned by this function is continuous and continuously differentiable to order \(n-1\), up to floating point rounding error.

If antiderivative is computed and \(\text{self.extrapolate} = \text{`periodic'}\), it will be set to False for the returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of the initially given \(x\) interval is difficult.

**scipy.interpolate.PchipInterpolator.roots**

PchipInterpolator\texttt{.roots}(\texttt{discontinuity=True, extrapolate=None})

Find real roots of the piecewise polynomial.

**Parameters**

- \(\texttt{discontinuity}\) [bool, optional] Whether to report sign changes across discontinuities at breakpoints as roots.

- \(\texttt{extrapolate}\) [{bool, ‘periodic’, None}, optional] If bool, determines whether to return roots from the polynomial extrapolated based on first and last intervals, ‘periodic’ works the same as False. If None (default), use \text{self.extrapolate}.

**Returns**

- \(\texttt{roots}\) [ndarray] Roots of the polynomial(s).

If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots.

See also:

PPoly.solve
scipy.interpolate.Akima1DInterpolator

class scipy.interpolate.Akima1DInterpolator(x, y, axis=0)

Akima interpolator

Fit piecewise cubic polynomials, given vectors \( x \) and \( y \). The interpolation method by Akima uses a continuously differentiable sub-spline built from piecewise cubic polynomials. The resultant curve passes through the given data points and will appear smooth and natural.

Parameters

- \( x \) [ndarray, shape (m,)] 1-D array of monotonically increasing real values.
- \( y \) [ndarray, shape (m, …)] N-D array of real values. The length of \( y \) along the first axis must be equal to the length of \( x \).
- \( axis \) [int, optional] Specifies the axis of \( y \) along which to interpolate. Interpolation defaults to the first axis of \( y \).

See also:

- PchipInterpolator
  - PCHIP 1-D monotonic cubic interpolator.
- CubicSpline
  - Cubic spline data interpolator.
- PPoly
  - Piecewise polynomial in terms of coefficients and breakpoints

Notes

New in version 0.14.

Use only for precise data, as the fitted curve passes through the given points exactly. This routine is useful for plotting a pleasingly smooth curve through a few given points for purposes of plotting.

References


Attributes

- axis
- c
eextrapolate
- x
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>call</strong> (x, nu, extrapolate)</td>
<td>Evaluate the piecewise polynomial or its derivative.</td>
</tr>
<tr>
<td>derivative (nu)</td>
<td>Construct a new piecewise polynomial representing the derivative.</td>
</tr>
<tr>
<td>antiderivative (nu)</td>
<td>Construct a new piecewise polynomial representing the antiderivative.</td>
</tr>
<tr>
<td>roots ([discontinuity, extrapolate])</td>
<td>Find real roots of the piecewise polynomial.</td>
</tr>
</tbody>
</table>

scipy.interpolate.Akima1DInterpolator.__call__

Akima1DInterpolator.__call__(x, nu=0, extrapolate=None)

Evaluate the piecewise polynomial or its derivative.

Parameters

- x [array_like] Points to evaluate the interpolant at.
- nu [int, optional] Order of derivative to evaluate. Must be non-negative.
- extrapolate [[bool, ‘periodic’, None], optional] If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrapolation is used. If None (default), use self.extrapolate.

Returns

- y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last interval which is closed [a, b).

scipy.interpolate.Akima1DInterpolator.derivative

Akima1DInterpolator.derivative (nu=1)

Construct a new piecewise polynomial representing the derivative.

Parameters

- nu [int, optional] Order of derivative to evaluate. Default is 1, i.e., compute the first derivative. If negative, the antiderivative is returned.

Returns

- pp [PPoly] Piecewise polynomial of order k2 = k - n representing the derivative of this polynomial.
Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, \([a, b)\), except for the last interval which is closed \([a, b]\).

**scipy.interpolate.Akima1DInterpolator.antiderivative**

**Akima1DInterpolator.antiderivative**(nu=1)

Construct a new piecewise polynomial representing the antiderivative.

Antiderivative is also the indefinite integral of the function, and derivative is its inverse operation.

**Parameters**

- **nu** [int, optional] Order of antiderivative to evaluate. Default is 1, i.e., compute the first integral. If negative, the derivative is returned.

**Returns**

- **pp** [PPoly] Piecewise polynomial of order \(k2 = k + n\) representing the antiderivative of this polynomial.

**Notes**

The antiderivative returned by this function is continuous and continuously differentiable to order \(n-1\), up to floating point rounding error.

If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of the initially given \(x\) interval is difficult.

**scipy.interpolate.Akima1DInterpolator.roots**

**Akima1DInterpolator.roots**(discontinuity=True, extrapolate=None)

Find real roots of the piecewise polynomial.

**Parameters**

- **discontinuity** [bool, optional] Whether to report sign changes across discontinuities at breakpoints as roots.
- **extrapolate** [{bool, 'periodic', None}, optional] If bool, determines whether to return roots from the polynomial extrapolated based on first and last intervals, 'periodic' works the same as False. If None (default), use self.extrapolate.

**Returns**

- **roots** [ndarray] Roots of the polynomial(s).
  
  If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots.

**See also:**

PPoly.solve
Interpolate data with a piecewise cubic polynomial which is twice continuously differentiable [1]. The result is represented as a \( \text{PPoly} \) instance with breakpoints matching the given data.

**Parameters**

- **x**  
  [array_like, shape (n,)] 1-D array containing values of the independent variable. Values must be real, finite and in strictly increasing order.
- **y**  
  [array_like] Array containing values of the dependent variable. It can have arbitrary number of dimensions, but the length along `axis` (see below) must match the length of `x`. Values must be finite.
- **axis**  
  [int, optional] Axis along which `y` is assumed to be varying. Meaning that for `x[i]` the corresponding values are `np.take(y, i, axis=axis)`. Default is 0.
- **bc_type**  
  [string or 2-tuple, optional] Boundary condition type. Two additional equations, given by the boundary conditions, are required to determine all coefficients of polynomials on each segment [2].
  - 'not-a-knot' (default): The first and second segment at a curve end are the same polynomial. It is a good default when there is no information on boundary conditions.
  - 'periodic': The interpolated functions is assumed to be periodic of period \( x[-1] - x[0] \). The first and last value of `y` must be identical: \( y[0] == y[-1] \). This boundary condition will result in \( y'[0] == y'[-1] \) and \( y''[0] == y''[-1] \).
  - 'clamped': The first derivative at curves ends are zero. Assuming a 1D `y`, \( \text{bc_type} = ((1, 0.0), (1, 0.0)) \) is the same condition.
  - 'natural': The second derivative at curve ends are zero. Assuming a 1D `y`, \( \text{bc_type} = ((2, 0.0), (2, 0.0)) \) is the same condition.
  If `bc_type` is a 2-tuple, the first and the second value will be applied at the curve start and end respectively. The tuple values can be one of the previously mentioned strings (except 'periodic') or a tuple \( (\text{order}, \text{deriv_values}) \) allowing to specify arbitrary derivatives at curve ends:
    - `order`: the derivative order, 1 or 2.
    - `deriv_value`: array_like containing derivative values, shape must be the same as `y`, excluding `axis` dimension. For example, if `y` is 1-D, then `deriv_value` must be a scalar. If `y` is 3-D with the shape \( (n0, n1, n2) \) and `axis`=2, then `deriv_value` must be 2-D and have the shape \( (n0, n1) \).
- **extrapolate**  
  [[bool, 'periodic', None], optional] If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), `extrapolate` is set to 'periodic' for `bc_type='periodic'` and to True otherwise.

See also:

- **Akima1DInterpolator**
  Akima 1D interpolator.
- **PchipInterpolator**
  PCHIP 1-D monotonic cubic interpolator.
- **PPoly**
  Piecewise polynomial in terms of coefficients and breakpoints.
Notes

Parameters `bc_type` and `interpolate` work independently, i.e. the former controls only construction of a spline, and the latter only evaluation.

When a boundary condition is 'not-a-knot' and $n = 2$, it is replaced by a condition that the first derivative is equal to the linear interpolant slope. When both boundary conditions are 'not-a-knot' and $n = 3$, the solution is sought as a parabola passing through given points.

When 'not-a-knot' boundary conditions is applied to both ends, the resulting spline will be the same as returned by `splrep` (with $s=0$) and `InterpolatedUnivariateSpline`, but these two methods use a representation in B-spline basis.

New in version 0.18.0.

References

[1], [2]

Examples

In this example the cubic spline is used to interpolate a sampled sinusoid. You can see that the spline continuity property holds for the first and second derivatives and violates only for the third derivative.

```python
>>> from scipy.interpolate import CubicSpline
>>> import matplotlib.pyplot as plt
>>> x = np.arange(10)
>>> y = np.sin(x)
>>> cs = CubicSpline(x, y)
>>> xs = np.arange(-0.5, 9.6, 0.1)
>>> fig, ax = plt.subplots(figsize=(6.5, 4))
>>> ax.plot(x, y, 'o', label='data')
>>> ax.plot(xs, np.sin(xs), label='true')
>>> ax.plot(xs, cs(xs), label='S')
>>> ax.plot(xs, cs(xs, 1), label='S''')
>>> ax.plot(xs, cs(xs, 2), label='S''''')
>>> ax.set_xlim(-0.5, 9.5)
>>> ax.legend(loc='lower left', ncol=2)
>>> plt.show()
```

In the second example, the unit circle is interpolated with a spline. A periodic boundary condition is used. You can see that the first derivative values, $ds/dx=0$, $ds/dy=1$ at the periodic point $(1, 0)$ are correctly computed. Note that a circle cannot be exactly represented by a cubic spline. To increase precision, more breakpoints would be required.

```python
>>> theta = 2 * np.pi * np.linspace(0, 1, 5)
>>> y = np.c_[np.cos(theta), np.sin(theta)]
>>> cs = CubicSpline(theta, y, bc_type='periodic')
>>> print("ds/dx=\{:.1f\} ds/dy=\{:.1f\}".format(cs(0, 1)[0], cs(0, 1)[1]))
```

(continues on next page)
The third example is the interpolation of a polynomial \( y = x^3 \) on the interval \( 0 \leq x \leq 1 \). A cubic spline can represent this function exactly. To achieve that we need to specify values and first derivatives at endpoints of the interval. Note that \( y' = 3x^2 \) and thus \( y'(0) = 0 \) and \( y'(1) = 3 \).

```python
>>> cs = CubicSpline([0, 1], [0, 1], bc_type=((1, 0), (1, 3)))
>>> x = np.linspace(0, 1)
>>> np.allclose(x**3, cs(x))
True
```

**Attributes**

- **x** [ndarray, shape (n,)] Breakpoints. The same \( x \) which was passed to the constructor.
- **c** [ndarray, shape (4, n-1, …)] Coefficients of the polynomials on each segment. The trailing dimensions match the dimensions of \( y \), excluding \( axis \). For example, if \( y \) is 1-d, then \( c[k, i] \) is a coefficient for \( (x-x[i])^*(3-k) \) on the segment between \( x[i] \) and \( x[i+1] \).
- **axis** [int] Interpolation axis. The same \( axis \) which was passed to the constructor.
Methods

```python
__call__(x[,nu,extrapolate])
Evaluatethepiecewisepolynomialoritsderivative.

derivative([nu])
Construct anewpiecewisepolynomialrepresenting
the derivative.

antiderivative([nu])
Construct anewpiecewisepolynomialrepresenting
the antiderivative.

integrate(a,b[,extrapolate])
Compute a definite integral over a piecewise polyno-
mial.

roots([discontinuity,extrapolate])
Find real rootsof the the piecewise polynomial.
```

scipy.interpolate.CubicSpline.__call__

CubicSpline.__call__(x, nu=0, extrapolate=None)
Evaluate the piecewise polynomial or its derivative.

**Parameters**

- `x` [array_like] Points to evaluate the interpolant at.
- `nu` [int, optional] Order of derivative to evaluate. Must be non-negative.
- `extrapolate` [[bool, ‘periodic’, None], optional] If bool, determines whether to extrapolate to out-of-
bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic
extrapolation is used. If None (default), use self.extrapolate.

**Returns**
y  [array_like] Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x.

Notes
Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, \([a, b)\), except for the last interval which is closed \([a, b]\).

scipy.interpolate.CubicSpline.derivative

CubicSpline.derivative\(\(nu=1\)\)
Construct a new piecewise polynomial representing the derivative.

Parameters
nu  [int, optional] Order of derivative to evaluate. Default is 1, i.e., compute the first derivative. If negative, the antiderivative is returned.

Returns
pp  [PPoly] Piecewise polynomial of order \(k2 = k - n\) representing the derivative of this polynomial.

Notes
Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, \([a, b)\), except for the last interval which is closed \([a, b]\).

scipy.interpolate.CubicSpline.antiderivative

CubicSpline.antiderivative\(\(nu=1\)\)
Construct a new piecewise polynomial representing the antiderivative.

Antiderivative is also the indefinite integral of the function, and derivative is its inverse operation.

Parameters
nu  [int, optional] Order of antiderivative to evaluate. Default is 1, i.e., compute the first integral. If negative, the derivative is returned.

Returns
pp  [PPoly] Piecewise polynomial of order \(k2 = k + n\) representing the antiderivative of this polynomial.
Notes

The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to floating point rounding error.

If antiderivative is computed and `self.extrapolate='periodic'`, it will be set to False for the returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of the initially given x interval is difficult.

**scipy.interpolate.CubicSpline.integrate**

```python
CubicSpline.integrate(a, b, extrapolate=None)
```

Compute a definite integral over a piecewise polynomial.

**Parameters**

- `a` [float]: Lower integration bound
- `b` [float]: Upper integration bound
- `extrapolate` [bool, ‘periodic’, None, optional]: If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrapolation is used. If None (default), use `self.extrapolate`.

**Returns**

- `ig` [array_like]: Definite integral of the piecewise polynomial over [a, b]

**scipy.interpolate.CubicSpline.roots**

```python
CubicSpline.roots(discontinuity=True, extrapolate=None)
```

Find real roots of the the piecewise polynomial.

**Parameters**

- `discontinuity` [bool, optional]: Whether to report sign changes across discontinuities at breakpoints as roots.
- `extrapolate` [bool, ‘periodic’, None, optional]: If bool, determines whether to return roots from the polynomial extrapolated based on first and last intervals, ‘periodic’ works the same as False. If None (default), use `self.extrapolate`.

**Returns**

- `roots` [ndarray]: Roots of the polynomial(s).
  If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots.

**See also:**

- `PPoly.solve`
scipy.interpolate.PPoly

class scipy.interpolate.PPoly(c, x, extrapolate=None, axis=0)

Piecewise polynomial in terms of coefficients and breakpoints

The polynomial between $x[i]$ and $x[i+1]$ is written in the local power basis:

$$S = \sum (c[m, i] \times (xp - x[i])^{k-m} \text{ for } m \text{ in range}(k+1))$$

where $k$ is the degree of the polynomial.

Parameters

- **c** [ndarray, shape (k, m, ...)] Polynomial coefficients, order $k$ and $m$ intervals.
- **x** [ndarray, shape (m+1,)] Polynomial breakpoints. Must be sorted in either increasing or decreasing order.
- **extrapolate** [bool or 'periodic', optional] If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True.
- **axis** [int, optional] Interpolation axis. Default is zero.

See also:

BPoly

piecewise polynomials in the Bernstein basis

Notes

High-order polynomials in the power basis can be numerically unstable. Precision problems can start to appear for orders larger than 20-30.

Attributes

- **x** [ndarray] Breakpoints.
- **c** [ndarray] Coefficients of the polynomials. They are reshaped to a 3-D array with the last dimension representing the trailing dimensions of the original coefficient array.
- **axis** [int] Interpolation axis.

Methods

- **__call__(x[, nu, extrapolate])** Evaluate the piecewise polynomial or its derivative.
- **derivative([nu])** Construct a new piecewise polynomial representing the derivative.
- **antiderivative([nu])** Construct a new piecewise polynomial representing the antiderivative.
- **integrate(a, b[, extrapolate])** Compute a definite integral over a piecewise polynomial.
- **solve(y[, discontinuity, extrapolate])** Find real solutions of the equation $pp(x) == y$.
- **roots([discontinuity, extrapolate])** Find real roots of the piecewise polynomial.
- **extend(c, x[, right])** Add additional breakpoints and coefficients to the polynomial.
- **from_spline(tck[, extrapolate])** Construct a piecewise polynomial from a spline
Table 49 – continued from previous page

| from_bernstein_basis(bp[, extrapolate]) | Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis. |
| construct_fast(c, x[, extrapolate, axis]) | Construct the piecewise polynomial without making checks. |

```python
from scipy.interpolate import PPoly

PPoly.__call__(x, nu=0, extrapolate=None)
```

Evaluate the piecewise polynomial or its derivative.

**Parameters**

- `x` : array_like
  Points to evaluate the interpolant at.
- `nu` : int, optional
  Order of derivative to evaluate. Must be non-negative.
- `extrapolate` : [bool, 'periodic', None], optional
  If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), use `self.extrapolate`.

**Returns**

- `y` : array_like
  Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of `x`.

**Notes**

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, \([a, b)\), except for the last interval which is closed \([a, b]\).

```python
PPoly.derivative(nu=1)
```

Construct a new piecewise polynomial representing the derivative.

**Parameters**

- `nu` : int, optional
  Order of derivative to evaluate. Default is 1, i.e., compute the first derivative. If negative, the antiderivative is returned.

**Returns**

- `pp` : PPoly
  Piecewise polynomial of order \(k2 = k - n\) representing the derivative of this polynomial.
Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, \([a, b)\), except for the last interval which is closed \([a, b]\).

scipy.interpolate.PPoly.antiderivative

PPoly.antiderivative\((nu=1)\)
Construct a new piecewise polynomial representing the antiderivative.

Antiderivative is also the indefinite integral of the function, and derivative is its inverse operation.

Parameters

- **nu** [int, optional] Order of antiderivative to evaluate. Default is 1, i.e., compute the first integral. If negative, the derivative is returned.

Returns

- **pp** [PPoly] Piecewise polynomial of order \(k2 = k + n\) representing the antiderivative of this polynomial.

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order \(n-1\), up to floating point rounding error.

If antiderivative is computed and \(self.extrapolate='periodic'\), it will be set to False for the returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of the initially given \(x\) interval is difficult.

scipy.interpolate.PPoly.integrate

PPoly.integrate\((a, b, extrapolate=None)\)
Compute a definite integral over a piecewise polynomial.

Parameters

- **a** [float] Lower integration bound
- **b** [float] Upper integration bound
- **extrapolate** [[bool, ‘periodic’, None], optional] If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrapolation is used. If None (default), use \(self.extrapolate\).

Returns

- **ig** [array_like] Definite integral of the piecewise polynomial over \([a, b]\)
**scipy.interpolate.PPoly.solve**

PPoly.solve(y=0.0, discontinuity=True, extrapolate=None)

Find real solutions of the equation $pp(x) = y$.

**Parameters**

- **y** [float, optional] Right-hand side. Default is zero.
- **discontinuity** [bool, optional] Whether to report sign changes across discontinuities at breakpoints as roots.
- **extrapolate** [{bool, ‘periodic’, None}, optional] If bool, determines whether to return roots from the polynomial extrapolated based on first and last intervals, ‘periodic’ works the same as False. If None (default), use self.extrapolate.

**Returns**

- **roots** [ndarray] Roots of the polynomial(s).
  
  If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots.

**Notes**

This routine works only on real-valued polynomials.

If the piecewise polynomial contains sections that are identically zero, the root list will contain the start point of the corresponding interval, followed by a nan value.

If the polynomial is discontinuous across a breakpoint, and there is a sign change across the breakpoint, this is reported if the discontinuity parameter is True.

**Examples**

Finding roots of $[x^2 - 1, (x - 1)^2]$ defined on intervals $[-2, 1]$, $[1, 2]$: 

```python
>>> from scipy.interpolate import PPoly
>>> pp = PPoly(np.array([[1, -4, 3], [1, 0, 0]]).T, [-2, 1, 2])
>>> pp.solve()
array([-1., 1.])
```

**scipy.interpolate.PPoly.roots**

PPoly.roots(discontinuity=True, extrapolate=None)

Find real roots of the the piecewise polynomial.

**Parameters**

- **discontinuity** [bool, optional] Whether to report sign changes across discontinuities at breakpoints as roots.
- **extrapolate** [{bool, ‘periodic’, None}, optional] If bool, determines whether to return roots from the polynomial extrapolated based on first and last intervals, ‘periodic’ works the same as False. If None (default), use self.extrapolate.
Returns

roots [ndarray] Roots of the polynomial(s).

If the PPoly object describes multiple polynomials, the return value is an object array
whose each element is an ndarray containing the roots.

See also:

PPoly.solve

scipy.interpolate.PPoly.extend

PPoly.extend(c, x, right=None)

Add additional breakpoints and coefficients to the polynomial.

Parameters

c [ndarray, size (k, m, …)] Additional coefficients for polynomials in intervals. Note that
the first additional interval will be formed using one of the self.x end points.

x [ndarray, size (m,)] Additional breakpoints. Must be sorted in the same order as self.x
and either to the right or to the left of the current breakpoints.

right Deprecated argument. Has no effect.
Deprecated since version 0.19.

scipy.interpolate.PPoly.from_spline

classmethod PPoly.from_spline(tck, extrapolate=None)

Construct a piecewise polynomial from a spline

Parameters

tck A spline, as returned by splrep or a BSpline object.

extrapolate [bool or ‘periodic’, optional] If bool, determines whether to extrapolate to out-of-bounds
points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrap-
olation is used. Default is True.

scipy.interpolate.PPoly.from_bernstein_basis

classmethod PPoly.from_bernstein_basis(bp, extrapolate=None)

Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis.

Parameters

bp [BPoly] A Bernstein basis polynomial, as created by BPoly

extrapolate [bool or ‘periodic’, optional] If bool, determines whether to extrapolate to out-of-bounds
points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrap-
olation is used. Default is True.
scipy.interpolate.PPoly.construct_fast

classmethod PPoly.construct_fast(c, x, extrapolate=None, axis=0)
Construct the piecewise polynomial without making checks.

Takes the same parameters as the constructor. Input arguments c and x must be arrays of the correct shape and type. The c array can only be of dtypes float and complex, and x array must have dtype float.

scipy.interpolate.BPoly

class scipy.interpolate.BPoly(c, x, extrapolate=None, axis=0)
Piecewise polynomial in terms of coefficients and breakpoints.

The polynomial between x[i] and x[i + 1] is written in the Bernstein polynomial basis:

\[ S = \sum_{a} c[a, i] \cdot b(a, k; x) \text{ for } a \text{ in range}(k+1), \]

where k is the degree of the polynomial, and:

\[ b(a, k; x) = \binom{k}{a} \cdot t^a \cdot (1 - t)^{(k - a)}, \]

with \( t = (x - x[i]) / (x[i+1] - x[i]) \) and \( \binom{k}{a} \) is the binomial coefficient.

Parameters
- c [ndarray, shape (k, m, …)] Polynomial coefficients, order k and m intervals
- x [ndarray, shape (m+1,)] Polynomial breakpoints. Must be sorted in either increasing or decreasing order.
- extrapolate [bool, optional] If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrapolation is used. Default is True.
- axis [int, optional] Interpolation axis. Default is zero.

See also:
PPoly

piecewise polynomials in the power basis

Notes

Properties of Bernstein polynomials are well documented in the literature, see for example [1] [2] [3].

References

[1], [2], [3]
Examples

```python
>>> from scipy.interpolate import BPoly
>>> x = [0, 1]
>>> c = [[1], [2], [3]]
>>> bp = BPoly(c, x)
```

This creates a 2nd order polynomial

\[
B(x) = 1 \times b_{0,2}(x) + 2 \times b_{1,2}(x) + 3 \times b_{2,2}(x) \\
= 1 \times (1 - x)^2 + 2 \times 2x(1 - x) + 3 \times x^2
\]

**Attributes**

- `x` [ndarray] Breakpoints.
- `c` [ndarray] Coefficients of the polynomials. They are reshaped to a 3-D array with the last dimension representing the trailing dimensions of the original coefficient array.
- `axis` [int] Interpolation axis.

**Methods**

- `__call__(x[, nu, extrapolate])` Evaluate the piecewise polynomial or its derivative.
- `extend(c, x[, right])` Add additional breakpoints and coefficients to the polynomial.
- `derivative(nu)` Construct a new piecewise polynomial representing the derivative.
- `antiderivative(nu)` Construct a new piecewise polynomial representing the antiderivative.
- `integrate(a, b[, extrapolate])` Compute a definite integral over a piecewise polynomial.
- `construct_fast(c, x[, extrapolate, axis])` Construct the piecewise polynomial without making checks.
- `from_power_basis(pp[, extrapolate])` Construct a piecewise polynomial in Bernstein basis from a power basis polynomial.
- `from_derivatives(xi, yi[, orders, extrapolate])` Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints.

**scipy.interpolate.BPoly.__call__**

BPoly.__call__(x, nu=0, extrapolate=None)

Evaluate the piecewise polynomial or its derivative.

**Parameters**

- `x` [array_like] Points to evaluate the interpolant at.
- `nu` [int, optional] Order of derivative to evaluate. Must be non-negative.
- `extrapolate` [[bool, ‘periodic’, None], optional] If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrapolation is used. If None (default), use self.extrapolate.

**Returns**
y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, \([a, b)\), except for the last interval which is closed \([a, b]\).

scipy.interpolate.BPoly.extend

BPoly.extend(c, x, right=None)
Add additional breakpoints and coefficients to the polynomial.

Parameters

c [ndarray, size (k, m, ...)] Additional coefficients for polynomials in intervals. Note that the first additional interval will be formed using one of the self.x endpoints.
x [ndarray, size (m,)] Additional breakpoints. Must be sorted in the same order as self.x and either to the right or to the left of the current breakpoints.
right Deprecated argument. Has no effect. Deprecated since version 0.19.

scipy.interpolate.BPoly.derivative

BPoly.derivative(nu=1)
Construct a new piecewise polynomial representing the derivative.

Parameters

nu [int, optional] Order of derivative to evaluate. Default is 1, i.e., compute the first derivative. If negative, the antiderivative is returned.

Returns

bp [BPoly] Piecewise polynomial of order k - nu representing the derivative of this polynomial.

scipy.interpolate.BPoly.antiderivative

BPoly.antiderivative(nu=1)
Construct a new piecewise polynomial representing the antiderivative.

Parameters

nu [int, optional] Order of antiderivative to evaluate. Default is 1, i.e., compute the first integral. If negative, the derivative is returned.

Returns

bp [BPoly] Piecewise polynomial of order k + nu representing the antiderivative of this polynomial.
Notes

If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of the initially given x interval is difficult.

scipy.interpolate.BPoly.integrate

BPoly.integrate(a, b, extrapolate=None)

Compute a definite integral over a piecewise polynomial.

Parameters

- `a` [float] Lower integration bound
- `b` [float] Upper integration bound
- `extrapolate` [{bool, 'periodic', None}, optional] Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), use self.extrapolate.

Returns

- `array_like` Definite integral of the piecewise polynomial over [a, b]

scipy.interpolate.BPoly.construct_fast

classmethod BPoly.construct_fast(c, x, extrapolate=None, axis=0)

Construct the piecewise polynomial without making checks.

Takes the same parameters as the constructor. Input arguments c and x must be arrays of the correct shape and type. The c array can only be of dtypes float and complex, and x array must have dtype float.

scipy.interpolate.BPoly.from_power_basis

classmethod BPoly.from_power_basis(pp, extrapolate=None)

Construct a piecewise polynomial in Bernstein basis from a power basis polynomial.

Parameters

- `pp` [PPoly] A piecewise polynomial in the power basis
- `extrapolate` [bool or ‘periodic’, optional] If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic extrapolation is used. Default is True.
scipy.interpolate.BPoly.from_derivatives

classmethod BPoly.from_derivatives(xi, yi, orders=None, extrapolate=None)

Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints.

Parameters

xi : [array_like] sorted 1-D array of x-coordinates
yi : [array_like or list of array_likes] yi[i][j] is the j\textsuperscript{th} derivative known at \`\`xi[i]
orders : [None or int or array_like of ints. Default: None.] Specifies the degree of local polynomials. If not None, some derivatives are ignored.
extrapolate : [bool or `periodic`, optional] If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If `periodic`, periodic extrapolation is used. Default is True.

Notes

If \(k\) derivatives are specified at a breakpoint \(x\), the constructed polynomial is exactly \(k\) times continuously differentiable at \(x\), unless the order is provided explicitly. In the latter case, the smoothness of the polynomial at the breakpoint is controlled by the order.

Deduces the number of derivatives to match at each end from order and the number of derivatives available. If possible it uses the same number of derivatives from each end; if the number is odd it tries to take the extra one from \(y2\). In any case if not enough derivatives are available at one end or another it draws enough to make up the total from the other end.

If the order is too high and not enough derivatives are available, an exception is raised.

Examples

```python
>>> from scipy.interpolate import BPoly
>>> BPoly.from_derivatives([[0, 1], [1, 2], [3, 4]])

Creates a polynomial \(f(x)\) of degree 3, defined on \([0, 1]\) such that \(f(0) = 1\), \(df/dx(0) = 2\), \(f(1) = 3\), \(df/dx(1) = 4\).

```
Multivariate interpolation

Unstructured data:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>griddata(points, values, xi[, method,...])</code></td>
<td>Interpolate unstructured D-D data.</td>
</tr>
<tr>
<td><code>LinearNDInterpolator(points, values[,])</code></td>
<td>Piecewise linear interpolant in N &gt; 1 dimensions.</td>
</tr>
<tr>
<td><code>NearestNDInterpolator(x, y[, rescale,...])</code></td>
<td>NearestNDInterpolator(x, y).</td>
</tr>
<tr>
<td><code>CloughTocher2DInterpolator(points, values[,])</code></td>
<td>CloughTocher2DInterpolator(points, values, tol=1e-6).</td>
</tr>
<tr>
<td><code>RBFInterpolator(y, d[, neighbors,...])</code></td>
<td>Radial basis function (RBF) interpolation in N dimen-</td>
</tr>
<tr>
<td><code>Rbf(*args, **kwargs)</code></td>
<td>A class for radial basis function interpolation of f</td>
</tr>
<tr>
<td><code>interp2d(x, y, z[, kind,copy,...])</code></td>
<td>Interpolate over a 2-D grid.</td>
</tr>
</tbody>
</table>

`scipy.interpolate.griddata`

Interpolate unstructured D-D data.

```python
scipy.interpolate.griddata(points, values, xi, method='linear', fill_value=nan, rescale=False)
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>points</code></td>
<td>[2-D ndarray of floats with shape (n, D), or length D tuple of 1-D ndarrays with shape (n,).] Data point coordinates.</td>
</tr>
<tr>
<td><code>values</code></td>
<td>[ndarray of float or complex, shape (n,)] Data values.</td>
</tr>
<tr>
<td><code>xi</code></td>
<td>[2-D ndarray of floats with shape (m, D), or length D tuple of ndarrays broadcastable to the same shape.] Points at which to interpolate data.</td>
</tr>
<tr>
<td><code>method</code></td>
<td>[{'linear', 'nearest', 'cubic'}, optional] Method of interpolation. One of</td>
</tr>
<tr>
<td><code>nearest</code></td>
<td>return the value at the data point closest to the point of interpolation. See</td>
</tr>
<tr>
<td><code>linear</code></td>
<td>tessellate the input point set to N-D simplices, and interpolate linearly on each simplex. See LinearNDInterpolator for more details.</td>
</tr>
<tr>
<td><code>cubic (1-D)</code></td>
<td>return the value determined from a cubic spline.</td>
</tr>
<tr>
<td><code>cubic (2-D)</code></td>
<td>return the value determined from a piecewise cubic, continuously differentiable (C1), and approximately curvature-minimizing polynomial surface. See CloughTocher2DInterpolator for more details.</td>
</tr>
<tr>
<td><code>fill_value</code></td>
<td>[float, optional] Value used to fill in for requested points outside of the convex hull of the input points. If not provided, then the default is <code>nan</code>. This option has no effect for the 'nearest' method.</td>
</tr>
<tr>
<td><code>rescale</code></td>
<td>[bool, optional] Rescale points to unit cube before performing interpolation. This is useful if some of the input dimensions have incommensurable units and differ by many orders of magnitude. New in version 0.14.0.</td>
</tr>
</tbody>
</table>

| Returns            | ndarray Array of interpolated values.                                      |

See also:

```
LinearNDInterpolator
```

Piecewise linear interpolant in N dimensions.
NearestNDInterpolator

Nearest-neighbor interpolation in N dimensions.

CloughTocher2DInterpolator

Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D.

Notes

New in version 0.9.

Examples

Suppose we want to interpolate the 2-D function

```python
>>> def func(x, y):
... return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2
```

on a grid in [0, 1]x[0, 1]

```python
>>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]
```

but we only know its values at 1000 data points:

```python
>>> rng = np.random.default_rng()
>>> points = rng.random((1000, 2))
>>> values = func(points[:,0], points[:,1])
```

This can be done with `griddata`—below we try out all of the interpolation methods:

```python
>>> from scipy.interpolate import griddata
>>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
>>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear')
>>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')
```

One can see that the exact result is reproduced by all of the methods to some degree, but for this smooth function the piecewise cubic interpolant gives the best results:

```python
>>> import matplotlib.pyplot as plt
>>> plt.subplot(221)
>>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')
>>> plt.plot(points[:,0], points[:,1], 'k.', ms=1)
>>> plt.title('Original')
>>> plt.subplot(222)
>>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Nearest')
>>> plt.subplot(223)
>>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Linear')
>>> plt.subplot(224)
>>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
>>> plt.title('Cubic')
>>> plt.gcf().set_size_inches(6, 6)
>>> plt.show()
```
scipy.interpolate.LinearNDInterpolator

class scipy.interpolate.LinearNDInterpolator(points, values, fill_value=np.nan, rescale=False)
Piecewise linear interpolant in $N > 1$ dimensions.
New in version 0.9.

Parameters

- **points** [ndarray of floats, shape (npoints, ndims); or Delaunay] Data point coordinates, or a pre-computed Delaunay triangulation.
- **values** [ndarray of float or complex, shape (npoints, ...)] Data values.
- **fill_value** [float, optional] Value used to fill in for requested points outside of the convex hull of the input points. If not provided, then the default is nan.
- **rescale** [bool, optional] Rescale points to unit cube before performing interpolation. This is useful if some of the input dimensions have incommensurable units and differ by many orders of magnitude.

See also:

`griddata`  
Interpolate unstructured D-D data.

`NearestNDInterpolator`  
Nearest-neighbor interpolation in $N$ dimensions.

`CloughTocher2DInterpolator`  
Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D.

Notes

The interpolant is constructed by triangulating the input data with Qhull [1], and on each triangle performing linear barycentric interpolation.

References

[1]

Examples

We can interpolate values on a 2D plane:

```python
>>> from scipy.interpolate import LinearNDInterpolator
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> x = rng.random(10) - 0.5
>>> y = rng.random(10) - 0.5
>>> z = np.hypot(x, y)
>>> X = np.linspace(min(x), max(x))
>>> Y = np.linspace(min(y), max(y))
>>> X, Y = np.meshgrid(X, Y) # 2D grid for interpolation
>>> interp = LinearNDInterpolator(list(zip(x, y)), z)
>>> Z = interp(X, Y)
```
Methods

__call__(xi)  Evaluate interpolator at given points.

scipy.interpolate.LinearNDInterpolator.__call__

LinearNDInterpolator.__call__(xi)  Evaluate interpolator at given points.

Parameters

x1, x2, … xn: array-like of float
    Points where to interpolate data at. x1, x2, … xn can be array-like of float with broadcastable shape. or x1 can be array-like of float with shape (... , ndim)
scipy.interpolate.NearestNDInterpolator

class scipy.interpolate.NearestNDInterpolator(x, y, rescale=False, tree_options=None)

NearestNDInterpolator(x, y).

Nearest-neighbor interpolation in N > 1 dimensions.

New in version 0.9.

Parameters

- x : [(Npoints, Ndims) ndarray of floats] Data point coordinates.
- y : [(Npoints,) ndarray of float or complex] Data values.
- rescale : [boolean, optional] Rescale points to unit cube before performing interpolation. This is useful if some of the input dimensions have incommensurable units and differ by many orders of magnitude.
  New in version 0.14.0.
- tree_options : [dict, optional] Options passed to the underlying cKDTree.
  New in version 0.17.0.

See also:

griddata
Interpolate unstructured D-D data.

LinearNDInterpolator
Piecewise linear interpolant in N dimensions.

CloughTocher2DInterpolator
Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D.

Notes

Uses scipy.spatial.cKDTree

Examples

We can interpolate values on a 2D plane:

```python
>>> from scipy.interpolate import NearestNDInterpolator
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> x = rng.random(10) - 0.5
>>> y = rng.random(10) - 0.5
>>> z = np.hypot(x, y)
>>> X = np.linspace(min(x), max(x))
>>> Y = np.linspace(min(y), max(y))
>>> X, Y = np.meshgrid(X, Y) # 2D grid for interpolation
>>> interp = NearestNDInterpolator(list(zip(x, y)), z)
>>> Z = interp(X, Y)
>>> plt.pcolormesh(X, Y, Z, shading='auto')
>>> plt.plot(x, y, "ok", label="input point")
>>> plt.legend()
```
Methods

__call__(*args) Evaluate interpolator at given points.

scipy.interpolate.NearestNDInterpolator.__call__

NearestNDInterpolator.__call__(*args)
Evaluate interpolator at given points.

Parameters
x1, x2, ... xn: array-like of float
Points where to interpolate data at. x1, x2, ... xn can be array-like of float with broadcastable shape. or x1 can be array-like of float with shape (... , ndim)

scipy.interpolate.CloughTocher2DInterpolator

class scipy.interpolate.CloughTocher2DInterpolator(points, values, fill_value=nan, tol=1e-06, maxiter=400, rescale=False)
CloughTocher2DInterpolator(points, values, tol=1e-6).
Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D.
New in version 0.9.

Parameters
points [ndarray of floats, shape (npoints, ndims); or Delaunay] Data point coordinates, or a pre-computed Delaunay triangulation.
values  [ndarray of float or complex, shape (npoints, …)] Data values.
fill_value  [float, optional] Value used to fill in for requested points outside of the convex hull of the input points. If not provided, then the default is nan.
maxiter  [int, optional] Maximum number of iterations in gradient estimation.
rescale  [bool, optional] Rescale points to unit cube before performing interpolation. This is useful if some of the input dimensions have incommensurable units and differ by many orders of magnitude.

See also:

griddata
Interpolate unstructured D-D data.
LinearNDInterpolator
Piecewise linear interpolant in N > 1 dimensions.
NearestNDInterpolator
Nearest-neighbor interpolation in N > 1 dimensions.

Notes

The interpolant is constructed by triangulating the input data with Qhull [1], and constructing a piecewise cubic interpolating Bezier polynomial on each triangle, using a Clough-Tocher scheme [CT]. The interpolant is guaranteed to be continuously differentiable.

The gradients of the interpolant are chosen so that the curvature of the interpolating surface is approximatively minimized. The gradients necessary for this are estimated using the global algorithm described in [Nielson83] and [Renka84].

References

[1], [CT], [Nielson83], [Renka84]

Examples

We can interpolate values on a 2D plane:

```python
>>> from scipy.interpolate import CloughTocher2DInterpolator
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> x = rng.random(10) - 0.5
>>> y = rng.random(10) - 0.5
>>> z = np.hypot(x, y)
>>> X = np.linspace(min(x), max(x))
>>> Y = np.linspace(min(y), max(y))
>>> X, Y = np.meshgrid(X, Y) # 2D grid for interpolation
>>> interp = CloughTocher2DInterpolator(list(zip(x, y)), z)
>>> Z = interp(X, Y)
>>> plt.pcolormesh(X, Y, Z, shading='auto')
>>> plt.plot(x, y, "ok", label="input point")
```
>>> plt.legend()
>>> plt.colorbar()
>>> plt.axis("equal")
>>> plt.show()

Methods

```python
__call__(xi)
```
Evaluate interpolator at given points.

### scipy.interpolate.CloughTocher2DInterpolator.__call__

CloughTocher2DInterpolator.__call__(xi)
Evaluate interpolator at given points.

**Parameters**

- `x1, x2, ... xn`: array-like of float
  Points where to interpolate data at. `x1, x2, ... xn` can be array-like of float with broadcastable shape. `x1` can be array-like of float with shape `(..., ndim)`

### scipy.interpolate.RBFInterpolator

class scipy.interpolate.RBFInterpolator(y, d, neighbors=None, smoothing=0.0,
`kernel="thin_plate_spline", epsilon=None, degree=None`)

Radial basis function (RBF) interpolation in N dimensions.

**Parameters**

- `d`: [((P, ...) array_like] Data values at `y`.
- `neighbors`: [int, optional] If specified, the value of the interpolant at each evaluation point will be computed using only this many nearest data points. All the data points are used by default.
smoothing [float or (P,) array_like, optional] Smoothing parameter. The interpolant perfectly fits the data when this is set to 0. For large values, the interpolant approaches a least squares fit of a polynomial with the specified degree. Default is 0.

kernel [str, optional] Type of RBF. This should be one of
- ‘linear’: -r
- ‘thin_plate_spline’: r**2 * log(r)
- ‘cubic’: r**3
- ‘quintic’: -r**5
- ‘multiquadric’: -sqrt(1 + r**2)
- ‘inverse_multiquadric’: 1/sqrt(1 + r**2)
- ‘inverse_quadratic’: 1/(1 + r**2)
- ‘gaussian’: exp(-r**2)
Default is ‘thin_plate_spline’.

epsilon [float, optional] Shape parameter that scales the input to the RBF. If kernel is ‘linear’, ‘thin_plate_spline’, ‘cubic’, or ‘quintic’, this defaults to 1 and can be ignored because it has the same effect as scaling the smoothing parameter. Otherwise, this must be specified.

degree [int, optional] Degree of the added polynomial. For some RBFs the interpolant may not be well-posed if the polynomial degree is too small. Those RBFs and their corresponding minimum degrees are
- ‘multiquadric’: 0
- ‘linear’: 0
- ‘thin_plate_spline’: 1
- ‘cubic’: 1
- ‘quintic’: 2
The default value is the minimum degree for kernel or 0 if there is no minimum degree. Set this to -1 for no added polynomial.

See also:

NearestNDInterpolator
LinearNDInterpolator
CloughTocher2DInterpolator

Notes

An RBF is a scalar valued function in N-dimensional space whose value at \( x \) can be expressed in terms of \( r = ||x - c|| \), where \( c \) is the center of the RBF.

An RBF interpolant for the vector of data values \( d \), which are from locations \( y \), is a linear combination of RBFs centered at \( y \) plus a polynomial with a specified degree. The RBF interpolant is written as

\[
    f(x) = K(x, y)a + P(x)b,
\]

where \( K(x, y) \) is a matrix of RBFs with centers at \( y \) evaluated at the points \( x \), and \( P(x) \) is a matrix of monomials, which span polynomials with the specified degree, evaluated at \( x \). The coefficients \( a \) and \( b \) are the solution to the linear equations

\[
    (K(y, y) + \lambda I)a + P(y)b = d
\]

and

\[
    P(y)^T a = 0,
\]
where $\lambda$ is a non-negative smoothing parameter that controls how well we want to fit the data. The data are fit exactly when the smoothing parameter is 0.

The above system is uniquely solvable if the following requirements are met:

- $P(y)$ must have full column rank. $P(y)$ always has full column rank when $\textit{degree}$ is -1 or 0. When $\textit{degree}$ is 1, $P(y)$ has full column rank if the data point locations are not all collinear (N=2), coplanar (N=3), etc.
- If $\textit{kernel}$ is ‘multiquadric’, ‘linear’, ‘thin\_plate\_spline’, ‘cubic’, or ‘quintic’, then $\textit{degree}$ must not be lower than the minimum value listed above.
- If $\textit{smoothing}$ is 0, then each data point location must be distinct.

When using an RBF that is not scale invariant (‘multiquadric’, ‘inverse\_multiquadric’, ‘inverse\_quadratic’, or ‘gaussian’), an appropriate shape parameter must be chosen (e.g., through cross validation). Smaller values for the shape parameter correspond to wider RBFs. The problem can become ill-conditioned or singular when the shape parameter is too small.

The memory required to solve for the RBF interpolation coefficients increases quadratically with the number of data points, which can become impractical when interpolating more than about a thousand data points. To overcome memory limitations for large interpolation problems, the $\textit{neighbors}$ argument can be specified to compute an RBF interpolant for each evaluation point using only the nearest data points.

New in version 1.7.0.

References

[1], [2], [3], [4]

Examples

Demonstrate interpolating scattered data to a grid in 2-D.

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import RBFInterpolator
>>> from scipy.stats.qmc import Halton

>>> rng = np.random.default_rng()
>>> xobs = 2*Halton(2, seed=rng).random(100) - 1
>>> yobs = np.sum(xobs, axis=1)*np.exp(-6*np.sum(xobs**2, axis=1))

>>> xgrid = np.mgrid[-1:1:50j, -1:1:50j]
>>> xflat = xgrid.reshape(2, -1).T
>>> yflat = RBFInterpolator(xobs, yobs)(xflat)
>>> ygrid = yflat.reshape(50, 50)

>>> fig, ax = plt.subplots()
>>> ax.pcolormesh(*xgrid, ygrid, vmin=-0.25, vmax=0.25, shading='gouraud')
>>> p = ax.scatter(*xobs.T, c=yobs, s=50, ec='k', vmin=-0.25, vmax=0.25)
>>> fig.colorbar(p)
>>> plt.show()
```
Methods

__call__(x)  Evaluate the interpolant at x.

scipy.interpolate.RBFInterpolator.__call__

RBFInterpolator.__call__(x)
Evaluate the interpolant at x.

Parameters
x [(Q, N) array_like] Evaluation point coordinates.

Returns
(Q, ...) ndarray  Values of the interpolant at x.

c scipy.interpolate.Rbf

class scipy.interpolate.Rbf(*args, **kwargs)
A class for radial basis function interpolation of functions from N-D scattered data to an M-D domain.

Note: Rbf is legacy code, for new usage please use RBFInterpolator instead.

Parameters
*args [arrays] x, y, z, ..., d, where x, y, z, ... are the coordinates of the nodes and d is the array of values at the nodes
function [str or callable, optional] The radial basis function, based on the radius, r, given by the norm (default is Euclidean distance); the default is ‘multiquadric’:

```python
'multiquadric': sqrt((r/self.epsilon)**2 + 1)
'inverse': 1.0/sqrt((r/self.epsilon)**2 + 1)
'gaussian': exp(-(r/self.epsilon)**2)
'linear': r
'cubic': r**3
'quintic': r**5
'thin_plate': r**2 * log(r)
```

If callable, then it must take 2 arguments (self, r). The epsilon parameter will be available as self.epsilon. Other keyword arguments passed in will be available as well.

**epsilon** [float, optional] Adjustable constant for gaussian or multiquadrics functions - defaults to approximate average distance between nodes (which is a good start).

**smooth** [float, optional] Values greater than zero increase the smoothness of the approximation. 0 is for interpolation (default), the function will always go through the nodal points in this case.

**norm** [str, callable, optional] A function that returns the ‘distance’ between two points, with inputs as arrays of positions (x, y, z, ...), and an output as an array of distance. E.g., the default: ‘euclidean’, such that the result is a matrix of the distances from each point in x1 to each point in x2. For more options, see documentation of `scipy.spatial.distances.cdist`.

**mode** [str, optional] Mode of the interpolation, can be ‘1-D’ (default) or ‘N-D’. When it is ‘1-D’ the data d will be considered as 1-D and flattened internally. When it is ‘N-D’ the data d is assumed to be an array of shape (n_samples, m), where m is the dimension of the target domain.

See also:

**RBFInterpolator**

Examples

```python
>>> from scipy.interpolate import Rbf
>>> rng = np.random.default_rng()
>>> x, y, z, d = rng.random((4, 50))
>>> rbfi = Rbf(x, y, z, d) # radial basis function interpolator instance
>>> xi = yi = zi = np.linspace(0, 1, 20)
>>> di = rbfi(xi, yi, zi) # interpolated values
>>> di.shape
(20,)
```

Attributes

- **N** [int] The number of data points (as determined by the input arrays).
- **di** [ndarray] The 1-D array of data values at each of the data coordinates xi.
- **xi** [ndarray] The 2-D array of data coordinates.
- **function** [str or callable] The radial basis function. See description under Parameters.
- **epsilon** [float] Parameter used by gaussian or multiquadrics functions. See Parameters.
- **smooth** [float] Smoothing parameter. See description under Parameters.
- **norm** [str or callable] The distance function. See description under Parameters.
- **mode** [str] Mode of the interpolation. See description under Parameters.
- **nodes** [ndarray] A 1-D array of node values for the interpolation.
- **A** [internal property, do not use]
Methods

```
__call__(*args) Call self as a function.
```

**scipy.interpolate.Rbf.__call__**

```
Rbf.__call__(*args)
Call self as a function.
```

**scipy.interpolate.interp2d**

class scipy.interpolate.interp2d(x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=None)

Interpolate over a 2-D grid.

x, y and z are arrays of values used to approximate some function f: z = f(x, y) which returns a scalar value z. This class returns a function whose call method uses spline interpolation to find the value of new points.

If x and y represent a regular grid, consider using `RectBivariateSpline`.

If z is a vector value, consider using `interpn`.

Note that calling `interp2d` with NaNs present in input values results in undefined behaviour.

**Parameters**

- **x, y** [array_like] Arrays defining the data point coordinates. If the points lie on a regular grid, x can specify the column coordinates and y the row coordinates, for example:

  ```
 >>> x = [0, 1, 2]; y = [0, 3]; z = [[1, 2, 3], [4, 5, 6]]
  ```

  Otherwise, x and y must specify the full coordinates for each point, for example:

  ```
 >>> x = [0, 1, 2, 0, 1, 2]; y = [0, 0, 0, 3, 3, 3]; z = [1, 2, 3, 4, 5, 6]
  ```

  If x and y are multidimensional, they are flattened before use.

- **z** [array_like] The values of the function to interpolate at the data points. If z is a multidimensional array, it is flattened before use. The length of a flattened z array is either len(x)*len(y) if x and y specify the column and row coordinates or len(z) == len(x) == len(y) if x and y specify coordinates for each point.

- **kind** [{'linear', 'cubic', 'quintic'}, optional] The kind of spline interpolation to use. Default is 'linear'.

- **copy** [bool, optional] If True, the class makes internal copies of x, y and z. If False, references may be used. The default is to copy.

- **bounds_error** [bool, optional] If True, when interpolated values are requested outside of the domain of the input data (x,y), a ValueError is raised. If False, then `fill_value` is used.

- **fill_value** [number, optional] If provided, the value to use for points outside of the interpolation domain. If omitted (None), values outside the domain are extrapolated via nearest-neighbor extrapolation.

**See also:**

- `RectBivariateSpline`

  Much faster 2-D interpolation if your input data is on a grid
**bisplrep, bisplev**

Spline interpolation based on FITPACK

**BivariateSpline**

a more recent wrapper of the FITPACK routines

**interp1d**

1-D version of this function

**Notes**

The minimum number of data points required along the interpolation axis is \((k+1)^2\), with \(k=1\) for linear, \(k=3\) for cubic and \(k=5\) for quintic interpolation.

The interpolator is constructed by **bisplrep**, with a smoothing factor of 0. If more control over smoothing is needed, **bisplrep** should be used directly.

**Examples**

Construct a 2-D grid and interpolate on it:

```python
>>> from scipy import interpolate
>>> x = np.arange(-5.01, 5.01, 0.25)
>>> y = np.arange(-5.01, 5.01, 0.25)
>>> xx, yy = np.meshgrid(x, y)
>>> z = np.sin(xx**2+yy**2)
>>> f = interpolate.interp2d(x, y, z, kind='cubic')
```

Now use the obtained interpolation function and plot the result:

```python
>>> import matplotlib.pyplot as plt
>>> xnew = np.arange(-5.01, 5.01, 1e-2)
>>> ynew = np.arange(-5.01, 5.01, 1e-2)
>>> znew = f(xnew, ynew)
>>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-')
>>> plt.show()
```

**Methods**

```python
__call__(x, y[, dx, dy, assume_sorted]) Interpolate the function.
```
scipy.interpolate.interp2d.__call__

`interp2d.__call__(x, y, dx=0, dy=0, assume_sorted=False)`

Interpolate the function.

**Parameters**

- **x**  
  [1-D array] x-coordinates of the mesh on which to interpolate.
- **y**  
  [1-D array] y-coordinates of the mesh on which to interpolate.
- **dx**  
  [int >= 0, < kx] Order of partial derivatives in x.
- **dy**  
  [int >= 0, < ky] Order of partial derivatives in y.
- **assume_sorted**  
  [bool, optional] If False, values of x and y can be in any order and they are sorted first. If True, x and y have to be arrays of monotonically increasing values.

**Returns**

- **z**  
  [2-D array with shape (len(y), len(x))] The interpolated values.

For data on a grid:

- **interpn**(points, values, xi[, method, ...]) Multidimensional interpolation on regular grids.
- **RegularGridInterpolator**(points, values[, ...]) Interpolation on a regular grid in arbitrary dimensions
- **RectBivariateSpline**(x, y, z[, bbox, kx, ky, s]) Bivariate spline approximation over a rectangular mesh.
scipy.interpolate.interpn

scipy.interpolate.interpn(points, values, xi, method='linear', bounds_error=True, fill_value=nan)

Multidimensional interpolation on regular grids.

**Parameters**

- **points** [tuple of ndarray of float, with shapes (m1,), ..., (mn,)] The points defining the regular grid in n dimensions.
- **values** [array_like, shape (m1, ..., mn, ...)] The data on the regular grid in n dimensions.
- **xi** [ndarray of shape (..., ndim)] The coordinates to sample the gridded data at
- **method** [str, optional] The method of interpolation to perform. Supported are “linear” and “nearest”, and “splinef2d”. “splinef2d” is only supported for 2-dimensional data.
- **bounds_error** [bool, optional] If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then fill_value is used.
- **fill_value** [number, optional] If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Extrapolation is not supported by method “splinef2d”.

**Returns**

- **values_x** [ndarray, shape xi.shape[:-1] + values.shape[ndim:]] Interpolated values at input coordinates.

**See also:**

- **NearestNDInterpolator**
  Nearest neighbor interpolation on unstructured data in N dimensions
- **LinearNDInterpolator**
  Piecewise linear interpolant on unstructured data in N dimensions
- **RegularGridInterpolator**
  Linear and nearest-neighbor Interpolation on a regular grid in arbitrary dimensions
RectBivariateSpline

Bivariate spline approximation over a rectangular mesh

Notes

New in version 0.14.

Examples

Evaluate a simple example function on the points of a regular 3-D grid:

```python
>>> from scipy.interpolate import interpn
def value_func_3d(x, y, z):
... return 2 * x + 3 * y - z
>>> x = np.linspace(0, 4, 5)
>>> y = np.linspace(0, 5, 6)
>>> z = np.linspace(0, 6, 7)
>>> points = (x, y, z)
>>> values = value_func_3d(*np.meshgrid(*points, indexing='ij'))
```

Evaluate the interpolating function at a point

```python
>>> point = np.array([2.21, 3.12, 1.15])
>>> print(interpn(points, values, point))
[12.63]
```

scipy.interpolate.RegularGridInterpolator

```python
class scipy.interpolate.RegularGridInterpolator(points, values, method='linear', bounds_error=True, fill_value=nan)
```

Interpolation on a regular grid in arbitrary dimensions

The data must be defined on a regular grid; the grid spacing however may be uneven. Linear and nearest-neighbor interpolation are supported. After setting up the interpolator object, the interpolation method (linear or nearest) may be chosen at each evaluation.

**Parameters**

- `points` ([tuple of ndarray of float, with shapes (m1,), ..., (mn,)]): The points defining the regular grid in n dimensions.
- `values` ([array_like, shape (m1, ..., mn,...)]): The data on the regular grid in n dimensions.
- `method` ([str, optional]): The method of interpolation to perform. Supported are “linear” and “nearest”. This parameter will become the default for the object's `__call__` method. Default is “linear”.
- `bounds_error` ([bool, optional]): If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used.
- `fill_value` ([number, optional]): If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated.

See also:

NearestNDInterpolator

Nearest neighbor interpolation on unstructured data in N dimensions
**LinearNDInterpolator**

Piecewise linear interpolant on unstructured data in N dimensions

**Notes**

Contrary to LinearNDInterpolator and NearestNDInterpolator, this class avoids expensive triangulation of the input data by taking advantage of the regular grid structure.

If any of *points* have a dimension of size 1, linear interpolation will return an array of *nan* values. Nearest-neighbor interpolation will work as usual in this case.

New in version 0.14.

**References**

[1], [2], [3]

**Examples**

Evaluate a simple example function on the points of a 3-D grid:

```python
>>> from scipy.interpolate import RegularGridInterpolator
>>> def f(x, y, z):
... return 2 * x**3 + 3 * y**2 - z
>>> x = np.linspace(1, 4, 11)
>>> y = np.linspace(4, 7, 22)
>>> z = np.linspace(7, 9, 33)
>>> xg, yg, zg = np.meshgrid(x, y, z, indexing='ij', sparse=True)
>>> data = f(xg, yg, zg)
```

data is now a 3-D array with \( \text{data}[i,j,k] = f(x[i], y[j], z[k]) \). Next, define an interpolating function from this data:

```python
>>> my_interpolating_function = RegularGridInterpolator((x, y, z), data)
```

Evaluate the interpolating function at the two points \( (x,y,z) = (2.1, 6.2, 8.3) \) and \( (3.3, 5.2, 7.1) \):

```python
>>> pts = np.array([[2.1, 6.2, 8.3], [3.3, 5.2, 7.1]])
>>> my_interpolating_function(pts)
array([125.80469388, 146.30069388])
```

which is indeed a close approximation to \( [f(2.1, 6.2, 8.3), f(3.3, 5.2, 7.1)] \).
Methods

```
__call__(xi[, method]) Interpolation at coordinates
```

`scipy.interpolate.RegularGridInterpolator.__call__`

RegularGridInterpolator.__call__(xi, method=None)
Interpolation at coordinates

**Parameters**

- **xi** : [ndarray of shape (..., ndim)] The coordinates to sample the gridded data at
- **method** : [str] The method of interpolation to perform. Supported are “linear” and “nearest”.

`scipy.interpolate.RectBivariateSpline`

```class scipy.interpolate.RectBivariateSpline(x, y, z, bbox=[None, None, None, None], kx=3, ky=3, s=0)```

Bivariate spline approximation over a rectangular mesh.
Can be used for both smoothing and interpolating data.

Parameters

- **x**, **y** : [array_like] 1-D arrays of coordinates in strictly ascending order.
- **z** : [array_like] 2-D array of data with shape (x.size, y.size).
- **bbox** : [array_like, optional] Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, bbox=[min(x), max(x), min(y), max(y)].
- **kx, ky** : [ints, optional] Degrees of the bivariate spline. Default is 3.
- **s** : [float, optional] Positive smoothing factor defined for estimation condition:
 \[\sum (z[i] - f(x[i], y[i]))^2, \text{axis}=0 \] <= s where f is a spline function. Default is s=0, which is for interpolation.

See also:

- **BivariateSpline**
 a base class for bivariate splines.
- **UnivariateSpline**
 a smooth univariate spline to fit a given set of data points.
- **SmoothBivariateSpline**
 a smoothing bivariate spline through the given points
- **LSQBivariateSpline**
 a bivariate spline using weighted least-squares fitting
- **RectSphereBivariateSpline**
 a bivariate spline over a rectangular mesh on a sphere
- **SmoothSphereBivariateSpline**
 a smoothing bivariate spline in spherical coordinates
- **LSQSphereBivariateSpline**
 a bivariate spline in spherical coordinates using weighted least-squares fitting
bisplrep

a function to find a bivariate B-spline representation of a surface

bisplev

a function to evaluate a bivariate B-spline and its derivatives

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>call (x, y[, dx, dy, grid])</td>
<td>Evaluate the spline or its derivatives at given positions.</td>
</tr>
<tr>
<td>ev(xi, yi[, dx, dy])</td>
<td>Evaluate the spline at points</td>
</tr>
<tr>
<td>get_coeffs()</td>
<td>Return spline coefficients.</td>
</tr>
<tr>
<td>get_knots()</td>
<td>Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.</td>
</tr>
<tr>
<td>get_residual()</td>
<td>Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)</td>
</tr>
<tr>
<td>integral(xa, xb, ya, yb)</td>
<td>Evaluate the integral of the spline over area [xa,xb] x [ya,yb].</td>
</tr>
</tbody>
</table>

```python
scipy.interpolate.RectBivariateSpline.__call__
```

RectBivariateSpline.__call__ (x, y, dx=0, dy=0, grid=True)

Evaluate the spline or its derivatives at given positions.

Parameters

- **x, y**
 - [array_like] Input coordinates.
 - If grid is False, evaluate the spline at points (x[i], y[i]), i=0, ..., len(x)-1. Standard NumPy broadcasting is obeyed.
 - If grid is True: evaluate spline at the grid points defined by the coordinate arrays x, y. The arrays must be sorted to increasing order.
 - Note that the axis ordering is inverted relative to the output of meshgrid.

- **dx**
 - [int] Order of x-derivative
 - New in version 0.14.0.

- **dy**
 - [int] Order of y-derivative
 - New in version 0.14.0.

- **grid**
 - [bool] Whether to evaluate the results on a grid spanned by the input arrays, or at points specified by the input arrays.
 - New in version 0.14.0.
scipy.interpolate.RectBivariateSpline.ev

RectBivariateSpline.ev(xi, yi, dx=0, dy=0)
Evaluated the spline at points

Returns the interpolated value at (xi[i], yi[i]), i=0,...,len(xi)-1.

Parameters

- **xi, yi** [array_like] Input coordinates. Standard Numpy broadcasting is obeyed.
- **dx** [int, optional] Order of x-derivative
 New in version 0.14.0.
- **dy** [int, optional] Order of y-derivative
 New in version 0.14.0.

scipy.interpolate.RectBivariateSpline.get_coeffs

RectBivariateSpline.get_coeffs()
Return spline coefficients.

scipy.interpolate.RectBivariateSpline.get_knots

RectBivariateSpline.get_knots()
Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e, respectively.

scipy.interpolate.RectBivariateSpline.get_residual

RectBivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2, axis=0)

scipy.interpolate.RectBivariateSpline.integral

RectBivariateSpline.integral(xa, xb, ya, yb)
Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

Parameters

- **xa, xb** [float] The end-points of the x integration interval.
- **ya, yb** [float] The end-points of the y integration interval.

Returns

- **integ** [float] The value of the resulting integral.

See also:

- scipy.ndimage.map_coordinates

Tensor product polynomials:

3.3. API definition
NdPPoly(c, x[, extrapolate])

Piecewise tensor product polynomial

scipy.interpolate.NdPPoly

class scipy.interpolate.NdPPoly(c, x, extrapolate=None)

Piecewise tensor product polynomial

The value at point \(x' = (x', y', z', \ldots) \) is evaluated by first computing the interval indices \(i \) such that:

\[
\begin{align*}
 x[0][i[0]] & \leq x' < x[0][i[0]+1] \\
 x[1][i[1]] & \leq y' < x[1][i[1]+1] \\
 & \ldots
\end{align*}
\]

and then computing:

\[
S = \sum c[k0-m0-1,\ldots,kn-mn-1,i[0],\ldots,i[n]] \times (x[0][i[0]] - x[0][i[0]+1])^{m0} \\
 \times \ldots \\
 \times (x[n][i[n]] - x[n][i[n]+1])^{mn} \\
 \text{for } m0 \text{ in range}(k[0]+1) \\
 \ldots \\
 \text{for } mn \text{ in range}(k[n]+1)
\]

where \(k[j] \) is the degree of the polynomial in dimension \(j \). This representation is the piecewise multivariate power basis.

Parameters

- **c** : [ndarray, shape \((k0,\ldots,kn,m0,\ldots,mn,\ldots)\)] Polynomial coefficients, with polynomial order \(kj \) and \(mj+1 \) intervals for each dimension \(j \).
- **x** : [ndim-tuple of ndarrays, shapes \((mj+1,)\)] Polynomial breakpoints for each dimension. These must be sorted in increasing order.
- **extrapolate** : [bool, optional] Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Default: True.

See also:

PPoly

piecewise polynomials in 1D

Notes

High-order polynomials in the power basis can be numerically unstable.

Attributes

- **x** : [tuple of ndarrays] Breakpoints.
- **c** : [ndarray] Coefficients of the polynomials.
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>call(x[, nu, extrapolate])</td>
<td>Evaluate the piecewise polynomial or its derivative</td>
</tr>
<tr>
<td>derivative(nu)</td>
<td>Construct a new piecewise polynomial representing the derivative.</td>
</tr>
<tr>
<td>antiderivative(nu)</td>
<td>Construct a new piecewise polynomial representing the antiderivative.</td>
</tr>
<tr>
<td>integrate(ranges[, extrapolate])</td>
<td>Compute a definite integral over a piecewise polynomial.</td>
</tr>
<tr>
<td>integrate_1d(a, b, axis[, extrapolate])</td>
<td>Compute NdPPoly representation for one dimensional definite integral</td>
</tr>
<tr>
<td>construct_fast(c, x[, extrapolate])</td>
<td>Construct the piecewise polynomial without making checks.</td>
</tr>
</tbody>
</table>

scipy.interpolate.NdPPoly.__call__

NdPPoly.__call__(x, nu=None, extrapolate=None)

Evaluate the piecewise polynomial or its derivative

Parameters

- **x**
 - [array-like] Points to evaluate the interpolant at.
- **nu**
 - [tuple, optional] Orders of derivatives to evaluate. Each must be non-negative.
- **extrapolate**
 - [bool, optional] Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs.

Returns

- **y**
 - [array-like] Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x.

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, \([a, b)\), except for the last interval which is closed \([a, b]\).

scipy.interpolate.NdPPoly.derivative

NdPPoly.derivative(nu)

Construct a new piecewise polynomial representing the derivative.

Parameters

- **nu**
 - [ndim-tuple of int] Order of derivatives to evaluate for each dimension. If negative, the antiderivative is returned.

Returns

- **pp**
 - [NdPPoly] Piecewise polynomial of orders \((k[0] - nu[0], \ldots, k[n] - nu[n])\) representing the derivative of this polynomial.
Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals in each dimension are considered half-open, \([a, b)\), except for the last interval which is closed \([a, b]\).

scipy.interpolate.NdPPoly.antiderivative

\texttt{NdPPoly.antiderivative}(\texttt{nu})

Construct a new piecewise polynomial representing the antiderivative.

Antiderivative is also the indefinite integral of the function, and derivative is its inverse operation.

\textbf{Parameters}

- \texttt{nu} \texttt{[ndim-tuple of int]} Order of derivatives to evaluate for each dimension. If negative, the derivative is returned.

\textbf{Returns}

- \texttt{pp} \texttt{[PPoly]} Piecewise polynomial of order \(k2 = k + n\) representing the antiderivative of this polynomial.

\textbf{Notes}

The antiderivative returned by this function is continuous and continuously differentiable to order \(n-1\), up to floating point rounding error.

scipy.interpolate.NdPPoly.integrate

\texttt{NdPPoly.integrate}(\texttt{ranges}, \texttt{extrapolate=None})

Compute a definite integral over a piecewise polynomial.

\textbf{Parameters}

- \texttt{ranges} \texttt{[ndim-tuple of 2-tuples float]} Sequence of lower and upper bounds for each dimension, \([(a[0], b[0]), \ldots, (a[n-1], b[n-1])] \)
- \texttt{extrapolate} \texttt{[bool, optional]} Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs.

\textbf{Returns}

- \texttt{ig} \texttt{[array_like]} Definite integral of the piecewise polynomial over \([a[0], b[0]] x \ldots x [a[n-1], b[n-1]]\)
scipy.interpolate.NdPPoly.integrate_1d

NdPPoly.integrate_1d(a, b, axis, extrapolate=None)
Compute NdPPoly representation for one dimensional definite integral
The result is a piecewise polynomial representing the integral:

\[p(y, z, ...) = \int_a^b dx \, p(x, y, z, ...) \]

where the dimension integrated over is specified with the axis parameter.

Parameters

- **a, b** [float] Lower and upper bound for integration.
- **axis** [int] Dimension over which to compute the 1-D integrals
- **extrapolate** [bool, optional] Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs.

Returns

- **ig** [NdPPoly or array-like] Definite integral of the piecewise polynomial over \([a, b]\). If the polynomial was 1D, an array is returned, otherwise, an NdPPoly object.

scipy.interpolate.NdPPoly.construct_fast

classmethod NdPPoly.construct_fast(c, x, extrapolate=None)
Construct the piecewise polynomial without making checks.
Takes the same parameters as the constructor. Input arguments \(c\) and \(x\) must be arrays of the correct shape and type. The \(c\) array can only be of dtypes float and complex, and \(x\) array must have dtype float.

1-D Splines

B spline(t, c, k[, extrapolate, axis])	Univariate spline in the B-spline basis.
make_interp_spline(x, y[, k, t, bc_type, ...])	Compute the (coefficients of) interpolating B-spline.
make_lsq_spline(x, y, t[, k, w, axis, ...])	Compute the (coefficients of) an LSQ B-spline.

scipy.interpolate.BSpline

class scipy.interpolate.BSpline(t, c, k, extrapolate=True, axis=0)
Univariate spline in the B-spline basis.

\[
S(x) = \sum_{j=0}^{n-1} c_j B_{j,k}(x)
\]

where \(B_{j,k}\) are B-spline basis functions of degree \(k\) and knots \(t\).

Parameters

- **t** [ndarray, shape (n+\(k+1\),)] knots
- **c** [ndarray, shape (\(\geq n, \ldots\)) spline coefficients
- **k** [int] B-spline degree
extrapolate
[bool or ‘periodic’, optional] whether to extrapolate beyond the base interval, t[k] .. t[n], or to return nans. If True, extrapolates the first and last polynomial pieces of b-spline functions active on the base interval. If ‘periodic’, periodic extrapolation is used. Default is True.

axis [int, optional] Interpolation axis. Default is zero.

Notes
B-spline basis elements are defined via

\[B_{i,k}(x) = \frac{x-t_i}{t_{i+k}-t_i}B_{i,k-1}(x) + \frac{t_{i+k+1}-x}{t_{i+k+1}-t_{i+1}}B_{i+1,k-1}(x) \]

Implementation details
• At least \(k+1 \) coefficients are required for a spline of degree \(k \), so that \(n \geq k+1 \). Additional coefficients, \(c[j] \) with \(j > n \), are ignored.
• B-spline basis elements of degree \(k \) form a partition of unity on the base interval, \(t[k] \leq x \leq t[n] \).

References
[1],[2]

Examples
Translating the recursive definition of B-splines into Python code, we have:

```python
>>> def B(x, k, i, t):
...     if k == 0:
...         return 1.0 if t[i] <= x < t[i+1] else 0.0
...     if t[i+k] == t[i]:
...         c1 = 0.0
...     else:
...         c1 = (x - t[i])/(t[i+k] - t[i]) * B(x, k-1, i, t)
...     if t[i+k+1] == t[i+1]:
...         c2 = 0.0
...     else:
...         c2 = (t[i+k+1] - x)/(t[i+k+1] - t[i+1]) * B(x, k-1, i+1, t)
...     return c1 + c2
```

```python
>>> def bspline(x, t, c, k):
...     n = len(t) - k - 1
...     assert (n >= k+1) and (len(c) >= n)
...     return sum(c[i] * B(x, k, i, t) for i in range(n))
```

Note that this is an inefficient (if straightforward) way to evaluate B-splines — this spline class does it in an equivalent, but much more efficient way.

Here we construct a quadratic spline function on the base interval \(2 \leq x \leq 4 \) and compare with the naive way of evaluating the spline:
```python
>>> from scipy.interpolate import BSpline
>>> k = 2
>>> t = [0, 1, 2, 3, 4, 5, 6]
>>> c = [-1, 2, 0, -1]
>>> spl = BSpline(t, c, k)
>>> spl(2.5)
array(1.375)
>>> bspline(2.5, t, c, k)
1.375
```

Note that outside of the base interval results differ. This is because `BSpline` extrapolates the first and last polynomial pieces of B-spline functions active on the base interval.

```python
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> xx = np.linspace(1.5, 4.5, 50)
>>> ax.plot(xx, [bspline(x, t, c, k) for x in xx], 'r-', lw=3, label='naive')
>>> ax.plot(xx, spl(xx), 'b-', lw=4, alpha=0.7, label='BSpline')
>>> ax.grid(True)
>>> ax.legend(loc='best')
>>> plt.show()
```

Attributes

- `t` [ndarray] knot vector
- `c` [ndarray] spline coefficients
- `k` [int] spline degree
- `extrapolate` [bool] If True, extrapolates the first and last polynomial pieces of b-spline functions active on the base interval.
- `axis` [int] Interpolation axis.
- `tck` [tuple] Equivalent to `(self.t, self.c, self.k)` (read-only).
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>__call__(x[, nu, extrapolate])</code></td>
<td>Evaluate a spline function.</td>
</tr>
<tr>
<td><code>basis_element(t[, extrapolate])</code></td>
<td>Return a B-spline basis element $B(x</td>
</tr>
<tr>
<td><code>derivative([nu])</code></td>
<td>Return a B-spline representing the derivative.</td>
</tr>
<tr>
<td><code>antiderivative([nu])</code></td>
<td>Return a B-spline representing the antiderivative.</td>
</tr>
<tr>
<td><code>integrate(a, b[, extrapolate])</code></td>
<td>Compute a definite integral of the spline.</td>
</tr>
<tr>
<td><code>construct_fast(t, c, k[, extrapolate, axis])</code></td>
<td>Construct a spline without making checks.</td>
</tr>
<tr>
<td><code>design_matrix(x, t, k)</code></td>
<td>Returns a design matrix as a CSR format sparse array.</td>
</tr>
<tr>
<td><code>from_power_basis(pp[, bc_type])</code></td>
<td>Construct a polynomial in the B-spline basis from a piecewise polynomial in the power basis.</td>
</tr>
</tbody>
</table>

scipy.interpolate.BSpline.__call__

BSpline.__call__(x, nu=0, extrapolate=None)

Evaluate a spline function.

Parameters

- `x` [array_like] points to evaluate the spline at.
- `nu: int, optional` derivative to evaluate (default is 0).
- `extrapolate` [bool or ‘periodic’, optional] whether to extrapolate based on the first and last intervals or return nans. If ‘periodic’, periodic extrapolation is used. Default is `self.extrapolate`.

Returns

- `y` [array_like] Shape is determined by replacing the interpolation axis in the coefficient array with the shape of `x`.

scipy.interpolate.BSpline.basis_element

classmethod BSpline.basis_element(t, extrapolate=True)

Return a B-spline basis element $B(x | t[0], ..., t[k+1])$.

Parameters

- `t` [ndarray, shape (k+2,)] internal knots
- `extrapolate` [bool or ‘periodic’, optional] whether to extrapolate beyond the base interval, $t[0]$.. $t[k+1]$, or to return nans. If ‘periodic’, periodic extrapolation is used. Default is True.

Returns

- `basis_element` [callable] A callable representing a B-spline basis element for the knot vector t.
Notes

The degree of the B-spline, \(k \), is inferred from the length of \(t \) as \(\text{len}(t) - 2 \). The knot vector is constructed by appending and prepending \(k+1 \) elements to internal knots \(t \).

Examples

Construct a cubic B-spline:

```python
>>> from scipy.interpolate import BSpline
>>> b = BSpline.basis_element([0, 1, 2, 3, 4])
>>> k = b.k
>>> b.t[k:-k]
array([ 0., 1., 2., 3., 4.])
>>> k
3
```

Construct a quadratic B-spline on \([0, 1, 1, 2]\), and compare to its explicit form:

```python
>>> t = [-1, 0, 1, 1, 2]
>>> b = BSpline.basis_element(t[1:])
>>> def f(x):
...     return np.where(x < 1, x*x, (2. - x)**2)

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> x = np.linspace(0, 2, 51)
>>> ax.plot(x, b(x), 'g', lw=3)
>>> ax.plot(x, f(x), 'r', lw=8, alpha=0.4)
>>> ax.grid(True)
>>> plt.show()
```

![Plot of cubic and quadratic B-spline](image.png)
scipy.interpolate.BSpline.derivative

BSpline.derivative(nu=1)
Return a B-spline representing the derivative.

Parameters

nu [int, optional] Derivative order. Default is 1.

Returns

b [BSpline object] A new instance representing the derivative.

See also:

splder, splantider

scipy.interpolate.BSpline.antiderivative

BSpline.antiderivative(nu=1)
Return a B-spline representing the antiderivative.

Parameters

nu [int, optional] Antiderivative order. Default is 1.

Returns

b [BSpline object] A new instance representing the antiderivative.

See also:

splder, splantider

Notes

If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of the initially given x interval is difficult.

scipy.interpolate.BSpline.integrate

BSpline.integrate(a, b, extrapolate=None)
Compute a definite integral of the spline.

Parameters

a [float] Lower limit of integration.
b [float] Upper limit of integration.
extrapolate [bool or 'periodic', optional] whether to extrapolate beyond the base interval, t[k] . t[-k-1], or take the spline to be zero outside of the base interval. If ‘periodic’, periodic extrapolation is used. If None (default), use self.extrapolate.

Returns

I [array_like] Definite integral of the spline over the interval [a, b].
Examples

Construct the linear spline \(x \) if \(x < 1 \) else \(2 - x \) on the base interval \([0, 2]\), and integrate it

```python
>>> from scipy.interpolate import BSpline
>>> b = BSpline.basis_element([0, 1, 2])
>>> b.integrate(0, 1)
array(0.5)
```

If the integration limits are outside of the base interval, the result is controlled by the `extrapolate` parameter

```python
>>> b.integrate(-1, 1)
array(0.0)
>>> b.integrate(-1, 1, extrapolate=False)
array(0.5)
```

```python
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.grid(True)
>>> ax.axvline(0, c='r', lw=5, alpha=0.5)  # base interval
>>> ax.axvline(2, c='r', lw=5, alpha=0.5)
>>> xx = [-1, 1, 2]
>>> ax.plot(xx, b(xx))
>>> plt.show()
```
scipy.interpolate.BSpline.construct_fast

classmethod BSpline.construct_fast(t, c, k, extrapolate=True, axis=0)
Construct a spline without making checks.
Accepts same parameters as the regular constructor. Input arrays t and c must of correct shape and dtype.

scipy.interpolate.BSpline.design_matrix

classmethod BSpline.design_matrix(x, t, k)
Returns a design matrix as a CSR format sparse array.

Parameters

- **x**
 [array_like, shape (n,)] Points to evaluate the spline at.
- **t**
 [array_like, shape (nt,)] Sorted 1D array of knots.
- **k**
 [int] B-spline degree.

Returns
design_matrix
[csr_array object] Sparse matrix in CSR format where in each row all the basis elements are evaluated at the certain point (first row - x[0], …, last row - x[-1]).

Notes

New in version 1.8.0.

In each row of the design matrix all the basis elements are evaluated at the certain point (first row - x[0], …, last row - x[-1]).

nt is a length of the vector of knots: as far as there are nt - k - 1 basis elements, nt should be not less than 2 * k + 2 to have at least k + 1 basis element.

Out of bounds x raises a ValueError.

Examples

Construct a design matrix for a B-spline

```python
>>> from scipy.interpolate import make_interp_spline, BSpline
>>> x = np.linspace(0, np.pi * 2, 4)
>>> y = np.sin(x)
>>> k = 3
>>> bspl = make_interp_spline(x, y, k=k)
>>> design_matrix = bspl.design_matrix(x, bspl.t, k)
>>> design_matrix.toarray()
[[1. , 0. , 0. , 0. ],
 [0.2962963 , 0.44444444, 0.22222222, 0.03703704],
 [0.03703704, 0.22222222, 0.44444444, 0.2962963 ],
 [0. , 0. , 0. , 1. ]]```

Construct a design matrix for some vector of knots
```python
>>> k = 2
>>> t = [-1, 0, 1, 2, 3, 4, 5, 6]
>>> x = [1, 2, 3, 4]
>>> design_matrix = BSpline.design_matrix(x, t, k).toarray()
>>> design_matrix
[[0.5, 0.5, 0., 0., 0.],
 [0., 0.5, 0.5, 0., 0.],
 [0., 0.5, 0.5, 0., 0.],
 [0., 0., 0.5, 0.5, 0.]]
```

This result is equivalent to the one created in the sparse format

```python
>>> c = np.eye(len(t) - k - 1)
>>> design_matrix_gh = BSpline(t, c, k)(x)
>>> np.allclose(design_matrix, design_matrix_gh, atol=1e-14)
True
```

### scipy.interpolate.BSpline.from_power_basis

**classmethod** `BSpline.from_power_basis`(pp, bc_type='not-a-knot')

Construct a polynomial in the B-spline basis from a piecewise polynomial in the power basis.

For now, accepts `CubicSpline` instances only.

**Parameters**
- **pp** `[CubicSpline]` A piecewise polynomial in the power basis, as created by `CubicSpline`
- **bc_type** `[string, optional]` Boundary condition type as in `CubicSpline`: one of the not-a-knot, natural, clamped, or periodic. Necessary for construction an instance of `BSpline` class. Default is not-a-knot.

**Returns**
- **b** `[BSpline object]` A new instance representing the initial polynomial in the B-spline basis.

**Notes**

New in version 1.8.0.

Accepts only `CubicSpline` instances for now.

The algorithm follows from differentiation the Marsden’s identity [1]: each of coefficients of spline interpolation function in the B-spline basis is computed as follows:

\[
c_j = \sum_{m=0}^{k} \frac{(k-m)!}{k!} c_{m,i} (-1)^{k-m} D^m p_{j,k}(x_i)
\]

- \(c_{m,i}\) - a coefficient of `CubicSpline`, \(D^m p_{j,k}(x_i)\) - an m-th derivative of a dual polynomial in \(x_i\).
- \(k\) always equals 3 for now.

First \(n - 2\) coefficients are computed in \(x_i = x_j\), e.g.

\[
c_1 = \sum_{m=0}^{k} \frac{(k-1)!}{k!} c_{m,1} D^m p_{j,3}(x_1)
\]
Last nod + 2 coefficients are computed in \(x[-2]\), nod - number of derivatives at the ends.

For example, consider \(x = [0, 1, 2, 3, 4]\), \(y = [1, 1, 1, 1]\) and bc_type = natural

The coefficients of CubicSpline in the power basis:

\[\begin{pmatrix}
0, 0, 0, 0, 0, 0 \\
0, 0, 0, 0, 0, 0 \\
0, 0, 0, 0, 0, 0 \\
1, 1, 1, 1, 1, 1
\end{pmatrix}\]

The knot vector: \(t = [0, 0, 0, 0, 1, 2, 3, 4, 4, 4]\)

In this case

\[c_j = \frac{0!}{k!} c_{3,j} k! = c_{3,j} = 1, j = 0, ..., 6\]

References

[1]

scipy.interpolate.make_interp_spline

\[\text{scipy.interpolate.make_interp_spline}(x, y, k=3, t=None, bc_type=None, axis=0, check_finite=True)\]

Compute the (coefficients of) interpolating B-spline.

Parameters

- **x**: [array_like, shape (n,)] Abscissas.
- **y**: [array_like, shape (n, ...)] Ordinates.
- **k**: [int, optional] B-spline degree. Default is cubic, k=3.
- **t**: [array_like, shape (nt + k + 1,), optional.] Knots. The number of knots needs to agree with the number of datapoints and the number of derivatives at the edges. Specifically, \(nt - n\) must equal \(len(deriv_l) + len(deriv_r)\).
- **bc_type**: [2-tuple or None] Boundary conditions. Default is None, which means choosing the boundary conditions automatically. Otherwise, it must be a length-two tuple where the first element sets the boundary conditions at \(x[0]\) and the second element sets the boundary conditions at \(x[-1]\). Each of these must be an iterable of pairs (order, value) which gives the values of derivatives of specified orders at the given edge of the interpolation interval. Alternatively, the following string aliases are recognized:
  - "clamped": The first derivatives at the ends are zero. This is equivalent to bc_type=((1, 0.0)), 
  - "natural": The second derivatives at ends are zero. This is equivalent to bc_type=((2, 0.0)), 
  - "not-a-knot" (default): The first and second segments are the same polynomial. This is equivalent to having bc_type=None.
  - "periodic": The values and the first \(k-1\) derivatives at the ends are equivalent.
- **axis**: [int, optional] Interpolation axis. Default is 0.
- **check_finite**: [bool, optional] Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default is True.

Returns

- **b**: [a BSpline object of the degree \(k\) and with knots \(t\).]

See also:

BSpline

base class representing the B-spline objects
CubicSpline

a cubic spline in the polynomial basis

make_lsq_spline

a similar factory function for spline fitting

UnivariateSpline

a wrapper over FITPACK spline fitting routines

splrep

a wrapper over FITPACK spline fitting routines

Examples

Use cubic interpolation on Chebyshev nodes:

```python
>>> def cheb_nodes(N):
... jj = 2.*np.arange(N) + 1
... x = np.cos(np.pi * jj / 2 / N)[::1]
... return x

>>> x = cheb_nodes(20)
>>> y = np.sqrt(1 - x**2)

>>> from scipy.interpolate import BSpline, make_interp_spline
>>> b = make_interp_spline(x, y)
>>> np.allclose(b(x), y)
True
```

Note that the default is a cubic spline with a not-a-knot boundary condition

```python
>>> b.k
3
```

Here we use a ‘natural’ spline, with zero 2nd derivatives at edges:

```python
>>> l, r = [(2, 0.0)], [(2, 0.0)]
>>> b_n = make_interp_spline(x, y, bc_type=(l, r)) # or, bc_type="natural"
>>> np.allclose(b_n(x), y)
True
>>> x0, x1 = x[0], x[-1]
>>> np.allclose([b_n(x0, 2), b_n(x1, 2)], [0, 0])
True
```

Interpolation of parametric curves is also supported. As an example, we compute a discretization of a snail curve in polar coordinates

```python
>>> phi = np.linspace(0, 2.*np.pi, 40)
>>> r = 0.3 + np.cos(phi)
>>> x, y = r*np.cos(phi), r*np.sin(phi) # convert to Cartesian coordinates
```
Build an interpolating curve, parameterizing it by the angle

```python
>>> from scipy.interpolate import make_interp_spline
>>> spl = make_interp_spline(phi, np.c_[x, y])
```

Evaluate the interpolant on a finer grid (note that we transpose the result to unpack it into a pair of x- and y-arrays)

```python
>>> phi_new = np.linspace(0, 2*np.pi, 100)
>>> x_new, y_new = spl(phi_new).T
```

Plot the result

```python
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o')
>>> plt.plot(x_new, y_new, '-')
>>> plt.show()
```

Build a B-spline curve with 2 dimensional y

```python
>>> x = np.linspace(0, 2*np.pi, 10)
>>> y = np.array([np.sin(x), np.cos(x)])
```

Periodic condition is satisfied because y coordinates of points on the ends are equivalent

```python
>>> ax = plt.axes(projection='3d')
>>> xx = np.linspace(0, 2*np.pi, 100)
>>> bspl = make_interp_spline(x, y, k=5, bc_type='periodic', axis=1)
>>> ax.plot3D(xx, *bspl(xx))
>>> ax.scatter3D(x, 'y', color='red')
>>> plt.show()
```
scipy.interpolate.make_lsq_spline

scipy.interpolate.make_lsq_spline(x, y, t, k=3, w=None, axis=0, check_finite=True)

Compute the (coefficients of) an LSQB-spline.

The result is a linear combination

\[ S(x) = \sum_j c_j B_j(x; t) \]

of the B-spline basis elements, \( B_j(x; t) \), which minimizes

\[ \sum_j \left( w_j \times (S(x_j) - y_j) \right)^2 \]

**Parameters**

- **x** [array_like, shape (m,)] Abscissas.
- **y** [array_like, shape (m, ...)] Ordinates.
- **t** [array_like, shape (n + k + 1,)] Knots. Knots and data points must satisfy Schoenberg-Whitney conditions.
- **k** [int, optional] B-spline degree. Default is cubic, \( k=3 \).
- **w** [array_like, shape (n,), optional] Weights for spline fitting. Must be positive. If None, then weights are all equal. Default is None.
- **axis** [int, optional] Interpolation axis. Default is zero.
- **check_finite** [bool, optional] Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default is True.

**Returns**

- **b** [a BSpline object of the degree \( k \) with knots \( t \).]

**See also:**

BSpline

base class representing the B-spline objects
make_interp_spline

a similar factory function for interpolating splines

LSQUnivariateSpline

a FITPACK-based spline fitting routine

splrep

a FITPACK-based fitting routine

Notes

The number of data points must be larger than the spline degree \( k \).

Knots \( t \) must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points \( x[j] \) such that \( t[j] < x[j] < t[j+k+1], \) for \( j=0, 1, \ldots, n-k-2. \)

Examples

Generate some noisy data:

```python
>>> rng = np.random.default_rng()
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
```

Now fit a smoothing cubic spline with a pre-defined internal knots. Here we make the knot vector \((k+1)\)-regular by adding boundary knots:

```python
>>> from scipy.interpolate import make_lsq_spline, BSpline
>>> t = [-1, 0, 1]
>>> k = 3
>>> t = np.r_[(x[0],)]**(k+1),
... t,
... (x[-1],)**(k+1)]
>>> spl = make_lsq_spline(x, y, t, k)
```

For comparison, we also construct an interpolating spline for the same set of data:

```python
>>> from scipy.interpolate import make_interp_spline
>>> spl_i = make_interp_spline(x, y)
```

Plot both:

```python
>>> import matplotlib.pyplot as plt
>>> xs = np.linspace(-3, 3, 100)
>>> plt.plot(x, y, 'ro', ms=5)
>>> plt.plot(xs, spl(xs), 'g-', lw=3, label='LSQ spline')
>>> plt.plot(xs, spl_i(xs), 'b-', lw=3, alpha=0.7, label='interp spline')
>>> plt.legend(loc='best')
>>> plt.show()
```

NaN handling: If the input arrays contain \texttt{nan} values, the result is not useful since the underlying spline fitting routines cannot deal with \texttt{nan}. A workaround is to use zero weights for not-a-number data points:
```python
>>> y[8] = np.nan
>>> w = np.isnan(y)
>>> y[w] = 0.
>>> tck = make_lsq_spline(x, y, t, w=~w)
```

Notice the need to replace a `nan` by a numerical value (precise value does not matter as long as the corresponding weight is zero.)

Functional interface to FITPACK routines:

- `splrep(x, y[, w, xb, xe, k, task, s, t, ...])` Find the B-spline representation of a 1-D curve.
- `splprep(x[, w, u, ub, ue, k, task, s, t, ...])` Find the B-spline representation of an N-D curve.
- `splev(x, tck[, der, ext])` Evaluate a B-spline or its derivatives.
- `splint(a, b, tck[, full_output])` Evaluate the definite integral of a B-spline between two given points.
- `sproot(tck[, mest])` Find the roots of a cubic B-spline.
- `spalde(x, tck)` Evaluate all derivatives of a B-spline.
- `splder(tck[, n])` Compute the spline representation of the derivative of a given spline.
- `splantider(tck[, n])` Compute the spline for the antiderivative (integral) of a given spline.
- `insert(x, tck[, m, per])` Insert knots into a B-spline.

**scipy.interpolate.splrep**

`scipy.interpolate.splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None, full_output=0, per=0, quiet=1)`

Find the B-spline representation of a 1-D curve.

Given the set of data points `(x[i], y[i])` determine a smooth spline approximation of degree `k` on the interval `xb <= x <= xe`.

**Parameters**

- `x, y` [array_like] The data points defining a curve `y = f(x)`.
w [array_like, optional] Strictly positive rank-1 array of weights the same length as x and y. The weights are used in computing the weighted least-squares spline fit. If the errors in the y values have standard-deviation given by the vector d, then w should be 1/d. Default is ones(len(x)).

xb, xe [float, optional] The interval to fit. If None, these default to x[0] and x[-1] respectively.

k [int, optional] The degree of the spline fit. It is recommended to use cubic splines. Even values of k should be avoided especially with small s values. 1 <= k <= 5

task [{1, 0, -1}, optional] If task==0 find t and c for a given smoothing factor, s. If task==1 find t and c for another value of the smoothing factor, s. There must have been a previous call with task=0 or task=1 for the same set of data (t will be stored an used internally) If task=-1 find the weighted least square spline for a given set of knots, t. These should be interior knots as knots on the ends will be added automatically.

s [float, optional] A smoothing condition. The amount of smoothness is determined by satisfying the conditions: sum((w * (y - g))**2, axis=0) <= s where g(x) is the smoothed interpolation of (x,y). The user can use s to control the tradeoff between closeness and smoothness of fit. Larger s means more smoothing while smaller values of s indicate less smoothing. Recommended values of s depend on the weights, w. If the weights represent the inverse of the standard-deviation of y, then a good s value should be found in the range (m-sqrt(2*m),m+sqrt(2*m)) where m is the number of datapoints in x, y, and w. default : s=m-sqrt(2*m)if weights are supplied. s=0.0 (interpolating) if no weights are supplied.

t [array_like, optional] The knots needed for task=-1. If given then task is automatically set to -1.

full_output [bool, optional] If non-zero, then return optional outputs.

per [bool, optional] If non-zero, data points are considered periodic with period x[m-1] - x[0] and a smooth periodic spline approximation is returned. Values of y[m-1] and w[m-1] are not used.

quiet [bool, optional] Non-zero to suppress messages. This parameter is deprecated; use standard Python warning filters instead.

Returns

tck [tuple] A tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree of the spline.

fp [array, optional] The weighted sum of squared residuals of the spline approximation.

ier [int, optional] An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is raised.

msg [str, optional] A message corresponding to the integer flag, ier.

See also:

UnivariateSpline, BivariateSpline
splprep, splev, sproot, splalde, splint
bisplrep, bisplev
BSpline
make_interp_spline
Notes

See `splev` for evaluation of the spline and its derivatives. Uses the FORTRAN routine `curfit` from FITPACK.

The user is responsible for assuring that the values of \( x \) are unique. Otherwise, `splrep` will not return sensible results.

If provided, knots \( t \) must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points \( x[j] \) such that \( t[j] < x[j] < t[j+k+1] \), for \( j = 0, 1, \ldots, n-k-2 \).

This routine zero-pads the coefficients array \( c \) to have the same length as the array of knots \( t \) (the trailing \( k+1 \) coefficients are ignored by the evaluation routines, `splev` and `BSpline`). This is in contrast with `splprep`, which does not zero-pad the coefficients.

References

Based on algorithms described in [1], [2], [3], and [4]:

[1], [2], [3], [4]

Examples

You can interpolate 1-D points with a B-spline curve. Further examples are given in *in the tutorial*.

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import splev, splrep
>>> x = np.linspace(0, 10, 10)
>>> y = np.sin(x)
>>> spl = splrep(x, y)
>>> x2 = np.linspace(0, 10, 200)
>>> y2 = splev(x2, spl)
>>> plt.plot(x, y, 'o', x2, y2)
>>> plt.show()
```

![B-spline interpolation example](image-url)
**scipy.interpolate.splprep**

`scipy.interpolate.splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None,
full_output=0, nest=None, per=0, quiet=1)`

Find the B-spline representation of an N-D curve.

Given a list of N rank-1 arrays, `x`, which represent a curve in N-D space parametrized by `u`, find a smooth approximating spline curve `g(u)`. Uses the FORTRAN routine parcuf from FITPACK.

**Parameters**

- **x**
  - [array_like] A list of sample vector arrays representing the curve.

- **w**
  - [array_like, optional] Strictly positive rank-1 array of weights the same length as `x[0]`. The weights are used in computing the weighted least-squares spline fit. If the errors in the `x` values have standard-deviation given by the vector `d`, then `w` should be `1/d`. Default is `ones(len(x[0]))`.

- **u**
  - [array_like, optional] An array of parameter values. If not given, these values are calculated automatically as `M = len(x[0])`, where
    - `v[0] = 0`
    - `v[i] = v[i-1] + distance(x[i], x[i-1])`
    - `u[i] = v[i] / v[M-1]`

- **ub, ue**
  - [int, optional] The end-points of the parameters interval. Defaults to `u[0]` and `u[-1]`.

- **k**
  - [int, optional] Degree of the spline. Cubic splines are recommended. Even values of `k` should be avoided especially with a small `s`-value. `1 <= k <= 5`, default is 3.

- **task**
  - [int, optional] If `task==0` (default), find `t` and `c` for a given smoothing factor, `s`. If `task==1`, find `t` and `c` for another value of the smoothing factor, `s`. There must have been a previous call with `task==0` or `task==1` for the same set of data. If `task=-1` find the weighted least square spline for a given set of knots, `t`.

- **s**
  - [float, optional] A smoothing condition. The amount of smoothness is determined by satisfying the conditions: `sum((w * (y - g))**2, axis=0) <= s`, where `g(x)` is the smoothed interpolation of `(x,y)`. The user can use `s` to control the trade-off between closeness and smoothness of fit. Larger `s` means more smoothing while smaller values of `s` indicate less smoothing. Recommended values of `s` depend on the weights, `w`. If the weights represent the inverse of the standard-deviation of `y`, then a good `s` value should be found in the range `(m-sqrt(2*m), m+sqrt(2*m))`, where `m` is the number of data points in `x`, `y`, and `w`.

- **t**
  - [int, optional] The knots needed for `task=-1`.

- **full_output**
  - [int, optional] If non-zero, then return optional outputs.

- **nest**
  - [int, optional] An over-estimate of the total number of knots of the spline to help in determining the storage space. By default `nest=m/2`. Always large enough is `nest=m+k+1`.

- **per**
  - [int, optional] If non-zero, data points are considered periodic with period `x[m-1] - x[0]` and a smooth periodic spline approximation is returned. Values of `y[m-1]` and `w[m-1]` are not used.

- **quiet**
  - [int, optional] Non-zero to suppress messages. This parameter is deprecated; use standard Python warning filters instead.

**Returns**

- **tck**
  - [tuple] `(t,c,k)` a tuple containing the vector of knots, the B-spline coefficients, and the degree of the spline.

- **u**
  - [array] An array of the values of the parameter.

- **fp**
  - [float] The weighted sum of squared residuals of the spline approximation.

- **ier**
  - [int] An integer flag about splrep success. Success is indicated if `ier<=0`. If `ier` in `[1,2,3]` an error occurred but was not raised. Otherwise an error is raised.

- **msg**
  - [str] A message corresponding to the integer flag, `ier`.

See also:
splrep, splev, sproot, splalde, splint
bisplrep, bisplev
UnivariateSpline, BivariateSpline
BSpline
make_interp_spline

Notes
See splev for evaluation of the spline and its derivatives. The number of dimensions N must be smaller than 11. The number of coefficients in the c array is k+1 less then the number of knots, len(t). This is in contrast with splrep, which zero-pads the array of coefficients to have the same length as the array of knots. These additional coefficients are ignored by evaluation routines, splev and BSpline.

References
[1], [2], [3]

Examples
Generate a discretization of a limacon curve in the polar coordinates:

```python
>>> phi = np.linspace(0, 2.*np.pi, 40)
>>> r = 0.5 + np.cos(phi) # polar coords
>>> x, y = r * np.cos(phi), r * np.sin(phi) # convert to cartesian
```

And interpolate:

```python
>>> from scipy.interpolate import splprep, splev
>>> tck, u = splprep([x, y], s=0)
>>> new_points = splev(u, tck)
```

Notice that (i) we force interpolation by using s=0, (ii) the parameterization, u, is generated automatically. Now plot the result:

```python
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.plot(x, y, 'ro')
>>> ax.plot(new_points[0], new_points[1], 'r-')
>>> plt.show()
```
scipy.interpolate.splev

scipy.interpolate.splev(x, tck, der=0, ext=0)
Evaluate a B-spline or its derivatives.

Given the knots and coefficients of a B-spline representation, evaluate the value of the smoothing polynomial and its derivatives. This is a wrapper around the FORTRAN routines splev and splder of FITPACK.

**Parameters**

- **x** [array_like] An array of points at which to return the value of the smoothed spline or its derivatives. If tck was returned from splprep, then the parameter values, u should be given.
- **tck** [3-tuple or a BSpline object] If a tuple, then it should be a sequence of length 3 returned by splrep or splprep containing the knots, coefficients, and degree of the spline. (Also see Notes.)
- **der** [int, optional] The order of derivative of the spline to compute (must be less than or equal to k, the degree of the spline).
- **ext** [int, optional] Controls the value returned for elements of x not in the interval defined by the knot sequence.
  - if ext=0, return the extrapolated value.
  - if ext=1, return 0
  - if ext=2, raise a ValueError
  - if ext=3, return the boundary value.
  The default value is 0.

**Returns**

- **y** [ndarray or list of ndarrays] An array of values representing the spline function evaluated at the points in x. If tck was returned from splprep, then this is a list of arrays representing the curve in an N-D space.

See also:

- splprep, splrep, sproot, spalde, splint
- bisplrep, bisplev
- BSpline
Notes

Manipulating the tck-tuples directly is not recommended. In new code, prefer using `BSpline` objects.

References

[1], [2], [3]

Examples

Examples are given in the tutorial.

```python
scipy.interpolate.splint
```

Evaluate the definite integral of a B-spline between two given points.

**Parameters**

- `a, b` [float] The end-points of the integration interval.
- `tck` [tuple or a BSpline instance] If a tuple, then it should be a sequence of length 3, containing the vector of knots, the B-spline coefficients, and the degree of the spline (see `splev`).
- `full_output` [int, optional] Non-zero to return optional output.

**Returns**

- `integral` [float] The resulting integral.
- `wrk` [ndarray] An array containing the integrals of the normalized B-splines defined on the set of knots. (Only returned if `full_output` is non-zero)

See also:

- `splprep`, `splrep`, `sproot`, `spalde`, `splev`
- `bisplrep`, `bisplev`
- `BSpline`

Notes

`splint` silently assumes that the spline function is zero outside the data interval \((a, b)\).

Manipulating the tck-tuples directly is not recommended. In new code, prefer using the `BSpline` objects.

References

[1], [2]
Examples

Examples are given in the tutorial.

scipy.interpolate.sproot

scipy.interpolate.sproot(tck, mest=10)

Find the roots of a cubic B-spline.

Given the knots (>=8) and coefficients of a cubic B-spline return the roots of the spline.

Parameters

- **tck** [tuple or a BSpline object] If a tuple, then it should be a sequence of length 3, containing the vector of knots, the B-spline coefficients, and the degree of the spline. The number of knots must be >= 8, and the degree must be 3. The knots must be a monotonically increasing sequence.
- **mest** [int, optional] An estimate of the number of zeros (Default is 10).

Returns

- **zeros** [ndarray] An array giving the roots of the spline.

See also:

splprep, splrep, splint, spalde, splev

bsplrep, bisplev

Bsplines

Notes

Manipulating the tck-tuples directly is not recommended. In new code, prefer using the BSpline objects.

References

[1], [2], [3]

Examples

Examples are given in the tutorial.

scipy.interpolate.spalde

scipy.interpolate.spalde(x, tck)

Evaluate all derivatives of a B-spline.

Given the knots and coefficients of a cubic B-spline compute all derivatives up to order k at a point (or set of points).

Parameters

- **x** [array_like] A point or a set of points at which to evaluate the derivatives. Note that t (k) <= x <= t(n-k+1) must hold for each x.
- **tck** [tuple] A tuple (t, c, k), containing the vector of knots, the B-spline coefficients, and the degree of the spline (see splev).

Returns
results  [[ndarray, list of ndarrays]] An array (or a list of arrays) containing all derivatives up to order $k$ inclusive for each point $x$.

See also:

`splprep`, `splrep`, `splint`, `sproot`, `splev`, `bisplrep`, `bisplev`  

BSpline

References

[1], [2], [3]

Examples

Examples are given in the tutorial.

`scipy.interpolate.splder`

`scipy.interpolate.splder(tck, n=1)`  
Compute the spline representation of the derivative of a given spline

Parameters

- `tck`  
  [BSpline instance or a tuple of (t, c, k)] Spline whose derivative to compute
- `n`  
  [int, optional] Order of derivative to evaluate. Default: 1

Returns

- `BSpline` instance or tuple  
  Spline of order $k2 = k - n$ representing the derivative of the input spline. A tuple is returned iff the input argument `tck` is a tuple, otherwise a BSpline object is constructed and returned.

See also:

`splantider`, `splev`, `spalde`  

BSpline

Notes

New in version 0.13.0.

Examples

This can be used for finding maxima of a curve:

```python
>>> from scipy.interpolate import splrep, splder, sproot
>>> x = np.linspace(0, 10, 70)
>>> y = np.sin(x)
>>> spl = splrep(x, y, k=4)
```

Now, differentiate the spline and find the zeros of the derivative. (NB: `sproot` only works for order 3 splines, so we fit an order 4 spline):
scipy.interpolate.splantider

scipy.interpolate.splantider(tck, n=1)

Compute the spline for the antiderivative (integral) of a given spline.

Parameters

- tck [BSpline instance or a tuple of (t, c, k)] Spline whose antiderivative to compute
- n [int, optional] Order of antiderivative to evaluate. Default: 1

Returns

BSpline instance or a tuple of (t2, c2, k2)

Spline of order $k2 = k + n$ representing the antiderivative of the input spline. A tuple is returned if the input argument $tck$ is a tuple, otherwise a BSpline object is constructed and returned.

See also:

splder, splev, spalde

BSpline

Notes

The `splder` function is the inverse operation of this function. Namely, `splder(splantider(tck))` is identical to $tck$, modulo rounding error.

New in version 0.13.0.

Examples

```python
>>> from scipy.interpolate import splrep, splder, splantider, splev
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = splrep(x, y)
```

The derivative is the inverse operation of the antiderivative, although some floating point error accumulates:

```python
>>> splev(1.7, spl), splev(1.7, splder(splantider(spl)))
(array(2.1565429877197317), array(2.1565429877201865))
```

Antiderivative can be used to evaluate definite integrals:

```python
>>> ispl = splantider(spl)
>>> splev(np.pi/2, ispl) - splev(0, ispl)
2.2572053588768486
```

This is indeed an approximation to the complete elliptic integral $K(m) = \int_0^{\pi/2} [1 - m \sin^2 x]^{-1/2} dx$: 
From scipy.special import ellipk

```python
e = 0.8
ellipk(e)
```

2.2572053268208538

**scipy.interpolate.insert**

scipy.interpolate.insert(x, tck, m=1, per=0)

Insert knots into a B-spline.

Given the knots and coefficients of a B-spline representation, create a new B-spline with a knot inserted \( m \) times at point \( x \). This is a wrapper around the FORTRAN routine insert of FITPACK.

**Parameters**

- **x** *(u)*: array_like A 1-D point at which to insert a new knot(s). If \( tck \) was returned from `splprep`, then the parameter values, \( u \) should be given.
- **tck**: [a BSpline instance or a tuple] If tuple, then it is expected to be a tuple \((t, c, k)\) containing the vector of knots, the B-spline coefficients, and the degree of the spline.
- **m**: [int, optional] The number of times to insert the given knot (its multiplicity). Default is 1.
- **per**: [int, optional] If non-zero, the input spline is considered periodic.

**Returns**

- **BSpline instance or a tuple**

  A new B-spline with knots \( t \), coefficients \( c \), and degree \( k \). \( t(k+1) \leq x \leq t(n-k) \), where \( k \) is the degree of the spline. In case of a periodic spline \( (\text{per} \neq 0) \) there must be either at least \( k \) interior knots \( t(j) \) satisfying \( t(k+1) < t(j) \leq x \) or at least \( k \) interior knots \( t(j) \) satisfying \( x \leq t(k+1) < t(n-k) \). A tuple is returned iff the input argument \( tck \) is a tuple, otherwise a BSpline object is constructed and returned.

**Notes**

Based on algorithms from [1] and [2].

Manipulating the tck-tuples directly is not recommended. In new code, prefer using the BSpline objects.

**References**

[1], [2]

**Examples**

You can insert knots into a B-spline.

```python
>>> from scipy.interpolate import splrep, insert
>>> x = np.linspace(0, 10, 5)
>>> y = np.sin(x)
>>> tck = splrep(x, y)
>>> tck[0]
array([0., 0., 0., 0., 5., 10., 10., 10., 10.])
```

A knot is inserted:
Some knots are inserted:

```python
>>> tck_inserted2 = insert(8, tck, m=3)
>>> tck_inserted2[0]
array([0., 0., 0., 0., 5., 8., 8., 8., 10., 10., 10., 10.])
```

Object-oriented FITPACK interface:

- **UnivariateSpline**
  - `UnivariateSpline(x, y[, w, bbox, k, s, ext, ...])` 1-D smoothing spline fit to a given set of data points.
  - Fits a spline $y = \text{spl}(x)$ of degree $k$ to the provided $x$, $y$ data. $s$ specifies the number of knots by specifying a smoothing condition.

  **Parameters**
  - $x$ [(N,) array_like] 1-D array of independent input data. Must be increasing; must be strictly increasing if $s$ is 0.
  - $y$ [(N,) array_like] 1-D array of dependent input data, of the same length as $x$.
  - $w$ [(N,) array_like, optional] Weights for spline fitting. Must be positive. If $w$ is None, weights are all equal. Default is None.
  - $bbox$ [(2,) array_like, optional] 2-sequence specifying the boundary of the approximation interval. If $bbox$ is None, $bbox=[x[0], x[-1]]$. Default is None.
  - $k$ [int, optional] Degree of the smoothing spline. Must be 1 $\leq k \leq 5$. $k = 3$ is a cubic spline. Default is 3.
  - $s$ [float or None, optional] Positive smoothing factor used to choose the number of knots. Number of knots will be increased until the smoothing condition is satisfied:
    \[
    \text{sum}(w[i] \ast (y[i]-\text{spl}(x[i])))^{*2}, \text{axis}=0) \leq s
    \]
    If $s$ is None, $s = \text{len}(w)$ which should be a good value if $1/w[i]$ is an estimate of the standard deviation of $y[i]$. If 0, spline will interpolate through all data points. Default is None.
  - $\text{ext}$ [int or str, optional] Controls the extrapolation mode for elements not in the interval defined by the knot sequence.
    - if $\text{ext}=0$ or 'extrapolate', return the extrapolated value.
    - if $\text{ext}=1$ or 'zeros', return 0
    - if $\text{ext}=2$ or 'raise', raise a ValueError
    - if $\text{ext}=3$ of 'const', return the boundary value.
    Default is 0.
  - $\text{check\_finite}$ [bool, optional] Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination or nonsensical results) if the inputs do contain infinities or NaNs. Default is False.

- **InterpolatedUnivariateSpline**
  - Interpolating spline for a given set of data points.

- **LSQUnivariateSpline**
  - 1-D spline with explicit internal knots.

**scipy.interpolate.UnivariateSpline**

class scipy.interpolate.UnivariateSpline($x$, $y$=None, $bbox$=[None, None], $k=3$, $s$=None, $\text{ext}=0$, $\text{check\_finite}=\text{False}$)

1-D smoothing spline fit to a given set of data points.

Fits a spline $y = \text{spl}(x)$ of degree $k$ to the provided $x$, $y$ data. $s$ specifies the number of knots by specifying a smoothing condition.
See also:

**BivariateSpline**

a base class for bivariate splines.

**SmoothBivariateSpline**

a smoothing bivariate spline through the given points

**LSQBivariateSpline**

a bivariate spline using weighted least-squares fitting

**RectSphereBivariateSpline**

a bivariate spline over a rectangular mesh on a sphere

**SmoothSphereBivariateSpline**

a smoothing bivariate spline in spherical coordinates

**LSQSphereBivariateSpline**

a bivariate spline in spherical coordinates using weighted least-squares fitting

**RectBivariateSpline**

a bivariate spline over a rectangular mesh

**InterpolatedUnivariateSpline**

a interpolating univariate spline for a given set of data points.

**bisplrep**

a function to find a bivariate B-spline representation of a surface

**bisplev**

a function to evaluate a bivariate B-spline and its derivatives

**splrep**

a function to find the B-spline representation of a 1-D curve

**splev**

a function to evaluate a B-spline or its derivatives

**sproot**

a function to find the roots of a cubic B-spline

**splint**

a function to evaluate the definite integral of a B-spline between two given points

**spalde**

a function to evaluate all derivatives of a B-spline
Notes

The number of data points must be larger than the spline degree \( k \).

**NaN handling:** If the input arrays contain NaN values, the result is not useful, since the underlying spline fitting routines cannot deal with NaN. A workaround is to use zero weights for not-a-number data points:

```python
>>> from scipy.interpolate import UnivariateSpline
>>> x, y = np.array([1, 2, 3, 4]), np.array([1, np.nan, 3, 4])
>>> w = np.isnan(y)
>>> y[w] = 0.
>>> spl = UnivariateSpline(x, y, w=~w)
```

Notice the need to replace a NaN by a numerical value (precise value does not matter as long as the corresponding weight is zero.)

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import UnivariateSpline
>>> rng = np.random.default_rng()
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
>>> plt.plot(x, y, 'ro', ms=5)
```

Use the default value for the smoothing parameter:

```python
>>> spl = UnivariateSpline(x, y)
>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(xs, spl(xs), 'g', lw=3)
```

Manually change the amount of smoothing:

```python
>>> spl.set_smoothing_factor(0.5)
>>> plt.plot(xs, spl(xs), 'b', lw=3)
>>> plt.show()
```

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>call</strong>(x[, nu, ext])</td>
<td>Evaluate spline (or its nu-th derivative) at positions ( x ).</td>
</tr>
<tr>
<td>antiderivative([n])</td>
<td>Construct a new spline representing the antiderivative of this spline.</td>
</tr>
<tr>
<td>derivative([n])</td>
<td>Construct a new spline representing the derivative of this spline.</td>
</tr>
<tr>
<td>derivatives(x)</td>
<td>Return all derivatives of the spline at the point ( x ).</td>
</tr>
<tr>
<td>get_coeffs()</td>
<td>Return spline coefficients.</td>
</tr>
<tr>
<td>get_knots()</td>
<td>Return positions of interior knots of the spline.</td>
</tr>
<tr>
<td>get_residual()</td>
<td>Return weighted sum of squared residuals of the spline approximation.</td>
</tr>
</tbody>
</table>

continues on next page
Table 67 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>integral(a, b)</code></td>
<td>Return definite integral of the spline between two given points.</td>
</tr>
<tr>
<td><code>roots()</code></td>
<td>Return the zeros of the spline.</td>
</tr>
<tr>
<td><code>set_smoothing_factor(s)</code></td>
<td>Continue spline computation with the given smoothing factor s and with the knots found at the last call.</td>
</tr>
</tbody>
</table>

**scipy.interpolate.UnivariateSpline.__call__**

UnivariateSpline.__call__ (x, nu=0, ext=None)
Evaluate spline (or its nu-th derivative) at positions x.

**Parameters**

- `x` [array_like] A 1-D array of points at which to return the value of the smoothed spline or its derivatives. Note: x can be unordered but the evaluation is more efficient if x is (partially) ordered.
- `nu` [int] The order of derivative of the spline to compute.
- `ext` [int] Controls the value returned for elements of x not in the interval defined by the knot sequence.
  - if ext=0 or ‘extrapolate’, return the extrapolated value.
  - if ext=1 or ‘zeros’, return 0
  - if ext=2 or ‘raise’, raise a ValueError
  - if ext=3 or ‘const’, return the boundary value.
  The default value is 0, passed from the initialization of UnivariateSpline.

**scipy.interpolate.UnivariateSpline.antiderivative**

UnivariateSpline.antiderivative (n=1)
Construct a new spline representing the antiderivative of this spline.

**Parameters**

- `n` [int, optional] Order of antiderivative to evaluate. Default: 1

**Returns**

- `spline` [UnivariateSpline] Spline of order \( k2 = k + n \) representing the antiderivative of this spline.

**See also:**

splantider, derivative

**Notes**

New in version 0.13.0.
Examples

```python
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = UnivariateSpline(x, y, s=0)
```

The derivative is the inverse operation of the antiderivative, although some floating point error accumulates:

```python
>>> spl(1.7), spl.antiderivative().derivative()(1.7)
(array(2.1565429877197317), array(2.1565429877201865))
```

Antiderivative can be used to evaluate definite integrals:

```python
>>> ispl = spl.antiderivative()
>>> ispl(np.pi/2) - ispl(0)
2.2572053588768486
```

This is indeed an approximation to the complete elliptic integral $K(m) = \int_0^{\pi/2} [1 - m \sin^2 x]^{-1/2} dx$:

```python
>>> from scipy.special import ellipk
>>> ellipk(0.8)
2.2572053268208538
```
**scipy.interpolate.UnivariateSpline.derivative**

UnivariateSpline.derivative\((n=1)\)
Construct a new spline representing the derivative of this spline.

**Parameters**

- \(n\) [int, optional] Order of derivative to evaluate. Default: 1

**Returns**

- spline [UnivariateSpline] Spline of order \(k2=k-n\) representing the derivative of this spline.

**See also:** splder, antiderivative

**Notes**

New in version 0.13.0.

**Examples**

This can be used for finding maxima of a curve:

```python
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 10, 70)
>>> y = np.sin(x)
>>> spl = UnivariateSpline(x, y, k=4, s=0)
```

Now, differentiate the spline and find the zeros of the derivative. (NB: sproot only works for order 3 splines, so we fit an order 4 spline):

```python
>>> spl.derivative().roots() / np.pi
array([0.50000001, 1.5 , 2.49999998])
```

This agrees well with roots \(\pi/2 + n\pi\) of \(\cos(x) = \sin'(x)\).

**scipy.interpolate.UnivariateSpline.derivatives**

UnivariateSpline.derivatives\((x)\)
Return all derivatives of the spline at the point \(x\).

**Parameters**

- \(x\) [float] The point to evaluate the derivatives at.

**Returns**

- der [ndarray, shape(k+1,)] Derivatives of the orders 0 to \(k\).
## Examples

```python
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.derivatives(1.5)
array([2.25, 3.0, 2.0, 0])
```

### scipy.interpolate.UnivariateSpline.get_coeffs

`UnivariateSpline.get_coeffs()`

Return spline coefficients.

### scipy.interpolate.UnivariateSpline.get_knots

`UnivariateSpline.get_knots()`

Return positions of interior knots of the spline.

Internally, the knot vector contains 2\*k additional boundary knots.

### scipy.interpolate.UnivariateSpline.get_residual

`UnivariateSpline.get_residual()`

Return weighted sum of squared residuals of the spline approximation.

This is equivalent to:

```python
sum((w[i] * (y[i]-spl(x[i])))**2, axis=0)
```

### scipy.interpolate.UnivariateSpline.integral

`UnivariateSpline.integral(a, b)`

Return definite integral of the spline between two given points.

**Parameters**

- `a` [float] Lower limit of integration.
- `b` [float] Upper limit of integration.

**Returns**

- `integral` [float] The value of the definite integral of the spline between limits.
Examples

```python
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.integral(0, 3)
9.0
```

which agrees with \( \int_0^3 x^2 \, dx = x^3/3 \) between the limits of 0 and 3.

A caveat is that this routine assumes the spline to be zero outside of the data limits:

```python
>>> spl.integral(-1, 4)
9.0
>>> spl.integral(-1, 0)
0.0
```

**scipy.interpolate.UnivariateSpline.roots**

UnivariateSpline.roots()

Return the zeros of the spline.

Restriction: only cubic splines are supported by fitpack.

**scipy.interpolate.UnivariateSpline.set_smoothing_factor**

UnivariateSpline.set_smoothing_factor(s)

Continue spline computation with the given smoothing factor \( s \) and with the knots found at the last call.

This routine modifies the spline in place.

**scipy.interpolate.InterpolatedUnivariateSpline**

class scipy.interpolate.InterpolatedUnivariateSpline(x, y, w=None, bbox=[None, None], k=3, ext=0, check_finite=False)

1-D interpolating spline for a given set of data points.

Fits a spline \( y = \text{spl}(x) \) of degree \( k \) to the provided \( x, y \) data. Spline function passes through all provided points. Equivalent to `UnivariateSpline` with \( s=0 \).

**Parameters**

- **x** : [(N,) array_like] Input dimension of data points – must be strictly increasing
- **y** : [(N,) array_like] Input dimension of data points
- **w** : [(N,) array_like, optional] Weights for spline fitting. Must be positive. If None (default), weights are all equal.
- **bbox** : [(2,) array_like, optional] 2-sequence specifying the boundary of the approximation interval. If None (default), bbox=[x[0], x[-1]].
- **k** : [int, optional] Degree of the smoothing spline. Must be 1 <= k <= 5.
- **ext** : [int or str, optional] Controls the extrapolation mode for elements not in the interval defined by the knot sequence.
• if ext=0 or 'extrapolate', return the extrapolated value.
• if ext=1 or 'zeros', return 0
• if ext=2 or 'raise', raise a ValueError
• if ext=3 of 'const', return the boundary value.
The default value is 0.

**check_finite**

[bool, optional] Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination or nonsensical results) if the inputs do contain infinities or NaNs. Default is False.

See also:

**UnivariateSpline**

a smooth univariate spline to fit a given set of data points.

**LSQUnivariateSpline**

a spline for which knots are user-selected

**SmoothBivariateSpline**

a smoothing bivariate spline through the given points

**LSQBivariateSpline**

a bivariate spline using weighted least-squares fitting

**splrep**

a function to find the B-spline representation of a 1-D curve

**splev**

a function to evaluate a B-spline or its derivatives

**sproot**

a function to find the roots of a cubic B-spline

**splint**

a function to evaluate the definite integral of a B-spline between two given points

**spalde**

a function to evaluate all derivatives of a B-spline

**Notes**

The number of data points must be larger than the spline degree $k$. 
Examples

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import InterpolatedUnivariateSpline
>>> rng = np.random.default_rng()
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
>>> spl = InterpolatedUnivariateSpline(x, y)
>>> plt.plot(x, y, 'ro', ms=5)
>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7)
>>> plt.show()
```

Notice that the `spl(x)` interpolates `y`:

```python
>>> spl.get_residual()
0.0
```

Methods

- `__call__(x[, nu, ext])`: Evaluate spline (or its nu-th derivative) at positions `x`.
- `antiderivative([n])`: Construct a new spline representing the antiderivative of this spline.
- `derivative([n])`: Construct a new spline representing the derivative of this spline.
- `derivatives(x)`: Return all derivatives of the spline at the point `x`.
- `get_coeffs()`: Return spline coefficients.
- `get_knots()`: Return positions of interior knots of the spline.
- `get_residual()`: Return weighted sum of squared residuals of the spline approximation.

continues on next page
Table 68 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>integral(a, b)</code></td>
<td>Return definite integral of the spline between two given points.</td>
</tr>
<tr>
<td><code>roots()</code></td>
<td>Return the zeros of the spline.</td>
</tr>
<tr>
<td><code>set_smoothing_factor(s)</code></td>
<td>Continue spline computation with the given smoothing factor s and with the knots found at the last call.</td>
</tr>
</tbody>
</table>

scipy.interpolate.InterpolatedUnivariateSpline.__call__

`InterpolatedUnivariateSpline.__call__(x, nu=0, ext=None)`

Evaluate spline (or its nu-th derivative) at positions x.

**Parameters**

- `x` [array_like] A 1-D array of points at which to return the value of the smoothed spline or its derivatives. Note: x can be unordered but the evaluation is more efficient if x is (partially) ordered.
- `nu` [int] The order of derivative of the spline to compute.
- `ext` [int] Controls the value returned for elements of x not in the interval defined by the knot sequence.
  - if ext=0 or ‘extrapolate’, return the extrapolated value.
  - if ext=1 or ‘zeros’, return 0
  - if ext=2 or ‘raise’, raise a ValueError
  - if ext=3 or ‘const’, return the boundary value.
  The default value is 0, passed from the initialization of UnivariateSpline.

scipy.interpolate.InterpolatedUnivariateSpline.antiderivative

`InterpolatedUnivariateSpline.antiderivative(n=1)`

Construct a new spline representing the antiderivative of this spline.

**Parameters**

- `n` [int, optional] Order of antiderivative to evaluate. Default: 1

**Returns**

- `spline` [UnivariateSpline] Spline of order k2=k+n representing the antiderivative of this spline.

See also:

- `splantider`, `derivative`

**Notes**

New in version 0.13.0.
Examples

```python
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = UnivariateSpline(x, y, s=0)

The derivative is the inverse operation of the antiderivative, although some floating point error accumulates:

```python
g>>> spl(1.7), spl.antiderivative().derivative()(1.7)
(2.1565429877197317, 2.1565429877201865)
```

Antiderivative can be used to evaluate definite integrals:

```python
g>>> ispl = spl.antiderivative()
>>> ispl(np.pi/2) - ispl(0)
2.2572053588768486
```

This is indeed an approximation to the complete elliptic integral $K(m) = \int_0^{\pi/2} \left[1 - m \sin^2 x\right]^{-1/2} dx$:

```python
g>>> from scipy.special import ellipk
>>> ellipk(0.8)
2.2572053268208538
```

SciPy.interpolate.InterpolatedUnivariateSpline.derivative

InterpolatedUnivariateSpline.derivative(n=1)

Construct a new spline representing the derivative of this spline.

Parameters

- **n** [int, optional] Order of derivative to evaluate. Default: 1

Returns

- **spline** [UnivariateSpline] Spline of order $k2=k-n$ representing the derivative of this spline.

See also:

- splder, antiderivative

Notes

New in version 0.13.0.
Examples

This can be used for finding maxima of a curve:

```python
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 10, 70)
>>> y = np.sin(x)
>>> spl = UnivariateSpline(x, y, k=4, s=0)
```

Now, differentiate the spline and find the zeros of the derivative. (NB: `sproot` only works for order 3 splines, so we fit an order 4 spline):

```python
>>> spl.derivative().roots() / np.pi
array([ 0.50000001, 1.5 , 2.49999998])
```

This agrees well with roots $\pi/2 + n\pi$ of $\cos(x) = \sin'(x)$.

scipy.interpolate.InterpolatedUnivariateSpline.derivatives

InterpolatedUnivariateSpline.derivatives(x)

Return all derivatives of the spline at the point x.

Parameters

- `x` [float] The point to evaluate the derivatives at.

Returns

- `der` [ndarray, shape(k+1,)] Derivatives of the orders 0 to k.

Examples

```python
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.derivatives(1.5)
array([2.25, 3.0, 2.0, 0])
```

scipy.interpolate.InterpolatedUnivariateSpline.get_coeffs

InterpolatedUnivariateSpline.get_coeffs()

Return spline coefficients.
scipy.interpolate.InterpolatedUnivariateSpline.get_knots

InterpolatedUnivariateSpline.get_knots()
Return positions of interior knots of the spline.
Internally, the knot vector contains 2*\(k\) additional boundary knots.

scipy.interpolate.InterpolatedUnivariateSpline.get_residual

InterpolatedUnivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation.
This is equivalent to:

\[
\sum (w[i] \times (y[i] - spl(x[i])))^2, \text{ axis=0}
\]

scipy.interpolate.InterpolatedUnivariateSpline.integral

InterpolatedUnivariateSpline.integral\((a, b)\)
Return definite integral of the spline between two given points.

Parameters
- \(a\) \[float\] Lower limit of integration.
- \(b\) \[float\] Upper limit of integration.

Returns
- integral \[float\] The value of the definite integral of the spline between limits.

Examples

```python
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.integral(0, 3)
9.0
```

which agrees with \(\int x^2 dx = x^3/3\) between the limits of 0 and 3.

A caveat is that this routine assumes the spline to be zero outside of the data limits:

```python
>>> spl.integral(-1, 4)
9.0
>>> spl.integral(-1, 0)
0.0
```
scipy.interpolate.InterpolatedUnivariateSpline.roots

InterpolatedUnivariateSpline.roots()
Return the zeros of the spline.
Restriction: only cubic splines are supported by fitpack.

scipy.interpolate.InterpolatedUnivariateSpline.set_smoothing_factor

InterpolatedUnivariateSpline.set_smoothing_factor(s)
Continue spline computation with the given smoothing factor s and with the knots found at the last call.
This routine modifies the spline in place.

validate_input

scipy.interpolate.LSQUnivariateSpline

class scipy.interpolate.LSQUnivariateSpline(x, y, t, w=None, bbox=[None, None], k=3, ext=0, check_finite=False)
1-D spline with explicit internal knots.
Fits a spline \(y = \text{spl}(x) \) of degree \(k \) to the provided \(x, y \) data. \(t \) specifies the internal knots of the spline

Parameters

\(x \) ([N,) array_like] Input dimension of data points – must be increasing
\(y \) ([N,) array_like] Input dimension of data points
\(t \) ([M,) array_like] interior knots of the spline. Must be in ascending order and:

\[
\text{bbox}[0] < t[0] < \ldots < t[-1] < \text{bbox}[-1]
\]

\(w \) ([N,) array_like, optional] weights for spline fitting. Must be positive. If None (default), weights are all equal.
\(bbox \) [(2,) array_like, optional] 2-sequence specifying the boundary of the approximation interval.
If None (default), \(bbox = [x[0], x[-1]] \).
\(k \) [int, optional] Degree of the smoothing spline. Must be 1 <= \(k \) <= 5. Default is \(k = 3 \), a cubic spline.
\(ext \) [int or str, optional] Controls the extrapolation mode for elements not in the interval defined by the knot sequence.
\bullet if ext=0 or 'extrapolate', return the extrapolated value.
\bullet if ext=1 or 'zeros', return 0
\bullet if ext=2 or 'raise', raise a \text{ValueError}
\bullet if ext=3 of 'const', return the boundary value.
The default value is 0.
\(\text{check_finite} \) [bool, optional] Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination or nonsensical results) if the inputs do contain infinities or NaNs. Default is False.

Raises

\text{ValueError}
If the interior knots do not satisfy the Schoenberg-Whitney conditions

See also:
UnivariateSpline

- a smooth univariate spline to fit a given set of data points.

InterpolatedUnivariateSpline

- an interpolating univariate spline for a given set of data points.

spline

- a function to find the B-spline representation of a 1-D curve

splrep

- a function to evaluate a B-spline or its derivatives

sproot

- a function to find the roots of a cubic B-spline

splint

- a function to evaluate the definite integral of a B-spline between two given points

spalde

- a function to evaluate all derivatives of a B-spline

Notes

- The number of data points must be larger than the spline degree \(k \).
- Knots \(t \) must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points \(x[j] \) such that \(t[j] < x[j] < t[j+k+1] \), for \(j=0, 1, \ldots, n-k-2 \).

Examples

```python
>>> from scipy.interpolate import LSQUnivariateSpline, UnivariateSpline
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)

Fit a smoothing spline with a pre-defined internal knots:

```python
>>> t = [-1, 0, 1]
>>> spl = LSQUnivariateSpline(x, y, t)
```  
```
>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(x, y, 'ro', ms=5)
>>> plt.plot(xs, spl(xs), 'g-', lw=3)
>>> plt.show()
```  
Check the knot vector:

```python
>>> spl.get_knots()
array([-3., -1., 0., 1., 3.])
```

Constructing lsq spline using the knots from another spline:
```python
>>> x = np.arange(10)
>>> s = UnivariateSpline(x, x, s=0)
>>> s.get_knots()
array([0., 2., 3., 4., 5., 6., 7., 9.])
>>> knt = s.get_knots()
>>> s1 = LSQUnivariateSpline(x, x, knt[1:-1]) # Chop 1st and last knot
>>> s1.get_knots()
array([0., 2., 3., 4., 5., 6., 7., 9.])
```

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>__call__(x[, nu, ext])</code></td>
<td>Evaluate spline (or its nu-th derivative) at positions x.</td>
</tr>
<tr>
<td><code>antiderivative([n])</code></td>
<td>Construct a new spline representing the antiderivative of this spline.</td>
</tr>
<tr>
<td><code>derivative([n])</code></td>
<td>Construct a new spline representing the derivative of this spline.</td>
</tr>
<tr>
<td><code>derivatives(x)</code></td>
<td>Return all derivatives of the spline at the point x.</td>
</tr>
<tr>
<td><code>get_coeffs()</code></td>
<td>Return spline coefficients.</td>
</tr>
<tr>
<td><code>get_knots()</code></td>
<td>Return positions of interior knots of the spline.</td>
</tr>
<tr>
<td><code>get_residual()</code></td>
<td>Return weighted sum of squared residuals of the spline approximation.</td>
</tr>
<tr>
<td><code>integral(a, b)</code></td>
<td>Return definite integral of the spline between two given points.</td>
</tr>
<tr>
<td><code>roots()</code></td>
<td>Return the zeros of the spline.</td>
</tr>
<tr>
<td><code>set_smoothing_factor(s)</code></td>
<td>Continue spline computation with the given smoothing factor s and with the knots found at the last call.</td>
</tr>
</tbody>
</table>
scipy.interpolate.LSQUnivariateSpline.__call__

LSQUnivariateSpline.__call__(x, nu=0, ext=None)
Evaluate spline (or its nu-th derivative) at positions x.

Parameters
- **x** [array_like] A 1-D array of points at which to return the value of the smoothed spline or its derivatives. Note: x can be unordered but the evaluation is more efficient if x is (partially) ordered.
- **nu** [int] The order of derivative of the spline to compute.
- **ext** [int] Controls the value returned for elements of x not in the interval defined by the knot sequence.
  - if ext=0 or ‘extrapolate’, return the extrapolated value.
  - if ext=1 or ‘zeros’, return 0
  - if ext=2 or ‘raise’, raise a ValueError
  - if ext=3 or ‘const’, return the boundary value.
The default value is 0, passed from the initialization of UnivariateSpline.

scipy.interpolate.LSQUnivariateSpline.antiderivative

LSQUnivariateSpline.antiderivative(n=1)
Construct a new spline representing the antiderivative of this spline.

Parameters
- **n** [int, optional] Order of antiderivative to evaluate. Default: 1

Returns
- **spline** [UnivariateSpline] Spline of order k2=k+n representing the antiderivative of this spline.

See also:
splantider, derivative

Notes
New in version 0.13.0.

Examples

```python
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = UnivariateSpline(x, y, s=0)
```

The derivative is the inverse operation of the antiderivative, although some floating point error accumulates:

```python
>>> spl(1.7), spl.antiderivative().derivative()(1.7)
(array(2.1565429877197317), array(2.1565429877201865))
```

Antiderivative can be used to evaluate definite integrals:
```python
>>> ispl = spl.antiderivative()
>>> ispl(np.pi/2) - ispl(0)
2.2572053588768486
```

This is indeed an approximation to the complete elliptic integral $K(m) = \int_0^{\pi/2} [1 - m \sin^2 x]^{-1/2} dx$:

```python
>>> from scipy.special import ellipk
>>> ellipk(0.8)
2.2572053268208538
```

### scipy.interpolate.LSQUnivariateSpline.derivative

**LSQUnivariateSpline.derivative**

Construct a new spline representing the derivative of this spline.

**Parameters**

- `n` [int, optional] Order of derivative to evaluate. Default: 1

**Returns**

- `spline` [UnivariateSpline] Spline of order $k-1$ representing the derivative of this spline.

**See also:**

- `splder`, `antiderivative`

**Notes**

New in version 0.13.0.

**Examples**

This can be used for finding maxima of a curve:

```python
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 10, 70)
>>> y = np.sin(x)
>>> spl = UnivariateSpline(x, y, k=4, s=0)
```

Now, differentiate the spline and find the roots of the derivative. (NB: `sroots` only works for order 3 splines, so we fit an order 4 spline):

```python
>>> spl.derivative().roots() / np.pi
array([0.50000001, 1.5, 2.49999998])
```

This agrees well with roots $\pi/2 + n\pi$ of $\cos(x) = \sin'(x)$.
scipy.interpolate.LSQUnivariateSpline.derivatives

LSQUnivariateSpline.derivatives(x)
Return all derivatives of the spline at the point x.

Parameters
x [float] The point to evaluate the derivatives at.

Returns
der [ndarray, shape(k+1,)] Derivatives of the orders 0 to k.

Examples

```python
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.derivatives(1.5)
array([2.25, 3.0, 2.0, 0])
```

scipy.interpolate.LSQUnivariateSpline.get_coeffs

LSQUnivariateSpline.get_coeffs()
Return spline coefficients.

scipy.interpolate.LSQUnivariateSpline.get_knots

LSQUnivariateSpline.get_knots()
Return positions of interior knots of the spline.
Internally, the knot vector contains 2*k additional boundary knots.

scipy.interpolate.LSQUnivariateSpline.get_residual

LSQUnivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation.
This is equivalent to:

```python
sum((w[i] * (y[i] - spl(x[i])))**2, axis=0)
```
**scipy.interpolate.LSQUnivariateSpline.integral**

`LSQUnivariateSpline.integral(a, b)`  
Return definite integral of the spline between two given points.

**Parameters**

- a  
  [float] Lower limit of integration.
- b  
  [float] Upper limit of integration.

**Returns**

- integral  
  [float] The value of the definite integral of the spline between limits.

**Examples**

```python
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.integral(0, 3)
9.0
```

which agrees with \( \int x^2 dx = \frac{x^3}{3} \) between the limits of 0 and 3.

A caveat is that this routine assumes the spline to be zero outside of the data limits:

```python
>>> spl.integral(-1, 4)
9.0
>>> spl.integral(-1, 0)
0.0
```

**scipy.interpolate.LSQUnivariateSpline.roots**

`LSQUnivariateSpline.roots()`  
Return the zeros of the spline.

Restriction: only cubic splines are supported by fitpack.

**scipy.interpolate.LSQUnivariateSpline.set_smoothing_factor**

`LSQUnivariateSpline.set_smoothing_factor(s)`  
Continue spline computation with the given smoothing factor s and with the knots found at the last call.

This routine modifies the spline in place.
2-D Splines

For data on a grid:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>RectBivariateSpline(x, y, z[, bbox, kx, ky, s])</code></td>
<td>Bivariate spline approximation over a rectangular mesh.</td>
</tr>
<tr>
<td><code>RectSphereBivariateSpline(u, v, r[, s,...])</code></td>
<td>Bivariate spline approximation over a rectangular mesh on a sphere.</td>
</tr>
</tbody>
</table>

**scipy.interpolate.RectSphereBivariateSpline**

**class** `scipy.interpolate.RectSphereBivariateSpline(u, v, r, s=0.0, pole_continuity=False, pole_values=None, pole_exact=False, pole_flat=False)`

Bivariate spline approximation over a rectangular mesh on a sphere.

Can be used for smoothing data.

New in version 0.11.0.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>u</code></td>
<td>[array_like] 1-D array of colatitude coordinates in strictly ascending order. Coordinates must be given in radians and lie within the open interval ((0, \pi)).</td>
</tr>
<tr>
<td><code>v</code></td>
<td>[array_like] 1-D array of longitude coordinates in strictly ascending order. Coordinates must be given in radians. First element ((v[0])) must lie within the interval ([-\pi, \pi]). Last element ((v[-1])) must satisfy (v[-1] &lt;= v[0] + 2*\pi).</td>
</tr>
<tr>
<td><code>r</code></td>
<td>[array_like] 2-D array of data with shape (u.size, v.size).</td>
</tr>
<tr>
<td><code>s</code></td>
<td>[float, optional] Positive smoothing factor defined for estimation condition ((s=0) is for interpolation).</td>
</tr>
<tr>
<td><code>pole_continuity</code></td>
<td>[bool or (bool, bool), optional] Order of continuity at the poles (u=0) ((\text{pole_continuity}[0])) and (u=\pi) ((\text{pole_continuity}[1])). The order of continuity at the pole will be 1 or 0 when this is True or False, respectively. Defaults to False.</td>
</tr>
<tr>
<td><code>pole_values</code></td>
<td>[float or (float, float), optional] Data values at the poles (u=0) and (u=\pi). Either the whole parameter or each individual element can be None. Defaults to None.</td>
</tr>
<tr>
<td><code>pole_exact</code></td>
<td>[bool or (bool, bool), optional] Data value exactness at the poles (u=0) and (u=\pi). If True, the value is considered to be the right function value, and it will be fitted exactly. If False, the value will be considered to be a data value just like the other data values. Defaults to False.</td>
</tr>
<tr>
<td><code>pole_flat</code></td>
<td>[bool or (bool, bool), optional] For the poles at (u=0) and (u=\pi), specify whether or not the approximation has vanishing derivatives. Defaults to False.</td>
</tr>
</tbody>
</table>

**See also:**

- `BivariateSpline`
  a base class for bivariate splines.
- `UnivariateSpline`
  a smooth univariate spline to fit a given set of data points.
- `SmoothBivariateSpline`
  a smoothing bivariate spline through the given points
LSQBivariateSpline
a bivariate spline using weighted least-squares fitting

SmoothSphereBivariateSpline
a smoothing bivariate spline in spherical coordinates

LSQSphereBivariateSpline
a bivariate spline in spherical coordinates using weighted least-squares fitting

RectBivariateSpline
a bivariate spline over a rectangular mesh.

bisplrep
a function to find a bivariate B-spline representation of a surface

bisplev
a function to evaluate a bivariate B-spline and its derivatives

Notes
Currently, only the smoothing spline approximation (iopt[0] = 0 and iopt[0] = 1 in the FITPACK routine) is supported. The exact least-squares spline approximation is not implemented yet.

When actually performing the interpolation, the requested v values must lie within the same length 2pi interval that the original v values were chosen from.

For more information, see the FITPACK site about this function.

Examples
Suppose we have global data on a coarse grid

```python
>>> lats = np.linspace(10, 170, 9) * np.pi / 180.
>>> lons = np.linspace(0, 350, 18) * np.pi / 180.
>>> data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T,
 np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).

We want to interpolate it to a global one-degree grid

```python
>>> new_lats = np.linspace(1, 180, 180) * np.pi / 180
>>> new_lons = np.linspace(1, 360, 360) * np.pi / 180
>>> new_lats, new_lons = np.meshgrid(new_lats, new_lons)

Finally we interpolate the data. The RectSphereBivariateSpline object only takes 1-D arrays as input, therefore we need to do some reshaping.

```python
>>> from scipy.interpolate import RectSphereBivariateSpline
>>> lut = RectSphereBivariateSpline(lats, lons, data)
```
Looking at the original and the interpolated data, one can see that the interpolant reproduces the original data very well:

```python
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(211)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(212)
>>> ax2.imshow(data_interp, interpolation='nearest')
>>> plt.show()
```

Choosing the optimal value of $s$ can be a delicate task. Recommended values for $s$ depend on the accuracy of the data values. If the user has an idea of the statistical errors on the data, she can also find a proper estimate for $s$. By assuming that, if she specifies the right $s$, the interpolator will use a spline $f(u,v)$ which exactly reproduces the function underlying the data, she can evaluate $\sum ((r(i,j)-s(u(i),v(j)))^2)$ to find a good estimate for this $s$. For example, if she knows that the statistical errors on her $r(i,j)$-values are not greater than 0.1, she may expect that a good $s$ should have a value not larger than $u.size * v.size * (0.1)^2$.

If nothing is known about the statistical error in $r(i,j)$, $s$ must be determined by trial and error. The best is then to start with a very large value of $s$ (to determine the least-squares polynomial and the corresponding upper bound $fp0$ for $s$) and then to progressively decrease the value of $s$ (say by a factor 10 in the beginning, i.e. $s = fp0 / 10, fp0 / 100, ...$ and more carefully as the approximation shows more detail) to obtain closer fits.

The interpolation results for different values of $s$ give some insight into this process:

```python
>>> fig2 = plt.figure()
>>> s = [3e9, 2e9, 1e9, 1e8]
>>> for idx, sval in enumerate(s, 1):
... lut = RectSphereBivariateSpline(lats, lons, data, s=sval)
... data_interp = lut.ev(new_lats.ravel(),
... new_lons.ravel()).reshape((360, 180)).T

(continues on next page)
```
... ax = fig2.add_subplot(2, 2, idx)
... ax.imshow(data_interp, interpolation='nearest')
... ax.set_title(f"s = {sval:g}")

```python
global sval
>>> plt.show()
```

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>__call__</code>(theta, phi[, dtheta, dphi, grid])</td>
<td>Evaluate the spline or its derivatives at given positions.</td>
</tr>
<tr>
<td><code>ev</code>(theta, phi[, dtheta, dphi])</td>
<td>Evaluate the spline at points</td>
</tr>
<tr>
<td><code>get_coeffs()</code></td>
<td>Return spline coefficients.</td>
</tr>
<tr>
<td><code>get_knots()</code></td>
<td>Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.</td>
</tr>
<tr>
<td><code>get_residual()</code></td>
<td>Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)</td>
</tr>
</tbody>
</table>

**scipy.interpolate.RectSphereBivariateSpline.__call__**

```python
class RectSphereBivariateSpline.__call__
RectSphereBivariateSpline.__call__ (theta, phi, dtheta=0, dphi=0, grid=True)
Evaluate the spline or its derivatives at given positions.
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta, phi</td>
<td>[array_like] Input coordinates. If <code>grid</code> is False, evaluate the spline at points (theta[i], phi[i]), i=0, ..., len(x)-1. Standard Numpy broadcasting is obeyed. If <code>grid</code> is True: evaluate spline at the grid points defined by the coordinate arrays theta, phi. The arrays must be sorted to increasing order.</td>
</tr>
</tbody>
</table>
sciPy.interpolate.RectSphereBivariateSpline.ev

RectSphereBivariateSpline.ev(theta, phi, dtheta=0, dphi=0)
Evaluate the spline at points
Returns the interpolated value at (theta[i], phi[i]), i=0,...,len(theta)-1.

Parameters
theta, phi [array_like] Input coordinates. Standard Numpy broadcasting is obeyed.
dtheta [int, optional] Order of theta-derivative
New in version 0.14.0.
dphi [int, optional] Order of phi-derivative
New in version 0.14.0.

sciPy.interpolate.RectSphereBivariateSpline.get_coeffs

RectSphereBivariateSpline.get_coeffs()
Return spline coefficients.

sciPy.interpolate.RectSphereBivariateSpline.get_knots

RectSphereBivariateSpline.get_knots()
Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e, respectively.

sciPy.interpolate.RectSphereBivariateSpline.get_residual

RectSphereBivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)
For unstructured data:

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BivariateSpline()</td>
<td>Base class for bivariate splines.</td>
</tr>
<tr>
<td>SmoothBivariateSpline(x, y, z[, w, bbox, ...])</td>
<td>Smooth bivariate spline approximation.</td>
</tr>
<tr>
<td>SmoothSphereBivariateSpline(theta, phi, r[, ...])</td>
<td>Smooth bivariate spline approximation in spherical coordinates.</td>
</tr>
<tr>
<td>LSQBivariateSpline(x, y, z, tx, ty[, w, ...])</td>
<td>Weighted least-squares bivariate spline approximation.</td>
</tr>
<tr>
<td>LSQSphereBivariateSpline(theta, phi, r, tt, tp)</td>
<td>Weighted least-squares bivariate spline approximation in spherical coordinates.</td>
</tr>
</tbody>
</table>
**scipy.interpolate.BivariateSpline**

**class scipy.interpolate.BivariateSpline**

Base class for bivariate splines.

This describes a spline \( s(x, y) \) of degrees \( kx \) and \( ky \) on the rectangle \([xb, xe] \times [yb, ye]\) calculated from a given set of data points \((x, y, z)\).

This class is meant to be subclassed, not instantiated directly. To construct these splines, call either `SmoothBivariateSpline` or `LSQBivariateSpline` or `RectBivariateSpline`.

See also:

- `UnivariateSpline`  
a smooth univariate spline to fit a given set of data points.

- `SmoothBivariateSpline`  
a smoothing bivariate spline through the given points

- `LSQBivariateSpline`  
a bivariate spline using weighted least-squares fitting

- `RectSphereBivariateSpline`  
a bivariate spline over a rectangular mesh on a sphere

- `SmoothSphereBivariateSpline`  
a smoothing bivariate spline in spherical coordinates

- `LSQSphereBivariateSpline`  
a bivariate spline in spherical coordinates using weighted least-squares fitting

- `RectBivariateSpline`  
a bivariate spline over a rectangular mesh.

- `bisplrep`  
a function to find a bivariate B-spline representation of a surface

- `bisplev`  
a function to evaluate a bivariate B-spline and its derivatives

**Methods**

- `__call__(x, y[, dx, dy, grid])`  
Evaluate the spline or its derivatives at given positions.

- `ev(xi, yi[, dx, dy])`  
Evaluate the spline at points

- `get_coeffs()`  
Return spline coefficients.

- `get_knots()`  
Return a tuple \((tx,ty)\) where \(tx,ty\) contain knots positions of the spline with respect to \(x\)-, \(y\)-variable, respectively.

- `get_residual()`  
Return weighted sum of squared residuals of the spline approximation: \( \sum ((w[i]*(z[i]-s(x[i],y[i])))**2, axis=0) \)

- `integral(xa, xb, ya, yb)`  
Evaluate the integral of the spline over area \([xa,xb] \times [ya,yb]\).
scipy.interpolate.BivariateSpline.__call__

BivariateSpline.__call__(x, y, dx=0, dy=0, grid=True)

Evaluate the spline or its derivatives at given positions.

**Parameters**

- **x, y**
  - [array_like] Input coordinates. If `grid` is False, evaluate the spline at points `(x[i], y[i]), i=0, ..., len(x)-1`. Standard Numpy broadcasting is obeyed. If `grid` is True: evaluate spline at the grid points defined by the coordinate arrays x, y. The arrays must be sorted to increasing order. Note that the axis ordering is inverted relative to the output of meshgrid.
- **dx**
  - [int] Order of x-derivative
  - New in version 0.14.0.
- **dy**
  - [int] Order of y-derivative
  - New in version 0.14.0.
- **grid**
  - [bool] Whether to evaluate the results on a grid spanned by the input arrays, or at points specified by the input arrays.
  - New in version 0.14.0.

scipy.interpolate.BivariateSpline.ev

BivariateSpline.ev(xi, yi, dx=0, dy=0)

Evaluate the spline at points

Returns the interpolated value at `(xi[i], yi[i]), i=0,...,len(xi)-1`.

**Parameters**

- **xi, yi**
  - [array_like] Input coordinates. Standard Numpy broadcasting is obeyed.
- **dx**
  - [int, optional] Order of x-derivative
  - New in version 0.14.0.
- **dy**
  - [int, optional] Order of y-derivative
  - New in version 0.14.0.

scipy.interpolate.BivariateSpline.get_coeffs

BivariateSpline.get_coeffs()

Return spline coefficients.

scipy.interpolate.BivariateSpline.get_knots

BivariateSpline.get_knots()

Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively. The position of interior and additional knots are given as t[k+1::k-1] and t[:k+1]=b, t[-k-1::]=e, respectively.
scipy.interpolate.BivariateSpline.get_residual

BivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)

scipy.interpolate.BivariateSpline.integral

BivariateSpline.integral(xa, xb, ya, yb)
Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

Parameters
xa, xb [float] The end-points of the x integration interval.
ya, yb [float] The end-points of the y integration interval.

Returns
integ [float] The value of the resulting integral.

scipy.interpolate.SmoothBivariateSpline

class scipy.interpolate.SmoothBivariateSpline(x, y, z, w=None, bbox=[None, None, None, None], kx=3, ky=3, s=None, eps=1e-16)
Smooth bivariate spline approximation.

Parameters
x, y, z [array_like] 1-D sequences of data points (order is not important).
w [array_like, optional] Positive 1-D sequence of weights, of same length as x, y and z.
bbox [array_like, optional] Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, bbox=[min(x), max(x), min(y), max(y)].
kx, ky [ints, optional] Degrees of the bivariate spline. Default is 3.
s [float, optional] Positive smoothing factor defined for estimation condition: sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s Default s=len(w) which should be a good value if 1/w[i] is an estimate of the standard deviation of z[i].
eps [float, optional] A threshold for determining the effective rank of an over-determined linear system of equations. eps should have a value within the open interval (0, 1), the default is 1e-16.

See also:
BivariateSpline
a base class for bivariate splines.
UnivariateSpline
a smooth univariate spline to fit a given set of data points.
LSQBivariateSpline
a bivariate spline using weighted least-squares fitting
RectSphereBivariateSpline
a bivariate spline over a rectangular mesh on a sphere
**SmoothSphereBivariateSpline**

a smoothing bivariate spline in spherical coordinates

**LSQSphereBivariateSpline**

a bivariate spline in spherical coordinates using weighted least-squares fitting

**RectBivariateSpline**

a bivariate spline over a rectangular mesh

**bisplrep**

a function to find a bivariate B-spline representation of a surface

**bisplev**

a function to evaluate a bivariate B-spline and its derivatives

**Notes**

The length of \( x, y \) and \( z \) should be at least \((kx+1) * (ky+1)\).

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>call</strong></td>
<td>Evaluate the spline or its derivatives at given positions.</td>
</tr>
<tr>
<td>ev</td>
<td>Evaluate the spline at points</td>
</tr>
<tr>
<td>get_coeffs</td>
<td>Return spline coefficients.</td>
</tr>
<tr>
<td>get_knots</td>
<td>Return a tuple ((tx, ty)) where ( tx, ty ) contain knots positions of the spline with respect to ( x-, y)-variable, respectively.</td>
</tr>
<tr>
<td>get_residual</td>
<td>Return weighted sum of squared residuals of the spline approximation: sum ((\sum_{i=0} w[i] * (z[i] - s(x[i], y[i])))^2, axis=0)</td>
</tr>
<tr>
<td>integral</td>
<td>Evaluate the integral of the spline over area ([xa, xb] \times [ya, yb]).</td>
</tr>
</tbody>
</table>

**scipy.interpolate.SmoothBivariateSpline.__call__**

SmoothBivariateSpline.__call__(\(x, y, dx=0, dy=0, grid=True\))

Evaluate the spline or its derivatives at given positions.

**Parameters**

- **x**, **y**
  
  [array_like] Input coordinates.
  
  If \( grid \) is False, evaluate the spline at points \((x[i], y[i]), \ i = 0, \ldots, \ \text{len}(x) - 1\). Standard NumPy broadcasting is obeyed.
  
  If \( grid \) is True: evaluate spline at the grid points defined by the coordinate arrays \( x, y \). The arrays must be sorted to increasing order.
  
  Note that the axis ordering is inverted relative to the output of meshgrid.

- **dx**
  
  [int] Order of \( x \)-derivative
  
  New in version 0.14.0.

- **dy**
  
  [int] Order of \( y \)-derivative
  
  New in version 0.14.0.
grid    [bool] Whether to evaluate the results on a grid spanned by the input arrays, or at points specified by the input arrays.
        New in version 0.14.0.

scipy.interpolate.SmoothBivariateSpline.ev

SmoothBivariateSpline.ev (xi, yi, dx=0, dy=0)

Evaluate the spline at points

    Returns the interpolated value at (xi[i], yi[i]), i=0,...,len(xi)-1.

Parameters

    xi, yi    [array_like] Input coordinates. Standard Numpy broadcasting is obeyed.
    dx       [int, optional] Order of x-derivative
              New in version 0.14.0.
    dy       [int, optional] Order of y-derivative
              New in version 0.14.0.

scipy.interpolate.SmoothBivariateSpline.get_coeffs

SmoothBivariateSpline.get_coeffs()

Return spline coefficients.

scipy.interpolate.SmoothBivariateSpline.get_knots

SmoothBivariateSpline.get_knots()

Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e, respectively.

scipy.interpolate.SmoothBivariateSpline.get_residual

SmoothBivariateSpline.get_residual()

Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
        s(x[i],y[i])))**2,axis=0)

scipy.interpolate.SmoothBivariateSpline.integral

SmoothBivariateSpline.integral (xa, xb, ya, yb)

Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

Parameters

    xa, xb    [float] The end-points of the x integration interval.
    ya, yb    [float] The end-points of the y integration interval.

Returns

    integ     [float] The value of the resulting integral.
scipy.interpolate.SmoothSphereBivariateSpline

class scipy.interpolate.SmoothSphereBivariateSpline(theta, phi, r, w=None, s=0.0, eps=1e-16)

Smooth bivariate spline approximation in spherical coordinates.
New in version 0.11.0.

Parameters

theta, phi, r
[array_like] 1-D sequences of data points (order is not important). Coordinates must be
given in radians. Theta must lie within the interval \([0, \pi]\), and phi must lie within the
interval \([0, 2\pi]\).

w
[array_like, optional] Positive 1-D sequence of weights.

s
[float, optional] Positive smoothing factor defined for estimation condition:
\[
\sum ((w(i)*(r(i) - s(theta(i), phi(i))))**2, axis=0) \leq s
\]
Default \(s=len(w)\) which should be a good value if \(1/w[i]\) is an estimate of the
standard deviation of \(r[i]\).

eps
[float, optional] A threshold for determining the effective rank of an over-determined linear
system of equations. \(eps\) should have a value within the open interval \((0, 1)\), the default
is 1e-16.

See also:

BivariateSpline
a base class for bivariate splines.

UnivariateSpline
a smooth univariate spline to fit a given set of data points.

SmoothBivariateSpline
a smoothing bivariate spline through the given points

LSQBivariateSpline
a bivariate spline using weighted least-squares fitting

RectSphereBivariateSpline
a bivariate spline over a rectangular mesh on a sphere

LSQSphereBivariateSpline
a bivariate spline in spherical coordinates using weighted least-squares fitting

RectBivariateSpline
a bivariate spline over a rectangular mesh.

bisplrep
a function to find a bivariate B-spline representation of a surface

bisplev
a function to evaluate a bivariate B-spline and its derivatives
Notes

For more information, see the FITPACK site about this function.

Examples

Suppose we have global data on a coarse grid (the input data does not have to be on a grid):

```python
>>> theta = np.linspace(0., np.pi, 7)
>>> phi = np.linspace(0., 2*np.pi, 9)
>>> data = np.empty((theta.shape[0], phi.shape[0]))
>>> data[:1, :], data[0, :], data[-1, :] = 0., 0., 0.
>>> data[1:-1, 1], data[1:-1, -1] = 1., 1.
>>> data[1, 1:-1], data[-2, 1:-1] = 1., 1.
>>> data[2, 2:-2], data[-3, 2:-2] = 2., 2.
>>> data[3, 3:-2] = 3.
>>> data = np.roll(data, 4, 1)
```

We need to set up the interpolator object

```python
>>> lats, lons = np.meshgrid(theta, phi)
>>> from scipy.interpolate import SmoothSphereBivariateSpline
>>> lut = SmoothSphereBivariateSpline(lats.ravel(), lons.ravel(),
... data.T.ravel(), s=3.5)
```

As a first test, we’ll see what the algorithm returns when run on the input coordinates

```python
>>> data_orig = lut(theta, phi)
```

Finally we interpolate the data to a finer grid

```python
>>> fine_lats = np.linspace(0., np.pi, 70)
>>> fine_lons = np.linspace(0., 2 * np.pi, 90)
```

```python
>>> data_smth = lut(fine_lats, fine_lons)
```

```python
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(131)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(132)
>>> ax2.imshow(data_orig, interpolation='nearest')
>>> ax3 = fig.add_subplot(133)
>>> ax3.imshow(data_smth, interpolation='nearest')
>>> plt.show()
```
Methods

__call__(theta, phi[, dtheta, dphi, grid]) Evaluate the spline or its derivatives at given positions.
ev(theta, phi[, dtheta, dphi]) Evaluate the spline at points
get_coeffs() Return spline coefficients.
get_knots() Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.
get_residual() Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)

scipy.interpolate.SmoothSphereBivariateSpline.__call__

SmoothSphereBivariateSpline.__call__(theta, phi, dtheta=0, dphi=0, grid=True)
Evaluate the spline or its derivatives at given positions.

Parameters

theta, phi [array_like] Input coordinates.
If grid is False, evaluate the spline at points (theta[i], phi[i]), i=0, ..., len(x)-1. Standard Numpy broadcasting is obeyed.
If grid is True: evaluate spline at the grid points defined by the coordinate arrays theta, phi. The arrays must be sorted to increasing order.
dtheta [int, optional] Order of theta-derivative
New in version 0.14.0.
dphi [int] Order of phi-derivative
New in version 0.14.0.
grid [bool] Whether to evaluate the results on a grid spanned by the input arrays, or at points specified by the input arrays.
New in version 0.14.0.
```python
scipy.interpolate.SmoothSphereBivariateSpline.ev

SmoothSphereBivariateSpline.ev(theta, phi, dtheta=0, dphi=0)

Evaluate the spline at points

Returns the interpolated value at \(\{ \text{theta}[i], \text{phi}[i] \}, i=0,\ldots,\text{len(theta)-1} \).

Parameters

- **theta, phi** [array_like] Input coordinates. Standard NumPy broadcasting is obeyed.
- **dtheta** [int, optional] Order of theta-derivative
 New in version 0.14.0.
- **dphi** [int, optional] Order of phi-derivative
 New in version 0.14.0.
```

```python
scipy.interpolate.SmoothSphereBivariateSpline.get_coeffs

SmoothSphereBivariateSpline.get_coeffs()

Return spline coefficients.
```

```python
scipy.interpolate.SmoothSphereBivariateSpline.get_knots

SmoothSphereBivariateSpline.get_knots()

Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e, respectively.
```

```python
scipy.interpolate.SmoothSphereBivariateSpline.get_residual

SmoothSphereBivariateSpline.get_residual()

Return weighted sum of squared residuals of the spline approximation:

\[
\sum \left(\frac{w[i] \cdot (z[i] - s(x[i],y[i]))}{2} \right)^2, \text{axis}=0
\]
```

```python
scipy.interpolate.LSQBivariateSpline

class scipy.interpolate.LSQBivariateSpline(x, y, z, tx, ty, w=None, bbox=[None, None, None, None], kx=3, ky=3, eps=None)

Weighted least-squares bivariate spline approximation.

Parameters

- **x, y, z** [array_like] 1-D sequences of data points (order is not important).
- **tx, ty** [array_like] Strictly ordered 1-D sequences of knots coordinates.
- **w** [array_like, optional] Positive 1-D array of weights, of the same length as x, y and z.
- **bbox** [(4,) array_like, optional] Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, bbox=[\(\min(x,tx) \), \(\max(x,tx) \), \(\min(y,ty) \), \(\max(y,ty) \)].
- **kx, ky** [ints, optional] Degrees of the bivariate spline. Default is 3.
- **eps** [float, optional] A threshold for determining the effective rank of an over-determined linear system of equations. eps should have a value within the open interval \((0, 1)\), the default is \(1e-16\).

See also:
```
**BivariateSpline**

a base class for bivariate splines.

**UnivariateSpline**

a smooth univariate spline to fit a given set of data points.

**SmoothUnivariateSpline**

a smoothing univariate spline through the given points

**RectSphereBivariateSpline**

a bivariate spline over a rectangular mesh on a sphere

**SmoothSphereBivariateSpline**

a smoothing bivariate spline in spherical coordinates

**LSQSphereBivariateSpline**

a bivariate spline in spherical coordinates using weighted least-squares fitting

**RectBivariateSpline**

a bivariate spline over a rectangular mesh.

**bisplrep**

a function to find a bivariate B-spline representation of a surface

**bisplev**

a function to evaluate a bivariate B-spline and its derivatives

**Notes**

The length of \(x\), \(y\) and \(z\) should be at least \((k_\text{x}+1) \times (k_\text{y}+1)\).

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_call_ ((x, y[, dx, dy, grid]))</td>
<td>Evaluate the spline or its derivatives at given positions.</td>
</tr>
<tr>
<td>ev(xi, yi[, dx, dy])</td>
<td>Evaluate the spline at points</td>
</tr>
<tr>
<td>get_coeffs()</td>
<td>Return spline coefficients.</td>
</tr>
<tr>
<td>get_knots()</td>
<td>Return a tuple ((tx, ty)) where (tx, ty) contain knots positions of the spline with respect to (x)-, (y)-variable, respectively.</td>
</tr>
<tr>
<td>get_residual()</td>
<td>Return weighted sum of squared residuals of the spline approximation: (\text{sum}(w[i]*(z[i]-s(x[i],y[i])))**2, axis=0))</td>
</tr>
<tr>
<td>integral(xa, xb, ya, yb)</td>
<td>Evaluate the integral of the spline over area ([xa,xb] \times [ya,yb]).</td>
</tr>
</tbody>
</table>
scipy.interpolate.LSQBivariateSpline.__call__

LSQBivariateSpline.__call__(x, y, dx=0, dy=0, grid=True)

Evaluate the spline or its derivatives at given positions.

**Parameters**

- **x, y**
  - array_like
  - Input coordinates.
  - If `grid` is False, evaluate the spline at points \((x[i], y[i]), i=0, \ldots, len(x)-1\). Standard Numpy broadcasting is obeyed.
  - If `grid` is True: evaluate spline at the grid points defined by the coordinate arrays \(x, y\). The arrays must be sorted to increasing order.
  - Note that the axis ordering is inverted relative to the output of meshgrid.

- **dx**
  - int
  - Order of x-derivative
  - New in version 0.14.0.

- **dy**
  - int
  - Order of y-derivative
  - New in version 0.14.0.

- **grid**
  - bool
  - Whether to evaluate the results on a grid spanned by the input arrays, or at points specified by the input arrays.
  - New in version 0.14.0.

scipy.interpolate.LSQBivariateSpline.ev

LSQBivariateSpline.ev(xi, yi, dx=0, dy=0)

Evaluate the spline at points

Returns the interpolated value at \((xi[i], yi[i]), i=0, \ldots, len(xi)-1\).

**Parameters**

- **xi, yi**
  - array_like
  - Input coordinates. Standard Numpy broadcasting is obeyed.

- **dx**
  - int, optional
  - Order of x-derivative
  - New in version 0.14.0.

- **dy**
  - int, optional
  - Order of y-derivative
  - New in version 0.14.0.

scipy.interpolate.LSQBivariateSpline.get_coeffs

LSQBivariateSpline.get_coeffs()

Return spline coefficients.

scipy.interpolate.LSQBivariateSpline.get_knots

LSQBivariateSpline.get_knots()

Return a tuple \((tx,ty)\) where \(tx,ty\) contain knots positions of the spline with respect to x-, y-variable, respectively. The position of interior and additional knots are given as \(t[k+1::k-1]\) and \(t[:k+1]=b, t[-k-1:]\) respectively.
scipy.interpolate.LSQBivariateSpline.get_residual

LSQBivariateSpline.get_residual()
Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2, axis=0)

scipy.interpolate.LSQBivariateSpline.integral

LSQBivariateSpline.integral(xa, xb, ya, yb)
Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

Parameters
xa, xb [float] The end-points of the x integration interval.
ya, yb [float] The end-points of the y integration interval.

Returns
integ [float] The value of the resulting integral.

scipy.interpolate.LSQSphereBivariateSpline

class scipy.interpolate.LSQSphereBivariateSpline(theta, phi, r, tt, tp, w=None, eps=1e-16)
Weighted least-squares bivariate spline approximation in spherical coordinates.
Determines a smoothing bicubic spline according to a given set of knots in the theta and phi directions.
New in version 0.11.0.

Parameters
theta, phi, r
[array_like] 1-D sequences of data points (order is not important). Coordinates must be given in radians. Theta must lie within the interval [0, \pi], and phi must lie within the interval [0, 2\pi].
tt, tp
[array_like] Strictly ordered 1-D sequences of knots coordinates. Coordinates must satisfy 0 < tt[i] < \pi, 0 < tp[i] < 2*\pi.
w
[array_like, optional] Positive 1-D sequence of weights, of the same length as theta, phi and r.
eps
[float, optional] A threshold for determining the effective rank of an over-determined linear system of equations. eps should have a value within the open interval (0, 1), the default is 1e-16.

See also:
BivariateSpline
a base class for bivariate splines.
UnivariateSpline
a smooth univariate spline to fit a given set of data points.
SmoothBivariateSpline
a smoothing bivariate spline through the given points
LSQBivariateSpline
a bivariate spline using weighted least-squares fitting
RectSphereBivariateSpline
a bivariate spline over a rectangular mesh on a sphere

SmoothSphereBivariateSpline
a smoothing bivariate spline in spherical coordinates

RectBivariateSpline
a bivariate spline over a rectangular mesh.

bisplrep
a function to find a bivariate B-spline representation of a surface

bisplev
a function to evaluate a bivariate B-spline and its derivatives

Notes
For more information, see the FITPACK site about this function.

Examples
Suppose we have global data on a coarse grid (the input data does not have to be on a grid):

```python
>>> from scipy.interpolate import LSQSphereBivariateSpline
>>> import matplotlib.pyplot as plt

>>> theta = np.linspace(0, np.pi, num=7)
>>> phi = np.linspace(0, 2*np.pi, num=9)
>>> data = np.empty((theta.shape[0], phi.shape[0]))
>>> data[1:-1,1], data[1:-1,-1] = 1., 1.
>>> data[1,1:-1], data[-2,1:-1] = 1., 1.
>>> data[2:-2,2], data[2:-2,-2] = 2., 2.
>>> data[2,2:-2], data[-3,2:-2] = 2., 2.
>>> data[3,3:-2] = 3.
>>> data = np.roll(data, 4, 1)
We need to set up the interpolator object. Here, we must also specify the coordinates of the knots to use.

```python
>>> lats, lons = np.meshgrid(theta, phi)
>>> knotst, knotsp = theta.copy(), phi.copy()
>>> knotst[0] += .0001
>>> knotst[-1] -= .0001
>>> knotsp[0] += .0001
>>> knotsp[-1] -= .0001
>>> lut = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
... data.T.ravel(), knotst, knotsp)
```
As a first test, we’ll see what the algorithm returns when run on the input coordinates

```python
>>> data_orig = lut(theta, phi)
```
Finally we interpolate the data to a finer grid

```python
>>> fine_lats = np.linspace(0., np.pi, 70)
>>> fine_lons = np.linspace(0., 2*np.pi, 90)
>>> data_lsq = lut(fine_lats, fine_lons)

>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(131)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(132)
>>> ax2.imshow(data_orig, interpolation='nearest')
>>> ax3 = fig.add_subplot(133)
>>> ax3.imshow(data_lsq, interpolation='nearest')
>>> plt.show()
```

Methods

- **`__call__`**(theta, phi[, dtheta, dphi, grid])
 Evaluate the spline or its derivatives at given positions.

- **`ev`**(theta, phi[, dtheta, dphi])
 Evaluate the spline at points

- **`get_coeffs`**()
 Return spline coefficients.

- **`get_knots`**()
 Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.

- **`get_residual`**()
 Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)
The `LSQSphereBivariateSpline.__call__` method evaluates the spline or its derivatives at given positions.

Parameters

- `theta, phi` [array_like] Input coordinates. If `grid` is False, evaluate the spline at points `(theta[i], phi[i]), i=0, ..., len(x)-1`. Standard Numpy broadcasting is obeyed. If `grid` is True: evaluate spline at the grid points defined by the coordinate arrays `theta, phi`. The arrays must be sorted to increasing order.
- `grid` [bool] Whether to evaluate the results on a grid spanned by the input arrays, or at points specified by the input arrays. New in version 0.14.0.

The `LSQSphereBivariateSpline.ev` method evaluates the spline at points. It returns the interpolated value at `(theta[i], phi[i]), i=0,...,len(theta)-1`.

Parameters

The `LSQSphereBivariateSpline.get_coeffs` method returns spline coefficients.

The `LSQSphereBivariateSpline.get_knots` method returns a tuple `(tx,ty)` where `tx,ty` contain knots positions of the spline with respect to x-, y-variable, respectively. The position of interior and additional knots are given as `t[k+1:-k-1]` and `t[:k+1]=b, t[-k-1:] = e`, respectively.
scipy.interpolate.LSQSphereBivariateSpline.get_residual

LSQSphereBivariateSpline.get_residual()

Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-
s(x[i],y[i])))**2,axis=0)

Low-level interface to FITPACK functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bisplrep(x, y, z[, w, xb, xe, yb, ye, kx, ...])</td>
<td>Find a bivariate B-spline representation of a surface.</td>
</tr>
<tr>
<td>bisplev(x, y, tck[, dx, dy])</td>
<td>Evaluate a bivariate B-spline and its derivatives.</td>
</tr>
</tbody>
</table>

scipy.interpolate.bisplrep

scipy.interpolate.bisplrep(x, y, z, w=None, xb=None, xe=None, yb=None, ye=None, kx=3, ky=3, task=0, s=None, eps=1e-16, tx=None, ty=None, full_output=0, nxest=None, nyest=None, quiet=1)

Find a bivariate B-spline representation of a surface.

Given a set of data points (x[i], y[i], z[i]) representing a surface z=f(x,y), compute a B-spline representation of the surface. Based on the routine SURFIT from FITPACK.

Parameters

- **x, y, z** [ndarray] Rank-1 arrays of data points.
- **w** [ndarray, optional] Rank-1 array of weights. By default w=np.ones(len(x)).
- **xb, xe** [float, optional] End points of approximation interval in x. By default xb = x.min(), xe=x.max().
- **yb, ye** [float, optional] End points of approximation interval in y. By default yb=y.min(), ye = y.max().
- **kx, ky** [int, optional] The degrees of the spline (1 <= kx, ky <= 5). Third order (kx=ky=3) is recommended.
- **task** [int, optional] If task=0, find knots in x and y and coefficients for a given smoothing factor, s. If task=1, find knots and coefficients for another value of the smoothing factor, s. bisplrep must have been previously called with task=0 or task=1. If task=-1, find coefficients for a given set of knots tx, ty.
- **s** [float, optional] A non-negative smoothing factor. If weights correspond to the inverse of the standard-deviation of the errors in z, then a good s-value should be found in the range (m-sqrt(2*m), m+sqrt(2*m)) where m=len(x).
- **eps** [float, optional] A threshold for determining the effective rank of an over-determined linear system of equations (0 < eps < 1). eps is not likely to need changing.
- **tx, ty** [ndarray, optional] Rank-1 arrays of the knots of the spline for task=-1
- **full_output** [int, optional] Non-zero to return optional outputs.
- **nxest, nyest** [int, optional] Over-estimates of the total number of knots. If None then nxest = max(kx+sqrt(m/2),2*kx+3), nyest = max(ky+sqrt(m/2),2*ky+3).
- **quiet** [int, optional] Non-zero to suppress printing of messages. This parameter is deprecated; use standard Python warning filters instead.

Returns

- **tck** [array_like] A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and coefficients (c) of the bivariate B-spline representation of the surface along with the degree of the spline.
- **fp** [ndarray] The weighted sum of squared residuals of the spline approximation.
- **ier** [int] An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is raised.
msg [str] A message corresponding to the integer flag, ier.

See also:

splprep, splrep, splint, sproot, splev
UnivariateSpline, BivariateSpline

Notes

See bisplev to evaluate the value of the B-spline given its tck representation.

References

[1], [2], [3]

Examples

Examples are given in the tutorial.

scipy.interpolate.bisplev

scipy.interpolate.bisplev(x, y, tck, dx=0, dy=0)

Evaluate a bivariate B-spline and its derivatives.

Return a rank-2 array of spline function values (or spline derivative values) at points given by the cross-product of the rank-1 arrays x and y. In special cases, return an array or just a float if either x or y or both are floats. Based on BISPEV from FITPACK.

Parameters

- x, y [ndarray] Rank-1 arrays specifying the domain over which to evaluate the spline or its derivative.
- tck [tuple] A sequence of length 5 returned by bisplrep containing the knot locations, the coefficients, and the degree of the spline: [tx, ty, c, kx, ky].
- dx, dy [int, optional] The orders of the partial derivatives in x and y respectively.

Returns

vals [ndarray] The B-spline or its derivative evaluated over the set formed by the cross-product of x and y.

See also:

splprep, splrep, splint, sproot, splev
UnivariateSpline, BivariateSpline
Notes

See `bisplrep` to generate the tck representation.

References

[1], [2], [3]

Examples

Examples are given in the tutorial.

Additional tools

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>lagrange(x, w)</code></td>
<td>Return a Lagrange interpolating polynomial.</td>
</tr>
<tr>
<td><code>approximate_taylor_polynomial(f, x, degree, ...)</code></td>
<td>Estimate the Taylor polynomial of f at x by polynomial fitting.</td>
</tr>
<tr>
<td><code>pade(an, m[, n])</code></td>
<td>Return Pade approximation to a polynomial as the ratio of two polynomials.</td>
</tr>
</tbody>
</table>

scipy.interpolate.lagrange

`scipy.interpolate.lagrange(x, w)`

Return a Lagrange interpolating polynomial.

Given two 1-D arrays x and w, returns the Lagrange interpolating polynomial through the points (x, w).

Warning: This implementation is numerically unstable. Do not expect to be able to use more than about 20 points even if they are chosen optimally.

Parameters

- **x** [array_like] x represents the x-coordinates of a set of datapoints.
- **w** [array_like] w represents the y-coordinates of a set of datapoints, i.e., f(x).

Returns

- **lagrange** [numpy.poly1d instance] The Lagrange interpolating polynomial.

Examples

Interpolate \(f(x) = x^3 \) by 3 points.

```python
>>> from scipy.interpolate import lagrange
>>> x = np.array([0, 1, 2])
>>> y = x**3
>>> poly = lagrange(x, y)
```

Since there are only 3 points, Lagrange polynomial has degree 2. Explicitly, it is given by

\[
L(x) = 1 \times \frac{x(x - 2)}{-1} + 8 \times \frac{x(x - 1)}{2} = x(-2 + 3x)
\]
```python
>>> from numpy.polynomial.polynomial import Polynomial
>>> Polynomial(poly.coef[::-1]).coef
array([ 0., -2.,  3.])

>>> import matplotlib.pyplot as plt
>>> x_new = np.arange(0, 2.1, 0.1)
>>> plt.scatter(x, y, label='data')
>>> plt.plot(x_new, Polynomial(poly.coef[::-1])(x_new), label='Polynomial')
>>> plt.plot(x_new, 3*x_new**2 - 2*x_new + 0*x_new,
...          label=r'$3 x^2 - 2 x$', linestyle='--')
>>> plt.legend()
>>> plt.show()
```

scipy.interpolate.approximate_taylor_polynomial

Estimate the Taylor polynomial of f at x by polynomial fitting.

Parameters

- `f` [callable] The function whose Taylor polynomial is sought. Should accept a vector of x values.
- `x` [scalar] The point at which the polynomial is to be evaluated.
- `degree` [int] The degree of the Taylor polynomial
- `scale` [scalar] The width of the interval to use to evaluate the Taylor polynomial. Function values spread over a range this wide are used to fit the polynomial. Must be chosen carefully.
- `order` [int or None, optional] The order of the polynomial to be used in the fitting; f will be evaluated order+1 times. If None, use `degree`.

Returns

- `p` [poly1d instance] The Taylor polynomial (translated to the origin, so that for example p(0)=f(x)).
Notes

The appropriate choice of “scale” is a trade-off; too large and the function differs from its Taylor polynomial too much to get a good answer, too small and round-off errors overwhelm the higher-order terms. The algorithm used becomes numerically unstable around order 30 even under ideal circumstances.

Choosing order somewhat larger than degree may improve the higher-order terms.

Examples

We can calculate Taylor approximation polynomials of sin function with various degrees:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import approximate_taylor_polynomial
>>> x = np.linspace(-10.0, 10.0, num=100)
>>> plt.plot(x, np.sin(x), label="sin curve")
>>> for degree in np.arange(1, 15, step=2):
...     sin_taylor = approximate_taylor_polynomial(np.sin, 0, degree, 1,
...                                                 order=degree + 2)
...     plt.plot(x, sin_taylor(x), label=f"degree={degree}")
>>> plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left',
...             borderaxespad=0.0, shadow=True)
>>> plt.tight_layout()
>>> plt.axis([-10, 10, -10, 10])
>>> plt.show()
```

![Image of Taylor approximation polynomials of sin function with various degrees]
scipy.interpolate.pade

scipy.interpolate.pade(an, m, n=None)

Return Pade approximation to a polynomial as the ratio of two polynomials.

Parameters

- **an** ([N,] array_like) Taylor series coefficients.
- **m** [int] The order of the returned approximating polynomial \(q \).
- **n** [int, optional] The order of the returned approximating polynomial \(p \). By default, the order is \(\text{len}(an) - 1 - m \).

Returns

- **p, q** [Polynomial class] The Pade approximation of the polynomial defined by \(an \) is \(\frac{p(x)}{q(x)} \).

Examples

```python
>>> from scipy.interpolate import pade
>>> e_exp = [1.0, 1.0, 1.0/2.0, 1.0/6.0, 1.0/24.0, 1.0/120.0]
>>> p, q = pade(e_exp, 2)

>>> e_exp.reverse()
>>> e_poly = np.poly1d(e_exp)

Compare \( e_{\text{poly}}(x) \) and the Pade approximation \( \frac{p(x)}{q(x)} \)

```)

```python
>>> e_poly(1)
2.7166666666666668

>>> p(1)/q(1)
2.7179487179487181
```

See also:

scipy.ndimage.map_coordinates, scipy.ndimage.spline_filter, scipy.signal.resample, scipy.signal.bspline, scipy.signal.gauss_spline, scipy.signal.qspline1d, scipy.signal.cspline1d, scipy.signal.qspline1d_eval, scipy.signal.cspline1d_eval, scipy.signal.qspline2d, scipy.signal.cspline2d.

pchip is an alias of PchipInterpolator for backward compatibility (should not be used in new code).

3.3.9 Input and output (scipy.io)

SciPy has many modules, classes, and functions available to read data from and write data to a variety of file formats.

See also:

NumPy IO routines
MATLAB® files

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>loadmat</code></td>
<td>Load MATLAB file.</td>
</tr>
<tr>
<td><code>savemat</code></td>
<td>Save a dictionary of names and arrays into a MATLAB-style .mat file.</td>
</tr>
<tr>
<td><code>whosmat</code></td>
<td>List variables inside a MATLAB file.</td>
</tr>
</tbody>
</table>

scipy.io.loadmat

`scipy.io.loadmat (file_name, mdict=None, appendmat=True, **kwargs)`

Load MATLAB file.

Parameters

- `file_name` [str] Name of the mat file (do not need .mat extension if appendmat=True). Can also pass open file-like object.
- `mdict` [dict, optional] Dictionary in which to insert matfile variables.
- `appendmat` [bool, optional] True to append the .mat extension to the end of the given filename, if not already present. Default is True.
- `byte_order` [str or None, optional] None by default, implying byte order guessed from mat file. Otherwise can be one of (‘native’, ‘=’, ‘little’, ‘<’, ‘BIG’, ‘>’).
- `mat_dtype` [bool, optional] If True, return arrays in same dtype as would be loaded into MATLAB (instead of the dtype with which they are saved).
- `squeeze_me` [bool, optional] Whether to squeeze unit matrix dimensions or not.
- `chars_as_strings` [bool, optional] Whether to convert char arrays to string arrays.
- `matlab_compatible` [bool, optional] Returns matrices as would be loaded by MATLAB (implies squeeze_me=False, chars_as_strings=False, mat_dtype=True, struct_as_record=True).
- `struct_as_record` [bool, optional] Whether to load MATLAB structs as NumPy record arrays, or as old-style NumPy arrays with dtype=object. Setting this flag to False replicates the behavior of scipy version 0.7.x (returning NumPy object arrays). The default setting is True, because it allows easier round-trip load and save of MATLAB files.
- `verify_compressed_data_integrity` [bool, optional] Whether the length of compressed sequences in the MATLAB file should be checked, to ensure that they are not longer than we expect. It is advisable to enable this (the default) because overlong compressed sequences in MATLAB files generally indicate that the files have experienced some sort of corruption.
- `variable_names` [None or sequence] If None (the default) - read all variables in file. Otherwise, variable_names should be a sequence of strings, giving names of the MATLAB variables to read from the file. The reader will skip any variable with a name not in this sequence, possibly saving some read processing.
- `simplify_cells` [False, optional] If True, return a simplified dict structure (which is useful if the mat file contains cell arrays). Note that this only affects the structure of the result and not its contents (which is identical for both output structures). If True, this automatically sets struct_as_record to False and squeeze_me to True, which is required to simplify cells.

Returns
mat_dict

[dict] dictionary with variable names as keys, and loaded matrices as values.

Notes

v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported.

You will need an HDF5 Python library to read MATLAB 7.3 format mat files. Because SciPy does not supply one, we do not implement the HDF5 / 7.3 interface here.

Examples

```python
>>> from os.path import dirname, join as pjoin
>>> import scipy.io as sio

Get the filename for an example .mat file from the tests/data directory.

```python
>>> data_dir = pjoin(dirname(sio.__file__), 'matlab', 'tests', 'data')
>>> mat_fname = pjoin(data_dir, 'testdouble_7.4_GLNX86.mat')
```

Load the .mat file contents.

```python
>>> mat_contents = sio.loadmat(mat_fname)

The result is a dictionary, one key/value pair for each variable:

```python
>>> sorted(mat_contents.keys())
['__globals__', '__header__', '__version__', 'testdouble']
```  
```python
>>> mat_contents['testdouble']
array([[0. , 0.78539816, 1.57079633, 2.35619449, 3.14159265,
       3.92699082, 4.71238898, 5.49778714, 6.28318531]])
```

By default SciPy reads MATLAB structs as structured NumPy arrays where the dtype fields are of type `object` and the names correspond to the MATLAB struct field names. This can be disabled by setting the optional argument `struct_as_record=False`.

Get the filename for an example .mat file that contains a MATLAB struct called `teststruct` and load the contents.

```python
>>> matstruct_fname = pjoin(data_dir, 'teststruct_7.4_GLNX86.mat')
>>> matstruct_contents = sio.loadmat(matstruct_fname)
>>> teststruct = matstruct_contents['teststruct']
```  
```python
teststruct.dtype

```
```  
```python
dtype([('stringfield', 'O'), ('doublefield', 'O'), ('complexfield', 'O'))]
```

The size of the structured array is the size of the MATLAB struct, not the number of elements in any particular field. The shape defaults to 2-D unless the optional argument `squeeze_me=True`, in which case all length 1 dimensions are removed.

```python
>>> teststruct.size
1
>>> teststruct.shape
(1, 1)
```

Get the ‘stringfield’ of the first element in the MATLAB struct.
Get the first element of the 'doublefield'.

>>> teststruct['doublefield'][0, 0]
array([[ 1.41421356,  2.71828183,  3.14159265]])

Load the MATLAB struct, squeezing out length 1 dimensions, and get the item from the 'complexfield'.

```python
>>> matstruct_squeezed = sio.loadmat(matstruct_fname, squeeze_me=True)
>>> matstruct_squeezed['teststruct'].shape
() # Shape of the squeezed structure
>>> matstruct_squeezed['teststruct']['complexfield'].shape
() # Shape of the 'complexfield'
>>> matstruct_squeezed['teststruct']['complexfield'].item()
array([[1.41421356+1.41421356j, 2.71828183+2.71828183j,
 3.14159265+3.14159265j]])
```

### scipy.io.savemat

`scipy.io.savemat(file_name, mdict, appendmat=True, format='5', do_compression=False, oned_as='row')`

Save a dictionary of names and arrays into a MATLAB-style .mat file.

This saves the array objects in the given dictionary to a MATLAB-style .mat file.

**Parameters**

- **file_name** [str or file-like object] Name of the .mat file (.mat extension not needed if `appendmat == True`). Can also pass open file_like object.
- **mdict** [dict] Dictionary from which to savemat file variables.
- **appendmat** [bool, optional] True (the default) to append the .mat extension to the end of the given file-name, if not already present.
- **format** [‘5’, ‘4’], string, optional ‘5’ (the default) for MATLAB 5 and up (to 7.2), ‘4’ for MATLAB 4 .mat files.
- **long_field_names** [bool, optional] False (the default) - maximum field name length in a structure is 31 characters which is the documented maximum length. True - maximum field name length in a structure is 63 characters which works for MATLAB 7.6+.  
- **do_compression** [bool, optional] Whether or not to compress matrices on write. Default is False.
- **oned_as** [{‘row’, ‘column’}, optional] If ‘column’, write 1-D NumPy arrays as column vectors. If ‘row’, write 1-D NumPy arrays as row vectors.
Examples

```python
from scipy.io import savemat
a = np.arange(20)
mdic = {'a': a, 'label': 'experiment'}
savemat("matlab_matrix.mat", mdic)
```

**scipy.io.whosmat**

`scipy.io.whosmat(file_name, appendmat=True, **kwargs)`

List variables inside a MATLAB file.

**Parameters**

- `file_name` [str] Name of the mat file (do not need .mat extension if appendmat==True) Can also pass open file-like object.
- `appendmat` [bool, optional] True to append the .mat extension to the end of the given filename, if not already present. Default is True.
- `byte_order` [str or None, optional] None by default, implying byte order guessed from mat file. Otherwise can be one of (‘native’, ‘=’, ‘little’, ‘<’, ‘BIG’, ‘>’).
- `mat_dtype` [bool, optional] If True, return arrays in same dtype as would be loaded into MATLAB (instead of the dtype with which they are saved).
- `squeeze_me` [bool, optional] Whether to squeeze unit matrix dimensions or not.
- `chars_as_strings` [bool, optional] Whether to convert char arrays to string arrays.
- `matlab_compatible` [bool, optional] Returns matrices as would be loaded by MATLAB (implies squeeze_me=False, chars_as_strings=False, mat_dtype=True, struct_as_record=True).
- `struct_as_record` [bool, optional] Whether to load MATLAB structs as NumPy record arrays, or as old-style NumPy arrays with dtype=object. Setting this flag to False replicates the behavior of SciPy version 0.7.x (returning numpy object arrays). The default setting is True, because it allows easier round-trip load and save of MATLAB files.

**Returns**

- `variables` [list of tuples] A list of tuples, where each tuple holds the matrix name (a string), its shape (tuple of ints), and its data class (a string). Possible data classes are: int8, uint8, int16, uint16, int32, uint32, int64, uint64, single, double, cell, struct, object, char, sparse, function, opaque, logical, unknown.
Notes

v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported.

You will need an HDF5 python library to read matlab 7.3 format mat files. Because SciPy does not supply one, we do not implement the HDF5 / 7.3 interface here.

New in version 0.12.0.

For low-level MATLAB reading and writing utilities, see `scipy.io.matlab`.

IDL® files

```
readsav(file_name[, idict, python_dict, ...])
```

Read an IDL .sav file.

```
scipy.io.readsav
```

```
scipy.io.readsav (file_name, idict=None, python_dict=False, uncompressed_file_name=None, verbose=False)
```

Read an IDL .sav file.

**Parameters**

- `file_name` [str] Name of the IDL save file.
- `idict` [dict, optional] Dictionary in which to insert .sav file variables.
- `python_dict` [bool, optional] By default, the object return is not a Python dictionary, but a case-insensitive dictionary with item, attribute, and call access to variables. To get a standard Python dictionary, set this option to True.
- `uncompressed_file_name` [str, optional] This option only has an effect for .sav files written with the /compress option. If a file name is specified, compressed .sav files are uncompressed to this file. Otherwise, readsav will use the `tempfile` module to determine a temporary filename automatically, and will remove the temporary file upon successfully reading it in.
- `verbose` [bool, optional] Whether to print out information about the save file, including the records read, and available variables.

**Returns**

- `idl_dict` [AttrDict or dict] If `python_dict` is set to False (default), this function returns a case-insensitive dictionary with item, attribute, and call access to variables. If `python_dict` is set to True, this function returns a Python dictionary with all variable names in lowercase. If `idict` was specified, then variables are written to the dictionary specified, and the updated dictionary is returned.

**Examples**

```
>>> from os.path import dirname, join as pjoin
>>> import scipy.io as sio
>>> from scipy.io import readsav
```

Get the filename for an example .sav file from the tests/data directory.

```
>>> data_dir = pjoin(dirname(sio.__file__), 'tests', 'data')
>>> sav_fname = pjoin(data_dir, 'array_float32_1d.sav')
```
Load the .sav file contents.

```python
>>> sav_data = readsav(sav_fname)
```

Get keys of the .sav file contents.

```python
>>> print(sav_data.keys())
dict_keys(['array1d'])
```

Access a content with a key.

```python
>>> print(sav_data['array1d'])
[0. 0.
 0.
 0.
 0.
 0.
 0. 0. 0. 0.]
```

**Matrix Market files**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mminfo()</code></td>
<td>Return size and storage parameters from Matrix Market file-like 'source'.</td>
</tr>
<tr>
<td><code>mmread()</code></td>
<td>Reads the contents of a Matrix Market file-like 'source' into a matrix.</td>
</tr>
<tr>
<td><code>mmwrite()</code></td>
<td>Writes the sparse or dense array <code>a</code> to Matrix Market file-like <code>target</code>.</td>
</tr>
</tbody>
</table>

**scipy.io.mminfo**

Return size and storage parameters from Matrix Market file-like `source`.

**Parameters**

- `source` [str or file-like] Matrix Market filename (extension .mtx) or open file-like object

**Returns**

- `rows` [int] Number of matrix rows.
- `cols` [int] Number of matrix columns.
- `entries` [int] Number of non-zero entries of a sparse matrix or rows*cols for a dense matrix.
- `format` [str] Either 'coordinate' or 'array'.
- `field` [str] Either 'real', 'complex', 'pattern', or 'integer'.
- `symmetry` [str] Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.

---


Chapter 3. SciPy API
scipy.io.mmread

scipy.io.mmread(source)

Reads the contents of a Matrix Market file-like ‘source’ into a matrix.

Parameters

- source [str or file-like] Matrix Market filename (extensions .mtx, .mtz.gz) or open file-like object.

Returns

- a [ndarray or coo_matrix] Dense or sparse matrix depending on the matrix format in the Matrix Market file.

scipy.io.mmwrite

scipy.io.mmwrite(target, a, comment='', field=None, precision=None, symmetry=None)

Writes the sparse or dense array a to Matrix Market file-like target.

Parameters

- target [str or file-like] Matrix Market filename (extension .mtx) or open file-like object.
- a [array-like] Sparse or dense 2-D array.
- comment [str, optional] Comments to be prepended to the Matrix Market file.
- precision [None or int, optional] Number of digits to display for real or complex values.
- symmetry [None or str, optional] Either ‘general’, ‘symmetric’, ‘skew-symmetric’, or ‘hermitian’. If symmetry is None the symmetry type of ‘a’ is determined by its values.

Unformatted Fortran files

FortranFile(filename[, mode, header_dtype])	A file object for unformatted sequential files from Fortran code.
FortranEOFError	Indicates that the file ended properly.
FortranFormattingError	Indicates that the file ended mid-record.

scipy.io.FortranFile

class scipy.io.FortranFile(filename, mode='r', header_dtype=<class 'numpy.uint32'>)

A file object for unformatted sequential files from Fortran code.

Parameters

- filename [file or str] Open file object or filename.
- mode [‘r’, ‘w’, optional] Read-write mode, default is ‘r’.
- header_dtype [dtype, optional] Data type of the header. Size and endiness must match the input/output file.
Notes

These files are broken up into records of unspecified types. The size of each record is given at the start (although
the size of this header is not standard) and the data is written onto disk without any formatting. Fortran compilers
supporting the BACKSPACE statement will write a second copy of the size to facilitate backwards seeking.

This class only supports files written with both sizes for the record. It also does not support the subrecords used in
Intel and gfortran compilers for records which are greater than 2GB with a 4-byte header.

An example of an unformatted sequential file in Fortran would be written as:

```fortran
OPEN(1, FILE=myfilename, FORM='unformatted')
WRITE(1) myvariable
```

Since this is a non-standard file format, whose contents depend on the compiler and the endianness of the machine,
caution is advised. Files from gfortran 4.8.0 and gfortran 4.1.2 on x86_64 are known to work.

Consider using Fortran direct-access files or files from the newer Stream I/O, which can be easily read by `numpy.fromfile`.

Examples

To create an unformatted sequential Fortran file:

```python
>>> from scipy.io import FortranFile
>>> f = FortranFile('test.unf', 'w')
>>> f.write_record(np.array([1,2,3,4,5], dtype=np.int32))
>>> f.write_record(np.linspace(0,1,20).reshape((5,4)).T)
>>> f.close()
```

To read this file:

```python
>>> f = FortranFile('test.unf', 'r')
>>> print(f.read_ints(np.int32))
[1 2 3 4 5]
>>> print(f.read_reals(float).reshape((5,4), order="F"))
[[0. 0.05263158 0.10526316 0.15789474]
 [0.21052632 0.26315789 0.31578947 0.36842105]
 [0.42105263 0.47368421 0.52631579 0.57894737]
 [0.63157895 0.68421053 0.73684211 0.78947368]
 [0.84210526 0.89473684 0.94736842 1.]]
>>> f.close()
```

Or, in Fortran:

```fortran
integer :: a(5), i
double precision :: b(5,4)
open(1, file='test.unf', form='unformatted')
read(1) a
read(1) b
close(1)
write(*,*) a
do i = 1, 5
```

(continues on next page)
write(*,*), b(i,:),
end do

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>close()</td>
<td>Closes the file.</td>
</tr>
<tr>
<td>read_ints([dtype])</td>
<td>Reads a record of a given type from the file, defaulting to an integer type (INTEGER*4 in Fortran).</td>
</tr>
<tr>
<td>read_reals([dtype])</td>
<td>Reads a record of a given type from the file, defaulting to a floating point number (real*8 in Fortran).</td>
</tr>
<tr>
<td>read_record(*dtypes, **kwargs)</td>
<td>Reads a record of a given type from the file.</td>
</tr>
<tr>
<td>write_record(*items)</td>
<td>Write a record (including sizes) to the file.</td>
</tr>
</tbody>
</table>

*scipy.io.FortranFile.close*

FortranFile.close()

Closes the file. It is unsupported to call any other methods off this object after closing it. Note that this class supports the ‘with’ statement in modern versions of Python, to call this automatically.

*scipy.io.FortranFile.read_ints*

FortranFile.read_ints(dtype='i4')

Reads a record of a given type from the file, defaulting to an integer type (INTEGER*4 in Fortran).

**Parameters**

dtype [dtype, optional] Data type specifying the size and endiness of the data.

**Returns**


See also:

read_reals
read_record

*scipy.io.FortranFile.read_reals*

FortranFile.read_reals(dtype='f8')

Reads a record of a given type from the file, defaulting to a floating point number (real*8 in Fortran).

**Parameters**

dtype [dtype, optional] Data type specifying the size and endiness of the data.

**Returns**


See also:
**scipy.io.FortranFile.read_record**

*FortranFile.read_record(*dtypes, **kwargs)*

Reads a record of a given type from the file.

**Parameters**

* *dtypes*  
  [dtypes, optional] Data type(s) specifying the size and endiness of the data.

**Returns**

* data  

**Raises**

* FortranEOFError  
  To signal that no further records are available

* FortranFormattingError  
  To signal that the end of the file was encountered part-way through a record

**See also:**

* read_reals
* read_ints

**Notes**

If the record contains a multidimensional array, you can specify the size in the dtype. For example:

```plaintext
INTEGER var(5,4)
```

can be read with:

```plaintext
read_record('(4,5)i4').T
```

Note that this function does **not** assume the file data is in Fortran column major order, so you need to (i) swap the order of dimensions when reading and (ii) transpose the resulting array.

Alternatively, you can read the data as a 1-D array and handle the ordering yourself. For example:

```plaintext
read_record('i4').reshape(5, 4, order='F')
```

For records that contain several variables or mixed types (as opposed to single scalar or array types), give them as separate arguments:

```plaintext
double precision :: a
integer :: b
write(1) a, b
record = f.read_record('<f4', '<i4')
a = record[0] # first number
b = record[1] # second number
```
and if any of the variables are arrays, the shape can be specified as the third item in the relevant dtype:

```python
double precision :: a
integer :: b(3,4)
write(1) a, b

record = f.read_record('<f4', np.dtype(['<i4', (4, 3)]))

a = record[0]
b = record[1].T
```

NumPy also supports a short syntax for this kind of type:

```python
record = f.read_record('<f4', '(3,3)<i4')
```

### scipy.io.FortranFile.write_record

**FortranFile.write_record(*items)**

Write a record (including sizes) to the file.

**Parameters**

*items [array_like] The data arrays to write.

**Notes**

Writes data items to a file:

```python
write_record(a.T, b.T, c.T, ...)
write(1) a, b, c, ...
```

Note that data in multidimensional arrays is written in row-major order — to make them read correctly by Fortran programs, you need to transpose the arrays yourself when writing them.

### scipy.io.FortranEOFErrorexception

**scipy.io.FortranEOFErrorexception**

Indicates that the file ended properly.

This error descends from TypeError because the code used to raise TypeError (and this was the only way to know that the file had ended) so users might have `except TypeError:`.

**errno**

POSIX exception code

**filename**

exception filename

**filename2**

second exception filename

**strerror**

exception strerror

**with_traceback()**

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
scipy.io.FortranFormattingError

Exception `scipy.io.FortranFormattingError` indicates that the file ended mid-record.

Descends from TypeError for backward compatibility.

- `errno` : POSIX exception code
- `filename` : exception filename
- `filename2` : second exception filename
- `strerror` : exception strerror

`with_traceback()`:
```
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

Netcdf

```python
netcdf_file(filename[, mode, mmap, version, ...])
A file object for NetCDF data.
```

```python
netcdf_variable(data, typecode, size, shape, ...)
A data object for netcdf files.
```

scipy.io.netcdf_file

```python
class scipy.io.netcdf_file(filename, mode='r', mmap=None, version=1, maskandscale=False)
A file object for NetCDF data.
```

A `netcdf_file` object has two standard attributes: `dimensions` and `variables`. The values of both are dictionaries, mapping dimension names to their associated lengths and variable names to variables, respectively. Application programs should never modify these dictionaries.

All other attributes correspond to global attributes defined in the NetCDF file. Global file attributes are created by assigning to an attribute of the `netcdf_file` object.

**Parameters**

- `filename` : [string or file-like] string -> filename
- `mode` : [‘r’, ‘w’, ‘a’], optional] read-write-append mode, default is ‘r’
- `mmap` : [None or bool, optional] Whether to mmap `filename` when reading. Default is True when `filename` is a file name, False when `filename` is a file-like object. Note that when mmap is in use, data arrays returned refer directly to the mmapped data on disk, and the file cannot be closed as long as references to it exist.
- `version` : [{1, 2}, optional] version of netcdf to read / write, where 1 means *Classic format* and 2 means *64-bit offset format*. Default is 1. See here for more info.
- `maskandscale` : [bool, optional] Whether to automatically scale and/or mask data based on attributes. Default is False.
Notes

The major advantage of this module over other modules is that it doesn’t require the code to be linked to the NetCDF libraries. This module is derived from pupynere.

NetCDF files are a self-describing binary data format. The file contains metadata that describes the dimensions and variables in the file. More details about NetCDF files can be found here. There are three main sections to a NetCDF data structure:

1. Dimensions
2. Variables
3. Attributes

The dimensions section records the name and length of each dimension used by the variables. The variables would then indicate which dimensions it uses and any attributes such as data units, along with containing the data values for the variable. It is good practice to include a variable that is the same name as a dimension to provide the values for that axes. Lastly, the attributes section would contain additional information such as the name of the file creator or the instrument used to collect the data.

When writing data to a NetCDF file, there is often the need to indicate the ‘record dimension’. A record dimension is the unbounded dimension for a variable. For example, a temperature variable may have dimensions of latitude, longitude and time. If one wants to add more temperature data to the NetCDF file as time progresses, then the temperature variable should have the time dimension flagged as the record dimension.

In addition, the NetCDF file header contains the position of the data in the file, so access can be done in an efficient manner without loading unnecessary data into memory. It uses the mmap module to create Numpy arrays mapped to the data on disk, for the same purpose.

Note that when netcdf_file is used to open a file with mmap=True (default for read-only), arrays returned by it refer to data directly on the disk. The file should not be closed, and cannot be cleanly closed when asked, if such arrays are alive. You may want to copy data arrays obtained from mmapped Netcdf file if they are to be processed after the file is closed, see the example below.

Examples

To create a NetCDF file:

```python
>>> from scipy.io import netcdf_file
>>> f = netcdf_file('simple.nc', 'w')
>>> f.history = 'Created for a test'
>>> f.createDimension('time', 10)
>>> time = f.createVariable('time', 'i', ('time',))
>>> time[:] = np.arange(10)
>>> time.units = 'days since 2008-01-01'
>>> f.close()
```

Note the assignment of arange(10) to time[:]. Exposing the slice of the time variable allows for the data to be set in the object, rather than letting arange(10) overwrite the time variable.

To read the NetCDF file we just created:

```python
>>> from scipy.io import netcdf_file
>>> f = netcdf_file('simple.nc', 'r')
>>> print(f.history)
b'Created for a test'
```

(continues on next page)
NetCDF files, when opened read-only, return arrays that refer directly to memory-mapped data on disk:

```python
>>> data = time[:,]
```

If the data is to be processed after the file is closed, it needs to be copied to main memory:

```python
>>> data = time[:].copy()
>>> f.close()
>>> data.mean()
4.5
```

A NetCDF file can also be used as context manager:

```python
>>> from scipy.io import netcdf_file
>>> with netcdf_file('simple.nc', 'r') as f:
... print(f.history)
'b'Created for a test'
```

## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>close()</code></td>
<td>Closes the NetCDF file.</td>
</tr>
<tr>
<td><code>createDimension(name, length)</code></td>
<td>Adds a dimension to the Dimension section of the NetCDF data structure.</td>
</tr>
<tr>
<td><code>createVariable(name, type, dimensions)</code></td>
<td>Create an empty variable for the <code>netcdf_file</code> object, specifying its data type and the dimensions it uses.</td>
</tr>
<tr>
<td><code>flush()</code></td>
<td>Perform a sync-to-disk flush if the <code>netcdf_file</code> object is in write mode.</td>
</tr>
<tr>
<td><code>sync()</code></td>
<td>Perform a sync-to-disk flush if the <code>netcdf_file</code> object is in write mode.</td>
</tr>
</tbody>
</table>

```python
scipy.io.netcdf_file.close
netcdf_file.close()
```

Closes the NetCDF file.
scipy.io.netcdf_file.createDimension

netcdf_file.createDimension(name, length)
Adds a dimension to the Dimension section of the NetCDF data structure.

Note that this function merely adds a new dimension that the variables can reference. The values for the
dimension, if desired, should be added as a variable using createVariable, referring to this dimension.

Parameters

- name [str] Name of the dimension (Eg. 'lat' or 'time').
- length [int] Length of the dimension.

See also:

createVariable

scipy.io.netcdf_file.createVariable

netcdf_file.createVariable(name, type, dimensions)
Create an empty variable for the netcdf_file object, specifying its data type and the dimensions it uses.

Parameters

- name [str] Name of the new variable.
- type [dtype or str] Data type of the variable.
- dimensions [sequence of str] List of the dimension names used by the variable, in the desired order.

Returns

- variable [netcdf_variable] The newly created netcdf_variable object. This object has also
  been added to the netcdf_file object as well.

See also:

createDimension

Notes

Any dimensions to be used by the variable should already exist in the NetCDF data structure or should be
created by createDimension prior to creating the NetCDF variable.

scipy.io.netcdf_file.flush

netcdf_file.flush()
Perform a sync-to-disk flush if the netcdf_file object is in write mode.

See also:

sync

Identical function
**scipy.io.netcdf_file.sync**

```python
cdf_file.sync()
```

Perform a sync-to-disk flush if the `netcdf_file` object is in write mode.

See also:

- `sync`

Identical function

**scipy.io.netcdf_variable**

**class scipy.io.netcdf_variable** (data, typecode, size, shape, dimensions, attributes=None, maskandscale=False)

A data object for netcdf files.

`netcdf_variable` objects are constructed by calling the method `netcdf_file.createVariable` on the `netcdf_file` object. `netcdf_variable` objects behave much like array objects defined in numpy, except that their data resides in a file. Data is read by indexing and written by assigning to an indexed subset; the entire array can be accessed by the index `[:]` or (for scalars) by using the methods `getValue` and `assign-Value`. `netcdf_variable` objects also have attribute `shape` with the same meaning as for arrays, but the shape cannot be modified. There is another read-only attribute `dimensions`, whose value is the tuple of dimension names.

All other attributes correspond to variable attributes defined in the NetCDF file. Variable attributes are created by assigning to an attribute of the `netcdf_variable` object.

**Parameters**

- **data** [array_like] The data array that holds the values for the variable. Typically, this is initialized as empty, but with the proper shape.
- **typecode** [dtype character code] Desired data-type for the data array.
- **size** [int] Desired element size for the data array.
- **shape** [sequence of ints] The shape of the array. This should match the lengths of the variable’s dimensions.
- **dimensions** [sequence of strings] The names of the dimensions used by the variable. Must be in the same order of the dimension lengths given by `shape`.
- **attributes** [dict, optional] Attribute values (any type) keyed by string names. These attributes become attributes for the netcdf_variable object.
- **maskandscale** [bool, optional] Whether to automatically scale and/or mask data based on attributes. Default is False.

See also:

- `isrec`, `shape`

**Attributes**

- **dimensions** [list of str] List of names of dimensions used by the variable object.
- **isrec**, `shape` Properties
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>assignValue(value)</code></td>
<td>Assign a scalar value to a <code>netcdf_variable</code> of length one.</td>
</tr>
<tr>
<td><code>getValue()</code></td>
<td>Retrieve a scalar value from a <code>netcdf_variable</code> of length one.</td>
</tr>
<tr>
<td><code>itemsize()</code></td>
<td>Return the itemsize of the variable.</td>
</tr>
<tr>
<td><code>typecode()</code></td>
<td>Return the typecode of the variable.</td>
</tr>
</tbody>
</table>

**scipy.io.netcdf_variable.assignValue**

```python
netcdf_variable.assignValue(value)
```

Assign a scalar value to a `netcdf_variable` of length one.

**Parameters**

- `value` [scalar] Scalar value (of compatible type) to assign to a length-one netcdf variable. This value will be written to file.

**Raises**

- `ValueError` If the input is not a scalar, or if the destination is not a length-one netcdf variable.

**scipy.io.netcdf_variable.getValue**

```python
netcdf_variable.getValue()
```

Retrieve a scalar value from a `netcdf_variable` of length one.

**Raises**

- `ValueError` If the netcdf variable is an array of length greater than one, this exception will be raised.

**scipy.io.netcdf_variable.itemsize**

```python
netcdf_variable.itemsize()
```

Return the itemsize of the variable.

**Returns**

- `itemsize` [int] The element size of the variable (e.g., 8 for float64).

**scipy.io.netcdf_variable.typecode**

```python
netcdf_variable.typecode()
```

Return the typecode of the variable.

**Returns**

- `typecode` [char] The character typecode of the variable (e.g., 'i' for int).
Harwell-Boeing files

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>hb_read</em></td>
<td>Read HB-format file.</td>
</tr>
<tr>
<td><em>hb_write</em></td>
<td>Write HB-format file.</td>
</tr>
</tbody>
</table>

**scipy.io.hb_read**

**scipy.io.hb_read(path_or_open_file)**

Read HB-format file.

**Parameters**

- **path_or_open_file**: [path-like or file-like] If a file-like object, it is used as-is. Otherwise, it is opened before reading.

**Returns**

- **data**: [scipy.sparse.csc_matrix instance] The data read from the HB file as a sparse matrix.

**Notes**

At the moment not the full Harwell-Boeing format is supported. Supported features are:

- assembled, non-symmetric, real matrices
- integer for pointer/indices
- exponential format for float values, and int format

**Examples**

We can read and write a harwell-boeing format file:

```python
>>> from scipy.io.harwell_boeing import hb_read, hb_write
>>> from scipy.sparse import csr_matrix, eye
>>> data = csr_matrix(eye(3)) # create a sparse matrix
>>> hb_write("data.hb", data) # write a hb file
>>> print(hb_read("data.hb")) # read a hb file
(0, 0) 1.0
(1, 1) 1.0
(2, 2) 1.0
```

**scipy.io.hb_write**

**scipy.io.hb_write(path_or_open_file, m, hb_info=None)**

Write HB-format file.

**Parameters**

- **path_or_open_file**: [path-like or file-like] If a file-like object, it is used as-is. Otherwise, it is opened before writing.
- **m**: [sparse-matrix] the sparse matrix to write
- **hb_info**: [HBInfo] contains the meta-data for write

**Returns**
None

**Notes**

At the moment not the full Harwell-Boeing format is supported. Supported features are:

- assembled, non-symmetric, real matrices
- integer for pointer/indices
- exponential format for float values, and int format

**Examples**

We can read and write a harwell-boeing format file:

```python
>>> from scipy.io.harwell_boeing import hb_read, hb_write
>>> from scipy.sparse import csr_matrix, eye

>>> data = csr_matrix(eye(3)) # create a sparse matrix
>>> hb_write("data.hb", data) # write a hb file

>>> print(hb_read("data.hb")) # read a hb file
(0, 0) 1.0
(1, 1) 1.0
(2, 2) 1.0
```

---

**Wav sound files** *(scipy.io.wavfile)*

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>read</code></td>
<td>Open a WAV file.</td>
</tr>
<tr>
<td><code>write</code></td>
<td>Write a NumPy array as a WAV file.</td>
</tr>
</tbody>
</table>

**scipy.io.wavfile.read**

`scipy.io.wavfile.read` *(filename, mmap=False)*

Open a WAV file.

Return the sample rate (in samples/sec) and data from an LPCM WAV file.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filename</code></td>
<td>[string or open file handle] Input WAV file.</td>
</tr>
<tr>
<td><code>mmap</code></td>
<td>[bool, optional] Whether to read data as memory-mapped (default: False). Not compatible with some bit depths; see Notes. Only to be used on real files. New in version 0.12.0.</td>
</tr>
</tbody>
</table>

**Returns**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rate</code></td>
<td>[int] Sample rate of WAV file.</td>
</tr>
<tr>
<td><code>data</code></td>
<td>[numpy array] Data read from WAV file. Data-type is determined from the file; see Notes. Data is 1-D for 1-channel WAV, or 2-D of shape (Nsamples, Nchannels) otherwise. If a file-like input without a C-like file descriptor (e.g., <code>io.BytesIO</code>) is passed, this will not be writeable.</td>
</tr>
</tbody>
</table>
Notes

Common data types: [1]

<table>
<thead>
<tr>
<th>WAV format</th>
<th>Min</th>
<th>Max</th>
<th>NumPy dtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-bit floating-point</td>
<td>-1.0</td>
<td>+1.0</td>
<td>float32</td>
</tr>
<tr>
<td>32-bit integer PCM</td>
<td>-2147483648</td>
<td>+2147483647</td>
<td>int32</td>
</tr>
<tr>
<td>24-bit integer PCM</td>
<td>-2147483648</td>
<td>+2147483392</td>
<td>int32</td>
</tr>
<tr>
<td>16-bit integer PCM</td>
<td>-32768</td>
<td>+32767</td>
<td>int16</td>
</tr>
<tr>
<td>8-bit integer PCM</td>
<td>0</td>
<td>255</td>
<td>uint8</td>
</tr>
</tbody>
</table>

WAV files can specify arbitrary bit depth, and this function supports reading any integer PCM depth from 1 to 64 bits. Data is returned in the smallest compatible numpy int type, in left-justified format. 8-bit and lower is unsigned, while 9-bit and higher is signed.

For example, 24-bit data will be stored as int32, with the MSB of the 24-bit data stored at the MSB of the int32, and typically the least significant byte is 0x00. (However, if a file actually contains data past its specified bit depth, those bits will be read and output, too. [2])

This bit justification and sign matches WAV’s native internal format, which allows memory mapping of WAV files that use 1, 2, 4, or 8 bytes per sample (so 24-bit files cannot be memory-mapped, but 32-bit can).

IEEE float PCM in 32- or 64-bit format is supported, with or without mmap. Values exceeding [-1, +1] are not clipped.

Non-linear PCM (mu-law, A-law) is not supported.

References

[1], [2]

Examples

```python
>>> from os.path import dirname, join as pjoin
>>> from scipy.io import wavfile
>>> import scipy.io
```

Get the filename for an example .wav file from the tests/data directory.

```python
>>> data_dir = pjoin(dirname(scipy.io.__file__), 'tests', 'data')
>>> wav_fname = pjoin(data_dir, 'test-44100Hz-2ch-32bit-float-be.wav')
```

Load the .wav file contents.

```python
>>> samplerate, data = wavfile.read(wav_fname)
>>> print(f"number of channels = {data.shape[1]}")
number of channels = 2
>>> length = data.shape[0] / samplerate
>>> print(f"length = {length}s")
length = 0.01s
```

Plot the waveform.
```python
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> time = np.linspace(0., length, data.shape[0])
>>> plt.plot(time, data[:, 0], label="Left channel")
>>> plt.plot(time, data[:, 1], label="Right channel")
>>> plt.legend()
>>> plt.xlabel("Time [s]")
>>> plt.ylabel("Amplitude")
>>> plt.show()
```

### scipy.io.wavfile.write

**scipy.io.wavfile.write(filename, rate, data)**

Write a NumPy array as a WAV file.

**Parameters**

- **filename** [string or open file handle] Output wav file.
- **rate** [int] The sample rate (in samples/sec).
- **data** [ndarray] A 1-D or 2-D NumPy array of either integer or float data-type.

**Notes**

- Writes a simple uncompressed WAV file.
- To write multiple-channels, use a 2-D array of shape (Nsamples, Nchannels).
- The bits-per-sample and PCM/float will be determined by the data-type.

Common data types: [1]
### WAV format

<table>
<thead>
<tr>
<th>WAV format</th>
<th>Min</th>
<th>Max</th>
<th>NumPy dtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-bit floating-point</td>
<td>-1.0</td>
<td>+1.0</td>
<td>float32</td>
</tr>
<tr>
<td>32-bit PCM</td>
<td>-2147483648</td>
<td>+2147483647</td>
<td>int32</td>
</tr>
<tr>
<td>16-bit PCM</td>
<td>-32768</td>
<td>+32767</td>
<td>int16</td>
</tr>
<tr>
<td>8-bit PCM</td>
<td>0</td>
<td>255</td>
<td>uint8</td>
</tr>
</tbody>
</table>

Note that 8-bit PCM is unsigned.

### References

[1]

### Examples

Create a 100Hz sine wave, sampled at 44100Hz. Write to 16-bit PCM, Mono.

```python
>>> from scipy.io.wavfile import write
>>> samplerate = 44100; fs = 100
>>> t = np.linspace(0., 1., samplerate)
>>> amplitude = np.iinfo(np.int16).max
>>> data = amplitude * np.sin(2. * np.pi * fs * t)
>>> write("example.wav", samplerate, data.astype(np.int16))
```

**Arff files (scipy.io.arff)**

- `loadarff(f)`
  - Read an arff file.
- `MetaData(rel, attr)`
  - Small container to keep useful information on a ARFF dataset.

**ArffError**

**ParseArffError**

### scipy.io.arff.loadarff

Read an arff file.

The data is returned as a record array, which can be accessed much like a dictionary of NumPy arrays. For example, if one of the attributes is called 'pressure', then its first 10 data points can be accessed from the data record array like so: `data['pressure'][0:10]`

**Parameters**

- `f` [file-like or str] File-like object to read from, or filename to open.
Returns

- `data` ([record array]) The data of the arff file, accessible by attribute names.
- `meta` ([MetaData]) Contains information about the arff file such as name and type of attributes, the relation (name of the dataset), etc.

Raises

- **ParseArffError**
  
  This is raised if the given file is not ARFF-formatted.
- **NotImplementedError**
  
  The ARFF file has an attribute which is not supported yet.

Notes

This function should be able to read most arff files. Not implemented functionality include:

- date type attributes
- string type attributes

It can read files with numeric and nominal attributes. It cannot read files with sparse data ({}) in the file. However, this function can read files with missing data (?) in the file, representing the data points as NaNs.

Examples

```python
>>> from scipy.io import arff
>>> from io import StringIO

>>> content = """...
... @relation foo
... @attribute width numeric
... @attribute height numeric
... @attribute color {red,green,blue,yellow,black}
... @data
...
...
... 5.0,3.25,blue
... 4.5,3.75,green
... 3.0,4.00,red
... """

>>> f = StringIO(content)

>>> data, meta = arff.loadarff(f)

>>> data

array([(5.0, 3.25, 'blue'), (4.5, 3.75, 'green'), (3.0, 4.0, 'red')],
dtype=[('width', '<f8'), ('height', '<f8'), ('color', '|S6')])

>>> meta

Dataset: foo
width's type is numeric
height's type is numeric
color's type is nominal, range is ('red', 'green', 'blue', 'yellow', 'black')
```
**scipy.io.arff.MetaData**

```python
class scipy.io.arff.MetaData(rel, attr)
```

Small container to keep useful information on a ARFF dataset.

Knows about attributes names and types.

**Notes**

Also maintains the list of attributes in order, i.e., doing for i in meta, where meta is an instance of MetaData, will return the different attribute names in the order they were defined.

**Examples**

```python
data, meta = loadarff('iris.arff')
This will print the attributes names of the iris.arff dataset
for i in meta:
 print(i)
This works too
meta.names()
Getting attribute type
types = meta.types()
```

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>names()</strong></td>
<td>Return the list of attribute names.</td>
</tr>
<tr>
<td><strong>types()</strong></td>
<td>Return the list of attribute types.</td>
</tr>
</tbody>
</table>

**scipy.io.arff.MetaData.names**

```python
MetaData.names()
```

Return the list of attribute names.

**Returns**

- **attrnames** [list of str] The attribute names.

**scipy.io.arff.MetaData.types**

```python
MetaData.types()
```

Return the list of attribute types.

**Returns**

- **attr_types** [list of str] The attribute types.
**scipy.io.arff.ArffError**

Exception `scipy.io.arff.ArffError`

- **errno**
  POSIX exception code

- **filename**
  exception filename

- **filename2**
  second exception filename

- **strerror**
  exception strerror

  ```python
 with_traceback()}
 Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
  ```

**scipy.io.arff.ParseArffError**

Exception `scipy.io.arff.ParseArffError`

- **errno**
  POSIX exception code

- **filename**
  exception filename

- **filename2**
  second exception filename

- **strerror**
  exception strerror

  ```python
 with_traceback()}
 Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
  ```

### 3.3.10 Linear algebra (**scipy.linalg**)

Linear algebra functions.

**See also:**

`numpy.linalg` for more linear algebra functions. Note that although `scipy.linalg` imports most of them, identically named functions from `scipy.linalg` may offer more or slightly differing functionality.

#### Basics

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>inv(a[, overwrite_a, check_finite])</code></td>
<td>Compute the inverse of a matrix.</td>
</tr>
<tr>
<td><code>solve(a, b[, sym_pos, lower, overwrite_a, ...])</code></td>
<td>Solves the linear equation set $a \times x = b$ for the unknown $x$ for square $a$ matrix.</td>
</tr>
<tr>
<td><code>solve_banded(l_and_u, ab, b[, overwrite_ab, ...])</code></td>
<td>Solve the equation $a \times x = b$ for $x$, assuming $a$ is banded matrix.</td>
</tr>
<tr>
<td><code>solveh_banded(ab, b[, overwrite_ab, ...])</code></td>
<td>Solve equation $a \times x = b$.</td>
</tr>
<tr>
<td><code>solve_circulant(c, b[, singular, tol, ...])</code></td>
<td>Solve $C \times x = b$ for $x$, where $C$ is a circulant matrix.</td>
</tr>
<tr>
<td><code>solve_triangular(a, b[, trans, lower, ...])</code></td>
<td>Solve the equation $a \times x = b$ for $x$, assuming $a$ is a triangular matrix.</td>
</tr>
</tbody>
</table>

continues on next page
Table 92 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>solve_toeplitz(c_or_cr, b[, check_finite])</code></td>
<td>Solve a Toeplitz system using Levinson Recursion</td>
</tr>
<tr>
<td><code>matmul_toeplitz(c_or_cr, x[, check_finite,...])</code></td>
<td>Efficient Toeplitz Matrix-Matrix Multiplication using FFT</td>
</tr>
<tr>
<td><code>det(a[, overwrite_a, check_finite])</code></td>
<td>Compute the determinant of a matrix</td>
</tr>
<tr>
<td><code>norm(a[, ord, axis, keepdims, check_finite])</code></td>
<td>Matrix or vector norm.</td>
</tr>
<tr>
<td><code>lstsq(a, b[, cond, overwrite_a, ...])</code></td>
<td>Compute least-squares solution to equation $Ax=b$.</td>
</tr>
<tr>
<td><code>pinv(a[, atol, rtol, return_rank, ...])</code></td>
<td>Compute the (Moore-Penrose) pseudo-inverse of a matrix.</td>
</tr>
<tr>
<td><code>pinv2(a[, cond, rcond, return_rank, ...])</code></td>
<td>Compute the (Moore-Penrose) pseudo-inverse of a matrix.</td>
</tr>
<tr>
<td><code>pinvh(a[, atol, rtol, lower, return_rank,...])</code></td>
<td>Compute the (Moore-Penrose) pseudo-inverse of a Hermitian matrix.</td>
</tr>
<tr>
<td><code>kron(a,b)</code></td>
<td>Kronecker product.</td>
</tr>
<tr>
<td><code>khatri_rao(a,b)</code></td>
<td>Khatri-rao product</td>
</tr>
<tr>
<td><code>tril(m[, k])</code></td>
<td>Make a copy of a matrix with elements above the kth diagonal zeroed.</td>
</tr>
<tr>
<td><code>triu(m[, k])</code></td>
<td>Make a copy of a matrix with elements below the kth diagonal zeroed.</td>
</tr>
<tr>
<td><code>orthogonal_procrustes(A, B[, check_finite])</code></td>
<td>Compute the matrix solution of the orthogonal Procrustes problem.</td>
</tr>
<tr>
<td><code>matrix_balance(A[, permute, scale,...])</code></td>
<td>Compute a diagonal similarity transformation for row/column balancing.</td>
</tr>
<tr>
<td><code>subspace_angles(A, B)</code></td>
<td>Compute the subspace angles between two matrices.</td>
</tr>
<tr>
<td><code>bandwidth(a)</code></td>
<td>Return the lower and upper bandwidth of a 2D numeric array.</td>
</tr>
<tr>
<td><code>issymmetric(a[, atol, rtol])</code></td>
<td>Check if a square 2D array is symmetric.</td>
</tr>
<tr>
<td><code>ishermitian(a[, atol, rtol])</code></td>
<td>Check if a square 2D array is Hermitian.</td>
</tr>
<tr>
<td><code>LinAlgError</code></td>
<td>Generic Python-exception-derived object raised by linalg functions.</td>
</tr>
<tr>
<td><code>LinAlgWarning</code></td>
<td>The warning emitted when a linear algebra related operation is close to fail conditions of the algorithm or loss of accuracy is expected.</td>
</tr>
</tbody>
</table>

**scipy.linalg.inv**

`scipy.linalg.inv(a, overwrite_a=False, check_finite=True)`

Compute the inverse of a matrix.

**Parameters**

- `a` : [array_like] Square matrix to be inverted.
- `overwrite_a` : [bool, optional] Discard data in `a` (may improve performance). Default is False.
- `check_finite` : [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

**Returns**

- `ainv` : [ndarray] Inverse of the matrix `a`.

**Raises**

- `LinAlgError` : If `a` is singular.
ValueError
If a is not square, or not 2D.

Examples

```python
>>> from scipy import linalg
>>> a = np.array([[1., 2.], [3., 4.]])
>>> linalg.inv(a)
array([[-2. , 1.],
 [1.5, -0.5]])
>>> np.dot(a, linalg.inv(a))
array([[1., 0.],
 [0., 1.]])
```

**scipy.linalg.solve**

`scipy.linalg.solve(a, b, sym_pos=False, lower=False, overwrite_a=False, overwrite_b=False, check_finite=True, assume_a='gen', transposed=False)`

Solves the linear equation set $a \times x = b$ for the unknown $x$ for square $a$ matrix.

If the data matrix is known to be a particular type then supplying the corresponding string to `assume_a` key chooses the dedicated solver. The available options are

<table>
<thead>
<tr>
<th>Type</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>generic matrix</td>
<td>'gen'</td>
</tr>
<tr>
<td>symmetric</td>
<td>'sym'</td>
</tr>
<tr>
<td>hermitian</td>
<td>'her'</td>
</tr>
<tr>
<td>positive definite</td>
<td>'pos'</td>
</tr>
</tbody>
</table>

If omitted, 'gen' is the default structure.

The datatype of the arrays define which solver is called regardless of the values. In other words, even when the complex array entries have precisely zero imaginary parts, the complex solver will be called based on the data type of the array.

**Parameters**

- **a** [(N, N) array_like] Square input data
- **b** [(N, NRHS) array_like] Input data for the right hand side.
- **sym_pos** [bool, optional] Assume $a$ is symmetric and positive definite. This key is deprecated and assume_a = 'pos' keyword is recommended instead. The functionality is the same. It will be removed in the future.
- **lower** [bool, optional] If True, only the data contained in the lower triangle of $a$. Default is to use upper triangle. (ignored for 'gen')
- **overwrite_a** [bool, optional] Allow overwriting data in $a$ (may enhance performance). Default is False.
- **overwrite_b** [bool, optional] Allow overwriting data in $b$ (may enhance performance). Default is False.
- **check_finite** [bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- **assume_a** [str, optional] Valid entries are explained above.
- **transposed** [bool, optional] If True, $a^T \times x = b$ for real matrices, raises `NotImplementedError` for complex matrices (only for True).
Returns

\[ x \]

[(N, NRHS) ndarray] The solution array.

Raises

ValueError

If size mismatches detected or input \( a \) is not square.

LinAlgError

If the matrix is singular.

LinAlgWarning

If an ill-conditioned input \( a \) is detected.

NotImplementedError

If transposed is True and input \( a \) is a complex matrix.

Notes

If the input \( b \) matrix is a 1-D array with \( N \) elements, when supplied together with an \( N \times N \) input \( a \), it is assumed as a valid column vector despite the apparent size mismatch. This is compatible with the numpy.dot() behavior and the returned result is still 1-D array.

The generic, symmetric, Hermitian and positive definite solutions are obtained via calling ?GESV, ?SYSV, ?HESV, and ?POSV routines of LAPACK respectively.

Examples

Given \( a \) and \( b \), solve for \( x \):

```python
>>> a = np.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]])
>>> b = np.array([2, 4, -1])
>>> from scipy import linalg
>>> x = linalg.solve(a, b)
>>> x
array([2., -2., 9.])
>>> np.dot(a, x) == b
array([True, True, True], dtype=bool)
```

scipy.linalg.solve_banded

scipy.linalg.solve_banded

Solve the equation \( ax = b \) for \( x \), assuming \( a \) is banded matrix.

The matrix \( a \) is stored in \( ab \) using the matrix diagonal ordered form:

\[
ab[u + i - j, j] = a[i, j]
\]

Example of \( ab \) (shape of \( a \) is (6,6), \( u=1, l=2 \)):

```
* a01 a12 a23 a34 a45
a10 a02 a13 a24 a35
a20 a11 a22 a33 a44 a55
a30 a21 a32 a43 a54 *
a40 a31 a42 a53 * *
```

Parameters
(l, u) [(integer, integer)] Number of non-zero lower and upper diagonals
ab [(l + u + 1, M) array_like] Banded matrix
b [(M,) or (M, K) array_like] Right-hand side
overwrite_ab [bool, optional] Discard data in ab (may enhance performance)
overwrite_b [bool, optional] Discard data in b (may enhance performance)
check_finite [bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns
x [(M,) or (M, K) ndarray] The solution to the system $a x = b$. Returned shape depends on the shape of $b$.

Examples
Solve the banded system $a x = b$, where:

\[
\begin{align*}
\begin{bmatrix}
5 & 2 & -1 & 0 & 0 \\
1 & 4 & 2 & -1 & 0 \\
0 & 1 & 3 & 2 & -1 \\
0 & 0 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 & 1 \\
\end{bmatrix}
\end{align*}
\begin{align*}
\begin{bmatrix}
0 \\
1 \\
2 \\
2 \\
3 \\
\end{bmatrix}
\end{align*}
\]

There is one nonzero diagonal below the main diagonal (l = 1), and two above (u = 2). The diagonal banded form of the matrix is:

\[
\begin{align*}
\begin{bmatrix}
* & * & -1 & -1 & -1 \\
* & 2 & 2 & 2 & 2 \\
5 & 4 & 3 & 2 & 1 \\
1 & 1 & 1 & 1 & * \\
\end{bmatrix}
\end{align*}
\]

```python
t from scipy.linalg import solve_banded
t ab = np.array([[(0, 0, -1, -1, -1),
 (0, 2, 2, 2, 2),
 (5, 4, 3, 2, 1),
 (1, 1, 1, 1, 0)]])
t b = np.array([0, 1, 2, 2, 3])
t x = solve_banded((1, 2), ab, b)
t x
array([-2.33788136, 3.93220339, -4. , 4.3559322 , -1.3559322])
```
**scipy.linalg.solveh_banded**

**scipy.linalg.solveh_banded** *(ab, b, overwrite_ab=False, overwrite_b=False, lower=False, check_finite=True)*

Solve equation \( ax = b \). \( a \) is Hermitian positive-definite banded matrix.

The matrix \( a \) is stored in \( ab \) either in lower diagonal or upper diagonal ordered form:

\[
ab[u+i-j,j] == a[i,j] \quad \text{(if upper form; } i \leq j) \\
ab[i-j,j] == a[i,j] \quad \text{(if lower form; } i \geq j)
\]

Example of \( ab \) (shape of \( a \) is \((6, 6) \), \( u = 2 \)):

<table>
<thead>
<tr>
<th>upper form:</th>
<th>lower form:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* * a02 a13 a24 a35</td>
<td>a00 a11 a22 a33 a44 a55</td>
</tr>
<tr>
<td>* a01 a12 a23 a34 a45</td>
<td>a10 a21 a32 a43 a54</td>
</tr>
<tr>
<td>a00 a11 a22 a33 a44 a55</td>
<td>a20 a31 a42 a53</td>
</tr>
<tr>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Cells marked with * are not used.

**Parameters**

- \( ab \): [(\( u + 1, M \)] array_like] Banded matrix
- \( b \): [(\( M, \) or \( M, K \)] array_like] Right-hand side
- \( overwrite_ab \) [bool, optional] Discard data in \( ab \) (may enhance performance)
- \( overwrite_b \) [bool, optional] Discard data in \( b \) (may enhance performance)
- \( lower \) [bool, optional] Is the matrix in the lower form. (Default is upper form)
- \( check_finite \) [bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

**Returns**

- \( x \): [(\( M, \) or \( M, K \)] ndarray] The solution to the system \( ax = b \). Shape of return matches shape of \( b \).

**Examples**

Solve the banded system \( A x = b \), where:

\[
A = \begin{bmatrix}
4 & 2 & -1 & 0 & 0 & 0 \\
2 & 5 & 2 & -1 & 0 & 0 \\
-1 & 2 & 6 & 2 & -1 & 0 \\
0 & -1 & 2 & 7 & 2 & -1 \\
0 & 0 & -1 & 2 & 8 & 2 \\
0 & 0 & 0 & -1 & 2 & 9
\end{bmatrix} \quad b = \begin{bmatrix}
1 \\
2 \\
2 \\
3 \\
3 \\
3
\end{bmatrix}
\]

```python
>>> from scipy.linalg import solveh_banded

ab contains the main diagonal and the nonzero diagonals below the main diagonal. That is, we use the lower form:
>>> ab = np.array([[4, 5, 6, 7, 8, 9],
... [2, 2, 2, 2, 2, 0],
... [-1, -1, -1, -1, 0, 0]])
>>> b = np.array([1, 2, 3, 3, 3])
>>> x = solveh_banded(ab, b, lower=True)
>>> x
array([0.03431373, 0.45938375, 0.05602241, 0.47759104, 0.17577031,
 0.34733894])

Solve the Hermitian banded system $Hx = b$, where:

$$
H = \begin{bmatrix}
8 & 2-1j & 0 & 0 & \vdots \\
2+1j & 5 & 1j & 0 & \vdots \\
0 & -1j & 9 & -2-1j & \vdots \\
0 & 0 & -2+1j & 6 & \vdots \\
\end{bmatrix}
$$

b = [1+1j]

In this example, we put the upper diagonals in the array hb:

```python
>>> hb = np.array([[0, 2-1j, 1j, -2-1j],
...                [8, 5, 9, 6]])
>>> b = np.array([1, 1+1j, 1-2j, 0])
>>> x = solveh_banded(hb, b)
>>> x
array([ 0.07318536-0.02939412j, 0.11877624+0.17696461j,
        0.10077984-0.23035393j, -0.00479904-0.09358128j])
```

`scipy.linalg.solve_circulant`

`scipy.linalg.solve_circulant`(c, b, singular='raise', tol=None, caxis=- 1, baxis=0, outaxis=0)

Solve $Cx = b$ for x, where C is a circulant matrix.

C is the circulant matrix associated with the vector c.

The system is solved by doing division in Fourier space. The calculation is:

```python
x = ifft(fft(b) / fft(c))
```

where `fft` and `ifft` are the fast Fourier transform and its inverse, respectively. For a large vector c, this is much faster than solving the system with the full circulant matrix.

Parameters

- **c** [array_like] The coefficients of the circulant matrix.
- **b** [array_like] Right-hand side matrix in $a x = b$.
- **singular** [str, optional] This argument controls how a near singular circulant matrix is handled. If `singular` is “raise” and the circulant matrix is near singular, a `LinAlgError` is raised. If `singular` is “ltsq”, the least squares solution is returned. Default is “raise”.
- **tol** [float, optional] If any eigenvalue of the circulant matrix has an absolute value that is less than or equal to `tol`, the matrix is considered to be near singular. If not given, `tol` is set to:

  ```
  tol = abs_eigs.max() * abs_eigs.size * np.finfo(np.float64).eps
  ```

 where `abs_eigs` is the array of absolute values of the eigenvalues of the circulant matrix.
- **caxis** [int] When c has dimension greater than 1, it is viewed as a collection of circulant vectors. In this case, `caxis` is the axis of c that holds the vectors of circulant coefficients.

3.3. API definition 673

baxis [int] When \(b \) has dimension greater than 1, it is viewed as a collection of vectors. In this case, \(baxis \) is the axis of \(b \) that holds the right-hand side vectors.

outaxis [int] When \(c \) or \(b \) are multidimensional, the value returned by \texttt{solve_circulant} is multidimensional. In this case, \(outaxis \) is the axis of the result that holds the solution vectors.

Returns

\(x \) [ndarray] Solution to the system \(C x = b \).

Raises

\texttt{LinAlgError}

If the circulant matrix associated with \(c \) is near singular.

See also:

circulant
circulant matrix

Notes

For a 1-D vector \(c \) with length \(m \), and an array \(b \) with shape \((m, \ldots) \),

\texttt{solve_circulant(c, b)}

returns the same result as

\texttt{solve(circulant(c), b)}

where \texttt{solve} and \texttt{circulant} are from \texttt{scipy.linalg}.

New in version 0.16.0.

Examples

```python
>>> from scipy.linalg import solve_circulant, solve, circulant, lstsq

>>> c = np.array([2, 2, 4])
>>> b = np.array([1, 2, 3])
>>> solve_circulant(c, b)
array([ 0.75, -0.25,  0.25])
```

Compare that result to solving the system with \texttt{scipy.linalg.solve}:

```python
>>> solve(circulant(c), b)
array([ 0.75, -0.25,  0.25])
```

A singular example:

```python
>>> c = np.array([1, 1, 0, 0])
>>> b = np.array([1, 2, 3, 4])
```

Calling \texttt{solve_circulant(c, b)} will raise a \texttt{LinAlgError}. For the least square solution, use the option \texttt{singular='lstsq'}:

```python
>>> solve_circulant(c, b, singular='lstsq')
array([ 0.25,  1.25,  2.25,  1.25])
```
Compare to `scipy.linalg.lstsq`:

```python
>>> x, resid, rnk, s = lstsq(circulant(c), b)
>>> x
array([[ 0.25,  1.25,  2.25,  1.25]])
```

A broadcasting example:

Suppose we have the vectors of two circulant matrices stored in an array with shape (2, 5), and three \(b \) vectors stored in an array with shape (3, 5). For example,

```python
>>> c = np.array([[1.5, 2, 3, 0, 0], [1, 1, 4, 3, 2]])
>>> b = np.arange(15).reshape(-1, 5)
```

We want to solve all combinations of circulant matrices and \(b \) vectors, with the result stored in an array with shape (2, 3, 5). When we disregard the axes of \(c \) and \(b \) that hold the vectors of coefficients, the shapes of the collections are (2,) and (3,), respectively, which are not compatible for broadcasting. To have a broadcast result with shape (2, 3), we add a trivial dimension to \(c \): \(c[:, \text{np.newaxis}, :] \) has shape (2, 1, 5). The last dimension holds the coefficients of the circulant matrices, so when we call `solve_circulant`, we can use the default \(\text{caxis}=-1 \). The coefficients of the \(b \) vectors are in the last dimension of the array \(b \), so we use \(\text{baxis}=-1 \). If we use the default \(\text{outaxis} \), the result will have shape (5, 2, 3), so we’ll use \(\text{outaxis}=-1 \) to put the solution vectors in the last dimension.

```python
>>> x = solve_circulant(c[:, np.newaxis, :], b, baxis=-1, outaxis=-1)
```

Check by solving one pair of \(c \) and \(b \) vectors (cf. \(x[1, 1, :] \)):

```python
>>> solve_circulant(c[1], b[1, :])
array([[ 0.856,  0.758,  1.149, -0.412,  0.831]])
```

`scipy.linalg.solve_triangular`

`scipy.linalg.solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False, overwrite_b=False, debug=None, check_finite=True)`

Solve the equation \(a \ x = b \) for \(x \), assuming \(a \) is a triangular matrix.

Parameters

- **a**
 (M, M) array_like A triangular matrix
- **b**
 (M,) or (M, N) array_like Right-hand side matrix in \(a \ x = b \)
- **lower**
 [bool, optional] Use only data contained in the lower triangle of \(a \). Default is to use upper triangle.
- **trans**
 [{0, 1, 2, ‘N’, ‘T’, ‘C’}, optional] Type of system to solve:
trans | system
---|---
0 or ‘N’ | a x = b
1 or ‘T’ | a^T x = b
2 or ‘C’ | a^H x = b

unit_diagonal

[bool, optional] If True, diagonal elements of \(a \) are assumed to be 1 and will not be referenced.

overwrite_b

[bool, optional] Allow overwriting data in \(b \) (may enhance performance)

check_finite

[bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

\(x \)

[(M,) or (M, N) ndarray] Solution to the system \(a x = b \). Shape of return matches \(b \).

Raises

LinAlgError

If \(a \) is singular

Notes

New in version 0.9.0.

Examples

Solve the lower triangular system \(a x = b \), where:

\[
\begin{align*}
a &= \begin{bmatrix} 3 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \\
b &= \begin{bmatrix} 4 \\ 2 \\ 4 \\ 2 \end{bmatrix}
\end{align*}
\]

```python
>>> from scipy.linalg import solve_triangular
>>> a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]])
>>> b = np.array([4, 2, 4, 2])
>>> x = solve_triangular(a, b, lower=True)
>>> x
array([ 1.33333333, -0.66666667,  2.66666667, -1.33333333])
>>> a.dot(x)  # Check the result
array([ 4.,  2.,  4.,  2.])
```
scipy.linalg.solve_toeplitz

scipy.linalg.solve_toeplitz(c_or_cr, b, check_finite=True)

Solve a Toeplitz system using Levinson Recursion

The Toeplitz matrix has constant diagonals, with \(c \) as its first column and \(r \) as its first row. If \(r \) is not given, \(r == \text{conjugate}(c) \) is assumed.

Parameters

- **c_or_cr**
 [array_like or tuple of (array_like, array_like)] The vector \(c \), or a tuple of arrays \((c, r)\). Whatever the actual shape of \(c \), it will be converted to a 1-D array. If not supplied, \(r == \text{conjugate}(c) \) is assumed; in this case, if \(c[0] \) is real, the Toeplitz matrix is Hermitian. \(r[0] \) is ignored; the first row of the Toeplitz matrix is \([c[0], r[1:])\). Whatever the actual shape of \(r \), it will be converted to a 1-D array.

- **b**
 [(M,) or (M, K) array_like] Right-hand side in \(T \cdot x = b \).

- **check_finite**
 [bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (result entirely NaNs) if the inputs do contain infinities or NaNs.

Returns

- **x**
 [(M,) or (M, K) ndarray] The solution to the system \(T \cdot x = b \). Shape of return matches shape of \(b \).

See also:

toeplitz

Toeplitz matrix

Notes

The solution is computed using Levinson-Durbin recursion, which is faster than generic least-squares methods, but can be less numerically stable.

Examples

Solve the Toeplitz system \(T \cdot x = b \), where:

\[
T = \begin{bmatrix}
1 & -1 & -2 & -3 \\
3 & 1 & -1 & -2 \\
6 & 3 & 1 & -1 \\
10 & 6 & 3 & 1 \\
\end{bmatrix}
\]

\[
b = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 5 \end{bmatrix}
\]

To specify the Toeplitz matrix, only the first column and the first row are needed.

```python
>>> c = np.array([1, 3, 6, 10])  # First column of T
>>> r = np.array([1, -1, -2, -3])  # First row of T
>>> b = np.array([1, 2, 2, 5])
```

```python
>>> from scipy.linalg import solve_toeplitz, toeplitz
>>> x = solve_toeplitz((c, r), b)
>>> x
array([ 1.66666667, -1. , -2.66666667, 2.33333333])
```
Check the result by creating the full Toeplitz matrix and multiplying it by \(x \). We should get \(b \).

```
>>> T = toeplitz(c, r)
>>> T.dot(x)
array([ 1.,  2.,  2.,  5.])
```

scipy.linalg.matmul_toeplitz

scipy.linalg.matmul_toeplitz(\(c_{\text{or} \cr}, x, \text{check_finite=False}, \text{workers=None} \))

Efficient Toeplitz Matrix-Matrix Multiplication using FFT

This function returns the matrix multiplication between a Toeplitz matrix and a dense matrix.

The Toeplitz matrix has constant diagonals, with \(c \) as its first column and \(r \) as its first row. If \(r \) is not given, \(r = \text{conjugate}(c) \) is assumed.

Parameters

- \(c_{\text{or} \cr} \) [array_like or tuple of (array_like, array_like)] The vector \(c \), or a tuple of arrays \((c, r)\). Whatever the actual shape of \(c \), it will be converted to a 1-D array. If not supplied, \(r = \text{conjugate}(c) \) is assumed; in this case, if \(c[0] \) is real, the Toeplitz matrix is Hermitian. \(r[0] \) is ignored; the first row of the Toeplitz matrix is \([c[0], r[1:]]\). Whatever the actual shape of \(r \), it will be converted to a 1-D array.
- \(x \) [(M,) or (M, K) array_like] Matrix with which to multiply.
- \(\text{check_finite} \) [bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (result entirely NaNs) if the inputs do contain infinities or NaNs.
- \(\text{workers} \) [int, optional] To pass to scipy.fft.fft and ifft. Maximum number of workers to use for parallel computation. If negative, the value wraps around from \(\text{os.cpu_count()} \). See scipy.fft.fft for more details.

Returns

- \(T @ x \) [(M,) or (M, K) ndarray] The result of the matrix multiplication \(T @ x \). Shape of return matches shape of \(x \).

See also:

toeplitz

Toeplitz matrix

solve_toeplitz

Solve a Toeplitz system using Levinson Recursion

Notes

The Toeplitz matrix is embedded in a circulant matrix and the FFT is used to efficiently calculate the matrix-matrix product.

Because the computation is based on the FFT, integer inputs will result in floating point outputs. This is unlike NumPy's `matmul`, which preserves the data type of the input.

This is partly based on the implementation that can be found in [1], licensed under the MIT license. More information about the method can be found in reference [2]. References [3] and [4] have more reference implementations in Python.

New in version 1.6.0.
References

[1], [2], [3], [4]

Examples

Multiply the Toeplitz matrix T with matrix x:

\[
\begin{bmatrix}
1 & -1 & -2 & -3 \\
3 & 1 & -1 & -2 \\
6 & 3 & 1 & -1 \\
10 & 6 & 3 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 10 \\
2 & 11 \\
2 & 11 \\
5 & 19 \\
\end{bmatrix}
\]

To specify the Toeplitz matrix, only the first column and the first row are needed.

```python
>>> c = np.array([1, 3, 6, 10])  # First column of T
>>> r = np.array([1, -1, -2, -3])  # First row of T
>>> x = np.array([[1, 10], [2, 11], [2, 11], [5, 19]])
```

```python
>>> from scipy.linalg import toeplitz, matmul_toeplitz
>>> matmul_toeplitz((c, r), x)
array([[-20., -80.],
       [-7., -8.],
       [ 9., 85.],
       [33., 218.]])
```

Check the result by creating the full Toeplitz matrix and multiplying it by x.

```python
>>> toeplitz(c, r) @ x
array([[-20., -80.],
       [-7., -8.],
       [ 9., 85.],
       [33., 218.]]
```

The full matrix is never formed explicitly, so this routine is suitable for very large Toeplitz matrices.

```python
>>> n = 1000000
>>> matmul_toeplitz([1] + [0]*(n-1), np.ones(n))
array([1., 1., 1., ..., 1., 1., 1.])
```

`scipy.linalg.det`

`scipy.linalg.det(a, overwrite_a=False, check_finite=True)`

Compute the determinant of a matrix

The determinant of a square matrix is a value derived arithmetically from the coefficients of the matrix.

The determinant for a 3x3 matrix, for example, is computed as follows:

```
a   b   c 
d   e   f = A
g   h   i
```

\[
det(A) = a\cdot e\cdot i + b\cdot f\cdot g + c\cdot d\cdot h - c\cdot e\cdot g - b\cdot d\cdot i - a\cdot f\cdot h
\]
Parameters

- **a** *(M, M) array_like* A square matrix.
- **overwrite_a** *(bool, optional)* Allow overwriting data in a (may enhance performance).
- **check_finite** *(bool, optional)* Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

- **det** *(float or complex)* Determinant of *a*.

Notes

The determinant is computed via LU factorization, LAPACK routine z/dgetrf.

Examples

```python
>>> from scipy import linalg
>>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> linalg.det(a)
0.0
>>> a = np.array([[0, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> linalg.det(a)
3.0
```

scipy.linalg.norm

This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the *ord* parameter. For tensors with rank different from 1 or 2, only *ord=None* is supported.

Parameters

- **a** *(array_like)* Input array. If *axis* is None, *a* must be 1-D or 2-D, unless *ord* is None. If both *axis* and *ord* are None, the 2-norm of *a*.ravel will be returned.
- **ord** *(int, inf, -inf, ‘fro’, ‘nuc’, None), optional* Order of the norm (see table under Notes). inf means NumPy’s inf object.
- **axis** *(int, 2-tuple of ints, None), optional* If *axis* is an integer, it specifies the axis of *a* along which to compute the vector norms. If *axis* is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If *axis* is None then either a vector norm (when *a* is 1-D) or a matrix norm (when *a* is 2-D) is returned.
- **keepdims** *(bool, optional)* If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original *a*.
- **check_finite** *(bool, optional)* Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns
n [float or ndarray] Norm of the matrix or vector(s).

Notes

For values of $\text{ord} \leq 0$, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes.

The following norms can be calculated:

<table>
<thead>
<tr>
<th>ord</th>
<th>norm for matrices</th>
<th>norm for vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Frobenius norm</td>
<td>2-norm</td>
</tr>
<tr>
<td>'fro'</td>
<td>Frobenius norm</td>
<td>–</td>
</tr>
<tr>
<td>'nuc'</td>
<td>nuclear norm</td>
<td>–</td>
</tr>
<tr>
<td>inf</td>
<td>max(sum(abs(a), axis=1))</td>
<td>max(abs(a))</td>
</tr>
<tr>
<td>-inf</td>
<td>min(sum(abs(a), axis=1))</td>
<td>min(abs(a))</td>
</tr>
<tr>
<td>0</td>
<td>–</td>
<td>sum(a != 0)</td>
</tr>
<tr>
<td>1</td>
<td>max(sum(abs(a), axis=0))</td>
<td>as below</td>
</tr>
<tr>
<td>-1</td>
<td>min(sum(abs(a), axis=0))</td>
<td>as below</td>
</tr>
<tr>
<td>2</td>
<td>2-norm (largest sing. value)</td>
<td>as below</td>
</tr>
<tr>
<td>-2</td>
<td>smallest singular value</td>
<td>as below</td>
</tr>
<tr>
<td>other</td>
<td>–</td>
<td>sum(abs(a)ord)(1./ord)</td>
</tr>
</tbody>
</table>

The Frobenius norm is given by [1]:

$$||A||_F = \left[\sum_{i,j} abs(a_{i,j})^2 \right]^{1/2}$$

The nuclear norm is the sum of the singular values.

Both the Frobenius and nuclear norm orders are only defined for matrices.

References

[1]

Examples

```python
>>> from scipy.linalg import norm
>>> a = np.arange(9) - 4.0
>>> a
array([-4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.])
>>> b = a.reshape((3, 3))
>>> b
array([[-4., -3., -2.],
       [-1.,  0.,  1.],
       [ 2.,  3.,  4.]])

>>> norm(a)
7.74596692414834
>>> norm(b)
7.74596692414834
>>> norm(b, 'fro')
```
<table>
<thead>
<tr>
<th>Expressions</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>>>> norm(a, np.inf)</td>
<td>4</td>
</tr>
<tr>
<td>>>> norm(b, np.inf)</td>
<td>9</td>
</tr>
<tr>
<td>>>> norm(a, -np.inf)</td>
<td>0</td>
</tr>
<tr>
<td>>>> norm(b, -np.inf)</td>
<td>2</td>
</tr>
<tr>
<td>>>> norm(a, 1)</td>
<td>20</td>
</tr>
<tr>
<td>>>> norm(b, 1)</td>
<td>7</td>
</tr>
<tr>
<td>>>> norm(a, -1)</td>
<td>-4.656128774142013e-010</td>
</tr>
<tr>
<td>>>> norm(b, -1)</td>
<td>6</td>
</tr>
<tr>
<td>>>> norm(a, 2)</td>
<td>7.745966692414834</td>
</tr>
<tr>
<td>>>> norm(b, 2)</td>
<td>7.3484692283495345</td>
</tr>
<tr>
<td>>>> norm(a, -2)</td>
<td>0</td>
</tr>
<tr>
<td>>>> norm(b, -2)</td>
<td>1.8570331885190563e-016</td>
</tr>
<tr>
<td>>>> norm(a, 3)</td>
<td>5.8480354764257312</td>
</tr>
<tr>
<td>>>> norm(a, -3)</td>
<td>0</td>
</tr>
</tbody>
</table>

scipy.linalg.lstsq

`scipy.linalg.lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False, check_finite=True, lapack_driver=None)`

Compute least-squares solution to equation $Ax = b$.

Compute a vector x such that the 2-norm $|b - Ax|$ is minimized.

Parameters

- **a**: [(M, N) array_like] Left-hand side array
- **b**: [(M,), (M, K) array_like] Right hand side array
- **cond**: [float, optional] Cutoff for ‘small’ singular values; used to determine effective rank of a. Singular values smaller than $\text{cond} \times \text{largest_singular_value}$ are considered zero.
- **overwrite_a**: [bool, optional] Discard data in a (may enhance performance). Default is False.
- **overwrite_b**: [bool, optional] Discard data in b (may enhance performance). Default is False.
- **check_finite**: [bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

lapack_driver

[str, optional] Which LAPACK driver is used to solve the least-squares problem. Options are 'gelsd', 'gelsy', 'gelss'. Default ('gelsd') is a good choice. However, 'gelsy' can be slightly faster on many problems. 'gelss' was used historically. It is generally slow but uses less memory.

New in version 0.17.0.

Returns

- **x** [(N,) or (N, K) ndarray] Least-squares solution.
- **residues** [(K,) ndarray or float] Square of the 2-norm for each column in \(b - a x \), if \(M > N \) and \(\text{ndim}(A) == n \) (returns a scalar if \(b \) is 1-D). Otherwise a (0,)-shaped array is returned.
- **rank** [int] Effective rank of \(a \).
- **s** [(min(M, N),) ndarray or None] Singular values of \(a \). The condition number of \(a \) is \(s[0] / s[-1] \).

Raises

- **LinAlgError**
 If computation does not converge.
- **ValueError**
 When parameters are not compatible.

See also:

- **scipy.optimize.nnls**
 linear least squares with non-negativity constraint

Notes

When 'gelsy' is used as a driver, **residues** is set to a (0,)-shaped array and **s** is always None.

Examples

```
>>> from scipy.linalg import lstsq
>>> import matplotlib.pyplot as plt
```

Suppose we have the following data:

```
>>> x = np.array([1, 2.5, 3.5, 4, 5, 7, 8.5])
>>> y = np.array([0.3, 1.1, 1.5, 2.0, 3.2, 6.6, 8.6])
```

We want to fit a quadratic polynomial of the form \(y = a + b x^2 \) to this data. We first form the “design matrix” \(M \), with a constant column of 1s and a column containing \(x^2 \):

```
>>> M = x[:, np.newaxis]**[0, 2]
```

(continues on next page)
We want to find the least-squares solution to $M \cdot p = y$, where p is a vector with length 2 that holds the parameters a and b.

```python
>>> p, res, rnk, s = lstsq(M, y)
>>> p
array([ 0.20925829, 0.12013861])
```

Plot the data and the fitted curve.

```python
>>> plt.plot(x, y, 'o', label='data')
>>> xx = np.linspace(0, 9, 101)
>>> yy = p[0] + p[1]*xx**2
>>> plt.plot(xx, yy, label='least squares fit, $y = a + bx^2$')
>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.legend(framealpha=1, shadow=True)
>>> plt.grid(alpha=0.25)
>>> plt.show()
```

```
0 2 4 6 8
x
0
2
4
6
8
10
y
data
least squares fit, $y = a + bx^2$
```

scipy.linalg.pinv

`scipy.linalg.pinv(a, atol=None, rtol=None, return_rank=False, check_finite=True, cond=None, rcond=None)`

Compute the (Moore-Penrose) pseudo-inverse of a matrix.

Calculate a generalized inverse of a matrix using its singular-value decomposition $U @ S @ V$ in the economy mode and picking up only the columns/rows that are associated with significant singular values.

If s is the maximum singular value of a, then the significance cut-off value is determined by $atol + rtol * s$. Any singular value below this value is assumed insignificant.

Parameters

- **a**
 - [(M, N) array_like] Matrix to be pseudo-inverted.
atol: float, optional
 Absolute threshold term, default value is 0.
 New in version 1.7.0.

rtol: float, optional
 Relative threshold term, default value is \(\max(M, N) \times \text{eps} \) where \(\text{eps} \) is the machine precision value of the datatype of \(a \).
 New in version 1.7.0.

return_rank
 [bool, optional] If True, return the effective rank of the matrix.

check_finite
 [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

cond, rcond
 [float, optional] In older versions, these values were meant to be used as atol with rtol=0. If both were given rcond overwrote cond and hence the code was not correct. Thus using these are strongly discouraged and the tolerances above are recommended instead. In fact, if provided, atol, rtol takes precedence over these keywords.
 Changed in version 1.7.0: Deprecated in favor of rtol and atol parameters above and will be removed in future versions of SciPy.
 Changed in version 1.3.0: Previously the default cutoff value was just \(\text{eps} \times f \) where \(f \) was \(1e3 \) for single precision and \(1e6 \) for double precision.

Returns

B [(N, M) ndarray] The pseudo-inverse of matrix \(a \).

rank [int] The effective rank of the matrix. Returned if return_rank is True.

Raises

LinAlgError
 If SVD computation does not converge.

Examples

```python
>>> from scipy import linalg
>>> rng = np.random.default_rng()
>>> a = rng.standard_normal((9, 6))
>>> B = linalg.pinv(a)
>>> np.allclose(a, a @ B @ a)
True
>>> np.allclose(B, B @ a @ B)
True
```

scipy.linalg.pinv2

scipy.linalg.pinv2 \((a, \text{cond}=\text{None}, \text{rcond}=\text{None}, \text{return_rank}=\text{False}, \text{check_finite}=\text{True})\)
Compute the (Moore-Penrose) pseudo-inverse of a matrix.

scipy.linalg.pinv2 is deprecated since SciPy 1.7.0, use scipy.linalg.pinv instead for better tolerance control.

Calculate a generalized inverse of a matrix using its singular-value decomposition and including all ‘large’ singular values.

Parameters

a [(M, N) array_like] Matrix to be pseudo-inverted.

cond, rcond [float or None] Cutoff for ‘small’ singular values; singular values smaller than this value are considered as zero. If both are omitted, the default value \(\max(M, N) \times \text{largest_singular_value} \times \text{eps}\) is used where \(\text{eps}\) is the machine precision value of the datatype of \(a\).

Changed in version 1.3.0: Previously the default cutoff value was just \(\text{eps} \times f\) where \(f\) was 1e3 for single precision and 1e6 for double precision.

return_rank [bool, optional] If True, return the effective rank of the matrix.

check_finite [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

\(B\) [(N, M) ndarray] The pseudo-inverse of matrix \(a\).

rank [int] The effective rank of the matrix. Returned if \(\text{return_rank}\) is True.

Raises

LinAlgError

If SVD computation does not converge.

scipy.linalg.pinvh

scipy.linalg.pinvh \((a, \text{atol=None, rtol=None, lower=True, return_rank=False, check_finite=True, cond=None, rcond=None})\)

Compute the (Moore-Penrose) pseudo-inverse of a Hermitian matrix.

Calculate a generalized inverse of a complex Hermitian/real symmetric matrix using its eigenvalue decomposition and including all eigenvalues with ‘large’ absolute value.

Parameters

\(a\) [(N, N) array_like] Real symmetric or complex hermitian matrix to be pseudo-inverted

\(\text{atol}\): float, optional

Absolute threshold term, default value is 0.

New in version 1.7.0.

\(\text{rtol}\): float, optional

Relative threshold term, default value is \(N \times \text{eps}\) where \(\text{eps}\) is the machine precision value of the datatype of \(a\).

New in version 1.7.0.

\(\text{lower}\) [bool, optional] Whether the pertinent array data is taken from the lower or upper triangle of \(a\). (Default: lower)

\(\text{return_rank}\) [bool, optional] If True, return the effective rank of the matrix.

\(\text{check_finite}\) [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

\(\text{cond}\), \(\text{rcond}\) [float, optional] In older versions, these values were meant to be used as \(\text{atol}\) with \(\text{rtol}=0\). If both were given \(\text{rcond}\) overwrote \(\text{cond}\) and hence the code was not correct. Thus using these are strongly discouraged and the tolerances above are recommended instead. In fact, if provided, \(\text{atol}\), \(\text{rtol}\) takes precedence over these keywords.
Changed in version 1.7.0: Deprecated in favor of `rtol` and `atol` parameters above and will be removed in future versions of SciPy.
Changed in version 1.3.0: Previously the default cutoff value was just \(\texttt{eps*f} \) where \(f \) was \(1e3 \) for single precision and \(1e6 \) for double precision.

Returns

- \(B \) \((N, N)\text{ndarray}\) The pseudo-inverse of matrix \(a \).
- \(\text{rank} \) \([\text{int}]\) The effective rank of the matrix. Returned if `return_rank` is True.

Raises

- `LinAlgError` If eigenvalue algorithm does not converge.

Examples

```python
>>> from scipy.linalg import pinvh
>>> rng = np.random.default_rng()
>>> a = rng.standard_normal((9, 6))
>>> a = np.dot(a, a.T)
>>> B = pinvh(a)
>>> np.allclose(a, a @ B @ a)
True
>>> np.allclose(B, B @ a @ B)
True
```

scipy.linalg.kron

scipy.linalg.kron(*a*, *b*)

Kronecker product.

The result is the block matrix:

```
\begin{bmatrix}
    a[0,0]*b & a[0,1]*b & \ldots & a[0,-1]*b \\
    a[1,0]*b & a[1,1]*b & \ldots & a[1,-1]*b \\
    \vdots & \vdots & \ddots & \vdots \\
    a[-1,0]*b & a[-1,1]*b & \ldots & a[-1,-1]*b
\end{bmatrix}
```

Parameters

- \(a \) \([M, N] \text{ndarray}\) Input array
- \(b \) \([P, Q] \text{ndarray}\) Input array

Returns

- \(A \) \([M*P, N*Q] \text{ndarray}\) Kronecker product of \(a \) and \(b \).
Examples

```python
>>> from numpy import array
>>> from scipy.linalg import kron
>>> kron(array([[1,2],[3,4]]), array([[1,1]]))
array([[1, 1, 1, 2, 2, 2],
       [3, 3, 3, 4, 4, 4]])
```

scipy.linalg.khatri_rao

`scipy.linalg.khatri_rao(a, b)`

Khatri-rao product

A column-wise Kronecker product of two matrices

Parameters

- `a`: (n, k) array_like
 Input array
- `b`: (m, k) array_like
 Input array

Returns

- `c`: (n*m, k) ndarray
 Khatri-rao product of `a` and `b`.

See also:

- `kron`
 Kronecker product

Notes

The mathematical definition of the Khatri-Rao product is:

\[(A_{ij} \otimes B_{ij})_{ij}\]

which is the Kronecker product of every column of `A` and `B`, e.g.:

```python
c = np.vstack([np.kron(a[:, k], b[:, k]) for k in range(b.shape[1])]).T
```

Examples

```python
>>> from scipy import linalg
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> b = np.array([[3, 4, 5], [6, 7, 8], [2, 3, 9]])
>>> linalg.khatri_rao(a, b)
array([[ 3,  8, 15],
       [ 6, 14, 24],
       [ 2,  6, 27],
       [12, 20, 30],
       [24, 35, 48],
       [ 8, 15, 54]])
```
scipy.linalg.tril

scipy.linalg.tril(m, k=0)

Make a copy of a matrix with elements above the kth diagonal zeroed.

Parameters

- `m` : [array_like] Matrix whose elements to return
- `k` : [int, optional] Diagonal above which to zero elements. `k == 0` is the main diagonal, `k < 0` subdiagonal and `k > 0` superdiagonal.

Returns

- `tril` : [ndarray] Return is the same shape and type as `m`.

Examples

```python
>>> from scipy.linalg import tril
>>> tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 0, 0, 0],
       [ 4, 0, 0],
       [ 7, 8, 0],
       [10, 11, 12]])
```

scipy.linalg.triu

scipy.linalg.triu(m, k=0)

Make a copy of a matrix with elements below the kth diagonal zeroed.

Parameters

- `m` : [array_like] Matrix whose elements to return
- `k` : [int, optional] Diagonal below which to zero elements. `k == 0` is the main diagonal, `k < 0` subdiagonal and `k > 0` superdiagonal.

Returns

- `triu` : [ndarray] Return matrix with zeroed elements below the kth diagonal and has same shape and type as `m`.

Examples

```python
>>> from scipy.linalg import triu
>>> triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 1, 2, 3],
       [ 4, 5, 6],
       [ 0, 8, 9],
       [ 0, 0, 12]])
```
scipy.linalg.orthogonal_procrustes

scipy.linalg.orthogonal_procrustes(A, B, check_finite=True)

Compute the matrix solution of the orthogonal Procrustes problem.

Given matrices A and B of equal shape, find an orthogonal matrix R that most closely maps A to B using the algorithm given in [1].

Parameters

- A [(M, N) array_like] Matrix to be mapped.
- B [(M, N) array_like] Target matrix.
- check_finite [bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

- R [(N, N) ndarray] The matrix solution of the orthogonal Procrustes problem. Minimizes the Frobenius norm of (A @ R) - B, subject to R.T @ R = I.
- scale [float] Sum of the singular values of A.T @ B.

Raises

- ValueError If the input array shapes don’t match or if check_finite is True and the arrays contain Inf or NaN.

Notes

Note that unlike higher level Procrustes analyses of spatial data, this function only uses orthogonal transformations like rotations and reflections, and it does not use scaling or translation.

New in version 0.15.0.

References

[1]

Examples

```python
>>> from scipy.linalg import orthogonal_procrustes
>>> A = np.array([[ 2,  0,  1], [-2,  0,  0]])
```

Flip the order of columns and check for the anti-diagonal mapping

```python
>>> R, sca = orthogonal_procrustes(A, np.fliplr(A))

>>> R
array([[5.34384992e-17, 0.00000000e+00, 1.00000000e+00],
       [0.00000000e+00, 1.00000000e+00, 0.00000000e+00],
       [1.00000000e+00, 0.00000000e+00, -7.85941422e-17]])
```

```python
>>> sca
9.0
```
scipy.linalg.matrix_balance

`scipy.linalg.matrix_balance(A, permute=True, scale=True, separate=False, overwrite_a=False)`

Compute a diagonal similarity transformation for row/column balancing.

The balancing tries to equalize the row and column 1-norms by applying a similarity transformation such that the magnitude variation of the matrix entries is reflected to the scaling matrices.

Moreover, if enabled, the matrix is first permuted to isolate the upper triangular parts of the matrix and, again if scaling is also enabled, only the remaining subblocks are subjected to scaling.

The balanced matrix satisfies the following equality

\[B = T^{-1}AT \]

The scaling coefficients are approximated to the nearest power of 2 to avoid round-off errors.

Parameters

- **A**
 - [(n, n) array_like] Square data matrix for the balancing.
- **permute**
 - [bool, optional] The selector to define whether permutation of A is also performed prior to scaling.
- **scale**
 - [bool, optional] The selector to turn on and off the scaling. If False, the matrix will not be scaled.
- **separate**
 - [bool, optional] This switches from returning a full matrix of the transformation to a tuple of two separate 1-D permutation and scaling arrays.
- **overwrite_a**
 - [bool, optional] This is passed to xGEBAL directly. Essentially, overwrites the result to the data. It might increase the space efficiency. See LAPACK manual for details. This is False by default.

Returns

- **B**
 - [(n, n) ndarray] Balanced matrix
- **T**
 - [(n, n) ndarray] A possibly permuted diagonal matrix whose nonzero entries are integer powers of 2 to avoid numerical truncation errors.
- **scale, perm**
 - [(n,) ndarray] If separate keyword is set to True then instead of the array T above, the scaling and the permutation vectors are given separately as a tuple without allocating the full array T.

Notes

This algorithm is particularly useful for eigenvalue and matrix decompositions and in many cases it is already called by various LAPACK routines.

The algorithm is based on the well-known technique of [1] and has been modified to account for special cases. See [2] for details which have been implemented since LAPACK v3.5.0. Before this version there are corner cases where balancing can actually worsen the conditioning. See [3] for such examples.

The code is a wrapper around LAPACK’s xGEBAL routine family for matrix balancing.

New in version 0.19.0.
References

[1], [2], [3]

Examples

```python
>>> from scipy import linalg
>>> x = np.array([[1, 2, 0], [9, 1, 0.01], [1, 2, 10*np.pi]])

>>> y, permscale = linalg.matrix_balance(x)
>>> np.abs(x).sum(axis=0) / np.abs(x).sum(axis=1)
array([3.66666667, 0.4995005 , 0.91312162])

>>> np.abs(y).sum(axis=0) / np.abs(y).sum(axis=1)
array([1.2 , 1.27041742, 0.92658316]) # may vary

>>> permscale # only powers of 2 (0.5 == 2^(-1))
array([[ 0.5, 0. , 0. ], # may vary
       [ 0. , 1. , 0. ],
       [ 0. , 0. , 1. ]])
```


scipy.linalg.subspace_angles

scipy.linalg.subspace_angles(A, B)

Compute the subspace angles between two matrices.

- **Parameters**
 - `A` : ((M, N) array_like) The first input array.
 - `B` : ((M, K) array_like) The second input array.

- **Returns**
 - `angles` : [ndarray, shape (min(N, K),)] The subspace angles between the column spaces of `A` and `B` in descending order.

See also:

- `orth`
- `svd`

Notes

This computes the subspace angles according to the formula provided in [1]. For equivalence with MATLAB and Octave behavior, use `angles[0].` New in version 1.0.
References

[1]

Examples

An Hadamard matrix, which has orthogonal columns, so we expect that the subspace angle to be \(\frac{\pi}{2} \):

```python
>>> from numpy.random import default_rng
>>> from scipy.linalg import hadamard, subspace_angles
>>> rng = default_rng()
>>> H = hadamard(4)
>>> print(H)
[[ 1  1  1  1]
 [ 1 -1  1 -1]
 [ 1  1 -1 -1]
 [ 1 -1 -1  1]]
>>> np.rad2deg(subspace_angles(H[:, :], H[:, 2:]))
array([ 90.,  90.])
```

And the subspace angle of a matrix to itself should be zero:

```python
>>> subspace_angles(H[:, :2], H[:, :2]) <= 2 * np.finfo(float).eps
array([ True,  True], dtype=bool)
```

The angles between non-orthogonal subspaces are in between these extremes:

```python
>>> x = rng.standard_normal((4, 3))
>>> np.rad2deg(subspace_angles(x[:, :2], x[:, [2]]))
array([ 55.832]) # random
```

`scipy.linalg.bandwidth`

`scipy.linalg.bandwidth(a)`

Return the lower and upper bandwidth of a 2D numeric array.

Parameters

- `a` : [ndarray] Input array of size (N, M)

Returns

- `lu` : [tuple] 2-tuple of ints indicating the lower and upper bandwidth. A zero denotes no sub- or super-diagonal on that side (triangular), and, say for N rows (N-1) means that side is full. Same example applies to the upper triangular part with (M-1).

Raises

- `TypeError` : If the dtype of the array is not supported, in particular, NumPy float16, float128 and complex256 dtypes.
Notes

This helper function simply runs over the array looking for the nonzero entries whether there exists a banded structure in the array or not. Hence, the performance depends on the density of nonzero entries and also memory-layout. Fortran- or C- contiguous arrays are handled best and otherwise suffers from extra random memory access cost.

The strategy is to look for only untested band elements in the upper and lower triangular parts separately; depending on the memory layout we can scan row-wise or column-wise. Moreover, say we are scanning rows and in the 6th row, 4th entry is nonzero then, on the succeeding rows the horizontal search is done only up to that band entries since we know that band is occupied. Therefore, a completely dense matrix scan cost is in the the order of n.

Examples

```python
>>> from scipy.linalg import bandwidth
>>> A = np.array([[3., 0., 0., 0., 0.],
...                [0., 4., 0., 0., 0.],
...                [0., 0., 5., 1., 0.],
...                [8., 0., 0., 6., 2.],
...                [0., 9., 0., 0., 7.]]
>>> bandwidth(A)
(3, 1)
```

`scipy.linalg.issymmetric`

`scipy.linalg.issymmetric(a, atol=None, rtol=None)`

Check if a square 2D array is symmetric.

Parameters

- `a` [ndarray] Input array of size (N, N).
- `atol` [float, optional] Absolute error bound
- `rtol` [float, optional] Relative error bound

Returns

- `sym` [bool] Returns True if the array symmetric.

Raises

`TypeError`

If the dtype of the array is not supported, in particular, NumPy float16, float128 and complex256 dtypes for exact comparisons.

See also:

`ishermitian`

Check if a square 2D array is Hermitian
Notes

For square empty arrays the result is returned True by convention. Complex valued arrays are tested for symmetric-
ity and not for being Hermitian (see examples)

The diagonal of the array is not scanned. Thus if there are infs, NaNs or similar problematic entries on the diagonal,
they will be ignored. However, \texttt{numpy.inf} will be treated as a number, that is to say \texttt{[[1, inf], [inf, 2]]} will return True. On the other hand \texttt{numpy.NaN} is never symmetric, say, \texttt{[[1, nan], [nan, 2]]} will return False.

When \texttt{atol} and/or \texttt{rtol} are set to, then the comparison is performed by \texttt{numpy.allclose} and the tolerance
values are passed to it. Otherwise an exact comparison against zero is performed by internal functions. Hence
performance can improve or degrade depending on the size and dtype of the array. If one of \texttt{atol} or \texttt{rtol} given
the other one is automatically set to zero.

Examples

```python
>>> from scipy.linalg import issymmetric
>>> A = np.arange(9).reshape(3, 3)
>>> A = A + A.T
>>> issymmetric(A)
True
>>> Ac = np.array([[1. + 1.j, 3.j], [3.j, 2.]])
>>> issymmetric(Ac)  # not Hermitian but symmetric
True
```

\texttt{scipy.linalg.ishermitian}

\texttt{scipy.linalg.ishermitian}(a, atol=None, rtol=None)

Check if a square 2D array is Hermitian.

Parameters

\begin{itemize}
 \item \texttt{a} [ndarray] Input array of size (N, N)
 \item \texttt{atol} [float, optional] Absolute error bound
 \item \texttt{rtol} [float, optional] Relative error bound
\end{itemize}

Returns

\begin{itemize}
 \item \texttt{her} [bool] Returns True if the array Hermitian.
\end{itemize}

Raises

\texttt{TypeError}

If the dtype of the array is not supported, in particular, NumPy float16, float128 and com-
plex256 dtypes.

See also:

\texttt{issymmetric}

Check if a square 2D array is symmetric
Notes

For square empty arrays the result is returned True by convention.

`numpy.inf` will be treated as a number, that is to say `[[1, inf], [inf, 2]]` will return True. On the other hand `numpy.NaN` is never symmetric, say, `[[1, nan], [nan, 2]]` will return False.

When atol and/or rtol are set to , then the comparison is performed by `numpy.allclose` and the tolerance values are passed to it. Otherwise an exact comparison against zero is performed by internal functions. Hence performance can improve or degrade depending on the size and dtype of the array. If one of atol or rtol given the other one is automatically set to zero.

Examples

```python
>>> from scipy.linalg import ishermitian
>>> A = np.arange(9).reshape(3, 3)
>>> A = A + A.T
>>> ishermitian(A)
True
>>> A = np.array([[1., 2. + 3.j], [2. - 3.j, 4.]])
>>> ishermitian(A)
True
>>> Ac = np.array([[1. + 1.j, 3.j], [3.j, 2.]])
>>> ishermitian(Ac)  # not Hermitian but symmetric
False
>>> Af = np.array([[0, 1 + 1j], [1 - (1+1e-12)*1j, 0]])
>>> ishermitian(Af)
False
>>> ishermitian(Af, atol=5e-11)  # almost hermitian with atol
True
```

`scipy.linalg.LinAlgError`

exception `scipy.linalg.LinAlgError`

Generic Python-exception-derived object raised by linalg functions.

General purpose exception class, derived from Python's exception.Exception class, programatically raised in linalg functions when a Linear Algebra-related condition would prevent further correct execution of the function.

Parameters

None

Examples

```python
>>> from numpy import linalg as LA
>>> LA.inv(np.zeros((2,2)))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "...linalg.py", line 350,
    in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
  File "...linalg.py", line 249,
    in solve
... linalg.LinAlgError: singular matrix
```

(continues on next page)
raise LinAlgError('Singular matrix')

```python
with_traceback()
    Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

scipy.linalg.LinAlgWarning

```python
exception scipy.linalg.LinAlgWarning
    The warning emitted when a linear algebra related operation is close to fail conditions of the algorithm or loss of accuracy is expected.
```

```python
with_traceback()
    Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

Eigenvalue Problems

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>scipy.linalg.eig</code></td>
<td>Solve an ordinary or generalized eigenvalue problem of a square matrix.</td>
</tr>
<tr>
<td><code>scipy.linalg.eigvals()</code></td>
<td>Compute eigenvalues from an ordinary or generalized eigenvalue problem.</td>
</tr>
<tr>
<td><code>scipy.linalg.eigh</code></td>
<td>Solve a standard or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.</td>
</tr>
<tr>
<td><code>scipy.linalg.eighvals()</code></td>
<td>Solves a standard or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.</td>
</tr>
<tr>
<td><code>scipy.linalg.eig_banded()</code></td>
<td>Solve real symmetric or complex Hermitian band matrix eigenvalue problem.</td>
</tr>
<tr>
<td><code>scipy.linalg.eigvals_banded()</code></td>
<td>Solve real symmetric or complex Hermitian band matrix eigenvalue problem.</td>
</tr>
<tr>
<td><code>scipy.linalg.eigh_tridiagonal(d, e)</code></td>
<td>Solve eigenvalue problem for a real symmetric tridiagonal matrix.</td>
</tr>
<tr>
<td><code>scipy.linalg.eighsh_tridiagonal(d, e)</code></td>
<td>Solve eigenvalue problem for a real symmetric tridiagonal matrix.</td>
</tr>
</tbody>
</table>

Parameters

- **a**
 - Type: `(M, M) array_like`
 - Description: A complex or real matrix whose eigenvalues and eigenvectors will be computed.

- **b**
 - Type: `(M, M) array_like, optional`
 - Description: Right-hand side matrix in a generalized eigenvalue problem. Default is None, identity matrix is assumed.

- **left**
 - Type: `[bool, optional]`
 - Description: Whether to calculate and return left eigenvectors. Default is False.

3.3. API Definition

```
with_traceback()
    Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```
right [bool, optional] Whether to calculate and return right eigenvectors. Default is True.

overwrite_a [bool, optional] Whether to overwrite a; may improve performance. Default is False.

overwrite_b [bool, optional] Whether to overwrite b; may improve performance. Default is False.

check_finite [bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

homogeneous_eigvals [bool, optional] If True, return the eigenvalues in homogeneous coordinates. In this case \(w \) is a (2, M) array so that:

\[
w[1,i] \ a \ vr[:,i] = w[0,i] \ b \ vr[:,i]
\]

Default is False.

Returns

- \(w \) [(M,) or (2, M) double or complex ndarray] The eigenvalues, each repeated according to its multiplicity. The shape is (M,) unless homogeneous_eigvals=True.
- \(vl \) [(M, M) double or complex ndarray] The normalized left eigenvector corresponding to the eigenvalue \(w[i] \) is the column \(vl[:,i] \). Only returned if left=True.
- \(vr \) [(M, M) double or complex ndarray] The normalized right eigenvector corresponding to the eigenvalue \(w[i] \) is the column \(vr[:,i] \). Only returned if right=True.

Raises

LinAlgError

If eigenvalue computation does not converge.

See also:

- eigvals
eigenvalues of general arrays
- eigh
 Eigenvalues and right eigenvectors for symmetric/Hermitian arrays.
- eig_banded
eigenvalues and right eigenvectors for symmetric/Hermitian band matrices
- eigh_tridiagonal
eigenvalues and right eigenvectors for symmetric/Hermitian tridiagonal matrices

Examples

```python
>>> from scipy import linalg
>>> a = np.array([[0., -1.], [1., 0.]])
>>> linalg.eigvals(a)
array([0.+1.j, 0.-1.j])

>>> b = np.array([[0., 1.], [1., 1.]])
>>> linalg.eigvals(a, b)
array([1.+0.j, -1.+0.j])
```
```python
cp = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]])

w1, vr1 = linalg.eigvals(c, homogeneous_eigvals=True)
array([[3.+0.j, 8.+0.j, 7.+0.j],
       [1.+0.j, 1.+0.j, 1.+0.j]])

w2, vr2 = linalg.eig(c, left=True, right=False)[1]  # normalized left eigenvector
array([[-0.70710678+0.j, -0.70710678-0.j],
       [-0. +0.70710678j, -0. -0.70710678j]])

w3, vr3 = linalg.eig(c, left=False, right=True)[1]  # normalized right eigenvector
array([[0.70710678+0.j, 0.70710678-0.j],
       [0. -0.70710678j, 0. +0.70710678j]])
```

scipy.linalg.eigvals

scipy.linalg.eigvals *(a, b=None, overwrite_a=False, check_finite=True, homogeneous_eigvals=False)*

Compute eigenvalues from an ordinary or generalized eigenvalue problem.

Parameters

- **a** *(M, M) array_like* A complex or real matrix whose eigenvalues and eigenvectors will be computed.
- **b** *(M, M) array_like, optional* Right-hand side matrix in a generalized eigenvalue problem. If omitted, identity matrix is assumed.
- **overwrite_a** *(bool, optional)* Whether to overwrite data in a (may improve performance)
- **check_finite** *(bool, optional)* Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- **homogeneous_eigvals** *(bool, optional)* If True, return the eigenvalues in homogeneous coordinates. In this case \(w \) is a (2, M) array so that:

\[
\begin{align*}
 w[1,i] \cdot a \cdot vr[:,i] &= w[0,i] \cdot b \cdot vr[:,i] \\
\end{align*}
\]

Default is False.

Returns

- **w** *(M,) or (2, M) double or complex ndarray* The eigenvalues, each repeated according to its multiplicity but not in any specific order. The shape is (M,) unless homogeneous_eigvals=True.

Raises

- **LinAlgError**

 If eigenvalue computation does not converge

See also:

eig

Eigenvalues and right eigenvectors of general arrays.

eigvalsh

Eigenvalues of symmetric or Hermitian arrays.

eigvals_banded

Eigenvalues for symmetric/Hermitian band matrices.

eigvalsh_tridiagonal

Eigenvalues of symmetric/Hermitian tridiagonal matrices.

Examples

```python
>>> from scipy import linalg
>>> a = np.array([[0., -1.], [1., 0.]])
>>> linalg.eigvals(a)
array([0.+1.j, 0.-1.j])

>>> b = np.array([[0., 1.], [1., 1.]])
>>> linalg.eigvals(a, b)
array([ 1.+0.j, -1.+0.j])

>>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]])
>>> linalg.eigvals(a, homogeneous_eigvals=True)
array([[3.+0.j, 8.+0.j, 7.+0.j],
       [1.+0.j, 1.+0.j, 1.+0.j]])
```

scipy.linalg.eigh

```python
scipy.linalg.eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False, overwrite_b=False, turbo=True, eigvals=None, type=1, check_finite=True, subset_by_index=None, subset_by_value=None, driver=None)
```

Solve a standard or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.

Find eigenvalues array `w` and optionally eigenvectors array `v` of array `a`, where `b` is positive definite such that for every eigenvalue `λ` (i-th entry of `w`) and its eigenvector `vᵢ` (i-th column of `v`) satisfies:

\[
a vᵢ = \lambda b vᵢ
\]

In the standard problem, `b` is assumed to be the identity matrix.

Parameters

- `a` : {(M, M) array_like} A complex Hermitian or real symmetric matrix whose eigenvalues and eigenvectors will be computed.
- `b` : {(M, M) array_like, optional} A complex Hermitian or real symmetric definite positive matrix in. If omitted, identity matrix is assumed.
- `lower` : {bool, optional} Whether the pertinent array data is taken from the lower or upper triangle of `a` and, if applicable, `b`. (Default: lower)

eigvals_only
[bool, optional] Whether to calculate only eigenvalues and no eigenvectors. (Default: both are calculated)

subset_by_index
[iterable, optional] If provided, this two-element iterable defines the start and the end indices of the desired eigenvalues (ascending order and 0-indexed). To return only the second smallest to fifth smallest eigenvalues, \([1, 4]\) is used. \([n-3, n-1]\) returns the largest three. Only available with “evr”, “evx”, and “gvx” drivers. The entries are directly converted to integers via \(\text{int}()\).

subset_by_value
[iterable, optional] If provided, this two-element iterable defines the half-open interval \((a, b]\) that, if any, only the eigenvalues between these values are returned. Only available with “evr”, “evx”, and “gvx” drivers. Use \(\text{np.inf}\) for the unconstrained ends.

driver: str, optional
Defines which LAPACK driver should be used. Valid options are “ev”, “evd”, “evr”, “evx” for standard problems and “gv”, “gvd”, “gvx” for generalized (where \(b\) is not None) problems. See the Notes section. The default for standard problems is “evr”. For generalized problems, “gvd” is used for full set, and “gvx” for subset requested cases.

type
[int, optional] For the generalized problems, this keyword specifies the problem type to be solved for \(w\) and \(v\) (only takes 1, 2, 3 as possible inputs):

\[
\begin{align*}
1 & \Rightarrow \ a \ @ \ v = w @ b @ v \\
2 & \Rightarrow a @ b @ v = w @ v \\
3 & \Rightarrow b @ a @ v = w @ v
\end{align*}
\]

This keyword is ignored for standard problems.

overwrite_a
[bool, optional] Whether to overwrite data in \(a\) (may improve performance). Default is False.

overwrite_b
[bool, optional] Whether to overwrite data in \(b\) (may improve performance). Default is False.

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

turbo
[bool, optional] Deprecated since v1.5.0, use `driver=gvd` keyword instead. Use divide and conquer algorithm (faster but expensive in memory, only for generalized eigenvalue problem and if full set of eigenvalues are requested.). Has no significant effect if eigenvectors are not requested.

eigvals
[tuple (lo, hi), optional] Deprecated since v1.5.0, use “subset_by_index” keyword instead. Indexes of the smallest and largest (in ascending order) eigenvalues and corresponding eigenvectors to be returned: 0 <= lo <= hi <= M-1. If omitted, all eigenvalues and eigenvectors are returned.

Returns

\(w\) [(N,) ndarray] The N (1<=N<=M) selected eigenvalues, in ascending order, each repeated according to its multiplicity.

\(v\) [(M, N) ndarray] (if eigvals_only == False)

Raises

LinAlgError
If eigenvalue computation does not converge, an error occurred, or \(b\) matrix is not definite positive. Note that if input matrices are not symmetric or Hermitian, no error will be reported but results will be wrong.

See also:
\textbf{eigvalsh}

eigenvalues of symmetric or Hermitian arrays

\textbf{eig}

eigenvalues and right eigenvectors for non-symmetric arrays

\textbf{eigh_tridiagonal}

eigenvalues and right eigenvectors for symmetric/Hermitian tridiagonal matrices

\textbf{Notes}

This function does not check the input array for being Hermitian/symmetric in order to allow for representing arrays with only their upper/lower triangular parts. Also, note that even though not taken into account, finiteness check applies to the whole array and unaffected by “lower” keyword.

This function uses LAPACK drivers for computations in all possible keyword combinations, prefixed with \textit{sy} if arrays are real and \textit{he} if complex, e.g., a float array with “evr” driver is solved via “syevr”, complex arrays with “gvx” driver problem is solved via “hegvx” etc.

As a brief summary, the slowest and the most robust driver is the classical $<$\textit{sy/he}$>$\textit{ev} which uses symmetric QR. $<$\textit{sy/he}$>$\textit{evr} is seen as the optimal choice for the most general cases. However, there are certain occasions that $<$\textit{sy/he}$>$\textit{evd} computes faster at the expense of more memory usage. $<$\textit{sy/he}$>$\textit{evx}, while still being faster than $<$\textit{sy/he}$>$\textit{ev}, often performs worse than the rest except when very few eigenvalues are requested for large arrays though there is still no performance guarantee.

For the generalized problem, normalization with respect to the given type argument:

\begin{verbatim}
 type 1 and 3 : v.conj().T @ a @ v = w
 type 2 : inv(v).conj().T @ a @ inv(v) = w
 type 1 or 2 : v.conj().T @ b @ v = I
 type 3 : v.conj().T @ inv(b) @ v = I
\end{verbatim}

\textbf{Examples}

\begin{verbatim}
>>> from scipy.linalg import eigh
>>> A = np.array([[6, 3, 1, 5], [3, 0, 5, 1], [1, 5, 6, 2], [5, 1, 2, 2]])
>>> w, v = eigh(A)
>>> np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4)))
True

Request only the eigenvalues

>>> w = eigh(A, eigvals_only=True)

Request eigenvalues that are less than 10.

>>> A = np.array([[34, -4, -10, -7, 2],
>>> [-4, 7, 2, 12, 0],
>>> [-10, 2, 44, 2, -19],
>>> [-7, 12, 2, 79, -34],
>>> [2, 0, -19, -34, 29]])
\end{verbatim}
Request the largest second eigenvalue and its eigenvector

```python
>>> w, v = eigh(A, subset_by_index=[1, 1])
>>> w
array([9.11938152])
>>> v.shape  # only a single column is returned
(5, 1)
```


3.3. API definition 703
three. Only available with “evr”, “evx”, and “gvx” drivers. The entries are directly converted to integers via int().

subset_by_value
[iterable, optional] If provided, this two-element iterable defines the half-open interval \((a, b]\) that, if any, only the eigenvalues between these values are returned. Only available with “evr”, “evx”, and “gvx” drivers. Use np.inf for the unconstrained ends.

driver: str, optional
Defines which LAPACK driver should be used. Valid options are “ev”, “evd”, “evr”, “evx” for standard problems and “gv”, “gvd”, “gvx” for generalized (where b is not None) problems. See the Notes section of scipy.linalg.eigh.

turbo
[bool, optional] Depreciated by “driver=gvd” option. Has no significant effect for eigenvalue computations since no eigenvectors are requested. Deprecated since version 1.5.0.

eigvals
[tuple(lo, hi), optional] Depreciated by “subset_by_index” keyword. Indexes of the smallest and largest (in ascending order) eigenvalues and corresponding eigenvectors to be returned: \(0 <= lo <= hi <= M-1\). If omitted, all eigenvalues and eigenvectors are returned. Deprecated since version 1.5.0.

Returns

w
[(N,) ndarray] The \(1 \leq N \leq M\) selected eigenvalues, in ascending order, each repeated according to its multiplicity.

Raises

LinAlgError
If eigenvalue computation does not converge, an error occurred, or b matrix is not definite positive. Note that if input matrices are not symmetric or Hermitian, no error will be reported but results will be wrong.

See also:

eigh
eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eigvals
eigenvalues of general arrays
eigvals_banded
eigenvalues for symmetric/Hermitian band matrices
eigvalsh_tridiagonal
eigenvalues of symmetric/Hermitian tridiagonal matrices

Notes

This function does not check the input array for being Hermitian/symmetric in order to allow for representing arrays with only their upper/lower triangular parts.

This function serves as a one-liner shorthand for scipy.linalg.eigh with the option eigvals_only=True to get the eigenvalues and not the eigenvectors. Here it is kept as a legacy convenience. It might be beneficial to use the main function to have full control and to be a bit more pythonic.
Examples

For more examples see `scipy.linalg.eigh`.

```python
>>> from scipy.linalg import eigvalsh
>>> A = np.array([[6, 3, 1, 5], [3, 0, 5, 1], [1, 5, 6, 2], [5, 1, 2, 2]])
>>> w = eigvalsh(A)
>>> w
array([-3.74637491, -0.76263923, 6.08502336, 12.42399079])
```

`scipy.linalg.eig_banded`

Solve real symmetric or complex Hermitian band matrix eigenvalue problem.

Find eigenvalues \(w\) and optionally right eigenvectors \(v\) of \(a\):

\[
a v[:,i] = w[i] v[:,i] \\
v.H v = identity
\]

The matrix \(a\) is stored in \(a_band\) either in lower diagonal or upper diagonal ordered form:

\[
a_band[u+i-j,j] == a[i,j] (if upper form; i <= j) \quad a_band[i-j,j] == a[i,j] (if lower form; i >= j)
\]

where \(u\) is the number of bands above the diagonal.

Example of \(a_band\) (shape of \(a\) is (6,6), \(u=2\)):

```
upper form:
*   *   a02 a13 a24 a35
*   a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 *
```

Cells marked with * are not used.

Parameters

- `a_band`: \([u+1, M]\) array_like The bands of the \(M\) by \(M\) matrix \(a\).
- `lower`: bool, optional. Is the matrix in the lower form. (Default is upper form)
- `eigvals_only`: bool, optional. Compute only the eigenvalues and no eigenvectors. (Default: calculate also eigenvectors)
- `overwrite_a_band`: bool, optional. Discard data in \(a_band\) (may enhance performance)
- `select`: \({'a', 'v', 'i'}\), optional. Which eigenvalues to calculate

<table>
<thead>
<tr>
<th>select</th>
<th>calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>'a'</td>
<td>All eigenvalues</td>
</tr>
<tr>
<td>'v'</td>
<td>Eigenvalues in the interval ((\text{min}, \text{max}))</td>
</tr>
<tr>
<td>'i'</td>
<td>Eigenvalues with indices (\text{min} <= i <= \text{max})</td>
</tr>
</tbody>
</table>
select_range
[(min, max), optional] Range of selected eigenvalues

max_ev
[int, optional] For select=='v', maximum number of eigenvalues expected. For other values
of select, has no meaning.
In doubt, leave this parameter untouched.

check_finite
[bool, optional] Whether to check that the input matrix contains only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs.

Returns
w
[(M,) ndarray] The eigenvalues, in ascending order, each repeated according to its multiplic-
ity.

v
[(M, M) float or complex ndarray] The normalized eigenvector corresponding to the eigen-
value w[i] is the column v[:,i].

Raises
LinAlgError
If eigenvalue computation does not converge.

See also:
eigvals_banded
eig

eigh

eigh_tridiagonal

Examples

```python
>>> from scipy.linalg import eig_banded
>>> A = np.array([[1, 5, 2, 0], [5, 2, 5, 2], [2, 5, 3, 5], [0, 2, 5, 4]])
>>> Ab = np.array([[1, 2, 3, 4], [5, 5, 5, 0], [2, 2, 0, 0]])
>>> w, v = eig_banded(Ab, lower=True)
>>> np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4)))
True
>>> w = eig_banded(Ab, lower=True, eigvals_only=True)
>>> w
array([-4.26200532, -2.22987175, 3.95222349, 12.53965359])

Request only the eigenvalues between [-3, 4]

```
scipy.linalg.eigvals_banded

scipy.linalg.eigvals_banded(a_band, lower=False, overwrite_a_band=False, select='a',
select_range=None, check_finite=True)

Solve real symmetric or complex Hermitian band matrix eigenvalue problem.

Find eigenvalues w of a:

```
a v[:,i] = w[i] v[:,i]
v.H v = identity
```

The matrix a is stored in `a_band` either in lower diagonal or upper diagonal ordered form:

```
a_band[u + i - j, j] == a[i,j] (if upper form; i <= j)
a_band[i - j, j] == a[i,j] (if lower form; i >= j)
```

where `u` is the number of bands above the diagonal.

Example of `a_band` (shape of a is (6,6), `u`=2):

```
upper form:
*   *   a02 a13 a24 a35
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *
```

Cells marked with * are not used.

Parameters

- **a_band** [(u+1, M) array_like] The bands of the M by M matrix a.
- **lower** [bool, optional] Is the matrix in the lower form. (Default is upper form)
- **overwrite_a_band** [bool, optional] Discard data in `a_band` (may enhance performance)
- **select** [‘a’, ‘v’, ‘i’], optional] Which eigenvalues to calculate

<table>
<thead>
<tr>
<th>select</th>
<th>calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘a’</td>
<td>All eigenvalues</td>
</tr>
<tr>
<td>‘v’</td>
<td>Eigenvalues in the interval (min, max)</td>
</tr>
<tr>
<td>‘i’</td>
<td>Eigenvalues with indices min <= i <= max</td>
</tr>
</tbody>
</table>

- **select_range** [(min, max), optional] Range of selected eigenvalues
- **check_finite** [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

- **w** [(M,) ndarray] The eigenvalues, in ascending order, each repeated according to its multiplicity.

Raises

- **LinAlgError** If eigenvalue computation does not converge.
See also:

eig_banded
eigenvalues and right eigenvectors for symmetric/Hermitian band matrices

eigvalsh_tridiagonal
eigenvalues of symmetric/Hermitian tridiagonal matrices

eigvals
eigenvalues of general arrays

eigh
eigenvalues and right eigenvectors for symmetric/Hermitian arrays

eig
eigenvalues and right eigenvectors for non-symmetric arrays

Examples

```python
>>> from scipy.linalg import eigvals_banded
>>> A = np.array([[1, 5, 2, 0], [5, 2, 5, 2], [2, 5, 3, 5], [0, 2, 5, 4]])
>>> Ab = np.array([[1, 2, 3, 4], [5, 5, 5, 0], [2, 2, 0, 0]])
>>> w = eigvals_banded(Ab, lower=True)
>>> w
array([-4.26200532, -2.22987175, 3.95222349, 12.53965359])
```

scipy.linalg.eigh_tridiagonal

Solve eigenvalue problem for a real symmetric tridiagonal matrix.

Find eigenvalues w and optionally right eigenvectors v of a:

```python
a v[:,i] = w[i] v[:,i]
v.H v = identity
```

For a real symmetric matrix a with diagonal elements d and off-diagonal elements e.

Parameters

- **d** [ndarray, shape (ndim,)] The diagonal elements of the array.
- **e** [ndarray, shape (ndim-1,)] The off-diagonal elements of the array.
- **select** [{‘a’, ‘v’, ‘i’}, optional] Which eigenvalues to calculate

<table>
<thead>
<tr>
<th>select</th>
<th>calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘a’</td>
<td>All eigenvalues</td>
</tr>
<tr>
<td>‘v’</td>
<td>Eigenvalues in the interval (min, max)</td>
</tr>
<tr>
<td>‘i’</td>
<td>Eigenvalues with indices min <= i <= max</td>
</tr>
</tbody>
</table>

- **select_range** [(min, max), optional] Range of selected eigenvalues
check_finite

[bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

tol

[float] The absolute tolerance to which each eigenvalue is required (only used when ‘stebz’ is the lapack_driver). An eigenvalue (or cluster) is considered to have converged if it lies in an interval of this width. If <= 0. (default), the value \(\text{eps}^* |a| \) is used where eps is the machine precision, and \(|a| \) is the 1-norm of the matrix \(a \).

lapack_driver

[str] LAPACK function to use, can be ‘auto’, ‘stemr’, ‘stebz’, ‘sterf’, or ‘stev’. When ‘auto’ (default), it will use ‘stemr’ if select='a' and ‘stebz’ otherwise. When ‘stebz’ is used to find the eigenvalues and eigvals_only=False, then a second LAPACK call (to ?STEIN) is used to find the corresponding eigenvectors. ‘sterf’ can only be used when eigvals_only=True and select='a'. ‘stev’ can only be used when select='a'.

Returns

w

[(M,) ndarray] The eigenvalues, in ascending order, each repeated according to its multiplicity.

v

[(M, M) ndarray] The normalized eigenvector corresponding to the eigenvalue \(w[i] \) is the column \(v[:,i] \).

Raises

LinAlgError

If eigenvalue computation does not converge.

See also:

eigvalsh_tridiagonal

eigenvalues of symmetric/Hermitian tridiagonal matrices

eig

eigenvalues and right eigenvectors for non-symmetric arrays

eigh

eigenvalues and right eigenvectors for symmetric/Hermitian arrays

eig_banded

eigenvalues and right eigenvectors for symmetric/Hermitian band matrices

Notes

This function makes use of LAPACK S/DSTEMR routines.
Examples

```python
>>> from scipy.linalg import eigh_tridiagonal
>>> d = 3*np.ones(4)
>>> e = -1*np.ones(3)
>>> w, v = eigh_tridiagonal(d, e)
>>> A = np.diag(d) + np.diag(e, k=1) + np.diag(e, k=-1)
```

```python
>>> np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4)))
True
```

scipy.linalg.eigvalsh_tridiagonal

Solve eigenvalue problem for a real symmetric tridiagonal matrix.

Find eigenvalues w of a:

```python
a v[:,i] = w[i] v[:,i]
v.H v = identity
```

For a real symmetric matrix a with diagonal elements d and off-diagonal elements e.

Parameters

- **d** : [ndarray, shape (ndim,)] The diagonal elements of the array.
- **e** : [ndarray, shape (ndim-1,)] The off-diagonal elements of the array.
- **select** : ['a', 'v', 'i'], optional] Which eigenvalues to calculate
 - 'a': All eigenvalues
 - 'v': Eigenvalues in the interval (min, max)
 - 'i': Eigenvalues with indices min <= i <= max
- **select_range** : [(min, max), optional] Range of selected eigenvalues
- **check_finite** : [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- **tol** : [float] The absolute tolerance to which each eigenvalue is required (only used when lapack_driver='stebz'). An eigenvalue (or cluster) is considered to have converged if it lies in an interval of this width. If <= 0. (default), the value \(\text{eps} \cdot |a| \) is used where \(\text{eps} \) is the machine precision, and \(|a| \) is the 1-norm of the matrix a.
- **lapack_driver** : [str] LAPACK function to use, can be ‘auto’, ‘stemr’, ‘stebz’, ‘sterf’, or ‘stev’. When ‘auto’ (default), it will use ‘stemr’ if `select='a'` and ‘stebz’ otherwise. ‘sterf’ and ‘stev’ can only be used when select='a'.

Returns

- **w** : [(M,) ndarray] The eigenvalues, in ascending order, each repeated according to its multiplicity.

Raises

- **LinAlgError**

 If eigenvalue computation does not converge.
See also:

eigh_tridiagonal
eigenvalues and right eigenvectors for symmetric/Hermitian tridiagonal matrices

Examples

```python
>>> from scipy.linalg import eigvalsh_tridiagonal, eigvalsh
>>> d = 3*np.ones(4)
>>> e = -1*np.ones(3)
>>> w = eigvalsh_tridiagonal(d, e)
>>> A = np.diag(d) + np.diag(e, k=1) + np.diag(e, k=-1)
>>> w2 = eigvalsh(A)  # Verify with other eigenvalue routines
>>> np.allclose(w - w2, np.zeros(4))
True
```

Decompositions

- `lu(a[, permute_l, overwrite_a, check_finite])`: Compute pivoted LU decomposition of a matrix.
- `lu_factor(a[, overwrite_a, check_finite])`: Compute pivoted LU decomposition of a matrix.
- `lu_solve(lu_and_piv, b[, trans, ...])`: Solve an equation system, $a x = b$, given the LU factorization of a.
- `svd(a[, full_matrices, compute_uv, ...])`: Singular Value Decomposition.
- `svdvals(a[, overwrite_a, check_finite])`: Compute singular values of a matrix.
- `diagsvd(s, M, N)`: Construct the sigma matrix in SVD from singular values and size M, N.
- `orth(A[, rcond])`: Construct an orthonormal basis for the range of A using SVD.
- `null_space(A[, rcond])`: Construct an orthonormal basis for the null space of A using SVD.
- `ldl(A[, lower, hermitian, overwrite_a, ...])`: Computes the LDLt or Bunch-Kaufman factorization of a symmetric/Hermitian matrix.
- `cholesky(a[, lower, overwrite_a, check_finite])`: Compute the Cholesky decomposition of a matrix.
- `cholesky_banded(ab[, overwrite_ab, lower, ...])`: Cholesky decompose a banded Hermitian positive-definite matrix.
- `cho_factor(a[, lower, overwrite_a, check_finite])`: Compute the Cholesky decomposition of a matrix, to use in `cho_solve`.
- `cho_solve(c_and_lower, b[, overwrite_b, ...])`: Solve the linear equations $A x = b$, given the Cholesky factorization of A.
- `cho_solve_banded(cb_and_lower, b[, ...])`: Solve the linear equations $A x = b$, given the Cholesky factorization of the banded Hermitian A.
- `polar(a[, side])`: Compute the polar decomposition.
- `qr(a[, overwrite_a, lwork, mode, pivoting, ...])`: Compute QR decomposition of a matrix.
- `qr_multiply(a, c[, mode, pivoting, ...])`: Calculate the QR decomposition and multiply Q with a matrix.
- `qr_update(Q, R, u, v[, overwrite_qruv, ...])`: Rank-k QR update.
- `qr_delete(Q, R, k, int p=1[, which, ...])`: QR downdate on row or column deletions.
- `qr_insert(Q, R, u, k[, which, rcond, ...])`: QR update on row or column insertions.
- `rq(a[, overwrite_a, lwork, mode, check_finite])`: Compute RQ decomposition of a matrix.

continues on next page
Table 94 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>qz</td>
<td>QZ decomposition for generalized eigenvalues of a pair of matrices.</td>
</tr>
<tr>
<td>ordqz</td>
<td>QZ decomposition for a pair of matrices with reordering.</td>
</tr>
<tr>
<td>schur</td>
<td>Compute Schur decomposition of a matrix.</td>
</tr>
<tr>
<td>rsf2csf</td>
<td>Convert real Schur form to complex Schur form.</td>
</tr>
<tr>
<td>hessenberg</td>
<td>Compute Hessenberg form of a matrix.</td>
</tr>
<tr>
<td>cdf2rdf</td>
<td>Converts complex eigenvalues (w) and eigenvectors (v) to real eigenvalues in a block diagonal form (\text{wr}) and the associated real eigenvectors (\text{vr}), such that.</td>
</tr>
<tr>
<td>cossin</td>
<td>Compute the cosine-sine (CS) decomposition of an orthogonal/unitary matrix.</td>
</tr>
</tbody>
</table>

scipy.linalg.lu

scipy.linalg.lu (a, permute_l=False, overwrite_a=False, check_finite=True)

Compute pivoted LU decomposition of a matrix.

The decomposition is:

\[
A = PLU
\]

where \(P \) is a permutation matrix, \(L \) lower triangular with unit diagonal elements, and \(U \) upper triangular.

Parameters

- **a** [\((M, N)\) array_like] Array to decompose
- **permute_l** [bool, optional] Perform the multiplication \(P*L \) (Default: do not permute)
- **overwrite_a** [bool, optional] Whether to overwrite data in \(a \) (may improve performance)
- **check_finite** [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

- (If **permute_l** \(\equiv \) False)
 - **p** [\((M, M)\) ndarray] Permutation matrix
 - **l** [\((M, K)\) ndarray] Lower triangular or trapezoidal matrix with unit diagonal. \(K = \text{min}(M, N) \)
 - **u** [\((K, N)\) ndarray] Upper triangular or trapezoidal matrix
- (If **permute_l** \(\equiv \) True)
 - **pl** [\((M, K)\) ndarray] Permutated \(L \) matrix. \(K = \text{min}(M, N) \)
 - **u** [\((K, N)\) ndarray] Upper triangular or trapezoidal matrix

Notes

This is a LU factorization routine written for SciPy.
Examples

```python
>>> from scipy.linalg import lu
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
>>> p, l, u = lu(A)
>>> np.allclose(A - p @ l @ u, np.zeros((4, 4)))
True
```

`scipy.linalg.lu_factor`

`scipy.linalg.lu_factor(a, overwrite_a=False, check_finite=True)`
Compute pivoted LU decomposition of a matrix.

The decomposition is:

\[A = P L U \]

where \(P \) is a permutation matrix, \(L \) lower triangular with unit diagonal elements, and \(U \) upper triangular.

Parameters

- `a` : [(M, M) array_like] Matrix to decompose
- `overwrite_a` : [bool, optional] Whether to overwrite data in \(A \) (may increase performance)
- `check_finite` : [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

- `lu` : [(N, N) ndarray] Matrix containing \(U \) in its upper triangle, and \(L \) in its lower triangle. The unit diagonal elements of \(L \) are not stored.
- `piv` : [(N,) ndarray] Pivot indices representing the permutation matrix \(P \): row \(i \) of matrix was interchanged with row \(\text{piv}[i] \).

See also:

`lu_solve`

solve an equation system using the LU factorization of a matrix

Notes

This is a wrapper to the *GETRF routines from LAPACK.

Examples

```python
>>> from scipy.linalg import lu_factor
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
>>> lu, piv = lu_factor(A)
>>> piv
array([2, 2, 3, 3], dtype=int32)
```

Convert LAPACK’s `piv` array to NumPy index and test the permutation

```python
>>> piv_py = [2, 0, 3, 1]
>>> L, U = np.tril(lu, k=-1) + np.eye(4), np.triu(lu)
>>> np.allclose(A[piv_py] - L @ U, np.zeros((4, 4)))
True
```

scipy.linalg.lu_solve

scipy.linalg.lu_solve *(lu_and_piv, b, trans=0, overwrite_b=False, check_finite=True)*

Solve an equation system, \(ax = b \), given the LU factorization of \(a \)

Parameters

- *(lu, piv)*
 Factorization of the coefficient matrix \(a \), as given by \(\text{lu_factor} \)
- *b*
 Right-hand side
- *trans*
 Type of system to solve:

<table>
<thead>
<tr>
<th>trans</th>
<th>system</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(ax = b)</td>
</tr>
<tr>
<td>1</td>
<td>(a^T x = b)</td>
</tr>
<tr>
<td>2</td>
<td>(a^H x = b)</td>
</tr>
</tbody>
</table>

- *overwrite_b*
 Whether to overwrite data in \(b \) (may increase performance)
- *check_finite*
 Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

- *x*
 Solution to the system

See also:

lu_factor

LU factorize a matrix

Examples

```python
>>> from scipy.linalg import lu_factor, lu_solve
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
>>> b = np.array([1, 1, 1, 1])
>>> lu, piv = lu_factor(A)
>>> x = lu_solve((lu, piv), b)
>>> np.allclose(A @ x - b, np.zeros((4,)))
True
```
scipy.linalg.svd

scipy.linalg.svd(a, full_matrices=True, compute_uv=True, overwrite_a=False, check_finite=True, lapack_driver='gesdd')

Singular Value Decomposition.

Factorizes the matrix a into two unitary matrices U and V_h, and a 1-D array s of singular values (real, non-negative) such that $a == U @ S @ V_h$, where S is a suitably shaped matrix of zeros with main diagonal s.

Parameters

- **a** [(M, N) array_like] Matrix to decompose.
- **full_matrices** [bool, optional] If True (default), U and V_h are of shape $(M, M), (N, N)$. If False, the shapes are (M, K) and (K, N), where $K = \min(M, N)$.
- **compute_uv** [bool, optional] Whether to compute also U and V_h in addition to s. Default is True.
- **overwrite_a** [bool, optional] Whether to overwrite a; may improve performance. Default is False.
- **check_finite** [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- **lapack_driver** [{'gesdd', 'gesvd'}, optional] Whether to use the more efficient divide-and-conquer approach ('gesdd') or general rectangular approach ('gesvd') to compute the SVD. MATLAB and Octave use the 'gesvd' approach. Default is 'gesdd'.

New in version 0.18.

Returns

- **U** [ndarray] Unitary matrix having left singular vectors as columns. Of shape (M, M) or (M, K), depending on full_matrices.
- **s** [ndarray] The singular values, sorted in non-increasing order. Of shape $(K,)$, with $K = \min(M, N)$.
- **Vh** [ndarray] Unitary matrix having right singular vectors as rows. Of shape (N, N) or (K, N) depending on full_matrices.

For compute_uv=False, only s is returned.

Raises

- **LinAlgError**

If SVD computation does not converge.

See also:

- **svdvals**

 Compute singular values of a matrix.

- **diagsvd**

 Construct the Sigma matrix, given the vector s.
Examples

```python
>>> from scipy import linalg
>>> from numpy.random import default_rng
>>> rng = default_rng()
>>> m, n = 9, 6
>>> a = rng.standard_normal((m, n)) + 1.j*rng.standard_normal((m, n))
>>> U, s, Vh = linalg.svd(a)
>>> U.shape, s.shape, Vh.shape
((9, 9), (6,), (6, 6))
```

Reconstruct the original matrix from the decomposition:

```python
>>> sigma = np.zeros((m, n))
>>> for i in range(min(m, n)):
...     sigma[i, i] = s[i]
>>> a1 = np.dot(U, np.dot(sigma, Vh))
>>> np.allclose(a, a1)
True
```

Alternatively, use `full_matrices=False` (notice that the shape of `U` is then `(m, n)` instead of `(m, m)`):

```python
>>> U, s, Vh = linalg.svd(a, full_matrices=False)
>>> U.shape, s.shape, Vh.shape
((9, 6), (6,), (6, 6))
>>> S = np.diag(s)
>>> np.allclose(a, np.dot(U, np.dot(S, Vh)))
True
```

`scipy.linalg.svdvals`

`scipy.linalg.svdvals(a, overwrite_a=False, check_finite=True)`

Compute singular values of a matrix.

Parameters

- `a` ([M, N] array_like) Matrix to decompose.
- `overwrite_a` [bool, optional] Whether to overwrite `a`; may improve performance. Default is False.
- `check_finite` [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

- `s` [(min(M, N),) ndarray] The singular values, sorted in decreasing order.

Raises

- `LinAlgError` If SVD computation does not converge.
See also:

svd

Compute the full singular value decomposition of a matrix.

diagsvd

Construct the Sigma matrix, given the vector s.

Notes

`svdvals(a)` only differs from `svd(a, compute_uv=False)` by its handling of the edge case of empty `a`, where it returns an empty sequence:

```python
>>> a = np.empty((0, 2))
>>> from scipy.linalg import svdvals
>>> svdvals(a)
array([], dtype=float64)
```

Examples

```python
>>> from scipy.linalg import svdvals
>>> m = np.array([[1.0, 0.0],
...                [2.0, 3.0],
...                [1.0, 1.0],
...                [0.0, 2.0],
...                [1.0, 0.0]])
>>> svdvals(m)
array([ 4.28091555, 1.63516424])
```

We can verify the maximum singular value of m by computing the maximum length of $m \cdot u$ over all the unit vectors u in the (x,y) plane. We approximate “all” the unit vectors with a large sample. Because of linearity, we only need the unit vectors with angles in $[0, \pi]$.

```python
>>> t = np.linspace(0, np.pi, 2000)
>>> u = np.array([np.cos(t), np.sin(t)])
>>> np.linalg.norm(m.dot(u), axis=0).max()
4.2809152422538475
```

p is a projection matrix with rank 1. With exact arithmetic, its singular values would be $[1, 0, 0, 0]$.

```python
>>> v = np.array([0.1, 0.3, 0.9, 0.3])
>>> p = np.outer(v, v)
>>> svdvals(p)
array([ 1.00000000e+00, 2.02021698e-17, 1.56692500e-17,
       8.15115104e-34])
```

The singular values of an orthogonal matrix are all 1. Here, we create a random orthogonal matrix by using the `rvs()` method of `scipy.stats.ortho_group`.

```python
>>> from scipy.stats import ortho_group
>>> orth = ortho_group.rvs(4)
```
scipy.linalg.diagsvd

scipy.linalg.diagsvd(s, M, N)

Construct the sigma matrix in SVD from singular values and size M, N.

Parameters

- `s` ((M,) or (N,) array_like) Singular values
- `M` [int] Size of the matrix whose singular values are s.
- `N` [int] Size of the matrix whose singular values are s.

Returns

- `S` [(M, N) ndarray] The S-matrix in the singular value decomposition

See also:

- `svd`
 Singular value decomposition of a matrix
- `svdvals`
 Compute singular values of a matrix.

Examples

```python
>>> from scipy.linalg import diagsvd
>>> vals = np.array([1, 2, 3])  # The array representing the computed svd
>>> diagsvd(vals, 3, 4)
array([[1, 0, 0, 0],
       [0, 2, 0, 0],
       [0, 0, 3, 0]])
>>> diagsvd(vals, 4, 3)
array([[1, 0, 0],
       [0, 2, 0],
       [0, 0, 3],
       [0, 0, 0]])
```

scipy.linalg.orth

scipy.linalg.orth(A, rcond=None)

Construct an orthonormal basis for the range of A using SVD.

Parameters

- `A` [(M, N) array_like] Input array
- `rcond` [float, optional] Relative condition number. Singular values s smaller than rcond * max(s) are considered zero. Default: floating point eps * max(M,N).

Returns

- `Q` [(M, K) ndarray] Orthonormal basis for the range of A. K = effective rank of A, as determined by rcond
See also:

svd

Singular value decomposition of a matrix

null_space

Matrix null space

Examples

```python
>>> from scipy.linalg import orth
>>> A = np.array([[2, 0], [0, 5]]) # rank 2 array
>>> orth(A)
array([[0., 1.],
       [1., 0.]])
>>> orth(A.T)
array([[0., 1.],
       [1., 0.],
       [0., 0.]])
```

`scipy.linalg.null_space`

`scipy.linalg.null_space(A, rcond=None)`

Construct an orthonormal basis for the null space of A using SVD

Parameters

- **A** [(M, N) array_like] Input array
- **rcond** [float, optional] Relative condition number. Singular values s smaller than `rcond * max(s)` are considered zero. Default: floating point eps * max(M,N).

Returns

- **Z** [(N, K) ndarray] Orthonormal basis for the null space of A. K = dimension of effective null space, as determined by rcond

See also:

svd

Singular value decomposition of a matrix

orth

Matrix range
Examples

1-D null space:

```python
>>> from scipy.linalg import null_space
>>> A = np.array([[1, 1], [1, 1]])
>>> ns = null_space(A)
>>> ns * np.sign(ns[0, 0])  # Remove the sign ambiguity of the vector
array([[ 0.70710678],
       [-0.70710678]])
```

2-D null space:

```python
>>> from numpy.random import default_rng
>>> rng = default_rng()
>>> B = rng.random((3, 5))
>>> Z = null_space(B)
>>> Z.shape
(5, 2)
>>> np.allclose(B.dot(Z), 0)
True
```

The basis vectors are orthonormal (up to rounding error):

```python
>>> Z.T.dot(Z)
array([[ 1.00000000e+00, 6.92087741e-17],
       [ 6.92087741e-17, 1.00000000e+00]])
```

scipy.linalg.ldl

`scipy.linalg.ldl(A, lower=True, hermitian=True, overwrite_a=False, check_finite=True)`

Computes the LDL or Bunch-Kaufman factorization of a symmetric/ hermitian matrix.

This function returns a block diagonal matrix \(D \) consisting blocks of size at most 2x2 and also a possibly permuted unit lower triangular matrix \(L \) such that the factorization \(A = L D L^H \) or \(A = L D L^T \) holds. If \(lower \) is False then (again possibly permuted) upper triangular matrices are returned as outer factors.

The permutation array can be used to triangularize the outer factors simply by a row shuffle, i.e., \(\text{lu}[\text{perm}, :] \) is an upper/lower triangular matrix. This is also equivalent to multiplication with a permutation matrix \(P \cdot \text{dot}(\text{lu}) \), where \(P \) is a column-permuted identity matrix \(I[:, \text{perm}] \).

Depending on the value of the boolean lower, only upper or lower triangular part of the input array is referenced. Hence, a triangular matrix on entry would give the same result as if the full matrix is supplied.

Parameters

- **A** [array_like] Square input array
- **lower** [bool, optional] This switches between the lower and upper triangular outer factors of the factorization. Lower triangular (lower=True) is the default.
- **hermitian** [bool, optional] For complex-valued arrays, this defines whether \(A = A \cdot \text{conj}() \cdot \text{T} \) or \(A = A \cdot \text{T} \) is assumed. For real-valued arrays, this switch has no effect.
- **overwrite_a** [bool, optional] Allow overwriting data in \(A \) (may enhance performance). The default is False.
- **check_finite**
[bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

- **lu** [ndarray] The (possibly) permuted upper/lower triangular outer factor of the factorization.
- **d** [ndarray] The block diagonal multiplier of the factorization.
- **perm** [ndarray] The row-permutation index array that brings lu into triangular form.

Raises

- **ValueError**
 If input array is not square.
- **ComplexWarning**
 If a complex-valued array with nonzero imaginary parts on the diagonal is given and hermitian is set to True.

See also:

````
cholesky, lu
````

Notes

This function uses ?SYTRF routines for symmetric matrices and ?HETRF routines for Hermitian matrices from LAPACK. See [1] for the algorithm details.

Depending on the `lower` keyword value, only lower or upper triangular part of the input array is referenced. Moreover, this keyword also defines the structure of the outer factors of the factorization.

New in version 1.1.0.

References

[1]

Examples

Given an upper triangular array `a` that represents the full symmetric array with its entries, obtain `l`, ‘d’ and the permutation vector `perm`:

```
>>> import numpy as np
>>> from scipy.linalg import ldl
>>> a = np.array([[2, -1, 3], [0, 2, 0], [0, 0, 1]])
>>> lu, d, perm = ldl(a, lower=0)  # Use the upper part
>>> lu
array([[ 0. , 0. , 1. ],
       [ 0. , 1. , -0.5],
       [ 1. , 1. , 1.5]])
>>> d
array([[-5. , 0. , 0. ],
       [ 0. , 1.5, 0. ],
       [ 0. , 0. , 2. ]])
>>> perm
```

(continues on next page)
array([2, 1, 0])

```python
>>> lu[perm, :]
array([[ 1. , 1. , 1.5],
       [ 0. , 1. , -0.5],
       [ 0. , 0. , 1. ]])
```

```python
>>> lu.dot(d).dot(lu.T)
array([[ 2., -1., 3.],
       [-1., 2., 0.],
       [ 3., 0., 1.]])
```

scipy.linalg.cholesky

(scipy.linalg.cholesky (a, lower=False, overwrite_a=False, check_finite=True)

Compute the Cholesky decomposition of a matrix.

Returns the Cholesky decomposition, $A = L L^*$ or $A = U^* U$ of a Hermitian positive-definite matrix A.

Parameters

- **a** : [(M, M) array_like] Matrix to be decomposed
- **lower** : [bool, optional] Whether to compute the upper- or lower-triangular Cholesky factorization. Default is upper-triangular.
- **overwrite_a** : [bool, optional] Whether to overwrite data in a (may improve performance).
- **check_finite** : [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

- **c** : [(M, M) ndarray] Upper- or lower-triangular Cholesky factor of a.

Raises

- **LinAlgError** [if decomposition fails.]

Examples

```python
>>> from scipy.linalg import cholesky
>>> a = np.array([[1,-2j],[2j,5]])
>>> L = cholesky(a, lower=True)
>>> L
array([[ 1.+0.j, 0.+0.j],
       [ 0.+2.j, 1.+0.j]])
>>> L @ L.conj().T
array([[ 1.+0.j, 0.-2.j],
       [ 0.+2.j, 5.+0.j]])
```
scipy.linalg.cholesky_banded

scipy.linalg.cholesky_banded(ab, overwrite_ab=False, lower=False, check_finite=True)

Cholesky decompose a banded Hermitian positive-definite matrix

The matrix a is stored in ab either in lower-diagonal or upper-diagonal ordered form:

<table>
<thead>
<tr>
<th>i-j</th>
<th>j</th>
<th>ab[i,j]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>if upper form; i <= j</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if lower form; i >= j</td>
</tr>
</tbody>
</table>

Example of ab (shape of a is (6,6), u=2):

```
upper form:
*   *   a02  a13  a24  a35
*  a01  a12  a23  a34  a45
a00  a11  a22  a33  a44  a55

lower form:
a00  a11  a22  a33  a44  a55
a10  a21  a32  a43  a54 *
*   a20  a31  a42  a53 *
```

Parameters

- **ab**
 ([u + 1, M] array_like) Banded matrix
- **overwrite_ab**
 [bool, optional] Discard data in ab (may enhance performance)
- **lower**
 [bool, optional] Is the matrix in the lower form. (Default is upper form)
- **check_finite**
 [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

- **c**
 ([u + 1, M] ndarray) Cholesky factorization of a, in the same banded format as ab

See also:

- **cho_solve_banded**
 Solve a linear set equations, given the Cholesky factorization of a banded Hermitian.

Examples

```python
>>> from scipy.linalg import cholesky_banded
>>> from numpy import allclose, zeros, diag
>>> Ab = np.array([[[0, 0, 1j, 2, 3 j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]]
>>> A = np.diag(Ab[0, 2: ], k=2) + np.diag(Ab[1, 1: ], k=1)
>>> A = A + A.conj().T + np.diag(Ab[2, :])
>>> c = cholesky_banded(A)
>>> C = np.diag(c[0, 2: ], k=2) + np.diag(c[1, 1: ], k=1) + np.diag(c[2, :])
>>> np.allclose(C.conj().T @ C - A, np.zeros((5, 5)))
True
```
scipy.linalg.cho_factor

scipy.linalg.cho_factor(*a*, *lower=False*, *overwrite_a=False*, *check_finite=True*)

Compute the Cholesky decomposition of a matrix, to use in cho_solve.

Returns a matrix containing the Cholesky decomposition, \(A = L L^* \) or \(A = U^* U \) of a Hermitian positive-definite matrix \(a \). The return value can be directly used as the first parameter to cho_solve.

Warning: The returned matrix also contains random data in the entries not used by the Cholesky decomposition. If you need to zero these entries, use the function `cholesky` instead.

Parameters

- **a** [(M, M) array_like] Matrix to be decomposed
- **lower** [bool, optional] Whether to compute the upper or lower triangular Cholesky factorization (Default: upper-triangular)
- **overwrite_a** [bool, optional] Whether to overwrite data in a (may improve performance)
- **check_finite** [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

- **c** [(M, M) ndarray] Matrix whose upper or lower triangle contains the Cholesky factor of \(a \). Other parts of the matrix contain random data.
- **lower** [bool] Flag indicating whether the factor is in the lower or upper triangle

Raises

- LinAlgError

 Raised if decomposition fails.

See also:

- **cho_solve**

 Solve a linear set equations using the Cholesky factorization of a matrix.

Examples

```python
>>> from scipy.linalg import cho_factor
>>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]])
>>> c, low = cho_factor(A)
>>> c
array([[3.    , 1.    , 0.33333333, 1.66666667],
       [3.    , 2.44948974, 1.90515869, -0.27216553],
       [1.    , 5.    , 2.29330749, 0.8559528 ],
       [5.    , 1.    , 2.    , 1.55418563]])
>>> np.allclose(np.triu(c).T @ np.triu(c) - A, np.zeros((4, 4)))
True
```
scipy.linalg.cho_solve

`scipy.linalg.cho_solve(c_and_lower, b, overwrite_b=False, check_finite=True)`

Solve the linear equations \(A x = b \), given the Cholesky factorization of \(A \).

Parameters

- `(c, lower)`
 [tuple, (array, bool)] Cholesky factorization of \(A \), as given by `cho_factor`.
- `b`
 [array] Right-hand side.
- `overwrite_b`
 [bool, optional] Whether to overwrite data in \(b \) (may improve performance).
- `check_finite`
 [bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

- `x`
 [array] The solution to the system \(A x = b \).

Examples

```python
>>> from scipy.linalg import cho_factor, cho_solve
>>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]])
>>> c, low = cho_factor(A)
>>> x = cho_solve((c, low), [1, 1, 1, 1])
>>> np.allclose(A @ x - [1, 1, 1, 1], np.zeros(4))
True
```

scipy.linalg.cho_solve_banded

`scipy.linalg.cho_solve_banded(cb_and_lower, b, overwrite_b=False, check_finite=True)`

Solve the linear equations \(A x = b \), given the Cholesky factorization of the banded Hermitian \(A \).

Parameters

- `(cb, lower)`
 [tuple, (ndarray, bool)] \(cb \) is the Cholesky factorization of \(A \), as given by `cholesky_banded`. `lower` must be the same value that was given to `cholesky_banded`.
- `b`
 [array_like] Right-hand side.
- `overwrite_b`
 [bool, optional] If True, the function will overwrite the values in \(b \).
- `check_finite`
 [bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

- `x`
 [array] The solution to the system \(A x = b \).

Examples

```python
>>> from scipy.linalg import cho_factor, cho_solve
>>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]])
>>> c, low = cho_factor(A)
>>> x = cho_solve((c, low), [1, 1, 1, 1])
>>> np.allclose(A @ x - [1, 1, 1, 1], np.zeros(4))
True
```
cholesky_banded

Cholesky factorization of a banded matrix

Notes

New in version 0.8.0.

Examples

```python
>>> from scipy.linalg import cholesky_banded, cho_solve_banded
>>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]])
>>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1)
>>> A = A + A.conj().T + np.diag(Ab[2,:])
>>> c = cholesky_banded(Ab)
>>> x = cho_solve_banded((c, False), np.ones(5))
>>> np.allclose(A @ x - np.ones(5), np.zeros(5))
True
```

scipy.linalg.polar

```python
scipy.linalg.polar(a, side='right')
```

Compute the polar decomposition.

Returns the factors of the polar decomposition [1] \(u \) and \(p \) such that \(a = up \) (if \(side \) is “right”) or \(a = pu \) (if \(side \) is “left”), where \(p \) is positive semidefinite. Depending on the shape of \(a \), either the rows or columns of \(u \) are orthonormal. When \(a \) is a square array, \(u \) is a square unitary array. When \(a \) is not square, the “canonical polar decomposition” [2] is computed.

Parameters

- **a**
 - (m, n) array_like The array to be factored.
- **side**
 - {'left', 'right'}, optional Determines whether a right or left polar decomposition is computed. If \(side \) is “right”, then \(a = up \). If \(side \) is “left”, then \(a = pu \). The default is “right”.

Returns

- **u**
 - (m, n) ndarray If \(a \) is square, then \(u \) is unitary. If \(m > n \), then the columns of \(a \) are orthonormal, and if \(m < n \), then the rows of \(u \) are orthonormal.
- **p**
 - ndarray \(p \) is Hermitian positive semidefinite. If \(a \) is nonsingular, \(p \) is positive definite. The shape of \(p \) is (n, n) or (m, m), depending on whether \(side \) is “right” or “left”, respectively.

References

[1], [2]
Examples

```python
>>> from scipy.linalg import polar
>>> a = np.array([[1, -1], [2, 4]])
>>> u, p = polar(a)
>>> u
array([[ 0.85749293, -0.51449576],
       [ 0.51449576, 0.85749293]])
>>> p
array([[ 1.88648444, 1.2004901 ],
       [ 1.2004901 , 3.94446746]])

A non-square example, with m < n:

```python
>>> b = np.array([[0.5, 1, 2], [1.5, 3, 4]])
>>> u, p = polar(b)
>>> u
array([[-0.21196618, 0.39378971, -0.42393237, 0.88054056],
 [0.39378971, 0.78757942, 0.4739708]])
>>> p
array([[0.48470147, 0.96940295, 1.15122648],
 [0.96940295, 1.9388059 , 2.30245295],
 [1.15122648, 2.30245295, 3.65696431]])

```python
>>> u.dot(p)  # Verify the decomposition.
array([[ 0.5, 1. , 2. ],
       [ 1.5, 3. , 4. ]])
>>> u.T.dot(u)  # The rows of u are orthonormal.
array([[ 1.00000000e+00, -2.07353665e-17],
       [ -2.07353665e-17, 1.00000000e+00]])
```

Another non-square example, with m > n:

```python
>>> c = b.T
>>> u, p = polar(c)
>>> u
array([[-0.21196618, 0.39378971, -0.42393237, 0.88054056],
       [ 0.42393237, 0.78757942, 0.4739708 ]])
>>> p
array([[ 1.23116567, 1.93241587],
       [ 1.93241587, 4.84930602]])

```python
>>> u.dot(p) # Verify the decomposition.
array([[0.5, 1.5],
 [1. , 3.],
 [2. , 4.]])
>>> u.T.dot(u) # The columns of u are orthonormal.
array([[1.00000000e+00, -1.26363763e-16],
 [-1.26363763e-16, 1.00000000e+00]])
```

3.3. API definition
scipy.linalg.qr

scipy.linalg.qr (a, overwrite_a=False, lwork=None, mode='full', pivoting=False, check_finite=True)

Compute QR decomposition of a matrix.

Calculate the decomposition $A = QR$ where $Q$ is unitary/orthogonal and $R$ upper triangular.

Parameters

- **a** [(M, N) array_like] Matrix to be decomposed
- **overwrite_a** [bool, optional] Whether data in $a$ is overwritten (may improve performance if overwrite_a is set to True by reusing the existing input data structure rather than creating a new one.)
- **lwork** [int, optional] Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is computed.
- **mode** [{'full', 'r', 'economic', 'raw'}, optional] Determines what information is to be returned: either both $Q$ and $R$ ('full', default), only $R$ ('r') or both $Q$ and $R$ but computed in economy-size ('economic', see Notes). The final option 'raw' (added in SciPy 0.11) makes the function return two matrices $(Q, TAU)$ in the internal format used by LAPACK.
- **pivoting** [bool, optional] Whether or not factorization should include pivoting for rank-revealing qr decomposition. If pivoting, compute the decomposition $A P = QR$ as above, but where $P$ is chosen such that the diagonal of $R$ is non-increasing.
- **check_finite** [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

- **Q** [float or complex ndarray] Of shape (M, M), or (M, K) for mode='economic'. Not returned if mode='r'.
- **R** [float or complex ndarray] Of shape (M, N), or (K, N) for mode='economic'. K = min(M, N).
- **P** [int ndarray] Of shape (N,) for pivoting=True. Not returned if pivoting=False.

Raises

LinAlgError

Raised if decomposition fails.

Notes

This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, zungqr, dgeqp3, and zgeqp3.

If mode=economic, the shapes of Q and R are (M, K) and (K, N) instead of (M, M) and (M, N), with K=min(M, N).

Examples

```python
>>> from scipy import linalg
>>> rng = np.random.default_rng()
>>> a = rng.standard_normal((9, 6))
```
```python
>>> q, r = linalg.qr(a)
>>> np.allclose(a, np.dot(q, r))
True
>>> q.shape, r.shape
((9, 9), (9, 6))

>>> r2 = linalg.qr(a, mode='r')
>>> np.allclose(r, r2)
True

>>> q3, r3 = linalg.qr(a, mode='economic')
>>> q3.shape, r3.shape
((9, 9), (9, 6))

>>> q4, r4, p4 = linalg.qr(a, pivoting=True)
>>> np.allclose(a[:, p4], np.dot(q4, r4))
True
>>> q4.shape, r4.shape, p4.shape
((9, 9), (9, 6), (6,))

>>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True)
>>> q5.shape, r5.shape, p5.shape
((9, 6), (6, 6), (6,))
```

**scipy.linalg.qr_multiply**

`scipy.linalg.qr_multiply(a, c, mode='right', pivoting=False, conjugate=False, overwrite_a=False, overwrite_c=False)`

Calculate the QR decomposition and multiply Q with a matrix.

Calculate the decomposition \( A = Q R \) where Q is unitary/orthogonal and R upper triangular. Multiply Q with a vector or a matrix c.

**Parameters**

- **a** [(M, N), array_like] Input array
- **c** [array_like] Input array to be multiplied by q.
- **mode** [{'left', 'right'}, optional] Q @ c is returned if mode is 'left', c @ Q is returned if mode is 'right'. The shape of c must be appropriate for the matrix multiplications, if mode is 'left', min(a.shape) == c.shape[0], if mode is 'right', a.shape[0] == c.shape[1].
- **pivoting** [bool, optional] Whether or not factorization should include pivoting for rank-revealing qr decomposition, see the documentation of qr.
- **conjugate** [bool, optional] Whether Q should be complex-conjugated. This might be faster than explicit conjugation.
- **overwrite_a** [bool, optional] Whether data in a is overwritten (may improve performance)
- **overwrite_c** [bool, optional] Whether data in c is overwritten (may improve performance). If this is used, c must be big enough to keep the result, i.e. c.shape[0] = a.shape[0] if mode is 'left'.
Returns

CQ  [ndarray] The product of Q and c.
R  [(K, N), ndarray] R array of the resulting QR factorization where K = min(M, N).
P  [(N,) ndarray] Integer pivot array. Only returned when pivoting=True.

Raises

LinAlgError
Raised if QR decomposition fails.

Notes

This is an interface to the LAPACK routines ?GEQRF, ?ORMQR, ?UNMQR, and ?GEQP3.
New in version 0.11.0.

Examples

```python
>>> from scipy.linalg import qr_multiply, qr
>>> A = np.array([[1, 3, 3], [2, 3, 2], [2, 3, 3], [1, 3, 2]])
>>> qc, r1, piv1 = qr_multiply(A, 2*np.eye(4), pivoting=1)
>>> qc
array([[-1., 1., -1.],
 [-1., -1., 1.],
 [-1., -1., -1.],
 [-1., 1., 1.]]);
>>> r1
array([[-6., -3., -5.],
 [0., -1., -1.11022302e-16],
 [0., 0., -1.]]);
>>> piv1
array([1, 0, 2], dtype=int32)
>>> q2, r2, piv2 = qr(A, mode='economic', pivoting=1)
>>> np.allclose(2*q2 - qc, np.zeros((4, 3)))
True
```

scipy.linalg.qr_update

scipy.linalg.qr_update(Q, R, u, v, overwrite_qruv=False, check_finite=True)

Rank-k QR update

If A = QR is the QR factorization of A, return the QR factorization of A + u v**T for real A or A + u v**H for complex A.

Parameters

Q  [(M, M) or (M, N) array_like] Unitary/orthogonal matrix from the qr decomposition of A.
R  [(M, N) or (N, N) array_like] Upper triangular matrix from the qr decomposition of A.
u  [(M,) or (M, k) array_like] Left update vector
v  [(N,) or (N, k) array_like] Right update vector
overwrite_qruv  [bool, optional] If True, consume Q, R, u, and v, if possible, while performing the update, otherwise make copies as necessary. Defaults to False.
check_finite

[bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default is True.

Returns

Q1 [ndarray] Updated unitary/orthogonal factor
R1 [ndarray] Updated upper triangular factor

See also:

qr, qr_multiply, qr_delete, qr_insert

Notes

This routine does not guarantee that the diagonal entries of R1 are real or positive.

New in version 0.16.0.

References

[1], [2], [3]

Examples

```python
>>> from scipy import linalg
>>> a = np.array([[3., -2., -2.],
... [6., -9., -3.],
... [-3., 10., 1.],
... [6., -7., 4.],
... [7., 8., -6.]])
>>> q, r = linalg.qr(a)
```

Given this q, r decomposition, perform a rank 1 update.

```python
>>> u = np.array([7., -2., 4., 3., 5.])
>>> v = np.array([1., 3., -5.])
>>> q_up, r_up = linalg.qr_update(q, r, u, v, False)
>>> q_up
array([[0.54073807, 0.18645997, 0.81707661, -0.02136616, 0.06902409],
 [0.21629523, -0.63257324, 0.06567893, 0.34125904, -0.65749222],
 [0.05407381, 0.64757787, -0.12781284, -0.20031219, -0.72198188],
 [0.48666426, -0.30466718, -0.27487277, -0.77079214, 0.0256951],
 [0.64888568, 0.23001 , -0.4859845 , 0.49883891, 0.20253783]])
```

```python
>>> r_up
array([[18.49324201, 24.11691794, -44.98940746],
 [0. , 31.95894662, -27.40998201],
 [0. , 0. , 9.25179414],
 [0. , 0. , 0.],
 [0. , 0. , 0.]])
```

The update is equivalent, but faster than the following.

```python
>>> a_up = a + np.outer(u, v)
>>> q_direct, r_direct = linalg.qr(a_up)

Check that we have equivalent results:
```n
```python
>>> np.allclose(np.dot(q_up, r_up), a_up)
True

And the updated Q is still unitary:
```n
```python
>>> np.allclose(np.dot(q_up.T, q_up), np.eye(5))
True

Updating economic (reduced, thin) decompositions is also possible:
```n
```python
>>> qe, re = linalg.qr(a, mode='economic')
>>> qe_up, re_up = linalg.qr_update(qe, re, u, v, False)
>>> qe_up
array([[0.54073807, 0.18645997, 0.81707661], # may vary (signs)
 [0.21629523, -0.63257324, 0.06567893],
 [0.05407381, 0.64757787, -0.12781284],
 [0.48666426, -0.30466718, -0.27487277],
 [0.64888568, 0.23001 , -0.4859845]])
>>> re_up
array([[18.49324201, 24.11691794, -44.98940746], # may vary (signs)
 [0. , 31.95894662, -27.40998201],
 [0. , 0. , -9.25451794]])
>>> np.allclose(np.dot(qe_up, re_up), a_up)
True
>>> np.allclose(np.dot(qe_up.T, qe_up), np.eye(3))
True

Similarly to the above, perform a rank 2 update.
```n
```python
>>> u2 = np.array([[7. , -1.],
 [-2. , 4.],
 [4. , 2.],
 [3. , -6.],
 [5. , 3.]])
>>> v2 = np.array([[1. , 2.],
 [3. , 4.],
 [5. , 2.]])
>>> q_up2, r_up2 = linalg.qr_update(q, r, u2, v2, False)
>>> q_up2
array([[-0.33626508, -0.03477253, 0.61956287, -0.64352987, -0.29618884], # may vary (signs)
 [-0.50439762, 0.58319694, -0.43010077, -0.33395279, 0.33008064],
 [-0.21016568, -0.63123106, 0.0582249 , -0.13675572, 0.73163206],
 [0.12609941, 0.49694436, 0.64590024, 0.31191919, 0.47187344],
 [-0.75659643, -0.11517748, 0.10284903, 0.5986227 , -0.21299983]])
>>> r_up2
array([[23.79075451, -41.1084062 , 24.71548348], # may vary (signs)
 [0. , -33.83931057, 11.02226551],
 [...]])
```

(continues on next page)
This update is also a valid qr decomposition of \( A + U V^T \).

```python
>>> a_up2 = a + np.dot(u2, v2.T)
>>> np.allclose(a_up2, np.dot(q_up2, r_up2))
True
>>> np.allclose(np.dot(q_up2.T, q_up2), np.eye(5))
True
```

**scipy.linalg.qr_delete**

scipy.linalg.qr_delete \((Q, R, k, int p=1, which='row', overwrite_qr=False, check_finite=True)\)

QR downdate on row or column deletions

If \( A = Q R \) is the QR factorization of \( A \), return the QR factorization of \( A \) where \( p \) rows or columns have been removed starting at row or column \( k \).

**Parameters**

- \( Q \) [(M, M) or (M, N) array_like] Unitary/orthogonal matrix from QR decomposition.
- \( R \) [(M, N) or (N, N) array_like] Upper triangular matrix from QR decomposition.
- \( k \) [int] Index of the first row or column to delete.
- \( p \) [int, optional] Number of rows or columns to delete, defaults to 1.
- \( which: \{\text{'row'}, \text{'col'}\} \), optional
  - Determines if rows or columns will be deleted, defaults to 'row'
- \( overwrite_qr \) [bool, optional] If True, consume \( Q \) and \( R \), overwriting their contents with their downdated versions, and returning appropriately sized views. Defaults to False.
- \( check_finite \) [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default is True.

**Returns**

- \( Q1 \) [ndarray] Updated unitary/orthogonal factor
- \( R1 \) [ndarray] Updated upper triangular factor

**See also:**

- \( qr, qr\_multiply, qr\_insert, qr\_update \)

**Notes**

This routine does not guarantee that the diagonal entries of \( R1 \) are positive.

New in version 0.16.0.
References

[1], [2], [3]

Examples

```python
>>> from scipy import linalg
>>> a = np.array([[3., -2., -2.],
... [6., -9., -3.],
... [-3., 10., 1.],
... [6., -7., 4.],
... [7., 8., -6.]])
>>> q, r = linalg.qr(a)

Given this QR decomposition, update q and r when 2 rows are removed.

```python
>>> q1, r1 = linalg.qr_delete(q, r, 2, 2, 'row', False)
>>> q1
array([[ 0.30942637, 0.15347579, 0.93845645],  # may vary (signs)
        [ 0.61885275, 0.71680171, -0.32127338],
        [ 0.72199487, -0.68017681, -0.12681844]])

```python
>>> r1
array([[9.69535971, -0.4125685 , -6.80738023], # may vary (signs)
 [0. , -12.19958144, 1.62370412],
 [0. , 0. , -0.15218213]])

```python
The update is equivalent, but faster than the following.

```python
>>> a1 = np.delete(a, slice(2,4), 0)
>>> a1
array([[3., -2., -2.],
 [6., -9., -3.],
 [7., 8., -6.]])
>>> q_direct, r_direct = linalg.qr(a1)

Check that we have equivalent results:

```python
>>> np.dot(q1, r1)
array([[ 3., -2., -2.],
        [ 6., -9., -3.],
        [ 7.,  8., -6.]]))
>>> np.allclose(np.dot(q1, r1), a1)
True

And the updated Q is still unitary:

```python
>>> np.allclose(np.dot(q1.T, q1), np.eye(3))
True
```
scipy.linalg.qr_insert

scipy.linalg.qr_insert (Q, R, u, k, which='row', rcond=None, overwrite_qru=False, check_finite=True)

QR update on row or column insertions

If \( A = Q R \) is the QR factorization of \( A \), return the QR factorization of \( A \) where rows or columns have been inserted starting at row or column \( k \).

**Parameters**

- **Q**
  - ([M, M] array_like) Unitary/orthogonal matrix from the QR decomposition of \( A \).
- **R**
  - ([M, N] array_like) Upper triangular matrix from the QR decomposition of \( A \).
- **u**
  - ([N,], (p, N), (M,), or (M, P) array_like) Rows or columns to insert
- **k**
  - [int] Index before which \( u \) is to be inserted.
- **which**: {'row', 'col'}, optional
  - Determines if rows or columns will be inserted, defaults to 'row'
- **rcond**
  - [float] Lower bound on the reciprocal condition number of \( Q \) augmented with \( \frac{u}{|u|} \)
  - Only used when updating economic mode (thin, (M,N) (N,N)) decompositions. If None, machine precision is used. Defaults to None.
- **overwrite_qru**
  - [bool, optional] If True, consume Q, R, and u, if possible, while performing the update, otherwise make copies as necessary. Defaults to False.
- **check_finite**
  - [bool, optional] Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default is True.

**Returns**

- **Q1**
  - [ndarray] Updated unitary/orthogonal factor
- **R1**
  - [ndarray] Updated upper triangular factor

**Raises**

- **LinAlgError**
  - If updating a (M,N) (N,N) factorization and the reciprocal condition number of \( Q \) augmented with \( u/|u| \) is smaller than rcond.

**See also:**

- qr, qr_multiply, qr_delete, qr_update

**Notes**

This routine does not guarantee that the diagonal entries of \( R1 \) are positive.

New in version 0.16.0.
References

[1], [2], [3]

Examples

```python
>>> from scipy import linalg
>>> a = np.array([[3., -2., -2.],
... [6., -7., 4.],
... [7., 8., -6.]])
>>> q, r = linalg qr(a)
```

Given this QR decomposition, update q and r when 2 rows are inserted.

```python
>>> u = np.array([[6., -9., -3.],
... [-3., 10., 1.]])
>>> q1, r1 = linalg qr_insert(q, r, u, 2, 'row')
>>> q1
array([[-0.25445668, 0.02246245, 0.18146236, -0.72798806, 0.60979671],
 [-0.50891336, 0.23226178, -0.82836478, -0.02837033, -0.00828114],
 [-0.50891336, 0.35715302, 0.38937158, 0.58110733, 0.35235345],
 [0.25445668, -0.52202743, -0.32165498, 0.36263239, 0.65404509],
 [-0.59373225, -0.73856549, 0.16065817, -0.0063658 , -0.27595554]])
>>> r1
array([[-11.78982612, 6.44623587, 3.81685018], # may vary (signs)
 [0. , -16.01393278, 3.72202865],
 [0. , 0. , -6.13010256],
 [0. , 0. , 0.],
 [0. , 0. , 0.]])
```

The update is equivalent, but faster than the following.

```python
>>> a1 = np.insert(a, 2, u, 0)
>>> a1
array([[3., -2., -2.],
 [6., -7., 4.],
 [6., -9., -3.],
 [-3., 10., 1.],
 [7., 8., -6.]])
>>> q_direct, r_direct = linalg qr(a1)
```

Check that we have equivalent results:

```python
>>> np.dot(q1, r1)
array([[3., -2., -2.],
 [6., -7., 4.],
 [6., -9., -3.],
 [-3., 10., 1.],
 [7., 8., -6.]])
```

```python
>>> np.allclose(np.dot(q1, r1), a1)
True
```
And the updated Q is still unitary:

```python
>>> np.allclose(np.dot(q1.T, q1), np.eye(5))
True
```

**scipy.linalg.rq**

**scipy.linalg.rq** *(a, overwrite_a=False, lwork=None, mode='full', check_finite=True)*

Compute RQ decomposition of a matrix.

Calculate the decomposition \( A = R \cdot Q \) where Q is unitary/orthogonal and R upper triangular.

**Parameters**

- **a** ([M, N] array_like) Matrix to be decomposed
- **overwrite_a** [bool, optional] Whether data in a is overwritten (may improve performance)
- **lwork** [int, optional] Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is computed.
- **mode** [{'full', 'r', 'economic'}, optional] Determines what information is to be returned: either both Q and R ('full', default), only R ('r') or both Q and R but computed in economy-size ('economic', see Notes).
- **check_finite** [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

**Returns**

- **R** [float or complex ndarray] Of shape (M, N) or (M, K) for mode='economic'. K = min(M, N).
- **Q** [float or complex ndarray] Of shape (N, N) or (K, N) for mode='economic'. Not returned if mode='r'.

**Raises**

- **LinAlgError** If decomposition fails.

**Notes**

This is an interface to the LAPACK routines sgerqf, dgerqf, cgerqf, zgerqf, sorgqr, dorgrq, cungrq and zungrq. If mode=economic, the shapes of Q and R are (K, N) and (M, K) instead of (N,N) and (M,N), with K=min(M, N).

**Examples**

```python
>>> from scipy import linalg
>>> rng = np.random.default_rng()
>>> a = rng.standard_normal((6, 9))
>>> r, q = linalg.rq(a)
>>> np.allclose(a, r @ q)
True
>>> r.shape, q.shape
((6, 9), (9, 9))
```

(continues on next page)
scipy.linalg.qz

scipy.linalg.qz (A, B, output='real', lwork=None, sort=None, overwrite_a=False, overwrite_b=False, check_finite=True)

QZ decomposition for generalized eigenvalues of a pair of matrices.

The QZ, or generalized Schur, decomposition for a pair of n-by-n matrices (A,B) is:

\[
(A, B) = (Q \cdot AA \cdot Z^*, Q \cdot BB \cdot Z^*)
\]

where AA, BB is in generalized Schur form if BB is upper-triangular with non-negative diagonal and AA is upper-triangular, or for real QZ decomposition (output='real') block upper triangular with 1x1 and 2x2 blocks. In this case, the 1x1 blocks correspond to real generalized eigenvalues and 2x2 blocks are ‘standardized’ by making the corresponding elements of BB have the form:

\[
\begin{bmatrix}
a & 0 \\
0 & b
\end{bmatrix}
\]

and the pair of corresponding 2x2 blocks in AA and BB will have a complex conjugate pair of generalized eigenvalues. If (output='complex') or A and B are complex matrices, Z' denotes the conjugate-transpose of Z. Q and Z are unitary matrices.

Parameters

**A**
- [(N, N) array_like] 2-D array to decompose

**B**
- [(N, N) array_like] 2-D array to decompose

**output**
- [{'real', 'complex'}, optional] Construct the real or complex QZ decomposition for real matrices. Default is 'real'.

**lwork**
- [int, optional] Work array size. If None or -1, it is automatically computed.

**sort**
- [{None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional] NOTE: THIS INPUT IS DISABLED FOR NOW. Use ordqz instead.

Specifies whether the upper eigenvalues should be sorted. A callable may be passed that, given a eigenvalue, returns a boolean denoting whether the eigenvalue should be sorted to the top-left (True). For real matrix pairs, the sort function takes three real arguments (alphar, alphai, beta). The eigenvalue \(x = (\text{alphar} + \text{alphai} \cdot 1j)/\beta\). For complex matrix pairs or output='complex', the sort function takes two complex arguments (alpha, beta). The eigenvalue \(x = (alpha/beta)\). Alternatively, string parameters may be used:

- 'lhp' Left-hand plane \((x.\text{real} < 0.0)\)
- 'rhp' Right-hand plane \((x.\text{real} > 0.0)\)
- 'iuc' Inside the unit circle \((x*x.\text{conjugate()} < 1.0)\)
- 'ouc' Outside the unit circle \((x*x.\text{conjugate()} > 1.0)\)

Defaults to None (no sorting).

**overwrite_a**
- [bool, optional] Whether to overwrite data in a (may improve performance)

**overwrite_b**
- [bool, optional] Whether to overwrite data in b (may improve performance)
check_finite

[bool, optional] If true checks the elements of A and B are finite numbers. If false does no checking and passes matrix through to underlying algorithm.

Returns

AA [(N, N) ndarray] Generalized Schur form of A.
BB [(N, N) ndarray] Generalized Schur form of B.
Q [(N, N) ndarray] The left Schur vectors.
Z [(N, N) ndarray] The right Schur vectors.

See also:

ordqz

Notes

Q is transposed versus the equivalent function in Matlab.
New in version 0.11.0.

Examples

```python
>>> from scipy import linalg
>>> rng = np.random.default_rng()
>>> A = np.arange(9).reshape((3, 3))
>>> B = rng.standard_normal((3, 3))
>>> AA, BB, Q, Z = linalg.qz(A, B)
>>> AA
array([[8.99591445e+00, -1.07917902e+01, -2.18309912e+00],
 [0.00000000e+00, -8.60837546e-01, 1.05063006e+00],
 [0.00000000e+00, 0.00000000e+00, 1.40584278e-15]])
>>> BB
array([[0.2058989 , -0.6007898 , -0.5771396],
 [0.00000000e+00, 1.6997737 , -1.12160842],
 [0.00000000e+00, 0.00000000e+00, 1.76304656]])
>>> Q
array([[0.10356118, 0.90697763, -0.40824829],
 [0.48575095, 0.31205664, 0.81649658],
 [0.86794072, -0.28286434, -0.40824829]])
>>> Z
array([[0.78900531, 0.16010775, -0.59315776],
 [-0.21754047, -0.83009894, -0.51343148],
 [0.57458399, -0.53413598, 0.62012256]])
```
scipy.linalg.ordqz

**scipy.linalg.ordqz** (A, B, sort=’lhp’, output=’real’, overwrite_a=False, overwrite_b=False, check_finite=True)

QZ decomposition for a pair of matrices with reordering.

**Parameters**

- **A** [(N, N) array_like] 2-D array to decompose
- **B** [(N, N) array_like] 2-D array to decompose
- **sort** [{callable, ‘lhp’, ‘rhp’, ‘iuc’, ‘ouc’}, optional] Specifies whether the upper eigenvalues should be sorted. A callable may be passed that, given an ordered pair (alpha, beta) representing the eigenvalue \( x = \frac{\alpha}{\beta} \), returns a boolean denoting whether the eigenvalue should be sorted to the top-left (True). For the real matrix pairs beta is real while alpha can be complex, and for complex matrix pairs both alpha and beta can be complex. The callable must be able to accept a NumPy array. Alternatively, string parameters may be used:
  - ‘lhp’ Left-hand plane (x.real < 0.0)
  - ‘rhp’ Right-hand plane (x.real > 0.0)
  - ‘iuc’ Inside the unit circle (x*x.conjugate() < 1.0)
  - ‘ouc’ Outside the unit circle (x*x.conjugate() > 1.0)

With the predefined sorting functions, an infinite eigenvalue (i.e., alpha != 0 and beta = 0) is considered to lie in neither the left-hand nor the right-hand plane, but it is considered to lie outside the unit circle. For the eigenvalue (alpha, beta) = (0, 0), the predefined sorting functions all return False.

- **output** [str {‘real’,’complex’}, optional] Construct the real or complex QZ decomposition for real matrices. Default is ‘real’.

- **overwrite_a** [bool, optional] If True, the contents of A are overwritten.

- **overwrite_b** [bool, optional] If True, the contents of B are overwritten.

- **check_finite** [bool, optional] If true checks the elements of A and B are finite numbers. If false does no checking and passes matrix through to underlying algorithm.

**Returns**

- **AA** [(N, N) ndarray] Generalized Schur form of A.
- **BB** [(N, N) ndarray] Generalized Schur form of B.
- **alpha** [(N,) ndarray] alpha = alphar + alphai * 1j. See notes.
- **beta** [(N,) ndarray] See notes.
- **Q** [(N, N) ndarray] The left Schur vectors.
- **Z** [(N, N) ndarray] The right Schur vectors.

**See also:**

qz
Notes

On exit, \((\text{ALPHAR}(j) + \text{ALPHAI}(j)\cdot i)/\text{BETA}(j), j=1,\ldots,N\), will be the generalized eigenvalues. \(\text{ALPHAR}(j) + \text{ALPHAI}(j)\cdot i\) and \(\text{BETA}(j), j=1,\ldots,N\) are the diagonals of the complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of (A,B) were further reduced to triangular form using complex unitary transformations. If ALPHAI(j) is zero, then the jth eigenvalue is real; if positive, then the jth and (j+1)st eigenvalues are a complex conjugate pair, with \(\text{ALPHAI}(j+1)\) negative.

New in version 0.17.0.

Examples

```python
>>> from scipy.linalg import ordqz
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
>>> B = np.array([[0, 6, 0, 0], [5, 0, 2, 1], [5, 2, 6, 6], [4, 7, 7, 7]])
>>> AA, BB, alpha, beta, Q, Z = ordqz(A, B, sort='lhp')
```

Since we have sorted for left half plane eigenvalues, negatives come first

```python
>>> (alpha/beta).real < 0
array([True, True, False, False], dtype=bool)
```

SciPy.linalg.schur

SciPy.linalg.schur(a, output='real', lwork=None, overwrite_a=False, sort=None, check_finite=True)

Compute Schur decomposition of a matrix.

The Schur decomposition is:

\[
A = Z T Z^\mathsf{H}
\]

where \(Z\) is unitary and \(T\) is either upper-triangular, or for real Schur decomposition (output='real'), quasi-upper triangular. In the quasi-triangular form, 2x2 blocks describing complex-valued eigenvalue pairs may extrude from the diagonal.

Parameters

- **a** [(M, M) array_like] Matrix to decompose
- **output** [{‘real’, ‘complex’}, optional] Construct the real or complex Schur decomposition (for real matrices).
- **lwork** [int, optional] Work array size. If None or -1, it is automatically computed.
- **overwrite_a** [bool, optional] Whether to overwrite data in a (may improve performance).
- **sort** [{None, callable, ‘lhp’, ‘rhp’, ‘iuc’, ‘ouc’}, optional] Specifies whether the upper eigenvalues should be sorted. A callable may be passed that, given an eigenvalue, returns a boolean denoting whether the eigenvalue should be sorted to the top-left (True). Alternatively, string parameters may be used:

  - ‘lhp’ Left-hand plane \((x.\text{real} < 0.0)\)
  - ‘rhp’ Right-hand plane \((x.\text{real} > 0.0)\)
  - ‘iuc’ Inside the unit circle \((x^*x.\text{conjugate()} <= 1.0)\)
  - ‘ouc’ Outside the unit circle \((x^*x.\text{conjugate()} > 1.0)\)

Defaults to None (no sorting).
check_finite

[bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

\( T \) [(M, M) ndarray] Schur form of A. It is real-valued for the real Schur decomposition.

\( Z \) [(M, M) ndarray] An unitary Schur transformation matrix for A. It is real-valued for the real Schur decomposition.

\( sdim \) [int] If and only if sorting was requested, a third return value will contain the number of eigenvalues satisfying the sort condition.

Raises

LinAlgError

Error raised under three conditions:
1. The algorithm failed due to a failure of the QR algorithm to compute all eigenvalues.
2. If eigenvalue sorting was requested, the eigenvalues could not be reordered due to a failure to separate eigenvalues, usually because of poor conditioning.
3. If eigenvalue sorting was requested, roundoff errors caused the leading eigenvalues to no longer satisfy the sorting condition.

See also:

rsf2csf

Convert real Schur form to complex Schur form

Examples

```python
>>> from scipy.linalg import schur, eigvals
>>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]])
>>> T, Z = schur(A)
>>> T
array([[2.65896708, 1.42440458, -1.92933439],
 [0. , -0.32948354, -0.49063704],
 [0. , 1.31178921, -0.32948354]])
>>> Z
array([[0.72711591, -0.60156188, 0.33079564],
 [0.52839428, 0.79801892, 0.28976765],
 [0.43829436, 0.03590414, -0.89811411]])
```

```python
>>> T2, Z2 = schur(A, output='complex')
>>> T2
array([[2.65896708, -1.22839825+1.32378589j, 0.42590089+1.51937378j],
 [0. , -0.32948354+0.80225456j, -0.59877807+0.56192146j],
 [0. , 0. , -0.32948354-0.80225456j]])
>>> eigvals(T2)
array([2.65896708, -0.32948354+0.80225456j, -0.32948354-0.80225456j])
```

An arbitrary custom eig-sorting condition, having positive imaginary part, which is satisfied by only one eigenvalue

```
>>> T3, Z3, sdim = schur(A, output='complex', sort=lambda x: x.imag > 0)
>>> sdim
1
```

**scipy.linalg.rsfs2csf**

`scipy.linalg.rsfs2csf(T, Z, check_finite=True)`

Convert real Schur form to complex Schur form.

Convert a quasi-diagonal real-valued Schur form to the upper-triangular complex-valued Schur form.

**Parameters**

- `T`: [(M, M) array_like] Real Schur form of the original array
- `Z`: [(M, M) array_like] Schur transformation matrix
- `check_finite`: [bool, optional] Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

**Returns**

- `T`: [(M, M) ndarray] Complex Schur form of the original array
- `Z`: [(M, M) ndarray] Schur transformation matrix corresponding to the complex form

**Examples**

```python
>>> from scipy.linalg import schur, rsfs2csf
>>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]])
>>> T, Z = schur(A)
>>> T
array([[2.65896708, 1.42440458, -1.92933439],
 [0. , -0.32948354, -0.49063704],
 [0. , 1.31178921, -0.32948354]])
>>> Z
array([[0.72711591, 0.28220393, 0.51319638],
 [0.52839428, 0.24720268, -0.68795175],
 [0.43829436, 0.03590414, -0.03063006]])
>>> T2, Z2 = rsfs2csf(T, Z)
>>> T2
array([[2.65896708+0.j, -1.64592781+0.74316418j, -1.21516887+1.00660462j],
 [0.+0.j, -0.32948354+8.02254558e-01j, -0.82115218-2.77555756e-17j],
 [0.+0.j, 0.+0.j, -0.32948354-0.802254558j]])
>>> Z2
array([[0.72711591+0.j, 0.28220393-0.31385693j, 0.51319638-0.17258824j],
 [0.52839428+0.j, 0.24720268+0.41635578j, -0.68795175-0.15118243j],
 [0.43829436+0.j, -0.76618703+0.01873251j, -0.03063006+0.46857912j]])
```

(continues on next page)
scipy.linalg.hessenberg

The Hessenberg decomposition is:

\[ A = Q H Q^H \]

where \( Q \) is unitary/orthogonal and \( H \) has only zero elements below the first sub-diagonal.

### Parameters

- **a** : [(M, M) array_like] Matrix to bring into Hessenberg form.
- **calc_q** : [bool, optional] Whether to compute the transformation matrix. Default is False.
- **overwrite_a** : [bool, optional] Whether to overwrite \( a \); may improve performance. Default is False.
- **check_finite** : [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

### Returns

- **H** : [(M, M) ndarray] Hessenberg form of \( a \).
- **Q** : [(M, M) ndarray] Unitary/orthogonal similarity transformation matrix \( A = Q H Q^H \). Only returned if calc_q=True.

### Examples

```python
>>> from scipy.linalg import hessenberg
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
>>> H, Q = hessenberg(A, calc_q=True)
>>> H
array([[2.00000000e+00, -1.16584387e+01, 1.42005301e+00, 2.53490660e+00],
 [-9.94987437e+00, 1.45353535e+01, -5.31022304e+00, 2.43081618e+00],
 [0.00000000e+00, -1.83299243e+00, 3.89699617e-01, -5.15270341e-01],
 [0.00000000e+00, 0.00000000e+00, -3.83189513e+00, 1.07494686e+00]])
```

```python
>>> np.allclose(Q @ H @ Q.conj().T - A, np.zeros((4, 4)))
True
```

scipy.linalg.cdf2rdf

Converts complex eigenvalues \( w \) and eigenvectors \( v \) to real eigenvalues in a block diagonal form \( w_r \) and the associated real eigenvectors \( v_r \), such that:

\[ v_r @ w_r = X @ v_r \]

continues to hold, where \( X \) is the original array for which \( w \) and \( v \) are the eigenvalues and eigenvectors.

New in version 1.1.0.

### Parameters

w

[(…, M) array_like] Complex or real eigenvalues, an array or stack of arrays. Conjugate pairs must not be interleaved, else the wrong result will be produced. So [1+1j, 1, 1-1j] will give a correct result, but [1+1j, 2+1j, 1-1j, 2-1j] will not.

v

[(…, M) array_like] Complex or real eigenvectors, a square array or stack of square arrays.

Returns

wr

[(…, M, M) ndarray] Real diagonal block form of eigenvalues

vr

[(…, M, M) ndarray] Real eigenvectors associated with wr

See also:

eig

Eigenvalues and right eigenvectors for non-symmetric arrays

rsf2csf

Convert real Schur form to complex Schur form

Notes

w, v must be the eigenstructure for some real matrix X. For example, obtained by w, v = scipy.linalg.eig(X) or w, v = numpy.linalg.eig(X) in which case X can also represent stacked arrays.

New in version 1.1.0.

Examples

```python
>>> X = np.array([[1, 2, 3], [0, 4, 5], [0, -5, 4]])
>>> X
array([[1., 2., 3.],
 [0., 4., 5.],
 [0., -5., 4.]])
```

```python
>>> from scipy import linalg
>>> w, v = linalg.eig(X)
>>> w
array([[1.+0.j, 4.+5.j, 4.-5.j]])
>>> v
array([[1.00000+0.j , -0.01906-0.40016j, -0.01906+0.40016j],
 [0.00000+0.j , 0.00000-0.64788j, 0.00000+0.64788j],
 [0.00000+0.j , 0.64788+0.j , 0.64788-0.j]])
```

```python
>>> wr, vr = linalg.cdf2rdf(w, v)
>>> wr
array([[1., 0., 0.],
 [0., 4., 5.],
 [0., -5., 4.]])
>>> vr
array([[1. , 0.40016, -0.01906],
 [0. , 0.64788, 0.],
 [0. , 0. , 0.64788]])
```
scipy.linalg.cossin

`scipy.linalg.cossin(X, p=None, q=None, separate=False, swap_sign=False, compute_u=True, compute_vh=True)`

Compute the cosine-sine (CS) decomposition of an orthogonal/unitary matrix.

X is an \((m, m)\) orthogonal/unitary matrix, partitioned as the following where upper left block has the shape of \((p, q)\):

\[
\begin{bmatrix}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{bmatrix} =
\begin{bmatrix}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{bmatrix} \begin{bmatrix}
I & 0 & 0 & 0 \\
0 & C & 0 & -S \\
0 & 0 & 0 & -I \\
0 & S & 0 & C
\end{bmatrix} \begin{bmatrix}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{bmatrix}
\]

\(U_1, U_2, V_1, V_2\) are square orthogonal/unitary matrices of dimensions \((p, p)\), \((m-p, m-p)\), \((q, q)\), and \((m-q, m-q)\) respectively, and \(C\) and \(S\) are \((r, r)\) nonnegative diagonal matrices satisfying \(C^2 + S^2 = I\) where \(r = \min(p, m-p, q, m-q)\).

Moreover, the rank of the identity matrices are \(\min(p, q) - r, \min(p, m-q) - r, \min(m-p, q) - r, \) and \(\min(m-p, m-q) - r\) respectively.

X can be supplied either by itself and block specifications \(p, q\) or its subblocks in an iterable from which the shapes would be derived. See the examples below.

**Parameters**

- **X** [array_like, iterable] complex unitary or real orthogonal matrix to be decomposed, or iterable of subblocks \(X_{11}, X_{12}, X_{21}, X_{22}\), when \(p, q\) are omitted.
- **p** [int, optional] Number of rows of the upper left block \(X_{11}\), used only when \(X\) is given as an array.
- **q** [int, optional] Number of columns of the upper left block \(X_{11}\), used only when \(X\) is given as an array.
- **separate** [bool, optional] if True, the low level components are returned instead of the matrix factors, i.e. \((u_1, u_2), \theta, (v_{1h}, v_{2h})\) instead of \(u, cs, vh\).
- **swap_sign** [bool, optional] if True, the \(-S, -I\) block will be the bottom left, otherwise (by default) they will be in the upper right block.
- **compute_u** [bool, optional] if False, \(u\) won’t be computed and an empty array is returned.
- **compute_vh** [bool, optional] if False, \(vh\) won’t be computed and an empty array is returned.

**Returns**

\[ \text{.ndarray} \] When `compute_u=True`, contains the block diagonal orthogonal/unitary matrix consisting of the blocks \( U_1 (p \times p) \) and \( U_2 (m-p \times m-p) \) orthogonal/unitary matrices. If `separate=True`, this contains the tuple of \( (U_1, U_2) \).

\[ \text{.ndarray} \] The cosine-sine factor with the structure described above. If `separate=True`, this contains the theta array containing the angles in radians.

\[ \text{.ndarray} \] When `compute_vh=True`, contains the block diagonal orthogonal/unitary matrix consisting of the blocks \( V_1H (q \times q) \) and \( V_2H (m-q \times m-q) \) orthogonal/unitary matrices. If `separate=True`, this contains the tuple of \( (V_1H, V_2H) \).

References

[1]

Examples

```python
>>> from scipy.linalg import cossin
>>> from scipy.stats import unitary_group
>>> x = unitary_group.rvs(4)
>>> u, cs, vdh = cossin(x, p=2, q=2)
>>> np.allclose(x, u @ cs @ vdh)
True
```

Same can be entered via subblocks without the need of \( p \) and \( q \). Also let’s skip the computation of \( u \)

```python
>>> ue, cs, vdh = cossin((x[:2, :2], x[2:, 2:]), x[2:, 2:], x[2:, 2:], x[2:, 2:]), ...
 compute_u=False)
>>> print(ue)
[]
>>> np.allclose(x, u @ cs @ vdh)
True
```

See also:

**scipy.linalg.interpolative** – Interpolative matrix decompositions

Matrix Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>expm(A)</code></td>
<td>Compute the matrix exponential using Pade approximations.</td>
</tr>
<tr>
<td><code>logm(A, disp)</code></td>
<td>Compute matrix logarithm.</td>
</tr>
<tr>
<td><code>cossin(A)</code></td>
<td>Compute the matrix cosine.</td>
</tr>
<tr>
<td><code>sinn(A)</code></td>
<td>Compute the matrix sine.</td>
</tr>
<tr>
<td><code>tanm(A)</code></td>
<td>Compute the matrix tangent.</td>
</tr>
<tr>
<td><code>coshm(A)</code></td>
<td>Compute the hyperbolic matrix cosine.</td>
</tr>
<tr>
<td><code>sinhm(A)</code></td>
<td>Compute the hyperbolic matrix sine.</td>
</tr>
<tr>
<td><code>tanhm(A)</code></td>
<td>Compute the hyperbolic matrix tangent.</td>
</tr>
<tr>
<td><code>signm(A, disp)</code></td>
<td>Matrix sign function.</td>
</tr>
</tbody>
</table>

continues on next page
Table 95 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sqrtm</code></td>
<td>Matrix square root.</td>
</tr>
<tr>
<td><code>funm</code></td>
<td>Evaluate a matrix function specified by a callable.</td>
</tr>
<tr>
<td><code>expm_frechet</code></td>
<td>Frechet derivative of the matrix exponential of (A) in the direction (E).</td>
</tr>
<tr>
<td><code>expm_cond</code></td>
<td>Relative condition number of the matrix exponential in the Frobenius norm.</td>
</tr>
<tr>
<td><code>fractional_matrix_power</code></td>
<td>Compute the fractional power of a matrix.</td>
</tr>
</tbody>
</table>

```python
scipy.linalg.expm
```

**scipy.linalg.expm**

Compute the matrix exponential using Pade approximation.

**Parameters**

- \(A\) 
  - [(N, N) array_like or sparse matrix] Matrix to be exponentiated.

**Returns**

- \(expm\) 
  - [(N, N) ndarray] Matrix exponential of \(A\).

**References**

[1]

**Examples**

```python
>>> from scipy.linalg import expm, sinm, cosm
```

Matrix version of the formula \(\exp(0) = 1\):

```python
>>> expm(np.zeros((2,2)))
array([[1., 0.],
 [0., 1.]])
```

Euler’s identity \((\exp(i\theta) = \cos(\theta) + i\sin(\theta))\) applied to a matrix:

```python
>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
>>> expm(1j*a)
array([[0.42645930+1.89217551j, -2.13721484-0.97811252j],
 [1.06860742+0.48905626j, -1.71075555+0.91406299j]])
>>> cosm(a) + 1j*sinm(a)
array([[0.42645930+1.89217551j, -2.13721484-0.97811252j],
 [1.06860742+0.48905626j, -1.71075555+0.91406299j]])
```
**scipy.linalg.logm**

`scipy.linalg.logm(A, disp=True)`

Compute matrix logarithm.

The matrix logarithm is the inverse of expm: \( \expm(\logm(A)) = A \)

**Parameters**

- **A** [(N, N) array_like] Matrix whose logarithm to evaluate
- **disp** [bool, optional] Print warning if error in the result is estimated large instead of returning estimated error. (Default: True)

**Returns**

- **logm** [(N, N) ndarray] Matrix logarithm of \( A \)
- **errest** [float] (if disp == False) 1-norm of the estimated error, \( ||\text{err}||_1 / ||A||_1 \)

**References**

[1], [2], [3]

**Examples**

```python
d>>> from scipy.linalg import logm, expm
d>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
d>>> b = logm(a)
d>>> b
array([[-1.02571087, 2.05142174],
 [0.68380725, 1.02571087]])
d>>> expm(b) # Verify expm(logm(a)) returns a
array([[1., 3.],
 [1., 4.]])
```

**scipy.linalg.cosm**

`scipy.linalg.cosm(A)`

Compute the matrix cosine.

This routine uses expm to compute the matrix exponentials.

**Parameters**

- **A** [(N, N) array_like] Input array

**Returns**

- **cosm** [(N, N) ndarray] Matrix cosine of \( A \)
Examples

```python
>>> from scipy.linalg import expm, sinm, cosm
```

Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta)) applied to a matrix:

```python
>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
>>> expm(1j*a)
array([[0.42645930+1.89217551j, -2.13721484-0.97811252j],
 [1.06860742+0.48905626j, -1.71075555+0.91406299j]])
>>> cosm(a) + 1j*sinm(a)
array([[0.42645930+1.89217551j, -2.13721484-0.97811252j],
 [1.06860742+0.48905626j, -1.71075555+0.91406299j]])
```

**scipy.linalg.sinm**

```python
scipy.linalg.sinm(A)
```

Compute the matrix sine.

This routine uses expm to compute the matrix exponentials.

**Parameters**

- `A` : (N, N) array_like
  - Input array.

**Returns**

- `sinm` : (N, N) ndarray
  - Matrix sine of A

**Examples**

```python
>>> from scipy.linalg import expm, sinm, cosm
```

Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta)) applied to a matrix:

```python
>>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
>>> expm(1j*a)
array([[0.42645930+1.89217551j, -2.13721484-0.97811252j],
 [1.06860742+0.48905626j, -1.71075555+0.91406299j]])
>>> cosm(a) + 1j*sinm(a)
array([[0.42645930+1.89217551j, -2.13721484-0.97811252j],
 [1.06860742+0.48905626j, -1.71075555+0.91406299j]])
```

**scipy.linalg.tanm**

```python
scipy.linalg.tanm(A)
```

Compute the matrix tangent.

This routine uses expm to compute the matrix exponentials.

**Parameters**

- `A` : (N, N) array_like
  - Input array.

**Returns**

- `tanm` : (N, N) ndarray
  - Matrix tangent of A
**Examples**

```python
>>> from scipy.linalg import tanm, sinm, cosm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> t = tanm(a)
>>> t
array([[-2.00876993, -8.41880636],
 [-2.80626879, -10.42757629]])
```

Verify `tanm(a) = sinm(a).dot(inv(cosm(a)))`

```python
>>> s = sinm(a)
>>> c = cosm(a)
>>> s.dot(np.linalg.inv(c))
array([[-2.00876993, -8.41880636],
 [-2.80626879, -10.42757629]])
```

**scipy.linalg.coshm**

`scipy.linalg.coshm(A)`

Compute the hyperbolic matrix cosine.

This routine uses `expm` to compute the matrix exponentials.

**Parameters**

- `A` : [(N, N) array_like] Input array.

**Returns**

- `coshm` : [(N, N) ndarray] Hyperbolic matrix cosine of `A`

**Examples**

```python
>>> from scipy.linalg import tanhm, sinhm, coshm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> c = coshm(a)
>>> c
array([[11.24592233, 38.76236492],
 [12.92078831, 50.00828725]])
```

Verify `tanhm(a) = sinhm(a).dot(inv(coshm(a)))`

```python
>>> t = tanhm(a)
>>> s = sinhm(a)
>>> t - s.dot(np.linalg.inv(c))
array([[2.72004641e-15, 4.55191440e-15],
 [0.00000000e+00, -5.55111512e-16]])
```
scipy.linalg.sinhm

**scipy.linalg.sinhm(A)**

Compute the hyperbolic matrix sine.

This routine uses expm to compute the matrix exponentials.

**Parameters**

- **A** : *(N, N) array_like* Input array.

**Returns**

- **sinhm** : *(N, N) ndarray* Hyperbolic matrix sine of A

**Examples**

```python
>>> from scipy.linalg import tanhm, sinhm, coshm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> s = sinhm(a)
>>> s
array([[10.57300653, 39.28826594],
 [13.09608865, 49.86127247]])
```

Verify \( \text{tanhm}(a) = \text{sinhm}(a).dot(\text{inv}(\text{coshm}(a))) \)

```python
>>> t = tanhm(a)
>>> c = coshm(a)
>>> t - s.dot(np.linalg.inv(c))
array([[2.72004641e-15, 4.55191440e-15],
 [0.00000000e+00, -5.55111512e-16]])
```

scipy.linalg.tanhm

**scipy.linalg.tanhm(A)**

Compute the hyperbolic matrix tangent.

This routine uses expm to compute the matrix exponentials.

**Parameters**

- **A** : *(N, N) array_like* Input array

**Returns**

- **tanhm** : *(N, N) ndarray* Hyperbolic matrix tangent of A

**Examples**

```python
>>> from scipy.linalg import tanhm, sinhm, coshm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> t = tanhm(a)
>>> t
array([[0.3428582 , 0.51987926],
 [0.17329309, 0.86273746]])
```

Verify \( \text{tanhm}(a) = \text{sinhm}(a).dot(\text{inv}(\text{coshm}(a))) \)
```python
>>> s = sinhm(a)
>>> c = coshm(a)
>>> t = s.dot(np.linalg.inv(c))
array([[2.72004641e-15, 4.55191440e-15],
 [0.00000000e+00, -5.55111512e-16]])
```

**scipy.linalg.signm**

`scipy.linalg.signm(A, disp=True)`

Matrix sign function.

Extension of the scalar `sign(x)` to matrices.

**Parameters**

- `A` [(N, N) array_like] Matrix at which to evaluate the sign function
- `disp` [bool, optional] Print warning if error in the result is estimated large instead of returning estimated error. (Default: True)

**Returns**

- `signm` [(N, N) ndarray] Value of the sign function at A
- `errest` [float] (if `disp` == False)
  
  1-norm of the estimated error, \(||err\|_1 / ||A||_1\)

**Examples**

```python
>>> from scipy.linalg import signm, eigvals
>>> a = [[1,2,3], [1,2,1], [1,1,1]]
>>> eigvals(a)
array([4.12488542+0.j, -0.76155718+0.j, 0.63667176+0.j])
>>> eigvals(signm(a))
array([-1.+0.j, 1.+0.j, 1.+0.j])
```

**scipy.linalg.sqrtm**

`scipy.linalg.sqrtm(A, disp=True, blocksize=64)`

Matrix square root.

**Parameters**

- `A` [(N, N) array_like] Matrix whose square root to evaluate
- `disp` [bool, optional] Print warning if error in the result is estimated large instead of returning estimated error. (Default: True)
- `blocksize` [integer, optional] If the blocksize is not degenerate with respect to the size of the input array, then use a blocked algorithm. (Default: 64)

**Returns**

- `sqrtm` [(N, N) ndarray] Value of the sqrt function at A
- `errest` [float] (if `disp` == False)
  
  Frobenius norm of the estimated error, \(||err||_F / ||A||_F\)
References

[1]

Examples

```python
>>> from scipy.linalg import sqrtm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> r = sqrtm(a)
>>> r
array([[0.75592895, 1.13389342],
 [0.37796447, 1.88982237]])
>>> r.dot(r)
array([[1., 3.],
 [1., 4.]])
```

**scipy.linalg.funm**

`scipy.linalg.funm(A, func, disp=True)`

Evaluate a matrix function specified by a callable.

Returns the value of matrix-valued function \( \mathcal{F} \) at \( A \). The function \( \mathcal{F} \) is an extension of the scalar-valued function \( \mathcal{f} \) to matrices.

**Parameters**

- **A** [(N, N) array_like] Matrix at which to evaluate the function
- **func** [callable] Callable object that evaluates a scalar function \( \mathcal{f} \). Must be vectorized (e.g. using `vectorize`).
- **disp** [bool, optional] Print warning if error in the result is estimated large instead of returning estimated error. (Default: True)

**Returns**

- **funm** [(N, N) ndarray] Value of the matrix function specified by \( \mathcal{f} \) evaluated at \( A \)
- **errest** [float] (if \( \text{disp} = \text{False} \))
  1-norm of the estimated error, \( ||\text{err}||_1 / ||A||_1 \)

**Notes**

This function implements the general algorithm based on Schur decomposition (Algorithm 9.1.1. in [1]).

If the input matrix is known to be diagonalizable, then relying on the eigendecomposition is likely to be faster. For example, if your matrix is Hermitian, you can do

```python
>>> from scipy.linalg import eigh
>>> def funm_herm(a, func, check_finite=False):
... w, v = eigh(a, check_finite=check_finite)
... ## if you further know that your matrix is positive semidefinite,
... ## you can optionally guard against precision errors by doing
... # w = np.maximum(w, 0)
... w = func(w)
... return (v * w).dot(v.conj().T)
```
References

[1]

Examples

```python
>>> from scipy.linalg import funm
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> funm(a, lambda x: x*x)
array([[4., 15.],
 [5., 19.]]
>>> a.dot(a)
array([[4., 15.],
 [5., 19.]]
```

`scipy.linalg.expm_frechet`

`scipy.linalg.expm_frechet (A, E, method=None, compute_expm=True, check_finite=True)`

Frechet derivative of the matrix exponential of `A` in the direction `E`.

**Parameters**

- `A` : [(N, N) array_like] Matrix of which to take the matrix exponential.
- `E` : [(N, N) array_like] Matrix direction in which to take the Frechet derivative.
- `method` : [str, optional] Choice of algorithm. Should be one of
  - `SPS` (default)
  - `blockEnlarge`
- `compute_expm` : [bool, optional] Whether to compute also `expm_A` in addition to `expm_frechet_AE`. Default is True.
- `check_finite` : [bool, optional] Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

**Returns**


For `compute_expm = False`, only `expm_frechet_AE` is returned.

See also:

- `expm`
  
  Compute the exponential of a matrix.
Notes

This section describes the available implementations that can be selected by the `method` parameter. The default method is `SPS`.

Method `blockEnlarge` is a naive algorithm.

Method `SPS` is Scaling-Pade-Squaring [1]. It is a sophisticated implementation which should take only about 3/8 as much time as the naive implementation. The asymptotics are the same.

New in version 0.13.0.

References

[1]

Examples

```python
>>> import scipy.linalg
>>> rng = np.random.default_rng()
>>> A = rng.standard_normal((3, 3))
>>> E = rng.standard_normal((3, 3))
>>> expm_A, expm_frechet_AE = scipy.linalg.expm_frechet(A, E)
>>> expm_A.shape, expm_frechet_AE.shape
((3, 3), (3, 3))
```

```python
>>> import scipy.linalg
>>> rng = np.random.default_rng()
>>> A = rng.standard_normal((3, 3))
>>> E = rng.standard_normal((3, 3))
>>> expm_A, expm_frechet_AE = scipy.linalg.expm_frechet(A, E)
>>> M = np.zeros((6, 6))
>>> M[:3, :3] = A; M[:3, 3:] = E; M[3:, :3] = A
>>> expm_M = scipy.linalg.expm(M)
>>> np.allclose(expm_A, expm_M[:3, :3])
True
>>> np.allclose(expm_frechet_AE, expm_M[:3, 3:])
True
```

`scipy.linalg.expm_cond`

`scipy.linalg.expm_cond` *(A, check_finite=True)*

Relative condition number of the matrix exponential in the Frobenius norm.

**Parameters**

- **A** *(2-D array_like)* Square input matrix with shape (N, N).
- **check_finite** *(bool, optional)* Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

**Returns**

- **kappa** *(float)* The relative condition number of the matrix exponential in the Frobenius norm.
See also:

**expm**

Compute the exponential of a matrix.

**expm_frechet**

Compute the Frechet derivative of the matrix exponential.

**Notes**

A faster estimate for the condition number in the 1-norm has been published but is not yet implemented in SciPy. New in version 0.14.0.

**Examples**

```python
>>> from scipy.linalg import expm_cond
>>> A = np.array([[-0.3, 0.2, 0.6], [0.6, 0.3, -0.1], [-0.7, 1.2, 0.9]])
>>> k = expm_cond(A)
>>> k
1.7787805864469866
```

**scipy.linalg.fractional_matrix_power**

`scipy.linalg.fractional_matrix_power(A, t)`

Compute the fractional power of a matrix.

Proceeds according to the discussion in section (6) of [1].

**Parameters**

- **A** : [(N, N) array_like] Matrix whose fractional power to evaluate.
- **t** : [float] Fractional power.

**Returns**

- **X** : [(N, N) array_like] The fractional power of the matrix.

**References**

[1]

**Examples**

```python
>>> from scipy.linalg import fractional_matrix_power
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
>>> b = fractional_matrix_power(a, 0.5)
>>> b
array([[0.75592895, 1.13389342],
 [0.37796447, 1.88982237]])
>>> np.dot(b, b) # Verify square root
array([[1., 3.],
 [1., 4.]])
```
Matrix Equation Solvers

- `solve_sylvester(a, b, q)`: Computes a solution (X) to the Sylvester equation $AX + XB = Q$.
- `solve_continuous_are(a, b, q, r[, e, s,...])`: Solves the continuous-time algebraic Riccati equation (CARE).
- `solve_discrete_are(a, b, q, r[, e, s, balanced])`: Solves the discrete-time algebraic Riccati equation (DARE).
- `solve_continuous_lyapunov(a, q)`: Solves the continuous Lyapunov equation $AX + XA^H = Q$.
- `solve_discrete_lyapunov(a, q[, method])`: Solves the discrete Lyapunov equation $AXA^H - X + Q = 0$.

**scipy.linalg.solve_sylvester**

`scipy.linalg.solve_sylvester(a, b, q)`

Computes a solution (X) to the Sylvester equation $AX + XB = Q$.

**Parameters**

- `a` - [(M, M) array_like] Leading matrix of the Sylvester equation
- `b` - [(N, N) array_like] Trailing matrix of the Sylvester equation
- `q` - [(M, N) array_like] Right-hand side

**Returns**

- `x` - [(M, N) ndarray] The solution to the Sylvester equation.

**Raises**

- `LinAlgError` If solution was not found

**Notes**

Computes a solution to the Sylvester matrix equation via the Bartels-Stewart algorithm. The A and B matrices first undergo Schur decompositions. The resulting matrices are used to construct an alternative Sylvester equation $(RY + YS^T = F)$ where the R and S matrices are in quasi-triangular form (or, when R, S or F are complex, triangular form). The simplified equation is then solved using `*TRSYL` from LAPACK directly.

New in version 0.11.0.

**Examples**

Given $a$, $b$, and $q$ solve for $x$:

```python
>>> from scipy import linalg
>>> a = np.array([[-3, -2, 0], [-1, -1, 3], [3, -5, -1]])
>>> b = np.array([[1]])
>>> q = np.array([[1],[2],[3]])
>>> x = linalg.solve_sylvester(a, b, q)
>>> x
array([[0.0625],
 [-0.5625],
 [0.6875]])
```

(continues on next page)
```python
>>> np.allclose(a.dot(x) + x.dot(b), q)
True
```

**scipy.linalg.solve_continuous_are**

scipy.linalg.solve_continuous_are(a, b, q, r, e=None, s=None, balanced=True)

Solves the continuous-time algebraic Riccati equation (CARE).

The CARE is defined as

\[ AXA^H - A^HXBR^{-1}B^HX + Q = 0 \]

The limitations for a solution to exist are:

- All eigenvalues of \( A \) on the right half plane, should be controllable.
- The associated hamiltonian pencil (See Notes), should have eigenvalues sufficiently away from the imaginary axis.

Moreover, if \( e \) or \( s \) is not precisely None, then the generalized version of CARE

\[ E^HXA + A^HXE - (E^HXB + S)R^{-1}(B^HXE + S^H) + Q = 0 \]

is solved. When omitted, \( e \) is assumed to be the identity and \( s \) is assumed to be the zero matrix with sizes compatible with \( a \) and \( b \), respectively.

**Parameters**

- a: [(M, M) array_like] Square matrix
- b: [(M, N) array_like] Input
- q: [(M, M) array_like] Input
- r: [(N, N) array_like] Nonsingular square matrix
- e: [(M, M) array_like, optional] Nonsingular square matrix
- s: [(M, N) array_like, optional] Input
- balanced: [bool, optional] The boolean that indicates whether a balancing step is performed on the data. The default is set to True.

**Returns**

- x: [(M, M) ndarray] Solution to the continuous-time algebraic Riccati equation.

**Raises**

- LinAlgError
  For cases where the stable subspace of the pencil could not be isolated. See Notes section and the references for details.

**See also:**

solve_discrete_are

Solves the discrete-time algebraic Riccati equation
Notes

The equation is solved by forming the extended hamiltonian matrix pencil, as described in [1], \( H - \lambda J \) given by the block matrices

\[
\begin{bmatrix}
 A & 0 & B \\
-\lambda^* & -A^H & -S \\
 S^H & B^H & R
\end{bmatrix}
\begin{bmatrix}
 E & 0 & 0 \\
 0 & E^H & 0 \\
 0 & 0 & 0
\end{bmatrix}
\]

and using a QZ decomposition method.

In this algorithm, the fail conditions are linked to the symmetry of the product \( U_2 U_1^{-1} \) and condition number of \( U_1 \). Here, \( U \) is the 2m-by-m matrix that holds the eigenvectors spanning the stable subspace with 2-m rows and partitioned into two m-row matrices. See [1] and [2] for more details.

In order to improve the QZ decomposition accuracy, the pencil goes through a balancing step where the sum of absolute values of \( H \) and \( J \) entries (after removing the diagonal entries of the sum) is balanced following the recipe given in [3].

New in version 0.11.0.

References

[1], [2], [3]

Examples

Given \( a, b, q, \) and \( r \) solve for \( x \):

```python
>>> from scipy import linalg
>>> a = np.array([[4, 3], [-4.5, -3.5]])
>>> b = np.array([[1], [-1]])
>>> q = np.array([[9, 6], [6, 4.]]).T
>>> r = 1
>>> x = linalg.solve_continuous_are(a, b, q, r)
>>> x
array([[21.72792206, 14.48528137],
 [14.48528137, 9.65485425]])
>>> np.allclose(a.T.dot(x) + x.dot(a)-x.dot(b).dot(b.T).dot(x), -q)
True
```

Scipy.solve_discrete_are

Scipy.solve_discrete_are \((a, b, q, r, e=None, s=None, balanced=True)\)

Solves the discrete-time algebraic Riccati equation (DARE).

The DARE is defined as

\[
A^H X A - X - (A^H X B)(R + B^H X B)^{-1}(B^H X A) + Q = 0
\]

The limitations for a solution to exist are:

- All eigenvalues of \( A \) outside the unit disc, should be controllable.
- The associated symplectic pencil (See Notes), should have eigenvalues sufficiently away from the unit circle.
Moreover, if \( e \) and \( s \) are not both precisely `None`, then the generalized version of DARE

\[
A^H X A - E^H X E - (A^H X B + S)(R + B^H X B)^{-1}(B^H X A + S^H) + Q = 0
\]

is solved. When omitted, \( e \) is assumed to be the identity and \( s \) is assumed to be the zero matrix.

**Parameters**

- `a` [(M, M) array_like] Square matrix
- `b` [(M, N) array_like] Input
- `q` [(M, M) array_like] Input
- `r` [(N, N) array_like] Square matrix
- `e` [(M, M) array_like, optional] Nonsingular square matrix
- `s` [(M, N) array_like, optional] Input
- `balanced` [bool] The boolean that indicates whether a balancing step is performed on the data. The default is set to True.

**Returns**

- `x` [(M, M) ndarray] Solution to the discrete algebraic Riccati equation.

**Raises**

- `LinAlgError` For cases where the stable subspace of the pencil could not be isolated. See Notes section and the references for details.

**See also:**

- `solve_continuous_are` Solves the continuous algebraic Riccati equation

**Notes**

The equation is solved by forming the extended symplectic matrix pencil, as described in [1], \( H - \lambda J \) given by the block matrices

\[
\begin{bmatrix}
A & 0 & B \\
-Q & E^H & -S \\
S^H & 0 & R
\end{bmatrix} \lambda^2 \begin{bmatrix}
E & 0 & B \\
0 & A^H & 0 \\
0 & -B^H & 0
\end{bmatrix}
\]

and using a QZ decomposition method.

In this algorithm, the fail conditions are linked to the symmetry of the product \( U_2 U_1^{-1} \) and condition number of \( U_1 \). Here, \( U \) is the 2m-by-m matrix that holds the eigenvectors spanning the stable subspace with 2-m rows and partitioned into two m-row matrices. See [1] and [2] for more details.

In order to improve the QZ decomposition accuracy, the pencil goes through a balancing step where the sum of absolute values of \( H \) and \( J \) rows/cols (after removing the diagonal entries) is balanced following the recipe given in [3]. If the data has small numerical noise, balancing may amplify their effects and some clean up is required.

New in version 0.11.0.
Examples

Given $a$, $b$, $q$, and $r$ solve for $x$:

```python
>>> from scipy import linalg as la
>>> a = np.array([[0, 1], [0, -1]])
>>> b = np.array([[1, 0], [2, 1]])
>>> q = np.array([[-4, -4], [-4, 7]])
>>> r = np.array([[9, 3], [3, 1]])
>>> x = la.solve_discrete_are(a, b, q, r)
>>> x
array([[-4., -4.],
[-4., 7.]]
>>> R = la.solve(r + b.T.dot(x).dot(b), b.T.dot(x).dot(a))
```

```python
>>> np.allclose(a.T.dot(x).dot(a) - x - a.T.dot(x).dot(b).dot(R), -q)
True
```

scipy.linalg.solve_continuous_lyapunov

scipy.linalg.solve_continuous_lyapunov($a$, $q$)

Solves the continuous Lyapunov equation $AX + XA^H = Q$.

Uses the Bartels-Stewart algorithm to find $X$.

Parameters

- $a$ [array_like] A square matrix
- $q$ [array_like] Right-hand side square matrix

Returns

- $x$ [ndarray] Solution to the continuous Lyapunov equation

See also:

solve_discrete_lyapunov

computes the solution to the discrete-time Lyapunov equation

solve_sylvester

computes the solution to the Sylvester equation

Notes

The continuous Lyapunov equation is a special form of the Sylvester equation, hence this solver relies on LAPACK routine 'TRSYL'.

New in version 0.11.0.
Examples

Given $a$ and $q$ solve for $x$:

```python
>>> from scipy import linalg
>>> a = np.array([[-3, -2, 0], [-1, -1, 0], [0, -5, -1]])
>>> b = np.array([2, 4, -1])
>>> q = np.eye(3)
>>> x = linalg.solve_continuous_lyapunov(a, q)
>>> x
array([[-0.75 , 0.875 , -3.75],
 [0.875 , -1.375 , 5.3125],
 [-3.75 , 5.3125 , -27.0625]])
>>> np.allclose(a.dot(x) + x.dot(a.T), q)
True
```

`scipy.linalg.solve_discrete_lyapunov`

`scipy.linalg.solve_discrete_lyapunov(a, q, method=None)`

Solves the discrete Lyapunov equation $AXA^H - X + Q = 0$.

**Parameters**

- **a** ([M, M] array_like) Square matrices corresponding to $A$ and $Q$ in the equation above respectively. Must have the same shape.
- **q** ([M, M] array_like) Square matrices corresponding to $A$ and $Q$ in the equation above respectively. Must have the same shape.
- **method** ([‘direct’, ‘bilinear’], optional) Type of solver. If not given, chosen to be direct if $M$ is less than 10 and bilinear otherwise.

**Returns**

- **x** [ndarray] Solution to the discrete Lyapunov equation

**See also:**

`solve_continuous_lyapunov`

computes the solution to the continuous-time Lyapunov equation

**Notes**

This section describes the available solvers that can be selected by the ‘method’ parameter. The default method is *direct* if $M$ is less than 10 and *bilinear* otherwise.

Method *direct* uses a direct analytical solution to the discrete Lyapunov equation. The algorithm is given in, for example, [1]. However, it requires the linear solution of a system with dimension $M^2$ so that performance degrades rapidly for even moderately sized matrices.

Method *bilinear* uses a bilinear transformation to convert the discrete Lyapunov equation to a continuous Lyapunov equation $(BX + XB' = -C)$ where $B = (A - I)(A + I)^{-1}$ and $C = 2(A' + I)^{-1}Q(A + I)^{-1}$. The continuous equation can be efficiently solved since it is a special case of a Sylvester equation. The transformation algorithm is from Popov (1964) as described in [2].

New in version 0.11.0.
References

[1], [2]

Examples

Given $a$ and $q$ solve for $x$:

```python
>>> from scipy import linalg
>>> a = np.array([[0.2, 0.5], [0.7, -0.9]])
>>> q = np.eye(2)
>>> x = linalg.solve_discrete_lyapunov(a, q)
>>> x
array([[0.70872893, 1.43518822],
 [1.43518822, -2.4266315]])
>>> np.allclose(a.dot(x).dot(a.T)-x, -q)
True
```

Sketches and Random Projections

```python
clarkson_woodruff_transform(input_matrix, ...
Applies a Clarkson-Woodruff Transform/sketch to the input matrix.

scipy.linalg.clarkson_woodruff_transform
Applies a Clarkson-Woodruff Transform/sketch to the input matrix.

Given an input_matrix A of size (n, d), compute a matrix A' of size (sketch_size, d) so that

$$\|Ax\| \approx \|A'x\|$$

with high probability via the Clarkson-Woodruff Transform, otherwise known as the CountSketch matrix.

Parameters

- **input_matrix**: array_like
 Input matrix, of shape (n, d).
- **sketch_size**: int
 Number of rows for the sketch.
- **seed**
 [[None, int, numpy.random.Generator],
 numpy.random.RandomState], optional
 If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new `RandomState` instance is used, seeded with `seed`. If `seed` is already a `Generator` or `RandomState` instance then that instance is used.

Returns

- **A'**: [array_like] Sketch of the input matrix A, of size $(sketch_size, d)$.
Notes

To make the statement

$$\|Ax\| \approx \|A'x\|$$

precise, observe the following result which is adapted from the proof of Theorem 14 of [2] via Markov’s Inequality. If we have a sketch size $sketch_size=k$ which is at least

$$k \geq \frac{2}{\epsilon^2 \delta}$$

Then for any fixed vector x,

$$\|Ax\| = (1 \pm \epsilon)\|A'x\|$$

with probability at least one minus delta.

This implementation takes advantage of sparsity: computing a sketch takes time proportional to $A.nnz$. Data A which is in scipy.sparse.csc_matrix format gives the quickest computation time for sparse input.

```python
>>> from scipy import linalg
>>> from scipy import sparse
>>> rng = np.random.default_rng()
>>> n_rows, n_columns, sketch_n_rows = 15000, 100, 0.01, 200
>>> A = sparse.rand(n_rows, n_columns, density=density, format='csc')
>>> B = sparse.rand(n_rows, n_columns, density=density, format='csr')
>>> C = sparse.rand(n_rows, n_columns, density=density, format='coo')
>>> D = rng.standard_normal((n_rows, n_columns))
>>> SA = linalg.clarkson_woodruff_transform(A, sketch_n_rows) # fastest
>>> SB = linalg.clarkson_woodruff_transform(B, sketch_n_rows) # fast
>>> SC = linalg.clarkson_woodruff_transform(C, sketch_n_rows) # slower
>>> SD = linalg.clarkson_woodruff_transform(D, sketch_n_rows) # slowest
```

That said, this method does perform well on dense inputs, just slower on a relative scale.

References

[1], [2]

Examples

Given a big dense matrix A:

```python
>>> from scipy import linalg
>>> n_rows, n_columns, sketch_n_rows = 15000, 100, 200
>>> rng = np.random.default_rng()
>>> A = rng.standard_normal((n_rows, n_columns))
>>> sketch = linalg.clarkson_woodruff_transform(A, sketch_n_rows)
>>> sketch.shape
(200, 100)
>>> norm_A = np.linalg.norm(A)
>>> norm_sketch = np.linalg.norm(sketch)
```
Now with high probability, the true norm $\|A\|$ is close to the sketched norm $\|\text{sketch}\|$ in absolute value.

Similarly, applying our sketch preserves the solution to a linear regression of $\min ||Ax - b||$.

```python
>>> from scipy import linalg
>>> n_rows, n_columns, sketch_n_rows = 15000, 100, 200
>>> rng = np.random.default_rng()
>>> A = rng.standard_normal((n_rows, n_columns))
>>> b = rng.standard_normal(n_rows)
>>> x = np.linalg.lstsq(A, b, rcond=None)
>>> Ab = np.hstack((A, b.reshape(-1, 1)))
>>> SAb = linalg.clarkson_woodruff_transform(Ab, sketch_n_rows)
>>> SA, Sb = SAb[:, :-1], SAb[:, -1]
>>> x_sketched = np.linalg.lstsq(SA, Sb, rcond=None)
```

As with the matrix norm example, $\text{np.linalg.norm}(A @ x - b)$ is close to $\text{np.linalg.norm}(A @ x_{\text{sketched}} - b)$ with high probability.

Special Matrices

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>block_diag(*arrs)</td>
<td>Create a block diagonal matrix from provided arrays.</td>
</tr>
<tr>
<td>circulant(c)</td>
<td>Construct a circulant matrix.</td>
</tr>
<tr>
<td>companion(a)</td>
<td>Create a companion matrix.</td>
</tr>
<tr>
<td>convolution_matrix(a, n[, mode])</td>
<td>Construct a convolution matrix.</td>
</tr>
<tr>
<td>dft(n[, scale])</td>
<td>Discrete Fourier transform matrix.</td>
</tr>
<tr>
<td>fiedler(a)</td>
<td>Returns a symmetric Fiedler matrix.</td>
</tr>
<tr>
<td>fiedler_companion(a)</td>
<td>Returns a Fiedler companion matrix.</td>
</tr>
<tr>
<td>hadamard(n[, dtype])</td>
<td>Construct an Hadamard matrix.</td>
</tr>
<tr>
<td>hankel(c[, r])</td>
<td>Construct a Hankel matrix.</td>
</tr>
<tr>
<td>helmert(n[, full])</td>
<td>Create an Helmert matrix of order n.</td>
</tr>
<tr>
<td>hilbert(n)</td>
<td>Create a Hilbert matrix of order n.</td>
</tr>
<tr>
<td>invhilbert(n[, exact])</td>
<td>Compute the inverse of the Hilbert matrix of order n.</td>
</tr>
<tr>
<td>leslie(f, s)</td>
<td>Create a Leslie matrix.</td>
</tr>
<tr>
<td>pascal(n[, kind, exact])</td>
<td>Returns the $n \times n$ Pascal matrix.</td>
</tr>
<tr>
<td>invpascal(n[, kind, exact])</td>
<td>Returns the inverse of the $n \times n$ Pascal matrix.</td>
</tr>
<tr>
<td>toeplitz(c[, r])</td>
<td>Construct a Toeplitz matrix.</td>
</tr>
<tr>
<td>tri(N, M, k, dtype)</td>
<td>Construct (N, M) matrix filled with ones at and below the kth diagonal.</td>
</tr>
</tbody>
</table>

scipy.linalg.block_diag

scipy.linalg.block_diag(*arrs)

Create a block diagonal matrix from provided arrays.

Given the inputs A, B and C, the output will have these arrays arranged on the diagonal:

```python
[[A, 0, 0],
 [0, B, 0],
 [0, 0, C]]
```

Parameters

A, B, C, ...
Input arrays. A 1-D array or array_like sequence of length n is treated as a 2-D array with shape $(1, n)$.

Returns

- **D** [ndarray] Array with A, B, C, … on the diagonal. D has the same dtype as A.

Notes

If all the input arrays are square, the output is known as a block diagonal matrix.

Empty sequences (i.e., array-likes of zero size) will not be ignored. Noteworthy, both $[]$ and $[[[]]]$ are treated as matrices with shape $(1, 0)$.

Examples

```python
>>> from scipy.linalg import block_diag
>>> A = [[1, 0],
      ..., [0, 1]]
>>> B = [[3, 4, 5],
      ..., [6, 7, 8]]
>>> C = [[7]]
>>> P = np.zeros((2, 0), dtype='int32')
>>> block_diag(A, B, C)
array([[1, 0, 0, 0, 0, 0],
       [0, 1, 0, 0, 0, 0],
       [0, 0, 3, 4, 5, 0],
       [0, 0, 6, 7, 8, 0],
       [0, 0, 0, 0, 0, 7]])
>>> block_diag(A, P, B, C)
array([[1, 0, 0, 0, 0, 0],
       [0, 1, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 3, 4, 5, 0],
       [0, 0, 6, 7, 8, 0],
       [0, 0, 0, 0, 0, 7]])
>>> block_diag(1.0, [2, 3], [[4, 5], [6, 7]])
array([[ 1., 0., 0., 0.],
       [ 0., 2., 3., 0.],
       [ 0., 0., 4., 5.],
       [ 0., 0., 6., 7.]])
```

scipy.linalg.circulant

`scipy.linalg.circulant(c)`

Construct a circulant matrix.

Parameters

- **c** [(N,) array_like] 1-D array, the first column of the matrix.

Returns

- **A** [(N, N) ndarray] A circulant matrix whose first column is c.

3.3. API definition 767
See also:

toeplitz

Toeplitz matrix

hankel

Hankel matrix

solve_circulant

Solve a circulant system.

Notes

New in version 0.8.0.

Examples

```python
>>> from scipy.linalg import circulant
>>> circulant([1, 2, 3])
array([[1, 3, 2],
      [2, 1, 3],
      [3, 2, 1]])
```

scipy.linalg.companion

`scipy.linalg.companion(a)`

Create a companion matrix.

Create the companion matrix [1] associated with the polynomial whose coefficients are given in \(a\).

Parameters

- \(a\) : [(N,) array_like] 1-D array of polynomial coefficients. The length of \(a\) must be at least two, and \(a[0]\) must not be zero.

Returns

- \(c\) : [(N-1, N-1) ndarray] The first row of \(c\) is \(-a[1:] / a[0]\), and the first sub-diagonal is all ones. The data-type of the array is the same as the data-type of \(1.0 * a[0]\).

Raises

- ValueError

If any of the following are true: a) \(a.n\text{dim} \neq 1\); b) \(a.size < 2\); c) \(a[0] == 0\).
Notes

New in version 0.8.0.

References

[1]

Examples

```python
>>> from scipy.linalg import companion
>>> companion([1, -10, 31, -30])
array([[ 10., -31., 30.],
       [ 1.,  0.,  0.],
       [ 0.,  1.,  0.]])
```

scipy.linalg.convolution_matrix

scipy.linalg.convolution_matrix(a, n, mode='full')

Construct a convolution matrix.

Constructs the Toeplitz matrix representing one-dimensional convolution [1]. See the notes below for details.

Parameters

- **a** [(m,) array_like] The 1-D array to convolve.
- **n** [int] The number of columns in the resulting matrix. It gives the length of the input to be convolved with *a*. This is analogous to the length of *v* in `numpy.convolve(a, v)`.
- **mode** [str] This is analogous to *mode* in `numpy.convolve(v, a, mode)`. It must be one of ('full', 'valid', 'same'). See below for how *mode* determines the shape of the result.

Returns

- **A** [(k, n) ndarray] The convolution matrix whose row count *k* depends on *mode*:

```plaintext
+-------+--------------------------------------------------+
|       |                                                 |
| mode  | k                                                |
|-------+--------------------------------------------------|
| 'full'| m + n - 1                                       |
| 'same'| max(m, n)                                        |
| 'valid'| max(m, n) - min(m, n) + 1                        |
+-------+--------------------------------------------------+
```

See also:

- **toeplitz**

 Toeplitz matrix

3.3. API definition 769
Notes

The code:

```
A = convolution_matrix(a, n, mode)
```

creates a Toeplitz matrix A such that $A @ v$ is equivalent to using `convolve(a, v, mode)`. The returned array always has n columns. The number of rows depends on the specified `mode`, as explained above.

In the default ‘full’ mode, the entries of A are given by:

```
A[i, j] == (a[i-j] if (0 <= (i-j) < m) else 0)
```

where $m = \text{len}(a)$. Suppose, for example, the input array is $[x, y, z]$. The convolution matrix has the form:

```
[x, 0, 0, ..., 0, 0]
[y, x, 0, ..., 0, 0]
[z, y, x, ..., 0, 0]
... 
[0, 0, 0, ..., x, 0]
[0, 0, 0, ..., y, x]
[0, 0, 0, ..., z, y]
[0, 0, 0, ..., 0, z]
```

In ‘valid’ mode, the entries of A are given by:

```
A[i, j] == (a[i-j+m-1] if (0 <= (i-j+m-1) < m) else 0)
```

This corresponds to a matrix whose rows are the subset of those from the ‘full’ case where all the coefficients in a are contained in the row. For input $[x, y, z]$, this array looks like:

```
[z, y, x, 0, 0, ..., 0, 0, 0]
[0, z, y, x, 0, ..., 0, 0, 0]
[0, 0, z, y, x, ..., 0, 0, 0]
... 
[0, 0, 0, 0, 0, ..., x, 0, 0]
[0, 0, 0, 0, 0, ..., y, x, 0]
[0, 0, 0, 0, 0, ..., z, y, x]
```

In the ‘same’ mode, the entries of A are given by:

```
d = (m - 1) // 2
A[i, j] == (a[i-j+d] if (0 <= (i-j+d) < m) else 0)
```

The typical application of the ‘same’ mode is when one has a signal of length n (with n greater than `len(a)`), and the desired output is a filtered signal that is still of length n.

For input $[x, y, z]$, this array looks like:

```
[y, x, 0, 0, ..., 0, 0, 0]
[z, y, x, 0, ..., 0, 0, 0]
[0, z, y, x, ..., 0, 0, 0]
[0, 0, z, y, ..., 0, 0, 0]
... 
```
New in version 1.5.0.

References

[1]

Examples

```python
>>> from scipy.linalg import convolution_matrix
>>> A = convolution_matrix([-1, 4, -2], 5, mode='same')
>>> A
array([[ 4, -1,  0,  0,  0],
       [-2,  4, -1,  0,  0],
       [ 0, -2,  4, -1,  0],
       [ 0,  0, -2,  4, -1],
       [ 0,  0,  0, -2,  4]])
```

Compare multiplication by A with the use of `numpy.convolve`.

```python
>>> x = np.array([1, 2, 0, -3, 0.5])
>>> A @ x
array([ 2. ,  6. , -1. , -12.5,   8. ])
```

Verify that A @ x produced the same result as applying the convolution function.

```python
>>> np.convolve([-1, 4, -2], x, mode='same')
array([ 2. ,  6. , -1. , -12.5,   8. ])
```

For comparison to the case mode='same' shown above, here are the matrices produced by mode='full' and mode='valid' for the same coefficients and size.

```python
>>> convolution_matrix([-1, 4, -2], 5, mode='full')
array([[-1, 0, 0, 0, 0],
      [ 4, -1, 0, 0, 0],
      [-2,  4, -1, 0, 0],
      [ 0, -2,  4, -1, 0],
      [ 0,  0, -2,  4, -1],
      [ 0,  0,  0, -2,  4]])
```

```python
>>> convolution_matrix([-1, 4, -2], 5, mode='valid')
array([[-2,  4, -1,  0,  0],
      [ 0, -2,  4, -1,  0],
      [ 0,  0, -2,  4, -1]])
```
scipy.linalg.dft

`scipy.linalg.dft(n, scale=None)`

Discrete Fourier transform matrix.

Create the matrix that computes the discrete Fourier transform of a sequence [1]. The nth primitive root of unity used to generate the matrix is \(\exp(-2\pi i/n) \), where \(i = \sqrt{-1} \).

Parameters

- **n** [int] Size the matrix to create.
- **scale** [str, optional] Must be None, ‘sqrtn’, or ‘n’. If `scale` is ‘sqrtn’, the matrix is divided by \(\sqrt{n} \). If `scale` is ‘n’, the matrix is divided by \(n \). If `scale` is None (the default), the matrix is not normalized, and the return value is simply the Vandermonde matrix of the roots of unity.

Returns

- **m** [(n, n) ndarray] The DFT matrix.

Notes

When `scale` is None, multiplying a vector by the matrix returned by `dft` is mathematically equivalent to (but much less efficient than) the calculation performed by `scipy.fft.fft`.

New in version 0.14.0.

References

[1]

Examples

```python
>>> from scipy.linalg import dft
>>> np.set_printoptions(precision=2, suppress=True)  # for compact output
>>> m = dft(5)
>>> m
array([[ 1. +0.j , 1. +0.j , 1. +0.j , 1. +0.j , 1. +0.j ],
        [ 1. +0.j , 0.31-0.95j, -0.81-0.59j, -0.81+0.59j, 0.31+0.95j],
        [ 1. +0.j , -0.81-0.59j, 0.31+0.95j, 0.31-0.95j, -0.81+0.59j],
        [ 1. +0.j , -0.81+0.59j, 0.31+0.95j, 0.31-0.95j, -0.81-0.59j],
        [ 1. +0.j , 0.31+0.95j, -0.81+0.59j, -0.81-0.59j, 0.31-0.95j]])
>>> x = np.array([1, 2, 3, 0, 3])
>>> m @ x  # Compute the DFT of x
array([ 9. +0.j , 0.12-0.81j, -2.12+3.44j, -2.12-3.44j, 0.12+0.81j])
```

Verify that \(m \@ x \) is the same as `fft(x)`.

```python
>>> from scipy.fft import fft
>>> fft(x)  # Same result as m @ x
array([ 9. +0.j , 0.12-0.81j, -2.12+3.44j, -2.12-3.44j, 0.12+0.81j])
```
scipy.linalg.fiedler

scipy.linalg.fiedler(a)

Returns a symmetric Fiedler matrix

Given a sequence of numbers \(a \), Fiedler matrices have the structure \(F[i, j] = \text{np.abs}(a[i] - a[j]) \), and hence zero diagonals and nonnegative entries. A Fiedler matrix has a dominant positive eigenvalue and other eigenvalues are negative. Although not valid generally, for certain inputs, the inverse and the determinant can be derived explicitly as given in [1].

Parameters

- \(a \) [(n,) array_like] coefficient array

Returns

- \(F \) [(n, n) ndarray]

See also:

circulant, toeplitz

Notes

New in version 1.3.0.

References

[1]

Examples

```python
from scipy.linalg import det, inv, fiedler
a = [1, 4, 12, 45, 77]
n = len(a)
A = fiedler(a)

A

array([[ 0, 3, 11, 44, 76],
       [ 3, 0, 8, 41, 73],
       [11, 8, 0, 33, 65],
       [44, 41, 33, 0, 32],
       [76, 73, 65, 32, 0]])
```

The explicit formulas for determinant and inverse seem to hold only for monotonically increasing/decreasing arrays. Note the tridiagonal structure and the corners.

```python
Ai = inv(A)
Ai[np.abs(Ai) < 1e-12] = 0. # cleanup the numerical noise for display
Ai

array([[ -0.16008772,  0.16666667,  0. ,   , 0.00657895],
       [ 0.16666667,  -0.22916667,  0.0625,  0.,    ],
       [ 0. ,   , 0.0625,  -0.07765152, 0.01515152, 0. ],
       [ 0. ,   , 0.,    , 0.01515152, -0.03077652, 0.015625 ],
       [ 0.00657895,  0. ,   , 0. ,    , 0.015625 , -0.00904605]])
```

(continues on next page)

3.3. API definition 773
scipy.linalg.fiedler_companion

scipy.linalg.fiedler_companion(a)
Returns a Fiedler companion matrix

Given a polynomial coefficient array \(a\), this function forms a pentadiagonal matrix with a special structure whose eigenvalues coincides with the roots of \(a\).

Parameters

- \(a\) : \([\text{N}, \text{array_like}]\) 1-D array of polynomial coefficients in descending order with a nonzero leading coefficient. For \(N < 2\), an empty array is returned.

Returns

- \(c\) : \([\text{N-1, N-1} \text{ndarray}]\) Resulting companion matrix

See also:

- companion

Notes

Similar to companion the leading coefficient should be nonzero. In the case the leading coefficient is not 1, other coefficients are rescaled before the array generation. To avoid numerical issues, it is best to provide a monic polynomial.

New in version 1.3.0.

References

[1]

Examples

```python
>>> from scipy.linalg import fiedler_companion, eigvals
>>> p = np.poly(np.arange(1, 9, 2))  # [1., -16., 86., -176., 105.]
>>> fc = fiedler_companion(p)
>>> fc
array([[ 16.,  -86.,   1.,   0.],
       [  1.,   0.,   0.,   0.],
       [  0.,  176.,   0., -105.],
       [  0.,   1.,   0.,   0.]])
>>> eigvals(fc)
array([[7.+0.j,  5.+0.j,  3.+0.j,  1.+0.j]])
```
scipy.linalg.hadamard

scipy.linalg.hadamard(n, dtype=<class 'int'>)

Construct an Hadamard matrix.

Constructs an n-by-n Hadamard matrix, using Sylvester's construction. n must be a power of 2.

Parameters

- **n** (int) The order of the matrix. n must be a power of 2.
- **dtype** (dtype, optional) The data type of the array to be constructed.

Returns

- **H** [(n, n) ndarray] The Hadamard matrix.

Notes

New in version 0.8.0.

Examples

```python
>>> from scipy.linalg import hadamard
>>> hadamard(2, dtype=complex)
array([[ 1.+0.j,  1.+0.j],
       [ 1.+0.j, -1.-0.j]])
>>> hadamard(4)
array([[ 1,  1,  1,  1],
       [ 1, -1,  1, -1],
       [ 1,  1, -1, -1],
       [ 1, -1, -1,  1]])
```

scipy.linalg.hankel

scipy.linalg.hankel(c, r=None)

Construct a Hankel matrix.

The Hankel matrix has constant anti-diagonals, with c as its first column and r as its last row. If r is not given, then r = zeros_like(c) is assumed.

Parameters

- **c** [array_like] First column of the matrix. Whatever the actual shape of c, it will be converted to a 1-D array.
- **r** [array_like, optional] Last row of the matrix. If None, r = zeros_like(c) is assumed. r[0] is ignored; the last row of the returned matrix is [c[-1], r[1:]]. Whatever the actual shape of r, it will be converted to a 1-D array.

Returns

- **A** [(len(c), len(r)) ndarray] The Hankel matrix. Dtype is the same as (c[0] + r[0]). dtype.

See also:

- **toeplitz**

Toeplitz matrix

3.3. API definition 775
circulant

 circulant matrix

Examples

```python
>>> from scipy.linalg import hankel
>>> hankel([1, 17, 99])
array([[1, 17, 99],
       [17, 99,  0],
       [99,  0,  0]])
>>> hankel([1,2,3,4], [4,7,7,8,9])
array([[1, 2, 3, 4, 7],
       [2, 3, 4, 7, 7],
       [3, 4, 7, 7, 8],
       [4, 7, 7, 8, 9]])
```

scipy.linalg.helmert

scipy.linalg.helmert(n, full=False)

Create an Helmert matrix of order n.

This has applications in statistics, compositional or simplicial analysis, and in Aitchison geometry.

Parameters

- **n** [int] The size of the array to create.
- **full** [bool, optional] If True the (n, n) ndarray will be returned. Otherwise the submatrix that does not include the first row will be returned. Default: False.

Returns

- **M** [ndarray] The Helmert matrix. The shape is (n, n) or (n-1, n) depending on the `full` argument.

Examples

```python
>>> from scipy.linalg import helmert
>>> helmert(5, full=True)
array([[0.4472136 , 0.4472136 , 0.4472136 , 0.4472136 , 0.4472136 ],
       [0.70710678, -0.70710678, 0. , 0. , 0. ],
       [0.40824829, 0.40824829, -0.81649658, 0. , 0. ],
       [0.28867513, 0.28867513, 0.28867513, -0.8660254 , 0. ],
       [0.2236068 , 0.2236068 , 0.2236068 , 0.2236068 , -0.89442719]])
```

scipy.linalg.hilbert

scipy.linalg.hilbert(n)

Create a Hilbert matrix of order n.

Returns the n by n array with entries $h[i,j] = 1 / (i + j + 1)$.

Parameters

- **n** [int] The size of the array to create.

Returns

- **h** [(n, n) ndarray] The Hilbert matrix.
See also:

```python
>>> from scipy.linalg import hilbert
>>> hilbert(3)
```

array([[1. , 0.5 , 0.33333333],
 [0.5 , 0.33333333, 0.25],
 [0.33333333, 0.25 , 0.2]])

```python
scipy.linalg.invhilbert
```

`scipy.linalg.invhilbert(n, exact=False)`

Compute the inverse of the Hilbert matrix of order `n`.

The entries in the inverse of a Hilbert matrix are integers. When `n` is greater than 14, some entries in the inverse exceed the upper limit of 64 bit integers. The `exact` argument provides two options for dealing with these large integers.

Parameters

- `n` [int] The order of the Hilbert matrix.
- `exact` [bool, optional] If False, the data type of the array that is returned is np.float64, and the array is an approximation of the inverse. If True, the array is the exact integer inverse array. To represent the exact inverse when `n` > 14, the returned array is an object array of long integers. For `n` <= 14, the exact inverse is returned as an array with data type np.int64.

Returns

- `invh` [(n, n)ndarray] The data type of the array is np.float64 if `exact` is False. If `exact` is True, the data type is either np.int64 (for `n` <= 14) or object (for `n` > 14). In the latter case, the objects in the array will be long integers.

See also:

```python
hilbert
```

Create a Hilbert matrix.
Notes

New in version 0.10.0.

Examples

```python
>>> from scipy.linalg import invhilbert
>>> invhilbert(4)
array([[ 16., -120.,  240., -140.],
       [ -120.,  1200., -2700.,  1680.],
       [  240., -2700.,  6480., -4200.],
       [ -140.,  1680., -4200.,  2800.]])
>>> invhilbert(4, exact=True)
array([[ 16, -120,  240, -140],
       [ -120,  1200, -2700,  1680],
       [  240, -2700,  6480, -4200],
       [ -140,  1680, -4200,  2800]], dtype=int64)
>>> invhilbert(16)[7,7]
4.2475099528537506e+19
>>> invhilbert(16, exact=True)[7,7]
42475099528537378560
```

scipy.linalg.leslie

`scipy.linalg.leslie(f, s)`

Create a Leslie matrix.

Given the length n array of fecundity coefficients f and the length n-1 array of survival coefficients s, return the associated Leslie matrix.

Parameters

- **f** [(N,) array_like] The “fecundity” coefficients.
- **s** [(N-1,) array_like] The “survival” coefficients, has to be 1-D. The length of s must be one less than the length of f, and it must be at least 1.

Returns

- **L** [(N, N) ndarray] The array is zero except for the first row, which is f, and the first sub-diagonal, which is s. The data-type of the array will be the data-type of f[0]+s[0].

Notes

New in version 0.8.0.

The Leslie matrix is used to model discrete-time, age-structured population growth [1] [2]. In a population with n age classes, two sets of parameters define a Leslie matrix: the n “fecundity coefficients”, which give the number of offspring per-capita produced by each age class, and the n - 1 “survival coefficients”, which give the per-capita survival rate of each age class.
References

[1], [2]

Examples

```python
>>> from scipy.linalg import leslie
>>> leslie([0.1, 2.0, 1.0, 0.1], [0.2, 0.8, 0.7])
array([[ 0.1,  2. ,  1. ,  0.1],
       [ 0.2,  0. ,  0. ,  0. ],
       [ 0. ,  0.8,  0. ,  0. ],
       [ 0. ,  0. ,  0.7,  0. ]])
```

scipy.linalg.pascal

`scipy.linalg.pascal(n, kind='symmetric', exact=True)`

Returns the n x n Pascal matrix.

The Pascal matrix is a matrix containing the binomial coefficients as its elements.

Parameters

- `n` [int] The size of the matrix to create; that is, the result is an n x n matrix.
- `kind` [str, optional] Must be one of 'symmetric', 'lower', or 'upper'. Default is 'symmetric'.
- `exact` [bool, optional] If exact is True, the result is either an array of type numpy.uint64 (if n < 35) or an object array of Python long integers. If exact is False, the coefficients in the matrix are computed using `scipy.special.comb` with exact=False. The result will be a floating point array, and the values in the array will not be the exact coefficients, but this version is much faster than exact=True.

Returns

See also:

- `invpascal`

Notes

See https://en.wikipedia.org/wiki/Pascal_matrix for more information about Pascal matrices.

New in version 0.11.0.

Examples

```python
>>> from scipy.linalg import pascal
>>> pascal(4)
array([[ 1,  1,  1,  1],
       [ 1,  2,  3,  4],
       [ 1,  3,  6, 10],
       [ 1,  4, 10, 20]], dtype=uint64)
```

(continues on next page)

>>> pascal(50)[-1, -1]
25477612258980856902730428600
>>> from scipy.special import comb
>>> comb(98, 49, exact=True)
25477612258980856902730428600

scipy.linalg.invpascal

scipy.linalg.invpascal(n, kind='symmetric', exact=True)

Returns the inverse of the n x n Pascal matrix.

The Pascal matrix is a matrix containing the binomial coefficients as its elements.

Parameters

- n [int] The size of the matrix to create; that is, the result is an n x n matrix.
- kind [str, optional] Must be one of 'symmetric', 'lower', or 'upper'. Default is 'symmetric'.
- exact [bool, optional] If exact is True, the result is either an array of type numpy.int64 (if n <= 35) or an object array of Python integers. If exact is False, the coefficients in the matrix are computed using scipy.special.comb with exact=False. The result will be a floating point array, and for large n, the values in the array will not be the exact coefficients.

Returns

- invp [(n, n) ndarray] The inverse of the Pascal matrix.

See also:

- pascal

Notes

New in version 0.16.0.

References

[1], [2]

Examples

```python
>>> from scipy.linalg import invpascal, pascal
>>> invp = invpascal(5)
>>> invp
array([[-5, -10,  10,   5,   1],
       [-10,  30, -35,  19,  -4],
       [  5, -35,  46, -27,   6],
       [-5,  19, -27,  17,  -4],
       [  1, - 4,   6,  -4,   1]])
```
```python
>>> p = pascal(5)
>>> p.dot(invp)
array([[ 1.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  1.]])
```

An example of the use of `kind` and `exact`:

```python
>>> invpascal(5, kind='lower', exact=False)
array([[-1.,  1., -0.,  0., -0.],
       [ 1., -2.,  1., -0.,  0.],
       [-1.,  3., -3.,  1., -0.],
       [ 1., -4.,  6., -4.,  1.]]
```

scipy.linalg.toeplitz

`scipy.linalg.toeplitz(c, r=None)`

Construct a Toeplitz matrix.

The Toeplitz matrix has constant diagonals, with `c` as its first column and `r` as its first row. If `r` is not given, `r == conjugate(c)` is assumed.

Parameters

- `c` [array_like] First column of the matrix. Whatever the actual shape of `c`, it will be converted to a 1-D array.
- `r` [array_like, optional] First row of the matrix. If `None`, `r = conjugate(c)` is assumed; in this case, if `c[0]` is real, the result is a Hermitian matrix. `r[0]` is ignored; the first row of the returned matrix is `[c[0], r[1:]]`. Whatever the actual shape of `r`, it will be converted to a 1-D array.

Returns

- `A` [array_like, (len(c), len(r)) ndarray] The Toeplitz matrix. Dtype is the same as `(c[0] + r[0])`.

See also:

- `circulant`
 - circulant matrix
- `hankel`
 - Hankel matrix
- `solve_toeplitz`
 - Solve a Toeplitz system.
Notes

The behavior when \(c \) or \(r \) is a scalar, or when \(c \) is complex and \(r \) is None, was changed in version 0.8.0. The behavior in previous versions was undocumented and is no longer supported.

Examples

```python
>>> from scipy.linalg import toeplitz
>>> toeplitz([1, 2, 3], [1, 4, 5, 6])
array([[1, 4, 5, 6],
       [2, 1, 4, 5],
       [3, 2, 1, 4]])
>>> toeplitz([1+0j, 2+3j, 4-1j])
array([[ 1.+0.j, 2.-3.j, 4.+1.j],
       [ 2.+3.j, 1.+0.j, 2.-3.j],
       [ 4.-1.j, 2.+3.j, 1.+0.j]])
```

cipy.linalg.tri

```
cipy.linalg.tri(N, M=None, k=0, dtype=None)

Construct (N, M) matrix filled with ones at and below the kth diagonal.

The matrix has \( A[i,j] == 1 \) for \( j <= i + k \)

Parameters

- \( N \) [int] The size of the first dimension of the matrix.
- \( M \) [int or None, optional] The size of the second dimension of the matrix. If \( M \) is None, \( M = N \) is assumed.
- \( k \) [int, optional] Number of subdiagonal below which matrix is filled with ones. \( k = 0 \) is the main diagonal, \( k < 0 \) subdiagonal and \( k > 0 \) superdiagonal.
- \( dtype \) [dtype, optional] Data type of the matrix.

Returns

- tri [(N, M) ndarray] Tri matrix.

Examples

```python
>>> from scipy.linalg import tri
>>> tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, 0],
 [1, 1, 1, 1, 0],
 [1, 1, 1, 1, 1]])
>>> tri(3, 5, -1, dtype=int)
array([[0, 0, 0, 0, 0],
 [1, 0, 0, 0, 0],
 [1, 1, 0, 0, 0]])
```
Low-level routines

<table>
<thead>
<tr>
<th>function</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_blas_funcs(names[, arrays, dtype, ilp64])</td>
<td>Return available BLAS function objects from names.</td>
</tr>
<tr>
<td>get_lapack_funcs(names[, arrays, dtype, ilp64])</td>
<td>Return available LAPACK function objects from names.</td>
</tr>
<tr>
<td>find_best_blas_type([arrays, dtype])</td>
<td>Find best-matching BLAS/LAPACK type.</td>
</tr>
</tbody>
</table>

scipy.linalg.get_blas_funcs

scipy.linalg.get_blas_funcs(names, arrays=(), dtype=None, ilp64=False)

Return available BLAS function objects from names.

Parameters:
- **names**: [str or sequence of str] Name(s) of BLAS functions without type prefix.
- **arrays**: [sequence of ndarrays, optional] Arrays can be given to determine optimal prefix of BLAS routines. If not given, double-precision routines will be used, otherwise the most generic type in arrays will be used.
- **dtype**: [str or dtype, optional] Data-type specifier. Not used if arrays is non-empty.
- **ilp64**: [{True, False, ‘preferred’}, optional] Whether to return ILP64 routine variant. Choosing ‘preferred’ returns ILP64 routine if available, and otherwise the 32-bit routine. Default: False

Returns:
- **funcs**: [list] List containing the found function(s).

Notes

This routine automatically chooses between Fortran/C interfaces. Fortran code is used whenever possible for arrays with column major order. In all other cases, C code is preferred.

In BLAS, the naming convention is that all functions start with a type prefix, which depends on the type of the principal matrix. These can be one of {‘s’, ‘d’, ‘c’, ‘z’} for the NumPy types {float32, float64, complex64, complex128} respectively. The code and the dtype are stored in attributes *typecode* and *dtype* of the returned functions.

Examples

```python
>>> import scipy.linalg as LA
>>> rng = np.random.default_rng()
>>> a = rng.random((3,2))
>>> x_gemv = LA.get_blas_funcs('gemv', (a,))
>>> x_gemv.typecode
'd'
>>> x_gemv = LA.get_blas_funcs('gemv', (a*1j,))
>>> x_gemv.typecode
'z'
```
scipy.linalg.get_lapack_funcs

`scipy.linalg.get_lapack_funcs(names, arrays=(), dtype=None, ilp64=False)`

Return available LAPACK function objects from names.

Arrays are used to determine the optimal prefix of LAPACK routines.

**Parameters**

- `names` [str or sequence of str] Name(s) of LAPACK functions without type prefix.
- `arrays` [sequence of ndarrays, optional] Arrays can be given to determine optimal prefix of LAPACK routines. If not given, double-precision routines will be used, otherwise the most generic type in arrays will be used.
- `dtype` [str or dtype, optional] Data-type specifier. Not used if `arrays` is non-empty.
- `ilp64` [{True, False, 'preferred'}, optional] Whether to return ILP64 routine variant. Choosing ‘preferred’ returns ILP64 routine if available, and otherwise the 32-bit routine. Default: False

**Returns**

- `funcs` [list] List containing the found function(s).

**Notes**

This routine automatically chooses between Fortran/C interfaces. Fortran code is used whenever possible for arrays with column major order. In all other cases, C code is preferred.

In LAPACK, the naming convention is that all functions start with a type prefix, which depends on the type of the principal matrix. These can be one of {'s', 'd', 'c', 'z'} for the NumPy types {float32, float64, complex64, complex128} respectively, and are stored in attribute `typecode` of the returned functions.

**Examples**

Suppose we would like to use ‘?lange’ routine which computes the selected norm of an array. We pass our array in order to get the correct ‘lange’ flavor.

```python
>>> import scipy.linalg as LA
>>> rng = np.random.default_rng()
>>> a = rng.random((3,2))
>>> x_lange = LA.get_lapack_funcs('lange', (a,))
>>> x_lange.typecode
'd'
>>> x_lange = LA.get_lapack_funcs('lange', (a*1j,))
>>> x_lange.typecode
'z'
```

Several LAPACK routines work best when its internal WORK array has the optimal size (big enough for fast computation and small enough to avoid waste of memory). This size is determined also by a dedicated query to the function which is often wrapped as a standalone function and commonly denoted as `##_lwork`. Below is an example for `?sysv`

```python
>>> import scipy.linalg as LA
>>> rng = np.random.default_rng()
>>> a = rng.random((1000, 1000))
>>> b = rng.random((1000, 1)) * 1j
```
>>> # We pick up zsyyv and zsysv_lwork due to b array
... xsysv, xlwork = LA.get_lapack_funcs(("sysv", 'sysv_lwork'), (a, b))
>>> opt_lwork, _ = xlwork(a.shape[0]) # returns a complex for 'z' prefix
>>> udut, ipiv, x, info = xsysv(a, b, lwork=int(opt_lwork.real))

scipy.linalg.find_best_blas_type

scipy.linalg.find_best_blas_type(arrays=(), dtype=None)
Find best-matching BLAS/LAPACK type.

Parameters
arrays [sequence of ndarrays, optional] Arrays can be given to determine optimal prefix of BLAS routines. If not given, double-precision routines will be used, otherwise the most generic type in arrays will be used.
dtype [str or dtype, optional] Data-type specifier. Not used if arrays is non-empty.

Returns
prefix [str] BLAS/LAPACK prefix character.
dtype [dtype] Inferred Numpy data type.
prefer_fortran [bool] Whether to prefer Fortran order routines over C order.

Examples

>>> import scipy.linalg.blas as bla
>>> rng = np.random.default_rng()
>>> a = rng.random((10,15))
>>> b = np.asfortranarray(a) # Change the memory layout order
>>> bla.find_best_blas_type((a,))
('d', dtype('float64'), False)
>>> bla.find_best_blas_type((a*1j,))
('z', dtype('complex128'), False)
>>> bla.find_best_blas_type((b,))
('d', dtype('float64'), True)

See also:
scipy.linalg.blas – Low-level BLAS functions
scipy.linalg.lapack – Low-level LAPACK functions
scipy.linalg.cython_blas – Low-level BLAS functions for Cython
scipy.linalg.cython_lapack – Low-level LAPACK functions for Cython
3.3.11 Low-level BLAS functions (scipy.linalg.blas)

This module contains low-level functions from the BLAS library.

New in version 0.12.0.

Note: The common overwrite_<>() option in many routines, allows the input arrays to be overwritten to avoid extra memory allocation. However this requires the array to satisfy two conditions which are memory order and the data type to match exactly the order and the type expected by the routine.

As an example, if you pass a double precision float array to any S... routine which expects single precision arguments, f2py will create an intermediate array to match the argument types and overwriting will be performed on that intermediate array.

Similarly, if a C-contiguous array is passed, f2py will pass a FORTRAN-contiguous array internally. Please make sure that these details are satisfied. More information can be found in the f2py documentation.

Warning: These functions do little to no error checking. It is possible to cause crashes by mis-using them, so prefer using the higher-level routines in scipy.linalg.

Finding functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_blas_funcs(names[, arrays, dtype, ilp64])</td>
<td>Return available BLAS function objects from names.</td>
</tr>
<tr>
<td>find_best_blas_type([arrays, dtype])</td>
<td>Find best-matching BLAS/LAPACK type.</td>
</tr>
</tbody>
</table>

scipy.linalg.blas.get_blas_funcs

scipy.linalg.blas.get_blas_funcs(names, arrays=(), dtype=None, ilp64=False)

Return available BLAS function objects from names.

Parameters

- names: [str or sequence of str] Name(s) of BLAS functions without type prefix.
- arrays: [sequence of ndarrays, optional] Arrays can be given to determine optimal prefix of BLAS routines. If not given, double-precision routines will be used, otherwise the most generic type in arrays will be used.
- dtype: [str or dtype, optional] Data-type specifier. Not used if arrays is non-empty.
- ilp64: [{'True, False, 'preferred'}, optional] Whether to return ILP64 routine variant. Choosing 'preferred' returns ILP64 routine if available, and otherwise the 32-bit routine. Default: False

Returns

- funcs: [list] List containing the found function(s).
Notes

This routine automatically chooses between Fortran/C interfaces. Fortran code is used whenever possible for arrays with column major order. In all other cases, C code is preferred.

In BLAS, the naming convention is that all functions start with a type prefix, which depends on the type of the principal matrix. These can be one of {‘s’, ‘d’, ‘c’, ‘z’} for the NumPy types {float32, float64, complex64, complex128} respectively. The code and the dtype are stored in attributes \texttt{typecode} and \texttt{dtype} of the returned functions.

Examples

```python
>>> import scipy.linalg as LA
>>> rng = np.random.default_rng()
>>> a = rng.random((3,2))
>>> x_gemv = LA.get_blas_funcs('gemv', (a,))
>>> x_gemv.typecode
'd'
>>> x_gemv = LA.get_blas_funcs('gemv', (a*1j,))
>>> x_gemv.typecode
'z'
```

\texttt{scipy.linalg.blas.find\_best\_blas\_type}

\texttt{scipy.linalg.blas.find\_best\_blas\_type(arrays=(), dtype=None)}

Find best-matching BLAS/LAPACK type.

Arrays are used to determine the optimal prefix of BLAS routines.

Parameters

- \texttt{arrays} [sequence of ndarrays, optional] Arrays can be given to determine optimal prefix of BLAS routines. If not given, double-precision routines will be used, otherwise the most generic type in arrays will be used.
- \texttt{dtype} [str or dtype, optional] Data-type specifier. Not used if \texttt{arrays} is non-empty.

Returns

- \texttt{prefix} [str] BLAS/LAPACK prefix character.
- \texttt{dtype} [dtype] Inferred Numpy data type.
- \texttt{prefer_fortran} [bool] Whether to prefer Fortran order routines over C order.

Examples

```python
>>> import scipy.linalg.blas as bla
>>> rng = np.random.default_rng()
>>> a = rng.random((10,15))
>>> b = np.asfortranarray(a) # Change the memory layout order
>>> bla.find_best_blas_type((a,))
('d', dtype('float64'), False)
>>> bla.find_best_blas_type((a*1j,))
('z', dtype('complex128'), False)
>>> bla.find_best_blas_type((b,))
('d', dtype('float64'), True)
```
## BLAS Level 1 functions

- **caxpy**(*x*, *y*, [n, a, offx, incx, offy, incy])  
  Wrapper for caxpy.

- **ccopy**(*x*, *y*, [n, offx, incx, offy, incy])  
  Wrapper for ccopy.

- **cdotc**(*x*, *y*, [n, offx, incx, offy, incy])  
  Wrapper for cdotc.

- **cdotu**(*x*, *y*, [n, offx, incx, offy, incy])  
  Wrapper for cdotu.

- **crotg**(*a*, *b*)  
  Wrapper for crotg.

- **cscal**(*a*, *x*, [n, offx, incx])  
  Wrapper for cscal.

- **csrot**  
  Wrapper for csrot.

- **csscal**(*a*, *x*, [n, offx, incx, overwrite_x])  
  Wrapper for csscal.

- **cswap**(*x*, *y*, [n, offx, incx, offy, incy])  
  Wrapper for cswap.

- **dasum**(*x*, [n, offx, incx])  
  Wrapper for dasum.

- **daxpy**(*x*, *y*, [n, a, offx, incx, offy, incy])  
  Wrapper for daxpy.

- **dcopy**(*x*, *y*, [n, offx, incx, offy, incy])  
  Wrapper for dcopy.

- **ddot**(*x*, *y*, [n, offx, incx, offy, incy])  
  Wrapper for ddot.

- **dnrm2**(*x*, [n, offx, incx])  
  Wrapper for dnrm2.

- **drot**  
  Wrapper for drot.

- **drotg**(*a*, *b*)  
  Wrapper for drotg.

- **drotm**  
  Wrapper for drotm.

- **drotmg**(*d1*, *d2*, *x1*, *y1*)  
  Wrapper for drotmg.

- **dscal**(*a*, *x*, [n, offx, incx])  
  Wrapper for dscal.

- **dswap**(*x*, *y*, [n, offx, incx, offy, incy])  
  Wrapper for dswap.

- **sdasum**(*x*, [n, offx, incx])  
  Wrapper for sdasum.

- **dscale**(*a*, *x*, [n, offx, incx, overwrite_x])  
  Wrapper for dscale.

- **dswap**(*x*, *y*, [n, offx, incx, offy, incy])  
  Wrapper for dswap.

- **sdot**(*x*, *y*, [n, offx, incx, offy, incy])  
  Wrapper for sdot.

- **sdotg**(*a*, *b*)  
  Wrapper for sdotg.

- **sdotm**  
  Wrapper for sdotm.

- **sdotmg**(*d1*, *d2*, *x1*, *y1*)  
  Wrapper for sdotmg.

- **sscal**(*a*, *x*, [n, offx, incx])  
  Wrapper for sscale.

- **sswap**(*x*, *y*, [n, offx, incx, offy, incy])  
  Wrapper for sswap.

- **szaxpy**(*x*, *y*, [n, offx, incx, offy, incy])  
  Wrapper for szaxpy.

- **zcpxy**(*x*, *y*, [n, offx, incx, offy, incy])  
  Wrapper for zcopy.

- **zdscal**(*a*, *x*, [n, offx, incx, overwrite_x])  
  Wrapper for zdscal.

- **zsrot**(*a*, *b*)  
  Wrapper for zrotg.

- **zscal**(*a*, *x*, [n, offx, incx])  
  Wrapper for zscal.

- **zswap**(*x*, *y*, [n, offx, incx, offy, incy])  
  Wrapper for zswap.
scipy.linalg.blas.caxpy

scipy.linalg.blas.caxpy (x, y[, n, a, offx, incx, offy, incy]) = <fortran object>

Wrapper for caxpy.

Parameters

x : [input rank-1 array('F') with bounds (*)]
y : [input rank-1 array('F') with bounds (*)]

Returns

z : [rank-1 array('F') with bounds (*) and y storage]

Other Parameters

n : [input int, optional] Default: (len(x)-offx)/abs(incx)
a : [input complex, optional] Default: (1.0, 0.0)
offx : [input int, optional] Default: 0
incx : [input int, optional] Default: 1
offy : [input int, optional] Default: 0
incy : [input int, optional] Default: 1

scipy.linalg.blas.ccopy

scipy.linalg.blas.ccopy (x, y[, n, offx, incx, offy, incy]) = <fortran object>

Wrapper for ccopy.

Parameters

x : [input rank-1 array('F') with bounds (*)]
y : [input rank-1 array('F') with bounds (*)]

Returns

y : [rank-1 array('F') with bounds (*)]

Other Parameters

n : [input int, optional] Default: (len(x)-offx)/abs(incx)
offx : [input int, optional] Default: 0
incx : [input int, optional] Default: 1
offy : [input int, optional] Default: 0
incy : [input int, optional] Default: 1

scipy.linalg.blas.cdotc

scipy.linalg.blas.cdotc (x, y[, n, offx, incx, offy, incy]) = <fortran cdotc>

Wrapper for cdotc.

Parameters

x : [input rank-1 array('F') with bounds (*)]
y : [input rank-1 array('F') with bounds (*)]

Returns

xy : [complex]

Other Parameters

n : [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.cdotu

scipy.linalg.blas.cdotu(x, y[, n, offx, incx, offy, incy]) = <fortran cdotu>
Wrapper for cdotu.

Parameters
x [input rank-1 array('F') with bounds (*)]
y [input rank-1 array('F') with bounds (*)]

Returns
xy [complex]

Other Parameters
n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.crotg

scipy.linalg.blas.crotg(a, b) = <fortran object>
Wrapper for crotg.

Parameters
a [input complex]
b [input complex]

Returns
c [complex]
s [complex]

scipy.linalg.blas.cscal

scipy.linalg.blas.cscal(a, x[, n, offx, incx]) = <fortran object>
Wrapper for cscal.

Parameters
a [input complex]
x [input rank-1 array('F') with bounds (*)]

Returns
x [rank-1 array('F') with bounds (*)]

Other Parameters
n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
scipy.linalg.blas.csrot

```
scipy.linalg.blas.csrot(x, y, c[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran object>
```

Wrapper for csrot.

**Parameters**

- **x** [input rank-1 array('F') with bounds (*)]
- **y** [input rank-1 array('F') with bounds (*)]
- **c** [input float]
- **s** [input float]

**Returns**

- **x** [rank-1 array('F') with bounds (*)]
- **y** [rank-1 array('F') with bounds (*)]

**Other Parameters**

- **n** [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
- **overwrite_x** [input int, optional] Default: 0
- **offx** [input int, optional] Default: 0
- **incx** [input int, optional] Default: 1
- **overwrite_y** [input int, optional] Default: 0
- **offy** [input int, optional] Default: 0
- **incy** [input int, optional] Default: 1

scipy.linalg.blas.csscal

```
scipy.linalg.blas.csscal(a, x[, n, offx, incx, overwrite_x]) = <fortran object>
```

Wrapper for csscal.

**Parameters**

- **a** [input float]
- **x** [input rank-1 array('F') with bounds (*)]

**Returns**

- **x** [rank-1 array('F') with bounds (*)]

**Other Parameters**

- **n** [input int, optional] Default: (len(x)-offx)/abs(incx)
- **overwrite_x** [input int, optional] Default: 0
- **offx** [input int, optional] Default: 0
- **incx** [input int, optional] Default: 1
scipy.linalg.blas.cswap

scipy.linalg.blas.cswap(x, y[, n, offx, incx, offy, incy]) = <fortran object>

Wrapper for cswap.

Parameters

- x [input rank-1 array('F') with bounds (*)]
- y [input rank-1 array('F') with bounds (*)]

Returns

- x [rank-1 array('F') with bounds (*)]
- y [rank-1 array('F') with bounds (*)]

Other Parameters

- n [input int, optional] Default: (len(x)-offx)/abs(incx)
- offx [input int, optional] Default: 0
- incx [input int, optional] Default: 1
- offy [input int, optional] Default: 0
- incy [input int, optional] Default: 1

scipy.linalg.blas.dasum

scipy.linalg.blas.dasum(x[, n, offx, incx]) = <fortran dasum>

Wrapper for dasum.

Parameters

- x [input rank-1 array('d') with bounds (*)]

Returns

- s [float]

Other Parameters

- n [input int, optional] Default: (len(x)-offx)/abs(incx)
- offx [input int, optional] Default: 0
- incx [input int, optional] Default: 1

scipy.linalg.blas.daxpy

scipy.linalg.blas.daxpy(x, y[, n, a, offx, incx, offy, incy]) = <fortran object>

Wrapper for daxpy.

Parameters

- x [input rank-1 array('d') with bounds (*)]
- y [input rank-1 array('d') with bounds (*)]

Returns

- z [rank-1 array('d') with bounds (*) and y storage]

Other Parameters

- n [input int, optional] Default: (len(x)-offx)/abs(incx)
- a [input float, optional] Default: 1.0
- offx [input int, optional] Default: 0
- incx [input int, optional] Default: 1
- offy [input int, optional] Default: 0
- incy [input int, optional] Default: 1
scipy.linalg.blas.dcopy

scipy.linalg.blas.dcopy(x[, y, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for dcopy.

Parameters
x [input rank-1 array('d') with bounds (*)]
y [input rank-1 array('d') with bounds (*)]

Returns
y [rank-1 array('d') with bounds (*)]

Other Parameters
n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.ddot

scipy.linalg.blas.ddot(x[, y, n, offx, incx, offy, incy]) = <fortran ddot>
Wrapper for ddot.

Parameters
x [input rank-1 array('d') with bounds (*)]
y [input rank-1 array('d') with bounds (*)]

Returns
xy [float]

Other Parameters
n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.dnrm2

scipy.linalg.blas.dnrm2(x[, n, offx, incx]) = <fortran dnrm2>
Wrapper for dnrm2.

Parameters
x [input rank-1 array('d') with bounds (*)]

Returns
n2 [float]

Other Parameters
n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
scipy.linalg.blas.drot

```
scipy.linalg.blas.drot (x, y, c, s[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran object>
```

Wrapper for drot.

**Parameters**

- `x` [input rank-1 array('d') with bounds (*)]
- `y` [input rank-1 array('d') with bounds (*)]
- `c` [input float]
- `s` [input float]

**Returns**

- `x` [rank-1 array('d') with bounds (*)]
- `y` [rank-1 array('d') with bounds (*)]

**Other Parameters**

- `n` [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
- `overwrite_x` [input int, optional] Default: 0
- `offx` [input int, optional] Default: 0
- `incx` [input int, optional] Default: 1
- `overwrite_y` [input int, optional] Default: 0
- `offy` [input int, optional] Default: 0
- `incy` [input int, optional] Default: 1

scipy.linalg.blas.drotg

```
scipy.linalg.blas.drotg (a, b) = <fortran object>
```

Wrapper for drotg.

**Parameters**

- `a` [input float]
- `b` [input float]

**Returns**

- `c` [float]
- `s` [float]

scipy.linalg.blas.drotm

```
scipy.linalg.blas.drotm (x, y, param[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran object>
```

Wrapper for drotm.

**Parameters**

- `x` [input rank-1 array('d') with bounds (*)]
- `y` [input rank-1 array('d') with bounds (*)]
- `param` [input rank-1 array('d') with bounds (5)]

**Returns**

- `x` [rank-1 array('d') with bounds (*)]
- `y` [rank-1 array('d') with bounds (*)]

**Other Parameters**

3.3. API definition

- **n** [input int, optional] Default: (len(x)-offx)/abs(incx)
- **overwrite_x** [input int, optional] Default: 0
- **offx** [input int, optional] Default: 0
- **incx** [input int, optional] Default: 1
- **overwrite_y** [input int, optional] Default: 0
- **offy** [input int, optional] Default: 0
- **incy** [input int, optional] Default: 1

### scipy.linalg.blas.drotmg

**scipy.linalg.blas.drotmg**(d1, d2, x1, y1) = <fortran object>

Wrapper for drotmg.

**Parameters**

- **d1** [input float]
- **d2** [input float]
- **x1** [input float]
- **y1** [input float]

**Returns**

- **param** [rank-1 array('d') with bounds (5)]

### scipy.linalg.blas.dscal

**scipy.linalg.blas.dscal**(a, x[, n, offx, incx]) = <fortran object>

Wrapper for dscal.

**Parameters**

- **a** [input float]
- **x** [input rank-1 array('d') with bounds (*)]

**Returns**

- **x** [rank-1 array('d') with bounds (*)]

**Other Parameters**

- **n** [input int, optional] Default: (len(x)-offx)/abs(incx)
- **offx** [input int, optional] Default: 0
- **incx** [input int, optional] Default: 1

### scipy.linalg.blas.dswap

**scipy.linalg.blas.dswap**(x, y[, n, offx, incx, offy, incy]) = <fortran object>

Wrapper for dswap.

**Parameters**

- **x** [input rank-1 array('d') with bounds (*)]
- **y** [input rank-1 array('d') with bounds (*)]

**Returns**

- **x** [rank-1 array('d') with bounds (*)]
- **y** [rank-1 array('d') with bounds (*)]

**Other Parameters**

```
scipy.linalg.blas.dzasum
scipy.linalg.blas.dzasum(x[, n, offx, incx]) = <fortran dzasum>
Wrapper for dzasum.

Parameters

x [input rank-1 array('D') with bounds (*)]

Returns

s [float]

Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.dznrm2
scipy.linalg.blas.dznrm2(x[, n, offx, incx]) = <fortran dznrm2>
Wrapper for dznrm2.

Parameters

x [input rank-1 array('D') with bounds (*)]

Returns

n2 [float]

Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.icamax
scipy.linalg.blas.icamax(x[, n, offx, incx]) = <fortran object>
Wrapper for icamax.

Parameters

x [input rank-1 array('F') with bounds (*)]

Returns

k [int]

Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
```
scipy.linalg.blas.idamax

scipy.linalg.blas.idamax(x[, n, offx, incx]) = <fortran object>
Wrapper for idamax.

Parameters
x [input rank-1 array('d') with bounds (*)]

Returns
k [int]

Other Parameters
n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.isamax

scipy.linalg.blas.isamax(x[, n, offx, incx]) = <fortran object>
Wrapper for isamax.

Parameters
x [input rank-1 array('f') with bounds (*)]

Returns
k [int]

Other Parameters
n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.izamax

scipy.linalg.blas.izamax(x[, n, offx, incx]) = <fortran object>
Wrapper for izamax.

Parameters
x [input rank-1 array('D') with bounds (*)]

Returns
k [int]

Other Parameters
n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
scipy.linalg.blas.sasum

scipy.linalg.blas.sasum(x[, n, offx, incx]) = <fortran sasum>
Wrapper for sasum.

Parameters

x [input rank-1 array('f') with bounds (*)]

Returns

s [float]

Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.saxpy

scipy.linalg.blas.saxpy(x[, y, n, a, offx, incx, offy, incy]) = <fortran object>
Wrapper for saxpy.

Parameters

x [input rank-1 array('f') with bounds (*)]
y [input rank-1 array('f') with bounds (*)]

Returns

z [rank-1 array('f') with bounds (*) and y storage]

Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
a [input float, optional] Default: 1.0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.scasum

scipy.linalg.blas.scasum(x[, n, offx, incx]) = <fortran scasum>
Wrapper for scasum.

Parameters

x [input rank-1 array('F') with bounds (*)]

Returns

s [float]

Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
scipy.linalg.blas.scnrm2

scipy.linalg.blas.scnrm2(x[, n, offx, incx]) = <fortran scnrm2>
Wrapper for scnrm2.

Parameters
x   [input rank-1 array('F') with bounds (*)]

Returns
n2  [float]

Other Parameters
n   [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.scopy

scipy.linalg.blas.scopy (x[, y, n, offx, incx, offy, incy]) = <fortran object>
Wrapper for scopy.

Parameters
x   [input rank-1 array('F') with bounds (*)]
y   [input rank-1 array('F') with bounds (*)]

Returns
y   [rank-1 array('f') with bounds (*)]

Other Parameters
n   [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.sdot

scipy.linalg.blas.sdot (x[, y, n, offx, incx, offy, incy]) = <fortran sdot>
Wrapper for sdot.

Parameters
x   [input rank-1 array('F') with bounds (*)]
y   [input rank-1 array('F') with bounds (*)]

Returns
xy  [float]

Other Parameters
n   [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.snrm2

scipy.linalg.blas.snrm2(x[, n, offx, incx]) = <fortran snrm2>

Wrapper for snrm2.

Parameters

x [input rank-1 array('f') with bounds (*)]

Returns

n2 [float]

Other Parameters

n [input int, optional] Default: (len(x)-offx)/abs(incx)
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1

scipy.linalg.blas.srot

scipy.linalg.blas.srot(x, y, c, s[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran object>

Wrapper for srot.

Parameters

x [input rank-1 array('f') with bounds (*)]
y [input rank-1 array('f') with bounds (*)]
c [input float]
s [input float]

Returns

x [rank-1 array('f') with bounds (*)]
y [rank-1 array('f') with bounds (*)]

Other Parameters

n [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
overwrite_x [input int, optional] Default: 0
offx [input int, optional] Default: 0
incx [input int, optional] Default: 1
overwrite_y [input int, optional] Default: 0
offy [input int, optional] Default: 0
incy [input int, optional] Default: 1

scipy.linalg.blas.srotg

scipy.linalg.blas.srotg(a, b) = <fortran object>

Wrapper for srotg.

Parameters

a [input float]
b [input float]

Returns

c [float]
s [float]

scipy.linalg.blas.srotm

```python
scipy.linalg.blas.srotm(x, y, param[, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran object>
```

Wrapper for srotm.

**Parameters**

- **x** [input rank-1 array('f') with bounds (*)]
- **y** [input rank-1 array('f') with bounds (*)]
- **param** [input rank-1 array('f') with bounds (5)]

**Returns**

- **x** [rank-1 array('f') with bounds (*)]
- **y** [rank-1 array('f') with bounds (*)]

**Other Parameters**

- **n** [input int, optional] Default: (len(x)-offx)/abs(incx)
- **overwrite_x** [input int, optional] Default: 0
- **offx** [input int, optional] Default: 0
- **incx** [input int, optional] Default: 1
- **overwrite_y** [input int, optional] Default: 0
- **offy** [input int, optional] Default: 0
- **incy** [input int, optional] Default: 1

scipy.linalg.blas.srotmg

```python
scipy.linalg.blas.srotmg(d1, d2, x1, y1) = <fortran object>
```

Wrapper for srotmg.

**Parameters**

- **d1** [input float]
- **d2** [input float]
- **x1** [input float]
- **y1** [input float]

**Returns**

- **param** [rank-1 array('f') with bounds (5)]

scipy.linalg.blas.sscal

```python
scipy.linalg.blas.sscal(a, x[, n, offx, incx]) = <fortran object>
```

Wrapper for sscal.

**Parameters**

- **a** [input float]
- **x** [input rank-1 array('f') with bounds (*)]

**Returns**

- **x** [rank-1 array('f') with bounds (*)]

**Other Parameters**

- **n** [input int, optional] Default: (len(x)-offx)/abs(incx)
- **offx** [input int, optional] Default: 0
incx  [input int, optional] Default: 1

scipy.linalg.blas.sswap

scipy.linalg.blas.sswap(x[, n, offx, incx, offy, incy]) = <fortran object>

Wrapper for sswap.

Parameters

x  [input rank-1 array('f') with bounds (*)]
y  [input rank-1 array('f') with bounds (*)]

Returns

x  [rank-1 array('f') with bounds (*)]
y  [rank-1 array('f') with bounds (*)]

Other Parameters

n  [input int, optional] Default: (len(x)-offx)/abs(incx)
offx  [input int, optional] Default: 0
incx  [input int, optional] Default: 1
offy  [input int, optional] Default: 0
incy  [input int, optional] Default: 1

scipy.linalg.blas.zaxpy

scipy.linalg.blas.zaxpy(x[, n, a, offx, incx, offy, incy]) = <fortran object>

Wrapper for zaxpy.

Parameters

x  [input rank-1 array('D') with bounds (*)]
y  [input rank-1 array('D') with bounds (*)]

Returns

z  [rank-1 array('D') with bounds (*) and y storage]

Other Parameters

n  [input int, optional] Default: (len(x)-offx)/abs(incx)
a  [input complex, optional] Default: (1.0, 0.0)
offx  [input int, optional] Default: 0
incx  [input int, optional] Default: 1
offy  [input int, optional] Default: 0
incy  [input int, optional] Default: 1

scipy.linalg.blas.zcopy

scipy.linalg.blas.zcopy(x[, n, offx, incx, offy, incy]) = <fortran object>

Wrapper for zcopy.

Parameters

x  [input rank-1 array('D') with bounds (*)]
y  [input rank-1 array('D') with bounds (*)]

Returns

y  [rank-1 array('D') with bounds (*)]

Other Parameters
scipy.linalg.blas.zdotc

Wrapper for `zdotc`.

**Parameters**

- `x` [input rank-1 array('D') with bounds (*)]
- `y` [input rank-1 array('D') with bounds (*)]

**Returns**

- `xy` [complex]

**Other Parameters**

- `n` [input int, optional] Default: (len(x)-offx)/abs(incx)
- `offx` [input int, optional] Default: 0
- `incx` [input int, optional] Default: 1
- `offy` [input int, optional] Default: 0
- `incy` [input int, optional] Default: 1

scipy.linalg.blas.zdotu

Wrapper for `zdotu`.

**Parameters**

- `x` [input rank-1 array('D') with bounds (*)]
- `y` [input rank-1 array('D') with bounds (*)]

**Returns**

- `xy` [complex]

**Other Parameters**

- `n` [input int, optional] Default: (len(x)-offx)/abs(incx)
- `offx` [input int, optional] Default: 0
- `incx` [input int, optional] Default: 1
- `offy` [input int, optional] Default: 0
- `incy` [input int, optional] Default: 1

scipy.linalg.blas.zdrot

Wrapper for `zdrot`.

**Parameters**

- `x` [input rank-1 array('D') with bounds (*)]
- `y` [input rank-1 array('D') with bounds (*)]
- `c` [input float]
- `s` [input float]
Returns

\[ x \quad \text{[rank-1 array('D') with bounds (*)]} \]
\[ y \quad \text{[rank-1 array('D') with bounds (*)]} \]

Other Parameters

\[ n \quad \text{[input int, optional] Default: (len(x)-1-offx)/abs(incx)+1} \]
\[ \text{overwrite}_x \quad \text{[input int, optional] Default: 0} \]
\[ \text{offx} \quad \text{[input int, optional] Default: 0} \]
\[ \text{incx} \quad \text{[input int, optional] Default: 1} \]
\[ \text{overwrite}_y \quad \text{[input int, optional] Default: 0} \]
\[ \text{offy} \quad \text{[input int, optional] Default: 0} \]
\[ \text{incy} \quad \text{[input int, optional] Default: 1} \]

`scipy.linalg.blas.zdscal`

`scipy.linalg.blas.zdscal(a, x[, n, offx, incx, overwrite_x]) = <fortran object>`

Wrapper for `zdscal`.

Parameters

\[ a \quad \text{[input float]} \]
\[ x \quad \text{[input rank-1 array('D') with bounds (*)]} \]

Returns

\[ x \quad \text{[rank-1 array('D') with bounds (*)]} \]

Other Parameters

\[ n \quad \text{[input int, optional] Default: (len(x)-offx)/abs(incx)} \]
\[ \text{overwrite}_x \quad \text{[input int, optional] Default: 0} \]
\[ \text{offx} \quad \text{[input int, optional] Default: 0} \]
\[ \text{incx} \quad \text{[input int, optional] Default: 1} \]

`scipy.linalg.blas.zrotg`

`scipy.linalg.blas.zrotg(a, b) = <fortran object>`

Wrapper for `zrotg`.

Parameters

\[ a \quad \text{[input complex]} \]
\[ b \quad \text{[input complex]} \]

Returns

\[ c \quad \text{[complex]} \]
\[ s \quad \text{[complex]} \]
scipy.linalg.blas.zscal

```python
scipy.linalg.blas.zscal(a, x[, n, offx, incx]) = <fortran object>
```

Wrapper for zscal.

**Parameters**

- `a` [input complex]
- `x` [input rank-1 array('D') with bounds (*)]

**Returns**

- `x` [rank-1 array('D') with bounds (*)]

**Other Parameters**

- `n` [input int, optional] Default: (len(x)-offx)/abs(incx)
- `offx` [input int, optional] Default: 0
- `incx` [input int, optional] Default: 1

scipy.linalg.blas.zswap

```python
scipy.linalg.blas.zswap(x, y[, n, offx, incx, offy, incy]) = <fortran object>
```

Wrapper for zswap.

**Parameters**

- `x` [input rank-1 array('D') with bounds (*)]
- `y` [input rank-1 array('D') with bounds (*)]

**Returns**

- `x` [rank-1 array('D') with bounds (*)]
- `y` [rank-1 array('D') with bounds (*)]

**Other Parameters**

- `n` [input int, optional] Default: (len(x)-offx)/abs(incx)
- `offx` [input int, optional] Default: 0
- `incx` [input int, optional] Default: 1
- `offy` [input int, optional] Default: 0
- `incy` [input int, optional] Default: 1

**BLAS Level 2 functions**

- `sgbmv(...)` Wrapper for sgbmv.
- `sgemv(...)` Wrapper for sgemv.
- `sger(...)` Wrapper for sger.
- `ssbmv(...)` Wrapper for ssbmv.
- `sspr(n, alpha, x, ap[, incx, offx, lower, overwrite_ap])` Wrapper for sspr.
- `sspr2(...)` Wrapper for sspr2.
- `ssymv(...)` Wrapper for ssymv.
- `ssyr(alpha, x[, lower, incx, offx, n, a, overwrite_a])` Wrapper for ssyr.
- `ssyr2(...)` Wrapper for ssyr2.
- `stbmv(...)` Wrapper for stbmv.
- `stpsv(...)` Wrapper for stpsv.
- `strmv(...)` Wrapper for strmv.
- `strsv(...)` Wrapper for strsv.

continues on next page

3.3. API definition
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dgbmv(...)</code></td>
<td>Wrapper for <code>dgbmv</code>.</td>
</tr>
<tr>
<td><code>dgemv(...)</code></td>
<td>Wrapper for <code>dgemv</code>.</td>
</tr>
<tr>
<td><code>dger(...)</code></td>
<td>Wrapper for <code>dger</code>.</td>
</tr>
<tr>
<td><code>dsbmv(...)</code></td>
<td>Wrapper for <code>dsbmv</code>.</td>
</tr>
<tr>
<td><code>dsspr(n, alpha, x, [incx, offx, lower, overwrite_ap])</code></td>
<td>Wrapper for <code>dsspr</code>.</td>
</tr>
<tr>
<td><code>dsspr2(...)</code></td>
<td>Wrapper for <code>dsspr2</code>.</td>
</tr>
<tr>
<td><code>dsymv(...)</code></td>
<td>Wrapper for <code>dsymv</code>.</td>
</tr>
<tr>
<td><code>dsyr(alpha, x, [lower, incx, offx, n, a, overwrite_a])</code></td>
<td>Wrapper for <code>dsyr</code>.</td>
</tr>
<tr>
<td><code>dsyr2(...)</code></td>
<td>Wrapper for <code>dsyr2</code>.</td>
</tr>
<tr>
<td><code>dtrmv(...)</code></td>
<td>Wrapper for <code>dtrmv</code>.</td>
</tr>
<tr>
<td><code>dtrsv(...)</code></td>
<td>Wrapper for <code>dtrsv</code>.</td>
</tr>
<tr>
<td><code>cgbmv(...)</code></td>
<td>Wrapper for <code>cgbmv</code>.</td>
</tr>
<tr>
<td><code>cgemv(...)</code></td>
<td>Wrapper for <code>cgemv</code>.</td>
</tr>
<tr>
<td><code>cgerc(...)</code></td>
<td>Wrapper for <code>cgerc</code>.</td>
</tr>
<tr>
<td><code>cgeru(...)</code></td>
<td>Wrapper for <code>cgeru</code>.</td>
</tr>
<tr>
<td><code>chbmv(...)</code></td>
<td>Wrapper for <code>chbmv</code>.</td>
</tr>
<tr>
<td><code>chemv(...)</code></td>
<td>Wrapper for <code>chemv</code>.</td>
</tr>
<tr>
<td><code>cher(alpha, x, [lower, incx, offx, n, a, overwrite_a])</code></td>
<td>Wrapper for <code>cher</code>.</td>
</tr>
<tr>
<td><code>cher2(...)</code></td>
<td>Wrapper for <code>cher2</code>.</td>
</tr>
<tr>
<td><code>chpmv(...)</code></td>
<td>Wrapper for <code>chpmv</code>.</td>
</tr>
<tr>
<td><code>chpr(n, alpha, x, [incx, offx, lower, overwrite_ap])</code></td>
<td>Wrapper for <code>chpr</code>.</td>
</tr>
<tr>
<td><code>chpr2(...)</code></td>
<td>Wrapper for <code>chpr2</code>.</td>
</tr>
<tr>
<td><code>ctbmv(...)</code></td>
<td>Wrapper for <code>ctbmv</code>.</td>
</tr>
<tr>
<td><code>ctbsv(...)</code></td>
<td>Wrapper for <code>ctbsv</code>.</td>
</tr>
<tr>
<td><code>ctpmv(...)</code></td>
<td>Wrapper for <code>ctpmv</code>.</td>
</tr>
<tr>
<td><code>ctpsv(...)</code></td>
<td>Wrapper for <code>ctpsv</code>.</td>
</tr>
<tr>
<td><code>ctrmv(...)</code></td>
<td>Wrapper for <code>ctrmv</code>.</td>
</tr>
<tr>
<td><code>ctrsv(...)</code></td>
<td>Wrapper for <code>ctrsv</code>.</td>
</tr>
<tr>
<td><code>csyr(alpha, x, [lower, incx, offx, n, a, overwrite_a])</code></td>
<td>Wrapper for <code>csyr</code>.</td>
</tr>
<tr>
<td><code>zgbmv(...)</code></td>
<td>Wrapper for <code>zgbmv</code>.</td>
</tr>
<tr>
<td><code>zgemv(...)</code></td>
<td>Wrapper for <code>zgemv</code>.</td>
</tr>
<tr>
<td><code>zgerc(...)</code></td>
<td>Wrapper for <code>zgerc</code>.</td>
</tr>
<tr>
<td><code>zgeru(...)</code></td>
<td>Wrapper for <code>zgeru</code>.</td>
</tr>
<tr>
<td><code>zhbmv(...)</code></td>
<td>Wrapper for <code>zhbmv</code>.</td>
</tr>
<tr>
<td><code>zhemv(...)</code></td>
<td>Wrapper for <code>zhemv</code>.</td>
</tr>
<tr>
<td><code>zher(alpha, x, [lower, incx, offx, n, a, overwrite_a])</code></td>
<td>Wrapper for <code>zher</code>.</td>
</tr>
<tr>
<td><code>zher2(...)</code></td>
<td>Wrapper for <code>zher2</code>.</td>
</tr>
<tr>
<td><code>zhpmv(...)</code></td>
<td>Wrapper for <code>zhpmv</code>.</td>
</tr>
<tr>
<td><code>zhpr(n, alpha, x, [incx, offx, lower, overwrite_ap])</code></td>
<td>Wrapper for <code>zhpr</code>.</td>
</tr>
<tr>
<td><code>zhpr2(...)</code></td>
<td>Wrapper for <code>zhpr2</code>.</td>
</tr>
<tr>
<td><code>ztbmv(...)</code></td>
<td>Wrapper for <code>ztbmv</code>.</td>
</tr>
<tr>
<td><code>ztbsv(...)</code></td>
<td>Wrapper for <code>ztbsv</code>.</td>
</tr>
<tr>
<td><code>ztpmv(...)</code></td>
<td>Wrapper for <code>ztpmv</code>.</td>
</tr>
<tr>
<td><code>ztrmv(...)</code></td>
<td>Wrapper for <code>ztrmv</code>.</td>
</tr>
<tr>
<td><code>ztrsv(...)</code></td>
<td>Wrapper for <code>ztrsv</code>.</td>
</tr>
<tr>
<td><code>zsyr(alpha, x, [lower, incx, offx, n, a, overwrite_a])</code></td>
<td>Wrapper for <code>zsyr</code>.</td>
</tr>
</tbody>
</table>
scipy.linalg.blas.sgbmv

scipy.linalg.blas.sgbmv(m, n, kl, ku, alpha, a, x[, incx, offx, beta, y, incy, offy, trans, overwrite_y]) = <fortran object>

Wrapper for sgbmv.

Parameters

- m [input int]
- n [input int]
- kl [input int]
- ku [input int]
- alpha [input float]
- a [input rank-2 array('f') with bounds (lda,n)]
- x [input rank-1 array('f') with bounds (*)]

Returns

- yout [rank-1 array('f') with bounds (ly) and y storage]

Other Parameters

- incx [input int, optional] Default: 1
- offx [input int, optional] Default: 0
- beta [input float, optional] Default: 0.0
- y [input rank-1 array('f') with bounds (ly)]
- overwrite_y [input int, optional] Default: 0
- incy [input int, optional] Default: 1
- offy [input int, optional] Default: 0
- trans [input int, optional] Default: 0

scipy.linalg.blas.sgemv

scipy.linalg.blas.sgemv(alpha, a, x[, beta, y, offx, incx, offy, incy, trans, overwrite_y]) = <fortran object>

Wrapper for sgemv.

Parameters

- alpha [input float]
- a [input rank-2 array('f') with bounds (m,n)]
- x [input rank-1 array('f') with bounds (*)]

Returns

- y [rank-1 array('f') with bounds (ly)]

Other Parameters

- beta [input float, optional] Default: 0.0
- y [input rank-1 array('f') with bounds (ly)]
- overwrite_y [input int, optional] Default: 0
- incx [input int, optional] Default: 1
- offx [input int, optional] Default: 0
- incy [input int, optional] Default: 1
- trans [input int, optional] Default: 0
scipy.linalg.blas.sger

scipy.linalg.blas.sger (alpha, x, y[, incx, incy, a, overwrite_x, overwrite_y, overwrite_a]) = <fortran object>

Wrapper for sger.

Parameters

alpha [input float]
x [input rank-1 array('f') with bounds (m)]
y [input rank-1 array('f') with bounds (n)]

Returns

a [rank-2 array('f') with bounds (m,n)]

Other Parameters

overwrite_x [input int, optional] Default: 1
incx [input int, optional] Default: 1
overwrite_y [input int, optional] Default: 1
incy [input int, optional] Default: 1
a [input rank-2 array('f') with bounds (m,n), optional] Default: 0.0
overwrite_a [input int, optional] Default: 0

scipy.linalg.blas.ssbmv

scipy.linalg.blas.ssbmv (k, alpha, a, x[, incx, offx, beta, y, incy, offy, lower, overwrite_y]) = <fortran object>

Wrapper for ssbmv.

Parameters

k [input int]
alpha [input float]
a [input rank-2 array('f') with bounds (lda,n)]
x [input rank-1 array('f') with bounds (*)]

Returns

yout [rank-1 array('f') with bounds (ly) and y storage]

Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
beta [input float, optional] Default: 0.0
y [input rank-1 array('f') with bounds (ly)]
overwrite_y [input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 1
lower [input int, optional] Default: 0
scipy.linalg.blas.sspr

scipy.linalg.blas.sspr(n, alpha, x, ap[, incx, offx, lower, overwrite_ap]) = <fortran object>

Wrapper for sspr.

Parameters

n [input int]
alpha [input float]
x [input rank-1 array('f') with bounds (*)]
ap [input rank-1 array('f') with bounds (*)]

Returns

apu [rank-1 array('f') with bounds (*) and ap storage]

Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
overwrite_ap [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.sspr2

scipy.linalg.blas.sspr2(n, alpha, x, y, ap[, incx, offx, incy, offy, lower, overwrite_ap]) = <fortran object>

Wrapper for sspr2.

Parameters

n [input int]
alpha [input float]
x [input rank-1 array('f') with bounds (*)]
y [input rank-1 array('f') with bounds (*)]
ap [input rank-1 array('f') with bounds (*)]

Returns

apu [rank-1 array('f') with bounds (*) and ap storage]

Other Parameters

incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
overwrite_ap [input int, optional] Default: 0
lower [input int, optional] Default: 0
**scipy.linalg.blas.ssymv**

scipy.linalg.blas.ssymv(alpha, a, x[, beta, y, offx, incx, offy, incy, lower, overwrite_y]) = <fortran object>

Wrapper for ssymv.

**Parameters**
- **alpha** [input float]
- **a** [input rank-2 array('f') with bounds (n,n)]
- **x** [input rank-1 array('f') with bounds (*)]

**Returns**
- **y** [rank-1 array('f') with bounds (ly)]

**Other Parameters**
- **beta** [input float, optional] Default: 0.0
- **y** [input rank-1 array('f') with bounds (ly)]
- **overwrite_y** [input int, optional] Default: 0
- **offx** [input int, optional] Default: 0
- **incx** [input int, optional] Default: 1
- **offy** [input int, optional] Default: 0
- **incy** [input int, optional] Default: 1
- **lower** [input int, optional] Default: 0

**scipy.linalg.blas.ssyr**

scipy.linalg.blas.ssyr(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>

Wrapper for ssyr.

**Parameters**
- **alpha** [input float]
- **x** [input rank-1 array('f') with bounds (*)]

**Returns**
- **a** [rank-2 array('f') with bounds (n,n)]

**Other Parameters**
- **lower** [input int, optional] Default: 0
- **incx** [input int, optional] Default: 1
- **offx** [input int, optional] Default: 0
- **n** [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
- **a** [input rank-2 array('f') with bounds (n,n)]
- **overwrite_a** [input int, optional] Default: 0
scipy.linalg.blas.syr2

scipy.linalg.blas.syr2(alpha, x, y[, lower, incx, offx, incy, offy, n, a, overwrite_a]) = <fortran object>

Wrapper for syr2.

Parameters
- alpha [input float]
- x [input rank-1 array('f') with bounds (*)]
- y [input rank-1 array('f') with bounds (*)]

Returns
- a [rank-2 array('f') with bounds (n,n)]

Other Parameters
- lower [input int, optional] Default: 0
- incx [input int, optional] Default: 1
- offx [input int, optional] Default: 0
- incy [input int, optional] Default: 1
- offy [input int, optional] Default: 0
- n [input int, optional] Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :len(y)-1-offy)/abs(incy)+1)
- a [input rank-2 array('f') with bounds (n,n)]
- overwrite_a [input int, optional] Default: 0

scipy.linalg.blas.stbmv

scipy.linalg.blas.stbmv(k, a, x[, incx, offx, lower, trans, diag, overwrite_x]) = <fortran object>

Wrapper for stbmv.

Parameters
- k [input int]
- a [input rank-2 array('f') with bounds (lda,n)]
- x [input rank-1 array('f') with bounds (*)]

Returns
- xout [rank-1 array('f') with bounds (*) and x storage]

Other Parameters
- overwrite_x [input int, optional] Default: 0
- incx [input int, optional] Default: 1
- offx [input int, optional] Default: 0
- lower [input int, optional] Default: 0
- trans [input int, optional] Default: 0
- diag [input int, optional] Default: 0
scipy.linalg.blas.stpsv

scipy.linalg.blas.stpsv \( (n, ap, x[, \text{incx, offx, lower, trans, diag, overwrite}_x]) \) = <fortran object>
Wrapper for stpsv.

Parameters

- \( n \) [input int]
- \( ap \) [input rank-1 array('f') with bounds (*)]
- \( x \) [input rank-1 array('f') with bounds (*)]

Returns

- \( xout \) [rank-1 array('f') with bounds (*) and x storage]

Other Parameters

- overwrite_x [input int, optional] Default: 0
- incx [input int, optional] Default: 1
- offx [input int, optional] Default: 0
- lower [input int, optional] Default: 0
- trans [input int, optional] Default: 0
- diag [input int, optional] Default: 0

scipy.linalg.blas.strmv

scipy.linalg.blas.strmv \( (a, x[, \text{offx, incx, lower, trans, diag, overwrite}_x]) \) = <fortran object>
Wrapper for strmv.

Parameters

- \( a \) [input rank-2 array('f') with bounds (n,n)]
- \( x \) [input rank-1 array('f') with bounds (*)]

Returns

- \( x \) [rank-1 array('f') with bounds (*)]

Other Parameters

- overwrite_x [input int, optional] Default: 0
- offx [input int, optional] Default: 0
- incx [input int, optional] Default: 1
- lower [input int, optional] Default: 0
- trans [input int, optional] Default: 0
- diag [input int, optional] Default: 0

scipy.linalg.blas.strsv

scipy.linalg.blas.strsv \( (a, x[, \text{incx, offx, lower, trans, diag, overwrite}_x]) \) = <fortran object>
Wrapper for strsv.

Parameters

- \( a \) [input rank-2 array('f') with bounds (n,n)]
- \( x \) [input rank-1 array('f') with bounds (*)]

Returns

- \( xout \) [rank-1 array('f') with bounds (*) and x storage]

Other Parameters
overwrite_x
   [input int, optional] Default: 0
incx
   [input int, optional] Default: 1
offx
   [input int, optional] Default: 0
lower
   [input int, optional] Default: 0
trans
   [input int, optional] Default: 0
diag
   [input int, optional] Default: 0

scipy.linalg.blas.dgbmv

scipy.linalg.blas.dgbmv(m, n, kl, ku, alpha, a, x[, incx, offx, beta, y, incy, offy, trans, overwrite_y]) =
   <fortran object>

Wrapper for dgbmv.

Parameters

m  [input int]
n  [input int]
kl [input int]
ku [input int]
alpha  [input float]
a  [input rank-2 array('d') with bounds (lda,n)]
x  [input rank-1 array('d') with bounds (*)]

Returns

yout  [rank-1 array('d') with bounds (ly) and y storage]

Other Parameters

incx  [input int, optional] Default: 1
offx  [input int, optional] Default: 0
beta  [input float, optional] Default: 0.0
y    [input rank-1 array('d') with bounds (ly)]
overwrite_y
   [input int, optional] Default: 0
incy  [input int, optional] Default: 1
offy  [input int, optional] Default: 0
trans [input int, optional] Default: 0

scipy.linalg.blas.dgemv

scipy.linalg.blas.dgemv(alpha, a, x[, beta, y, offx, incx, offy, incy, trans, overwrite_y]) = <fortran object>

Wrapper for dgemv.

Parameters

alpha  [input float]
a  [input rank-2 array('d') with bounds (m,n)]
x  [input rank-1 array('d') with bounds (*)]

Returns

y  [rank-1 array('d') with bounds (ly)]

Other Parameters

beta  [input float, optional] Default: 0.0
y    [input rank-1 array('d') with bounds (ly)]

3.3. API definition
**overwrite_y**
[input int, optional] Default: 0

**offx**
[input int, optional] Default: 0

**incx**
[input int, optional] Default: 1

**offy**
[input int, optional] Default: 0

**incy**
[input int, optional] Default: 1

**trans**
[input int, optional] Default: 0

---

**scipy.linalg.blas.dger**

```python
scipy.linalg.blas.dger(alpha, x, y[, incx, incy, a, overwrite_x, overwrite_y, overwrite_a]) = <fortran object>
```

Wrapper for `dger`.

**Parameters**

- **alpha**
  [input float]

- **x**
  [input rank-1 array('d') with bounds (m)]

- **y**
  [input rank-1 array('d') with bounds (n)]

**Returns**

- **a**
  [rank-2 array('d') with bounds (m,n)]

**Other Parameters**

- **overwrite_x**
  [input int, optional] Default: 1

- **incx**
  [input int, optional] Default: 1

- **overwrite_y**
  [input int, optional] Default: 1

- **incy**
  [input int, optional] Default: 1

- **a**
  [input rank-2 array('d') with bounds (m,n), optional] Default: 0.0

- **overwrite_a**
  [input int, optional] Default: 0

---

**scipy.linalg.blas.dsbmv**

```python
scipy.linalg.blas.dsbmv(k, alpha, a, x[, incx, offx, beta, y, incy, offy, lower, overwrite_y]) = <fortran object>
```

Wrapper for `dsbmv`.

**Parameters**

- **k**
  [input int]

- **alpha**
  [input float]

- **a**
  [input rank-2 array('d') with bounds (lda,n)]

- **x**
  [input rank-1 array('d') with bounds (*)]

**Returns**

- **yout**
  [rank-1 array('d') with bounds (ly) and y storage]

**Other Parameters**

- **incx**
  [input int, optional] Default: 1

- **offx**
  [input int, optional] Default: 0

- **beta**
  [input float, optional] Default: 0.0

- **y**
  [input rank-1 array('d') with bounds (ly)]

- **overwrite_y**
  [input int, optional] Default: 0

---

814 Chapter 3. SciPy API
incy  [input int, optional] Default: 1
offy  [input int, optional] Default: 0
lower [input int, optional] Default: 0

**scipy.linalg.blas.dspr**

```python
scipy.linalg.blas.dspr(n, alpha, x, ap[, incx, offx, lower, overwrite_ap]) = <fortran object>
```

*Wrapper for dspr.*

**Parameters**

- **n**  [input int]
- **alpha**  [input float]
- **x**  [input rank-1 array('d') with bounds (*)]
- **ap**  [input rank-1 array('d') with bounds (*)]

**Returns**

- **ap**  [rank-1 array('d') with bounds (*) and ap storage]

**Other Parameters**

- **incx**  [input int, optional] Default: 1
- **offx**  [input int, optional] Default: 0
- **overwrite_ap**  [input int, optional] Default: 0
- **lower**  [input int, optional] Default: 0

**scipy.linalg.blas.dspr2**

```python
scipy.linalg.blas.dspr2(n, alpha, x, y, ap[, incx, offx, incy, offy, lower, overwrite_ap]) = <fortran object>
```

*Wrapper for dspr2.*

**Parameters**

- **n**  [input int]
- **alpha**  [input float]
- **x**  [input rank-1 array('d') with bounds (*)]
- **y**  [input rank-1 array('d') with bounds (*)]
- **ap**  [input rank-1 array('d') with bounds (*)]

**Returns**

- **ap**  [rank-1 array('d') with bounds (*) and ap storage]

**Other Parameters**

- **incx**  [input int, optional] Default: 1
- **offx**  [input int, optional] Default: 0
- **incy**  [input int, optional] Default: 1
- **offy**  [input int, optional] Default: 0
- **overwrite_ap**  [input int, optional] Default: 0
- **lower**  [input int, optional] Default: 0

3.3. API definition 815
scipy.linalg.blas.dsymv

\[ \text{dsymv}(\alpha, a, x[, \beta, y, \text{offx}, \text{incy}, \text{lower}, \text{overwrite}_y]) = \text{<fortran object>} \]

Wrapper for dsymv.

**Parameters**
- \( \alpha \) [input float]
- \( a \) [input rank-2 array('d') with bounds (n,n)]
- \( x \) [input rank-1 array('d') with bounds (*)]

**Returns**
- \( y \) [rank-1 array('d') with bounds (ly)]

**Other Parameters**
- \( \beta \) [input float, optional] Default: 0.0
- \( y \) [input rank-1 array('d') with bounds (ly)]
- \( \text{overwrite}_y \) [input int, optional] Default: 0
- \( \text{offx} \) [input int, optional] Default: 0
- \( \text{incy} \) [input int, optional] Default: 1
- \( \text{offy} \) [input int, optional] Default: 0
- \( \text{lower} \) [input int, optional] Default: 0

scipy.linalg.blas.dsyr

\[ \text{dsyr}(\alpha, x[, \text{lower}, \text{incx}, \text{offx}, n, a, \text{overwrite}_a]) = \text{<fortran object>} \]

Wrapper for dsyr.

**Parameters**
- \( \alpha \) [input float]
- \( x \) [input rank-1 array('d') with bounds (*)]

**Returns**
- \( a \) [rank-2 array('d') with bounds (n,n)]

**Other Parameters**
- \( \text{lower} \) [input int, optional] Default: 0
- \( \text{incx} \) [input int, optional] Default: 1
- \( \text{offx} \) [input int, optional] Default: 0
- \( n \) [input int, optional] Default: \((\text{len}(x)-1-\text{offx})/\text{abs(incx)}+1\)
- \( a \) [input rank-2 array('d') with bounds (n,n)]
- \( \text{overwrite}_a \) [input int, optional] Default: 0
scipy.linalg.blas.dsy2

```python
scipy.linalg.blas.dsy2(alpha, x, y, lower, incx, offx, incy, offy, n, a, overwrite_a) = <fortran object>
```

Wrapper for dsyr2.

**Parameters**

- `alpha` : input float
- `x` : input rank-1 array('d') with bounds (*)
- `y` : input rank-1 array('d') with bounds (*)

**Returns**

- `a` : rank-2 array('d') with bounds (n,n)

**Other Parameters**

- `lower` : input int, optional, Default: 0
- `incx` : input int, optional, Default: 1
- `offx` : input int, optional, Default: 0
- `incy` : input int, optional, Default: 1
- `offy` : input int, optional, Default: 0
- `n` : input int, optional, Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1
  ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)
- `a` : input rank-2 array('d') with bounds (n,n)
- `overwrite_a` : input int, optional, Default: 0

scipy.linalg.blas.dtbmv

```python
scipy.linalg.blas.dtbmv(k, a, x, incx, offx, lower, trans, diag, overwrite_x) = <fortran object>
```

Wrapper for dtbmv.

**Parameters**

- `k` : input int
- `a` : input rank-2 array('d') with bounds (lda,n)
- `x` : input rank-1 array('d') with bounds (*)

**Returns**

- `xout` : rank-1 array('d') with bounds (*) and x storage

**Other Parameters**

- `overwrite_x` : input int, optional, Default: 0
- `incx` : input int, optional, Default: 1
- `offx` : input int, optional, Default: 0
- `lower` : input int, optional, Default: 0
- `trans` : input int, optional, Default: 0
- `diag` : input int, optional, Default: 0
scipy.linalg.blas.dtpsv

scipy.linalg.blas.dtpsv(n, ap, x[, incx, offx, lower, trans, diag, overwrite_x]) = <fortran object>

Wrapper for dtpsv.

Parameters

- n [input int]
- ap [input rank-1 array('d') with bounds (*)]
- x [input rank-1 array('d') with bounds (*)]

Returns

- xout [rank-1 array('d') with bounds (*) and x storage]

Other Parameters

- overwrite_x [input int, optional] Default: 0
- incx [input int, optional] Default: 1
- offx [input int, optional] Default: 0
- lower [input int, optional] Default: 0
- trans [input int, optional] Default: 0
- diag [input int, optional] Default: 0

scipy.linalg.blas.dtrmv

scipy.linalg.blas.dtrmv(a, x[, offx, incx, lower, trans, diag, overwrite_x]) = <fortran object>

Wrapper for dtrmv.

Parameters

- a [input rank-2 array('d') with bounds (n,n)]
- x [input rank-1 array('d') with bounds (*)]

Returns

- x [rank-1 array('d') with bounds (*)]

Other Parameters

- overwrite_x [input int, optional] Default: 0
- offx [input int, optional] Default: 0
- incx [input int, optional] Default: 1
- lower [input int, optional] Default: 0
- trans [input int, optional] Default: 0
- diag [input int, optional] Default: 0

scipy.linalg.blas.dtrsv

scipy.linalg.blas.dtrsv(a, x[, incx, offx, lower, trans, diag, overwrite_x]) = <fortran object>

Wrapper for dtrsv.

Parameters

- a [input rank-2 array('d') with bounds (n,n)]
- x [input rank-1 array('d') with bounds (*)]

Returns

- xout [rank-1 array('d') with bounds (*) and x storage]

Other Parameters
overwrite_x
    [input int, optional] Default: 0
incx
    [input int, optional] Default: 1
offx
    [input int, optional] Default: 0
lower
    [input int, optional] Default: 0
trans
    [input int, optional] Default: 0
diag
    [input int, optional] Default: 0

scipy.linalg.blas.cgbmv

scipy.linalg.blas.cgbmv (m, n, kl, ku, alpha, a, x[, incx, offx, beta, y, incy, offy, trans, overwrite_y]) =
<fortran object>

Wrapper for cgbmv.

Parameters

m
    [input int]
n
    [input int]
kl
    [input int]
ku
    [input int]
alpha
    [input complex]
a
    [input rank-2 array('F') with bounds (lda,n)]
x
    [input rank-1 array('F') with bounds (*)]

Returns

yout
    [rank-1 array('F') with bounds (ly) and y storage]

Other Parameters

incx
    [input int, optional] Default: 1
offx
    [input int, optional] Default: 0
beta
    [input complex, optional] Default: (0.0, 0.0)
y
    [input rank-1 array('F') with bounds (ly)]
overwrite_y
    [input int, optional] Default: 0
incy
    [input int, optional] Default: 1
offy
    [input int, optional] Default: 0
trans
    [input int, optional] Default: 0

scipy.linalg.blas.cgemv

scipy.linalg.blas.cgemv (alpha, a, x[, beta, y, offx, incx, offy, incy, trans, overwrite_y]) = <fortran object>

Wrapper for cgemv.

Parameters

alpha
    [input complex]
a
    [input rank-2 array('F') with bounds (m,n)]
x
    [input rank-1 array('F') with bounds (*)]

Returns

y
    [rank-1 array('F') with bounds (ly)]

Other Parameters

beta
    [input complex, optional] Default: (0.0, 0.0)
y
    [input rank-1 array('F') with bounds (ly)]
overwrite_y
  [input int, optional] Default: 0
offx
  [input int, optional] Default: 0
incx
  [input int, optional] Default: 1
offy
  [input int, optional] Default: 0
incy
  [input int, optional] Default: 1
trans
  [input int, optional] Default: 0

scipy.linalg.blas.cgerc

scipy.linalg.blas.cgerc(alpha, x[, inx, incy, a, overwrite_x, overwrite_y, overwrite_a]) =
<fortran object>

Wrapper for cgerc.

Parameters
  alpha [input complex]
x [input rank-1 array('F') with bounds (m)]
y [input rank-1 array('F') with bounds (n)]

Returns
  a [rank-2 array('F') with bounds (m,n)]

Other Parameters
  overwrite_x
    [input int, optional] Default: 1
  incx
    [input int, optional] Default: 1
  overwrite_y
    [input int, optional] Default: 1
  incy
    [input int, optional] Default: 1
  a
    [input rank-2 array('F') with bounds (m,n), optional] Default: (0.0,0.0)
  overwrite_a
    [input int, optional] Default: 0

scipy.linalg.blas.cgeru

scipy.linalg.blas.cgeru(alpha, x[, inx, incy, a, overwrite_x, overwrite_y, overwrite_a]) =
<fortran object>

Wrapper for cgeru.

Parameters
  alpha [input complex]
x [input rank-1 array('F') with bounds (m)]
y [input rank-1 array('F') with bounds (n)]

Returns
  a [rank-2 array('F') with bounds (m,n)]

Other Parameters
  overwrite_x
    [input int, optional] Default: 1
  incx
    [input int, optional] Default: 1
  overwrite_y
    [input int, optional] Default: 1
  incy
    [input int, optional] Default: 1
  a
    [input rank-2 array('F') with bounds (m,n), optional] Default: (0.0,0.0)
overwrite_a
        [input int, optional] Default: 0

scipy.linalg.blas.chbmv

scipy.linalg.blas.chbmv (k, alpha, a, x[, incx, offx, beta, y, incy, offy, lower, overwrite_y]) = <fortran object>

Wrapper for chbmv.

Parameters

- k [input int]
- alpha [input complex]
- a [input rank-2 array('F') with bounds (lda,n)]
- x [input rank-1 array('F') with bounds (*)]

Returns

- yout [rank-1 array('F') with bounds (ly) and y storage]

Other Parameters

- incx [input int, optional] Default: 1
- offx [input int, optional] Default: 0
- beta [input complex, optional] Default: (0.0, 0.0)
- y [input rank-1 array('F') with bounds (ly)]
- overwrite_y [input int, optional] Default: 0
- incy [input int, optional] Default: 1
- offy [input int, optional] Default: 0
- lower [input int, optional] Default: 0

scipy.linalg.blas.chemv

scipy.linalg.blas.chemv (alpha, a, x[, beta, y, offx, incx, offy, incy, lower, overwrite_y]) = <fortran object>

Wrapper for chemv.

Parameters

- alpha [input complex]
- a [input rank-2 array('F') with bounds (n,n)]
- x [input rank-1 array('F') with bounds (*)]

Returns

- y [rank-1 array('F') with bounds (ly)]

Other Parameters

- beta [input complex, optional] Default: (0.0, 0.0)
- y [input rank-1 array('F') with bounds (ly)]
- overwrite_y [input int, optional] Default: 0
- offx [input int, optional] Default: 0
- incx [input int, optional] Default: 1
- offy [input int, optional] Default: 0
- incy [input int, optional] Default: 1
- lower [input int, optional] Default: 0

3.3. API definition
scipy.linalg.blas.cher

scipy.linalg.blas.cher(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>

Wrapper for cher.

Parameters

  alpha [input complex]
  x [input rank-1 array('F') with bounds (*)]

Returns

  a [rank-2 array('F') with bounds (n,n)]

Other Parameters

  lower [input int, optional] Default: 0
  incx [input int, optional] Default: 1
  offx [input int, optional] Default: 0
  n [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
  a [input rank-2 array('F') with bounds (n,n)]
  overwrite_a [input int, optional] Default: 0

scipy.linalg.blas.cher2

scipy.linalg.blas.cher2(alpha, x, y[, lower, incx, offx, incy, offy, n, a, overwrite_a]) = <fortran object>

Wrapper for cher2.

Parameters

  alpha [input complex]
  x [input rank-1 array('F') with bounds (*)]
  y [input rank-1 array('F') with bounds (*)]

Returns

  a [rank-2 array('F') with bounds (n,n)]

Other Parameters

  lower [input int, optional] Default: 0
  incx [input int, optional] Default: 1
  offx [input int, optional] Default: 0
  incy [input int, optional] Default: 1
  offy [input int, optional] Default: 0
  n [input int, optional] Default: 
  a [input rank-2 array('F') with bounds (n,n)]
  overwrite_a [input int, optional] Default: 0
scipy.linalg.blas.chpmv

scipy.linalg.blas.chpmv \( (n, \alpha, ap, x[, incx, offx, beta, y, incy, offy, lower, overwrite_y]) \) =

<fortran object>

Wrapper for chpmv.

**Parameters**

- **n** [input int]
- **alpha** [input complex]
- **ap** [input rank-1 array('F') with bounds (*)]
- **x** [input rank-1 array('F') with bounds (*)]

**Returns**

- **y** [rank-1 array('F') with bounds (ly) and y storage]

**Other Parameters**

- **incx** [input int, optional] Default: 1
- **offx** [input int, optional] Default: 0
- **beta** [input complex, optional] Default: (0.0, 0.0)
- **y** [input rank-1 array('F') with bounds (ly)]
- **overwrite_y** [input int, optional] Default: 0
- **incy** [input int, optional] Default: 1
- **offy** [input int, optional] Default: 0
- **lower** [input int, optional] Default: 0

scipy.linalg.blas.chpr

scipy.linalg.blas.chpr \( (n, \alpha, x, ap[, incx, offx, lower, overwrite_ap]) \) = <fortran object>

Wrapper for chpr.

**Parameters**

- **n** [input int]
- **alpha** [input float]
- **x** [input rank-1 array('F') with bounds (*)]
- **ap** [input rank-1 array('F') with bounds (*)]

**Returns**

- **ap** [rank-1 array('F') with bounds (*) and ap storage]

**Other Parameters**

- **incx** [input int, optional] Default: 1
- **offx** [input int, optional] Default: 0
- **overwrite_ap** [input int, optional] Default: 0
- **lower** [input int, optional] Default: 0
**scipy.linalg.blas.chpr2**

`scipy.linalg.blas.chpr2(n, alpha, x, y, ap[, incx, offx, incy, offy, lower, overwrite_ap]) = <fortran object>`

Wrapper for chpr2.

**Parameters**

- `n` [input int]
- `alpha` [input complex]
- `x` [input rank-1 array('F') with bounds (*)]
- `y` [input rank-1 array('F') with bounds (*)]
- `ap` [input rank-1 array('F') with bounds (*)]

**Returns**

- `apu` [rank-1 array('F') with bounds (*) and ap storage]

**Other Parameters**

- `incx` [input int, optional] Default: 1
- `offx` [input int, optional] Default: 0
- `incy` [input int, optional] Default: 1
- `offy` [input int, optional] Default: 0
- `overwrite_ap` [input int, optional] Default: 0
- `lower` [input int, optional] Default: 0

**scipy.linalg.blas.ctbmv**

`scipy.linalg.blas.ctbmv(k, a, x[, incx, offx, lower, trans, diag, overwrite_x]) = <fortran object>`

Wrapper for ctbmv.

**Parameters**

- `k` [input int]
- `a` [input rank-2 array('F') with bounds (lda,n)]
- `x` [input rank-1 array('F') with bounds (*)]

**Returns**

- `xout` [rank-1 array('F') with bounds (*) and x storage]

**Other Parameters**

- `overwrite_x` [input int, optional] Default: 0
- `incx` [input int, optional] Default: 1
- `offx` [input int, optional] Default: 0
- `lower` [input int, optional] Default: 0
- `trans` [input int, optional] Default: 0
- `diag` [input int, optional] Default: 0
scipy.linalg.blas.ctbsv

\[ \text{scipy.linalg.blas.ctbsv}(k, a, x[, incx, offx, lower, trans, diag, overwrite_x]) = \text{<fortran object>} \]

Wrapper for ctbsv.

Parameters
- \( k \) [input int]
- \( a \) [input rank-2 array('F') with bounds (lda,n)]
- \( x \) [input rank-1 array('F') with bounds (*)]

Returns
- \( xout \) [rank-1 array('F') with bounds (*) and x storage]

Other Parameters
- \( overwrite_x \) [input int, optional] Default: 0
- \( incx \) [input int, optional] Default: 1
- \( offx \) [input int, optional] Default: 0
- \( lower \) [input int, optional] Default: 0
- \( trans \) [input int, optional] Default: 0
- \( diag \) [input int, optional] Default: 0

scipy.linalg.blas.ctpmv

\[ \text{scipy.linalg.blas.ctpmv}(n, ap, x[, incx, offx, lower, trans, diag, overwrite_x]) = \text{<fortran object>} \]

Wrapper for ctpmv.

Parameters
- \( n \) [input int]
- \( ap \) [input rank-1 array('F') with bounds (*)]
- \( x \) [input rank-1 array('F') with bounds (*)]

Returns
- \( xout \) [rank-1 array('F') with bounds (*) and x storage]

Other Parameters
- \( overwrite_x \) [input int, optional] Default: 0
- \( incx \) [input int, optional] Default: 1
- \( offx \) [input int, optional] Default: 0
- \( lower \) [input int, optional] Default: 0
- \( trans \) [input int, optional] Default: 0
- \( diag \) [input int, optional] Default: 0

scipy.linalg.blas.ctpsv

\[ \text{scipy.linalg.blas.ctpsv}(n, ap, x[, incx, offx, lower, trans, diag, overwrite_x]) = \text{<fortran object>} \]

Wrapper for ctpsv.

Parameters
- \( n \) [input int]
- \( ap \) [input rank-1 array('F') with bounds (*)]
- \( x \) [input rank-1 array('F') with bounds (*)]

Returns
\[
x_{\text{out}} \quad \text{[rank-1 array('F') with bounds (*) and x storage]}
\]

**Other Parameters**

- `overwrite_x` [input int, optional] Default: 0
- `incx` [input int, optional] Default: 1
- `offx` [input int, optional] Default: 0
- `lower` [input int, optional] Default: 0
- `trans` [input int, optional] Default: 0
- `diag` [input int, optional] Default: 0

\[\text{scipy.linalg.blas.ctrmv}\]

\[\text{scipy.linalg.blas.ctrmv}(a, x[, \text{offx, incx, lower, trans, diag, overwrite}_x]) = <\text{fortran object}>\]

Wrapper for `ctrmv`.

**Parameters**

- `a` [input rank-2 array('F') with bounds (n,n)]
- `x` [input rank-1 array('F') with bounds (*)]

**Returns**

- `x` [rank-1 array('F') with bounds (*)]

**Other Parameters**

- `overwrite_x` [input int, optional] Default: 0
- `offx` [input int, optional] Default: 0
- `incx` [input int, optional] Default: 1
- `lower` [input int, optional] Default: 0
- `trans` [input int, optional] Default: 0
- `diag` [input int, optional] Default: 0

\[\text{scipy.linalg.blas.ctrsv}\]

\[\text{scipy.linalg.blas.ctrsv}(a, x[, \text{incx, offx, lower, trans, diag, overwrite}_x]) = <\text{fortran object}>\]

Wrapper for `ctrsv`.

**Parameters**

- `a` [input rank-2 array('F') with bounds (n,n)]
- `x` [input rank-1 array('F') with bounds (*)]

**Returns**

- `x_{\text{out}}` [rank-1 array('F') with bounds (*) and x storage]

**Other Parameters**

- `overwrite_x` [input int, optional] Default: 0
- `incx` [input int, optional] Default: 1
- `offx` [input int, optional] Default: 0
- `lower` [input int, optional] Default: 0
- `trans` [input int, optional] Default: 0
- `diag` [input int, optional] Default: 0

**scipy.linalg.blas.csyr**

`scipy.linalg.blas.csyr(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>`

Wrapper for csyr.

**Parameters**

- `alpha` [input complex]
- `x` [input rank-1 array('F') with bounds (*)]

**Returns**

- `a` [rank-2 array('F') with bounds (n,n)]

**Other Parameters**

- `lower` [input int, optional] Default: 0
- `incx` [input int, optional] Default: 1
- `offx` [input int, optional] Default: 0
- `n` [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
- `a` [input rank-2 array('F') with bounds (n,n)]
- `overwrite_a` [input int, optional] Default: 0

**scipy.linalg.blas.zgbmv**

`scipy.linalg.blas.zgbmv(m, n, kl, ku, alpha, a, x[, incx, offx, beta, y, incy, offy, trans, overwrite_y]) = <fortran object>`

Wrapper for zgbmv.

**Parameters**

- `m` [input int]
- `n` [input int]
- `kl` [input int]
- `ku` [input int]
- `alpha` [input complex]
- `a` [input rank-2 array('D') with bounds (lda,n)]
- `x` [input rank-1 array('D') with bounds (*)]

**Returns**

- `yout` [rank-1 array('D') with bounds (ly) and y storage]

**Other Parameters**

- `incx` [input int, optional] Default: 1
- `offx` [input int, optional] Default: 0
- `beta` [input complex, optional] Default: (0.0, 0.0)
- `y` [input rank-1 array('D') with bounds (ly)]
- `overwrite_y` [input int, optional] Default: 0
- `incy` [input int, optional] Default: 1
- `offy` [input int, optional] Default: 0
- `trans` [input int, optional] Default: 0
scipy.linalg.blas.zgemv

scipy.linalg.blas.zgemv (alpha, a, x[, beta, y, offx, incx, offy, incy, trans, overwrite_y]) = <fortran object>

Wrapper for zgemv.

Parameters

alpha    [input complex]
a        [input rank-2 array(‘D’) with bounds (m,n)]
x        [input rank-1 array(‘D’) with bounds (*)]

Returns

y        [rank-1 array(‘D’) with bounds (ly)]

Other Parameters

beta    [input complex, optional] Default: (0.0, 0.0)
y    [input rank-1 array(‘D’) with bounds (ly)]
overwrite_y    [input int, optional] Default: 0
offx    [input int, optional] Default: 0
incx    [input int, optional] Default: 1
offy    [input int, optional] Default: 0
incy    [input int, optional] Default: 1
trans    [input int, optional] Default: 0

scipy.linalg.blas.zgerc

scipy.linalg.blas.zgerc (alpha, x, y[, incx, incy, a, overwrite_x, overwrite_y, overwrite_a]) = <fortran object>

Wrapper for zgerc.

Parameters

alpha    [input complex]
x    [input rank-1 array(‘D’) with bounds (m)]
y    [input rank-1 array(‘D’) with bounds (n)]

Returns

a        [rank-2 array(‘D’) with bounds (m,n)]

Other Parameters

overwrite_x    [input int, optional] Default: 1
incx    [input int, optional] Default: 1
overwrite_y    [input int, optional] Default: 1
incy    [input int, optional] Default: 1
a    [input rank-2 array(‘D’) with bounds (m,n), optional] Default: (0.0,0.0)
overwrite_a    [input int, optional] Default: 0
scipy.linalg.blas.zgeru

scipy.linalg.blas.zgeru(alpha, x, y[, incx,incy, a,overwrite_x, overwrite_y, overwrite_a]) = <fortran object>

Wrapper for zgeru.

Parameters

- **alpha** [input complex]
- **x** [input rank-1 array('D') with bounds (m)]
- **y** [input rank-1 array('D') with bounds (n)]

Returns

- **a** [rank-2 array('D') with bounds (m,n)]

Other Parameters

- **overwrite_x** [input int, optional] Default: 1
- **incx** [input int, optional] Default: 1
- **overwrite_y** [input int, optional] Default: 1
- **incy** [input int, optional] Default: 1
- **a** [input rank-2 array('D') with bounds (m,n), optional] Default: (0.0,0.0)
- **overwrite_a** [input int, optional] Default: 0

scipy.linalg.blas.zhbmv

scipy.linalg.blas.zhbmv(k, alpha, a, x[, incx, offx, beta, y, incy, offy, lower, overwrite_y]) = <fortran object>

Wrapper for zhbmv.

Parameters

- **k** [input int]
- **alpha** [input complex]
- **a** [input rank-2 array('D') with bounds (lda,n)]
- **x** [input rank-1 array('D') with bounds (*)]

Returns

- **yout** [rank-1 array('D') with bounds (ly) and y storage]

Other Parameters

- **incx** [input int, optional] Default: 1
- **offx** [input int, optional] Default: 0
- **beta** [input complex, optional] Default: (0.0, 0.0)
- **incy** [input int, optional] Default: 1
- **offy** [input int, optional] Default: 1
- **lower** [input int, optional] Default: 0
scipy.linalg.blas.zhemv

scipy.linalg.blas.zhemv(alpha, a, x[, beta, y, offx, incx, offy, incy, lower, overwrite_y]) = <fortran object>

Wrapper for zhemv.

Parameters

alpha [input complex]
a [input rank-2 array(‘D’) with bounds (n,n)]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

y [rank-1 array(‘D’) with bounds (ly)]

Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
y [input rank-1 array(‘D’) with bounds (ly)]
overwrite_y [input int, optional] Default: 0
offx [input int, optional] Default: 0
incy [input int, optional] Default: 1
offy [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.zher

scipy.linalg.blas.zher(alpha, x[, lower, incx, offx, n, a, overwrite_a]) = <fortran object>

Wrapper for zher.

Parameters

alpha [input complex]
x [input rank-1 array(‘D’) with bounds (*)]

Returns

a [rank-2 array(‘D’) with bounds (n,n)]

Other Parameters

lower [input int, optional] Default: 0
incy [input int, optional] Default: 1
offx [input int, optional] Default: 0
n [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
a [input rank-2 array(‘D’) with bounds (n,n)]
overwrite_a [input int, optional] Default: 0
scipy.linalg.blas.zher2

scipy.linalg.blas.zher2(alpha, x, y[, lower, incx, offx, incy, offy, n, a, overwrite_a]) = <fortran object>

Wrapper for zher2.

Parameters

- alpha [input complex]
- x [input rank-1 array(‘D’) with bounds (*)]
- y [input rank-1 array(‘D’) with bounds (*)]

Returns

- a [rank-2 array(‘D’) with bounds (n,n)]

Other Parameters

- lower [input int, optional] Default: 0
- incx [input int, optional] Default: 1
- offx [input int, optional] Default: 0
- incy [input int, optional] Default: 1
- offy [input int, optional] Default: 0
- n [input int, optional] Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :len(y)-1-offy)/abs(incy)+1
- a [input rank-2 array(‘D’) with bounds (n,n)]
- overwrite_a [input int, optional] Default: 0

scipy.linalg.blas.zhpmv

scipy.linalg.blas.zhpmv(n, alpha, ap, x[, incx, offx, beta, y, incy, offy, lower, overwrite_y]) = <fortran object>

Wrapper for zhpmv.

Parameters

- n [input int]
- alpha [input complex]
- ap [input rank-1 array(‘D’) with bounds (*)]
- x [input rank-1 array(‘D’) with bounds (*)]

Returns

- yout [rank-1 array(‘D’) with bounds (ly) and y storage]

Other Parameters

- incx [input int, optional] Default: 1
- offx [input int, optional] Default: 0
- beta [input complex, optional] Default: (0.0, 0.0)
- y [input rank-1 array(‘D’) with bounds (ly)]
- overwrite_y [input int, optional] Default: 0
- incy [input int, optional] Default: 0
- offy [input int, optional] Default: 1
- lower [input int, optional] Default: 0
scipy.linalg.blas.zhpr

**scipy.linalg.blas.zhpr** \( n, \alpha, x, ap[, \text{incx, offx, lower, overwrite_ap}] \) = <fortran object>

Wrapper for `zhpr`.

**Parameters**

- **n** [input int]
- **alpha** [input float]
- **x** [input rank-1 array('D') with bounds (*)]
- **ap** [input rank-1 array('D') with bounds (*)]

**Returns**

- **ap** [rank-1 array('D') with bounds (*) and ap storage]

**Other Parameters**

- **incx** [input int, optional] Default: 1
- **offx** [input int, optional] Default: 0
- **overwrite_ap** [input int, optional] Default: 0
- **lower** [input int, optional] Default: 0

scipy.linalg.blas.zhpr2

**scipy.linalg.blas.zhpr2** \( n, \alpha, x, y, ap[, \text{incx, offx, incy, offy, lower, overwrite_ap}] \) = <fortran object>

Wrapper for `zhpr2`.

**Parameters**

- **n** [input int]
- **alpha** [input float]
- **x** [input rank-1 array('D') with bounds (*)]
- **y** [input rank-1 array('D') with bounds (*)]
- **ap** [input rank-1 array('D') with bounds (*)]

**Returns**

- **ap** [rank-1 array('D') with bounds (*) and ap storage]

**Other Parameters**

- **incx** [input int, optional] Default: 1
- **offx** [input int, optional] Default: 0
- **incy** [input int, optional] Default: 1
- **offy** [input int, optional] Default: 0
- **overwrite_ap** [input int, optional] Default: 0
- **lower** [input int, optional] Default: 0
scipy.linalg.blas.ztbmv

scipy.linalg.blas.ztbmv (k, a, x[, incx, offx, lower, trans, diag, overwrite_x]) = <fortran object>
Wrapper for ztbmv.

Parameters

k [input int]
a [input rank-2 array('D') with bounds (lda,n)]
x [input rank-1 array('D') with bounds (*)]

Returns

xout [rank-1 array('D') with bounds (*) and x storage]

Other Parameters

overwrite_x [input int, optional] Default: 0
incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.ztbsv

scipy.linalg.blas.ztbsv (k, a, x[, incx, offx, lower, trans, diag, overwrite_x]) = <fortran object>
Wrapper for ztbsv.

Parameters

k [input int]
a [input rank-2 array('D') with bounds (lda,n)]
x [input rank-1 array('D') with bounds (*)]

Returns

xout [rank-1 array('D') with bounds (*) and x storage]

Other Parameters

overwrite_x [input int, optional] Default: 0
incx [input int, optional] Default: 1
offx [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans [input int, optional] Default: 0
diag [input int, optional] Default: 0

scipy.linalg.blas.ztpmv

scipy.linalg.blas.ztpmv (n, ap, x[, incx, offx, lower, trans, diag, overwrite_x]) = <fortran object>
Wrapper for ztpmv.

Parameters

n [input int]
ap [input rank-1 array('D') with bounds (*)]
x [input rank-1 array('D') with bounds (*)]

Returns

xout [rank-1 array('D') with bounds (*) and x storage]

Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1

offx [input int, optional] Default: 0

lower [input int, optional] Default: 0

trans [input int, optional] Default: 0

diag [input int, optional] Default: 0

scipy.linalg.blas.ztrmv

scipy.linalg.blas.ztrmv(a, x[, offx, incx, lower, trans, diag, overwrite_x]) = <fortran object>
Wrapper for ztrmv.

Parameters

a [input rank-2 array('D') with bounds (n,n)]

x [input rank-1 array('D') with bounds (*)]

Returns

x [rank-1 array('D') with bounds (*)]

Other Parameters

overwrite_x
[input int, optional] Default: 0

offx [input int, optional] Default: 0

incx [input int, optional] Default: 1

lower [input int, optional] Default: 0

trans [input int, optional] Default: 0

diag [input int, optional] Default: 0

scipy.linalg.blas.ztrsv

scipy.linalg.blas.ztrsv(a, x[, incx, offx, lower, trans, diag, overwrite_x]) = <fortran object>
Wrapper for ztrsv.

Parameters

a [input rank-2 array('D') with bounds (n,n)]

x [input rank-1 array('D') with bounds (*)]

Returns

xout [rank-1 array('D') with bounds (*) and x storage]

Other Parameters

overwrite_x
[input int, optional] Default: 0

incx [input int, optional] Default: 1

offx [input int, optional] Default: 0

lower [input int, optional] Default: 0

trans [input int, optional] Default: 0

diag [input int, optional] Default: 0
scipy.linalg.blas.zsyr

\[ \text{zsyr}(\alpha, x[, \text{lower}, \text{incx}, \text{offx}, n, a, \text{overwrite}_a]) = \langle\text{fortran object}\rangle \]

Wrapper for \text{zsyr}.

**Parameters**

- \(\alpha\) [input complex]
- \(x\) [input rank-1 array('D') with bounds (*)]

**Returns**

- \(a\) [rank-2 array('D') with bounds (n,n)]

**Other Parameters**

- \(\text{lower}\) [input int, optional] Default: 0
- \(\text{incx}\) [input int, optional] Default: 1
- \(\text{offx}\) [input int, optional] Default: 0
- \(n\) [input int, optional] Default: (len(x)-1-offx)/abs(incx)+1
- \(a\) [input rank-2 array('D') with bounds (n,n)]
- \(\text{overwrite}_a\) [input int, optional] Default: 0

**BLAS Level 3 functions**

- \text{sgemm}(...) Wrapper for \text{sgemm}.
- \text{ssyr2k}(...) Wrapper for \text{ssyr2k}.
- \text{ssyrk}(...) Wrapper for \text{ssyrk}.
- \text{strmm}(...) Wrapper for \text{strmm}.
- \text{dgemm}(...) Wrapper for \text{dgemm}.
- \text{dsyr2k}(...) Wrapper for \text{dsyr2k}.
- \text{dsyrk}(...) Wrapper for \text{dsyrk}.
- \text{dtrmm}(...) Wrapper for \text{dtrmm}.
- \text{ctrmm}(...) Wrapper for \text{ctrmm}.
- \text{cgemm}(...) Wrapper for \text{cgemm}.
- \text{cher2k}(...) Wrapper for \text{cher2k}.
- \text{cherk}(...) Wrapper for \text{cherk}.
- \text{csymmm}(...) Wrapper for \text{csymmm}.
- \text{csyr2k}(...) Wrapper for \text{csyr2k}.
- \text{csyrk}(...) Wrapper for \text{csyrk}.
- \text{ctrsm}(...) Wrapper for \text{ctrsm}.
- \text{zsymm}(...) Wrapper for \text{zsymm}.
- \text{zher2k}(...) Wrapper for \text{zher2k}.
- \text{zherk}(...) Wrapper for \text{zherk}.
- \text{zsymmm}(...) Wrapper for \text{zsymmm}.
- \text{zsyrk}(...) Wrapper for \text{zsyrk}.
Table 103 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ztrmm(...)</code></td>
<td>Wrapper for <code>ztrmm</code>.</td>
</tr>
<tr>
<td><code>ztrsm(...)</code></td>
<td>Wrapper for <code>ztrsm</code>.</td>
</tr>
</tbody>
</table>

**scipy.linalg.blas.sgemm**

```python
scipy.linalg.blas.sgemm(alpha, a, b[, beta, c, trans_a, trans_b, overwrite_c]) = <fortran object>
```

Wrapper for `sgemm`.

**Parameters**
- `alpha` [input float]
- `a` [input rank-2 array('f') with bounds (lda,ka)]
- `b` [input rank-2 array('f') with bounds (ldb,kb)]

**Returns**
- `c` [rank-2 array('f') with bounds (m,n)]

**Other Parameters**
- `beta` [input float, optional] Default: 0.0
- `c` [input rank-2 array('f') with bounds (m,n)]
- `overwrite_c` [input int, optional] Default: 0
- `trans_a` [input int, optional] Default: 0
- `trans_b` [input int, optional] Default: 0

**scipy.linalg.blas.ssymm**

```python
scipy.linalg.blas.ssymm(alpha, a, b[, beta, c, side, lower, overwrite_c]) = <fortran object>
```

Wrapper for `ssymm`.

**Parameters**
- `alpha` [input float]
- `a` [input rank-2 array('f') with bounds (lda,ka)]
- `b` [input rank-2 array('f') with bounds (ldb,kb)]

**Returns**
- `c` [rank-2 array('f') with bounds (m,n)]

**Other Parameters**
- `beta` [input float, optional] Default: 0.0
- `c` [input rank-2 array('f') with bounds (m,n)]
- `overwrite_c` [input int, optional] Default: 0
- `side` [input int, optional] Default: 0
- `lower` [input int, optional] Default: 0
scipy.linalg.blas.syr2k

`scipy.linalg.blas.syr2k(alpha, a[, beta, c, trans, lower, overwrite_c]) = <fortran object>`

Wrapper for `syr2k`.

**Parameters**

- **alpha**: [input float]
- **a**: [input rank-2 array('f') with bounds (lda,ka)]
- **b**: [input rank-2 array('f') with bounds (ldb,kb)]

**Returns**

- **c**: [rank-2 array('f') with bounds (n,n)]

**Other Parameters**

- **beta**: [input float, optional] Default: 0.0
- **c**: [input rank-2 array('f') with bounds (n,n)]
- **overwrite_c**: [input int, optional] Default: 0
- **trans**: [input int, optional] Default: 0
- **lower**: [input int, optional] Default: 0

scipy.linalg.blas.syrk

`scipy.linalg.blas.syrk(alpha, a[, beta, c, trans, lower, overwrite_c]) = <fortran object>`

Wrapper for `syrk`.

**Parameters**

- **alpha**: [input float]
- **a**: [input rank-2 array('f') with bounds (lda,ka)]

**Returns**

- **c**: [rank-2 array('f') with bounds (n,n)]

**Other Parameters**

- **beta**: [input float, optional] Default: 0.0
- **c**: [input rank-2 array('f') with bounds (n,n)]
- **overwrite_c**: [input int, optional] Default: 0
- **trans**: [input int, optional] Default: 0
- **lower**: [input int, optional] Default: 0

scipy.linalg.blas.strmm

`scipy.linalg.blas.strmm(alpha, a[, side, lower, trans_a, diag, overwrite_b]) = <fortran object>`

Wrapper for `strmm`.

**Parameters**

- **alpha**: [input float]
- **a**: [input rank-2 array('f') with bounds (lda,k)]
- **b**: [input rank-2 array('f') with bounds (ldb,n)]

**Returns**

- **b**: [rank-2 array('f') with bounds (ldb,n)]

**Other Parameters**
overwrite_b
   [input int, optional] Default: 0
side  [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans_a [input int, optional] Default: 0
diag  [input int, optional] Default: 0

scipy.linalg.blas.strsm

scipy.linalg.blas.strsm(alpha, a, b[, side, lower, trans_a, diag, overwrite_b]) = <fortran object>
Wrapper for strsm.

Parameters
alpha [input float]
a [input rank-2 array('f') with bounds (lda,*)]
b [input rank-2 array('f') with bounds (ldb,n)]

Returns
x [rank-2 array('f') with bounds (ldb,n) and b storage]

Other Parameters
overwrite_b
   [input int, optional] Default: 0
side  [input int, optional] Default: 0
lower [input int, optional] Default: 0
trans_a [input int, optional] Default: 0
diag  [input int, optional] Default: 0

scipy.linalg.blas.dgemm

scipy.linalg.blas.dgemm(alpha, a, b[, beta, c, trans_a, trans_b, overwrite_c]) = <fortran object>
Wrapper for dgemm.

Parameters
alpha [input float]
a [input rank-2 array('d') with bounds (lda,ka)]
b [input rank-2 array('d') with bounds (ldb,kb)]

Returns
c [rank-2 array('d') with bounds (m,n)]

Other Parameters
beta [input float, optional] Default: 0.0
c [input rank-2 array('d') with bounds (m,n)]
overwrite_c
   [input int, optional] Default: 0
trans_a [input int, optional] Default: 0
trans_b [input int, optional] Default: 0
scipy.linalg.blas.dsymm

scipy.linalg.blas.dsymm(alpha, a, b[, beta, c, side, lower, overwrite_c]) = <fortran object>

Wrapper for dsymm.

Parameters

alpha [input float]
a [input rank-2 array('d') with bounds (lda,ka)]
b [input rank-2 array('d') with bounds (ldb,kb)]

Returns

c [rank-2 array('d') with bounds (m,n)]

Other Parameters

beta [input float, optional] Default: 0.0

scipy.linalg.blas.dsyrk

scipy.linalg.blas.dsyrk(alpha, a[, beta, c, trans, lower, overwrite_c]) = <fortran object>

Wrapper for dsyrk.

Parameters

alpha [input float]
a [input rank-2 array('d') with bounds (lda,ka)]

Returns

c [rank-2 array('d') with bounds (n,n)]

Other Parameters

beta [input float, optional] Default: 0.0

trans [input int, optional] Default: 0

lower [input int, optional] Default: 0
\[ \text{beta} \quad \text{[input float, optional] Default: 0.0} \]
\[ c \quad \text{[input rank-2 array('d') with bounds (n,n)]} \]
\[ \text{overwrite}_c \quad \text{[input int, optional] Default: 0} \]
\[ \text{trans} \quad \text{[input int, optional] Default: 0} \]
\[ \text{lower} \quad \text{[input int, optional] Default: 0} \]

**scipy.linalg.blas.dtrmm**

\[ \text{scipy.linalg.blas.dtrmm}(\alpha, a, b[, \text{side}, \text{lower}, \text{trans}_a, \text{diag}, \text{overwrite}_b]) = \text{<fortran object>} \]

Wrapper for \texttt{dtrmm}.

**Parameters**

\[ \alpha \quad \text{[input float]} \]
\[ a \quad \text{[input rank-2 array('d') with bounds (lda,k)]} \]
\[ b \quad \text{[input rank-2 array('d') with bounds (ldb,n)]} \]

**Returns**

\[ b \quad \text{[rank-2 array('d') with bounds (ldb,n)]} \]

**Other Parameters**

\[ \text{overwrite}_b \quad \text{[input int, optional] Default: 0} \]
\[ \text{side} \quad \text{[input int, optional] Default: 0} \]
\[ \text{lower} \quad \text{[input int, optional] Default: 0} \]
\[ \text{trans}_a \quad \text{[input int, optional] Default: 0} \]
\[ \text{diag} \quad \text{[input int, optional] Default: 0} \]

**scipy.linalg.blas.dtrsm**

\[ \text{scipy.linalg.blas.dtrsm}(\alpha, a, b[, \text{side}, \text{lower}, \text{trans}_a, \text{diag}, \text{overwrite}_b]) = \text{<fortran object>} \]

Wrapper for \texttt{dtrsm}.

**Parameters**

\[ \alpha \quad \text{[input float]} \]
\[ a \quad \text{[input rank-2 array('d') with bounds (lda,*)]} \]
\[ b \quad \text{[input rank-2 array('d') with bounds (ldb,n)]} \]

**Returns**

\[ x \quad \text{[rank-2 array('d') with bounds (ldb,n) and b storage]} \]

**Other Parameters**

\[ \text{overwrite}_b \quad \text{[input int, optional] Default: 0} \]
\[ \text{side} \quad \text{[input int, optional] Default: 0} \]
\[ \text{lower} \quad \text{[input int, optional] Default: 0} \]
\[ \text{trans}_a \quad \text{[input int, optional] Default: 0} \]
\[ \text{diag} \quad \text{[input int, optional] Default: 0} \]
scipy.linalg.blas.cgemm

Wrapper for cgemm.

Parameters

- alpha [input complex]
- a [input rank-2 array('F') with bounds (lda,ka)]
- b [input rank-2 array('F') with bounds (ldb,kb)]

Returns

- c [rank-2 array('F') with bounds (m,n)]

Other Parameters

- beta [input complex, optional] Default: (0.0, 0.0)
- c [input rank-2 array('F') with bounds (m,n)]
- overwrite_c [input int, optional] Default: 0
- trans_a [input int, optional] Default: 0
- trans_b [input int, optional] Default: 0

scipy.linalg.blas.chemm

Wrapper for chemm.

Parameters

- alpha [input complex]
- a [input rank-2 array('F') with bounds (lda,ka)]
- b [input rank-2 array('F') with bounds (ldb,kb)]

Returns

- c [rank-2 array('F') with bounds (m,n)]

Other Parameters

- beta [input complex, optional] Default: (0.0, 0.0)
- c [input rank-2 array('F') with bounds (m,n)]
- overwrite_c [input int, optional] Default: 0
- side [input int, optional] Default: 0
- lower [input int, optional] Default: 0

scipy.linalg.blas.cher2k

Wrapper for cher2k.

Parameters

- alpha [input complex]
- a [input rank-2 array('F') with bounds (lda,ka)]
- b [input rank-2 array('F') with bounds (ldb,kb)]

Returns

- c [rank-2 array('F') with bounds (n,n)]

Other Parameters
scipy.linalg.blas.cherk

scipy.linalg.blas.cherk(alpha, a[, beta, c, trans, lower, overwrite_c]) = <fortran object>
Wrapper for cherk.

Parameters

alpha [input complex]
a [input rank-2 array('F') with bounds (lda,ka)]

Returns
c [rank-2 array('F') with bounds (n,n)]

Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array('F') with bounds (n,n)]
overwrite_c [input int, optional] Default: 0
trans [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.csymm

scipy.linalg.blas.csymm(alpha, a[, beta, c, side, lower, overwrite_c]) = <fortran object>
Wrapper for csymm.

Parameters

alpha [input complex]
a [input rank-2 array('F') with bounds (lda,ka)]
b [input rank-2 array('F') with bounds (ldb,kb)]

Returns
c [rank-2 array('F') with bounds (m,n)]

Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array('F') with bounds (m,n)]
overwrite_c [input int, optional] Default: 0
side [input int, optional] Default: 0
lower [input int, optional] Default: 0
scipy.linalg.blas.csyr2k

scipy.linalg.blas.csyr2k(alpha, a[, beta, c, trans, lower, overwrite_c]) = <fortran object>

Wrapper for csyr2k.

Parameters

alpha [input complex]
a [input rank-2 array('F') with bounds (lda,ka)]
b [input rank-2 array('F') with bounds (ldb,kb)]

Returns

c [rank-2 array('F') with bounds (n,n)]

Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array('F') with bounds (n,n)]
overwrite_c [input int, optional] Default: 0
trans [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.csyrk

scipy.linalg.blas.csyrk(alpha, a[, beta, c, trans, lower, overwrite_c]) = <fortran object>

Wrapper for csyrk.

Parameters

alpha [input complex]
a [input rank-2 array('F') with bounds (lda,ka)]

Returns

c [rank-2 array('F') with bounds (n,n)]

Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)
c [input rank-2 array('F') with bounds (n,n)]
overwrite_c [input int, optional] Default: 0
trans [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.blas.ctrmn

scipy.linalg.blas.ctrmn(alpha, a[, side, lower, trans_a, diag, overwrite_b]) = <fortran object>

Wrapper for ctrmm.

Parameters

alpha [input complex]
a [input rank-2 array('F') with bounds (lda,k)]
b [input rank-2 array('F') with bounds (ldb,n)]

Returns

b [rank-2 array('F') with bounds (ldb,n)]

Other Parameters
overwrite_b  
    [input int, optional] Default: 0
side  
    [input int, optional] Default: 0
lower  
    [input int, optional] Default: 0
trans_a  
    [input int, optional] Default: 0
diag  
    [input int, optional] Default: 0

scipy.linalg.blas ctrsm

scipy.linalg.blas.ctrsm(alpha, a[, side, lower, trans_a, diag, overwrite_b]) = <fortran object>
Wrapper for ctzsm.

Parameters

alpha  
    [input complex]
a  
    [input rank-2 array('F') with bounds (lda,*)]
b  
    [input rank-2 array('F') with bounds (ldb,n)]

Returns

x  
    [rank-2 array('F') with bounds (ldb,n) and b storage]

Other Parameters

overwrite_b  
    [input int, optional] Default: 0
side  
    [input int, optional] Default: 0
lower  
    [input int, optional] Default: 0
trans_a  
    [input int, optional] Default: 0
diag  
    [input int, optional] Default: 0

scipy.linalg.blas zgemm

scipy.linalg.blas.zgemm(alpha, a[, beta, c, trans_a, trans_b, overwrite_c]) = <fortran object>
Wrapper for zgemm.

Parameters

alpha  
    [input complex]
a  
    [input rank-2 array('D') with bounds (lda,ka)]
b  
    [input rank-2 array('D') with bounds (ldb,kb)]

Returns

c  
    [rank-2 array('D') with bounds (m,n)]

Other Parameters

beta  
    [input complex, optional] Default: (0.0, 0.0)
c  
    [input rank-2 array('D') with bounds (m,n)]
overwrite_c  
    [input int, optional] Default: 0
trans_a  
    [input int, optional] Default: 0
trans_b  
    [input int, optional] Default: 0
scipy.linalg.blas.zhemm

Wrapper for zhemm.

Parameters

- **alpha** [input complex]
- **a** [input rank-2 array('D') with bounds (lda,ka)]
- **b** [input rank-2 array('D') with bounds (ldb,kb)]

Returns

- **c** [rank-2 array('D') with bounds (m,n)]

Other Parameters

- **beta** [input complex, optional] Default: (0.0, 0.0)
- **c** [input rank-2 array('D') with bounds (m,n)]
- **overwrite_c** [input int, optional] Default: 0
- **side** [input int, optional] Default: 0
- **lower** [input int, optional] Default: 0

scipy.linalg.blas.zher2k

Wrapper for zher2k.

Parameters

- **alpha** [input complex]
- **a** [input rank-2 array('D') with bounds (lda,ka)]
- **b** [input rank-2 array('D') with bounds (ldb,kb)]

Returns

- **c** [rank-2 array('D') with bounds (n,n)]

Other Parameters

- **beta** [input complex, optional] Default: (0.0, 0.0)
- **c** [input rank-2 array('D') with bounds (n,n)]
- **overwrite_c** [input int, optional] Default: 0
- **trans** [input int, optional] Default: 0
- **lower** [input int, optional] Default: 0

scipy.linalg.blas.zherk

Wrapper for zherk.

Parameters

- **alpha** [input complex]
- **a** [input rank-2 array('D') with bounds (lda,ka)]

Returns

- **c** [rank-2 array('D') with bounds (n,n)]

Other Parameters
scipy.linalg.blas.zsymm

scipy.linalg.blas.zsymm(alpha, a, b[, beta, c, side, lower, overwrite_c]) = <fortran object>

Wrapper for zsymm.

Parameters

alpha [input complex]

a [input rank-2 array('D') with bounds (lda,ka)]

b [input rank-2 array('D') with bounds (ldb,kb)]

Returns

c [rank-2 array('D') with bounds (m,n)]

Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)

c [input rank-2 array('D') with bounds (m,n)]

overwrite_c [input int, optional] Default: 0

side [input int, optional] Default: 0

lower [input int, optional] Default: 0

scipy.linalg.blas.zsyr2k

scipy.linalg.blas.zsyr2k(alpha, a, b[, beta, c, trans, lower, overwrite_c]) = <fortran object>

Wrapper for zsyr2k.

Parameters

alpha [input complex]

a [input rank-2 array('D') with bounds (lda,ka)]

b [input rank-2 array('D') with bounds (ldb,kb)]

Returns

c [rank-2 array('D') with bounds (n,n)]

Other Parameters

beta [input complex, optional] Default: (0.0, 0.0)

c [input rank-2 array('D') with bounds (n,n)]

overwrite_c [input int, optional] Default: 0

trans [input int, optional] Default: 0

lower [input int, optional] Default: 0
scipy.linalg.blas.zsyrk

`scipy.linalg.blas.zsyrk(alpha[, beta, c, trans, lower, overwrite_c]) = <fortran object>`

Wrapper for zsyrk.

**Parameters**

- `alpha` [input complex]
- `a` [input rank-2 array('D') with bounds (lda,ka)]

**Returns**

- `c` [rank-2 array('D') with bounds (n,n)]

**Other Parameters**

- `beta` [input complex, optional] Default: (0.0, 0.0)
- `c` [input rank-2 array('D') with bounds (n,n)]
- `overwrite_c` [input int, optional] Default: 0
- `trans` [input int, optional] Default: 0
- `lower` [input int, optional] Default: 0

scipy.linalg.blas.ztrmm

`scipy.linalg.blas.ztrmm(alpha, a[, b, side, lower, trans_a, diag, overwrite_b]) = <fortran object>`

Wrapper for ztrmm.

**Parameters**

- `alpha` [input complex]
- `a` [input rank-2 array('D') with bounds (lda,k)]
- `b` [input rank-2 array('D') with bounds (ldb,n)]

**Returns**

- `b` [rank-2 array('D') with bounds (ldb,n)]

**Other Parameters**

- `overwrite_b` [input int, optional] Default: 0
- `side` [input int, optional] Default: 0
- `lower` [input int, optional] Default: 0
- `trans_a` [input int, optional] Default: 0
- `diag` [input int, optional] Default: 0

scipy.linalg.blas.ztrsm

`scipy.linalg.blas.ztrsm(alpha, a, b[, side, lower, trans_a, diag, overwrite_b]) = <fortran object>`

Wrapper for ztrsm.

**Parameters**

- `alpha` [input complex]
- `a` [input rank-2 array('D') with bounds (lda,*)]
- `b` [input rank-2 array('D') with bounds (ldb,n)]

**Returns**

- `x` [rank-2 array('D') with bounds (ldb,n) and b storage]

**Other Parameters**

3.3. API definition 847
3.3.12 Low-level LAPACK functions (scipy.linalg.lapack)

This module contains low-level functions from the LAPACK library.

The \texttt{gegv} family of routines have been removed from LAPACK 3.6.0 and have been deprecated in SciPy 0.17.0. They will be removed in a future release.

New in version 0.12.0.

\textbf{Note:} The common \texttt{overwrite_<>} option in many routines, allows the input arrays to be overwritten to avoid extra memory allocation. However this requires the array to satisfy two conditions which are memory order and the data type to match exactly the order and the type expected by the routine.

As an example, if you pass a double precision float array to any routine which expects single precision arguments, \texttt{f2py} will create an intermediate array to match the argument types and overwriting will be performed on that intermediate array.

Similarly, if a C-contiguous array is passed, \texttt{f2py} will pass a FORTRAN-contiguous array internally. Please make sure that these details are satisfied. More information can be found in the \texttt{f2py} documentation.

\textbf{Warning:} These functions do little to no error checking. It is possible to cause crashes by mis-using them, so prefer using the higher-level routines in \texttt{scipy.linalg}.

Finding functions

\begin{verbatim}
scipy.linalg.lapack.get_lapack_funcs(names[, arrays, dtype, ilp64])

Return available LAPACK function objects from names.

scipy.linalg.lapack.get_lapack_funcs(names, arrays=(), dtype=None, ilp64=False)

Return available LAPACK function objects from names.

Arrays are used to determine the optimal prefix of LAPACK routines.

Parameters

names [str or sequence of str] Name(s) of LAPACK functions without type prefix.

arrays [sequence of ndarrays, optional] Arrays can be given to determine optimal prefix of LAPACK routines. If not given, double-precision routines will be used, otherwise the most generic type in arrays will be used.

dtype [str or dtype, optional] Data-type specifier. Not used if arrays is non-empty.

ilp64 [{True, False, 'preferred'}, optional] Whether to return ILP64 routine variant. Choosing 'preferred' returns ILP64 routine if available, and otherwise the 32-bit routine. Default: False

Returns

..."
\end{verbatim}
**Notes**

This routine automatically chooses between Fortran/C interfaces. Fortran code is used whenever possible for arrays with column major order. In all other cases, C code is preferred.

In LAPACK, the naming convention is that all functions start with a type prefix, which depends on the type of the principal matrix. These can be one of {'s', 'd', 'c', 'z'} for the NumPy types {float32, float64, complex64, complex128} respectively, and are stored in attribute `typecode` of the returned functions.

**Examples**

Suppose we would like to use ‘?lange’ routine which computes the selected norm of an array. We pass our array in order to get the correct ‘lange’ flavor.

```python
>>> import scipy.linalg as LA
>>> rng = np.random.default_rng()
>>> a = rng.random((3,2))
>>> x_lange = LA.get_lapack_funcs('lange', (a,))
>>> x_lange.typecode
'd'
>>> x_lange = LA.get_lapack_funcs('lange', (a*1j,))
>>> x_lange.typecode
'z'
```

Several LAPACK routines work best when its internal WORK array has the optimal size (big enough for fast computation and small enough to avoid waste of memory). This size is determined also by a dedicated query to the function which is often wrapped as a standalone function and commonly denoted as `##_lwork`. Below is an example for `zsysv`.

```python
>>> import scipy.linalg as LA
>>> rng = np.random.default_rng()
>>> a = rng.random((1000,1000))
>>> b = rng.random((1000,1)) * 1j
>>> # We pick up zsysv and zsysv_lwork due to b array
... xsysv, xlwork = LA.get_lapack_funcs(('sysv', 'sysv_lwork'), (a, b))
>>> opt_lwork, _ = xlwork(a.shape[0]) # returns a complex for 'z' prefix
>>> udut, ipiv, x, info = xsysv(a, b, lwork=int(opt_lwork.real))
```

**All functions**

- `sgbsv(kl,ku,ab,b,[overwrite_ab,overwrite_b])`  Wrapper for `sgbsv`.
- `dgbsv(kl,ku,ab,b,[overwrite_ab,overwrite_b])`  Wrapper for `dgbsv`.
- `cgbsv(kl,ku,ab,b,[overwrite_ab,overwrite_b])`  Wrapper for `cgbsv`.
- `zgbsv(kl,ku,ab,b,[overwrite_ab,overwrite_b])`  Wrapper for `zgbsv`.
- `sgbtrf(ab,kl,ku,[m,n,ldab,overwrite_ab])`  Wrapper for `sgbtrf`.
- `dgbtrf(ab,kl,ku,[m,n,ldab,overwrite_ab])`  Wrapper for `dgbtrf`.
- `cgbtrf(ab,kl,ku,[m,n,ldab,overwrite_ab])`  Wrapper for `cgbtrf`.
- `zgbtrf(ab,kl,ku,[m,n,ldab,overwrite_ab])`  Wrapper for `zgbtrf`.

continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sgbtrs(...)</code></td>
<td>Wrapper for <code>sgbtrs</code>.</td>
</tr>
<tr>
<td><code>dgbtrs(...)</code></td>
<td>Wrapper for <code>dgbtrs</code>.</td>
</tr>
<tr>
<td><code>cgbtrs(...)</code></td>
<td>Wrapper for <code>cgbtrs</code>.</td>
</tr>
<tr>
<td><code>zgbtrs(...)</code></td>
<td>Wrapper for <code>zgbtrs</code>.</td>
</tr>
<tr>
<td><code>sgebal(a,[scale,permute,overwrite_a])</code></td>
<td>Wrapper for <code>sgebal</code>.</td>
</tr>
<tr>
<td><code>dgebal(a,[scale,permute,overwrite_a])</code></td>
<td>Wrapper for <code>dgebal</code>.</td>
</tr>
<tr>
<td><code>cgebal(a,[scale,permute,overwrite_a])</code></td>
<td>Wrapper for <code>cgebal</code>.</td>
</tr>
<tr>
<td><code>zgebal(a,[scale,permute,overwrite_a])</code></td>
<td>Wrapper for <code>zgebal</code>.</td>
</tr>
<tr>
<td><code>sgecon(a,anorm,[norm])</code></td>
<td>Wrapper for <code>sgecon</code>.</td>
</tr>
<tr>
<td><code>dgecon(a,anorm,[norm])</code></td>
<td>Wrapper for <code>dgecon</code>.</td>
</tr>
<tr>
<td><code>cgecon(a,anorm,[norm])</code></td>
<td>Wrapper for <code>cgecon</code>.</td>
</tr>
<tr>
<td><code>zgecon(a,anorm,[norm])</code></td>
<td>Wrapper for <code>zgecon</code>.</td>
</tr>
<tr>
<td><code>sgeeq(a)</code></td>
<td>Wrapper for <code>sgeeq</code>.</td>
</tr>
<tr>
<td><code>dgeeq(a)</code></td>
<td>Wrapper for <code>dgeeq</code>.</td>
</tr>
<tr>
<td><code>cgeeq(a)</code></td>
<td>Wrapper for <code>cgeeq</code>.</td>
</tr>
<tr>
<td><code>zgeeq(a)</code></td>
<td>Wrapper for <code>zgeeq</code>.</td>
</tr>
<tr>
<td><code>sgeequb(a)</code></td>
<td>Wrapper for <code>sgeequb</code>.</td>
</tr>
<tr>
<td><code>dgeequb(a)</code></td>
<td>Wrapper for <code>dgeequb</code>.</td>
</tr>
<tr>
<td><code>cgeequb(a)</code></td>
<td>Wrapper for <code>cgeequb</code>.</td>
</tr>
<tr>
<td><code>zgeequb(a)</code></td>
<td>Wrapper for <code>zgeequb</code>.</td>
</tr>
<tr>
<td><code>sgees(...)</code></td>
<td>Wrapper for <code>sgees</code>.</td>
</tr>
<tr>
<td><code>dgees(...)</code></td>
<td>Wrapper for <code>dgees</code>.</td>
</tr>
<tr>
<td><code>cgees(...)</code></td>
<td>Wrapper for <code>cgees</code>.</td>
</tr>
<tr>
<td><code>zgees(...)</code></td>
<td>Wrapper for <code>zgees</code>.</td>
</tr>
<tr>
<td><code>sgeev(...)</code></td>
<td>Wrapper for <code>sgeev</code>.</td>
</tr>
<tr>
<td><code>dgeev(...)</code></td>
<td>Wrapper for <code>dgeev</code>.</td>
</tr>
<tr>
<td><code>cgeev(...)</code></td>
<td>Wrapper for <code>cgeev</code>.</td>
</tr>
<tr>
<td><code>zgeev(...)</code></td>
<td>Wrapper for <code>zgeev</code>.</td>
</tr>
<tr>
<td><code>sgeev_lwork(n,[compute_vl,compute_vr])</code></td>
<td>Wrapper for <code>sgeev_lwork</code>.</td>
</tr>
<tr>
<td><code>dgeev_lwork(n,[compute_vl,compute_vr])</code></td>
<td>Wrapper for <code>dgeev_lwork</code>.</td>
</tr>
<tr>
<td><code>cgeev_lwork(n,[compute_vl,compute_vr])</code></td>
<td>Wrapper for <code>cgeev_lwork</code>.</td>
</tr>
<tr>
<td><code>zgeev_lwork(n,[compute_vl,compute_vr])</code></td>
<td>Wrapper for <code>zgeev_lwork</code>.</td>
</tr>
<tr>
<td><code>sgegv(*args,**kwds)</code></td>
<td>* <code>sgegv</code> is deprecated! The <code>*gegv</code> family of routines has been deprecated in LAPACK 3.6.0 in favor of the <code>*ggev</code> family of routines.</td>
</tr>
<tr>
<td><code>dgegv(*args,**kwds)</code></td>
<td>* <code>dgegv</code> is deprecated! The <code>*ggev</code> family of routines has been deprecated in LAPACK 3.6.0 in favor of the <code>*ggev</code> family of routines.</td>
</tr>
<tr>
<td><code>cgegv(*args,**kwds)</code></td>
<td>* <code>cgegv</code> is deprecated! The <code>*ggev</code> family of routines has been deprecated in LAPACK 3.6.0 in favor of the <code>*ggev</code> family of routines.</td>
</tr>
<tr>
<td><code>zgegv(*args,**kwds)</code></td>
<td>* <code>zgegv</code> is deprecated! The <code>*ggev</code> family of routines has been deprecated in LAPACK 3.6.0 in favor of the <code>*ggev</code> family of routines.</td>
</tr>
<tr>
<td><code>sgehr(a,[lo,hi,lwork,overwrite_a])</code></td>
<td>Wrapper for <code>sgehr</code>.</td>
</tr>
<tr>
<td><code>dgehr(a,[lo,hi,lwork,overwrite_a])</code></td>
<td>Wrapper for <code>dgehr</code>.</td>
</tr>
<tr>
<td><code>cgehr(a,[lo,hi,lwork,overwrite_a])</code></td>
<td>Wrapper for <code>cgehr</code>.</td>
</tr>
<tr>
<td><code>zgehr(a,[lo,hi,lwork,overwrite_a])</code></td>
<td>Wrapper for <code>zgehr</code>.</td>
</tr>
<tr>
<td><code>sgehr_lwork(n,[lo,hi])</code></td>
<td>Wrapper for <code>sgehr_lwork</code>.</td>
</tr>
<tr>
<td><code>dgehr_lwork(n,[lo,hi])</code></td>
<td>Wrapper for <code>dgehr_lwork</code>.</td>
</tr>
<tr>
<td><code>cgehr_lwork(n,[lo,hi])</code></td>
<td>Wrapper for <code>cgehr_lwork</code>.</td>
</tr>
</tbody>
</table>

*continues on next page*
### Table 105 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>zgehrd_lwork(n,[lo,hi])</code></td>
<td>Wrapper for <code>zgehrd_lwork</code>.</td>
</tr>
<tr>
<td><code>sgejsv(...)</code></td>
<td>Wrapper for <code>sgejsv</code>.</td>
</tr>
<tr>
<td><code>dgejsv(...)</code></td>
<td>Wrapper for <code>dgejsv</code>.</td>
</tr>
<tr>
<td><code>sgels(a,b,[trans,lwork,overwrite_a,overwrite_b])</code></td>
<td>Wrapper for <code>sgels</code>.</td>
</tr>
<tr>
<td><code>dgels(a,b,[trans,lwork,overwrite_a,overwrite_b])</code></td>
<td>Wrapper for <code>dgels</code>.</td>
</tr>
<tr>
<td><code>cgels(a,b,[trans,lwork,overwrite_a,overwrite_b])</code></td>
<td>Wrapper for <code>cgels</code>.</td>
</tr>
<tr>
<td><code>zgels(a,b,[trans,lwork,overwrite_a,overwrite_b])</code></td>
<td>Wrapper for <code>zgels</code>.</td>
</tr>
<tr>
<td><code>sgels_lwork(m,n,nrhs,[trans])</code></td>
<td>Wrapper for <code>sgels_lwork</code>.</td>
</tr>
<tr>
<td><code>dgels_lwork(m,n,nrhs,[trans])</code></td>
<td>Wrapper for <code>dgels_lwork</code>.</td>
</tr>
<tr>
<td><code>cgels_lwork(m,n,nrhs,[trans])</code></td>
<td>Wrapper for <code>cgels_lwork</code>.</td>
</tr>
<tr>
<td><code>zgels_lwork(m,n,nrhs,[trans])</code></td>
<td>Wrapper for <code>zgels_lwork</code>.</td>
</tr>
<tr>
<td><code>sgelsd(...)</code></td>
<td>Wrapper for <code>sgelsd</code>.</td>
</tr>
<tr>
<td><code>dgelsd(...)</code></td>
<td>Wrapper for <code>dgelsd</code>.</td>
</tr>
<tr>
<td><code>cgelsd(...)</code></td>
<td>Wrapper for <code>cgelsd</code>.</td>
</tr>
<tr>
<td><code>zgelsd(...)</code></td>
<td>Wrapper for <code>zgelsd</code>.</td>
</tr>
<tr>
<td><code>sgelss(...)</code></td>
<td>Wrapper for <code>sgelss</code>.</td>
</tr>
<tr>
<td><code>dgelss(...)</code></td>
<td>Wrapper for <code>dgelss</code>.</td>
</tr>
<tr>
<td><code>cgelss(...)</code></td>
<td>Wrapper for <code>cgelss</code>.</td>
</tr>
<tr>
<td><code>zgelss(...)</code></td>
<td>Wrapper for <code>zgelss</code>.</td>
</tr>
<tr>
<td><code>sgelsy(...)</code></td>
<td>Wrapper for <code>sgelsy</code>.</td>
</tr>
<tr>
<td><code>dgelsy(...)</code></td>
<td>Wrapper for <code>dgelsy</code>.</td>
</tr>
<tr>
<td><code>cgelss(...)</code></td>
<td>Wrapper for <code>cgelss</code>.</td>
</tr>
<tr>
<td><code>zgelss(...)</code></td>
<td>Wrapper for <code>zgelss</code>.</td>
</tr>
<tr>
<td><code>sgeqp3(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>sgeqp3</code>.</td>
</tr>
<tr>
<td><code>dgeqp3(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>dgeqp3</code>.</td>
</tr>
<tr>
<td><code>cgeqp3(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>cgeqp3</code>.</td>
</tr>
<tr>
<td><code>zgeqp3(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>zgeqp3</code>.</td>
</tr>
<tr>
<td><code>sgeqrf(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>sgeqrf</code>.</td>
</tr>
<tr>
<td><code>dgeqrf(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>dgeqrf</code>.</td>
</tr>
<tr>
<td><code>cgeqrf(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>cgeqrf</code>.</td>
</tr>
<tr>
<td><code>zgeqrf(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>zgeqrf</code>.</td>
</tr>
<tr>
<td><code>sgeqrf_lwork(m, n)</code></td>
<td>Wrapper for <code>sgeqrf_lwork</code>.</td>
</tr>
<tr>
<td><code>dgeqrf_lwork(m, n)</code></td>
<td>Wrapper for <code>dgeqrf_lwork</code>.</td>
</tr>
<tr>
<td><code>cgeqrf_lwork(m, n)</code></td>
<td>Wrapper for <code>cgeqrf_lwork</code>.</td>
</tr>
<tr>
<td><code>zgeqrf_lwork(m, n)</code></td>
<td>Wrapper for <code>zgeqrf_lwork</code>.</td>
</tr>
<tr>
<td><code>sgeqrfp(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>sgeqrfp</code>.</td>
</tr>
<tr>
<td><code>dgeqrfp(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>dgeqrfp</code>.</td>
</tr>
<tr>
<td><code>cgeqrfp(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>cgeqrfp</code>.</td>
</tr>
<tr>
<td><code>zgeqrfp(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>zgeqrfp</code>.</td>
</tr>
</tbody>
</table>

continues on next page
Table 105 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>zgeqrfp(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>zgeqrfp</code>.</td>
</tr>
<tr>
<td><code>sgeqrfp_lwork(m,n)</code></td>
<td>Wrapper for <code>sgeqrfp_lwork</code>.</td>
</tr>
<tr>
<td><code>dgeqrfp_lwork(m,n)</code></td>
<td>Wrapper for <code>dgeqrfp_lwork</code>.</td>
</tr>
<tr>
<td><code>cgeqrfp_lwork(m,n)</code></td>
<td>Wrapper for <code>cgeqrfp_lwork</code>.</td>
</tr>
<tr>
<td><code>zgeqrfp_lwork(m,n)</code></td>
<td>Wrapper for <code>zgeqrfp_lwork</code>.</td>
</tr>
<tr>
<td><code>sgerqf(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>sgerqf</code>.</td>
</tr>
<tr>
<td><code>dgerqf(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>dgerqf</code>.</td>
</tr>
<tr>
<td><code>cgerqf(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>cgerqf</code>.</td>
</tr>
<tr>
<td><code>zgerqf(a,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>zgerqf</code>.</td>
</tr>
<tr>
<td><code>sgesdd(...)</code></td>
<td>Wrapper for <code>sgesdd</code>.</td>
</tr>
<tr>
<td><code>dgesdd(...)</code></td>
<td>Wrapper for <code>dgesdd</code>.</td>
</tr>
<tr>
<td><code>cgesdd(...)</code></td>
<td>Wrapper for <code>cgesdd</code>.</td>
</tr>
<tr>
<td><code>zgesdd(...)</code></td>
<td>Wrapper for <code>zgesdd</code>.</td>
</tr>
<tr>
<td><code>sgesdd_lwork(m,n,[compute_uv,full_matrices])</code></td>
<td>Wrapper for <code>sgesdd_lwork</code>.</td>
</tr>
<tr>
<td><code>dgesdd_lwork(m,n,[compute_uv,full_matrices])</code></td>
<td>Wrapper for <code>dgesdd_lwork</code>.</td>
</tr>
<tr>
<td><code>cgesdd_lwork(m,n,[compute_uv,full_matrices])</code></td>
<td>Wrapper for <code>cgesdd_lwork</code>.</td>
</tr>
<tr>
<td><code>zgesdd_lwork(m,n,[compute_uv,full_matrices])</code></td>
<td>Wrapper for <code>zgesdd_lwork</code>.</td>
</tr>
<tr>
<td><code>sgesv(a,b,[overwrite_a,overwrite_b])</code></td>
<td>Wrapper for <code>sgesv</code>.</td>
</tr>
<tr>
<td><code>dgesv(a,b,[overwrite_a,overwrite_b])</code></td>
<td>Wrapper for <code>dgesv</code>.</td>
</tr>
<tr>
<td><code>cgesv(a,b,[overwrite_a,overwrite_b])</code></td>
<td>Wrapper for <code>cgesv</code>.</td>
</tr>
<tr>
<td><code>zgesv(a,b,[overwrite_a,overwrite_b])</code></td>
<td>Wrapper for <code>zgesv</code>.</td>
</tr>
<tr>
<td><code>sgesvd(...)</code></td>
<td>Wrapper for <code>sgesvd</code>.</td>
</tr>
<tr>
<td><code>dgesvd(...)</code></td>
<td>Wrapper for <code>dgesvd</code>.</td>
</tr>
<tr>
<td><code>cgesvd(...)</code></td>
<td>Wrapper for <code>cgesvd</code>.</td>
</tr>
<tr>
<td><code>zgesvd(...)</code></td>
<td>Wrapper for <code>zgesvd</code>.</td>
</tr>
<tr>
<td><code>sgesvd_lwork(m,n,[compute_uv,full_matrices])</code></td>
<td>Wrapper for <code>sgesvd_lwork</code>.</td>
</tr>
<tr>
<td><code>dgesvd_lwork(m,n,[compute_uv,full_matrices])</code></td>
<td>Wrapper for <code>dgesvd_lwork</code>.</td>
</tr>
<tr>
<td><code>cgesvd_lwork(m,n,[compute_uv,full_matrices])</code></td>
<td>Wrapper for <code>cgesvd_lwork</code>.</td>
</tr>
<tr>
<td><code>zgesvd_lwork(m,n,[compute_uv,full_matrices])</code></td>
<td>Wrapper for <code>zgesvd_lwork</code>.</td>
</tr>
<tr>
<td><code>sgesvx(...)</code></td>
<td>Wrapper for <code>sgesvx</code>.</td>
</tr>
<tr>
<td><code>dgesvx(...)</code></td>
<td>Wrapper for <code>dgesvx</code>.</td>
</tr>
<tr>
<td><code>cgesvx(...)</code></td>
<td>Wrapper for <code>cgesvx</code>.</td>
</tr>
<tr>
<td><code>zgesvx(...)</code></td>
<td>Wrapper for <code>zgesvx</code>.</td>
</tr>
<tr>
<td><code>sgetrf(a,[overwrite_a])</code></td>
<td>Wrapper for <code>sgetrf</code>.</td>
</tr>
<tr>
<td><code>dgetrf(a,[overwrite_a])</code></td>
<td>Wrapper for <code>dgetrf</code>.</td>
</tr>
<tr>
<td><code>cgetrf(a,[overwrite_a])</code></td>
<td>Wrapper for <code>cgetrf</code>.</td>
</tr>
<tr>
<td><code>zgetrf(a,[overwrite_a])</code></td>
<td>Wrapper for <code>zgetrf</code>.</td>
</tr>
<tr>
<td><code>sgetc2(a,[overwrite_a])</code></td>
<td>Wrapper for <code>sgetc2</code>.</td>
</tr>
<tr>
<td><code>dgetc2(a,[overwrite_a])</code></td>
<td>Wrapper for <code>dgetc2</code>.</td>
</tr>
<tr>
<td><code>cgetc2(a,[overwrite_a])</code></td>
<td>Wrapper for <code>cgetc2</code>.</td>
</tr>
<tr>
<td><code>zgetc2(a,[overwrite_a])</code></td>
<td>Wrapper for <code>zgetc2</code>.</td>
</tr>
<tr>
<td><code>sgetri(lu,piv,[lwork,overwrite_lu])</code></td>
<td>Wrapper for <code>sgetri</code>.</td>
</tr>
<tr>
<td><code>dgetri(lu,piv,[lwork,overwrite_lu])</code></td>
<td>Wrapper for <code>dgetri</code>.</td>
</tr>
<tr>
<td><code>cgetri(lu,piv,[lwork,overwrite_lu])</code></td>
<td>Wrapper for <code>cgetri</code>.</td>
</tr>
<tr>
<td><code>zgetri(lu,piv,[lwork,overwrite_lu])</code></td>
<td>Wrapper for <code>zgetri</code>.</td>
</tr>
<tr>
<td><code>sgetri_lwork(n)</code></td>
<td>Wrapper for <code>sgetri_lwork</code>.</td>
</tr>
<tr>
<td><code>dgetri_lwork(n)</code></td>
<td>Wrapper for <code>dgetri_lwork</code>.</td>
</tr>
<tr>
<td><code>cgetri_lwork(n)</code></td>
<td>Wrapper for <code>cgetri_lwork</code>.</td>
</tr>
<tr>
<td><code>zgetri_lwork(n)</code></td>
<td>Wrapper for <code>zgetri_lwork</code>.</td>
</tr>
<tr>
<td><code>sgetrs(lu,piv,b,[trans,overwrite_b])</code></td>
<td>Wrapper for <code>sgetrs</code>.</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dgetrs(lu, piv, b[,trans,overwrite_b])</code></td>
<td>Wrapper for <code>dgetrs</code></td>
</tr>
<tr>
<td><code>cgetrs(lu, piv, b[,trans,overwrite_b])</code></td>
<td>Wrapper for <code>cgetrs</code></td>
</tr>
<tr>
<td><code>zgetrs(lu, piv, b[,trans,overwrite_b])</code></td>
<td>Wrapper for <code>zgetrs</code></td>
</tr>
<tr>
<td><code>sgesc2(lu, piv, ipiv, jqiv[,overwrite_rhs])</code></td>
<td>Wrapper for <code>sgesc2</code></td>
</tr>
<tr>
<td><code>dgesc2(lu, rhs, ipiv, jqiv[,overwrite_rhs])</code></td>
<td>Wrapper for <code>dgesc2</code></td>
</tr>
<tr>
<td><code>cgesc2(lu, rhs, ipiv, jqiv[,overwrite_rhs])</code></td>
<td>Wrapper for <code>cgesc2</code></td>
</tr>
<tr>
<td><code>zgesc2(lu, rhs, ipiv, jqiv[,overwrite_rhs])</code></td>
<td>Wrapper for <code>zgesc2</code></td>
</tr>
<tr>
<td><code>sgges(...)</code></td>
<td>Wrapper for <code>sgges</code></td>
</tr>
<tr>
<td><code>dgges(...)</code></td>
<td>Wrapper for <code>dgges</code></td>
</tr>
<tr>
<td><code>cgges(...)</code></td>
<td>Wrapper for <code>cgges</code></td>
</tr>
<tr>
<td><code>zgges(...)</code></td>
<td>Wrapper for <code>zgges</code></td>
</tr>
<tr>
<td><code>sggev(...)</code></td>
<td>Wrapper for <code>sggev</code></td>
</tr>
<tr>
<td><code>dggev(...)</code></td>
<td>Wrapper for <code>dggev</code></td>
</tr>
<tr>
<td><code>cggev(...)</code></td>
<td>Wrapper for <code>cggev</code></td>
</tr>
<tr>
<td><code>zggev(...)</code></td>
<td>Wrapper for <code>zggev</code></td>
</tr>
<tr>
<td><code>sgglse(...)</code></td>
<td>Wrapper for <code>sgglse</code></td>
</tr>
<tr>
<td><code>dgglse(...)</code></td>
<td>Wrapper for <code>dgglse</code></td>
</tr>
<tr>
<td><code>cgglse(...)</code></td>
<td>Wrapper for <code>cgglse</code></td>
</tr>
<tr>
<td><code>zgglse(...)</code></td>
<td>Wrapper for <code>zgglse</code></td>
</tr>
<tr>
<td><code>sggslwork(m, n, p)</code></td>
<td>Wrapper for <code>sggslwork</code></td>
</tr>
<tr>
<td><code>dggslwork(m, n, p)</code></td>
<td>Wrapper for <code>dggslwork</code></td>
</tr>
<tr>
<td><code>cggslwork(m, n, p)</code></td>
<td>Wrapper for <code>cggslwork</code></td>
</tr>
<tr>
<td><code>zggslwork(m, n, p)</code></td>
<td>Wrapper for <code>zggslwork</code></td>
</tr>
<tr>
<td><code>sgtsv(...)</code></td>
<td>Wrapper for <code>sgtsv</code></td>
</tr>
<tr>
<td><code>dgtsv(...)</code></td>
<td>Wrapper for <code>dgtsv</code></td>
</tr>
<tr>
<td><code>cgtsv(...)</code></td>
<td>Wrapper for <code>cgtsv</code></td>
</tr>
<tr>
<td><code>zgtsv(...)</code></td>
<td>Wrapper for <code>zgtsv</code></td>
</tr>
<tr>
<td><code>sgtsvx(...)</code></td>
<td>Wrapper for <code>sgtsvx</code></td>
</tr>
<tr>
<td><code>dgtsvx(...)</code></td>
<td>Wrapper for <code>dgtsvx</code></td>
</tr>
<tr>
<td><code>cgtsvx(...)</code></td>
<td>Wrapper for <code>cgtsvx</code></td>
</tr>
<tr>
<td><code>zgtsvx(...)</code></td>
<td>Wrapper for <code>zgtsvx</code></td>
</tr>
<tr>
<td><code>checon(a, piv, anorm[,lower])</code></td>
<td>Wrapper for <code>checon</code></td>
</tr>
<tr>
<td><code>zhecon(a, piv, anorm[,lower])</code></td>
<td>Wrapper for <code>zhecon</code></td>
</tr>
<tr>
<td><code>cheequ(b, a[,lower])</code></td>
<td>Wrapper for <code>cheequ</code></td>
</tr>
<tr>
<td><code>zheequ(b, a[,lower])</code></td>
<td>Wrapper for <code>zheequ</code></td>
</tr>
<tr>
<td><code>cheev(a[,compute_v,lower, lwork, overwrite_a])</code></td>
<td>Wrapper for <code>cheev</code></td>
</tr>
<tr>
<td><code>zheev(a[,compute_v,lower, lwork, overwrite_a])</code></td>
<td>Wrapper for <code>zheev</code></td>
</tr>
<tr>
<td><code>cheevlwork(n[,lower])</code></td>
<td>Wrapper for <code>cheevlwork</code></td>
</tr>
<tr>
<td><code>zheevlwork(n[,lower])</code></td>
<td>Wrapper for <code>zheevlwork</code></td>
</tr>
<tr>
<td><code>cheevd(...)</code></td>
<td>Wrapper for <code>cheevd</code></td>
</tr>
<tr>
<td><code>zheevd(...)</code></td>
<td>Wrapper for <code>zheevd</code></td>
</tr>
<tr>
<td><code>cheevd_lwork(n[,compute_v,lower])</code></td>
<td>Wrapper for <code>cheevd_lwork</code></td>
</tr>
<tr>
<td><code>zheevd_lwork(n[,compute_v,lower])</code></td>
<td>Wrapper for <code>zheevd_lwork</code></td>
</tr>
<tr>
<td><code>cheevr(...)</code></td>
<td>Wrapper for <code>cheevr</code></td>
</tr>
<tr>
<td><code>zheevr(...)</code></td>
<td>Wrapper for <code>zheevr</code></td>
</tr>
<tr>
<td><code>cheevrlwork(n[,lower])</code></td>
<td>Wrapper for <code>cheevrlwork</code></td>
</tr>
</tbody>
</table>

`Table 105 – continued from previous page`
Table 105 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>zheevr_lwork(n,[lower])</td>
<td>Wrapper for zheevr_lwork.</td>
</tr>
<tr>
<td>cheevx(...)</td>
<td>Wrapper for cheevx.</td>
</tr>
<tr>
<td>zheevx(...)</td>
<td>Wrapper for zheevx.</td>
</tr>
<tr>
<td>cheevx_lwork(n,[lower])</td>
<td>Wrapper for cheevx_lwork.</td>
</tr>
<tr>
<td>zheevx_lwork(n,[lower])</td>
<td>Wrapper for zheevx_lwork.</td>
</tr>
<tr>
<td>chegst(a,b,[itype,lower,overwrite_a])</td>
<td>Wrapper for chegst.</td>
</tr>
<tr>
<td>zhegst(a,b,[itype,lower,overwrite_a])</td>
<td>Wrapper for zhegst.</td>
</tr>
<tr>
<td>chegv(...)</td>
<td>Wrapper for chegv.</td>
</tr>
<tr>
<td>zhegv(...)</td>
<td>Wrapper for zhegv.</td>
</tr>
<tr>
<td>chegv_lwork(n,[uplo])</td>
<td>Wrapper for chegv_lwork.</td>
</tr>
<tr>
<td>zhegv_lwork(n,[uplo])</td>
<td>Wrapper for zhegv_lwork.</td>
</tr>
<tr>
<td>chegvx(...)</td>
<td>Wrapper for chegvx.</td>
</tr>
<tr>
<td>zhegvx(...)</td>
<td>Wrapper for zhegvx.</td>
</tr>
<tr>
<td>chemv(...)</td>
<td>Wrapper for chemv.</td>
</tr>
<tr>
<td>zhemv(...)</td>
<td>Wrapper for zhemv.</td>
</tr>
<tr>
<td>chemv_lwork(n,[uplo])</td>
<td>Wrapper for chemv_lwork.</td>
</tr>
<tr>
<td>zhemv_lwork(n,[uplo])</td>
<td>Wrapper for zhemv_lwork.</td>
</tr>
<tr>
<td>chemvx(...)</td>
<td>Wrapper for chemvx.</td>
</tr>
<tr>
<td>zhemvx(...)</td>
<td>Wrapper for zhemvx.</td>
</tr>
<tr>
<td>chemvx_lwork(n,[uplo])</td>
<td>Wrapper for chemvx_lwork.</td>
</tr>
<tr>
<td>zhemvx_lwork(n,[uplo])</td>
<td>Wrapper for zhemvx_lwork.</td>
</tr>
</tbody>
</table>
| chetrd(a,[lowe...
Table 105 – continued from previous page

<table>
<thead>
<tr>
<th>Function Returns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dlartg(f, g)</code></td>
<td>Wrapper for <code>dlartg</code>.</td>
</tr>
<tr>
<td><code>clartg(f, g)</code></td>
<td>Wrapper for <code>clartg</code>.</td>
</tr>
<tr>
<td><code>zlarqg(f, g)</code></td>
<td>Wrapper for <code>zlarqg</code>.</td>
</tr>
<tr>
<td><code>slasd4(i,d,z,[rho])</code></td>
<td>Wrapper for <code>slasd4</code>.</td>
</tr>
<tr>
<td><code>dlasd4(i,d,z,[rho])</code></td>
<td>Wrapper for <code>dlasd4</code>.</td>
</tr>
<tr>
<td><code>slaswp(a,piv,[k1,k2,off,inc,overwrite_a])</code></td>
<td>Wrapper for <code>slaswp</code>.</td>
</tr>
<tr>
<td><code>dlaswp(a,piv,[k1,k2,off,inc,overwrite_a])</code></td>
<td>Wrapper for <code>dlaswp</code>.</td>
</tr>
<tr>
<td><code>claswp(a,piv,[k1,k2,off,inc,overwrite_a])</code></td>
<td>Wrapper for <code>claswp</code>.</td>
</tr>
<tr>
<td><code>zlaswp(a,piv,[k1,k2,off,inc,overwrite_a])</code></td>
<td>Wrapper for <code>zlaswp</code>.</td>
</tr>
<tr>
<td><code>slauum(c,[lower,overwrite_c])</code></td>
<td>Wrapper for <code>slauum</code>.</td>
</tr>
<tr>
<td><code>dlauum(c,[lower,overwrite_c])</code></td>
<td>Wrapper for <code>dlauum</code>.</td>
</tr>
<tr>
<td><code>clauum(c,[lower,overwrite_c])</code></td>
<td>Wrapper for <code>clauum</code>.</td>
</tr>
<tr>
<td><code>zlauum(c,[lower,overwrite_c])</code></td>
<td>Wrapper for <code>zlauum</code>.</td>
</tr>
<tr>
<td><code>sorcsd(...)</code></td>
<td>Wrapper for <code>sorcsd</code>.</td>
</tr>
<tr>
<td><code>dorcsd(...)</code></td>
<td>Wrapper for <code>dorcsd</code>.</td>
</tr>
<tr>
<td><code>sorcsd_lwork(m,p,q)</code></td>
<td>Wrapper for <code>sorcsd_lwork</code>.</td>
</tr>
<tr>
<td><code>dorcsd_lwork(m,p,q)</code></td>
<td>Wrapper for <code>dorcsd_lwork</code>.</td>
</tr>
<tr>
<td><code>sorghr(a,tau,[lo,hi,lwork,overwrite_a])</code></td>
<td>Wrapper for <code>sorghr</code>.</td>
</tr>
<tr>
<td><code>dorghr(a,tau,[lo,hi,lwork,overwrite_a])</code></td>
<td>Wrapper for <code>dorghr</code>.</td>
</tr>
<tr>
<td><code>sorghr_lwork(n,[lo,hi])</code></td>
<td>Wrapper for <code>sorghr_lwork</code>.</td>
</tr>
<tr>
<td><code>dorghr_lwork(n,[lo,hi])</code></td>
<td>Wrapper for <code>dorghr_lwork</code>.</td>
</tr>
<tr>
<td><code>sorgqr(a,tau,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>sorgqr</code>.</td>
</tr>
<tr>
<td><code>dorgqr(a,tau,[lwork,overwrite_a])</code></td>
<td>Wrapper for <code>dorgqr</code>.</td>
</tr>
<tr>
<td><code>sormqr(side,trans,a,tau,c,[lwork,overwrite_c])</code></td>
<td>Wrapper for <code>sormqr</code>.</td>
</tr>
<tr>
<td><code>dormqr(side,trans,a,tau,c,[lwork,overwrite_c])</code></td>
<td>Wrapper for <code>dormqr</code>.</td>
</tr>
<tr>
<td><code>sormrz(side,trans,a,tau,c,[side,trans,lwork,overwrite_c])</code></td>
<td>Wrapper for <code>sormrz</code>.</td>
</tr>
<tr>
<td><code>dormrz(side,trans,a,tau,c,[side,trans,lwork,overwrite_c])</code></td>
<td>Wrapper for <code>dormrz</code>.</td>
</tr>
<tr>
<td><code>sormrz_lwork(m,n,[side,trans])</code></td>
<td>Wrapper for <code>sormrz_lwork</code>.</td>
</tr>
<tr>
<td><code>dormrz_lwork(m,n,[side,trans])</code></td>
<td>Wrapper for <code>dormrz_lwork</code>.</td>
</tr>
<tr>
<td><code>spbsv(ab,b,[lower,ldab,overwrite_ab,overwrite_b])</code></td>
<td>Wrapper for <code>spbsv</code>.</td>
</tr>
<tr>
<td><code>dpbsv(ab,b,[lower,ldab,overwrite_ab,overwrite_b])</code></td>
<td>Wrapper for <code>dpbsv</code>.</td>
</tr>
<tr>
<td><code>cpbsv(ab,b,[lower,ldab,overwrite_ab,overwrite_b])</code></td>
<td>Wrapper for <code>cpbsv</code>.</td>
</tr>
<tr>
<td><code>zpbsv(ab,b,[lower,ldab,overwrite_ab,overwrite_b])</code></td>
<td>Wrapper for <code>zpbsv</code>.</td>
</tr>
<tr>
<td><code>spbtrf(ab,[lower,ldab,overwrite_ab])</code></td>
<td>Wrapper for <code>spbtrf</code>.</td>
</tr>
<tr>
<td><code>dpbtrf(ab,[lower,ldab,overwrite_ab])</code></td>
<td>Wrapper for <code>dpbtrf</code>.</td>
</tr>
<tr>
<td><code>cpbtrf(ab,[lower,ldab,overwrite_ab])</code></td>
<td>Wrapper for <code>cpbtrf</code>.</td>
</tr>
<tr>
<td><code>zpbtrf(ab,[lower,ldab,overwrite_ab])</code></td>
<td>Wrapper for <code>zpbtrf</code>.</td>
</tr>
<tr>
<td><code>spbtrs(ab,b,[lower,ldab,overwrite_b])</code></td>
<td>Wrapper for <code>spbtrs</code>.</td>
</tr>
<tr>
<td><code>dpbtrs(ab,b,[lower,ldab,overwrite_b])</code></td>
<td>Wrapper for <code>dpbtrs</code>.</td>
</tr>
<tr>
<td><code>cpbtrs(ab,b,[lower,ldab,overwrite_b])</code></td>
<td>Wrapper for <code>cpbtrs</code>.</td>
</tr>
<tr>
<td><code>zpbtrs(ab,b,[lower,ldab,overwrite_b])</code></td>
<td>Wrapper for <code>zpbtrs</code>.</td>
</tr>
<tr>
<td><code>spftri(na,[transr,uplo,overwrite_a])</code></td>
<td>Wrapper for <code>spftri</code>.</td>
</tr>
<tr>
<td><code>dpftri(na,[transr,uplo,overwrite_a])</code></td>
<td>Wrapper for <code>dpftri</code>.</td>
</tr>
<tr>
<td><code>cpftri(na,[transr,uplo,overwrite_a])</code></td>
<td>Wrapper for <code>cpftri</code>.</td>
</tr>
</tbody>
</table>

continues on next page
Table 105 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>zpftri</td>
<td>Wrapper for zpftri</td>
</tr>
<tr>
<td>spftrs</td>
<td>Wrapper for spftrs</td>
</tr>
<tr>
<td>dpftrs</td>
<td>Wrapper for dpftrs</td>
</tr>
<tr>
<td>cpftrs</td>
<td>Wrapper for cpftrs</td>
</tr>
<tr>
<td>zpftrs</td>
<td>Wrapper for zpftrs</td>
</tr>
<tr>
<td>spocon</td>
<td>Wrapper for spocon</td>
</tr>
<tr>
<td>dpocon</td>
<td>Wrapper for dpocon</td>
</tr>
<tr>
<td>cpocon</td>
<td>Wrapper for cpocon</td>
</tr>
<tr>
<td>zpocon</td>
<td>Wrapper for zpocon</td>
</tr>
<tr>
<td>spstrf</td>
<td>Wrapper for spstrf</td>
</tr>
<tr>
<td>dpstrf</td>
<td>Wrapper for dpstrf</td>
</tr>
<tr>
<td>cpstrf</td>
<td>Wrapper for cpstrf</td>
</tr>
<tr>
<td>zpstrf</td>
<td>Wrapper for zpstrf</td>
</tr>
<tr>
<td>spstf2</td>
<td>Wrapper for spstf2</td>
</tr>
<tr>
<td>dpstf2</td>
<td>Wrapper for dpstf2</td>
</tr>
<tr>
<td>cpstf2</td>
<td>Wrapper for cpstf2</td>
</tr>
<tr>
<td>zpstf2</td>
<td>Wrapper for zpstf2</td>
</tr>
<tr>
<td>sposv</td>
<td>Wrapper for sposv</td>
</tr>
<tr>
<td>dposv</td>
<td>Wrapper for dposv</td>
</tr>
<tr>
<td>cposv</td>
<td>Wrapper for cposv</td>
</tr>
<tr>
<td>zposv</td>
<td>Wrapper for zposv</td>
</tr>
<tr>
<td>sposvx</td>
<td>Wrapper for sposvx</td>
</tr>
<tr>
<td>dposvx</td>
<td>Wrapper for dposvx</td>
</tr>
<tr>
<td>cposvx</td>
<td>Wrapper for cposvx</td>
</tr>
<tr>
<td>zposvx</td>
<td>Wrapper for zposvx</td>
</tr>
<tr>
<td>spotrf</td>
<td>Wrapper for spotrf</td>
</tr>
<tr>
<td>dpotrf</td>
<td>Wrapper for dpotrf</td>
</tr>
<tr>
<td>cpotrf</td>
<td>Wrapper for cpotrf</td>
</tr>
<tr>
<td>zpotrf</td>
<td>Wrapper for zpotrf</td>
</tr>
<tr>
<td>spotri</td>
<td>Wrapper for spotri</td>
</tr>
<tr>
<td>dpotri</td>
<td>Wrapper for dpotri</td>
</tr>
<tr>
<td>cpotri</td>
<td>Wrapper for cpotri</td>
</tr>
<tr>
<td>zpotri</td>
<td>Wrapper for zpotri</td>
</tr>
<tr>
<td>spotrs</td>
<td>Wrapper for spotrs</td>
</tr>
<tr>
<td>dpotrs</td>
<td>Wrapper for dpotrs</td>
</tr>
<tr>
<td>cpotrs</td>
<td>Wrapper for cpotrs</td>
</tr>
<tr>
<td>zpotrs</td>
<td>Wrapper for zpotrs</td>
</tr>
<tr>
<td>sppcon</td>
<td>Wrapper for sppcon</td>
</tr>
<tr>
<td>dpccom</td>
<td>Wrapper for dpccom</td>
</tr>
<tr>
<td>cpccom</td>
<td>Wrapper for cpccom</td>
</tr>
<tr>
<td>zpccon</td>
<td>Wrapper for zpccon</td>
</tr>
<tr>
<td>sppsv</td>
<td>Wrapper for sppsv</td>
</tr>
<tr>
<td>dpssv</td>
<td>Wrapper for dpssv</td>
</tr>
<tr>
<td>cppsv</td>
<td>Wrapper for cppsv</td>
</tr>
<tr>
<td>zpssv</td>
<td>Wrapper for zpssv</td>
</tr>
<tr>
<td>spptrf</td>
<td>Wrapper for spptrf</td>
</tr>
<tr>
<td>dpptrf</td>
<td>Wrapper for dpptrf</td>
</tr>
<tr>
<td>cpptrf</td>
<td>Wrapper for cpptrf</td>
</tr>
<tr>
<td>zpptrf</td>
<td>Wrapper for zpptrf</td>
</tr>
<tr>
<td>spptri</td>
<td>Wrapper for spptri</td>
</tr>
</tbody>
</table>

continues on next page
Table 105 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dptri(n, ap, [lower, overwrite_ap])</td>
<td>Wrapper for dptri.</td>
</tr>
<tr>
<td>cpptri(n, ap, [lower, overwrite_ap])</td>
<td>Wrapper for cpptri.</td>
</tr>
<tr>
<td>zpptri(n, ap, [lower, overwrite_ap])</td>
<td>Wrapper for zpptri.</td>
</tr>
<tr>
<td>dptrs(n, ap, [lower, overwrite_ap])</td>
<td>Wrapper for dptrs.</td>
</tr>
<tr>
<td>cpptrs(n, ap, [lower, overwrite_ap])</td>
<td>Wrapper for cpptrs.</td>
</tr>
<tr>
<td>zpptrs(n, ap, [lower, overwrite_ap])</td>
<td>Wrapper for zpptrs.</td>
</tr>
<tr>
<td>sptsv(...)</td>
<td>Wrapper for sptsv.</td>
</tr>
<tr>
<td>dptsv(...)</td>
<td>Wrapper for dptsv.</td>
</tr>
<tr>
<td>cptsv(...)</td>
<td>Wrapper for cptsv.</td>
</tr>
<tr>
<td>zptsv(...)</td>
<td>Wrapper for zptsv.</td>
</tr>
<tr>
<td>sptsvx(d, e, b, [fact, df, ef])</td>
<td>Wrapper for sptsvx.</td>
</tr>
<tr>
<td>dptsvx(d, e, b, [fact, df, ef])</td>
<td>Wrapper for dptsvx.</td>
</tr>
<tr>
<td>cptsvx(d, e, b, [fact, df, ef])</td>
<td>Wrapper for cptsvx.</td>
</tr>
<tr>
<td>zptsvx(d, e, b, [fact, df, ef])</td>
<td>Wrapper for zptsvx.</td>
</tr>
<tr>
<td>spttrf(d, e, [overwrite_d, overwrite_e])</td>
<td>Wrapper for spttrf.</td>
</tr>
<tr>
<td>dpttrf(d, e, [overwrite_d, overwrite_e])</td>
<td>Wrapper for dpttrf.</td>
</tr>
<tr>
<td>cpttrf(d, e, [overwrite_d, overwrite_e])</td>
<td>Wrapper for cpttrf.</td>
</tr>
<tr>
<td>zpttrf(d, e, [overwrite_d, overwrite_e])</td>
<td>Wrapper for zpttrf.</td>
</tr>
<tr>
<td>spttrs(d, e, b, [overwrite_b])</td>
<td>Wrapper for spttrs.</td>
</tr>
<tr>
<td>dpttrs(d, e, b, [overwrite_b])</td>
<td>Wrapper for dpttrs.</td>
</tr>
<tr>
<td>cpttrs(d, e, b, [lower, overwrite_b])</td>
<td>Wrapper for cpttrs.</td>
</tr>
<tr>
<td>zpttrs(d, e, b, [lower, overwrite_b])</td>
<td>Wrapper for zpttrs.</td>
</tr>
<tr>
<td>spteqr(...)</td>
<td>Wrapper for spteqr.</td>
</tr>
<tr>
<td>dpteqr(...)</td>
<td>Wrapper for dpteqr.</td>
</tr>
<tr>
<td>cpteqr(...)</td>
<td>Wrapper for cpteqr.</td>
</tr>
<tr>
<td>zpteqr(...)</td>
<td>Wrapper for zpteqr.</td>
</tr>
<tr>
<td>srotf(...)</td>
<td>Wrapper for srotf.</td>
</tr>
<tr>
<td>drot(...)</td>
<td>Wrapper for drot.</td>
</tr>
<tr>
<td>sbev(...)</td>
<td>Wrapper for sbev.</td>
</tr>
<tr>
<td>dsbev(...)</td>
<td>Wrapper for dsbev.</td>
</tr>
<tr>
<td>sbevd(...)</td>
<td>Wrapper for sbevd.</td>
</tr>
<tr>
<td>ssbev(...)</td>
<td>Wrapper for ssbev.</td>
</tr>
<tr>
<td>zbev(...)</td>
<td>Wrapper for zbev.</td>
</tr>
<tr>
<td>sbevsv(...)</td>
<td>Wrapper for ssbevsv.</td>
</tr>
<tr>
<td>dbevsv(...)</td>
<td>Wrapper for dsbevsv.</td>
</tr>
<tr>
<td>sbevdsv(...)</td>
<td>Wrapper for ssbevdsv.</td>
</tr>
<tr>
<td>dbevsv(...)</td>
<td>Wrapper for dsbevsv.</td>
</tr>
<tr>
<td>sfrk(...)</td>
<td>Wrapper for sfrk.</td>
</tr>
<tr>
<td>dsfrk(...)</td>
<td>Wrapper for dsfrk.</td>
</tr>
<tr>
<td>sstebers(...)</td>
<td>Wrapper for sstebers.</td>
</tr>
<tr>
<td>dstebers(...)</td>
<td>Wrapper for dstebers.</td>
</tr>
<tr>
<td>ssstein(...)</td>
<td>Wrapper for ssstein.</td>
</tr>
<tr>
<td>dstein(...)</td>
<td>Wrapper for dstein.</td>
</tr>
<tr>
<td>sstemr(...)</td>
<td>Wrapper for sstemr.</td>
</tr>
<tr>
<td>dstemr(...)</td>
<td>Wrapper for dstemr.</td>
</tr>
<tr>
<td>sstemrv(...)</td>
<td>Wrapper for sstemrv.</td>
</tr>
<tr>
<td>dstemrv(...)</td>
<td>Wrapper for dstemrv.</td>
</tr>
<tr>
<td>ssterf(...)</td>
<td>Wrapper for ssterf.</td>
</tr>
<tr>
<td>dsterf(...)</td>
<td>Wrapper for dsterf.</td>
</tr>
<tr>
<td>ssteve(...)</td>
<td>Wrapper for ssteve.</td>
</tr>
<tr>
<td>dsteve(...)</td>
<td>Wrapper for dsteve.</td>
</tr>
<tr>
<td>ssycon(...)</td>
<td>Wrapper for ssycon.</td>
</tr>
</tbody>
</table>
Table 105 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsycon(a, ipiv, anorm, [lower])</td>
<td>Wrapper for dsycon.</td>
</tr>
<tr>
<td>csysycon(a, ipiv, anorm, [lower])</td>
<td>Wrapper for csysycon.</td>
</tr>
<tr>
<td>zsysycon(a, ipiv, anorm, [lower])</td>
<td>Wrapper for zsysycon.</td>
</tr>
<tr>
<td>dsyconv(a, ipiv, [lower, overwrite_a])</td>
<td>Wrapper for dsyconv.</td>
</tr>
<tr>
<td>csysyconv(a, ipiv, [lower, overwrite_a])</td>
<td>Wrapper for csysyconv.</td>
</tr>
<tr>
<td>zsysyconv(a, ipiv, [lower, overwrite_a])</td>
<td>Wrapper for zsysyconv.</td>
</tr>
<tr>
<td>ssycon(a, ipiv, anorm, [lower])</td>
<td>Wrapper for ssycon.</td>
</tr>
<tr>
<td>csysycon(a, ipiv, anorm, [lower])</td>
<td>Wrapper for csysycon.</td>
</tr>
<tr>
<td>zsysycon(a, ipiv, anorm, [lower])</td>
<td>Wrapper for zsysycon.</td>
</tr>
<tr>
<td>ssyconv(a, ipiv, [lower, overwrite_a])</td>
<td>Wrapper for ssyconv.</td>
</tr>
<tr>
<td>csysyconv(a, ipiv, [lower, overwrite_a])</td>
<td>Wrapper for csysyconv.</td>
</tr>
<tr>
<td>zsysyconv(a, ipiv, [lower, overwrite_a])</td>
<td>Wrapper for zsysyconv.</td>
</tr>
<tr>
<td>ssyequb(a, [lower])</td>
<td>Wrapper for ssyequb.</td>
</tr>
<tr>
<td>dsysyev(a, [lower])</td>
<td>Wrapper for dsysyev.</td>
</tr>
<tr>
<td>csyev(a, [lower])</td>
<td>Wrapper for csyev.</td>
</tr>
<tr>
<td>zsysyev(a, [lower])</td>
<td>Wrapper for zsysyev.</td>
</tr>
<tr>
<td>ssyev(d...)</td>
<td>Wrapper for ssyevd.</td>
</tr>
<tr>
<td>dsysyev(d...)</td>
<td>Wrapper for dsysyev.</td>
</tr>
<tr>
<td>ssyevd_lwork(n, [compute_v, lower])</td>
<td>Wrapper for ssyevd_lwork.</td>
</tr>
<tr>
<td>dsysyevd_lwork(n, [compute_v, lower])</td>
<td>Wrapper for dsysyevd_lwork.</td>
</tr>
<tr>
<td>ssyequad(a, [lower])</td>
<td>Wrapper for ssyequad.</td>
</tr>
<tr>
<td>dsysyevr(a, [lower])</td>
<td>Wrapper for dsysyevr.</td>
</tr>
<tr>
<td>csyevr(a, [lower])</td>
<td>Wrapper for csyevr.</td>
</tr>
<tr>
<td>zsysyevr(a, [lower])</td>
<td>Wrapper for zsysyevr.</td>
</tr>
<tr>
<td>ssyevx(d...)</td>
<td>Wrapper for ssyevx.</td>
</tr>
<tr>
<td>dsysyevx(d...)</td>
<td>Wrapper for dsysyevx.</td>
</tr>
<tr>
<td>ssyevx_lwork(n, [lower])</td>
<td>Wrapper for ssyevx_lwork.</td>
</tr>
<tr>
<td>dsysyevx_lwork(n, [lower])</td>
<td>Wrapper for dsysyevx_lwork.</td>
</tr>
<tr>
<td>ssysygv(...)</td>
<td>Wrapper for ssysygv.</td>
</tr>
<tr>
<td>dsysygv(...)</td>
<td>Wrapper for dsysygv.</td>
</tr>
<tr>
<td>ssysygv_lwork(n, [uplo])</td>
<td>Wrapper for ssysygv_lwork.</td>
</tr>
<tr>
<td>dsysygv_lwork(n, [uplo])</td>
<td>Wrapper for dsysygv_lwork.</td>
</tr>
<tr>
<td>ssysyvx(...)</td>
<td>Wrapper for ssysyvx.</td>
</tr>
<tr>
<td>dsysyvx(...)</td>
<td>Wrapper for dsysyvx.</td>
</tr>
<tr>
<td>ssysyvx_lwork(n, [uplo])</td>
<td>Wrapper for ssysyvx_lwork.</td>
</tr>
<tr>
<td>dsysyvx_lwork(n, [uplo])</td>
<td>Wrapper for dsysyvx_lwork.</td>
</tr>
<tr>
<td>ssysysv(...)</td>
<td>Wrapper for ssysysv.</td>
</tr>
<tr>
<td>dsysysv(...)</td>
<td>Wrapper for dsysysv.</td>
</tr>
<tr>
<td>ssysysv_lwork(n, [lower, overwrite_a, overwrite_b])</td>
<td>Wrapper for ssysysv_lwork.</td>
</tr>
<tr>
<td>dsysysv_lwork(n, [lower, overwrite_a, overwrite_b])</td>
<td>Wrapper for dsysysv_lwork.</td>
</tr>
<tr>
<td>csysyvx(...)</td>
<td>Wrapper for csysyvx.</td>
</tr>
<tr>
<td>zsysyvx(...)</td>
<td>Wrapper for zsysyvx.</td>
</tr>
</tbody>
</table>

continues on next page
Table 105 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>zsysvx(...)</code></td>
<td>Wrapper for <code>zsysvx</code></td>
</tr>
<tr>
<td><code>ssysvx_lwork(n,[lower])</code></td>
<td>Wrapper for <code>ssysvx_lwork</code></td>
</tr>
<tr>
<td><code>dsysvx_lwork(n,[lower])</code></td>
<td>Wrapper for <code>dsysvx_lwork</code></td>
</tr>
<tr>
<td><code>csysvx_lwork(n,[lower])</code></td>
<td>Wrapper for <code>csysvx_lwork</code></td>
</tr>
<tr>
<td><code>zsysvx_lwork(n,[lower])</code></td>
<td>Wrapper for <code>zsysvx_lwork</code></td>
</tr>
<tr>
<td><code>ssytf2(a,[lower,overwrite_a])</code></td>
<td>Wrapper for <code>ssytf2</code></td>
</tr>
<tr>
<td><code>dsytf2(a,[lower,overwrite_a])</code></td>
<td>Wrapper for <code>dsytf2</code></td>
</tr>
<tr>
<td><code>csytf2(a,[lower,overwrite_a])</code></td>
<td>Wrapper for <code>csytf2</code></td>
</tr>
<tr>
<td><code>zsytf2(a,[lower,overwrite_a])</code></td>
<td>Wrapper for <code>zsytf2</code></td>
</tr>
<tr>
<td><code>ssytrd(a,[lower,lwork,overwrite_a])</code></td>
<td>Wrapper for <code>ssytrd</code></td>
</tr>
<tr>
<td><code>dsytrd(a,[lower,lwork,overwrite_a])</code></td>
<td>Wrapper for <code>dsytrd</code></td>
</tr>
<tr>
<td><code>ssytrd_lwork(n,[lower])</code></td>
<td>Wrapper for <code>ssytrd_lwork</code></td>
</tr>
<tr>
<td><code>dsytrd_lwork(n,[lower])</code></td>
<td>Wrapper for <code>dsytrd_lwork</code></td>
</tr>
<tr>
<td><code>ssytrf(a,[lower,lwork,overwrite_a])</code></td>
<td>Wrapper for <code>ssytrf</code></td>
</tr>
<tr>
<td><code>dsytrf(a,[lower,lwork,overwrite_a])</code></td>
<td>Wrapper for <code>dsytrf</code></td>
</tr>
<tr>
<td><code>ssytrf_lwork(n,[lower])</code></td>
<td>Wrapper for <code>ssytrf_lwork</code></td>
</tr>
<tr>
<td><code>dsytrf_lwork(n,[lower])</code></td>
<td>Wrapper for <code>dsytrf_lwork</code></td>
</tr>
<tr>
<td><code>stbtrs(ab,b,[uplo,trans,diag,overwrite_b])</code></td>
<td>Wrapper for <code>stbtrs</code></td>
</tr>
<tr>
<td><code>dtbtrs(ab,b,[uplo,trans,diag,overwrite_b])</code></td>
<td>Wrapper for <code>dtbtrs</code></td>
</tr>
<tr>
<td><code>ctbtrs(ab,b,[uplo,trans,diag,overwrite_b])</code></td>
<td>Wrapper for <code>ctbtrs</code></td>
</tr>
<tr>
<td><code>ztbtrs(ab,b,[uplo,trans,diag,overwrite_b])</code></td>
<td>Wrapper for <code>ztbtrs</code></td>
</tr>
<tr>
<td><code>stfsm(...)</code></td>
<td>Wrapper for <code>stfsm</code></td>
</tr>
<tr>
<td><code>dtfsm(...)</code></td>
<td>Wrapper for <code>dtfsm</code></td>
</tr>
<tr>
<td><code>ctfsm(...)</code></td>
<td>Wrapper for <code>ctfsm</code></td>
</tr>
<tr>
<td><code>ztfsm(...)</code></td>
<td>Wrapper for <code>ztfsm</code></td>
</tr>
<tr>
<td><code>stfttp(n,arf,[transr,uplo])</code></td>
<td>Wrapper for <code>stfttp</code></td>
</tr>
<tr>
<td><code>dtfttp(n,arf,[transr,uplo])</code></td>
<td>Wrapper for <code>dtfttp</code></td>
</tr>
<tr>
<td><code>ctfttp(n,arf,[transr,uplo])</code></td>
<td>Wrapper for <code>ctfttp</code></td>
</tr>
<tr>
<td><code>ztfttp(n,arf,[transr,uplo])</code></td>
<td>Wrapper for <code>ztfttp</code></td>
</tr>
<tr>
<td><code>stfttr(n,arf,[transr,uplo])</code></td>
<td>Wrapper for <code>stfttr</code></td>
</tr>
<tr>
<td><code>dtfttr(n,arf,[transr,uplo])</code></td>
<td>Wrapper for <code>dtfttr</code></td>
</tr>
<tr>
<td><code>ctfttr(n,arf,[transr,uplo])</code></td>
<td>Wrapper for <code>ctfttr</code></td>
</tr>
<tr>
<td><code>ztfttr(n,arf,[transr,uplo])</code></td>
<td>Wrapper for <code>ztfttr</code></td>
</tr>
<tr>
<td><code>stgexc(...)</code></td>
<td>Wrapper for <code>stgexc</code></td>
</tr>
<tr>
<td><code>dtgexc(...)</code></td>
<td>Wrapper for <code>dtgexc</code></td>
</tr>
<tr>
<td><code>ctgexc(...)</code></td>
<td>Wrapper for <code>ctgexc</code></td>
</tr>
<tr>
<td><code>ztgexc(...)</code></td>
<td>Wrapper for <code>ztgexc</code></td>
</tr>
<tr>
<td><code>stgsen(...)</code></td>
<td>Wrapper for <code>stgsen</code></td>
</tr>
<tr>
<td><code>dtgsen(...)</code></td>
<td>Wrapper for <code>dtgsen</code></td>
</tr>
<tr>
<td><code>ctgsen(...)</code></td>
<td>Wrapper for <code>ctgsen</code></td>
</tr>
<tr>
<td><code>ztgsen(...)</code></td>
<td>Wrapper for <code>ztgsen</code></td>
</tr>
<tr>
<td><code>stgsen_lwork(select,a,[ijob])</code></td>
<td>Wrapper for <code>stgsen_lwork</code></td>
</tr>
<tr>
<td><code>dtgsen_lwork(select,a,[ijob])</code></td>
<td>Wrapper for <code>dtgsen_lwork</code></td>
</tr>
<tr>
<td><code>ctgsen_lwork(select,a,b,[ijob])</code></td>
<td>Wrapper for <code>ctgsen_lwork</code></td>
</tr>
<tr>
<td><code>ztgsen_lwork(select,a,b,[ijob])</code></td>
<td>Wrapper for <code>ztgsen_lwork</code></td>
</tr>
<tr>
<td><code>stpttf(n,ap,[transr,uplo])</code></td>
<td>Wrapper for <code>stpttf</code></td>
</tr>
</tbody>
</table>

continues on next page

3.3. API definition
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dtpttf(n, ap, [transr, uplo])</code></td>
<td>Wrapper for dtpttf.</td>
</tr>
<tr>
<td><code>ctpttf(n, ap, [transr, uplo])</code></td>
<td>Wrapper for ctpttf.</td>
</tr>
<tr>
<td><code>ztpttf(n, ap, [transr, uplo])</code></td>
<td>Wrapper for ztpttf.</td>
</tr>
<tr>
<td><code>stpttr(n, ap, [uplo])</code></td>
<td>Wrapper for stpttr.</td>
</tr>
<tr>
<td><code>dtpttr(n, ap, [uplo])</code></td>
<td>Wrapper for dtpttr.</td>
</tr>
<tr>
<td><code>ctpttr(n, ap, [uplo])</code></td>
<td>Wrapper for ctpttr.</td>
</tr>
<tr>
<td><code>ztpttr(n, ap, [uplo])</code></td>
<td>Wrapper for ztpttr.</td>
</tr>
<tr>
<td><code>strsy(a, b, c, [trana, tranb, isgn, overwrite_c])</code></td>
<td>Wrapper for strsy.</td>
</tr>
<tr>
<td><code>dtrsy(a, b, c, [trana, tranb, isgn, overwrite_c])</code></td>
<td>Wrapper for dtrsy.</td>
</tr>
<tr>
<td><code>ctrsy(a, b, c, [trana, tranb, isgn, overwrite_c])</code></td>
<td>Wrapper for ctrsy.</td>
</tr>
<tr>
<td><code>ztrsy(a, b, c, [trana, tranb, isgn, overwrite_c])</code></td>
<td>Wrapper for ztrsy.</td>
</tr>
<tr>
<td><code>strtri(c, [lower, unitdiag, overwrite_c])</code></td>
<td>Wrapper for strtri.</td>
</tr>
<tr>
<td><code>dtrtri(c, [lower, unitdiag, overwrite_c])</code></td>
<td>Wrapper for dtrtri.</td>
</tr>
<tr>
<td><code>ctrtri(c, [lower, unitdiag, overwrite_c])</code></td>
<td>Wrapper for ctrtri.</td>
</tr>
<tr>
<td><code>ztrtri(c, [lower, unitdiag, overwrite_c])</code></td>
<td>Wrapper for ztrtri.</td>
</tr>
<tr>
<td><code>strtrs(...)</code></td>
<td>Wrapper for strtrs.</td>
</tr>
<tr>
<td><code>dtrtrs(...)</code></td>
<td>Wrapper for dtrtrs.</td>
</tr>
<tr>
<td><code>ctrtrs(...)</code></td>
<td>Wrapper for ctrtrs.</td>
</tr>
<tr>
<td><code>ztrtrs(...)</code></td>
<td>Wrapper for ztrtrs.</td>
</tr>
<tr>
<td><code>strttf(a, [transr, uplo])</code></td>
<td>Wrapper for strttf.</td>
</tr>
<tr>
<td><code>dtrttf(a, [transr, uplo])</code></td>
<td>Wrapper for dtrttf.</td>
</tr>
<tr>
<td><code>ctrttf(a, [transr, uplo])</code></td>
<td>Wrapper for ctrttf.</td>
</tr>
<tr>
<td><code>ztrttf(a, [transr, uplo])</code></td>
<td>Wrapper for ztrttf.</td>
</tr>
<tr>
<td><code>strttp(a, [uplo])</code></td>
<td>Wrapper for strttp.</td>
</tr>
<tr>
<td><code>dtrttp(a, [uplo])</code></td>
<td>Wrapper for dtrttp.</td>
</tr>
<tr>
<td><code>ctrttp(a, [uplo])</code></td>
<td>Wrapper for ctrttp.</td>
</tr>
<tr>
<td><code>ztrttp(a, [uplo])</code></td>
<td>Wrapper for ztrttp.</td>
</tr>
<tr>
<td><code>stzrzf(a, [lwork, overwrite_a])</code></td>
<td>Wrapper for stzrzf.</td>
</tr>
<tr>
<td><code>dtzrzf(a, [lwork, overwrite_a])</code></td>
<td>Wrapper for dtzrzf.</td>
</tr>
<tr>
<td><code>ctzrzf(a, [lwork, overwrite_a])</code></td>
<td>Wrapper for ctzrzf.</td>
</tr>
<tr>
<td><code>ztzrzf(a, [lwork, overwrite_a])</code></td>
<td>Wrapper for ztzrzf.</td>
</tr>
<tr>
<td><code>stzrzf_lwork(m, n)</code></td>
<td>Wrapper for stzrzf_lwork.</td>
</tr>
<tr>
<td><code>dtzrzf_lwork(m, n)</code></td>
<td>Wrapper for dtzrzf_lwork.</td>
</tr>
<tr>
<td><code>ctzrzf_lwork(m, n)</code></td>
<td>Wrapper for ctzrzf_lwork.</td>
</tr>
<tr>
<td><code>ztzrzf_lwork(m, n)</code></td>
<td>Wrapper for ztzrzf_lwork.</td>
</tr>
<tr>
<td><code>cunghr(a, tau, [lo, hi, lwork, overwrite_a])</code></td>
<td>Wrapper for cunghr.</td>
</tr>
<tr>
<td><code>zunghr(a, tau, [lo, hi, lwork, overwrite_a])</code></td>
<td>Wrapper for zunghr.</td>
</tr>
<tr>
<td><code>cunghr_lwork(n, [lo, hi])</code></td>
<td>Wrapper for cunghr_lwork.</td>
</tr>
<tr>
<td><code>zunghr_lwork(n, [lo, hi])</code></td>
<td>Wrapper for zunghr_lwork.</td>
</tr>
<tr>
<td><code>cungqr(a, tau, [lwork, overwrite_a])</code></td>
<td>Wrapper for cungqr.</td>
</tr>
<tr>
<td><code>zungqr(a, tau, [lwork, overwrite_a])</code></td>
<td>Wrapper for zungqr.</td>
</tr>
<tr>
<td><code>zungqr_lwork(n, [lo, hi])</code></td>
<td>Wrapper for zungqr_lwork.</td>
</tr>
<tr>
<td><code>cunmqr(side, trans, a, tau, c, [lwork, overwrite_c])</code></td>
<td>Wrapper for cunmqr.</td>
</tr>
<tr>
<td><code>zunmqr(side, trans, a, tau, c, [lwork, overwrite_c])</code></td>
<td>Wrapper for zunmqr.</td>
</tr>
<tr>
<td><code>sgegr(a, [overwrite_a])</code></td>
<td>Wrapper for sgegr.</td>
</tr>
<tr>
<td><code>dgegr(a, [overwrite_a])</code></td>
<td>Wrapper for dgegr.</td>
</tr>
<tr>
<td><code>cegr(a, [overwrite_a])</code></td>
<td>Wrapper for cegr.</td>
</tr>
<tr>
<td><code>zegr(a, [overwrite_a])</code></td>
<td>Wrapper for zegr.</td>
</tr>
<tr>
<td><code>sgemqrt(v, t, c, [side, trans, overwrite_c])</code></td>
<td>Wrapper for sgemqrt.</td>
</tr>
</tbody>
</table>

continues on next page
Table 105 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dgemqrt(v,t,c,[side,trans,overwrite_c])</code></td>
<td>Wrapper for <code>dgemqrt</code>.</td>
</tr>
<tr>
<td><code>cgemqrt(v,t,c,[side,trans,overwrite_c])</code></td>
<td>Wrapper for <code>cgemqrt</code>.</td>
</tr>
<tr>
<td><code>zgemqrt(v,t,c,[side,trans,overwrite_c])</code></td>
<td>Wrapper for <code>zgemqrt</code>.</td>
</tr>
<tr>
<td><code>sgttrf(...)</code></td>
<td>Wrapper for <code>sgttrf</code>.</td>
</tr>
<tr>
<td><code>dgttrf(...)</code></td>
<td>Wrapper for <code>dgttrf</code>.</td>
</tr>
<tr>
<td><code>cgttrf(...)</code></td>
<td>Wrapper for <code>cgttrf</code>.</td>
</tr>
<tr>
<td><code>zgttrf(...)</code></td>
<td>Wrapper for <code>zgttrf</code>.</td>
</tr>
<tr>
<td><code>sgttrs(dl,d,du,du2,ipiv,b,[trans,overwrite_b])</code></td>
<td>Wrapper for <code>sgttrs</code>.</td>
</tr>
<tr>
<td><code>dgttrs(dl,d,du,du2,ipiv,b,[trans,overwrite_b])</code></td>
<td>Wrapper for <code>dgttrs</code>.</td>
</tr>
<tr>
<td><code>cgttrs(dl,d,du,du2,ipiv,b,[trans,overwrite_b])</code></td>
<td>Wrapper for <code>cgttrs</code>.</td>
</tr>
<tr>
<td><code>zgttrs(dl,d,du,du2,ipiv,b,[trans,overwrite_b])</code></td>
<td>Wrapper for <code>zgttrs</code>.</td>
</tr>
<tr>
<td><code>stpqrt(l,nb,a,b,[overwrite_a,overwrite_b])</code></td>
<td>Wrapper for <code>stpqrt</code>.</td>
</tr>
<tr>
<td><code>dtpqrt(l,nb,a,b,[overwrite_a,overwrite_b])</code></td>
<td>Wrapper for <code>dtpqrt</code>.</td>
</tr>
<tr>
<td><code>ctpqrt(l,nb,a,b,[overwrite_a,overwrite_b])</code></td>
<td>Wrapper for <code>ctpqrt</code>.</td>
</tr>
<tr>
<td><code>ztpqrt(l,nb,a,b,[overwrite_a,overwrite_b])</code></td>
<td>Wrapper for <code>ztpqrt</code>.</td>
</tr>
<tr>
<td><code>stpmqrt(...)</code></td>
<td>Wrapper for <code>stpmqrt</code>.</td>
</tr>
<tr>
<td><code>dtpmqrt(...)</code></td>
<td>Wrapper for <code>dtpmqrt</code>.</td>
</tr>
<tr>
<td><code>ctpmqrt(...)</code></td>
<td>Wrapper for <code>ctpmqrt</code>.</td>
</tr>
<tr>
<td><code>ztpmqrt(...)</code></td>
<td>Wrapper for <code>ztpmqrt</code>.</td>
</tr>
<tr>
<td><code>cuncsd(...)</code></td>
<td>Wrapper for <code>cuncsd</code>.</td>
</tr>
<tr>
<td><code>zuncsd(...)</code></td>
<td>Wrapper for <code>zuncsd</code>.</td>
</tr>
<tr>
<td><code>cuncsd_lwork(m,p,q)</code></td>
<td>Wrapper for <code>cuncsd_lwork</code>.</td>
</tr>
<tr>
<td><code>zuncsd_lwork(m,p,q)</code></td>
<td>Wrapper for <code>zuncsd_lwork</code>.</td>
</tr>
<tr>
<td><code>cunmrz(a,tau,[side,trans,overwrite_c])</code></td>
<td>Wrapper for <code>cunmrz</code>.</td>
</tr>
<tr>
<td><code>zunmrz(a,tau,[side,trans,overwrite_c])</code></td>
<td>Wrapper for <code>zunmrz</code>.</td>
</tr>
<tr>
<td><code>cunmrz_lwork(m,n,[side,trans])</code></td>
<td>Wrapper for <code>cunmrz_lwork</code>.</td>
</tr>
<tr>
<td><code>zunmrz_lwork(m,n,[side,trans])</code></td>
<td>Wrapper for <code>zunmrz_lwork</code>.</td>
</tr>
<tr>
<td><code>ilaver()</code></td>
<td>Wrapper for <code>ilaver</code>.</td>
</tr>
</tbody>
</table>

**scipy.linalg.lapack.sgbsv**

`scipy.linalg.lapack.sgbsv(kl, ku, ab[, overwrite_ab, overwrite_b])` = <fortran object>

Wrapper for `sgbsv`.

**Parameters**

- `kl` [input int]
- `ku` [input int]
- `ab` [input rank-2 array('f') with bounds (1 + 2 * kl + ku,n)]
- `b` [input rank-2 array('f') with bounds (n,nrhs)]

**Returns**

- `lub` [rank-2 array('f') with bounds (1 + 2 * kl + ku,n) and ab storage]
- `piv` [rank-1 array('i') with bounds (n)]
- `x` [rank-2 array('f') with bounds (n,nrhs) and b storage]
- `info` [int]

**Other Parameters**

- `overwrite_ab` [input int, optional] Default: 0
- `overwrite_b` [input int, optional] Default: 0

---

3.3. API definition 861

scipy.linalg.lapack.dgbsv

scipy.linalg.lapack.dgbsv(kl, ku, ab[, overwrite_ab, overwrite_b]) = <fortran object>
Wrapper for dgbsv.

Parameters
kl [input int]
ku [input int]
ab [input rank-2 array('d') with bounds (1 + 2 * kl + ku,n)]
b [input rank-2 array('d') with bounds (n,nrhs)]

Returns
lub [rank-2 array('d') with bounds (1 + 2 * kl + ku,n) and ab storage]
piv [rank-1 array('i') with bounds (n)]
x [rank-2 array('d') with bounds (n,nrhs) and b storage]
info [int]

Other Parameters
overwrite_ab [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.cgbsv

scipy.linalg.lapack.cgbsv(kl, ku, ab[, overwrite_ab, overwrite_b]) = <fortran object>
Wrapper for cgbsv.

Parameters
kl [input int]
ku [input int]
ab [input rank-2 array('F') with bounds (1 + 2 * kl + ku,n)]
b [input rank-2 array('F') with bounds (n,nrhs)]

Returns
lub [rank-2 array('F') with bounds (1 + 2 * kl + ku,n) and ab storage]
piv [rank-1 array('i') with bounds (n)]
x [rank-2 array('F') with bounds (n,nrhs) and b storage]
info [int]

Other Parameters
overwrite_ab [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
scipy.linalg.lapack.zgbsv

`scipy.linalg.lapack.zgbsv(kl, ku, ab[, overwrite_ab, overwrite_b]) = <fortran object>`

Wrapper for zgbsv.

**Parameters**

- **kl** [input int]
- **ku** [input int]
- **ab** [input rank-2 array('D') with bounds (1 + 2 * kl + ku, n)]
- **b** [input rank-2 array('D') with bounds (n, nrhs)]

**Returns**

- **lub** [rank-2 array('D') with bounds (1 + 2 * kl + ku, n) and ab storage]
- **piv** [rank-1 array('i') with bounds (n)]
- **x** [rank-2 array('D') with bounds (n, nrhs) and b storage]
- **info** [int]

**Other Parameters**

- **overwrite_ab**
  - [input int, optional] Default: 0
- **overwrite_b**
  - [input int, optional] Default: 0

scipy.linalg.lapack.sgbtrf

`scipy.linalg.lapack.sgbtrf(ab, kl, ku[, m, n, ldab, overwrite_ab]) = <fortran object>`

Wrapper for sgbtrf.

**Parameters**

- **ab** [input rank-2 array('F') with bounds (ldab, n)]
- **kl** [input int]
- **ku** [input int]

**Returns**

- **lu** [rank-2 array('F') with bounds (ldab, n) and ab storage]
- **ipiv** [rank-1 array('i') with bounds (MIN(m, n))]
- **info** [int]

**Other Parameters**

- **m** [input int, optional] Default: shape(ab, 1)
- **n** [input int, optional] Default: shape(ab, 1)
- **overwrite_ab**
  - [input int, optional] Default: 0
- **ldab** [input int, optional] Default: max(shape(ab, 0), 1)
scipy.linalg.lapack.dgbtrf

scipy.linalg.lapack.dgbtrf(ab, kl, ku[, m, n, ldab, overwrite_ab]) = <fortran object>

Wrapper for dgbtrf.

Parameters

- **ab**: [input rank-2 array('d') with bounds (ldab,n)]
- **kl**: [input int]
- **ku**: [input int]

Returns

- **lu**: [rank-2 array('d') with bounds (ldab,n) and ab storage]
- **ipiv**: [rank-1 array('i') with bounds (MIN(m, n))]
- **info**: [int]

Other Parameters

- **m**: [input int, optional] Default: shape(ab,1)
- **n**: [input int, optional] Default: shape(ab,1)
- **overwrite_ab**: [input int, optional] Default: 0
- **ldab**: [input int, optional] Default: max(shape(ab,0),1)

scipy.linalg.lapack.cgbtrf

scipy.linalg.lapack.cgbtrf(ab, kl, ku[, m, n, ldab, overwrite_ab]) = <fortran object>

Wrapper for cgbtrf.

Parameters

- **ab**: [input rank-2 array('F') with bounds (ldab,n)]
- **kl**: [input int]
- **ku**: [input int]

Returns

- **lu**: [rank-2 array('F') with bounds (ldab,n) and ab storage]
- **ipiv**: [rank-1 array('i') with bounds (MIN(m, n))]
- **info**: [int]

Other Parameters

- **m**: [input int, optional] Default: shape(ab,1)
- **n**: [input int, optional] Default: shape(ab,1)
- **overwrite_ab**: [input int, optional] Default: 0
- **ldab**: [input int, optional] Default: max(shape(ab,0),1)

scipy.linalg.lapack.zgbtrf

scipy.linalg.lapack.zgbtrf(ab, kl, ku[, m, n, ldab, overwrite_ab]) = <fortran object>

Wrapper for zgbtrf.

Parameters

- **ab**: [input rank-2 array('D') with bounds (ldab,n)]
- **kl**: [input int]
- **ku**: [input int]

Returns

- **lu**: [rank-2 array('D') with bounds (ldab,n) and ab storage]
- **ipiv**: [rank-1 array('i') with bounds (MIN(m, n))]
- **info**: [int]

Other Parameters

- **m**: [input int, optional] Default: shape(ab,1)
- **n**: [input int, optional] Default: shape(ab,1)
- **overwrite_ab**: [input int, optional] Default: 0
- **ldab**: [input int, optional] Default: max(shape(ab,0),1)

lu [rank-2 array('D') with bounds (ldab,n) and ab storage]
ipiv [rank-1 array('i') with bounds (MIN(m, n))]
info [int]

Other Parameters
m [input int, optional] Default: shape(ab,1)
n [input int, optional] Default: shape(ab,1)
overwrite_ab [input int, optional] Default: 0
ldab [input int, optional] Default: max(shape(ab,0),1)

scipy.linalg.lapack.sgbtrs

scipy.linalg.lapack.sgbtrs(ab, kl, ku, b, ipiv[, trans, n, ldab, ldb, overwrite_b]) = <fortran object>
Wrapper for sgbtrs.

Parameters
ab [input rank-2 array('f') with bounds (ldab,n)]
kl [input int]
ku [input int]
b [input rank-2 array('f') with bounds (ldb,nrhs)]
ipiv [input rank-1 array('i') with bounds (n)]

Returns
x [rank-2 array('f') with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters
overwrite_b [input int, optional] Default: 0
trans [input int, optional] Default: 0
n [input int, optional] Default: shape(ab,1)
ldab [input int, optional] Default: shape(ab,0)
ldb [input int, optional] Default: shape(b,0)

scipy.linalg.lapack.dgbtrs

scipy.linalg.lapack.dgbtrs(ab, kl, ku, b, ipiv[, trans, n, ldab, ldb, overwrite_b]) = <fortran object>
Wrapper for dgbtrs.

Parameters
ab [input rank-2 array('d') with bounds (ldab,n)]
kl [input int]
ku [input int]
b [input rank-2 array('d') with bounds (ldb,nrhs)]
ipiv [input rank-1 array('i') with bounds (n)]

Returns
x [rank-2 array('d') with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters
overwrite_b
    [input int, optional] Default: 0
trans
    [input int, optional] Default: 0
n
    [input int, optional] Default: shape(ab,1)
l nab
    [input int, optional] Default: shape(ab,0)
l db
    [input int, optional] Default: shape(b,0)

scipy.linalg.lapack.cgbtrs
scipy.linalg.lapack.cgbtrs(ab, kl, ku, b, ipiv[, trans, n, ldab, ldb, overwrite_b]) = <fortran object>
Wrapper for cgbtrs.

Parameters
ab
    [input rank-2 array('F') with bounds (ldab,n)]
kl
    [input int]
ku
    [input int]
b
    [input rank-2 array('F') with bounds (ldb, nrhs)]
ipiv
    [input rank-1 array('i') with bounds (n)]

Returns
x
    [rank-2 array('F') with bounds (ldb, nrhs) and b storage]
info
    [int]

Other Parameters
overwrite_b
    [input int, optional] Default: 0
trans
    [input int, optional] Default: 0
n
    [input int, optional] Default: shape(ab,1)
l nab
    [input int, optional] Default: shape(ab,0)
l db
    [input int, optional] Default: shape(b,0)

scipy.linalg.lapack.zgbtrs
scipy.linalg.lapack.zgbtrs(ab, kl, ku, b, ipiv[, trans, n, ldab, ldb, overwrite_b]) = <fortran object>
Wrapper for zgbtrs.

Parameters
ab
    [input rank-2 array('D') with bounds (ldab,n)]
kl
    [input int]
ku
    [input int]
b
    [input rank-2 array('D') with bounds (ldb, nrhs)]
ipiv
    [input rank-1 array('i') with bounds (n)]

Returns
x
    [rank-2 array('D') with bounds (ldb, nrhs) and b storage]
info
    [int]

Other Parameters
overwrite_b
    [input int, optional] Default: 0
trans
    [input int, optional] Default: 0
n
    [input int, optional] Default: shape(ab,1)
l nab
    [input int, optional] Default: shape(ab,0)
**scipy.linalg.lapack.sgebal**

```python
scipy.linalg.lapack.sgebal(a[, scale, permute, overwrite_a]) = <fortran object>
```

Wrapper for sgebal.

**Parameters**
- `a` [input rank-2 array('f') with bounds (m,n)]

**Returns**
- `ba` [rank-2 array('f') with bounds (m,n) and a storage]
- `lo` [int]
- `hi` [int]
- `pivscale` [rank-1 array('f') with bounds (n)]
- `info` [int]

**Other Parameters**
- `scale` [input int, optional] Default: 0
- `permute` [input int, optional] Default: 0
- `overwrite_a` [input int, optional] Default: 0

**scipy.linalg.lapack.dgebal**

```python
scipy.linalg.lapack.dgebal(a[, scale, permute, overwrite_a]) = <fortran object>
```

Wrapper for dgebal.

**Parameters**
- `a` [input rank-2 array('d') with bounds (m,n)]

**Returns**
- `ba` [rank-2 array('d') with bounds (m,n) and a storage]
- `lo` [int]
- `hi` [int]
- `pivscale` [rank-1 array('d') with bounds (n)]
- `info` [int]

**Other Parameters**
- `scale` [input int, optional] Default: 0
- `permute` [input int, optional] Default: 0
- `overwrite_a` [input int, optional] Default: 0

**scipy.linalg.lapack.cgebal**

```python
scipy.linalg.lapack.cgebal(a[, scale, permute, overwrite_a]) = <fortran object>
```

Wrapper for cgebal.

**Parameters**
- `a` [input rank-2 array('F') with bounds (m,n)]

**Returns**
- `ba` [rank-2 array('F') with bounds (m,n) and a storage]
- `lo` [int]
**SciPy Reference Guide, Release 1.8.0**

- `hi` [int]
- ` pivscale` [rank-1 array('f') with bounds (n)]
- ` info` [int]

**Other Parameters**
- `scale` [input int, optional] Default: 0
- `permut` e [input int, optional] Default: 0
- `overwrite_a` [input int, optional] Default: 0

**scipy.linalg.lapack.zgebal**

`scipy.linalg.lapack.zgebal(a[, scale, permute, overwrite_a]) = <fortran object>`

Wrapper for zgebal.

**Parameters**
- `a` [input rank-2 array('D') with bounds (m,n)]

**Returns**
- `ba` [rank-2 array('D') with bounds (m,n) and a storage]
- `lo` [int]
- `hi` [int]
- ` pivscale` [rank-1 array('d') with bounds (n)]
- ` info` [int]

**Other Parameters**
- `scale` [input int, optional] Default: 0
- `permut` e [input int, optional] Default: 0
- `overwrite_a` [input int, optional] Default: 0

**scipy.linalg.lapack.sgecon**

`scipy.linalg.lapack.sgecon(a, anorm[, norm]) = <fortran object>`

Wrapper for sgecon.

**Parameters**
- `a` [input rank-2 array('f') with bounds (n,n)]
- `anorm` [input float]

**Returns**
- `rcond` [float]
- `info` [int]

**Other Parameters**
- `norm` [input string(len=1), optional] Default: ‘1’
scipy.linalg.lapack.dgecon

scipy.linalg.lapack.dgecon(a, anorm[, norm]) = <fortran object>
Wrapper for dgecon.

Parameters

- a [input rank-2 array('d') with bounds (n,n)]
- anorm [input float]

Returns

- rcond [float]
- info [int]

Other Parameters

- norm [input string(len=1), optional] Default: ‘1’

scipy.linalg.lapack.cgecon

scipy.linalg.lapack.cgecon(a, anorm[, norm]) = <fortran object>
Wrapper for cgecon.

Parameters

- a [input rank-2 array('F') with bounds (n,n)]
- anorm [input float]

Returns

- rcond [float]
- info [int]

Other Parameters

- norm [input string(len=1), optional] Default: ‘1’

scipy.linalg.lapack.zgecon

scipy.linalg.lapack.zgecon(a, anorm[, norm]) = <fortran object>
Wrapper for zgecon.

Parameters

- a [input rank-2 array('D') with bounds (n,n)]
- anorm [input float]

Returns

- rcond [float]
- info [int]

Other Parameters

- norm [input string(len=1), optional] Default: ‘1’
scipy.linalg.lapack.sgeequ

scipy.linalg.lapack.sgeequ(a) = <fortran object>
Wrapper for sgeequ.

Parameters
a [input rank-2 array('f') with bounds (m,n)]

Returns
r [rank-1 array('f') with bounds (m)]
c [rank-1 array('f') with bounds (n)]
rowcnd [float]
colcnd [float]
amax [float]
info [int]

scipy.linalg.lapack.dgeequ

scipy.linalg.lapack.dgeequ(a) = <fortran object>
Wrapper for dgeequ.

Parameters
a [input rank-2 array('d') with bounds (m,n)]

Returns
r [rank-1 array('d') with bounds (m)]
c [rank-1 array('d') with bounds (n)]
rowcnd [float]
colcnd [float]
amax [float]
info [int]

scipy.linalg.lapack.cgeequ

scipy.linalg.lapack.cgeequ(a) = <fortran object>
Wrapper for cgeequ.

Parameters
a [input rank-2 array('F') with bounds (m,n)]

Returns
r [rank-1 array('f') with bounds (m)]
c [rank-1 array('f') with bounds (n)]
rowcnd [float]
colcnd [float]
amax [float]
info [int]
### scipy.linalg.lapack.zgeequ

**scipy.linalg.lapack.zgeequ**

\[
\text{scipy.linalg.lapack.zgeequ}(a) = \text{<fortran object>}
\]

Wrapper for zgeequ.

**Parameters**

- **a**
  - [input rank-2 array('D') with bounds (m,n)]

**Returns**

- **r**
  - [rank-1 array('d') with bounds (m)]
- **c**
  - [rank-1 array('d') with bounds (n)]
- **rowcnd**
  - [float]
- **colcnd**
  - [float]
- **amax**
  - [float]
- **info**
  - [int]

### scipy.linalg.lapack.sgeequb

**scipy.linalg.lapack.sgeequb**

\[
\text{scipy.linalg.lapack.sgeequb}(a) = \text{<fortran object>}
\]

Wrapper for sgeequb.

**Parameters**

- **a**
  - [input rank-2 array('f') with bounds (m,n)]

**Returns**

- **r**
  - [rank-1 array('f') with bounds (m)]
- **c**
  - [rank-1 array('f') with bounds (n)]
- **rowcnd**
  - [float]
- **colcnd**
  - [float]
- **amax**
  - [float]
- **info**
  - [int]

### scipy.linalg.lapack.dgeequb

**scipy.linalg.lapack.dgeequb**

\[
\text{scipy.linalg.lapack.dgeequb}(a) = \text{<fortran object>}
\]

Wrapper for dgeequb.

**Parameters**

- **a**
  - [input rank-2 array('d') with bounds (m,n)]

**Returns**

- **r**
  - [rank-1 array('d') with bounds (m)]
- **c**
  - [rank-1 array('d') with bounds (n)]
- **rowcnd**
  - [float]
- **colcnd**
  - [float]
- **amax**
  - [float]
- **info**
  - [int]
scipy.linalg.lapack.cgeequb

scipy.linalg.lapack.<fortran object> = cgeequb(a)

Wrapper for cgeequb.

Parameters

- **a** [input rank-2 array('F') with bounds (m,n)]

Returns

- **r** [rank-1 array('f') with bounds (m)]
- **c** [rank-1 array('F') with bounds (n)]
- **rowcnd** [float]
- **colcnd** [float]
- **amax** [float]
- **info** [int]

scipy.linalg.lapack.zgeequb

scipy.linalg.lapack.<fortran object> = zgeequb(a)

Wrapper for zgeequb.

Parameters

- **a** [input rank-2 array('D') with bounds (m,n)]

Returns

- **r** [rank-1 array('d') with bounds (m)]
- **c** [rank-1 array('D') with bounds (n)]
- **rowcnd** [float]
- **colcnd** [float]
- **amax** [float]
- **info** [int]

scipy.linalg.lapack.sgees

scipy.linalg.lapack.<fortran object> = sgees(sselect, a, compute_v, sort_t, lwork, sselect_extra_args, overwrite_a)

Wrapper for sgees.

Parameters

- **sselect** [call-back function]
- **a** [input rank-2 array('F') with bounds (n,n)]

Returns

- **t** [rank-2 array('F') with bounds (n,n) and a storage]
- **sdim** [int]
- **wr** [rank-1 array('F') with bounds (n)]
- **wi** [rank-1 array('F') with bounds (n)]
- **vs** [rank-2 array('F') with bounds (ldvs,n)]
- **work** [rank-1 array('F') with bounds (MAX(lwork, 1))]
- **info** [int]

Other Parameters

- **compute_v** [input int, optional] Default: 1
- **sort_t** [input int, optional] Default: 0
**Notes**

Call-back functions:

```python
def sselect(arg1, arg2):
 return sselect
```

**scipy.linalg.lapack.dgees**

```python
scipy.linalg.lapack.dgees(dselect, a[, compute_v, sort_t, lwork, dselect_extra_args, overwrite_a]) =
<fortran object>
```

Wrapper for dgees.

**Parameters**

- `dselect` [call-back function]
- `a` [input rank-2 array('d') with bounds (n,n)]

**Returns**

- `t` [rank-2 array('d') with bounds (n,n) and a storage]
- `sdim` [int]
- `wr` [rank-1 array('d') with bounds (n)]
- `wi` [rank-1 array('d') with bounds (n)]
- `vs` [rank-2 array('d') with bounds (ldvs,n)]
- `work` [rank-1 array('d') with bounds (MAX(lwork, 1))]  
- `info` [int]

**Other Parameters**

- `compute_v` [input int, optional] Default: 1
- `sort_t` [input int, optional] Default: 0
- `dselect_extra_args` [input tuple, optional] Default: ()
- `overwrite_a` [input int, optional] Default: 0
- `lwork` [input int, optional] Default: max(3*n,1)
Notes

Call-back functions:

```python
def dselect(arg1, arg2):
 return dselect
```

Required arguments:
- `arg1`: `input float`
- `arg2`: `input float`

Return objects:
- `dselect`: `int`

`scipy.linalg.lapack.cgees`

`scipy.linalg.lapack.cgees(cselect, a[, compute_v, sort_t, lwork, cselect_extra_args, overwrite_a]) = <fortran object>`

Wrapper for `cgees`.

**Parameters**
- `cselect`: [call-back function]
- `a`: [input rank-2 array('F') with bounds (n,n)]

**Returns**
- `t`: [rank-2 array('F') with bounds (n,n) and a storage]
- `sdim`: [int]
- `w`: [rank-1 array('F') with bounds (n)]
- `vs`: [rank-2 array('F') with bounds (ldvs,n)]
- `work`: [rank-1 array('F') with bounds (MAX(lwork,1))]`]
- `info`: [int]

**Other Parameters**
- `compute_v`: [input int, optional] Default: 1
- `sort_t`: [input int, optional] Default: 0
- `cselect_extra_args`: [input tuple, optional] Default: ()
- `overwrite_a`: [input int, optional] Default: 0
- `lwork`: [input int, optional] Default: max(3*n,1)

**Notes**

Call-back functions:

```python
def cselect(arg):
 return cselect
```

Required arguments:
- `arg`: `input complex`

Return objects:
- `cselect`: `int`
scipy.linalg.lapack.zgees

scipy.linalg.lapack.zgees(zselect, a[, compute_v, sort_t, lwork, zselect_extra_args, overwrite_a]) =
<fortran object>

Wrapper for zgees.

Parameters

zselect [call-back function]
a [input rank-2 array('D') with bounds (n,n)]

Returns

[rank-2 array('D') with bounds (n,n) and a storage]
sdim [int]
w [rank-1 array('D') with bounds (n)]
vs [rank-2 array('D') with bounds (ldvs,n)]
work [rank-1 array('D') with bounds (MAX(lwork, 1))]
info [int]

Other Parameters

compute_v [input int, optional] Default: 1
sort_t [input int, optional] Default: 0
zselect_extra_args [input tuple, optional] Default: ()
overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)

Notes

Call-back functions:

```python
def zselect(arg):
 return zselect
```

Required arguments:
- arg : input complex

Return objects:
- zselect : int

scipy.linalg.lapack.sgeev

scipy.linalg.lapack.sgeev(a[, compute_vl, compute_vr, lwork, overwrite_a]) = <fortran object>

Wrapper for sgeev.

Parameters

a [input rank-2 array('F') with bounds (n,n)]

Returns

[rank-1 array('F') with bounds (n)]
wi [rank-1 array('F') with bounds (n)]
vl [rank-2 array('F') with bounds (ldvl,n)]
vr [rank-2 array('F') with bounds (ldvr,n)]
info [int]

Other Parameters
compute_vl  
[input int, optional] Default: 1
compute_vr  
[input int, optional] Default: 1
overwrite_a  
[input int, optional] Default: 0
lwork  
[input int, optional] Default: max(4*n,1)

scipy.linalg.lapack.dgeev

scipy.linalg.lapack.dgeev(a[, compute_vl, compute_vr, lwork, overwrite_a]) = <fortran object>

Wrapper for dgeev.

Parameters
a  [input rank-2 array('d') with bounds (n,n)]

Returns
wr  [rank-1 array('d') with bounds (n)]
wi  [rank-1 array('d') with bounds (n)]
vl  [rank-2 array('d') with bounds (ldvl,n)]
vr  [rank-2 array('d') with bounds (ldvr,n)]
info  [int]

Other Parameters
compute_vl  
[input int, optional] Default: 1
compute_vr  
[input int, optional] Default: 1
overwrite_a  
[input int, optional] Default: 0
lwork  
[input int, optional] Default: max(4*n,1)

scipy.linalg.lapack.cgeev

scipy.linalg.lapack.cgeev(a[, compute_vl, compute_vr, lwork, overwrite_a]) = <fortran object>

Wrapper for cgeev.

Parameters
a  [input rank-2 array('F') with bounds (n,n)]

Returns
w  [rank-1 array('F') with bounds (n)]
vl  [rank-2 array('F') with bounds (ldvl,n)]
vr  [rank-2 array('F') with bounds (ldvr,n)]
info  [int]

Other Parameters
compute_vl  
[input int, optional] Default: 1
compute_vr  
[input int, optional] Default: 1
overwrite_a  
[input int, optional] Default: 0
lwork  
[input int, optional] Default: max(2*n,1)
scipy.linalg.lapack.zgeev

Wrapper for zgeev.

Parameters

- \( a \) [input rank-2 array('D') with bounds (n,n)]

Returns

- \( w \) [rank-1 array('D') with bounds (n)]
- \( vl \) [rank-2 array('D') with bounds (ldvl,n)]
- \( vr \) [rank-2 array('D') with bounds (ldvr,n)]
- \( info \) [int]

Other Parameters

- \( compute_vl \) [input int, optional] Default: 1
- \( compute_vr \) [input int, optional] Default: 1
- \( overwrite_a \) [input int, optional] Default: 0
- \( lwork \) [input int, optional] Default: max(2*n,1)

scipy.linalg.lapack.sgeev_lwork

Wrapper for sgeev_lwork.

Parameters

- \( n \) [input int]

Returns

- \( work \) [float]
- \( info \) [int]

Other Parameters

- \( compute_vl \) [input int, optional] Default: 1
- \( compute_vr \) [input int, optional] Default: 1

scipy.linalg.lapack.dgeev_lwork

Wrapper for dgeev_lwork.

Parameters

- \( n \) [input int]

Returns

- \( work \) [float]
- \( info \) [int]

Other Parameters
compute_vl  
  [input int, optional] Default: 1
compute_vr  
  [input int, optional] Default: 1

scipy.linalg.lapack.cgeev_lwork

scipy.linalg.lapack.cgeev_lwork(n[, compute_vl, compute_vr]) = <fortran object>
Wrapper for cgeev_lwork.

Parameters
n  [input int]

Returns
work  [complex]
info  [int]

Other Parameters
compute_vl  
  [input int, optional] Default: 1
compute_vr  
  [input int, optional] Default: 1

scipy.linalg.lapack.zgeev_lwork

scipy.linalg.lapack.zgeev_lwork(n[, compute_vl, compute_vr]) = <fortran object>
Wrapper for zgeev_lwork.

Parameters
n  [input int]

Returns
work  [complex]
info  [int]

Other Parameters
compute_vl  
  [input int, optional] Default: 1
compute_vr  
  [input int, optional] Default: 1

scipy.linalg.lapack.sgegv

scipy.linalg.lapack.sgegv(*args, **kwds)
sgegv is deprecated! The *gegv family of routines has been deprecated in LAPACK 3.6.0 in favor of the *ggev family of routines. The corresponding wrappers will be removed from SciPy in a future release.
alphar,alphai,beta,vl,vr,info = sgegv(a,b,[compute_vl,compute_vr,lwork,overwrite_a,overwrite_b])
Wrapper for sgegv.

Parameters
a  [input rank-2 array('f') with bounds (n,n)]
b  [input rank-2 array('f') with bounds (n,n)]

Returns
alphar [rank-1 array('f') with bounds (n)]
alphai [rank-1 array('f') with bounds (n)]
beta [rank-1 array('f') with bounds (n)]
vl [rank-2 array('f') with bounds (ldvl,n)]
vr [rank-2 array('f') with bounds (ldvr,n)]
info [int]

Other Parameters

compute_vl [input int, optional] Default: 1
compute_vr [input int, optional] Default: 1
overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
lwork [input int, optional] Default: max(8*n,1)

scipy.linalg.lapack.dgegv

scipy.linalg.lapack.dgegv(*args, **kwds)
dgegv is deprecated! The *gegv family of routines has been deprecated in LAPACK 3.6.0 in favor of the *ggev family of routines. The corresponding wrappers will be removed from SciPy in a future release.

alphar,alphai,beta,vl,vr,info = dgegv(a,b,[compute_vl,compute_vr,lwork,overwrite_a,overwrite_b])

Wrapper for dgegv.

Parameters

a [input rank-2 array('d') with bounds (n,n)]
b [input rank-2 array('d') with bounds (n,n)]

Returns

alphar [rank-1 array('d') with bounds (n)]
alphai [rank-1 array('d') with bounds (n)]
beta [rank-1 array('d') with bounds (n)]
vl [rank-2 array('d') with bounds (ldvl,n)]
vr [rank-2 array('d') with bounds (ldvr,n)]
info [int]

Other Parameters

compute_vl [input int, optional] Default: 1
compute_vr [input int, optional] Default: 1
overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
lwork [input int, optional] Default: max(8*n,1)
scipy.linalg.lapack.cgegv

scipy.linalg.lapack.cgegv(*args, **kwds)

cgegv is deprecated! The *gegv family of routines has been deprecated in LAPACK 3.6.0 in favor of the *ggev family of routines. The corresponding wrappers will be removed from SciPy in a future release.

alpha, beta, vl, vr, info = cgegv(a, b, [compute_vl, compute_vr, lwork, overwrite_a, overwrite_b])

Wrapper for cgegv.

Parameters

a [input rank-2 array('F') with bounds (n,n)]
b [input rank-2 array('F') with bounds (n,n)]

Returns

alpha [rank-1 array('F') with bounds (n)]
beta [rank-1 array('F') with bounds (n)]
vl [rank-2 array('F') with bounds (ldvl,n)]
vr [rank-2 array('F') with bounds (ldvr,n)]
info [int]

Other Parameters

compute_vl [input int, optional] Default: 1
compute_vr [input int, optional] Default: 1
overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
lwork [input int, optional] Default: max(2*n,1)

scipy.linalg.lapack.zgegv

scipy.linalg.lapack.zgegv(*args, **kwds)

zgegv is deprecated! The *gegv family of routines has been deprecated in LAPACK 3.6.0 in favor of the *ggev family of routines. The corresponding wrappers will be removed from SciPy in a future release.

alpha, beta, vl, vr, info = zgegv(a, b, [compute_vl, compute_vr, lwork, overwrite_a, overwrite_b])

Wrapper for zgegv.

Parameters

a [input rank-2 array('D') with bounds (n,n)]
b [input rank-2 array('D') with bounds (n,n)]

Returns

alpha [rank-1 array('D') with bounds (n)]
beta [rank-1 array('D') with bounds (n)]
vl [rank-2 array('D') with bounds (ldvl,n)]
vr [rank-2 array('D') with bounds (ldvr,n)]
info [int]

Other Parameters

compute_vl [input int, optional] Default: 1
compute_vr  
  [input int, optional] Default: 1
overwrite_a  
  [input int, optional] Default: 0
overwrite_b  
  [input int, optional] Default: 0
lwork  
  [input int, optional] Default: max(2*n,1)

scipy.linalg.lapack.sgehrd

scipy.linalg.lapack.sgehrd(a[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for sgehrd.

Parameters

  a  [input rank-2 array('f') with bounds (n,n)]

Returns

  ht  [rank-2 array('f') with bounds (n,n) and a storage]
  tau  [rank-1 array('f') with bounds (-1 + n)]
  info  [int]

Other Parameters

  lo  [input int, optional] Default: 0
  hi  [input int, optional] Default: n-1
  overwrite_a  
    [input int, optional] Default: 0
  lwork  [input int, optional] Default: MAX(n,1)

scipy.linalg.lapack.dgehrd

scipy.linalg.lapack.dgehrd(a[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for dgehrd.

Parameters

  a  [input rank-2 array('d') with bounds (n,n)]

Returns

  ht  [rank-2 array('d') with bounds (n,n) and a storage]
  tau  [rank-1 array('d') with bounds (-1 + n)]
  info  [int]

Other Parameters

  lo  [input int, optional] Default: 0
  hi  [input int, optional] Default: n-1
  overwrite_a  
    [input int, optional] Default: 0
  lwork  [input int, optional] Default: MAX(n,1)
scipy.linalg.lapack.cgehrd

scipy.linalg.lapack.cgehrd(a\[lo, hi, lwork, overwrite_a\]) = <fortran object>
Wrapper for cgehrd.

Parameters

- a [input rank-2 array('F') with bounds (n,n)]

Returns

- h (rank-2 array('F') with bounds (n,n) and a storage]
- tau [rank-1 array('F') with bounds (-1 + n)]
- info [int]

Other Parameters

- lo [input int, optional] Default: 0
- hi [input int, optional] Default: n-1
- overwrite_a [input int, optional] Default: 0
- lwork [input int, optional] Default: MAX(n,1)

scipy.linalg.lapack.zgehrd

scipy.linalg.lapack.zgehrd(a\[lo, hi, lwork, overwrite_a\]) = <fortran object>
Wrapper for zgehrd.

Parameters

- a [input rank-2 array('D') with bounds (n,n)]

Returns

- h (rank-2 array('D') with bounds (n,n) and a storage]
- tau [rank-1 array('D') with bounds (-1 + n)]
- info [int]

Other Parameters

- lo [input int, optional] Default: 0
- hi [input int, optional] Default: n-1
- overwrite_a [input int, optional] Default: 0
- lwork [input int, optional] Default: MAX(n,1)

scipy.linalg.lapack.sgehrd_lwork

scipy.linalg.lapack.sgehrd_lwork(n\[lo, hi\]) = <fortran object>
Wrapper for sgehrd_lwork.

Parameters

- n [input int]

Returns

- work [float]
- info [int]

Other Parameters

- lo [input int, optional] Default: 0
- hi [input int, optional] Default: n-1
scipy.linalg.lapack.dgehrd_lwork

Wrapper for dgehrd_lwork.

Parameters
n [input int]

Returns
work [float]
info [int]

Other Parameters
lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1

scipy.linalg.lapack.cgehrd_lwork

Wrapper for cgehrd_lwork.

Parameters
n [input int]

Returns
work [complex]
info [int]

Other Parameters
lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1

scipy.linalg.lapack.zgehrd_lwork

Wrapper for zgehrd_lwork.

Parameters
n [input int]

Returns
work [complex]
info [int]

Other Parameters
lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1
scipy.linalg.lapack.sgejsv

```
scipy.linalg.lapack.sgejsv(a, joba, jobu, jobv, jobr, jobt, jobp, lwork, overwrite_a) = <fortran object>
```

Wrapper for sgejsv.

**Parameters**

- **a** [input rank-2 array('f') with bounds (lda,n)]

**Returns**

- **sva** [rank-1 array('f') with bounds (n)]
- **u** [rank-2 array('f') with bounds (((jobt == 0)&&(jobu == 3)?0:m),((jobt == 0)&&(jobu == 3)?0:m:n))]
- **v** [rank-2 array('f') with bounds (((jobt == 0)&&(jobv == 3)?0:ldv),((jobt == 0)&&(jobv == 3)?0:n))]
- **workout** [rank-1 array('f') with bounds (7)]
- **iworkout** [rank-1 array('i') with bounds (3)]
- **info** [int]

**Other Parameters**

- **joba** [input int, optional] Default: 4
- **jobu** [input int, optional] Default: 0
- **jobv** [input int, optional] Default: 0
- **jobr** [input int, optional] Default: 1
- **jobt** [input int, optional] Default: 0
- **jobp** [input int, optional] Default: 1
- **overwrite_a** [input int, optional] Default: 0
- **lwork** [input int, optional] Default: \(\max(6*n+2*n*n, \max(2*m+n, \max(4*n+n*n, \max(2*n+n*n+6, 7))))\)

scipy.linalg.lapack.dgejsv

```
scipy.linalg.lapack.dgejsv(a, joba, jobu, jobv, jobr, jobt, jobp, lwork, overwrite_a) = <fortran object>
```

Wrapper for dgejsv.

**Parameters**

- **a** [input rank-2 array('d') with bounds (lda,n)]

**Returns**

- **sva** [rank-1 array('d') with bounds (n)]
- **u** [rank-2 array('d') with bounds (((jobt == 0)&&(jobu == 3)?0:m),((jobt == 0)&&(jobu == 3)?0:m:n))]
- **v** [rank-2 array('d') with bounds (((jobt == 0)&&(jobv == 3)?0:ldv),((jobt == 0)&&(jobv == 3)?0:n))]
- **workout** [rank-1 array('f') with bounds (7)]
- **iworkout** [rank-1 array('i') with bounds (3)]
- **info** [int]

**Other Parameters**

- **joba** [input int, optional] Default: 4
- **jobu** [input int, optional] Default: 0
- **jobv** [input int, optional] Default: 0
- **jobr** [input int, optional] Default: 1

jobt   [input int, optional] Default: 0
jobp   [input int, optional] Default: 1
overwrite_a
       [input int, optional] Default: 0
lwork  [input int, optional] Default: \(\max(6n+2n^2n, \max(2m+n, \max(4n+n^2, \max(2n+n^2n+6, 7))))\)

\texttt{scipy.linalg.lapack.sgels}

\texttt{scipy.linalg.lapack.sgels(a, b[, trans, lwork, overwrite_a, overwrite_b]) = <fortran object>}

Wrapper for \texttt{sgels}.

\textbf{Parameters}

\begin{itemize}
  \item \texttt{a} [input rank-2 array('f') with bounds (m,n)]
  \item \texttt{b} [input rank-2 array('f') with bounds (MAX(m,n),nrhs)]
\end{itemize}

\textbf{Returns}

\begin{itemize}
  \item \texttt{lqr} [rank-2 array('f') with bounds (m,n) and a storage]
  \item \texttt{x} [rank-2 array('f') with bounds (MAX(m,n),nrhs) and b storage]
  \item \texttt{info} [int]
\end{itemize}

\textbf{Other Parameters}

\begin{itemize}
  \item \texttt{trans} [input string(len=1), optional] Default: 'N'
  \item \texttt{overwrite_a} [input int, optional] Default: 0
  \item \texttt{overwrite_b} [input int, optional] Default: 0
  \item \texttt{lwork} [input int, optional] Default: MAX(MIN(m,n)+MAX(MIN(m,n),nrhs),1)
\end{itemize}

\texttt{scipy.linalg.lapack.dgels}

\texttt{scipy.linalg.lapack.dgels(a, b[, trans, lwork, overwrite_a, overwrite_b]) = <fortran object>}

Wrapper for \texttt{dgels}.

\textbf{Parameters}

\begin{itemize}
  \item \texttt{a} [input rank-2 array('d') with bounds (m,n)]
  \item \texttt{b} [input rank-2 array('d') with bounds (MAX(m,n),nrhs)]
\end{itemize}

\textbf{Returns}

\begin{itemize}
  \item \texttt{lqr} [rank-2 array('d') with bounds (m,n) and a storage]
  \item \texttt{x} [rank-2 array('d') with bounds (MAX(m,n),nrhs) and b storage]
  \item \texttt{info} [int]
\end{itemize}

\textbf{Other Parameters}

\begin{itemize}
  \item \texttt{trans} [input string(len=1), optional] Default: 'N'
  \item \texttt{overwrite_a} [input int, optional] Default: 0
  \item \texttt{overwrite_b} [input int, optional] Default: 0
  \item \texttt{lwork} [input int, optional] Default: MAX(MIN(m,n)+MAX(MIN(m,n),nrhs),1)
\end{itemize}
scipy.linalg.lapack.cgels

**scipy.linalg.lapack.cgels** *(a, b[, trans, lwork, overwrite_a, overwrite_b]) = <fortran object>*

Wrapper for cgels.

**Parameters**
- a [input rank-2 array('F') with bounds (m,n)]
- b [input rank-2 array('F') with bounds (MAX(m, n),nrhs)]

**Returns**
- lqr [rank-2 array('F') with bounds (m,n) and a storage]
- x [rank-2 array('F') with bounds (MAX(m, n),nrhs) and b storage]
- info [int]

**Other Parameters**
- trans [input string(len=1), optional] Default: ‘N’
- overwrite_a [input int, optional] Default: 0
- overwrite_b [input int, optional] Default: 0
- lwork [input int, optional] Default: MAX(MIN(m,n)+MAX(MIN(m,n),nrhs),1)

scipy.linalg.lapack.zgels

**scipy.linalg.lapack.zgels** *(a, b[, trans, lwork, overwrite_a, overwrite_b]) = <fortran object>*

Wrapper for zgels.

**Parameters**
- a [input rank-2 array('D') with bounds (m,n)]
- b [input rank-2 array('D') with bounds (MAX(m, n),nrhs)]

**Returns**
- lqr [rank-2 array('D') with bounds (m,n) and a storage]
- x [rank-2 array('D') with bounds (MAX(m, n),nrhs) and b storage]
- info [int]

**Other Parameters**
- trans [input string(len=1), optional] Default: ‘N’
- overwrite_a [input int, optional] Default: 0
- overwrite_b [input int, optional] Default: 0
- lwork [input int, optional] Default: MAX(MIN(m,n)+MAX(MIN(m,n),nrhs),1)

scipy.linalg.lapack.sgels_lwork

**scipy.linalg.lapack.sgels_lwork** *(m, n, nrhs[, trans]) = <fortran object>*

Wrapper for sgels_lwork.

**Parameters**
- m [input int]
- n [input int]
- nrhs [input int]

**Returns**
work [float]
info [int]

Other Parameters
trans [input string(len=1), optional] Default: ‘N’

scipy.linalg.lapack.dgels_lwork

scipy.linalg.lapack.dgels_lwork(m, n, nrhs[, trans]) = <fortran object>
Wrapper for dgels_lwork.

Parameters
m [input int]
n [input int]
nrhs [input int]

Returns
work [float]
info [int]

Other Parameters
trans [input string(len=1), optional] Default: ‘N’

scipy.linalg.lapack.cgels_lwork

scipy.linalg.lapack.cgels_lwork(m, n, nrhs[, trans]) = <fortran object>
Wrapper for cgels_lwork.

Parameters
m [input int]
n [input int]
nrhs [input int]

Returns
work [complex]
info [int]

Other Parameters
trans [input string(len=1), optional] Default: ‘N’

scipy.linalg.lapack.zgels_lwork

scipy.linalg.lapack.zgels_lwork(m, n, nrhs[, trans]) = <fortran object>
Wrapper for zgels_lwork.

Parameters
m [input int]
n [input int]
nrhs [input int]

Returns
work [complex]
info [int]

Other Parameters
trans [input string(len=1), optional] Default: ‘N’

scipy.linalg.lapack.sgelsd

scipy.linalg.lapack.sgelsd(a, b, lwork, size_iwork[, cond, overwrite_a, overwrite_b]) = fortran object

Wrapper for sgelsd.

Parameters

a [input rank-2 array('f') with bounds (m,n)]
b [input rank-2 array('f') with bounds (maxmn,nrhs)]
lwork [input int]
size_iwork [input int]

Returns

x [rank-2 array('f') with bounds (maxmn,nrhs) and b storage]
s [rank-1 array('f') with bounds (minmn)]
rank [int]
info [int]

Other Parameters

overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
cond [input float, optional] Default: -1.0

scipy.linalg.lapack.dgelsd

scipy.linalg.lapack.dgelsd(a, b, lwork, size_iwork[, cond, overwrite_a, overwrite_b]) = fortran object

Wrapper for dgelsd.

Parameters

a [input rank-2 array('d') with bounds (m,n)]
b [input rank-2 array('d') with bounds (maxmn,nrhs)]
lwork [input int]
size_iwork [input int]

Returns

x [rank-2 array('d') with bounds (maxmn,nrhs) and b storage]
s [rank-1 array('d') with bounds (minmn)]
rank [int]
info [int]

Other Parameters

overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
cond [input float, optional] Default: -1.0
**scipy.linalg.lapack.cgelsd**

```python
scipy.linalg.lapack.cgelsd(a, b, lwork, size_rwork, size_iwork[, cond, overwrite_a, overwrite_b]) =
<fortran object>
```

Wrapper for cgelsd.

**Parameters**

- `a` [input rank-2 array('F') with bounds (m,n)]
- `b` [input rank-2 array('F') with bounds (maxmn,nrhs)]
- `lwork` [input int]
- `size_rwork` [input int]
- `size_iwork` [input int]

**Returns**

- `x` [rank-2 array('F') with bounds (maxmn,nrhs) and b storage]
- `s` [rank-1 array('f') with bounds (minmn)]
- `rank` [int]
- `info` [int]

**Other Parameters**

- `overwrite_a` [input int, optional] Default: 0
- `overwrite_b` [input int, optional] Default: 0
- `cond` [input float, optional] Default: -1.0

**scipy.linalg.lapack.zgelsd**

```python
scipy.linalg.lapack.zgelsd(a, b, lwork, size_rwork, size_iwork[, cond, overwrite_a, overwrite_b]) =
<fortran object>
```

Wrapper for zgelsd.

**Parameters**

- `a` [input rank-2 array('D') with bounds (m,n)]
- `b` [input rank-2 array('D') with bounds (maxmn,nrhs)]
- `lwork` [input int]
- `size_rwork` [input int]
- `size_iwork` [input int]

**Returns**

- `x` [rank-2 array('D') with bounds (maxmn,nrhs) and b storage]
- `s` [rank-1 array('d') with bounds (minmn)]
- `rank` [int]
- `info` [int]

**Other Parameters**

- `overwrite_a` [input int, optional] Default: 0
- `overwrite_b` [input int, optional] Default: 0
- `cond` [input float, optional] Default: -1.0

---

3.3. API definition 889
**scipy.linalg.lapack.sgelsl_work**

Wrapper for *sgelsl_work*.

**Parameters**
- \( m \) [input int]
- \( n \) [input int]
- \( nrhs \) [input int]

**Returns**
- work [float]
- iwork [int]
- info [int]

**Other Parameters**
- cond [input float, optional] Default: -1.0
- lwork [input int, optional] Default: -1

**scipy.linalg.lapack.dgelsl_work**

Wrapper for *dgelsl_work*.

**Parameters**
- \( m \) [input int]
- \( n \) [input int]
- \( nrhs \) [input int]

**Returns**
- work [float]
- iwork [int]
- info [int]

**Other Parameters**
- cond [input float, optional] Default: -1.0
- lwork [input int, optional] Default: -1

**scipy.linalg.lapack.cgelssl_work**

Wrapper for *cgelssl_work*.

**Parameters**
- \( m \) [input int]
- \( n \) [input int]
- \( nrhs \) [input int]

**Returns**
- work [complex]
- rwork [float]
- iwork [int]
- info [int]

**Other Parameters**
**cond**  [input float, optional] Default: -1.0

**lwork**  [input int, optional] Default: -1

**scipy.linalg.lapack.zgelsd_lwork**

```python
scipy.linalg.lapack.zgelsd_lwork(m, n, nrhs, cond, lwork) = <fortran object>
```

Wrapper for zgelsd_lwork.

### Parameters

- **m**  [input int]
- **n**  [input int]
- **nrhs**  [input int]

### Returns

- **work**  [complex]
- **rwork**  [float]
- **iwork**  [int]
- **info**  [int]

### Other Parameters

- **cond**  [input float, optional] Default: -1.0
- **lwork**  [input int, optional] Default: -1

**scipy.linalg.lapack.sgelss**

```python
scipy.linalg.lapack.sgelss(a, b, cond, lwork, overwrite_a, overwrite_b) = <fortran object>
```

Wrapper for sgelss.

### Parameters

- **a**  [input rank-2 array('f') with bounds (m,n)]
- **b**  [input rank-2 array('f') with bounds (maxmn,nrhs)]

### Returns

- **v**  [rank-2 array('f') with bounds (m,n) and a storage]
- **x**  [rank-2 array('f') with bounds (maxmn,nrhs) and b storage]
- **s**  [rank-1 array('f') with bounds (minmn)]
- **rank**  [int]
- **work**  [rank-1 array('f') with bounds (MAX(lwork, 1))]
- **info**  [int]

### Other Parameters

- **overwrite_a**  [input int, optional] Default: 0
- **overwrite_b**  [input int, optional] Default: 0
- **cond**  [input int, optional] Default: 0
- **lwork**  [input int, optional] Default: max(3*minmn+MAX(2*minmn,MAX(maxmn,nrhs)),1)
scipy.linalg.lapack.dgelss

scipy.linalg.lapack.dgelss(a[, cond, lwork, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for dgelss.

Parameters

a [input rank-2 array('d') with bounds (m,n)]
b [input rank-2 array('d') with bounds (maxmn,nrhs)]

Returns

v [rank-2 array('d') with bounds (m,n) and a storage]
x [rank-2 array('d') with bounds (maxmn,nrhs) and b storage]
s [rank-1 array('d') with bounds (minmn)]
rank [int]
work [rank-1 array('d') with bounds (MAX(lwork, 1))]
info [int]

Other Parameters

overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
cond [input float, optional] Default: -1.0
lwork [input int, optional] Default: max(3*minmn+MAX(2*minmn,MAX(maxmn,nrhs)),1)

scipy.linalg.lapack.cgelss

scipy.linalg.lapack.cgelss(a[, cond, lwork, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for cgelss.

Parameters

a [input rank-2 array('F') with bounds (m,n)]
b [input rank-2 array('F') with bounds (maxmn,nrhs)]

Returns

v [rank-2 array('F') with bounds (m,n) and a storage]
x [rank-2 array('F') with bounds (maxmn,nrhs) and b storage]
s [rank-1 array('f') with bounds (minmn)]
rank [int]
work [rank-1 array('F') with bounds (MAX(lwork, 1))]
info [int]

Other Parameters

overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
cond [input float, optional] Default: -1.0
lwork [input int, optional] Default: max(2*minmn+MAX(maxmn,nrhs),1)
scipy.linalg.lapack.zgelss

scipy.linalg.lapack.zgelss(a, b[, cond, lwork, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for zgelss.

Parameters

- `a` [input rank-2 array('D') with bounds (m,n)]
- `b` [input rank-2 array('D') with bounds (maxmn,nrhs)]

Returns

- `v` [rank-2 array('D') with bounds (m,n) and a storage]
- `x` [rank-2 array('D') with bounds (maxmn,nrhs) and b storage]
- `s` [rank-1 array('d') with bounds (minmn)]
- `rank` [int]
- `work` [rank-1 array('D') with bounds (MAX(lwork, 1))]
- `info` [int]

Other Parameters

- `overwrite_a` [input int, optional] Default: 0
- `overwrite_b` [input int, optional] Default: 0
- `cond` [input float, optional] Default: -1.0
- `lwork` [input int, optional] Default: max(2*minmn+MAX(maxmn,nrhs),1)

scipy.linalg.lapack.sgelss_lwork

scipy.linalg.lapack.sgelss_lwork(m, n, nrhs[, cond, lwork]) = <fortran object>

Wrapper for sgelss_lwork.

Parameters

- `m` [input int]
- `n` [input int]
- `nrhs` [input int]

Returns

- `work` [float]
- `info` [int]

Other Parameters

- `cond` [input float, optional] Default: -1.0
- `lwork` [input int, optional] Default: -1

scipy.linalg.lapack.dgelss_lwork

scipy.linalg.lapack.dgelss_lwork(m, n, nrhs[, cond, lwork]) = <fortran object>

Wrapper for dgelss_lwork.

Parameters

- `m` [input int]
- `n` [input int]
- `nrhs` [input int]

Returns

- `work` [float]
info [int]

**Other Parameters**

**cond** [input float, optional] Default: -1.0

**lwork** [input int, optional] Default: -1

### scipy.linalg.lapack.cgelss_lwork

```python
c scipy.linalg.lapack.cgelss_lwork(m, n, nrhs[, cond, lwork]) = <fortran object>
```

Wrapper for `cgelss_lwork`.

**Parameters**

**m** [input int]

**n** [input int]

**nrhs** [input int]

**Returns**

**work** [complex]

**info** [int]

**Other Parameters**

**cond** [input float, optional] Default: -1.0

**lwork** [input int, optional] Default: -1

### scipy.linalg.lapack.zgelss_lwork

```python
c scipy.linalg.lapack.zgelss_lwork(m, n, nrhs[, cond, lwork]) = <fortran object>
```

Wrapper for `zgelss_lwork`.

**Parameters**

**m** [input int]

**n** [input int]

**nrhs** [input int]

**Returns**

**work** [complex]

**info** [int]

**Other Parameters**

**cond** [input float, optional] Default: -1.0

**lwork** [input int, optional] Default: -1

### scipy.linalg.lapack.sgelsy

```python
c scipy.linalg.lapack.sgelsy(a, b, jptv, cond, lwork[, overwrite_a, overwrite_b]) = <fortran object>
```

Wrapper for `sgelsy`.

**Parameters**

**a** [input rank-2 array('f') with bounds (m,n)]

**b** [input rank-2 array('f') with bounds (maxmn,nrhs)]

**jptv** [input rank-1 array('i') with bounds (n)]

**cond** [input float]

**lwork** [input int]

**Returns**
Other Parameters

 overwrite_a
 [input int, optional] Default: 0
 overwrite_b
 [input int, optional] Default: 0

 scipy.linalg.lapack.dgelsy

 scipy.linalg.lapack.dgelsy(a, b, jptv, cond, lwork[, overwrite_a, overwrite_b]) = <fortran object>

 Wrapper for dgelsy.

 Parameters

 a [input rank-2 array('d') with bounds (m,n)]
b [input rank-2 array('d') with bounds (maxmn,nrhs)]
jptv [input rank-1 array('i') with bounds (n)]
cond [input float]
lwork [input int]

 Returns

 v [rank-2 array('d') with bounds (m,n) and a storage]
x [rank-2 array('d') with bounds (maxmn,nrhs) and b storage]
j [rank-1 array('i') with bounds (n) and jptv storage]
rank [int]
info [int]

 Other Parameters

 overwrite_a
 [input int, optional] Default: 0
 overwrite_b
 [input int, optional] Default: 0

 scipy.linalg.lapack.cgelsy

 scipy.linalg.lapack.cgelsy(a, b, jptv, cond, lwork[, overwrite_a, overwrite_b]) = <fortran object>

 Wrapper for cgelsy.

 Parameters

 a [input rank-2 array('F') with bounds (m,n)]
b [input rank-2 array('F') with bounds (maxmn,nrhs)]
jptv [input rank-1 array('i') with bounds (n)]
cond [input float]
lwork [input int]

 Returns

 v [rank-2 array('F') with bounds (m,n) and a storage]
x [rank-2 array('F') with bounds (maxmn,nrhs) and b storage]
j [rank-1 array('i') with bounds (n) and jptv storage]
rank [int]
info [int]

Other Parameters
overwrite_a
[input int, optional] Default: 0
overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.zgelsy
scipy.linalg.lapack.zgelsy(a, b, jptv, cond, lwork[, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for zgelsy.

Parameters
a [input rank-2 array('D') with bounds (m,n)]
b [input rank-2 array('D') with bounds (maxmn,nrhs)]
jptv [input rank-1 array('i') with bounds (n)]
cond [input float]
lwork [input int]

Returns
v [rank-2 array('D') with bounds (m,n) and a storage]
x [rank-2 array('D') with bounds (maxmn,nrhs) and b storage]
j [rank-1 array('i') with bounds (n) and jptv storage]
r
rank [int]
info [int]

Other Parameters
overwrite_a
[input int, optional] Default: 0
overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.sgelsy_lwork
scipy.linalg.lapack.sgelsy_lwork(m, n, nrhs, cond[, lwork]) = <fortran object>
Wrapper for sgelsy_lwork.

Parameters
m [input int]
n [input int]
nrhs [input int]
cond [input float]

Returns
work [float]
info [int]

Other Parameters
lwork [input int, optional] Default: -1
scipy.linalg.lapack.dgelsy_lwork

scipy.linalg.lapack.dgelsy_lwork(m, n, nrhs, cond[, lwork]) = <fortran object>
Wrapper for dgelsy_lwork.

Parameters
- m [input int]
- n [input int]
- nrhs [input int]
- cond [input float]

Returns
- work [float]
- info [int]

Other Parameters
- lwork [input int, optional] Default: -1

scipy.linalg.lapack.cgelsy_lwork

scipy.linalg.lapack.cgelsy_lwork(m, n, nrhs, cond[, lwork]) = <fortran object>
Wrapper for cgelsy_lwork.

Parameters
- m [input int]
- n [input int]
- nrhs [input int]
- cond [input float]

Returns
- work [complex]
- info [int]

Other Parameters
- lwork [input int, optional] Default: -1

scipy.linalg.lapack.zgelsy_lwork

scipy.linalg.lapack.zgelsy_lwork(m, n, nrhs, cond[, lwork]) = <fortran object>
Wrapper for zgelsy_lwork.

Parameters
- m [input int]
- n [input int]
- nrhs [input int]
- cond [input float]

Returns
- work [complex]
- info [int]

Other Parameters
- lwork [input int, optional] Default: -1

3.3. API definition
scipy.linalg.lapack.sgeqp3

```python
scipy.linalg.lapack.sgeqp3(a[, lwork, overwrite_a]) = <fortran object>
```

Wrapper for sgeqp3.

**Parameters**

- `a` [input rank-2 array('f') with bounds (m,n)]

**Returns**

- `qr` [rank-2 array('f') with bounds (m,n) and a storage]
- `jpvt` [rank-1 array('i') with bounds (n)]
- `tau` [rank-1 array('f') with bounds (MIN(m,n))]
- `work` [rank-1 array('f') with bounds (MAX(lwork, 1))]
- `info` [int]

**Other Parameters**

- `overwrite_a` [input int, optional] Default: 0
- `lwork` [input int, optional] Default: max(3*(n+1),1)

scipy.linalg.lapack.dgeqp3

```python
scipy.linalg.lapack.dgeqp3(a[, lwork, overwrite_a]) = <fortran object>
```

Wrapper for dgeqp3.

**Parameters**

- `a` [input rank-2 array('d') with bounds (m,n)]

**Returns**

- `qr` [rank-2 array('d') with bounds (m,n) and a storage]
- `jpvt` [rank-1 array('i') with bounds (n)]
- `tau` [rank-1 array('d') with bounds (MIN(m,n))]
- `work` [rank-1 array('d') with bounds (MAX(lwork, 1))]
- `info` [int]

**Other Parameters**

- `overwrite_a` [input int, optional] Default: 0
- `lwork` [input int, optional] Default: max(3*(n+1),1)

scipy.linalg.lapack.cgeqp3

```python
scipy.linalg.lapack.cgeqp3(a[, lwork, overwrite_a]) = <fortran object>
```

Wrapper for cgeqp3.

**Parameters**

- `a` [input rank-2 array('F') with bounds (m,n)]

**Returns**

- `qr` [rank-2 array('F') with bounds (m,n) and a storage]
- `jpvt` [rank-1 array('i') with bounds (n)]
- `tau` [rank-1 array('F') with bounds (MIN(m,n))]
- `work` [rank-1 array('F') with bounds (MAX(lwork, 1))]
- `info` [int]

**Other Parameters**
overwrite_a
  [input int, optional] Default: 0
lwork  [input int, optional] Default: max(3*(n+1),1)

scipy.linalg.lapack.zgeqp3

scipy.linalg.lapack.zgeqp3(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for zgeqp3.

Parameters
  a  [input rank-2 array('D') with bounds (m,n)]

Returns
  qr [rank-2 array('D') with bounds (m,n) and a storage]
  jpvt [rank-1 array('i') with bounds (n)]
  tau [rank-1 array('D') with bounds (MIN(m, n))]
  work [rank-1 array('D') with bounds (MAX(lwork, 1))]
  info [int]

Other Parameters
  overwrite_a
    [input int, optional] Default: 0
  lwork  [input int, optional] Default: max(3*(n+1),1)

scipy.linalg.lapack.sgeqrf

scipy.linalg.lapack.sgeqrf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for sgeqrf.

Parameters
  a  [input rank-2 array('f') with bounds (m,n)]

Returns
  qr [rank-2 array('f') with bounds (m,n) and a storage]
  tau [rank-1 array('f') with bounds (MIN(m, n))]
  work [rank-1 array('f') with bounds (MAX(lwork, 1))]
  info [int]

Other Parameters
  overwrite_a
    [input int, optional] Default: 0
  lwork  [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.dgeqrf

scipy.linalg.lapack.dgeqrf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for dgeqrf.

Parameters
  a  [input rank-2 array('d') with bounds (m,n)]

Returns
  qr [rank-2 array('d') with bounds (m,n) and a storage]
  tau [rank-1 array('d') with bounds (MIN(m, n))]
  work [rank-1 array('d') with bounds (MAX(lwork, 1))]

3.3. API definition
info [int]

Other Parameters

overwrite_a
    [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.cgeqrf

scipy.linalg.lapack.cgeqrf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for cgeqrf.

Parameters

a [input rank-2 array('F') with bounds (m,n)]

Returns

qr [rank-2 array('F') with bounds (m,n) and a storage]
tau [rank-1 array('F') with bounds (MIN(m, n))]
work [rank-1 array('F') with bounds (MAX(lwork, 1))]
info [int]

Other Parameters

overwrite_a
    [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.zgeqrf

scipy.linalg.lapack.zgeqrf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for zgeqrf.

Parameters

a [input rank-2 array('D') with bounds (m,n)]

Returns

qr [rank-2 array('D') with bounds (m,n) and a storage]
tau [rank-1 array('D') with bounds (MIN(m, n))]
work [rank-1 array('D') with bounds (MAX(lwork, 1))]
info [int]

Other Parameters

overwrite_a
    [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)
scipy.linalg.lapack.sgeqrf_lwork

scipy.linalg.lapack.sgeqrf_lwork(m, n) = <fortran object>
Wrapper for sgeqrf_lwork.

Parameters
- m [input int]
- n [input int]

Returns
- work [float]
- info [int]

scipy.linalg.lapack.dgeqrf_lwork

scipy.linalg.lapack.dgeqrf_lwork(m, n) = <fortran object>
Wrapper for dgeqrf_lwork.

Parameters
- m [input int]
- n [input int]

Returns
- work [float]
- info [int]

scipy.linalg.lapack.cgeqrf_lwork

scipy.linalg.lapack.cgeqrf_lwork(m, n) = <fortran object>
Wrapper for cgeqrf_lwork.

Parameters
- m [input int]
- n [input int]

Returns
- work [complex]
- info [int]

scipy.linalg.lapack.zgeqrf_lwork

scipy.linalg.lapack.zgeqrf_lwork(m, n) = <fortran object>
Wrapper for zgeqrf_lwork.

Parameters
- m [input int]
- n [input int]

Returns
- work [complex]
- info [int]
scipy.linalg.lapack.sgeqrfp

scipy.linalg.lapack.sgeqrfp(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for sgeqrfp.

Parameters
a  [input rank-2 array('f') with bounds (m,n)]

Returns
qr  [rank-2 array('f') with bounds (m,n) and a storage]
tau [rank-1 array('f') with bounds (MIN(m, n))]
info [int]

Other Parameters
overwrite_a
    [input int, optional] Default: 0
lwork  [input int, optional] Default: MAX(1, n)

scipy.linalg.lapack.dgeqrfp

scipy.linalg.lapack.dgeqrfp(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for dgeqrfp.

Parameters
a  [input rank-2 array('d') with bounds (m,n)]

Returns
qr  [rank-2 array('d') with bounds (m,n) and a storage]
tau [rank-1 array('d') with bounds (MIN(m, n))]
info [int]

Other Parameters
overwrite_a
    [input int, optional] Default: 0
lwork  [input int, optional] Default: MAX(1, n)

scipy.linalg.lapack.cgeqrfp

scipy.linalg.lapack.cgeqrfp(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for cgeqrfp.

Parameters
a  [input rank-2 array('F') with bounds (m,n)]

Returns
qr  [rank-2 array('F') with bounds (m,n) and a storage]
tau [rank-1 array('F') with bounds (MIN(m, n))]
info [int]

Other Parameters
overwrite_a
    [input int, optional] Default: 0
lwork  [input int, optional] Default: MAX(1, n)
scipy.linalg.lapack.zgeqrfp

scipy.linalg.lapack.zgeqrfp(a[, lwork, overwrite_a]) = <fortran object>

Wrapper for zgeqrfp.

Parameters

- a [input rank-2 array('D') with bounds (m,n)]

Returns

- qr [rank-2 array('D') with bounds (m,n) and a storage]
- tau [rank-1 array('D') with bounds (MIN(m, n))]
- info [int]

Other Parameters

- overwrite_a [input int, optional] Default: 0
- lwork [input int, optional] Default: MAX(1, n)

scipy.linalg.lapack.sgeqrfp_lwork

scipy.linalg.lapack.sgeqrfp_lwork(m, n) = <fortran object>

Wrapper for sgeqrfp_lwork.

Parameters

- m [input int]
- n [input int]

Returns

- work [float]
- info [int]

scipy.linalg.lapack.dgeqrfp_lwork

scipy.linalg.lapack.dgeqrfp_lwork(m, n) = <fortran object>

Wrapper for dgeqrfp_lwork.

Parameters

- m [input int]
- n [input int]

Returns

- work [float]
- info [int]

scipy.linalg.lapack.cgeqrfp_lwork

scipy.linalg.lapack.cgeqrfp_lwork(m, n) = <fortran object>

Wrapper for cgeqrfp_lwork.

Parameters

- m [input int]
- n [input int]

Returns

- work [complex]
- info [int]
**scipy.linalg.lapack.zgeqrfp_lwork**

scipy.linalg.lapack.zgeqrfp_lwork(m, n) = <fortran object>

Wrapper for zgeqrfp_lwork.

*Parameters*

- m [input int]
- n [input int]

*Returns*

- work [complex]
- info [int]

**scipy.linalg.lapack.sgerqf**

scipy.linalg.lapack.sgerqf(a[, lwork, overwrite_a]) = <fortran object>

Wrapper for sgerqf.

*Parameters*

- a [input rank-2 array('f') with bounds (m,n)]

*Returns*

- qr [rank-2 array('f') with bounds (m,n) and a storage]
- tau [rank-1 array('f') with bounds (MIN(m, n))]
- work [rank-1 array('f') with bounds (MAX(lwork, 1))]
- info [int]

*Other Parameters*

- overwrite_a [input int, optional] Default: 0
- lwork [input int, optional] Default: max(3*m,1)

**scipy.linalg.lapack.dgerqf**

scipy.linalg.lapack.dgerqf(a[, lwork, overwrite_a]) = <fortran object>

Wrapper for dgerqf.

*Parameters*

- a [input rank-2 array('d') with bounds (m,n)]

*Returns*

- qr [rank-2 array('d') with bounds (m,n) and a storage]
- tau [rank-1 array('d') with bounds (MIN(m, n))]
- work [rank-1 array('d') with bounds (MAX(lwork, 1))]
- info [int]

*Other Parameters*

- overwrite_a [input int, optional] Default: 0
- lwork [input int, optional] Default: max(3*m,1)
scipy.linalg.lapack.cgerqf

scipy.linalg.lapack.cgerqf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for cgerqf.

Parameters

a   [input rank-2 array('F') with bounds (m,n)]

Returns

qr  [rank-2 array('F') with bounds (m,n) and a storage]
    tau [rank-1 array('F') with bounds (MIN(m,n))]
    work [rank-1 array('F') with bounds (MAX(lwork, 1))]
    info [int]

Other Parameters

overwrite_a
    [input int, optional] Default: 0
lwork   [input int, optional] Default: max(3*m,1)

scipy.linalg.lapack.zgerqf

scipy.linalg.lapack.zgerqf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for zgerqf.

Parameters

a   [input rank-2 array('D') with bounds (m,n)]

Returns

qr  [rank-2 array('D') with bounds (m,n) and a storage]
    tau [rank-1 array('D') with bounds (MIN(m, n))]
    work [rank-1 array('D') with bounds (MAX(lwork, 1))]
    info [int]

Other Parameters

overwrite_a
    [input int, optional] Default: 0
lwork   [input int, optional] Default: max(3*m,1)

scipy.linalg.lapack.sgesdd

scipy.linalg.lapack.sgesdd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran object>
Wrapper for sgesdd.

Parameters

a   [input rank-2 array('f') with bounds (m,n)]

Returns

u   [rank-2 array('f') with bounds (u0,u1)]
    s  [rank-1 array('f') with bounds (mnmn)]
    vt [rank-2 array('f') with bounds (vt0,vt1)]
    info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

lwork
[input int, optional] Default: max((compute_uv?4*minmn*minmn+MAX(m,n)+9*minmn:MAX(14*minmn+4,10*minmn+2+25*(25+8))+MAX(m,n)),1)

scipy.linalg.lapack.dgesdd
scipy.linalg.lapack.
dgesdd (a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran object>

Wrapper for dgesdd.

Parameters

a
[input rank-2 array('d') with bounds (m,n)]

Returns

u
[rank-2 array('d') with bounds (u0,u1)]
s
[rank-1 array('d') with bounds (minmn)]
vt
[rank-2 array('d') with bounds (vt0,vt1)]
info
[int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

lwork
[input int, optional] Default: max((compute_uv?4*minmn*minmn+MAX(m,n)+9*minmn:MAX(14*minmn+4,10*minmn+2+25*(25+8))+MAX(m,n)),1)

scipy.linalg.lapack.cgesdd
scipy.linalg.lapack.
cgesdd (a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran object>

Wrapper for cgesdd.

Parameters

a
[input rank-2 array('F') with bounds (m,n)]

Returns

u
[rank-2 array('F') with bounds (u0,u1)]
s
[rank-1 array('F') with bounds (minmn)]
vt
[rank-2 array('F') with bounds (vt0,vt1)]
info
[int]

Other Parameters

overwrite_a
[input int, optional] Default: 0

compute_uv
[input int, optional] Default: 1

full_matrices
[input int, optional] Default: 1

lwork
[input int, optional] Default: max((compute_uv?2*minmn*minmn+MAX(m,n)+2*minmn:2*minmn+MAX(m,n)),1)
**scipy.linalg.lapack.zgesdd**

```python
scipy.linalg.lapack.zgesdd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran object>
```

Wrapper for zgesdd.

**Parameters**
- `a` [input rank-2 array('D') with bounds (m,n)]

**Returns**
- `u` [rank-2 array('D') with bounds (u0,u1)]
- `s` [rank-1 array('d') with bounds (minmn)]
- `vt` [rank-2 array('D') with bounds (vt0,vt1)]
- `info` [int]

**Other Parameters**
- `overwrite_a` [input int, optional] Default: 0
- `compute_uv` [input int, optional] Default: 1
- `full_matrices` [input int, optional] Default: 1
- `lwork` [input int, optional] Default: max((compute_uv?2*minmn*minmn+MAX(m,n)+2*minmn:2*minmn+MAX(m,n)),1)

**scipy.linalg.lapack.sgesdd_lwork**

```python
scipy.linalg.lapack.sgesdd_lwork(m, n[, compute_uv, full_matrices]) = <fortran object>
```

Wrapper for sgesdd_lwork.

**Parameters**
- `m` [input int]
- `n` [input int]

**Returns**
- `work` [float]
- `info` [int]

**Other Parameters**
- `compute_uv` [input int, optional] Default: 1
- `full_matrices` [input int, optional] Default: 1

**scipy.linalg.lapack.dgesdd_lwork**

```python
scipy.linalg.lapack.dgesdd_lwork(m, n[, compute_uv, full_matrices]) = <fortran object>
```

Wrapper for dgesdd_lwork.

**Parameters**
- `m` [input int]
- `n` [input int]

**Returns**
- `work` [float]
- `info` [int]
**Other Parameters**

- `compute_uv`  
  [input int, optional] Default: 1
- `full_matrices`  
  [input int, optional] Default: 1

`scipy.linalg.lapack.cgesdd_lwork`

```python
scipy.linalg.lapack.cgesdd_lwork(m, n[, compute_uv, full_matrices]) = <fortran object>
```

**Wrapper** for `cgesdd_lwork`.

**Parameters**

- `m`  
  [input int]
- `n`  
  [input int]

**Returns**

- `work`  
  [complex]
- `info`  
  [int]

**Other Parameters**

- `compute_uv`  
  [input int, optional] Default: 1
- `full_matrices`  
  [input int, optional] Default: 1

`scipy.linalg.lapack.zgesdd_lwork`

```python
scipy.linalg.lapack.zgesdd_lwork(m, n[, compute_uv, full_matrices]) = <fortran object>
```

**Wrapper** for `zgesdd_lwork`.

**Parameters**

- `m`  
  [input int]
- `n`  
  [input int]

**Returns**

- `work`  
  [complex]
- `info`  
  [int]

**Other Parameters**

- `compute_uv`  
  [input int, optional] Default: 1
- `full_matrices`  
  [input int, optional] Default: 1

`scipy.linalg.lapack.sgesv`

```python
scipy.linalg.lapack.sgesv(a, b[, overwrite_a, overwrite_b]) = <fortran object>
```

**Wrapper** for `sgesv`.

**Parameters**

- `a`  
  [input rank-2 array(‘f’) with bounds (n,n)]
- `b`  
  [input rank-2 array(‘f’) with bounds (n,nrhs)]

**Returns**

- `lu`  
  [rank-2 array(‘f’) with bounds (n,n) and a storage]
Other Parameters

overwrite_a
[input int, optional] Default: 0
overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.dgesv

scipy.linalg.lapack.dgesv(a, b[, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for dgesv.

Parameters

a       [input rank-2 array('d') with bounds (n,n)]
b       [input rank-2 array('d') with bounds (n, nrhs)]

Returns

lu      [rank-2 array('d') with bounds (n,n) and a storage]
piv     [rank-1 array('i') with bounds (n)]
x       [rank-2 array('d') with bounds (n, nrhs) and b storage]
info    [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0
overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.cgesv

scipy.linalg.lapack.cgesv(a, b[, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for cgesv.

Parameters

a       [input rank-2 array('F') with bounds (n,n)]
b       [input rank-2 array('F') with bounds (n, nrhs)]

Returns

lu      [rank-2 array('F') with bounds (n,n) and a storage]
piv     [rank-1 array('i') with bounds (n)]
x       [rank-2 array('F') with bounds (n, nrhs) and b storage]
info    [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0
overwrite_b
[input int, optional] Default: 0

3.3. API definition
scipy.linalg.lapack.zgesv

scipy.linalg.lapack.zgesv(a, b[, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for zgesv.

Parameters

- a [input rank-2 array('D') with bounds (n,n)]
- b [input rank-2 array('D') with bounds (n,nrhs)]

Returns

- lu [rank-2 array('D') with bounds (n,n) and a storage]
- piv [rank-1 array('i') with bounds (n)]
- x [rank-2 array('D') with bounds (n,nrhs) and b storage]
- info [int]

Other Parameters

- overwrite_a [input int, optional] Default: 0
- overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.sgesvd

scipy.linalg.lapack.sgesvd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran object>

Wrapper for sgesvd.

Parameters

- a [input rank-2 array('f') with bounds (m,n)]

Returns

- u [rank-2 array('f') with bounds (u0,u1)]
- s [rank-1 array('f') with bounds (minmn)]
- vt [rank-2 array('f') with bounds (vt0,vt1)]
- info [int]

Other Parameters

- overwrite_a [input int, optional] Default: 0
- compute_uv [input int, optional] Default: 1
- full_matrices [input int, optional] Default: 1
- lwork [input int, optional] Default: max(MAX(3*minmn+MAX(m,n),5*minmn),1)
scipy.linalg.lapack.dgesvd

scipy.linalg.lapack.dgesvd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran object>

Wrapper for dgesvd.

Parameters

- a [input rank-2 array('d') with bounds (m,n)]

Returns

- u [rank-2 array('d') with bounds (u0,u1)]
- s [rank-1 array('d') with bounds (minmn)]
- vt [rank-2 array('d') with bounds (vt0,vt1)]
- info [int]

Other Parameters

- overwrite_a [input int, optional] Default: 0
- compute_uv [input int, optional] Default: 1
- full_matrices [input int, optional] Default: 1
- lwork [input int, optional] Default: max(MAX(3*minmn+MAX(m,n),5*minmn),1)

scipy.linalg.lapack.cgesvd

scipy.linalg.lapack.cgesvd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran object>

Wrapper for cgesvd.

Parameters

- a [input rank-2 array('F') with bounds (m,n)]

Returns

- u [rank-2 array('F') with bounds (u0,u1)]
- s [rank-1 array('f') with bounds (minmn)]
- vt [rank-2 array('F') with bounds (vt0,vt1)]
- info [int]

Other Parameters

- overwrite_a [input int, optional] Default: 0
- compute_uv [input int, optional] Default: 1
- full_matrices [input int, optional] Default: 1
- lwork [input int, optional] Default: MAX(2*minmn+MAX(m,n),1)
scipy.linalg.lapack.zgesvd

`scipy.linalg.lapack.zgesvd(a[, compute_uv, full_matrices, lwork, overwrite_a]) = <fortran object>`

Wrapper for zgesvd.

**Parameters**
- `a` [input rank-2 array('D') with bounds (m,n)]

**Returns**
- `u` [rank-2 array('D') with bounds (u0,u1)]
- `s` [rank-1 array('d') with bounds (minmn)]
- `vt` [rank-2 array('D') with bounds (vt0,vt1)]
- `info` [int]

**Other Parameters**
- `overwrite_a` [input int, optional] Default: 0
- `compute_uv` [input int, optional] Default: 1
- `full_matrices` [input int, optional] Default: 1
- `lwork` [input int, optional] Default: MAX(2*minmn+MAX(m,n),1)

scipy.linalg.lapack.sgesvd_lwork

`scipy.linalg.lapack.sgesvd_lwork(m, n[, compute_uv, full_matrices]) = <fortran object>`

Wrapper for sgesvd_lwork.

**Parameters**
- `m` [input int]
- `n` [input int]

**Returns**
- `work` [float]
- `info` [int]

**Other Parameters**
- `compute_uv` [input int, optional] Default: 1
- `full_matrices` [input int, optional] Default: 1

scipy.linalg.lapack.dgesvd_lwork

`scipy.linalg.lapack.dgesvd_lwork(m, n[, compute_uv, full_matrices]) = <fortran object>`

Wrapper for dgesvd_lwork.

**Parameters**
- `m` [input int]
- `n` [input int]

**Returns**
- `work` [float]
- `info` [int]
**Other Parameters**

- `compute_uv`  
  [input int, optional] Default: 1

- `full_matrices`  
  [input int, optional] Default: 1

`scipy.linalg.lapack.cgesvd_lwork`

**scipy.linalg.lapack.cgesvd_lwork**

`scipy.linalg.lapack.cgesvd_lwork(m, n[, compute_uv, full_matrices]) = <fortran object>`

Wrapper for `cgesvd_lwork`.

**Parameters**

- `m`  
  [input int]

- `n`  
  [input int]

**Returns**

- `work`  
  [complex]

- `info`  
  [int]

**Other Parameters**

- `compute_uv`  
  [input int, optional] Default: 1

- `full_matrices`  
  [input int, optional] Default: 1

`scipy.linalg.lapack.zgesvd_lwork`

**scipy.linalg.lapack.zgesvd_lwork**

`scipy.linalg.lapack.zgesvd_lwork(m, n[, compute_uv, full_matrices]) = <fortran object>`

Wrapper for `zgesvd_lwork`.

**Parameters**

- `m`  
  [input int]

- `n`  
  [input int]

**Returns**

- `work`  
  [complex]

- `info`  
  [int]

**Other Parameters**

- `compute_uv`  
  [input int, optional] Default: 1

- `full_matrices`  
  [input int, optional] Default: 1

`scipy.linalg.lapack.sgesvx`

**scipy.linalg.lapack.sgesvx**

`scipy.linalg.lapack.sgesvx(a, b[, fact, trans, af, ipiv, equed, r, c, overwrite_a, overwrite_b]) = <fortran object>`

Wrapper for `sgesvx`.

**Parameters**

- `a`  
  [input rank-2 array('f') with bounds (n,n)]

- `b`  
  [input rank-2 array('f') with bounds (n,nrhs)]

**Returns**
as [rank-2 array('f') with bounds (n,n) and a storage]
lu [rank-2 array('f') with bounds (n,n) and af storage]
ipiv [rank-1 array('i') with bounds (n)]
equed [string(len=1)]
rs [rank-1 array('f') with bounds (n) and r storage]
cs [rank-1 array('f') with bounds (n) and c storage]
bs [rank-2 array('f') with bounds (n,nrhs) and b storage]
x [rank-2 array('f') with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array('f') with bounds (nrhs)]
berr [rank-1 array('f') with bounds (nrhs)]
info [int]

Other Parameters
fact [input string(len=1), optional] Default: ‘E’
trans [input string(len=1), optional] Default: ‘N’
overwrite_a [input int, optional] Default: 0
af [input rank-2 array('f') with bounds (n,n)]
ipiv [input rank-1 array('i') with bounds (n)]
equed [input string(len=1), optional] Default: ‘B’
r [input rank-1 array('f') with bounds (n)]
c [input rank-1 array('f') with bounds (n)]
overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.dgesvx
scipy.linalg.lapack.dgesvx(a, b[, fact, trans, af, ipiv, equed, r, c, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for dgesvx.

Parameters
a [input rank-2 array('d') with bounds (n,n)]
b [input rank-2 array('d') with bounds (n,nrhs)]

Returns
as [rank-2 array('d') with bounds (n,n) and a storage]
lu [rank-2 array('d') with bounds (n,n) and af storage]
ipiv [rank-1 array('i') with bounds (n)]
equed [string(len=1)]
rs [rank-1 array('d') with bounds (n) and r storage]
cs [rank-1 array('d') with bounds (n) and c storage]
bs [rank-2 array('d') with bounds (n,nrhs) and b storage]
x [rank-2 array('d') with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array('d') with bounds (nrhs)]
berr [rank-1 array('d') with bounds (nrhs)]
info [int]

Other Parameters
fact [input string(len=1), optional] Default: ‘E’
trans [input string(len=1), optional] Default: ‘N’
overwrite_a
  [input int, optional] Default: 0
af  [input rank-2 array('d') with bounds (n,n)]
ipiv  [input rank-1 array('i') with bounds (n)]
equed  [input string(len=1), optional] Default: ‘B’
r  [input rank-1 array('d') with bounds (n)]
c  [input rank-1 array('d') with bounds (n)]
overwrite_b
  [input int, optional] Default: 0

scipy.linalg.lapack.cgesvx

scipy.linalg.lapack.cgesvx(a, b[, fact, trans, af, ipiv, equed, r, c, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for cgesvx.

Parameters

a  [input rank-2 array('F') with bounds (n,n)]
b  [input rank-2 array('F') with bounds (n,nrhs)]

Returns

as  [rank-2 array('F') with bounds (n,n) and a storage]
lu  [rank-2 array('F') with bounds (n,n) and af storage]
ipiv  [rank-1 array('i') with bounds (n)]
equed  [string(len=1)]
rs  [rank-1 array('f') with bounds (n) and r storage]
cs  [rank-1 array('f') with bounds (n) and c storage]
bs  [rank-2 array('F') with bounds (n,nrhs) and b storage]
x  [rank-2 array('F') with bounds (n,nrhs)]
rcond  [float]
ferr  [rank-1 array('f') with bounds (nrhs)]
berr  [rank-1 array('f') with bounds (nrhs)]
info  [int]

Other Parameters

fact  [input string(len=1), optional] Default: ‘E’
trans  [input string(len=1), optional] Default: ‘N’
overwrite_a
  [input int, optional] Default: 0
af  [input rank-2 array('F') with bounds (n,n)]
ipiv  [input rank-1 array('i') with bounds (n)]
equed  [input string(len=1), optional] Default: ‘B’
r  [input rank-1 array('f') with bounds (n)]
c  [input rank-1 array('f') with bounds (n)]
overwrite_b
  [input int, optional] Default: 0
**scipy.linalg.lapack.zgesvx**

```python
scipy.linalg.lapack.zgesvx(a, b[, fact, trans, af, ipiv, equed, r, c, overwrite_a, overwrite_b]) = <fortran object>
```

Wrapper for zgesvx.

**Parameters**

- `a` [input rank-2 array('D') with bounds (n,n)]
- `b` [input rank-2 array('D') with bounds (n,nrhs)]

**Returns**

- `as` [rank-2 array('D') with bounds (n,n) and a storage]
- `lu` [rank-2 array('D') with bounds (n,n) and af storage]
- `ipiv` [rank-1 array('i') with bounds (n)]
- `equed` [string(len=1)]
- `rs` [rank-1 array('d') with bounds (n) and r storage]
- `cs` [rank-1 array('d') with bounds (n) and c storage]
- `bs` [rank-2 array('D') with bounds (n,nrhs) and b storage]
- `x` [rank-2 array('D') with bounds (n,nrhs)]
- `rcond` [float]
- `ferr` [rank-1 array('d') with bounds (nrhs)]
- `berr` [rank-1 array('d') with bounds (nrhs)]
- `info` [int]

**Other Parameters**

- `fact` [input string(len=1), optional] Default: 'E'
- `trans` [input string(len=1), optional] Default: 'N'
- `overwrite_a` [input int, optional] Default: 0
- `af` [input rank-2 array('D') with bounds (n,n)]
- `ipiv` [input rank-1 array('i') with bounds (n)]
- `equed` [input string(len=1), optional] Default: 'B'
- `r` [input rank-1 array('d') with bounds (n)]
- `c` [input rank-1 array('d') with bounds (n)]
- `overwrite_b` [input int, optional] Default: 0

**scipy.linalg.lapack.sgetrf**

```python
scipy.linalg.lapack.sgetrf(a[, overwrite_a]) = <fortran object>
```

Wrapper for sgetrf.

**Parameters**

- `a` [input rank-2 array('F') with bounds (m,n)]

**Returns**

- `lu` [rank-2 array('F') with bounds (m,n) and a storage]
- `piv` [rank-1 array('i') with bounds (MIN(m, n))]
- `info` [int]

**Other Parameters**

- `overwrite_a` [input int, optional] Default: 0
**scipy.linalg.lapack.dgetrf**

`scipy.linalg.lapack.dgetrf(a[, overwrite_a]) = <fortran object>`

Wrapper for dgetrf.

**Parameters**

- `a` [input rank-2 array('d') with bounds (m,n)]

**Returns**

- `lu` [rank-2 array('d') with bounds (m,n) and a storage]
- `piv` [rank-1 array('i') with bounds (MIN(m,n))]
- `info` [int]

**Other Parameters**

- `overwrite_a` [input int, optional] Default: 0

**scipy.linalg.lapack.cgetrf**

`scipy.linalg.lapack.cgetrf(a[, overwrite_a]) = <fortran object>`

Wrapper for cgetrf.

**Parameters**

- `a` [input rank-2 array('F') with bounds (m,n)]

**Returns**

- `lu` [rank-2 array('F') with bounds (m,n) and a storage]
- `piv` [rank-1 array('i') with bounds (MIN(m,n))]
- `info` [int]

**Other Parameters**

- `overwrite_a` [input int, optional] Default: 0

**scipy.linalg.lapack.zgetrf**

`scipy.linalg.lapack.zgetrf(a[, overwrite_a]) = <fortran object>`

Wrapper for zgetrf.

**Parameters**

- `a` [input rank-2 array('D') with bounds (m,n)]

**Returns**

- `lu` [rank-2 array('D') with bounds (m,n) and a storage]
- `piv` [rank-1 array('i') with bounds (MIN(m,n))]
- `info` [int]

**Other Parameters**

- `overwrite_a` [input int, optional] Default: 0

---

**3.3. API definition**

scipy.linalg.lapack.sgetc2

scipy.linalg.lapack.sgetc2(a[, overwrite_a]) = <fortran object>
Wrapper for sgetc2.

Parameters
   a
      [input rank-2 array('f') with bounds (n,n)]

Returns
   lu
      [rank-2 array('f') with bounds (n,n) and a storage]
   ipiv
      [rank-1 array('i') with bounds (n)]
   jpiv
      [rank-1 array('i') with bounds (n)]
   info
      [int]

Other Parameters
   overwrite_a
      [input int, optional] Default: 0

scipy.linalg.lapack.dgetc2

scipy.linalg.lapack.dgetc2(a[, overwrite_a]) = <fortran object>
Wrapper for dgetc2.

Parameters
   a
      [input rank-2 array('d') with bounds (n,n)]

Returns
   lu
      [rank-2 array('d') with bounds (n,n) and a storage]
   ipiv
      [rank-1 array('i') with bounds (n)]
   jpiv
      [rank-1 array('i') with bounds (n)]
   info
      [int]

Other Parameters
   overwrite_a
      [input int, optional] Default: 0

scipy.linalg.lapack.cgetc2

scipy.linalg.lapack.cgetc2(a[, overwrite_a]) = <fortran object>
Wrapper for cgetc2.

Parameters
   a
      [input rank-2 array('F') with bounds (n,n)]

Returns
   lu
      [rank-2 array('F') with bounds (n,n) and a storage]
   ipiv
      [rank-1 array('i') with bounds (n)]
   jpiv
      [rank-1 array('i') with bounds (n)]
   info
      [int]

Other Parameters
   overwrite_a
      [input int, optional] Default: 0
scipy.linalg.lapack.zgetc2

\[
\text{scipy.linalg.lapack.zgetc2}(a[, \text{overwrite}_a]) = \text{<fortran object>}
\]
Wrapper for zgetc2.

**Parameters**

- \(a\) [input rank-2 array('D') with bounds (n,n)]

**Returns**

- \(lu\) [rank-2 array('D') with bounds (n,n) and a storage]
- \(\text{ipiv}\) [rank-1 array('I') with bounds (n)]
- \(\text{j piv}\) [rank-1 array('I') with bounds (n)]
- \(\text{info}\) [int]

**Other Parameters**

- \(\text{overwrite}_a\) [input int, optional] Default: 0

scipy.linalg.lapack.sgetri

\[
\text{scipy.linalg.lapack.sgetri}(\text{lu}, \text{piv}[\text{, lwork, overwrite}_\text{lu}]) = \text{<fortran object>}
\]
Wrapper for sgetri.

**Parameters**

- \(\text{lu}\) [input rank-2 array('F') with bounds (n,n)]
- \(\text{piv}\) [input rank-1 array('I') with bounds (n)]

**Returns**

- \(\text{inv}_a\) [rank-2 array('F') with bounds (n,n) and lu storage]
- \(\text{info}\) [int]

**Other Parameters**

- \(\text{overwrite}_\text{lu}\) [input int, optional] Default: 0
- \(\text{lwork}\) [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.dgetri

\[
\text{scipy.linalg.lapack.dgetri}(\text{lu}, \text{piv}[\text{, lwork, overwrite}_\text{lu}]) = \text{<fortran object>}
\]
Wrapper for dgetri.

**Parameters**

- \(\text{lu}\) [input rank-2 array('D') with bounds (n,n)]
- \(\text{piv}\) [input rank-1 array('I') with bounds (n)]

**Returns**

- \(\text{inv}_a\) [rank-2 array('D') with bounds (n,n) and lu storage]
- \(\text{info}\) [int]

**Other Parameters**

- \(\text{overwrite}_\text{lu}\) [input int, optional] Default: 0
- \(\text{lwork}\) [input int, optional] Default: max(3*n,1)
scipy.linalg.lapack.cgetri

scipy.linalg.lapack.cgetri (lu, piv[, lwork, overwrite_lu]) = <fortran object>
Wrapper for cgetri.

Parameters

lu [input rank-2 array('F') with bounds (n,n)]
piv [input rank-1 array('i') with bounds (n)]

Returns

inv_a [rank-2 array('F') with bounds (n,n) and lu storage]
info [int]

Other Parameters

overwrite_lu [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.zgetri

scipy.linalg.lapack.zgetri (lu, piv[, lwork, overwrite_lu]) = <fortran object>
Wrapper for zgetri.

Parameters

lu [input rank-2 array('D') with bounds (n,n)]
piv [input rank-1 array('i') with bounds (n)]

Returns

inv_a [rank-2 array('D') with bounds (n,n) and lu storage]
info [int]

Other Parameters

overwrite_lu [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.sgetri_lwork

scipy.linalg.lapack.sgetri_lwork (n) = <fortran object>
Wrapper for sgetri_lwork.

Parameters

n [input int]

Returns

work [float]
info [int]
scipy.linalg.lapack.dgetri_lwork

scipy.linalg.lapack.dgetri_lwork(n) = <fortran object>
Wrapper for dgetri_lwork.

Parameters
n [input int]

Returns
work [float]
info [int]

scipy.linalg.lapack.cgetri_lwork

scipy.linalg.lapack.cgetri_lwork(n) = <fortran object>
Wrapper for cgetri_lwork.

Parameters
n [input int]

Returns
work [complex]
info [int]

scipy.linalg.lapack.zgetri_lwork

scipy.linalg.lapack.zgetri_lwork(n) = <fortran object>
Wrapper for zgetri_lwork.

Parameters
n [input int]

Returns
work [complex]
info [int]

scipy.linalg.lapack.sgetrs

scipy.linalg.lapack.sgetrs(lu, piv, b[, trans, overwrite_b]) = <fortran object>
Wrapper for sgetrs.

Parameters
lu [input rank-2 array('f') with bounds (n,n)]
piv [input rank-1 array('i') with bounds (n)]
b [input rank-2 array('f') with bounds (n,nrhs)]

Returns
x [rank-2 array('f') with bounds (n,nrhs) and b storage]
info [int]

Other Parameters
overwrite_b [input int, optional] Default: 0
trans [input int, optional] Default: 0

scipy.linalg.lapack.dgetrs

Wrapper for dgetrs.

Parameters

- lu [input rank-2 array('d') with bounds (n,n)]
- piv [input rank-1 array('i') with bounds (n)]
- b [input rank-2 array('d') with bounds (n,nrhs)]

Returns

- x [rank-2 array('d') with bounds (n,nrhs) and b storage]
- info [int]

Other Parameters

- overwrite_b [input int, optional] Default: 0
- trans [input int, optional] Default: 0

scipy.linalg.lapack.cgetrs

Wrapper for cgetrs.

Parameters

- lu [input rank-2 array('F') with bounds (n,n)]
- piv [input rank-1 array('i') with bounds (n)]
- b [input rank-2 array('F') with bounds (n,nrhs)]

Returns

- x [rank-2 array('F') with bounds (n,nrhs) and b storage]
- info [int]

Other Parameters

- overwrite_b [input int, optional] Default: 0
- trans [input int, optional] Default: 0

scipy.linalg.lapack.zgetrs

Wrapper for zgetrs.

Parameters

- lu [input rank-2 array('D') with bounds (n,n)]
- piv [input rank-1 array('i') with bounds (n)]
- b [input rank-2 array('D') with bounds (n,nrhs)]

Returns

- x [rank-2 array('D') with bounds (n,nrhs) and b storage]
- info [int]

Other Parameters

- overwrite_b [input int, optional] Default: 0
trans [input int, optional] Default: 0

**scipy.linalg.lapack.sgesc2**

`scipy.linalg.lapack.sgesc2(lu, rhs, ipiv[, overwrite_rhs]) = <fortran object>`

Wrapper for `sgesc2`.

**Parameters**

- `lu` [input rank-2 array('f') with bounds (n,n)]
- `rhs` [input rank-1 array('f') with bounds (n)]
- `ipiv` [input rank-1 array('i') with bounds (n)]
- `jpiv` [input rank-1 array('i') with bounds (n)]

**Returns**

- `x` [rank-1 array('f') with bounds (n) and rhs storage]
- `scale` [float]

**Other Parameters**

- `overwrite_rhs` [input int, optional] Default: 0

**scipy.linalg.lapack.dgesc2**

`scipy.linalg.lapack.dgesc2(lu, rhs, ipiv[, overwrite_rhs]) = <fortran object>`

Wrapper for `dgesc2`.

**Parameters**

- `lu` [input rank-2 array('d') with bounds (n,n)]
- `rhs` [input rank-1 array('d') with bounds (n)]
- `ipiv` [input rank-1 array('i') with bounds (n)]
- `jpiv` [input rank-1 array('i') with bounds (n)]

**Returns**

- `x` [rank-1 array('d') with bounds (n) and rhs storage]
- `scale` [float]

**Other Parameters**

- `overwrite_rhs` [input int, optional] Default: 0

**scipy.linalg.lapack.cgesc2**

`scipy.linalg.lapack.cgesc2(lu, rhs, ipiv[, overwrite_rhs]) = <fortran object>`

Wrapper for `cgesc2`.

**Parameters**

- `lu` [input rank-2 array('F') with bounds (n,n)]
- `rhs` [input rank-1 array('F') with bounds (n)]
- `ipiv` [input rank-1 array('i') with bounds (n)]
- `jpiv` [input rank-1 array('i') with bounds (n)]

**Returns**

- `x` [rank-1 array('F') with bounds (n) and rhs storage]
- `scale` [float]

**Other Parameters**
overwrite_rhs
   [input int, optional] Default: 0

scipy.linalg.lapack.zgesc2

scipy.linalg.lapack.zgesc2 (lu, rhs, ipiv[, overwrite_rhs]) = <fortran object>
Wrapper for zgesc2.

Parameters
   lu    [input rank-2 array('D') with bounds (n,n)]
   rhs   [input rank-1 array('D') with bounds (n)]
   ipiv  [input rank-1 array('i') with bounds (n)]
   jpiv  [input rank-1 array('i') with bounds (n)]

Returns
   x    [rank-1 array('D') with bounds (n) and rhs storage]
   scale [float]

Other Parameters
   overwrite_rhs
      [input int, optional] Default: 0

scipy.linalg.lapack.sgges

scipy.linalg.lapack.sgges (sselect, a[, jobvsl, jobvsr, sort_t, ldvsl, ldvsr, lwork, sselect_extra_args, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for sgges.

Parameters
   sselect    [call-back function]
   a    [input rank-2 array('f') with bounds (lda,n)]
   b    [input rank-2 array('f') with bounds (ldb,n)]

Returns
   a    [rank-2 array('f') with bounds (lda,n)]
   b    [rank-2 array('f') with bounds (ldb,n)]
   sdim  [int]
   alphar [rank-1 array('f') with bounds (n)]
   alphai [rank-1 array('f') with bounds (n)]
   beta  [rank-1 array('f') with bounds (n)]
   vsl   [rank-2 array('f') with bounds (ldvsl,n)]
   vsr   [rank-2 array('f') with bounds (ldvsr,n)]
   work  [rank-1 array('f') with bounds (MAX(lwork, 1))]
   info  [int]

Other Parameters
   jobvsl   [input int, optional] Default: 1
   jobvsr   [input int, optional] Default: 1
   sort_t   [input int, optional] Default: 0
   sselect_extra_args
      [input tuple, optional] Default: ()
   overwrite_a
      [input int, optional] Default: 0
   overwrite_b
      [input int, optional] Default: 0

ldvsl [input int, optional] Default: ((jobvsl==1)?n:1)
ldvsr [input int, optional] Default: ((jobvsr==1)?n:1)
lwork [input int, optional] Default: max(8*n+16,1)

Notes

Call-back functions:

```python
def sselect(alphar, alphai, beta):
 return sselect
```

Required arguments:
- alphar : input float
- alphai : input float
- beta : input float

Return objects:
- sselect : int

scipy.linalg.lapack.dgges

scipy.linalg.lapack.dgges (dselect, a[, , jobvsl, jobvsr, sort_t, ldvsl, ldvsr, lwork, dselect_extra_args,
overwrite_a, overwrite_b]) = <fortran object>

Wrapper for dgges.

Parameters

- dselect [call-back function]
- a [input rank-2 array('d') with bounds (lda,n)]
- b [input rank-2 array('d') with bounds (ldb,n)]

Returns

- a [rank-2 array('d') with bounds (lda,n)]
- b [rank-2 array('d') with bounds (ldb,n)]
- sdim [int]
- alphar [rank-1 array('d') with bounds (n)]
- alphai [rank-1 array('d') with bounds (n)]
- beta [rank-1 array('d') with bounds (n)]
- vsl [rank-2 array('d') with bounds (ldvsl,n)]
- vsr [rank-2 array('d') with bounds (ldvsr,n)]
- work [rank-1 array('d') with bounds (MAX(lwork, 1))] =
- info [int]

Other Parameters

- jobvsl [input int, optional] Default: 1
- jobvsr [input int, optional] Default: 1
- sort_t [input int, optional] Default: 0
- dselect_extra_args [input tuple, optional] Default: ()
- overwrite_a [input int, optional] Default: 0
- overwrite_b [input int, optional] Default: 0
- ldvsl [input int, optional] Default: ((jobvsl==1)?n:1)
- ldvsr [input int, optional] Default: ((jobvsr==1)?n:1)
- lwork [input int, optional] Default: max(8*n+16,1)

3.3. API definition 925
Notes

Call-back functions:

```python
def dselect(alphar, alphai, beta):
 return dselect
```

Required arguments:
- `alphar` : input float
- `alphai` : input float
- `beta` : input float

Return objects:
- `dselect` : int

`scipy.linalg.lapack.cgges`

`scipy.linalg.lapack.cgges(cselect, a, b, jobvsl, jobvsr, sort_t, ldvsl, ldvsr, lwork, cselect_extra_args, overwrite_a, overwrite_b) = <fortran object>`

Wrapper for cgges.

**Parameters**
- `cselect` [call-back function]
- `a` [input rank-2 array('F') with bounds (lda,n)]
- `b` [input rank-2 array('F') with bounds (ldb,n)]

**Returns**
- `a` [rank-2 array('F') with bounds (lda,n)]
- `b` [rank-2 array('F') with bounds (ldb,n)]
- `sdim` [int]
- `alpha` [rank-1 array('F') with bounds (n)]
- `beta` [rank-1 array('F') with bounds (n)]
- `vsl` [rank-2 array('F') with bounds (ldvsl,n)]
- `vsr` [rank-2 array('F') with bounds (ldvsr,n)]
- `work` [rank-1 array('F') with bounds (MAX(lwork, 1))]  
- `info` [int]

**Other Parameters**
- `jobvsl` [input int, optional] Default: 1
- `jobvsr` [input int, optional] Default: 1
- `sort_t` [input int, optional] Default: 0
- `cselect_extra_args` [input tuple, optional] Default: ()
- `overwrite_a` [input int, optional] Default: 0
- `overwrite_b` [input int, optional] Default: 0
- `ldvsl` [input int, optional] Default: ((jobvsl==1)?n:1)
- `ldvsr` [input int, optional] Default: ((jobvsr==1)?n:1)
- `lwork` [input int, optional] Default: max(2*n,1)`
Notes

Call-back functions:

```python
def cselect(alpha, beta):
 return cselect
```

Required arguments:
- `alpha`: input complex
- `beta`: input complex

Return objects:
- `cselect`: int

**scipy.linalg.lapack.zgges**

Wrapper for `zgges`.

**Parameters**
- `zselect` [call-back function]
- `a` [input rank-2 array (D') with bounds (lda,n)]
- `b` [input rank-2 array (D') with bounds (ldb,n)]

**Returns**
- `a` [rank-2 array (D') with bounds (lda,n)]
- `b` [rank-2 array (D') with bounds (ldb,n)]
- `sdim` [int]
- `alpha` [rank-1 array (D') with bounds (n)]
- `beta` [rank-1 array (D') with bounds (n)]
- `vsl` [rank-2 array (D') with bounds (ldvsl,n)]
- `vsr` [rank-2 array (D') with bounds (ldvsr,n)]
- `work` [rank-1 array (D') with bounds (MAX(lwork, 1))]  
- `info` [int]

**Other Parameters**
- `jobvsl` [input int, optional] Default: 1
- `jobvsr` [input int, optional] Default: 1
- `sort_t` [input int, optional] Default: 0
- `zselect_extra_args` [input tuple, optional] Default: ()
- `overwrite_a` [input int, optional] Default: 0
- `overwrite_b` [input int, optional] Default: 0
- `ldvsl` [input int, optional] Default: ((jobvsl==1)?n:1)
- `ldvsr` [input int, optional] Default: ((jobvsr==1)?n:1)
- `lwork` [input int, optional] Default: max(2*n,1)
Notes

Call-back functions:

```python
def zselect(alpha, beta):
 return zselect
```

**Required arguments:**
- `alpha`: input complex
- `beta`: input complex

**Return objects:**
- `zselect`: int

### scipy.linalg.lapack.sgev

```python
scipy.linalg.lapack.sgev(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =
<fortran object>
```

Wrapper for `sgev`.

**Parameters**
- `a` [input rank-2 array('f') with bounds (n,n)]
- `b` [input rank-2 array('f') with bounds (n,n)]

**Returns**
- `alphar` [rank-1 array('f') with bounds (n)]
- `alphai` [rank-1 array('f') with bounds (n)]
- `beta` [rank-1 array('f') with bounds (n)]
- `vl` [rank-2 array('f') with bounds (ldvl,n)]
- `vr` [rank-2 array('f') with bounds (ldvr,n)]
- `work` [rank-1 array('f') with bounds (MAX(lwork, 1))] (default: `lwork`)
- `info` [int]

**Other Parameters**
- `compute_vl` [input int, optional] Default: 1
- `compute_vr` [input int, optional] Default: 1
- `overwrite_a` [input int, optional] Default: 0
- `overwrite_b` [input int, optional] Default: 0
- `lwork` [input int, optional] Default: max(8*n,1)

### scipy.linalg.lapack.dgev

```python
scipy.linalg.lapack.dgev(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =
<fortran object>
```

Wrapper for `dgev`.

**Parameters**
- `a` [input rank-2 array('d') with bounds (n,n)]
- `b` [input rank-2 array('d') with bounds (n,n)]

**Returns**
- `alphar` [rank-1 array('d') with bounds (n)]
- `alphai` [rank-1 array('d') with bounds (n)]
Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork
[input int, optional] Default: max(2*n,1)

scipy.linalg.lapack.cggev

scipy.linalg.lapack.cggev(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for cggev.

Parameters

a
[input rank-2 array('F') with bounds (n,n)]

b
[input rank-2 array('F') with bounds (n,n)]

Returns

alpha
[rank-1 array('F') with bounds (n)]

beta
[rank-1 array('F') with bounds (n)]

vl
[rank-2 array('F') with bounds (ldvl,n)]

vr
[rank-2 array('F') with bounds (ldvr,n)]

work
[rank-1 array('F') with bounds (MAX(lwork, 1))]

info
[int]

Other Parameters

compute_vl
[input int, optional] Default: 1

compute_vr
[input int, optional] Default: 1

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork
[input int, optional] Default: max(2*n,1)
scipy.linalg.lapack.zggev

scipy.linalg.lapack.zggev(a, b[, compute_vl, compute_vr, lwork, overwrite_a, overwrite_b]) =

<fortran object>

Wrapper for zggev.

Parameters

- **a** [input rank-2 array('D') with bounds (n,n)]
- **b** [input rank-2 array('D') with bounds (n,n)]

Returns

- **alpha** [rank-1 array('D') with bounds (n)]
- **beta** [rank-1 array('D') with bounds (n)]
- **vl** [rank-2 array('D') with bounds (ldvl,n)]
- **vr** [rank-2 array('D') with bounds (ldvr,n)]
- **work** [rank-1 array('D') with bounds (MAX(lwork, 1))]  
- **info** [int]

Other Parameters

- **compute_vl** [input int, optional] Default: 1
- **compute_vr** [input int, optional] Default: 1
- **overwrite_a** [input int, optional] Default: 0
- **overwrite_b** [input int, optional] Default: 0
- **lwork** [input int, optional] Default: max(2*n,1)

scipy.linalg.lapack.sgglse

scipy.linalg.lapack.sgglse(a, b, c, d[, lwork, overwrite_a, overwrite_b, overwrite_c, overwrite_d]) =

<fortran object>

Wrapper for sgglse.

Parameters

- **a** [input rank-2 array('f') with bounds (m,n)]
- **b** [input rank-2 array('f') with bounds (p,n)]
- **c** [input rank-1 array('f') with bounds (m)]
- **d** [input rank-1 array('f') with bounds (p)]

Returns

- **t** [rank-2 array('f') with bounds (m,n) and a storage]
- **r** [rank-2 array('f') with bounds (p,n) and b storage]
- **res** [rank-1 array('f') with bounds (m) and c storage]
- **x** [rank-1 array('f') with bounds (n)]
- **info** [int]

Other Parameters

- **overwrite_a** [input int, optional] Default: 0
- **overwrite_b** [input int, optional] Default: 0
- **overwrite_c** [input int, optional] Default: 0
overwrite_d
   [input int, optional] Default: 0
lwork   [input int, optional] Default: max(m+n+p,1)

scipy.linalg.lapack.dgglse

scipy.linalg.lapack.dgglse(a, b, c, d[, lwork, overwrite_a, overwrite_b, overwrite_c, overwrite_d]) =
   <fortran object>

Wrapper for dgglse.

Parameters
   a   [input rank-2 array('d') with bounds (m,n)]
   b   [input rank-2 array('d') with bounds (p,n)]
   c   [input rank-1 array('d') with bounds (m)]
   d   [input rank-1 array('d') with bounds (p)]

Returns
   t   [rank-2 array('d') with bounds (m,n) and a storage]
   r   [rank-2 array('d') with bounds (p,n) and b storage]
   res [rank-1 array('d') with bounds (m) and c storage]
   x   [rank-1 array('d') with bounds (n)]
   info [int]

Other Parameters
   overwrite_a
      [input int, optional] Default: 0
   overwrite_b
      [input int, optional] Default: 0
   overwrite_c
      [input int, optional] Default: 0
   overwrite_d
      [input int, optional] Default: 0
   lwork   [input int, optional] Default: max(m+n+p,1)

scipy.linalg.lapack.cgglse

scipy.linalg.lapack.cgglse(a, b, c, d[, lwork, overwrite_a, overwrite_b, overwrite_c, overwrite_d]) =
   <fortran object>

Wrapper for cgglse.

Parameters
   a   [input rank-2 array('F') with bounds (m,n)]
   b   [input rank-2 array('F') with bounds (p,n)]
   c   [input rank-1 array('F') with bounds (m)]
   d   [input rank-1 array('F') with bounds (p)]

Returns
   t   [rank-2 array('F') with bounds (m,n) and a storage]
   r   [rank-2 array('F') with bounds (p,n) and b storage]
   res [rank-1 array('F') with bounds (m) and c storage]
   x   [rank-1 array('F') with bounds (n)]
   info [int]

Other Parameters

 overwrite_a
   [input int, optional] Default: 0
 overwrite_b
   [input int, optional] Default: 0
 overwrite_c
   [input int, optional] Default: 0
 overwrite_d
   [input int, optional] Default: 0
 lwork
   [input int, optional] Default: max(m+n+p,1)

scipy.linalg.lapack.zgglse

scipy.linalg.lapack.zgglse(a, b, c, d[, lwork, overwrite_a, overwrite_b, overwrite_c, overwrite_d]) =
<fortran object>

Wrapper for zgglse.

Parameters
 a
   [input rank-2 array('D') with bounds (m,n)]
 b
   [input rank-2 array('D') with bounds (p,n)]
 c
   [input rank-1 array('D') with bounds (m)]
 d
   [input rank-1 array('D') with bounds (p)]

Returns
 t
   [rank-2 array('D') with bounds (m,n) and a storage]
 r
   [rank-2 array('D') with bounds (p,n) and b storage]
 res
   [rank-1 array('D') with bounds (m) and c storage]
 x
   [rank-1 array('D') with bounds (n)]
 info
   [int]

Other Parameters
 overwrite_a
   [input int, optional] Default: 0
 overwrite_b
   [input int, optional] Default: 0
 overwrite_c
   [input int, optional] Default: 0
 overwrite_d
   [input int, optional] Default: 0
 lwork
   [input int, optional] Default: max(m+n+p,1)

scipy.linalg.lapack.sgglse_lwork

scipy.linalg.lapack.sgglse_lwork(m, n, p) = <fortran object>

Wrapper for sgglse_lwork.

Parameters
 m
   [input int]
 n
   [input int]
 p
   [input int]

Returns
 work
   [float]
 info
   [int]
scipy.linalg.lapack.dgglse_lwork

scipy.linalg.lapack.dgglse_lwork(m, n, p) = <fortran object>
Wrapper for dgglse_lwork.

Parameters
m [input int]
n [input int]
p [input int]

Returns
work [float]
info [int]

scipy.linalg.lapack.cgglse_lwork

scipy.linalg.lapack.cgglse_lwork(m, n, p) = <fortran object>
Wrapper for cgglse_lwork.

Parameters
m [input int]
n [input int]
p [input int]

Returns
work [complex]
info [int]

scipy.linalg.lapack.zgglse_lwork

scipy.linalg.lapack.zgglse_lwork(m, n, p) = <fortran object>
Wrapper for zgglse_lwork.

Parameters
m [input int]
n [input int]
p [input int]

Returns
work [complex]
info [int]

scipy.linalg.lapack.sgtsv

scipy.linalg.lapack.sgtsv(dl, d, du[, overwrite_dl, overwrite_d, overwrite_du, overwrite_b]) = <fortran object>
Wrapper for sgtsv.

Parameters
dl [input rank-1 array('f') with bounds (-1 + n)]
d [input rank-1 array('f') with bounds (n)]
du [input rank-1 array('f') with bounds (-1 + n)]
b [input rank-2 array('f') with bounds (n,nrhs)]

Returns
du2 [rank-1 array('f') with bounds (-1 + n) and dl storage]

```python
d [rank-1 array('f') with bounds (n)]
du [rank-1 array('f') with bounds (-1 + n)]
x [rank-2 array('f') with bounds (n,nrhs) and b storage]
info [int]

Other Parameters
overwrite_dl [input int, optional] Default: 0
overwrite_d [input int, optional] Default: 0
overwrite_du [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.dgtsv
scipy.linalg.lapack.dgtsv (dl, d, du, b[, overwrite_dl, overwrite_d, overwrite_du, overwrite_b]) =
<fortran object>
Wrapper for dgtsv.

Parameters
dl [input rank-1 array('d') with bounds (-1 + n)]
d [input rank-1 array('d') with bounds (n)]
du [input rank-1 array('d') with bounds (-1 + n)]
b [input rank-2 array('d') with bounds (n,nrhs)]

Returns
du2 [rank-1 array('d') with bounds (-1 + n) and dl storage]
d [rank-1 array('d') with bounds (n)]
du [rank-1 array('d') with bounds (-1 + n)]
x [rank-2 array('d') with bounds (n,nrhs) and b storage]
info [int]

Other Parameters
overwrite_dl [input int, optional] Default: 0
overwrite_d [input int, optional] Default: 0
overwrite_du [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.cgtsv
scipy.linalg.lapack.cgtsv (dl, d, du, b[, overwrite_dl, overwrite_d, overwrite_du, overwrite_b]) =
<fortran object>
Wrapper for cgtsv.

Parameters
dl [input rank-1 array('F') with bounds (-1 + n)]
d [input rank-1 array('F') with bounds (n)]
du [input rank-1 array('F') with bounds (-1 + n)]
b [input rank-2 array('F') with bounds (n,nrhs)]
```

934 Chapter 3. SciPy API
Returns

du2 [rank-1 array('F') with bounds (-1 + n) and dl storage]
d [rank-1 array('F') with bounds (n)]
du [rank-1 array('F') with bounds (-1 + n)]
x [rank-2 array('F') with bounds (n, nrhs) and b storage]
info [int]

Other Parameters

overwrite_dl
[ input int, optional] Default: 0
overwrite_d
[ input int, optional] Default: 0
overwrite_du
[ input int, optional] Default: 0
overwrite_b
[ input int, optional] Default: 0

scipy.linalg.lapack.zgtsv

scipy.linalg.lapack.zgtsv(dl, d, du, b[, overwrite_dl, overwrite_d, overwrite_du, overwrite_b]) =
<fortran object>

Wrapper for zgtsv.

Parameters

dl [input rank-1 array('D') with bounds (-1 + n)]
d [input rank-1 array('D') with bounds (n)]
du [input rank-1 array('D') with bounds (-1 + n)]
b [input rank-2 array('D') with bounds (n, nrhs)]

Returns

du2 [rank-1 array('D') with bounds (-1 + n) and dl storage]
d [rank-1 array('D') with bounds (n)]
du [rank-1 array('D') with bounds (-1 + n)]
x [rank-2 array('D') with bounds (n, nrhs) and b storage]
info [int]

Other Parameters

overwrite_dl
[ input int, optional] Default: 0
overwrite_d
[ input int, optional] Default: 0
overwrite_du
[ input int, optional] Default: 0
overwrite_b
[ input int, optional] Default: 0
scipy.linalg.lapack.sgtsvx

scipy.linalg.lapack.sgtsvx(dl, d, du, b[, fact, trans, dlf, df, duf, du2, ipiv]) = <fortran object>

Wrapper for sgtsvx.

Parameters

dl [input rank-1 array('f') with bounds (MAX(0, -1 + n))]
d [input rank-1 array('f') with bounds (n)]
du [input rank-1 array('f') with bounds (MAX(0, -1 + n))]
b [input rank-2 array('f') with bounds (ldb,nrhs)]

Returns
dl [rank-1 array('f') with bounds (MAX(0, -1 + n))]
df [rank-1 array('f') with bounds (n)]
duf [rank-1 array('f') with bounds (MAX(0, -1 + n))]
du2 [rank-1 array('f') with bounds (MAX(0, -2 + n))]
ipiv [rank-1 array('i') with bounds (n)]
x [rank-2 array('f') with bounds (ldx,nrhs)]
rcond [float]
ferr [rank-1 array('f') with bounds (nrhs)]
berr [rank-1 array('f') with bounds (nrhs)]
info [int]

Other Parameters

fact [input string(len=1), optional] Default: 'N'
trans [input string(len=1), optional] Default: 'N'
dlf [input rank-1 array('f') with bounds (MAX(0, -1 + n))]
df [input rank-1 array('f') with bounds (n)]
duf [input rank-1 array('f') with bounds (MAX(0, -1 + n))]
du2 [input rank-1 array('f') with bounds (MAX(0, -2 + n))]

scipy.linalg.lapack.dgtsvx

scipy.linalg.lapack.dgtsvx(dl, d, du, b[, fact, trans, dlf, df, duf, du2, ipiv]) = <fortran object>

Wrapper for dgtsvx.

Parameters

dl [input rank-1 array('d') with bounds (MAX(0, -1 + n))]
d [input rank-1 array('d') with bounds (n)]
du [input rank-1 array('d') with bounds (MAX(0, -1 + n))]
b [input rank-2 array('d') with bounds (ldb,nrhs)]

Returns
dl [rank-1 array('d') with bounds (MAX(0, -1 + n))]
df [rank-1 array('d') with bounds (n)]
duf [rank-1 array('d') with bounds (MAX(0, -1 + n))]
du2 [rank-1 array('d') with bounds (MAX(0, -2 + n))]
ipiv [rank-1 array('i') with bounds (n)]
x [rank-2 array('d') with bounds (ldx,nrhs)]
rcond [float]
ferr [rank-1 array('d') with bounds (nrhs)]
berr [rank-1 array('d') with bounds (nrhs)]
info [int]
Other Parameters

- **fact**: [input string(len=1), optional] Default: 'N'
- **trans**: [input string(len=1), optional] Default: 'N'
- **dlf**: [input rank-1 array('d') with bounds (MAX(0, -1 + n))]
- **df**: [input rank-1 array('d') with bounds (n)]
- **duf**: [input rank-1 array('d') with bounds (MAX(0, -1 + n))]
- **du2**: [input rank-1 array('d') with bounds (MAX(0, -2 + n))]
- **ipiv**: [input rank-1 array('i') with bounds (n)]

**scipy.linalg.lapack.cgtsvx**

```python
scipy.linalg.lapack.cgtsvx(dl, d, du, b[, fact, trans, dlf, df, duf, du2, ipiv]) = <fortran object>
```

Wrapper for cgtsvx.

Parameters

- **dl**: [input rank-1 array('F') with bounds (MAX(0, -1 + n))]
- **d**: [input rank-1 array('F') with bounds (n)]
- **du**: [input rank-1 array('F') with bounds (MAX(0, -1 + n))]
- **b**: [input rank-2 array('F') with bounds (ldb,nrhs)]

Returns

- **dlf**: [rank-1 array('F') with bounds (MAX(0, -1 + n))]
- **df**: [rank-1 array('F') with bounds (n)]
- **duf**: [rank-1 array('F') with bounds (MAX(0, -1 + n))]
- **du2**: [rank-1 array('F') with bounds (MAX(0, -2 + n))]
- **ipiv**: [rank-1 array('i') with bounds (n)]
- **x**: [rank-2 array('F') with bounds (ldx,nrhs)]
- **rcond**: [float]
- **ferr**: [rank-1 array('f') with bounds (nrhs)]
- **berr**: [rank-1 array('f') with bounds (nrhs)]
- **info**: [int]

Other Parameters

- **fact**: [input string(len=1), optional] Default: 'N'
- **trans**: [input string(len=1), optional] Default: 'N'
- **dlf**: [input rank-1 array('F') with bounds (MAX(0, -1 + n))]
- **df**: [input rank-1 array('F') with bounds (n)]
- **duf**: [input rank-1 array('F') with bounds (MAX(0, -1 + n))]
- **du2**: [input rank-1 array('F') with bounds (MAX(0, -2 + n))]
- **ipiv**: [input rank-1 array('i') with bounds (n)]

**scipy.linalg.lapack.zgtsvx**

```python
scipy.linalg.lapack.zgtsvx(dl, d, du, b[, fact, trans, dlf, df, duf, du2, ipiv]) = <fortran object>
```

Wrapper for zgtsvx.

Parameters

- **dl**: [input rank-1 array('D') with bounds (MAX(0, -1 + n))]
- **d**: [input rank-1 array('D') with bounds (n)]
- **du**: [input rank-1 array('D') with bounds (MAX(0, -1 + n))]
- **b**: [input rank-2 array('D') with bounds (ldb,nrhs)]

Returns

- **dlf**: [rank-1 array('D') with bounds (MAX(0, -1 + n))]

3.3. API definition

```
scipy.linalg.lapack.chbevd
scipy.linalg.lapack.chbevd(ab[, compute_v, lower, ldab, lrwork, liwork, overwrite_ab]) = <fortran object>
```

Wrapper for chbevd.

**Parameters**

- `ab` [input rank-2 array('F') with bounds (ldab,n)]

**Returns**

- `w` [rank-1 array('f') with bounds (n)]
- `z` [rank-2 array('F') with bounds (ldz,ldz)]
- `info` [int]

**Other Parameters**

- `overwrite_ab` [input int, optional] Default: 1
- `compute_v` [input int, optional] Default: 1
- `lower` [input int, optional] Default: 0
- `ldab` [input int, optional] Default: shape(ab,0)
- `lrwork` [input int, optional] Default: (compute_v?1+5*n+2*n*n:n)
- `liwork` [input int, optional] Default: (compute_v?3+5*n:1)

```
scipy.linalg.lapack.zhbevd
scipy.linalg.lapack.zhbevd(ab[, compute_v, lower, ldab, lrwork, liwork, overwrite_ab]) = <fortran object>
```

Wrapper for zhbevd.

**Parameters**

- `ab` [input rank-2 array('D') with bounds (ldab,n)]

**Returns**

- `w` [rank-1 array('d') with bounds (n)]
- `z` [rank-2 array('D') with bounds (ldz,ldz)]

---

**df** [rank-1 array('D') with bounds (n)]

**duf** [rank-1 array('D') with bounds (MAX(0, -1 + n))]

**du2** [rank-1 array('D') with bounds (MAX(0, -2 + n))]

**ipiv** [rank-1 array('i') with bounds (n)]

**x** [rank-2 array('D') with bounds (ldx,nrhs)]

**rcond** [float]

**ferr** [rank-1 array('d') with bounds (nrhs)]

**berr** [rank-1 array('d') with bounds (nrhs)]

**info** [int]

**Other Parameters**

- `fact` [input string(len=1), optional] Default: 'N'
- `trans` [input string(len=1), optional] Default: 'N'
- `dlf` [input rank-1 array('D') with bounds (MAX(0, -1 + n))]
- `df` [input rank-1 array('D') with bounds (n)]
- `duf` [input rank-1 array('D') with bounds (MAX(0, -1 + n))]
- `du2` [input rank-1 array('D') with bounds (MAX(0, -2 + n))]
- `ipiv` [input rank-1 array('i') with bounds (n)]
info [int]

Other Parameters

overwrite_ab
  [input int, optional] Default: 1

compute_v
  [input int, optional] Default: 1

lower
  [input int, optional] Default: 0

ldab
  [input int, optional] Default: shape(ab,0)

lrwork
  [input int, optional] Default: (compute_v?1+5*n+2*n*n:n)

liwork
  [input int, optional] Default: (compute_v?3+5*n:1)

scipy.linalg.lapack.chbevx

scipy.linalg.lapack.chbevx(ab, vl, vu, il, iu[, ldab, compute_v, range, lower, abstol, mmax, overwrite_ab]) = <fortran object>

Wrapper for chbevx.

Parameters

ab
  [input rank-2 array(‘F’) with bounds (ldab,n)]

vl
  [input float]

vu
  [input float]

il
  [input int]

iu
  [input int]

Returns

w
  [rank-1 array(‘f’) with bounds (n)]

z
  [rank-2 array(‘F’) with bounds (ldz,mmax)]

m
  [int]

ifail
  [rank-1 array(‘i’) with bounds ((compute_v?n:1))]

info
  [int]

Other Parameters

overwrite_ab
  [input int, optional] Default: 1

ldab
  [input int, optional] Default: shape(ab,0)

compute_v
  [input int, optional] Default: 1

range
  [input int, optional] Default: 0

lower
  [input int, optional] Default: 0

abstol
  [input float, optional] Default: 0.0

mmax
  [input int, optional] Default: (compute_v?(range==2?(iu-il+1):n):1)

scipy.linalg.lapack.zhbevx

scipy.linalg.lapack.zhbevx(ab, vl, vu, il, iu[, ldab, compute_v, range, lower, abstol, mmax, overwrite_ab]) = <fortran object>

Wrapper for zhbevx.

Parameters

ab
  [input rank-2 array(‘D’) with bounds (ldab,n)]

vl
  [input float]

vu
  [input float]

il
  [input int]

iu
  [input int]
Returns

\[ w \quad \text{[rank-1 array('d') with bounds (n)]} \]
\[ z \quad \text{[rank-2 array('D') with bounds (ldz,mmax)]} \]
\[ m \quad \text{[int]} \]
\[ ifail \quad \text{[rank-1 array('i') with bounds ((compute_v?n:1))]} \]
\[ info \quad \text{[int]} \]

Other Parameters

\[
\begin{align*}
\text{overwrite_ab} & \quad \text{[input int, optional] Default: 1} \\
\text{ldab} & \quad \text{[input int, optional] Default: shape(ab,0)} \\
\text{compute_v} & \quad \text{[input int, optional] Default: 1} \\
\text{range} & \quad \text{[input int, optional] Default: 0} \\
\text{lower} & \quad \text{[input int, optional] Default: 0} \\
\text{abstol} & \quad \text{[input float, optional] Default: 0.0} \\
\text{mmax} & \quad \text{[input int, optional] Default: (compute_v?(range==2?(iu-il+1):n):1)}
\end{align*}
\]

\text{scipy.linalg.lapack.checon}

\text{scipy.linalg.lapack.checon(a, ipiv, anorm[, lower])} = <fortran object>

Wrapper for checon.

Parameters

\[
\begin{align*}
\text{a} & \quad \text{[input rank-2 array('F') with bounds (n,n)]} \\
\text{ipiv} & \quad \text{[input rank-1 array('i') with bounds (n)]} \\
\text{anorm} & \quad \text{[input float]} \\
\end{align*}
\]

Returns

\[ rcond \quad \text{[float]} \]
\[ info \quad \text{[int]} \]

Other Parameters

\[ lower \quad \text{[input int, optional] Default: 0} \]

\text{scipy.linalg.lapack.zhecon}

\text{scipy.linalg.lapack.zhecon(a, ipiv, anorm[, lower])} = <fortran object>

Wrapper for zhecon.

Parameters

\[
\begin{align*}
\text{a} & \quad \text{[input rank-2 array('D') with bounds (n,n)]} \\
\text{ipiv} & \quad \text{[input rank-1 array('i') with bounds (n)]} \\
\text{anorm} & \quad \text{[input float]} \\
\end{align*}
\]

Returns

\[ rcond \quad \text{[float]} \]
\[ info \quad \text{[int]} \]

Other Parameters

\[ lower \quad \text{[input int, optional] Default: 0} \]
scipy.linalg.lapack.chee qub

scipy.linalg.lapack.chee qub(a[, lower]) = <fortran object>
Wrapper for cheequb.

Parameters
  a [input rank-2 array('F') with bounds (lda,n)]

Returns
  s [rank-1 array('f') with bounds (n)]
  scond [float]
  amax [float]
  info [int]

Other Parameters
  lower [input int, optional] Default: 0

scipy.linalg.lapack.zheequb

scipy.linalg.lapack.zheequb(a[, lower]) = <fortran object>
Wrapper for zheequb.

Parameters
  a [input rank-2 array('D') with bounds (lda,n)]

Returns
  s [rank-1 array('d') with bounds (n)]
  scond [float]
  amax [float]
  info [int]

Other Parameters
  lower [input int, optional] Default: 0

scipy.linalg.lapack.cheev

scipy.linalg.lapack.cheev(a[, compute_v, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for cheev.

Parameters
  a [input rank-2 array('F') with bounds (n,n)]

Returns
  w [rank-1 array('f') with bounds (n)]
  v [rank-2 array('F') with bounds (n,n) and a storage]
  info [int]

Other Parameters
  compute_v [input int, optional] Default: 1
  lower [input int, optional] Default: 0
  overwrite_a [input int, optional] Default: 0
  lwork [input int, optional] Default: max(2*n-1,1)
scipy.linalg.lapack.zheev

scipy.linalg.lapack.zheev(a[;, compute_v, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for zheev.

Parameters

a [input rank-2 array('D') with bounds (n,n)]

Returns

w [rank-1 array('d') with bounds (n)]
v [rank-2 array('D') with bounds (n,n) and a storage]
info [int]

Other Parameters

compute_v [input int, optional] Default: 1
lower [input int, optional] Default: 0
overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: max(2*n-1,1)

scipy.linalg.lapack.cheev_lwork

scipy.linalg.lapack.cheev_lwork(n[; lower]) = <fortran object>
Wrapper for cheev_lwork.

Parameters

n [input int]

Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.zheev_lwork

scipy.linalg.lapack.zheev_lwork(n[; lower]) = <fortran object>
Wrapper for zheev_lwork.

Parameters

n [input int]

Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0
scipy.linalg.lapack.cheevd

scipy.linalg.lapack.cheevd(a[, compute_v, lower, lwork, liwork, lrwork, overwrite_a]) = <fortran object>

Wrapper for cheevd.

Parameters

- **a** [input rank-2 array('F') with bounds (n,n)]

Returns

- **w** [rank-1 array('f') with bounds (n)]
- **v** [rank-2 array('F') with bounds (n,n) and a storage]
- **info** [int]

Other Parameters

- **compute_v** [input int, optional] Default: 1
- **lower** [input int, optional] Default: 0
- **overwrite_a** [input int, optional] Default: 0
- **lwork** [input int, optional] Default: max((compute_v?2*n+n*n:n+1),1)
- **liwork** [input int, optional] Default: (compute_v?3+5*n:1)
- **lrwork** [input int, optional] Default: (compute_v?1+5*n+2*n*n:n)

scipy.linalg.lapack.zheevd

scipy.linalg.lapack.zheevd(a[, compute_v, lower, lwork, liwork, lrwork, overwrite_a]) = <fortran object>

Wrapper for zheevd.

Parameters

- **a** [input rank-2 array('D') with bounds (n,n)]

Returns

- **w** [rank-1 array('d') with bounds (n)]
- **v** [rank-2 array('D') with bounds (n,n) and a storage]
- **info** [int]

Other Parameters

- **compute_v** [input int, optional] Default: 1
- **lower** [input int, optional] Default: 0
- **overwrite_a** [input int, optional] Default: 0
- **lwork** [input int, optional] Default: max((compute_v?2*n+n*n:n+1),1)
- **liwork** [input int, optional] Default: (compute_v?3+5*n:1)
- **lrwork** [input int, optional] Default: (compute_v?1+5*n+2*n*n:n)
**scipy.linalg.lapack.cheevd_lwork**

*scipy.linalg.lapack.cheevd_lwork(n[, compute_v, lower]) = <fortran object>*

Wrapper for `cheevd_lwork`.

**Parameters**

- n [input int]

**Returns**

- work [complex]
- iwork [int]
- rwork [float]
- info [int]

**Other Parameters**

- compute_v [input int, optional] Default: 1
- lower [input int, optional] Default: 0

**scipy.linalg.lapack.zheevd_lwork**

*scipy.linalg.lapack.zheevd_lwork(n[, compute_v, lower]) = <fortran object>*

Wrapper for `zheevd_lwork`.

**Parameters**

- n [input int]

**Returns**

- work [complex]
- iwork [int]
- rwork [float]
- info [int]

**Other Parameters**

- compute_v [input int, optional] Default: 1
- lower [input int, optional] Default: 0

**scipy.linalg.lapack.cheevr**

*scipy.linalg.lapack.cheevr(a[, compute_v, range, lower, vl, vu, il, iu, abstol, lwork, lrwork, liwork, overwrite_a]) = <fortran object>*

Wrapper for `cheevr`.

**Parameters**

- a [input rank-2 array('F') with bounds (n,n)]

**Returns**

- w [rank-1 array('f') with bounds (n)]
- z [rank-2 array('F') with bounds ((compute_v?MAX(0, n):0),(compute_v?(*range == 'I'?1 - il + iu:MAX(1, n)):0))]
- m [int]
- isuppz [rank-1 array('i') with bounds (2 * max(1, n))]
- info [int]

**Other Parameters**
scipy.linalg.lapack.zheevr

scipy.linalg.lapack.zheevr(a[, compute_v, range, lower, vl, vu, il, iu, abstol, lwork, lrwork, liwork, overwrite_a]) = <fortran object>

Wrapper for zheevr.

Parameters

- **a** [input rank-2 array('D') with bounds (n,n)]

Returns

- **w** [rank-1 array('d') with bounds (n)]
- **z** [rank-2 array('D') with bounds ((compute_v?MAX(0, n):0),(compute_v?(*range == 'I'?1 - il + iu:MAX(1, n)):0))]
- **m** [int]
- **isuppz** [rank-1 array('i') with bounds (2 * max(1, n))]
- **info** [int]

Other Parameters

- **compute_v** [input int, optional] Default 1
- **range** [input string(len=1), optional] Default 'A'
- **lower** [input int, optional] Default 0
- **overwrite_a** [input int, optional] Default 0
- **vl** [input float, optional] Default 0.0
- **vu** [input float, optional] Default 1.0
- **il** [input int, optional] Default 1
- **iu** [input int, optional] Default n
- **abstol** [input int, optional] Default 0.0
- **lwork** [input int, optional] Default max(2*n,1)
- **lrwork** [input int, optional] Default max(24*n,1)
- **liwork** [input int, optional] Default max(1,10*n)
scipy.linalg.lapack.cheevr_lwork

scipy.linalg.lapack.cheevr_lwork(n[, lower]) = <fortran object>

Wrapper for cheevr_lwork.

Parameters

n [input int]

Returns

work [complex]
rwork [float]
iwork [int]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.zheevr_lwork

scipy.linalg.lapack.zheevr_lwork(n[, lower]) = <fortran object>

Wrapper for zheevr_lwork.

Parameters

n [input int]

Returns

work [complex]
rwork [float]
iwork [int]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.cheevx

scipy.linalg.lapack.cheevx(a[, compute_v, range, lower, vl, vu, il, iu, abstol, lwork, overwrite_a]) = <fortran object>

Wrapper for cheevx.

Parameters

a [input rank-2 array('F') with bounds (n,n)]

Returns

w [rank-1 array('f') with bounds (n)]
z [rank-2 array('F') with bounds (compute_v * n,(compute_v?(*range == 'I'? 1 - il + iu:MAX(1, n)):0))]
m [int]
ifail [rank-1 array('i') with bounds (compute_v * n)]
info [int]

Other Parameters

compute_v [input int, optional] Default 1
range [input string(len=1), optional] Default 'A'
\[ \text{lower} \quad \text{[input int, optional]} \quad \text{Default: 0} \]
\[ \text{overwrite_a} \quad \text{[input int, optional]} \quad \text{Default: 0} \]
\[ \text{vl} \quad \text{[input float, optional]} \quad \text{Default: 0.0} \]
\[ \text{vu} \quad \text{[input float, optional]} \quad \text{Default: 1.0} \]
\[ \text{il} \quad \text{[input int, optional]} \quad \text{Default: 1} \]
\[ \text{iu} \quad \text{[input int, optional]} \quad \text{Default: } n \]
\[ \text{abstol} \quad \text{[input float, optional]} \quad \text{Default: 0.0} \]
\[ \text{lwork} \quad \text{[input int, optional]} \quad \text{Default: max(2*n, 1)} \]

`scipy.linalg.lapack.zheevx`

\[ \text{scipy.linalg.lapack.zheevx}(a[, \text{compute_v, range, lower, vl, vu, il, iu, abstol, lwork, overwrite_a}]) = <\text{fortran object}> \]

Wrapper for zheevx.

**Parameters**

\[ a \quad \text{[input rank-2 array('D') with bounds (n, n)]} \]

**Returns**

\[ w \quad \text{[rank-1 array('d') with bounds (n)]} \]
\[ z \quad \text{[rank-2 array('D') with bounds (compute_v * n, (compute_v?(*range == 'I'? 1 - il + iu:MAX(1, n)):0))]} \]
\[ m \quad \text{[int]} \]
\[ ifail \quad \text{[rank-1 array('i') with bounds (compute_v * n)]} \]
\[ info \quad \text{[int]} \]

**Other Parameters**

\[ \text{compute_v} \quad \text{[input int, optional]} \quad \text{Default: 1} \]
\[ \text{range} \quad \text{[input string(len=1), optional]} \quad \text{Default: 'A'} \]
\[ \text{lower} \quad \text{[input int, optional]} \quad \text{Default: 0} \]
\[ \text{overwrite_a} \quad \text{[input int, optional]} \quad \text{Default: 0} \]
\[ \text{vl} \quad \text{[input float, optional]} \quad \text{Default: 0.0} \]
\[ \text{vu} \quad \text{[input float, optional]} \quad \text{Default: 1.0} \]
\[ \text{il} \quad \text{[input int, optional]} \quad \text{Default: 1} \]
\[ \text{iu} \quad \text{[input int, optional]} \quad \text{Default: } n \]
\[ \text{abstol} \quad \text{[input float, optional]} \quad \text{Default: 0.0} \]
\[ \text{lwork} \quad \text{[input int, optional]} \quad \text{Default: max(2*n, 1)} \]

`scipy.linalg.lapack.cheevx_lwork`

\[ \text{scipy.linalg.lapack.cheevx_lwork}(n[, \text{lower}]) = <\text{fortran object}> \]

Wrapper for cheevx_lwork.

**Parameters**

\[ n \quad \text{[input int]} \]

**Returns**

\[ \text{work} \quad \text{[complex]} \]
\[ \text{info} \quad \text{[int]} \]

**Other Parameters**

\[ \text{lower} \quad \text{[input int, optional]} \quad \text{Default: 0} \]
scipy.linalg.lapack.zheevx_lwork

scipy.linalg.lapack.zheevx_lwork(n[, lower]) = <fortran object>
Wrapper for zheevx_lwork.

Parameters
n [input int]

Returns
work [complex]
info [int]

Other Parameters
lower [input int, optional] Default: 0

scipy.linalg.lapack.chegst

scipy.linalg.lapack.chegst(a, b[, itype, lower, overwrite_a]) = <fortran object>
Wrapper for chegst.

Parameters
a [input rank-2 array('F') with bounds (n,n)]
b [input rank-2 array('F') with bounds (n,n)]

Returns
c [rank-2 array('F') with bounds (n,n) and a storage]
info [int]

Other Parameters
overwrite_a [input int, optional] Default: 0
itype [input int, optional] Default: 1
lower [input int, optional] Default: 0

scipy.linalg.lapack.zhegst

scipy.linalg.lapack.zhegst(a, b[, itype, lower, overwrite_a]) = <fortran object>
Wrapper for zhegst.

Parameters
a [input rank-2 array('D') with bounds (n,n)]
b [input rank-2 array('D') with bounds (n,n)]

Returns
c [rank-2 array('D') with bounds (n,n) and a storage]
info [int]

Other Parameters
overwrite_a [input int, optional] Default: 0
itype [input int, optional] Default: 1
lower [input int, optional] Default: 0

**scipy.linalg.lapack.chegv**

`scipy.linalg.lapack.chegv(a, b[, itype, jobz, uplo, lwork, overwrite_a, overwrite_b]) = <fortran object>`

Wrapper for `chegv`.

**Parameters**

- `a` [input rank-2 array('F') with bounds (n,n)]
- `b` [input rank-2 array('F') with bounds (n,n)]

**Returns**

- `w` [rank-1 array('f') with bounds (n)]
- `v` [rank-2 array('F') with bounds (n,n) and a storage]
- `info` [int]

**Other Parameters**

- `itype` [input int, optional] Default: 1
- `jobz` [input string(len=1), optional] Default: ‘V’
- `uplo` [input string(len=1), optional] Default: ‘L’
- `overwrite_a` [input int, optional] Default: 0
- `overwrite_b` [input int, optional] Default: 0
- `lwork` [input int, optional] Default: max(2*n-1,1)

**scipy.linalg.lapack.zhegv**

`scipy.linalg.lapack.zhegv(a, b[, itype, jobz, uplo, lwork, overwrite_a, overwrite_b]) = <fortran object>`

Wrapper for `zhegv`.

**Parameters**

- `a` [input rank-2 array('D') with bounds (n,n)]
- `b` [input rank-2 array('D') with bounds (n,n)]

**Returns**

- `w` [rank-1 array('d') with bounds (n)]
- `v` [rank-2 array('D') with bounds (n,n) and a storage]
- `info` [int]

**Other Parameters**

- `itype` [input int, optional] Default: 1
- `jobz` [input string(len=1), optional] Default: ‘V’
- `uplo` [input string(len=1), optional] Default: ‘L’
- `overwrite_a` [input int, optional] Default: 0
- `overwrite_b` [input int, optional] Default: 0
- `lwork` [input int, optional] Default: max(2*n-1,1)
scipy.linalg.lapack.chegv_lwork

scipy.linalg.lapack.chegv_lwork($n[, uplo]) = <fortran object>

Wrapper for chegv_lwork.

Parameters

$n$ [input int]

Returns

work [complex]
info [int]

Other Parameters

$uplo$ [input string(len=1), optional] Default: ‘L’

scipy.linalg.lapack.zhegv_lwork

scipy.linalg.lapack.zhegv_lwork($n[, uplo]) = <fortran object>

Wrapper for zhegv_lwork.

Parameters

$n$ [input int]

Returns

work [complex]
info [int]

Other Parameters

$uplo$ [input string(len=1), optional] Default: ‘L’

scipy.linalg.lapack.chegvd

scipy.linalg.lapack.chegvd($a, b[, itype, jobz, uplo, lwork, lrwork, liwork, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for chegvd.

Parameters

$a$ [input rank-2 array('F') with bounds ($n$, $n$)]
$b$ [input rank-2 array('F') with bounds ($n$, $n$)]

Returns

$w$ [rank-1 array('f') with bounds ($n$)]
$v$ [rank-2 array('F') with bounds ($n$, $n$) with a storage]
info [int]

Other Parameters

$itype$ [input int, optional] Default 1
$jobz$ [input string(len=1), optional] Default ‘V’
$uplo$ [input string(len=1), optional] Default ‘L’
$overwrite_a$ [input int, optional] Default 0
$overwrite_b$ [input int, optional] Default 0
$lwork$ [input int, optional] Default max((*jobz=='N'?n+1:n*2*n+5*n+1),1)
$lrwork$ [input int, optional] Default $max((*jobz=='N'?2*n*n+5*n+1,1$)

liwork  [input int, optional] Default (*jobz==’N’?1:5*n+3)

scipy.linalg.lapack.zhegvd

scipy.linalg.lapack.zhegvd(a, b[, itype, jobz, uplo, lwork, lrwork, liwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for zhegvd.

Parameters

- **a** [input rank-2 array(‘D’) with bounds (n,n)]
- **b** [input rank-2 array(‘D’) with bounds (n,n)]

Returns

- **w** [rank-1 array(‘d’) with bounds (n)]
- **v** [rank-2 array(‘D’) with bounds (n,n) with a storage]
- **info** [int]

Other Parameters

- **itype** [input int, optional] Default 1
- **jobz** [input string(len=1), optional] Default ’V’
- **uplo** [input string(len=1), optional] Default ’L’
- **overwrite_a** [input int, optional] Default 0
- **overwrite_b** [input int, optional] Default 0
- **lwork** [input int, optional] Default (*jobz==’N’?n+1:n*(n+2))
- **lrwork** [input int, optional] Default max((*jobz==’N’?n:2*n*n+5*n+1),1)
- **liwork** [input int, optional] Default (*jobz==’N’?1:5*n+3)

scipy.linalg.lapack.chegvx

scipy.linalg.lapack.chegvx(a, b[, itype, jobz, range, uplo, vl, vu, il, iu, abstol, lwork, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for chegvx.

Parameters

- **a** [input rank-2 array(‘F’) with bounds (n,n)]
- **b** [input rank-2 array(‘F’) with bounds (n,n)]

Returns

- **w** [rank-1 array(‘f’) with bounds (n)]
- **z** [rank-2 array(‘F’) with bounds ((jobz[0]=='V'?MAX(0,n):0),(jobz[0]=='V'(range[0]==’I’?il-1:il+iu:MAX(1, n)):0))]
- **m** [int]
- **ifail** [rank-1 array(‘i’) with bounds ((jobz[0]=='N’?0:n))]
- **info** [int]

Other Parameters

- **itype** [input int, optional] Default: 1
- **jobz** [input string(len=1), optional] Default: ’V’
- **range** [input string(len=1), optional] Default: ’A’
- **uplo** [input string(len=1), optional] Default: ’L’
- **overwrite_a** [input int, optional] Default: 0
overwrite_b
    [input int, optional] Default: 0
vl
    [input float, optional] Default: 0.0
vu
    [input float, optional] Default: 1.0
il
    [input int, optional] Default: 1
iu
    [input int, optional] Default: n
abstol
    [input float, optional] Default: 0.0
lwork
    [input int, optional] Default: max(2*n,1)

scipy.linalg.lapack.zhegvx

scipy.linalg.lapack.zhegvx(a, b[, itype, jobz, range, uplo, vl, vu, il, iu, abstol, lwork, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for zhegvx.

Parameters

a
    [input rank-2 array('D') with bounds (n,n)]
b
    [input rank-2 array('D') with bounds (n,n)]

Returns

w
    [rank-1 array('d') with bounds (n)]
z
    [rank-2 array('D') with bounds ((jobz[0] == 'V'?MAX(0,n):0),(jobz[0] == 'V'?(range[0] == 'I'?1-il+iu:MAX(1,n)):0))]
m
    [int]
ifail
    [rank-1 array('i') with bounds ((jobz[0] == 'N'?0:n))]
info
    [int]

Other Parameters

itype
    [input int, optional] Default: 1
jobz
    [input string(len=1), optional] Default: 'V'
range
    [input string(len=1), optional] Default: 'A'
uplo
    [input string(len=1), optional] Default: 'L'
overwrite_a
    [input int, optional] Default: 0
overwrite_b
    [input int, optional] Default: 0
vl
    [input float, optional] Default: 0.0
vu
    [input float, optional] Default: 1.0
il
    [input int, optional] Default: 1
iu
    [input int, optional] Default: n
abstol
    [input float, optional] Default: 0.0
lwork
    [input int, optional] Default: max(2*n,1)

scipy.linalg.lapack.chegvx_lwork

scipy.linalg.lapack.chegvx_lwork(n[, uplo]) = <fortran object>

Wrapper for chegvx_lwork.

Parameters

n
    [input int]

Returns

work
    [complex]
info
    [int]
**Other Parameters**

uplo  [input string(len=1), optional] Default: ‘L’

**scipy.linalg.lapack.zhegvx_lwork**

scipy.linalg.lapack.zhegvx_lwork(n[, uplo]) = <fortran object>

**Wrapper for zhegvx_lwork**

**Parameters**

n  [input int]

**Returns**

work  [complex]
info  [int]

**Other Parameters**

uplo  [input string(len=1), optional] Default: ‘L’

**scipy.linalg.lapack.chesv**

scipy.linalg.lapack.chesv(a[, b[, lwork, lower, overwrite_a, overwrite_b]]) = <fortran object>

**Wrapper for chesv**

**Parameters**

a  [input rank-2 array('F') with bounds (n,n)]
b  [input rank-2 array('F') with bounds (n,nrhs)]

**Returns**

uduh  [rank-2 array('F') with bounds (n,n) and a storage]
ipiv  [rank-1 array('i') with bounds (n)]
x  [rank-2 array('F') with bounds (n,nrhs) and b storage]
info  [int]

**Other Parameters**

overwrite_a  [input int, optional] Default: 0
overwrite_b  [input int, optional] Default: 0
lwork  [input int, optional] Default: max(n,1)
lower  [input int, optional] Default: 0

**scipy.linalg.lapack.zhesv**

scipy.linalg.lapack.zhesv(a[, b[, lwork, lower, overwrite_a, overwrite_b]]) = <fortran object>

**Wrapper for zhesv**

**Parameters**

a  [input rank-2 array('D') with bounds (n,n)]
b  [input rank-2 array('D') with bounds (n,nrhs)]

**Returns**

uduh  [rank-2 array('D') with bounds (n,n) and a storage]
ipiv  [rank-1 array('i') with bounds (n)]
x  [rank-2 array('D') with bounds (n,nrhs) and b storage]
info  [int]
Other Parameters

overwrite_a
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

lwork
[input int, optional] Default: max(n,1)

lower
[input int, optional] Default: 0

scipy.linalg.lapack.chesv_lwork

scipy.linalg.lapack.chesv_lwork(n[, lower]) = <fortran object>
Wrapper for chesv_lwork.

Parameters

n [input int]

Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.zhesv_lwork

scipy.linalg.lapack.zhesv_lwork(n[, lower]) = <fortran object>
Wrapper for zhesv_lwork.

Parameters

n [input int]

Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.chesvx

scipy.linalg.lapack.chesvx(a, b[, af, ipiv, lwork, factored, lower, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for chesvx.

Parameters

a [input rank-2 array('F') with bounds (n,n)]
b [input rank-2 array('F') with bounds (n,nrhs)]

Returns

uduh [rank-2 array('F') with bounds (n,n) and af storage]

ipiv [rank-1 array('i') with bounds (n)]
x [rank-2 array('F') with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array('f') with bounds (nrhs)]
berr [rank-1 array('f') with bounds (nrhs)]
info [int]

Other Parameters

overwrite_a
   [input int, optional] Default: 0
af [input rank-2("F") with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
overwrite_b
   [input int, optional] Default: 0
lwork [input int, optional] Default: max(2*n,1)
factored [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.lapack.zhesvx

scipy.linalg.lapack.zhesvx(a, b[, af, ipiv, lwork, factored, lower, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for zhesvx.

Parameters

a [input rank-2("D") with bounds (n,n)]
b [input rank-2("D") with bounds (n, nrhs)]

Returns

uduh [rank-2("D") with bounds (n,n) and af storage]
ipiv [rank-1 array(‘i’) with bounds (n)]
x [rank-2("D") with bounds (n, nrhs)]
rcond [float]
ferr [rank-1 array(‘d’) with bounds (nrhs)]
berr [rank-1 array(‘d’) with bounds (nrhs)]
info [int]

Other Parameters

overwrite_a
   [input int, optional] Default: 0
af [input rank-2("D") with bounds (n,n)]
ipiv [input rank-1 array(‘i’) with bounds (n)]
overwrite_b
   [input int, optional] Default: 0
lwork [input int, optional] Default: max(2*n,1)
factored [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.lapack.chesvx_lwork

scipy.linalg.lapack.chesvx_lwork(n[, lower]) = <fortran object>

Wrapper for chesvx_lwork.

Parameters

n [input int]

Returns

work [complex]
info [int]
Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.zhesvx_lwork

scipy.linalg.lapack.zhesvx_lwork(n[.lower]) = <fortran object>
Wrapper for zhesvx_lwork.

Parameters

n [input int]

Returns

work [complex]
info [int]

Other Parameters

lower [input int, optional] Default: 0

scipy.linalg.lapack.chetrd

scipy.linalg.lapack.chetrd(a[, lower, overwrite_a]) = <fortran object>
Wrapper for chetrd.

Parameters

a [input rank-2 array('F') with bounds (lda,n)]

Returns

c [rank-2 array('F') with bounds (lda,n) and a storage]
d [rank-1 array('F') with bounds (n)]
e [rank-1 array('F') with bounds (-1 + n)]
tau [rank-1 array('F') with bounds (-1 + n)]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: MAX(n,1)

scipy.linalg.lapack.zhetrd

scipy.linalg.lapack.zhetrd(a[, lower, overwrite_a]) = <fortran object>
Wrapper for zhetrd.

Parameters

a [input rank-2 array('D') with bounds (lda,n)]

Returns

c [rank-2 array('D') with bounds (lda,n) and a storage]
d [rank-1 array('D') with bounds (n)]
e [rank-1 array('D') with bounds (-1 + n)]
tau [rank-1 array('D') with bounds (-1 + n)]
info [int]

Other Parameters
lower [input int, optional] Default: 0
overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: MAX(n,1)

scipy.linalg.lapack.chetrd_lwork

scipy.linalg.lapack.chetrd_lwork(n[, lower]) = <fortran object>
Wrapper for chetrd_lwork.

Parameters
n [input int]

Returns
work [complex]
info [int]

Other Parameters
lower [input int, optional] Default: 0

scipy.linalg.lapack.zhetrd_lwork

scipy.linalg.lapack.zhetrd_lwork(n[, lower]) = <fortran object>
Wrapper for zhetrd_lwork.

Parameters
n [input int]

Returns
work [complex]
info [int]

Other Parameters
lower [input int, optional] Default: 0

scipy.linalg.lapack.chetrf

scipy.linalg.lapack.chetrf(a[, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for chetrf.

Parameters
a [input rank-2 array('F') with bounds (n,n)]

Returns
ldu [rank-2 array('F') with bounds (n,n) and a storage]
ipiv [rank-1 array('I') with bounds (n)]
info [int]

Other Parameters
lower [input int, optional] Default: 0
overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: max(n,1)

3.3. API definition
scipy.linalg.lapack.zhetrf

scipy.linalg.lapack.zhetrf(a[, lower, lwork, overwrite_a]) = <fortran object>

Wrapper for zhetrf.

Parameters
   a      [input rank-2 array('D') with bounds (n,n)]

Returns
   ldu    [rank-2 array('D') with bounds (n,n) and a storage]
   ipiv   [rank-1 array('i') with bounds (n)]
   info   [int]

Other Parameters
   lower  [input int, optional] Default: 0
   overwrite_a  [input int, optional] Default: 0
   lwork  [input int, optional] Default: max(n,1)

scipy.linalg.lapack.chetrf_lwork

scipy.linalg.lapack.chetrf_lwork(n[, lower]) = <fortran object>

Wrapper for chetrf_lwork.

Parameters
   n      [input int]

Returns
   work   [complex]
   info   [int]

Other Parameters
   lower  [input int, optional] Default: 0

scipy.linalg.lapack.zhetrf_lwork

scipy.linalg.lapack.zhetrf_lwork(n[, lower]) = <fortran object>

Wrapper for zhetrf_lwork.

Parameters
   n      [input int]

Returns
   work   [complex]
   info   [int]

Other Parameters
   lower  [input int, optional] Default: 0
scipy.linalg.lapack.chfrk

scipy.linalg.lapack.chfrk \( (n, k, \alpha, a, \beta[, \text{transr}, \text{uplo}, \text{trans}, \text{overwrite}_c]) \) = <fortran object>

Wrapper for chfrk.

**Parameters**

\- \( n \) [input int]
\- \( k \) [input int]
\- \( \alpha \) [input float]
\- \( a \) [input rank-2 array('F') with bounds (lda,ka)]
\- \( \beta \) [input float]
\- \( c \) [input rank-1 array('F') with bounds (nt)]

**Returns**

\( c'out \) [rank-1 array('F') with bounds (nt) and c storage]

**Other Parameters**

\- \( \text{transr} \) [input string(len=1), optional] Default: ‘N’
\- \( \text{uplo} \) [input string(len=1), optional] Default: ‘U’
\- \( \text{trans} \) [input string(len=1), optional] Default: ‘N’
\- \( \text{overwrite}_c \) [input int, optional] Default: 0

scipy.linalg.lapack.zhfrk

scipy.linalg.lapack.zhfrk \( (n, k, \alpha, a, \beta[, \text{transr}, \text{uplo}, \text{trans}, \text{overwrite}_c]) \) = <fortran object>

Wrapper for zhfrk.

**Parameters**

\- \( n \) [input int]
\- \( k \) [input int]
\- \( \alpha \) [input float]
\- \( a \) [input rank-2 array('D') with bounds (lda,ka)]
\- \( \beta \) [input float]
\- \( c \) [input rank-1 array('D') with bounds (nt)]

**Returns**

\( c'out \) [rank-1 array('D') with bounds (nt) and c storage]

**Other Parameters**

\- \( \text{transr} \) [input string(len=1), optional] Default: ‘N’
\- \( \text{uplo} \) [input string(len=1), optional] Default: ‘U’
\- \( \text{trans} \) [input string(len=1), optional] Default: ‘N’
\- \( \text{overwrite}_c \) [input int, optional] Default: 0
scipy.linalg.lapack.slamch

scipy.linalg.lapack.slamch(cmach) = <fortran slamch>
Wrapper for slamch.

Parameters

   cmach [input string(len=1)]

Returns

   slamch [float]

scipy.linalg.lapack.dlamch

scipy.linalg.lapack.dlamch(cmach) = <fortran dlamch>
Wrapper for dlamch.

Parameters

   cmach [input string(len=1)]

Returns

   dlamch [float]

scipy.linalg.lapack.slange

scipy.linalg.lapack.slange(norm, a) = <fortran slange>
Wrapper for slange.

Parameters

   norm [input string(len=1)]
   a [input rank-2 array('f') with bounds (m,n)]

Returns

   n2 [float]

scipy.linalg.lapack.dlange

scipy.linalg.lapack.dlange(norm, a) = <fortran dlange>
Wrapper for dlange.

Parameters

   norm [input string(len=1)]
   a [input rank-2 array('d') with bounds (m,n)]

Returns

   n2 [float]

scipy.linalg.lapack.clange

scipy.linalg.lapack.clange(norm, a) = <fortran clange>
Wrapper for clange.

Parameters

   norm [input string(len=1)]
   a [input rank-2 array('F') with bounds (m,n)]

Returns

   n2 [float]
### scipy.linalg.lapack.zlange

**Wrapper for zlange.**

**Parameters**

- `norm` [input string(len=1)]
- `a` [input rank-2 array('D') with bounds (m,n)]

**Returns**

- `n2` [float]

### scipy.linalg.lapack.slarf

**Wrapper for slarf.**

**Parameters**

- `v` [input rank-1 array('f') with bounds ((side[0] == ‘L’?1 - abs(incv) + m * abs(incv):1 - abs(incv) + n * abs(incv)))]
- `tau` [input float]
- `c` [input rank-2 array('f') with bounds (m,n)]
- `work` [input rank-1 array('f') with bounds (lwork)]

**Returns**

- `c` [rank-2 array('f') with bounds (m,n)]

**Other Parameters**

- `side` [input string(len=1), optional] Default: ‘L’
- `incv` [input int, optional] Default: 1
- `overwrite_c` [input int, optional] Default: 0

### scipy.linalg.lapack.dlarf

**Wrapper for dlarf.**

**Parameters**

- `v` [input rank-1 array('d') with bounds ((side[0] == ‘L’?1 - abs(incv) + m * abs(incv):1 - abs(incv) + n * abs(incv)))]
- `tau` [input float]
- `c` [input rank-2 array('d') with bounds (m,n)]
- `work` [input rank-1 array('d') with bounds (lwork)]

**Returns**

- `c` [rank-2 array('d') with bounds (m,n)]

**Other Parameters**

- `side` [input string(len=1), optional] Default: ‘L’
- `incv` [input int, optional] Default: 1
- `overwrite_c` [input int, optional] Default: 0
scipy.linalg.lapack.clarf

scipy.linalg.lapack.clarf(v, tau, c, work[, side, incv, overwrite_c]) = <fortran object>

Wrapper for clarf.

Parameters

- v [input rank-1 array('F') with bounds ((side[0] == 'L'?1 - abs(incv) + m * abs(incv):1 - abs(incv) + n * abs(incv)))]
- tau [input complex]
- c [input rank-2 array('F') with bounds (m,n)]
- work [input rank-1 array('F') with bounds (lwork)]

Returns

- c [rank-2 array('F') with bounds (m,n)]

Other Parameters

- side [input string(len=1), optional] Default: 'L'
- incv [input int, optional] Default: 1
- overwrite_c [input int, optional] Default: 0

scipy.linalg.lapack.zlarf

scipy.linalg.lapack.zlarf(v, tau, c, work[, side, incv, overwrite_c]) = <fortran object>

Wrapper for zlarf.

Parameters

- v [input rank-1 array('D') with bounds ((side[0] == 'L'?1 - abs(incv) + m * abs(incv):1 - abs(incv) + n * abs(incv)))]
- tau [input complex]
- c [input rank-2 array('D') with bounds (m,n)]
- work [input rank-1 array('D') with bounds (lwork)]

Returns

- c [rank-2 array('D') with bounds (m,n)]

Other Parameters

- side [input string(len=1), optional] Default: 'L'
- incv [input int, optional] Default: 1
- overwrite_c [input int, optional] Default: 0

scipy.linalg.lapack.slarfg

scipy.linalg.lapack.slarfg(n, alpha, x[, incx, overwrite_x]) = <fortran object>

Wrapper for slarfg.

Parameters

- n [input int]
- alpha [input float]
- x [input rank-1 array('F') with bounds (lx)]

Returns

- alpha [float]
- x [rank-1 array('F') with bounds (lx)]
tau  [float]

Other Parameters

overwrite_x  [input int, optional] Default: 0
incx  [input int, optional] Default: 1

scipy.linalg.lapack.dlarfg

scipy.linalg.lapack.dlarfg(n, alpha, x[, incx, overwrite_x]) = <fortran object>
Wrapper for dlarfg.

Parameters

n  [input int]
alpha  [input float]
x  [input rank-1 array('d') with bounds (lx)]

Returns

alpha  [float]
x  [rank-1 array('d') with bounds (lx)]
tau  [float]

Other Parameters

overwrite_x  [input int, optional] Default: 0
incx  [input int, optional] Default: 1

scipy.linalg.lapack.clarfg

scipy.linalg.lapack.clarfg(n, alpha, x[, incx, overwrite_x]) = <fortran object>
Wrapper for clarfg.

Parameters

n  [input int]
alpha  [input complex]
x  [input rank-1 array('F') with bounds (lx)]

Returns

alpha  [complex]
x  [rank-1 array('F') with bounds (lx)]
tau  [complex]

Other Parameters

overwrite_x  [input int, optional] Default: 0
incx  [input int, optional] Default: 1
**scipy.linalg.lapack.zlarfg**

```python
scipy.linalg.lapack.zlarfg(n, alpha, x[, incx, overwrite_x]) = <fortran object>
```

Wrapper for zlarfg.

**Parameters**

- `n` [input int]
- `alpha` [input complex]
- `x` [input rank-1 array(‘D’) with bounds (lx)]

**Returns**

- `alpha` [complex]
- `x` [rank-1 array(‘D’) with bounds (lx)]
- `tau` [complex]

**Other Parameters**

- `overwrite_x` [input int, optional] Default: 0
- `incx` [input int, optional] Default: 1

**scipy.linalg.lapack.slartg**

```python
scipy.linalg.lapack.slartg(f, g) = <fortran object>
```

Wrapper for slartg.

**Parameters**

- `f` [input float]
- `g` [input float]

**Returns**

- `cs` [float]
- `sn` [float]
- `r` [float]

**scipy.linalg.lapack.dlartg**

```python
scipy.linalg.lapack.dlartg(f, g) = <fortran object>
```

Wrapper for dlartg.

**Parameters**

- `f` [input float]
- `g` [input float]

**Returns**

- `cs` [float]
- `sn` [float]
- `r` [float]
scipy.linalg.lapack.clartg

\[
\text{scipy.linalg.lapack.clartg}(f, g) = \langle \text{fortran object} \rangle
\]

Wrapper for clartg.

**Parameters**

- \( f \) [input complex]
- \( g \) [input complex]

**Returns**

- \( cs \) [float]
- \( sn \) [complex]
- \( r \) [complex]

scipy.linalg.lapack.zlartg

\[
\text{scipy.linalg.lapack.zlartg}(f, g) = \langle \text{fortran object} \rangle
\]

Wrapper for zlartg.

**Parameters**

- \( f \) [input complex]
- \( g \) [input complex]

**Returns**

- \( cs \) [float]
- \( sn \) [complex]
- \( r \) [complex]

scipy.linalg.lapack.slasd4

\[
\text{scipy.linalg.lapack.slasd4}(i, d, z[, rho]) = \langle \text{fortran object} \rangle
\]

Wrapper for slasd4.

**Parameters**

- \( i \) [input int]
- \( d \) [input rank-1 array('f') with bounds (n)]
- \( z \) [input rank-1 array('f') with bounds (n)]

**Returns**

- \( \text{delta} \) [rank-1 array('f') with bounds (n)]
- \( \text{sigma} \) [float]
- \( \text{work} \) [rank-1 array('f') with bounds (n)]
- \( \text{info} \) [int]

**Other Parameters**

- \( \text{rho} \) [input float, optional] Default: 1.0
scipy.linalg.lapack.dlasd4

scipy.linalg.lapack.dlasd4(i, d[, z[, rho]]) = <fortran object>

Wrapper for dlasd4.

Parameters

- i [input int]
- d [input rank-1 array('d') with bounds (n)]
- z [input rank-1 array('d') with bounds (n)]

Returns

- delta [rank-1 array('d') with bounds (n)]
- sigma [float]
- work [rank-1 array('d') with bounds (n)]
- info [int]

Other Parameters

- rho [input float, optional] Default: 1.0

scipy.linalg.lapack.slaswp

scipy.linalg.lapack.slaswp(a, piv[, k1, k2, off, inc, overwrite_a]) = <fortran object>

Wrapper for slaswp.

Parameters

- a [input rank-2 array('f') with bounds (nrows,n)]
- piv [input rank-1 array('i') with bounds (npiv)]

Returns

- a [rank-2 array('f') with bounds (nrows,n)]

Other Parameters

- overwrite_a [input int, optional] Default: 0
- k1 [input int, optional] Default: 0
- k2 [input int, optional] Default: npiv-1
- off [input int, optional] Default: 0
- inc [input int, optional] Default: 1

scipy.linalg.lapack.dlaswp

scipy.linalg.lapack.dlaswp(a, piv[, k1, k2, off, inc, overwrite_a]) = <fortran object>

Wrapper for dlaswp.

Parameters

- a [input rank-2 array('d') with bounds (nrows,n)]
- piv [input rank-1 array('i') with bounds (npiv)]

Returns

- a [rank-2 array('d') with bounds (nrows,n)]

Other Parameters

- overwrite_a [input int, optional] Default: 0
- k1 [input int, optional] Default: 0
`scipy.linalg.lapack.claswp`

`scipy.linalg.lapack.claswp(a, piv[, k1, k2, off, inc, overwrite_a]) = <fortran object>`

Wrapper for `claswp`.

**Parameters**

- **a** [input rank-2 array('F') with bounds (nrows,n)]
- **piv** [input rank-1 array('i') with bounds (npiv)]

**Returns**

- **a** [rank-2 array('F') with bounds (nrows,n)]

**Other Parameters**

- **overwrite_a** [input int, optional] Default: 0
- **k1** [input int, optional] Default: 0
- **k2** [input int, optional] Default: npiv-1
- **off** [input int, optional] Default: 0
- **inc** [input int, optional] Default: 1

`scipy.linalg.lapack.zlaswp`

`scipy.linalg.lapack.zlaswp(a, piv[, k1, k2, off, inc, overwrite_a]) = <fortran object>`

Wrapper for `zlaswp`.

**Parameters**

- **a** [input rank-2 array('D') with bounds (nrows,n)]
- **piv** [input rank-1 array('i') with bounds (npiv)]

**Returns**

- **a** [rank-2 array('D') with bounds (nrows,n)]

**Other Parameters**

- **overwrite_a** [input int, optional] Default: 0
- **k1** [input int, optional] Default: 0
- **k2** [input int, optional] Default: npiv-1
- **off** [input int, optional] Default: 0
- **inc** [input int, optional] Default: 1

`scipy.linalg.lapack.slauum`

`scipy.linalg.lapack.slauum(c[, lower, overwrite_c]) = <fortran object>`

Wrapper for `slauum`.

**Parameters**

- **c** [input rank-2 array('f') with bounds (n,n)]

**Returns**

- **a** [rank-2 array('f') with bounds (n,n) and c storage]
- **info** [int]
Other Parameters

overwrite_c
  [input int, optional] Default: 0
lower  [input int, optional] Default: 0

scipy.linalg.lapack.dlauum

scipy.linalg.lapack.dlauum(c[, lower, overwrite_c]) = <fortran object>
Wrapper for dlauum.

Parameters

c  [input rank-2 array('d') with bounds (n,n)]

Returns

a  [rank-2 array('d') with bounds (n,n) and c storage]
info [int]

Other Parameters

overwrite_c
  [input int, optional] Default: 0
lower  [input int, optional] Default: 0

scipy.linalg.lapack.clauum

scipy.linalg.lapack.clauum(c[, lower, overwrite_c]) = <fortran object>
Wrapper for clauum.

Parameters

c  [input rank-2 array('F') with bounds (n,n)]

Returns

a  [rank-2 array('F') with bounds (n,n) and c storage]
info [int]

Other Parameters

overwrite_c
  [input int, optional] Default: 0
lower  [input int, optional] Default: 0

scipy.linalg.lapack.zlauum

scipy.linalg.lapack.zlauum(c[, lower, overwrite_c]) = <fortran object>
Wrapper for zlauum.

Parameters

c  [input rank-2 array('D') with bounds (n,n)]

Returns

a  [rank-2 array('D') with bounds (n,n) and c storage]
info [int]

Other Parameters

overwrite_c
  [input int, optional] Default: 0
lower  [input int, optional] Default: 0
**scipy.linalg.lapack.sorcsd**

**scipy.linalg.lapack.sorcsd** \((x11, x12, x21, x22[, compute_u1, compute_u2, compute_v1t, compute_v2t, trans, signs, lwork, overwrite_x11, overwrite_x12, overwrite_x21, overwrite_x22]) = <fortran object>

Wrapper for sorcsd.

**Parameters**

- **x11** [input rank-2 array('f') with bounds (p,q)]
- **x12** [input rank-2 array('f') with bounds (p,mmq)]
- **x21** [input rank-2 array('f') with bounds (mmp,q)]
- **x22** [input rank-2 array('f') with bounds (mmp,mmq)]

**Returns**

- **cs11** [rank-2 array('f') with bounds (p,q) and x11 storage]
- **cs12** [rank-2 array('f') with bounds (p,mmq) and x12 storage]
- **cs21** [rank-2 array('f') with bounds (mmp,q) and x21 storage]
- **cs22** [rank-2 array('f') with bounds (mmp,mmq) and x22 storage]
- **theta** [rank-1 array('f') with bounds (min(min(p,mmp),min(q,mmq)))]
- **u1** [rank-2 array('f') with bounds ((compute_u1?p:0),(compute_u1?p:0))]
- **u2** [rank-2 array('f') with bounds ((compute_u2?mmp:0),(compute_u2?mmp:0))]
- **v1t** [rank-2 array('f') with bounds ((compute_v1t?q:0),(compute_v1t?q:0))]
- **v2t** [rank-2 array('f') with bounds ((compute_v2t?mmq:0),(compute_v2t?mmq:0))]
- **info** [int]

**Other Parameters**

- **compute_u1** [input int, optional] Default: 1
- **compute_u2** [input int, optional] Default: 1
- **compute_v1t** [input int, optional] Default: 1
- **compute_v2t** [input int, optional] Default: 1
- **trans** [input int, optional] Default: 0
- **signs** [input int, optional] Default: 0
- **overwrite_x11** [input int, optional] Default: 0
- **overwrite_x12** [input int, optional] Default: 0
- **overwrite_x21** [input int, optional] Default: 0
- **overwrite_x22** [input int, optional] Default: 0
- **lwork** [input int, optional] Default: \(2+2*m+5*\text{MAX}(1,q-1)+4*\text{MAX}(1,q)+8*q\)
scipy.linalg.lapack.dorcsd

scipy.linalg.lapack.dorcsd(x11, x12, x21, x22[, compute_u1, compute_u2, compute_v1t, compute_v2t, trans, signs, lwork, overwrite_x11, overwrite_x12, overwrite_x21, overwrite_x22]) = <fortran object>

Wrapper for dorcsd.

Parameters

- x11  [input rank-2 array('d') with bounds (p,q)]
- x12  [input rank-2 array('d') with bounds (p,mmq)]
- x21  [input rank-2 array('d') with bounds (mmp,q)]
- x22  [input rank-2 array('d') with bounds (mmp,mmq)]

Returns

- cs11  [rank-2 array('d') with bounds (p,q) and x11 storage]
- cs12  [rank-2 array('d') with bounds (p,mmq) and x12 storage]
- cs21  [rank-2 array('d') with bounds (mmp,q) and x21 storage]
- cs22  [rank-2 array('d') with bounds (mmp,mmq) and x22 storage]
- theta [rank-1 array('d') with bounds (min(min(p,mmp), min(q, mmq)))]
- u1    [rank-2 array('d') with bounds ((compute_u1?p:0),(compute_u1?p:0))]
- u2    [rank-2 array('d') with bounds ((compute_u2?mmp:0),(compute_u2?mmp:0))]
- v1t   [rank-2 array('d') with bounds ((compute_v1t?q:0),(compute_v1t?q:0))]
- v2t   [rank-2 array('d') with bounds ((compute_v2t?mmq:0),(compute_v2t?mmq:0))]
- info  [int]

Other Parameters

- compute_u1 [input int, optional] Default: 1
- compute_u2 [input int, optional] Default: 1
- compute_v1t [input int, optional] Default: 1
- compute_v2t [input int, optional] Default: 1
- trans [input int, optional] Default: 0
- signs [input int, optional] Default: 0
- overwrite_x11 [input int, optional] Default: 0
- overwrite_x12 [input int, optional] Default: 0
- overwrite_x21 [input int, optional] Default: 0
- overwrite_x22 [input int, optional] Default: 0
- lwork [input int, optional] Default: 2+2*m+5*MAX(1,q-1)+4*MAX(1,q)+8*q
scipy.linalg.lapack.sorcsd_lwork

scipy.linalg.lapack.sorcsd_lwork(m, p, q) = <fortran object>
Wrapper for sorcsd_lwork.

Parameters
m [input int]
p [input int]
q [input int]

Returns
work [float]
info [int]

scipy.linalg.lapack.dorcsd_lwork

scipy.linalg.lapack.dorcsd_lwork(m, p, q) = <fortran object>
Wrapper for dorcsd_lwork.

Parameters
m [input int]
p [input int]
q [input int]

Returns
work [float]
info [int]

scipy.linalg.lapack.sorghr

scipy.linalg.lapack.sorghr(a, tau[, lo, hi, lwork, overwrite_a]) = <fortran object>
Wrapper for sorghr.

Parameters
a [input rank-2 array('f') with bounds (n,n)]
tau [input rank-1 array('f') with bounds (-1 + n)]

Returns
ht [rank-2 array('f') with bounds (n,n) and a storage]
info [int]

Other Parameters
lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1
overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: max(hi-lo,1)
scipy.linalg.lapack.dorghr

Wrapper for dorghr.

Parameters

- a [input rank-2 array('d') with bounds (n,n)]
- tau [input rank-1 array('d') with bounds (-1 + n)]

Returns

- ht [rank-2 array('d') with bounds (n,n) and a storage]
- info [int]

Other Parameters

- lo [input int, optional] Default: 0
- hi [input int, optional] Default: n-1
- overwrite_a [input int, optional] Default: 0
- lwork [input int, optional] Default: max(hi-lo,1)

scipy.linalg.lapack.sorghr_lwork

Wrapper for sorghr_lwork.

Parameters

- n [input int]

Returns

- work [float]
- info [int]

Other Parameters

- lo [input int, optional] Default: 0
- hi [input int, optional] Default: n-1

scipy.linalg.lapack.dorghr_lwork

Wrapper for dorghr_lwork.

Parameters

- n [input int]

Returns

- work [float]
- info [int]

Other Parameters

- lo [input int, optional] Default: 0
- hi [input int, optional] Default: n-1
scipy.linalg.lapack.sorgqr

scipy.linalg.lapack.sorgqr(a, tau[, lwork, overwrite_a]) = <fortran object>

Wrapper for sorgqr.

Parameters
a [input rank-2 array('f') with bounds (m,n)]
tau [input rank-1 array('f') with bounds (k)]

Returns
q [rank-2 array('f') with bounds (m,n) and a storage]
work [rank-1 array('f') with bounds (MAX(lwork, 1))]
info [int]

Other Parameters
overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.dorgqr

scipy.linalg.lapack.dorgqr(a, tau[, lwork, overwrite_a]) = <fortran object>

Wrapper for dorgqr.

Parameters
a [input rank-2 array('d') with bounds (m,n)]
tau [input rank-1 array('d') with bounds (k)]

Returns
q [rank-2 array('d') with bounds (m,n) and a storage]
work [rank-1 array('d') with bounds (MAX(lwork, 1))]
info [int]

Other Parameters
overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.sorgrq

scipy.linalg.lapack.sorgrq(a, tau[, lwork, overwrite_a]) = <fortran object>

Wrapper for sorgrq.

Parameters
a [input rank-2 array('f') with bounds (m,n)]
tau [input rank-1 array('f') with bounds (k)]

Returns
q [rank-2 array('f') with bounds (m,n) and a storage]
work [rank-1 array('f') with bounds (MAX(lwork, 1))]
info [int]

Other Parameters
overwrite_a [input int, optional] Default: 0

lwork [input int, optional] Default: max(3*m,1)

scipy.linalg.lapack.dorgrq

scipy.linalg.lapack.dorgrq(a, tau[, lwork, overwrite_a]) = <fortran object>
Wrapper for dorgrq.

Parameters

a [input rank-2 array('d') with bounds (m,n)]
tau [input rank-1 array('d') with bounds (k)]

Returns

q [rank-2 array('d') with bounds (m,n) and a storage]
work [rank-1 array('d') with bounds (MAX(lwork, 1))]
info [int]

Other Parameters

overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*m,1)

scipy.linalg.lapack.sormqr

scipy.linalg.lapack.sormqr(side, trans, a, tau, c[, lwork[, overwrite_c]]) = <fortran object>
Wrapper for sormqr.

Parameters

side [input string(len=1)]
trans [input string(len=1)]
a [input rank-2 array('f') with bounds (lda,k)]
tau [input rank-1 array('f') with bounds (k)]
c [input rank-2 array('f') with bounds (ldc,n)]
lwork [input int]

Returns

cq [rank-2 array('f') with bounds (ldc,n) and c storage]
work [rank-1 array('f') with bounds (MAX(lwork, 1))]
info [int]

Other Parameters

overwrite_c [input int, optional] Default: 0

scipy.linalg.lapack.dormqr

scipy.linalg.lapack.dormqr(side, trans, a, tau, c[, lwork[, overwrite_c]]) = <fortran object>
Wrapper for dormqr.

Parameters

side [input string(len=1)]
trans [input string(len=1)]
a [input rank-2 array('d') with bounds (lda,k)]
tau [input rank-1 array('d') with bounds (k)]
c [input rank-2 array('d') with bounds (ldc,n)]
lwork [input int]

Returns

- `cq` [rank-2 array('d') with bounds (ldc,n) and c storage]
- `work` [rank-1 array('d') with bounds (MAX(lwork, 1))]
- `info` [int]

Other Parameters

- `overwrite_c` [input int, optional] Default: 0

`scipy.linalg.lapack.sormrz`

`scipy.linalg.lapack.sormrz(a, tau, c[, side, trans, lwork, overwrite_c]) = <fortran object>`

Wrapper for `sormrz`.

Parameters

- `a` [input rank-2 array('f') with bounds (k,nt)]
- `tau` [input rank-1 array('f') with bounds (k)]
- `c` [input rank-2 array('f') with bounds (m,n)]

Returns

- `cq` [rank-2 array('f') with bounds (m,n) and c storage]
- `info` [int]

Other Parameters

- `side` [input string(len=1), optional] Default: ‘L’
- `trans` [input string(len=1), optional] Default: ‘N’
- `overwrite_c` [input int, optional] Default: 0
- `lwork` [input int, optional] Default: MAX((side[0]=='L'?n:m),1)

`scipy.linalg.lapack.dormrz`

`scipy.linalg.lapack.dormrz(a, tau, c[, side, trans, lwork, overwrite_c]) = <fortran object>`

Wrapper for `dormrz`.

Parameters

- `a` [input rank-2 array('d') with bounds (k,nt)]
- `tau` [input rank-1 array('d') with bounds (k)]
- `c` [input rank-2 array('d') with bounds (m,n)]

Returns

- `cq` [rank-2 array('d') with bounds (m,n) and c storage]
- `info` [int]

Other Parameters

- `side` [input string(len=1), optional] Default: ‘L’
- `trans` [input string(len=1), optional] Default: ‘N’
- `overwrite_c` [input int, optional] Default: 0
- `lwork` [input int, optional] Default: MAX((side[0]=='L'?n:m),1)
scipy.linalg.lapack.sormrz_lwork

scipy.linalg.lapack.sormrz_lwork(m, n[, side, trans]) = <fortran object>
Wrapper for sormrz_lwork.

Parameters
m [input int]
n [input int]

Returns
work [float]
info [int]

Other Parameters
side [input string(len=1), optional] Default: ‘L’
trans [input string(len=1), optional] Default: ‘N’

scipy.linalg.lapack.dormrz_lwork

scipy.linalg.lapack.dormrz_lwork(m, n[, side, trans]) = <fortran object>
Wrapper for dormrz_lwork.

Parameters
m [input int]
n [input int]

Returns
work [float]
info [int]

Other Parameters
side [input string(len=1), optional] Default: ‘L’
trans [input string(len=1), optional] Default: ‘N’

scipy.linalg.lapack.spbsv

scipy.linalg.lapack.spbsv(ab, b[, lower, ldab, overwrite_ab, overwrite_b]) = <fortran object>
Wrapper for spbsv.

Parameters
ab [input rank-2 array('f') with bounds (ldab,n)]
b [input rank-2 array('f') with bounds (ldb,nrhs)]

Returns
c [rank-2 array('f') with bounds (ldab,n) and ab storage]
x [rank-2 array('f') with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters
lower [input int, optional] Default: 0
overwrite_ab [input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)
overwrite_b [input int, optional] Default: 0
scipy.linalg.lapack.dpbsv

Wrapper for dpbsv.

Parameters

- **ab** [input rank-2 array('d') with bounds (ldab,n)]
- **b** [input rank-2 array('d') with bounds (ldb,nrhs)]

Returns

- **c** [rank-2 array('d') with bounds (ldab,n) and ab storage]
- **x** [rank-2 array('d') with bounds (ldb,nrhs) and b storage]
- **info** [int]

Other Parameters

- **lower** [input int, optional] Default: 0
- **overwrite_ab** [input int, optional] Default: 0
- **ldab** [input int, optional] Default: shape(ab,0)
- **overwrite_b** [input int, optional] Default: 0

scipy.linalg.lapack.cpbsv

Wrapper for cpbsv.

Parameters

- **ab** [input rank-2 array('F') with bounds (ldab,n)]
- **b** [input rank-2 array('F') with bounds (ldb,nrhs)]

Returns

- **c** [rank-2 array('F') with bounds (ldab,n) and ab storage]
- **x** [rank-2 array('F') with bounds (ldb,nrhs) and b storage]
- **info** [int]

Other Parameters

- **lower** [input int, optional] Default: 0
- **overwrite_ab** [input int, optional] Default: 0
- **ldab** [input int, optional] Default: shape(ab,0)
- **overwrite_b** [input int, optional] Default: 0

scipy.linalg.lapack.zpbsv

Wrapper for zpbsv.

Parameters

- **ab** [input rank-2 array('D') with bounds (ldab,n)]
- **b** [input rank-2 array('D') with bounds (ldb,nrhs)]

Returns

- **c** [rank-2 array('D') with bounds (ldab,n) and ab storage]

\[
x \quad \text{[rank-2 array('D') with bounds (ldb,nrhs) and b storage]}
\]
\[
info \quad \text{[int]}
\]

Other Parameters

\[
lower \quad \text{[input int, optional] Default: 0}
\]
\[
overwrite_ab \quad \text{[input int, optional] Default: 0}
\]
\[
ldab \quad \text{[input int, optional] Default: shape(ab,0)}
\]
\[
overwrite_b \quad \text{[input int, optional] Default: 0}
\]

`scipy.linalg.lapack.spbtrf`

\[
\text{scipy.linalg.lapack.spbtrf}(ab[, lower, ldab, overwrite_ab]) = \text{<fortran object>}
\]

Wrapper for `spbtrf`.

Parameters

\[
ab \quad \text{[input rank-2 array('f') with bounds (ldab,n)]}
\]

Returns

\[
c \quad \text{[rank-2 array('f') with bounds (ldab,n) and ab storage]}
\]
\[
info \quad \text{[int]}
\]

Other Parameters

\[
lower \quad \text{[input int, optional] Default: 0}
\]
\[
overwrite_ab \quad \text{[input int, optional] Default: 0}
\]
\[
ldab \quad \text{[input int, optional] Default: shape(ab,0)}
\]

`scipy.linalg.lapack.dpbtrf`

\[
\text{scipy.linalg.lapack.dpbtrf}(ab[, lower, ldab, overwrite_ab]) = \text{<fortran object>}
\]

Wrapper for `dpbtrf`.

Parameters

\[
ab \quad \text{[input rank-2 array('d') with bounds (ldab,n)]}
\]

Returns

\[
c \quad \text{[rank-2 array('d') with bounds (ldab,n) and ab storage]}
\]
\[
info \quad \text{[int]}
\]

Other Parameters

\[
lower \quad \text{[input int, optional] Default: 0}
\]
\[
overwrite_ab \quad \text{[input int, optional] Default: 0}
\]
\[
ldab \quad \text{[input int, optional] Default: shape(ab,0)}
\]
scipy.linalg.lapack.cpbtrf

scipy.linalg.lapack.cpbtrf(ab[, lower, ldab, overwrite_ab]) = <fortran object>

Wrapper for cpbtrf.

Parameters

ab [input rank-2 array('F') with bounds (ldab,n)]

Returns

c [rank-2 array('F') with bounds (ldab,n) and ab storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_ab [input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)

scipy.linalg.lapack.zpbtrf

scipy.linalg.lapack.zpbtrf(ab[, lower, ldab, overwrite_ab]) = <fortran object>

Wrapper for zpbtrf.

Parameters

ab [input rank-2 array('D') with bounds (ldab,n)]

Returns

c [rank-2 array('D') with bounds (ldab,n) and ab storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_ab [input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)

scipy.linalg.lapack.spbtrs

scipy.linalg.lapack.spbtrs(ab, b[, lower, ldab, overwrite_b]) = <fortran object>

Wrapper for spbtrs.

Parameters

ab [input rank-2 array('f') with bounds (ldab,n)]
b [input rank-2 array('f') with bounds (ldb,nrhs)]

Returns

x [rank-2 array('f') with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
ldab [input int, optional] Default: shape(ab,0)
overwrite_b [input int, optional] Default: 0
scipy.linalg.lapack.dpbtrs

Wrapper for dpbtrs.

Parameters

- \( ab \) [input rank-2 array('d') with bounds (ldab,n)]
- \( b \) [input rank-2 array('d') with bounds (ldb,nrhs)]

Returns

- \( x \) [rank-2 array('d') with bounds (ldb,nrhs) and b storage]
- \( info \) [int]

Other Parameters

- lower [input int, optional] Default: 0
- ldab [input int, optional] Default: shape(ab,0)
- overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.cpbtrs

Wrapper for cpbtrs.

Parameters

- \( ab \) [input rank-2 array('F') with bounds (ldab,n)]
- \( b \) [input rank-2 array('F') with bounds (ldb,nrhs)]

Returns

- \( x \) [rank-2 array('F') with bounds (ldb,nrhs) and b storage]
- \( info \) [int]

Other Parameters

- lower [input int, optional] Default: 0
- ldab [input int, optional] Default: shape(ab,0)
- overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.zpbtrs

Wrapper for zpbtrs.

Parameters

- \( ab \) [input rank-2 array('D') with bounds (ldab,n)]
- \( b \) [input rank-2 array('D') with bounds (ldb,nrhs)]

Returns

- \( x \) [rank-2 array('D') with bounds (ldb,nrhs) and b storage]
- \( info \) [int]

Other Parameters

- lower [input int, optional] Default: 0
- ldab [input int, optional] Default: shape(ab,0)
**overwrite_b**

[input int, optional] Default: 0

**scipy.linalg.lapack.spftrf**

```python
scipy.linalg.lapack.spftrf (n, a[, transr, uplo, overwrite_a]) = <fortran object>
```

Wrapper for `spftrf`.

**Parameters**

- **n** [input int]
- **a** [input rank-1 array('f') with bounds (nt)]

**Returns**

- **achol** [rank-1 array('f') with bounds (nt) and a storage]
- **info** [int]

**Other Parameters**

- **transr** [input string(len=1), optional] Default: ‘N’
- **uplo** [input string(len=1), optional] Default: ‘U’
- **overwrite_a** [input int, optional] Default: 0

**scipy.linalg.lapack.dpftrf**

```python
scipy.linalg.lapack.dpftrf (n, a[, transr, uplo, overwrite_a]) = <fortran object>
```

Wrapper for `dpftrf`.

**Parameters**

- **n** [input int]
- **a** [input rank-1 array('d') with bounds (nt)]

**Returns**

- **achol** [rank-1 array('d') with bounds (nt) and a storage]
- **info** [int]

**Other Parameters**

- **transr** [input string(len=1), optional] Default: ‘N’
- **uplo** [input string(len=1), optional] Default: ‘U’
- **overwrite_a** [input int, optional] Default: 0

**scipy.linalg.lapack.cpftrf**

```python
scipy.linalg.lapack.cpftrf (n, a[, transr, uplo, overwrite_a]) = <fortran object>
```

Wrapper for `cpftrf`.

**Parameters**

- **n** [input int]
- **a** [input rank-1 array('F') with bounds (nt)]

**Returns**

- **achol** [rank-1 array('F') with bounds (nt) and a storage]
- **info** [int]

**Other Parameters**
transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_a [input int, optional] Default: 0

scipy.linalg.lapack.zpftrf

scipy.linalg.lapack.zpftrf(n, a[, transr, uplo, overwrite_a]) = <fortran object>
Wrapper for zpftrf.

Parameters

n [input int]
a [input rank-1 array('D') with bounds (nt)]

Returns

achol [rank-1 array('D') with bounds (nt) and a storage]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_a [input int, optional] Default: 0

scipy.linalg.lapack.spftri

scipy.linalg.lapack.spftri(n, a[, transr, uplo, overwrite_a]) = <fortran object>
Wrapper for spftri.

Parameters

n [input int]
a [input rank-1 array('f') with bounds (nt)]

Returns

ainv [rank-1 array('f') with bounds (nt) and a storage]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_a [input int, optional] Default: 0

scipy.linalg.lapack.dpftri

scipy.linalg.lapack.dpftri(n, a[, transr, uplo, overwrite_a]) = <fortran object>
Wrapper for dpftri.

Parameters

n [input int]
a [input rank-1 array('d') with bounds (nt)]

Returns

ainv [rank-1 array('d') with bounds (nt) and a storage]
info [int]
Other Parameters

transr  [input string(len=1), optional] Default: 'N'
uplo    [input string(len=1), optional] Default: 'U'
overwrite_a  [input int, optional] Default: 0

scipy.linalg.lapack.cpftri

scipy.linalg.lapack.cpftri(n, a[, transr, uplo, overwrite_a]) = <fortran object>
Wrapper for cpftri.

Parameters

n     [input int]
a     [input rank-1 array('F') with bounds (nt)]

Returns

ainv  [rank-1 array('F') with bounds (nt) and a storage]
info  [int]

Other Parameters

transr  [input string(len=1), optional] Default: 'N'
uplo    [input string(len=1), optional] Default: 'U'
overwrite_a  [input int, optional] Default: 0

scipy.linalg.lapack.zpftri

scipy.linalg.lapack.zpftri(n, a[, transr, uplo, overwrite_a]) = <fortran object>
Wrapper for zpftri.

Parameters

n     [input int]
a     [input rank-1 array('D') with bounds (nt)]

Returns

ainv  [rank-1 array('D') with bounds (nt) and a storage]
info  [int]

Other Parameters

transr  [input string(len=1), optional] Default: 'N'
uplo    [input string(len=1), optional] Default: 'U'
overwrite_a  [input int, optional] Default: 0

scipy.linalg.lapack.spftrs

scipy.linalg.lapack.spftrs(n, a, b[, transr, uplo, overwrite_b]) = <fortran object>
Wrapper for spftrs.

Parameters

n     [input int]
a     [input rank-1 array('F') with bounds (nt)]
b     [input rank-2 array('F') with bounds (ldb,nhrs)]

Returns
scipy.linalg.lapack.dpftrs

```
scipy.linalg.lapack.dpftrs(n, a, b[, transr, uplo, overwrite_b]) = <fortran object>
```

Wrapper for dpftrs.

**Parameters**

- `n` [input int]
- `a` [input rank-1 array('d') with bounds (nt)]
- `b` [input rank-2 array('d') with bounds (ldb,nhrs)]

**Returns**

- `x` [rank-2 array('d') with bounds (ldb,nhrs) and b storage]
- `info` [int]

**Other Parameters**

- `transr` [input string(len=1), optional] Default: ‘N’
- `uplo` [input string(len=1), optional] Default: ‘U’
- `overwrite_b` [input int, optional] Default: 0

scipy.linalg.lapack.cpftrs

```
scipy.linalg.lapack.cpftrs(n, a, b[, transr, uplo, overwrite_b]) = <fortran object>
```

Wrapper for cpftrs.

**Parameters**

- `n` [input int]
- `a` [input rank-1 array('F') with bounds (nt)]
- `b` [input rank-2 array('F') with bounds (ldb,nhrs)]

**Returns**

- `x` [rank-2 array('F') with bounds (ldb,nhrs) and b storage]
- `info` [int]

**Other Parameters**

- `transr` [input string(len=1), optional] Default: ‘N’
- `uplo` [input string(len=1), optional] Default: ‘U’
- `overwrite_b` [input int, optional] Default: 0
scipy.linalg.lapack.zpftrs

scipy.linalg.lapack.zpftrs(n, a, b, transr, uplo, overwrite_b) = <fortran object>

Wrapper for zpftrs.

Parameters

n [input int]
a [input rank-1 array('D') with bounds (nt)]
b [input rank-2 array('D') with bounds (ldb,nhrs)]

Returns

x [rank-2 array('D') with bounds (ldb,nhrs) and b storage]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: ‘N’
uplo [input string(len=1), optional] Default: ‘U’
overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.spocon

scipy.linalg.lapack.spocon(a, anorm, uplo) = <fortran object>

Wrapper for spocon.

Parameters

a [input rank-2 array('f') with bounds (n,n)]
anorm [input float]

Returns

rcond [float]
info [int]

Other Parameters

uplo [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.dpocon

scipy.linalg.lapack.dpocon(a, anorm, uplo) = <fortran object>

Wrapper for dpocon.

Parameters

a [input rank-2 array('d') with bounds (n,n)]
anorm [input float]

Returns

rcond [float]
info [int]

Other Parameters

uplo [input string(len=1), optional] Default: ‘U’
**scipy.linalg.lapack.cpocon**

`scipy.linalg.lapack.cpocon(a, anorm[, uplo]) = <fortran object>`

Wrapper for `cpocon`.

**Parameters**

- `a` [input rank-2 array('F') with bounds (n,n)]
- `anorm` [input float]

**Returns**

- `rcond` [float]
- `info` [int]

**Other Parameters**

- `uplo` [input string(len=1), optional] Default: 'U'

**scipy.linalg.lapack.zpocon**

`scipy.linalg.lapack.zpocon(a, anorm[, uplo]) = <fortran object>`

Wrapper for `zpocon`.

**Parameters**

- `a` [input rank-2 array('D') with bounds (n,n)]
- `anorm` [input float]

**Returns**

- `rcond` [float]
- `info` [int]

**Other Parameters**

- `uplo` [input string(len=1), optional] Default: 'U'

**scipy.linalg.lapack.spstrf**

`scipy.linalg.lapack.spstrf(a[, tol, lower, overwrite_a]) = <fortran object>`

Wrapper for `spstrf`.

**Parameters**

- `a` [input rank-2 array('f') with bounds (n,n)]

**Returns**

- `c` [rank-2 array('f') with bounds (n,n) and a storage]
- `piv` [rank-1 array('i') with bounds (n)]
- `rank_c` [int]
- `info` [int]

**Other Parameters**

- `overwrite_a` [input int, optional] Default: 0
- `tol` [input float, optional] Default: -1.0
- `lower` [input int, optional] Default: 0
scipy.linalg.lapack.dpstrf

scipy.linalg.lapack.dpstrf \( a\[,, tol, lower, overwrite_a \] \) = <fortran object>

Wrapper for dpstrf.

Parameters

- \( a \) [input rank-2 array('d') with bounds (n,n)]

Returns

- \( c \) [rank-2 array('d') with bounds (n,n) and a storage]
- \( piv \) [rank-1 array('i') with bounds (n)]
- \( rank_c \) [int]
- \( info \) [int]

Other Parameters

- \( overwrite_a \) [input int, optional] Default: 0
- \( tol \) [input float, optional] Default: -1.0
- \( lower \) [input int, optional] Default: 0

scipy.linalg.lapack.cpstrf

scipy.linalg.lapack.cpstrf \( a\[,, tol, lower, overwrite_a \] \) = <fortran object>

Wrapper for cpstrf.

Parameters

- \( a \) [input rank-2 array('F') with bounds (n,n)]

Returns

- \( c \) [rank-2 array('F') with bounds (n,n) and a storage]
- \( piv \) [rank-1 array('i') with bounds (n)]
- \( rank_c \) [int]
- \( info \) [int]

Other Parameters

- \( overwrite_a \) [input int, optional] Default: 0
- \( tol \) [input float, optional] Default: -1.0
- \( lower \) [input int, optional] Default: 0

scipy.linalg.lapack.zpstrf

scipy.linalg.lapack.zpstrf \( a\[,, tol, lower, overwrite_a \] \) = <fortran object>

Wrapper for zpstrf.

Parameters

- \( a \) [input rank-2 array('D') with bounds (n,n)]

Returns

- \( c \) [rank-2 array('D') with bounds (n,n) and a storage]
- \( piv \) [rank-1 array('i') with bounds (n)]
- \( rank_c \) [int]
- \( info \) [int]

Other Parameters
**overwrite_a**
[input int, optional] Default: 0

**tol**
[input float, optional] Default: -1.0

**lower**
[input int, optional] Default: 0

---

**scipy.linalg.lapack.spstf2**

```python
scipy.linalg.lapack.spstf2(a[, tol, lower, overwrite_a]) = <fortran object>
```

Wrapper for spstf2.

**Parameters**

- **a**
  [input rank-2 array('f') with bounds (n,n)]

**Returns**

- **c**
  [rank-2 array('f') with bounds (n,n) and a storage]
- **piv**
  [rank-1 array('i') with bounds (n)]
- **rank_c**
  [int]
- **info**
  [int]

**Other Parameters**

- **overwrite_a**
  [input int, optional] Default: 0
- **tol**
  [input float, optional] Default: -1.0
- **lower**
  [input int, optional] Default: 0

---

**scipy.linalg.lapack.dpstf2**

```python
scipy.linalg.lapack.dpstf2(a[, tol, lower, overwrite_a]) = <fortran object>
```

Wrapper for dpstf2.

**Parameters**

- **a**
  [input rank-2 array('d') with bounds (n,n)]

**Returns**

- **c**
  [rank-2 array('d') with bounds (n,n) and a storage]
- **piv**
  [rank-1 array('i') with bounds (n)]
- **rank_c**
  [int]
- **info**
  [int]

**Other Parameters**

- **overwrite_a**
  [input int, optional] Default: 0
- **tol**
  [input float, optional] Default: -1.0
- **lower**
  [input int, optional] Default: 0
scipy.linalg.lapack.cpstf2

scipy.linalg.lapack.cpstf2(a[, tol, lower, overwrite_a]) = <fortran object>
Wrapper for cpstf2.

Parameters

- a [input rank-2 array('F') with bounds (n,n)]

Returns

- c [rank-2 array('F') with bounds (n,n) and a storage]
- piv [rank-1 array('i') with bounds (n)]
- rank_c [int]
- info [int]

Other Parameters

- overwrite_a [input int, optional] Default: 0
- tol [input float, optional] Default: -1.0
- lower [input int, optional] Default: 0

scipy.linalg.lapack.zpstf2

scipy.linalg.lapack.zpstf2(a[, tol, lower, overwrite_a]) = <fortran object>
Wrapper for zpstf2.

Parameters

- a [input rank-2 array('D') with bounds (n,n)]

Returns

- c [rank-2 array('D') with bounds (n,n) and a storage]
- piv [rank-1 array('i') with bounds (n)]
- rank_c [int]
- info [int]

Other Parameters

- overwrite_a [input int, optional] Default: 0
- tol [input float, optional] Default: -1.0
- lower [input int, optional] Default: 0

scipy.linalg.lapack.sposv

scipy.linalg.lapack.sposv(a, b[, lower, overwrite_a, overwrite_b]) = <fortran object>
Wrapper for sposv.

Parameters

- a [input rank-2 array('f') with bounds (n,n)]
- b [input rank-2 array('f') with bounds (n,nrhs)]

Returns

- c [rank-2 array('f') with bounds (n,n) and a storage]
- x [rank-2 array('f') with bounds (n,nrhs) and b storage]
- info [int]

Other Parameters

3.3. API definition
overwrite_a  
  [input int, optional] Default: 0
overwrite_b  
  [input int, optional] Default: 0
lower  
  [input int, optional] Default: 0

scipy.linalg.lapack.dposv

Wrapper for dposv.

Parameters

a  
  [input rank-2 array('d') with bounds (n,n)]
b  
  [input rank-2 array('d') with bounds (n, nrhs)]

Returns

c  
  [rank-2 array('d') with bounds (n,n) and a storage]
x  
  [rank-2 array('d') with bounds (n, nrhs) and b storage]
info  
  [int]

Other Parameters

overwrite_a  
  [input int, optional] Default: 0
overwrite_b  
  [input int, optional] Default: 0
lower  
  [input int, optional] Default: 0

scipy.linalg.lapack.cposv

Wrapper for cposv.

Parameters

a  
  [input rank-2 array('F') with bounds (n,n)]
b  
  [input rank-2 array('F') with bounds (n, nrhs)]

Returns

c  
  [rank-2 array('F') with bounds (n,n) and a storage]
x  
  [rank-2 array('F') with bounds (n, nrhs) and b storage]
info  
  [int]

Other Parameters

overwrite_a  
  [input int, optional] Default: 0
overwrite_b  
  [input int, optional] Default: 0
lower  
  [input int, optional] Default: 0
**scipy.linalg.lapack.zposv**

```python
scipy.linalg.lapack.zposv(a, b[, lower, overwrite_a, overwrite_b]) = <fortran object>
```

Wrapper for zposv.

**Parameters**

- `a` [input rank-2 array('D') with bounds (n,n)]
- `b` [input rank-2 array('D') with bounds (n,nrhs)]

**Returns**

- `c` [rank-2 array('D') with bounds (n,n) and a storage]
- `x` [rank-2 array('D') with bounds (n,nrhs) and b storage]
- `info` [int]

**Other Parameters**

- `overwrite_a` [input int, optional] Default: 0
- `overwrite_b` [input int, optional] Default: 0
- `lower` [input int, optional] Default: 0

**scipy.linalg.lapack.sposvx**

```python
scipy.linalg.lapack.sposvx(a, b[, fact, af, equed, s, lower, overwrite_a, overwrite_b]) = <fortran object>
```

Wrapper for sposvx.

**Parameters**

- `a` [input rank-2 array('f') with bounds (n,n)]
- `b` [input rank-2 array('f') with bounds (n,nrhs)]

**Returns**

- `a_s` [rank-2 array('f') with bounds (n,n) and a storage]
- `lu` [rank-2 array('f') with bounds (n,n) and af storage]
- `equed` [string(len=1)]
- `s` [rank-1 array('f') with bounds (n)]
- `b_s` [rank-2 array('f') with bounds (n,nrhs) and b storage]
- `x` [rank-2 array('f') with bounds (n,nrhs)]
- `rcond` [float]
- `ferr` [rank-1 array('f') with bounds (nrhs)]
- `berr` [rank-1 array('f') with bounds (nrhs)]
- `info` [int]

**Other Parameters**

- `fact` [input string(len=1), optional] Default: ‘E’
- `overwrite_a` [input int, optional] Default: 0
- `af` [input rank-2 array('f') with bounds (n,n)]
- `equed` [input string(len=1), optional] Default: ‘Y’
- `s` [input rank-1 array('f') with bounds (n)]
- `overwrite_b` [input int, optional] Default: 0
- `lower` [input int, optional] Default: 0
### scipy.linalg.lapack.dposvx

**scipy.linalg.lapack.dposvx**

```python
scipy.linalg.lapack.dposvx(a, b[, fact, af, equed, s, lower, overwrite_a, overwrite_b]) = <fortran object>
```

Wrapper for dposvx.

**Parameters**

- `a` : [input rank-2 array('d') with bounds (n,n)]
- `b` : [input rank-2 array('d') with bounds (n,nrhs)]

**Returns**

- `a_s` : [rank-2 array('d') with bounds (n,n) and a storage]
- `lu` : [rank-2 array('d') with bounds (n,n) and af storage]
- `equed` : [string(len=1)]
- `s` : [rank-1 array('d') with bounds (n)]
- `b_s` : [rank-2 array('d') with bounds (n,nrhs) and b storage]
- `x` : [rank-2 array('d') with bounds (n,nrhs)]
- `rcond` : [float]
- `ferr` : [rank-1 array('d') with bounds (nrhs)]
- `berr` : [rank-1 array('d') with bounds (nrhs)]
- `info` : [int]

**Other Parameters**

- `fact` : [input string(len=1), optional] Default: 'E'
- `overwrite_a` : [input int, optional] Default: 0
- `af` : [input rank-2 array('d') with bounds (n,n)]
- `equed` : [input string(len=1), optional] Default: 'Y'
- `s` : [input rank-1 array('d') with bounds (n)]
- `overwrite_b` : [input int, optional] Default: 0
- `lower` : [input int, optional] Default: 0

---

### scipy.linalg.lapack.cposvx

**scipy.linalg.lapack.cposvx**

```python
scipy.linalg.lapack.cposvx(a, b[, fact, af, equed, s, lower, overwrite_a, overwrite_b]) = <fortran object>
```

Wrapper for cposvx.

**Parameters**

- `a` : [input rank-2 array('F') with bounds (n,n)]
- `b` : [input rank-2 array('F') with bounds (n,nrhs)]

**Returns**

- `a_s` : [rank-2 array('F') with bounds (n,n) and a storage]
- `lu` : [rank-2 array('F') with bounds (n,n) and af storage]
- `equed` : [string(len=1)]
- `s` : [rank-1 array('f') with bounds (n)]
- `b_s` : [rank-2 array('F') with bounds (n,nrhs) and b storage]
- `x` : [rank-2 array('F') with bounds (n,nrhs)]
- `rcond` : [float]
- `ferr` : [rank-1 array('f') with bounds (nrhs)]
- `berr` : [rank-1 array('f') with bounds (nrhs)]
- `info` : [int]
**Other Parameters**

- **fact**  
  [input string(len=1), optional] Default: ‘E’
- **overwrite_a**  
  [input int, optional] Default: 0
- **af**  
  [input rank-2 array('F') with bounds (n,n)]
- **equed**  
  [input string(len=1), optional] Default: ‘Y’
- **s**  
  [input rank-1 array('f') with bounds (n)]
- **overwrite_b**  
  [input int, optional] Default: 0
- **lower**  
  [input int, optional] Default: 0

```python
scipy.linalg.lapack.zposvx
```

Wrapper for zposvx.

**Parameters**

- **a**  
  [input rank-2 array('D') with bounds (n,n)]
- **b**  
  [input rank-2 array('D') with bounds (n,nrhs)]

**Returns**

- **a_s**  
  [rank-2 array('D') with bounds (n,n) and a storage]
- **lu**  
  [rank-2 array('D') with bounds (n,n) and af storage]
- **equed**  
  [string(len=1)]
- **s**  
  [rank-1 array('d') with bounds (n)]
- **b_s**  
  [rank-2 array('D') with bounds (n,nrhs) and b storage]
- **x**  
  [rank-2 array('D') with bounds (n,nrhs)]
- **rcond**  
  [float]
- **ferr**  
  [rank-1 array('d') with bounds (nrhs)]
- **berr**  
  [rank-1 array('d') with bounds (nrhs)]
- **info**  
  [int]

**Other Parameters**

- **fact**  
  [input string(len=1), optional] Default: ‘E’
- **overwrite_a**  
  [input int, optional] Default: 0
- **af**  
  [input rank-2 array('D') with bounds (n,n)]
- **equed**  
  [input string(len=1), optional] Default: ‘Y’
- **s**  
  [input rank-1 array('d') with bounds (n)]
- **overwrite_b**  
  [input int, optional] Default: 0
- **lower**  
  [input int, optional] Default: 0
scipy.linalg.lapack.spotrf

scipy.linalg.lapack.spotrf(a[, lower, clean, overwrite_a]) = <fortran object>

Wrapper for spotrf.

Parameters

a    [input rank-2 array('f') with bounds (n,n)]

Returns

c    [rank-2 array('f') with bounds (n,n) and a storage]
info    [int]

Other Parameters

overwrite_a    [input int, optional] Default: 0
lower    [input int, optional] Default: 0
clean    [input int, optional] Default: 1

scipy.linalg.lapack.dpotrf

scipy.linalg.lapack.dpotrf(a[, lower, clean, overwrite_a]) = <fortran object>

Wrapper for dpotrf.

Parameters

a    [input rank-2 array('d') with bounds (n,n)]

Returns

c    [rank-2 array('d') with bounds (n,n) and a storage]
info    [int]

Other Parameters

overwrite_a    [input int, optional] Default: 0
lower    [input int, optional] Default: 0
clean    [input int, optional] Default: 1

scipy.linalg.lapack.cpotrf

scipy.linalg.lapack.cpotrf(a[, lower, clean, overwrite_a]) = <fortran object>

Wrapper for cpotrf.

Parameters

a    [input rank-2 array('F') with bounds (n,n)]

Returns

c    [rank-2 array('F') with bounds (n,n) and a storage]
info    [int]

Other Parameters

overwrite_a    [input int, optional] Default: 0
lower    [input int, optional] Default: 0
clean    [input int, optional] Default: 1
scipy.linalg.lapack.zpotrf

scipy.linalg.lapack.zpotrf(a[, lower, clean, overwrite_a]) = <fortran object>

Wrapper for zpotrf.

Parameters
a [input rank-2 array('D') with bounds (n,n)]

Returns
c [rank-2 array('D') with bounds (n,n) and a storage]
info [int]

Other Parameters
overwrite_a [input int, optional] Default: 0
lower [input int, optional] Default: 0
clean [input int, optional] Default: 1

scipy.linalg.lapack.spotri

scipy.linalg.lapack.spotri(c[, lower, overwrite_c]) = <fortran object>

Wrapper for spotri.

Parameters
c [input rank-2 array('f') with bounds (n,n)]

Returns
inv_a [rank-2 array('f') with bounds (n,n) and c storage]
info [int]

Other Parameters
overwrite_c [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.lapack.dpotri

scipy.linalg.lapack.dpotri(c[, lower, overwrite_c]) = <fortran object>

Wrapper for dpotri.

Parameters
c [input rank-2 array('d') with bounds (n,n)]

Returns
inv_a [rank-2 array('d') with bounds (n,n) and c storage]
info [int]

Other Parameters
overwrite_c [input int, optional] Default: 0
lower [input int, optional] Default: 0
scipy.linalg.lapack.cpotri

```python
scipy.linalg.lapack.cpotri(c[, lower, overwrite_c]) = <fortran object>
```

Wrapper for cpotri.

**Parameters**

- `c` [input rank-2 array('F') with bounds (n,n)]

**Returns**

- `inv_a` [rank-2 array('F') with bounds (n,n) and c storage]
- `info` [int]

**Other Parameters**

- `overwrite_c` [input int, optional] Default: 0
- `lower` [input int, optional] Default: 0

scipy.linalg.lapack.zpotri

```python
scipy.linalg.lapack.zpotri(c[, lower, overwrite_c]) = <fortran object>
```

Wrapper for zpotri.

**Parameters**

- `c` [input rank-2 array('D') with bounds (n,n)]

**Returns**

- `inv_a` [rank-2 array('D') with bounds (n,n) and c storage]
- `info` [int]

**Other Parameters**

- `overwrite_c` [input int, optional] Default: 0
- `lower` [input int, optional] Default: 0

scipy.linalg.lapack.spotrs

```python
scipy.linalg.lapack.spotrs(c, b[, lower, overwrite_b]) = <fortran object>
```

Wrapper for spotrs.

**Parameters**

- `c` [input rank-2 array('f') with bounds (n,n)]
- `b` [input rank-2 array('f') with bounds (n,nrhs)]

**Returns**

- `x` [rank-2 array('f') with bounds (n,nrhs) and b storage]
- `info` [int]

**Other Parameters**

- `overwrite_b` [input int, optional] Default: 0
- `lower` [input int, optional] Default: 0
scipy.linalg.lapack.dpotrs

scipy.linalg.lapack.dpotrs(c, b[, lower, overwrite_b]) = <fortran object>
Wrapper for dpotrs.

Parameters

  c [input rank-2 array('d') with bounds (n,n)]
  b [input rank-2 array('d') with bounds (n,nrhs)]

Returns

  x [rank-2 array('d') with bounds (n,nrhs) and b storage]
  info [int]

Other Parameters

  overwrite_b [input int, optional] Default: 0
  lower [input int, optional] Default: 0

scipy.linalg.lapack.cpotrs

scipy.linalg.lapack.cpotrs(c, b[, lower, overwrite_b]) = <fortran object>
Wrapper for cpotrs.

Parameters

  c [input rank-2 array('F') with bounds (n,n)]
  b [input rank-2 array('F') with bounds (n,nrhs)]

Returns

  x [rank-2 array('F') with bounds (n,nrhs) and b storage]
  info [int]

Other Parameters

  overwrite_b [input int, optional] Default: 0
  lower [input int, optional] Default: 0

scipy.linalg.lapack.zpotrs

scipy.linalg.lapack.zpotrs(c, b[, lower, overwrite_b]) = <fortran object>
Wrapper for zpotrs.

Parameters

  c [input rank-2 array('D') with bounds (n,n)]
  b [input rank-2 array('D') with bounds (n,nrhs)]

Returns

  x [rank-2 array('D') with bounds (n,nrhs) and b storage]
  info [int]

Other Parameters

  overwrite_b [input int, optional] Default: 0
  lower [input int, optional] Default: 0
scipy.linalg.lapack.sppcon

scipy.linalg.lapack.sppcon\( (n, ap, anorm[, lower]) \) = <fortran object>
Wrapper for sppcon.

Parameters

- n: [input int]
- ap: [input rank-1 array('f') with bounds (L)]
- anorm: [input float]

Returns

- rcond: [float]
- info: [int]

Other Parameters

- lower: [input int, optional] Default: 0

scipy.linalg.lapack.dppcon

scipy.linalg.lapack.dppcon\( (n, ap, anorm[, lower]) \) = <fortran object>
Wrapper for dppcon.

Parameters

- n: [input int]
- ap: [input rank-1 array('d') with bounds (L)]
- anorm: [input float]

Returns

- rcond: [float]
- info: [int]

Other Parameters

- lower: [input int, optional] Default: 0

scipy.linalg.lapack.cppcon

scipy.linalg.lapack.cppcon\( (n, ap, anorm[, lower]) \) = <fortran object>
Wrapper for cppcon.

Parameters

- n: [input int]
- ap: [input rank-1 array('F') with bounds (L)]
- anorm: [input float]

Returns

- rcond: [float]
- info: [int]

Other Parameters

- lower: [input int, optional] Default: 0
scipy.linalg.lapack.zppcon

scipy.linalg.lapack.zppcon(n, ap, anorm[, lower]) = <fortran object>

Wrapper for zppcon.

Parameters
- n [input int]
- ap [input rank-1 array('D') with bounds (L)]
- anorm [input float]

Returns
- rcond [float]
- info [int]

Other Parameters
- lower [input int, optional] Default: 0

scipy.linalg.lapack.sppsv

scipy.linalg.lapack.sppsv(n, ap, b[, lower, overwrite_b]) = <fortran object>

Wrapper for sppsv.

Parameters
- n [input int]
- ap [input rank-1 array('F') with bounds (L)]
- b [input rank-2 array('F') with bounds (ldb,nrhs)]

Returns
- x [rank-2 array('F') with bounds (ldb,nrhs) and b storage]
- info [int]

Other Parameters
- lower [input int, optional] Default: 0
- overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.dppsv

scipy.linalg.lapack.dppsv(n, ap, b[, lower, overwrite_b]) = <fortran object>

Wrapper for dppsv.

Parameters
- n [input int]
- ap [input rank-1 array('D') with bounds (L)]
- b [input rank-2 array('D') with bounds (ldb,nrhs)]

Returns
- x [rank-2 array('D') with bounds (ldb,nrhs) and b storage]
- info [int]

Other Parameters
- lower [input int, optional] Default: 0
- overwrite_b [input int, optional] Default: 0
scipy.linalg.lapack.cppsv

scipy.linalg.lapack.cppsv(n, ap[, lower, overwrite_b]) = <fortran object>
Wrapper for cppsv.

Parameters

n [input int]
ap [input rank-1 array('F') with bounds (L)]
b [input rank-2 array('F') with bounds (ldb,nrhs)]

Returns

x [rank-2 array('F') with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.zppsv

scipy.linalg.lapack.zppsv(n, ap[, lower, overwrite_b]) = <fortran object>
Wrapper for zppsv.

Parameters

n [input int]
ap [input rank-1 array('D') with bounds (L)]
b [input rank-2 array('D') with bounds (ldb,nrhs)]

Returns

x [rank-2 array('D') with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.spptrf

scipy.linalg.lapack.spptrf(n, ap[, lower, overwrite_ap]) = <fortran object>
Wrapper for spptrf.

Parameters

n [input int]
ap [input rank-1 array('f') with bounds (L)]

Returns

ul [rank-1 array('f') with bounds (L) and ap storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_ap [input int, optional] Default: 0
scipy.linalg.lapack.dpptrf

Wrapper for dpptrf.

Parameters

- n [input int]
- ap [input rank-1 array('d') with bounds (L)]

Returns

- ul [rank-1 array('d') with bounds (L) and ap storage]
- info [int]

Other Parameters

- lower [input int, optional] Default: 0
- overwrite_ap [input int, optional] Default: 0

scipy.linalg.lapack.cpptrf

Wrapper for cpptrf.

Parameters

- n [input int]
- ap [input rank-1 array('F') with bounds (L)]

Returns

- ul [rank-1 array('F') with bounds (L) and ap storage]
- info [int]

Other Parameters

- lower [input int, optional] Default: 0
- overwrite_ap [input int, optional] Default: 0

scipy.linalg.lapack.zpptrf

Wrapper for zpptrf.

Parameters

- n [input int]
- ap [input rank-1 array('D') with bounds (L)]

Returns

- ul [rank-1 array('D') with bounds (L) and ap storage]
- info [int]

Other Parameters

- lower [input int, optional] Default: 0
- overwrite_ap [input int, optional] Default: 0
scipy.linalg.lapack.spptri

scipy.linalg.lapack.spptri(\( n, ap[, lower, overwrite_ap] \)) = <fortran object>

Wrapper for spptri.

Parameters
\( n \) [input int]
\( ap \) [input rank-1 array('f') with bounds (L)]

Returns
\( uli \) [rank-1 array('f') with bounds (L) and ap storage]
\( info \) [int]

Other Parameters
\( lower \) [input int, optional] Default: 0
\( overwrite_ap \) [input int, optional] Default: 0

scipy.linalg.lapack.dpptri

scipy.linalg.lapack.dpptri(\( n, ap[, lower, overwrite_ap] \)) = <fortran object>

Wrapper for dpptri.

Parameters
\( n \) [input int]
\( ap \) [input rank-1 array('d') with bounds (L)]

Returns
\( uli \) [rank-1 array('d') with bounds (L) and ap storage]
\( info \) [int]

Other Parameters
\( lower \) [input int, optional] Default: 0
\( overwrite_ap \) [input int, optional] Default: 0

scipy.linalg.lapack.cpptri

scipy.linalg.lapack.cpptri(\( n, ap[, lower, overwrite_ap] \)) = <fortran object>

Wrapper for cpptri.

Parameters
\( n \) [input int]
\( ap \) [input rank-1 array('F') with bounds (L)]

Returns
\( uli \) [rank-1 array('F') with bounds (L) and ap storage]
\( info \) [int]

Other Parameters
\( lower \) [input int, optional] Default: 0
\( overwrite_ap \) [input int, optional] Default: 0
scipy.linalg.lapack.zpptri

scipy.linalg.lapack.zpptri(n, ap[, lower, overwrite_ap]) = <fortran object>
Wrapper for zpptri.

Parameters
n [input int]
ap [input rank-1 array('D') with bounds (L)]

Returns
ul [rank-1 array('D') with bounds (L) and ap storage]
info [int]

Other Parameters
lower [input int, optional] Default: 0
overwrite_ap [input int, optional] Default: 0

scipy.linalg.lapack.spptrs

scipy.linalg.lapack.spptrs(n, ap, b[, lower, overwrite_b]) = <fortran object>
Wrapper for spptrs.

Parameters
n [input int]
ap [input rank-1 array('f') with bounds (L)]
b [input rank-2 array('f') with bounds (ldb, nrhs)]

Returns
x [rank-2 array('f') with bounds (ldb, nrhs) and b storage]
info [int]

Other Parameters
lower [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.dpptrs

scipy.linalg.lapack.dpptrs(n, ap, b[, lower, overwrite_b]) = <fortran object>
Wrapper for dpptrs.

Parameters
n [input int]
ap [input rank-1 array('d') with bounds (L)]
b [input rank-2 array('d') with bounds (ldb, nrhs)]

Returns
x [rank-2 array('d') with bounds (ldb, nrhs) and b storage]
info [int]

Other Parameters
lower [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
scipy.linalg.lapack.cpptrs

scipy.linalg.lapack.cpptrs(n, ap[, lower, overwrite_b]) = <fortran object>
Wrapper for cpptrs.

Parameters

n [input int]
ap [input rank-1 array('F') with bounds (L)]
b [input rank-2 array('F') with bounds (ldb,nrhs)]

Returns

x [rank-2 array('F') with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.zpptrs

scipy.linalg.lapack.zpptrs(n, ap[, lower, overwrite_b]) = <fortran object>
Wrapper for zpptrs.

Parameters

n [input int]
ap [input rank-1 array('D') with bounds (L)]
b [input rank-2 array('D') with bounds (ldb,nrhs)]

Returns

x [rank-2 array('D') with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

lower [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.sptsv

scipy.linalg.lapack.sptsv(d, e, b[, overwrite_d, overwrite_e, overwrite_b]) = <fortran object>
Wrapper for sptsv.

Parameters

d [input rank-1 array('f') with bounds (n)]
e [input rank-1 array('f') with bounds (-1 + n)]
b [input rank-2 array('f') with bounds (n,nrhs)]

Returns

d [rank-1 array('f') with bounds (n)]
du [rank-1 array('f') with bounds (-1 + n) and e storage]
x [rank-2 array('f') with bounds (n,nrhs) and b storage]
info [int]

Other Parameters
overwrite_d
[input int, optional] Default: 0

overwrite_e
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.dptsv

scipy.linalg.lapack.dptsv\( d, e, b[, overwrite_d, overwrite_e, overwrite_b] \) = <fortran object>

Wrapper for dptsv.

Parameters

d [input rank-1 array('d') with bounds (n)]
e [input rank-1 array('d') with bounds (-1 + n)]
b [input rank-2 array('d') with bounds (n,nrhs)]

Returns

d [rank-1 array('d') with bounds (n)]
du [rank-1 array('d') with bounds (-1 + n) and e storage]
x [rank-2 array('d') with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_d
[input int, optional] Default: 0

overwrite_e
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0

scipy.linalg.lapack.cptsv

scipy.linalg.lapack.cptsv\( d, e, b[, overwrite_d, overwrite_e, overwrite_b] \) = <fortran object>

Wrapper for cptsv.

Parameters

d [input rank-1 array('f') with bounds (n)]
e [input rank-1 array('F') with bounds (-1 + n)]
b [input rank-2 array('F') with bounds (n,nrhs)]

Returns

d [rank-1 array('f') with bounds (n)]
du [rank-1 array('F') with bounds (-1 + n) and e storage]
x [rank-2 array('F') with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_d
[input int, optional] Default: 0

overwrite_e
[input int, optional] Default: 0

overwrite_b
[input int, optional] Default: 0
scipy.linalg.lapack.zptsv

scipy.linalg.lapack.zptsv(d, e, b[, overwrite_d, overwrite_e, overwrite_b]) = <fortran object>

Wrapper for zptsv.

Parameters

- **d** [input rank-1 array('d') with bounds (n)]
- **e** [input rank-1 array('D') with bounds (-1 + n)]
- **b** [input rank-2 array('D') with bounds (n,nrhs)]

Returns

- **d** [rank-1 array('d') with bounds (n)]
- **du** [rank-1 array('D') with bounds (-1 + n) and e storage]
- **x** [rank-2 array('D') with bounds (n,nrhs) and b storage]
- **info** [int]

Other Parameters

- **overwrite_d** [input int, optional] Default: 0
- **overwrite_e** [input int, optional] Default: 0
- **overwrite_b** [input int, optional] Default: 0

scipy.linalg.lapack.sptsvx

scipy.linalg.lapack.sptsvx(d, e, b[, fact, df, ef]) = <fortran object>

Wrapper for sptsvx.

Parameters

- **d** [input rank-1 array('f') with bounds (n)]
- **e** [input rank-1 array('f') with bounds (max(0, -1 + n))]
- **b** [input rank-2 array('f') with bounds (ldb,nrhs)]

Returns

- **df** [rank-1 array('f') with bounds (n)]
- **ef** [rank-1 array('f') with bounds (max(0, -1 + n))]
- **x** [rank-2 array('f') with bounds (ldx,nrhs)]
- **rcond** [float]
- **ferr** [rank-1 array('f') with bounds (nrhs)]
- **berr** [rank-1 array('f') with bounds (nrhs)]
- **info** [int]

Other Parameters

- **fact** [input string(len=1), optional] Default: ‘N’
- **df** [input rank-1 array('f') with bounds (n)]
- **ef** [input rank-1 array('f') with bounds (max(0, -1 + n))]

Chapter 3. SciPy API
**scipy.linalg.lapack.dptsvx**

```python
scipy.linalg.lapack.dptsvx(d, e, b[, fact, df, ef]) = <fortran object>
```

Wrapper for dptsvx.

**Parameters**
- `d` [input rank-1 array('d') with bounds (n)]
- `e` [input rank-1 array('d') with bounds (max(0, -1 + n))]
- `b` [input rank-2 array('d') with bounds (ldb,nrhs)]

**Returns**
- `df` [rank-1 array('d') with bounds (n)]
- `ef` [rank-1 array('d') with bounds (max(0, -1 + n))]
- `x` [rank-2 array('d') with bounds (ldx,nrhs)]
- `rcond` [float]
- `ferr` [rank-1 array('d') with bounds (nrhs)]
- `berr` [rank-1 array('d') with bounds (nrhs)]
- `info` [int]

**Other Parameters**
- `fact` [input string(len=1), optional] Default: ‘N’
- `df` [input rank-1 array('d') with bounds (n)]
- `ef` [input rank-1 array('d') with bounds (max(0, -1 + n))]

**scipy.linalg.lapack.cptsvx**

```python
scipy.linalg.lapack.cptsvx(d, e, b[, fact, df, ef]) = <fortran object>
```

Wrapper for cptsvx.

**Parameters**
- `d` [input rank-1 array('f') with bounds (n)]
- `e` [input rank-1 array('F') with bounds (max(0, -1 + n))]
- `b` [input rank-2 array('F') with bounds (ldb,nrhs)]

**Returns**
- `df` [rank-1 array('f') with bounds (n)]
- `ef` [rank-1 array('F') with bounds (max(0, -1 + n))]
- `x` [rank-2 array('F') with bounds (ldx,nrhs)]
- `rcond` [float]
- `ferr` [rank-1 array('f') with bounds (nrhs)]
- `berr` [rank-1 array('f') with bounds (nrhs)]
- `info` [int]

**Other Parameters**
- `fact` [input string(len=1), optional] Default: ‘N’
- `df` [input rank-1 array('f') with bounds (n)]
- `ef` [input rank-1 array('F') with bounds (max(0, -1 + n))]
scipy.linalg.lapack.zptsvx

```python
scipy.linalg.lapack.zptsvx(d, e, b[, fact, df, ef]) = <fortran object>

Wrapper for zptsvx.
```

Parameters
- `d` [input rank-1 array('d') with bounds (n)]
- `e` [input rank-1 array('D') with bounds (max(0, -1 + n))]
- `b` [input rank-2 array('D') with bounds (ldb,nrhs)]

Returns
- `df` [rank-1 array('d') with bounds (n)]
- `ef` [rank-1 array('D') with bounds (max(0, -1 + n))]
- `x` [rank-2 array('D') with bounds (ldx,nrhs)]
- `rcond` [float]
- `ferr` [rank-1 array('d') with bounds (nrhs)]
- `berr` [rank-1 array('d') with bounds (nrhs)]
- `info` [int]

Other Parameters
- `fact` [input string(len=1), optional] Default: ‘N’
- `df` [input rank-1 array('d') with bounds (n)]
- `ef` [input rank-1 array('D') with bounds (max(0, -1 + n))]

scipy.linalg.lapack.spttrf

```python
scipy.linalg.lapack.spttrf(d, e[, overwrite_d, overwrite_e]) = <fortran object>

Wrapper for spttrf.
```

Parameters
- `d` [input rank-1 array('f') with bounds (n)]
- `e` [input rank-1 array('f') with bounds ((n>0?-1+n:0))]

Returns
- `d` [rank-1 array('f') with bounds (n)]
- `e` [rank-1 array('f') with bounds ((n>0?-1+n:0))]
- `info` [int]

Other Parameters
- `overwrite_d` [input int, optional] Default: 0
- `overwrite_e` [input int, optional] Default: 0

scipy.linalg.lapack.dpttrf

```python
scipy.linalg.lapack.dpttrf(d, e[, overwrite_d, overwrite_e]) = <fortran object>

Wrapper for dpttrf.
```

Parameters
- `d` [input rank-1 array('d') with bounds (n)]
- `e` [input rank-1 array('d') with bounds ((n>0?-1+n:0))]

Returns
- `d` [rank-1 array('d') with bounds (n)]

```
e [rank-1 array('d') with bounds ((n > 0?-1 + n:0))]
info [int]

Other Parameters
overwrite_d
 [input int, optional] Default: 0
overwrite_e
 [input int, optional] Default: 0

scipy.linalg.lapack.cpttrf
scipy.linalg.lapack.cpttrf (d, e[, overwrite_d, overwrite_e]) = <fortran object>
Wrapper for cpttrf.

Parameters
 d [input rank-1 array('f') with bounds (n)]
 e [input rank-1 array('F') with bounds ((n > 0?-1 + n:0))]

Returns
 d [rank-1 array('f') with bounds (n)]
 e [rank-1 array('F') with bounds ((n > 0?-1 + n:0))]
 info [int]

Other Parameters
overwrite_d
 [input int, optional] Default: 0
overwrite_e
 [input int, optional] Default: 0

scipy.linalg.lapack.zpttrf
scipy.linalg.lapack.zpttrf (d, e[, overwrite_d, overwrite_e]) = <fortran object>
Wrapper for zpttrf.

Parameters
 d [input rank-1 array('d') with bounds (n)]
 e [input rank-1 array('D') with bounds ((n > 0?-1 + n:0))]

Returns
 d [rank-1 array('d') with bounds (n)]
 e [rank-1 array('D') with bounds ((n > 0?-1 + n:0))]
 info [int]

Other Parameters
overwrite_d
 [input int, optional] Default: 0
overwrite_e
 [input int, optional] Default: 0
```
scipy.linalg.lapack.spttrs

```python
scipy.linalg.lapack.spttrs(d, e, b[, overwrite_b]) = <fortran object>
```

Wrapper for `spttrs`.

**Parameters**

- `d` [input rank-1 array('f') with bounds (n)]
- `e` [input rank-1 array('f') with bounds ((n > 0?-1+n:0))]
- `b` [input rank-2 array('f') with bounds (ldb,nrhs)]

**Returns**

- `x` [rank-2 array('f') with bounds (ldb,nrhs) and b storage]
- `info` [int]

**Other Parameters**

- `overwrite_b` [input int, optional] Default: 0

scipy.linalg.lapack.dpttrs

```python
scipy.linalg.lapack.dpttrs(d, e, b[, overwrite_b]) = <fortran object>
```

Wrapper for `dpttrs`.

**Parameters**

- `d` [input rank-1 array('d') with bounds (n)]
- `e` [input rank-1 array('d') with bounds ((n > 0?-1+n:0))]
- `b` [input rank-2 array('d') with bounds (ldb,nrhs)]

**Returns**

- `x` [rank-2 array('d') with bounds (ldb,nrhs) and b storage]
- `info` [int]

**Other Parameters**

- `overwrite_b` [input int, optional] Default: 0

scipy.linalg.lapack.cpttrs

```python
scipy.linalg.lapack.cpttrs(d, e, b[, lower, overwrite_b]) = <fortran object>
```

Wrapper for `cpttrs`.

**Parameters**

- `d` [input rank-1 array('f') with bounds (n)]
- `e` [input rank-1 array('F') with bounds ((n > 0?-1+n:0))]
- `b` [input rank-2 array('F') with bounds (ldb,nrhs)]

**Returns**

- `x` [rank-2 array('F') with bounds (ldb,nrhs) and b storage]
- `info` [int]

**Other Parameters**

- `lower` [input int, optional] Default: 0
- `overwrite_b` [input int, optional] Default: 0
**scipy.linalg.lapack.zpttrs**

```python
scipy.linalg.lapack.zpttrs(d, e, b[, lower, overwrite_b]) = <fortran object>
```

Wrapper for zpttrs.

**Parameters**

- `d` [input rank-1 array('d') with bounds (n)]
- `e` [input rank-1 array('D') with bounds ((n > 0?-1+n:0))]
- `b` [input rank-2 array('D') with bounds (ldb,nrhs)]

**Returns**

- `x` [rank-2 array('D') with bounds (ldb,nrhs) and b storage]
- `info` [int]

**Other Parameters**

- `lower` [input int, optional] Default: 0
- `overwrite_b` [input int, optional] Default: 0

---

**scipy.linalg.lapack.spteqr**

```python
scipy.linalg.lapack.spteqr(d, e, z[, compute_z, overwrite_d, overwrite_e, overwrite_z]) = <fortran object>
```

Wrapper for spteqr.

**Parameters**

- `d` [input rank-1 array('f') with bounds (n)]
- `e` [input rank-1 array('f') with bounds ((n > 0?-1+n:0))]
- `z` [input rank-2 array('f') with bounds ((compute_z == 0?shape(z, 0):max(1, n)),(compute_z == 0?shape(z, 1):n))]

**Returns**

- `d` [rank-1 array('f') with bounds (n)]
- `e` [rank-1 array('f') with bounds ((n > 0?-1+n:0))]
- `z` [rank-2 array('f') with bounds ((compute_z == 0?shape(z, 0):max(1, n)),(compute_z == 0?shape(z, 1):n))]
- `info` [int]

**Other Parameters**

- `compute_z` [input int, optional] Default: 0
- `overwrite_d` [input int, optional] Default: 0
- `overwrite_e` [input int, optional] Default: 0
- `overwrite_z` [input int, optional] Default: 0
scipy.linalg.lapack.dpteqr

scipy.linalg.lapack.dpteqr\( (d, e, z[, compute_z, overwrite_d, overwrite_e, overwrite_z]) \) = <fortran object>

Wrapper for dpteqr.

**Parameters**
- d [input rank-1 array('d') with bounds (n)]
- e [input rank-1 array('d') with bounds ((n > 0? -1 + n:0))]
- z [input rank-2 array('d') with bounds ((compute_z == 0?shape(z, 0):max(1, n)),(compute_z == 0?shape(z, 1):n))]

**Returns**
- d [rank-1 array('d') with bounds (n)]
- e [rank-1 array('d') with bounds ((n > 0? -1 + n:0))]
- z [rank-2 array('d') with bounds ((compute_z == 0?shape(z, 0):max(1, n)),(compute_z == 0?shape(z, 1):n))]
- info [int]

**Other Parameters**
- compute_z [input int, optional] Default: 0
- overwrite_d [input int, optional] Default: 0
- overwrite_e [input int, optional] Default: 0
- overwrite_z [input int, optional] Default: 0

scipy.linalg.lapack.cpteqr

scipy.linalg.lapack.cpteqr\( (d, e, z[, compute_z, overwrite_d, overwrite_e, overwrite_z]) \) = <fortran object>

Wrapper for cpteqr.

**Parameters**
- d [input rank-1 array('f') with bounds (n)]
- e [input rank-1 array('f') with bounds ((n > 0? -1 + n:0))]
- z [input rank-2 array('F') with bounds ((compute_z == 0?shape(z, 0):max(1, n)),(compute_z == 0?shape(z, 1):n))]

**Returns**
- d [rank-1 array('f') with bounds (n)]
- e [rank-1 array('f') with bounds ((n > 0? -1 + n:0))]
- z [rank-2 array('F') with bounds ((compute_z == 0?shape(z, 0):max(1, n)),(compute_z == 0?shape(z, 1):n))]
- info [int]

**Other Parameters**
- compute_z [input int, optional] Default: 0
- overwrite_d [input int, optional] Default: 0
- overwrite_e [input int, optional] Default: 0
**overwrite_z**
[input int, optional] Default: 0

**scipy.linalg.lapack.zpteqr**

```python
scipy.linalg.lapack.zpteqr(d, e, z[, compute_z, overwrite_d, overwrite_e, overwrite_z]) = <fortran object>
```

Wrapper for zpteqr.

**Parameters**

- **d**  
  [input rank-1 array('d') with bounds (n)]
- **e**  
  [input rank-1 array('d') with bounds ((n > 0? -1 + n:0))]
- **z**  
  [input rank-2 array('D') with bounds ((compute_z == 0?shape(z, 0):max(1, n)),(compute_z == 0?shape(z, 1):n))]

**Returns**

- **d**  
  [rank-1 array('d') with bounds (n)]
- **e**  
  [rank-1 array('d') with bounds ((n > 0? -1 + n:0))]
- **z**  
  [rank-2 array('D') with bounds ((compute_z == 0?shape(z, 0):max(1, n)),(compute_z == 0?shape(z, 1):n))]
- **info**  
  [int]

**Other Parameters**

- **compute_z**  
  [input int, optional] Default: 0
- **overwrite_d**  
  [input int, optional] Default: 0
- **overwrite_e**  
  [input int, optional] Default: 0
- **overwrite_z**  
  [input int, optional] Default: 0

**scipy.linalg.lapack.crot**

```python
scipy.linalg.lapack.crot(x, y, c[, s, n, offx, incx, offy, incy, overwrite_x, overwrite_y]) = <fortran object>
```

Wrapper for crot.

**Parameters**

- **x**  
  [input rank-1 array('F') with bounds (lx)]
- **y**  
  [input rank-1 array('F') with bounds (ly)]
- **c**  
  [input float]
- **s**  
  [input complex]

**Returns**

- **x**  
  [rank-1 array('F') with bounds (lx)]
- **y**  
  [rank-1 array('F') with bounds (ly)]

**Other Parameters**

- **n**  
  [input int, optional] Default: (lx-1-offx)/abs(incx)+1
- **overwrite_x**  
  [input int, optional] Default: 0
- **offx**  
  [input int, optional] Default: 0
- **incy**  
  [input int, optional] Default: 1
scipy.linalg.lapack.zrot

\[
\text{scipy.linalg.lapack.zrot}(x, y, c, s, n, offx, incx, offy, incy, overwrite_x, overwrite_y) = <\text{fortran object}>
\]

Wrapper for zrot.

**Parameters**

- \(x\) [input rank-1 array('D') with bounds (lx)]
- \(y\) [input rank-1 array('D') with bounds (ly)]
- \(c\) [input float]
- \(s\) [input complex]

**Returns**

- \(x\) [rank-1 array('D') with bounds (lx)]
- \(y\) [rank-1 array('D') with bounds (ly)]

**Other Parameters**

- \(n\) [input int, optional] Default: \((lx-1-offx)/abs(incx)+1\)
- \(overwrite_x\) [input int, optional] Default: 0
- \(offx\) [input int, optional] Default: 0
- \(incx\) [input int, optional] Default: 1
- \(overwrite_y\) [input int, optional] Default: 0
- \(offy\) [input int, optional] Default: 0
- \(incy\) [input int, optional] Default: 1

scipy.linalg.lapack.ssbev

\[
\text{scipy.linalg.lapack.ssbev}(ab[, compute_v, lower, ldab, overwrite_ab]) = <\text{fortran object}>
\]

Wrapper for ssbev.

**Parameters**

- \(ab\) [input rank-2 array('f') with bounds (ldab,n)]

**Returns**

- \(w\) [rank-1 array('f') with bounds (n)]
- \(z\) [rank-2 array('f') with bounds (ldz,ldz)]
- \(info\) [int]

**Other Parameters**

- \(overwrite_ab\) [input int, optional] Default: 1
- \(compute_v\) [input int, optional] Default: 1
- \(lower\) [input int, optional] Default: 0
- \(ldab\) [input int, optional] Default: shape(ab,0)
scipy.linalg.lapack.dsbev

scipy.linalg.lapack.dsbev(ab[, compute_v, lower, ldab, overwrite_ab]) = <fortran object>

Wrapper for dsbev.

Parameters

ab [input rank-2 array('d') with bounds (ldab,n)]

Returns

w [rank-1 array('d') with bounds (n)]

z [rank-2 array('d') with bounds (ldz,ldz)]

info [int]

Other Parameters

overwrite_ab [input int, optional] Default: 1

compute_v [input int, optional] Default: 1

lower [input int, optional] Default: 0

ldab [input int, optional] Default: shape(ab,0)

scipy.linalg.lapack.ssbevd

scipy.linalg.lapack.ssbevd(ab[, compute_v, lower, ldab, liwork, overwrite_ab]) = <fortran object>

Wrapper for ssbevd.

Parameters

ab [input rank-2 array('f') with bounds (ldab,n)]

Returns

w [rank-1 array('f') with bounds (n)]

z [rank-2 array('f') with bounds (ldz,ldz)]

info [int]

Other Parameters

overwrite_ab [input int, optional] Default: 1

compute_v [input int, optional] Default: 1

lower [input int, optional] Default: 0

ldab [input int, optional] Default: shape(ab,0)

liwork [input int, optional] Default: (compute_v?3+5*n:1)

scipy.linalg.lapack.dsbevd

scipy.linalg.lapack.dsbevd(ab[, compute_v, lower, ldab, liwork, overwrite_ab]) = <fortran object>

Wrapper for dsbevd.

Parameters

ab [input rank-2 array('d') with bounds (ldab,n)]

Returns

w [rank-1 array('d') with bounds (n)]

z [rank-2 array('d') with bounds (ldz,ldz)]

info [int]

Other Parameters

overwrite_ab

[input int, optional] Default: 1

compute_v

[input int, optional] Default: 1

lower

[input int, optional] Default: 0

ldab

[input int, optional] Default: shape(ab,0)

liwork

[input int, optional] Default: (compute_v?3+5*n:1)

**scipy.linalg.lapack.ssbevx**

scipy.linalg.lapack.ssbevx

Wrapper for ssbevx.

Parameters

ab [input rank-2 array('f') with bounds (ldab,n)]

vl [input float]

vu [input float]

il [input int]

iu [input int]

Returns

w [rank-1 array('f') with bounds (n)]

z [rank-2 array('f') with bounds (ldz,mmax)]

m [int]

ifail [rank-1 array('i') with bounds ((compute_v?n:1))]

info [int]

Other Parameters

overwrite_ab

[input int, optional] Default: 1

ldab

[input int, optional] Default: shape(ab,0)

compute_v

[input int, optional] Default: 1

range

[input int, optional] Default: 0

lower

[input int, optional] Default: 0

abstol

[input float, optional] Default: 0.0

mmax

[input int, optional] Default: (compute_v?(range==2?(iu-il+1):n):1)

**scipy.linalg.lapack.dsbevx**

scipy.linalg.lapack.dsbevx

Wrapper for dsbevx.

Parameters

ab [input rank-2 array('d') with bounds (ldab,n)]

vl [input float]

vu [input float]

il [input int]

iu [input int]
Returns

- \( w \) [rank-1 array('d') with bounds (n)]
- \( z \) [rank-2 array('d') with bounds (ldz,mmax)]
- \( m \) [int]
- ifail [rank-1 array('i') with bounds ((compute_v?n:1))]  
- info [int]

Other Parameters

- overwrite_ab [input int, optional] Default: 1
- ldab [input int, optional] Default: shape(ab,0)
- compute_v [input int, optional] Default: 1
- range [input int, optional] Default: 0
- lower [input int, optional] Default: 0
- abstol [input float, optional] Default: 0.0

scipy.linalg.lapack.ssfrk

```
scipy.linalg.lapack.ssfrk(n, k, alpha, a, beta, c[, transr, uplo, trans, overwrite_c]) = <fortran object>
```

Wrapper for ssfrk.

Parameters

- \( n \) [input int]
- \( k \) [input int]
- \( \alpha \) [input float]
- \( a \) [input rank-2 array('f') with bounds (lda,ka)]
- \( \beta \) [input float]
- \( c \) [input rank-1 array('f') with bounds (nt)]

Returns

- \( cout \) [rank-1 array('f') with bounds (nt) and c storage]

Other Parameters

- transr [input string(len=1), optional] Default: 'N'
- uplo [input string(len=1), optional] Default: 'U'
- trans [input string(len=1), optional] Default: 'N'
- overwrite_c [input int, optional] Default: 0

scipy.linalg.lapack.dsfrk

```
scipy.linalg.lapack.dsfrk(n, k, alpha, a, beta, c[, transr, uplo, trans, overwrite_c]) = <fortran object>
```

Wrapper for dsfrk.

Parameters

- \( n \) [input int]
- \( k \) [input int]
- \( \alpha \) [input float]
- \( a \) [input rank-2 array('d') with bounds (lda,ka)]
- \( \beta \) [input float]
c

[input rank-1 array('d') with bounds (nt)]

Returns

cout

[rank-1 array('d') with bounds (nt) and c storage]

Other Parameters

transr

[in] string(len=1), optional Default: 'N'

uplo

[in] string(len=1), optional Default: 'U'

trans

[in] string(len=1), optional Default: 'N'

overwrite_c

[input int, optional] Default: 0

scipy.linalg.lapack.sstebz

scipy.linalg.lapack.sstebz(d, e, range, vl, vu, il, iu, tol, order) = <fortran object>

Wrapper for sstebz.

Parameters

d

[rank-1 array('f') with bounds (n)]

e

[rank-1 array('f') with bounds (-1 + n)]

range

[rank-1 array('f') with bounds (-1 + n)]

vl

[rank-1 array('f') with bounds (-1 + n)]

vu

[rank-1 array('f') with bounds (-1 + n)]

il

[rank-1 array('f') with bounds (-1 + n)]

iu

[rank-1 array('f') with bounds (-1 + n)]

tol

[rank-1 array('f') with bounds (-1 + n)]

order

[rank-1 array('f') with bounds (-1 + n)]

Returns

m

[rank-1 array('f') with bounds (-1 + n)]

w

[rank-1 array('f') with bounds (-1 + n)]

iblock

[rank-1 array('f') with bounds (-1 + n)]

isplit

[rank-1 array('f') with bounds (-1 + n)]

info

[rank-1 array('f') with bounds (-1 + n)]

scipy.linalg.lapack.dstebz

scipy.linalg.lapack.dstebz(d, e, range, vl, vu, il, iu, tol, order) = <fortran object>

Wrapper for dstebz.

Parameters

d

[rank-1 array('d') with bounds (n)]

e

[rank-1 array('d') with bounds (n)]

range

[rank-1 array('d') with bounds (n)]

vl

[rank-1 array('d') with bounds (n)]

vu

[rank-1 array('d') with bounds (n)]

il

[rank-1 array('d') with bounds (n)]

iu

[rank-1 array('d') with bounds (n)]

tol

[rank-1 array('d') with bounds (n)]

order

[rank-1 array('d') with bounds (n)]

Returns

m

[rank-1 array('d') with bounds (n)]

w

[rank-1 array('d') with bounds (n)]

iblock

[rank-1 array('d') with bounds (n)]
isplit [rank-1 array('i') with bounds (n)]
info [int]

scipy.linalg.lapack.sstein

scipy.linalg.lapack.sstein (d, e, w, iblock, isplit) = <fortran object>
Wrapper for sstein.

Parameters

  d [input rank-1 array('f') with bounds (n)]
  e [input rank-1 array('f') with bounds (-1 + n)]
  w [input rank-1 array('f') with bounds (m)]
  iblock [input rank-1 array('i') with bounds (n)]
  isplit [input rank-1 array('i') with bounds (n)]

Returns

  z [rank-2 array('f') with bounds (ldz,m)]
  info [int]

scipy.linalg.lapack.dstein

scipy.linalg.lapack.dstein (d, e, w, iblock, isplit) = <fortran object>
Wrapper for dstein.

Parameters

  d [input rank-1 array('d') with bounds (n)]
  e [input rank-1 array('d') with bounds (-1 + n)]
  w [input rank-1 array('d') with bounds (m)]
  iblock [input rank-1 array('i') with bounds (n)]
  isplit [input rank-1 array('i') with bounds (n)]

Returns

  z [rank-2 array('d') with bounds (ldz,m)]
  info [int]

scipy.linalg.lapack.sstemr

scipy.linalg.lapack.sstemr (d, e, range, vl, vu, il, iu, compute_v, lwork, liwork, overwrite_d) = <fortran object>
Wrapper for sstemr.

Parameters

  d [input rank-1 array('f') with bounds (n)]
  e [input rank-1 array('f') with bounds (n)]
  range [input int]
  vl [input float]
  vu [input float]
  il [input int]
  iu [input int]

Returns

  m [int]
  w [rank-1 array('f') with bounds (n)]
  z [rank-2 array('f') with bounds (n,n)]
  info [int]

**Other Parameters**

overwrite_d
[input int, optional] Default: 0

compute_v
[input int, optional] Default: 1

lwork
[input int, optional] Default: max((compute_v?18*n:12*n),1)

liwork
[input int, optional] Default: (compute_v?10*n:8*n)

```
scipy.linalg.lapack.dstemr
d, e, range, vl, vu, il, iu[, compute_v, lwork, liwork, overwrite_d]
```

Wrapper for dstemr.

**Parameters**

d [input rank-1 array('d') with bounds (n)]
e [input rank-1 array('d') with bounds (n)]
range [input int]
vl [input float]
vu [input float]
il [input int]
iu [input int]

**Returns**

m [int]
w [rank-1 array('d') with bounds (n)]
z [rank-2 array('d') with bounds (n,n)]
info [int]

**Other Parameters**

overwrite_d
[input int, optional] Default: 0

compute_v
[input int, optional] Default: 1

lwork
[input int, optional] Default: max((compute_v?18*n:12*n),1)

liwork
[input int, optional] Default: (compute_v?10*n:8*n)

```
scipy.linalg.lapack.sstemr_lwork
d, e, range, vl, vu, il, iu[, compute_v, overwrite_d, overwrite_e]
```

Wrapper for sstemr_lwork.

**Parameters**

d [input rank-1 array('f') with bounds (n)]
e [input rank-1 array('f') with bounds (n)]
range [input int]
vl [input float]
vu [input float]
il [input int]
iu [input int]

**Returns**

work [float]

iwork [int]
info [int]

Other Parameters
overwrite_d
[input int, optional] Default: 0
overwrite_e
[input int, optional] Default: 0
compute_v
[input int, optional] Default: 1

scipy.linalg.lapack.dstemr_lwork

scipy.linalg.lapack.dstemr_lwork(d, e, range, vl, vu, il, iu[, compute_v, overwrite_d, overwrite_e]) = <fortran object>

Wrapper for dstemr_lwork.

Parameters
d [input rank-1 array('d') with bounds (n)]
e [input rank-1 array('d') with bounds (n)]
range [input int]
vl [input float]
vu [input float]
il [input int]
iu [input int]

Returns
work [float]
iwork [int]
info [int]

Other Parameters
overwrite_d
[input int, optional] Default: 0
overwrite_e
[input int, optional] Default: 0
compute_v
[input int, optional] Default: 1

scipy.linalg.lapack.ssterf

scipy.linalg.lapack.ssterf(d, e[, overwrite_d, overwrite_e]) = <fortran object>

Wrapper for ssterf.

Parameters
d [input rank-1 array('f') with bounds (n)]
e [input rank-1 array('f') with bounds (-1 + n)]

Returns
vals [rank-1 array('f') with bounds (n) and d storage]
info [int]

Other Parameters
overwrite_d
[input int, optional] Default: 0

3.3. API definition 1021
overwrite_e
[input int, optional] Default: 0

scipy.linalg.lapack.dsterf

scipy.linalg.lapack.dsterf(d, e[, overwrite_d, overwrite_e]) = <fortran object>
Wrapper for dsterf.

Parameters

d [input rank-1 array('d') with bounds (n)]
e [input rank-1 array('d') with bounds (-1 + n)]

Returns

vals [rank-1 array('d') with bounds (n) and d storage]
info [int]

Other Parameters

overwrite_d [input int, optional] Default: 0
overwrite_e [input int, optional] Default: 0

scipy.linalg.lapack.sstev

scipy.linalg.lapack.sstev(d, e[, compute_v, overwrite_d, overwrite_e]) = <fortran object>
Wrapper for sstev.

Parameters

d [input rank-1 array('f') with bounds (n)]
e [input rank-1 array('f') with bounds (MAX(-1 + n, 1))]

Returns

vals [rank-1 array('f') with bounds (n) and d storage]
z [rank-2 array('f') with bounds (ldz,(compute_v?n:1))]
info [int]

Other Parameters

overwrite_d [input int, optional] Default: 0
overwrite_e [input int, optional] Default: 0
compute_v [input int, optional] Default: 1

scipy.linalg.lapack.dstev

scipy.linalg.lapack.dstev(d, e[, compute_v, overwrite_d, overwrite_e]) = <fortran object>
Wrapper for dstev.

Parameters

d [input rank-1 array('d') with bounds (n)]
e [input rank-1 array('d') with bounds (MAX(-1 + n, 1))]

Returns

vals [rank-1 array('d') with bounds (n) and d storage]
z  [rank-2 array('d') with bounds (ldz,(compute_v?=n:1))]  
info  [int]

Other Parameters

overwrite_d  [input int, optional] Default: 0  
overwrite_e  [input int, optional] Default: 0  
compute_v  [input int, optional] Default: 1

scipy.linalg.lapack.ssycon

scipy.linalg.lapack.ssycon(a, ipiv, anorm[, lower]) = <fortran object>  
Wrapper for ssycon.

Parameters

a  [input rank-2 array('f') with bounds (n,n)]  
ipiv  [input rank-1 array('i') with bounds (n)]  
anorm  [input float]

Returns

rcond  [float]  
info  [int]

Other Parameters

lower  [input int, optional] Default: 0

scipy.linalg.lapack.dsycon

scipy.linalg.lapack.dsycon(a, ipiv, anorm[, lower]) = <fortran object>  
Wrapper for dsycon.

Parameters

a  [input rank-2 array('d') with bounds (n,n)]  
ipiv  [input rank-1 array('i') with bounds (n)]  
anorm  [input float]

Returns

rcond  [float]  
info  [int]

Other Parameters

lower  [input int, optional] Default: 0
**scipy.linalg.lapack.csycon**

scipy.linalg.lapack.csycon(a, ipiv, anorm[, lower]) = <fortran object>

Wrapper for csycon.

**Parameters**

- **a** [input rank-2 array('F') with bounds (n,n)]
- **ipiv** [input rank-1 array('i') with bounds (n)]
- **anorm** [input float]

**Returns**

- **rcond** [float]
- **info** [int]

**Other Parameters**

- **lower** [input int, optional] Default: 0

**scipy.linalg.lapack.zsycon**

scipy.linalg.lapack.zsycon(a, ipiv, anorm[, lower]) = <fortran object>

Wrapper for zsycon.

**Parameters**

- **a** [input rank-2 array('D') with bounds (n,n)]
- **ipiv** [input rank-1 array('i') with bounds (n)]
- **anorm** [input float]

**Returns**

- **rcond** [float]
- **info** [int]

**Other Parameters**

- **lower** [input int, optional] Default: 0

**scipy.linalg.lapack.ssyconv**

scipy.linalg.lapack.ssyconv(a, ipiv[, lower, way, overwrite_a]) = <fortran object>

Wrapper for ssyconv.

**Parameters**

- **a** [input rank-2 array('f') with bounds (n,n)]
- **ipiv** [input rank-1 array('i') with bounds (n)]

**Returns**

- **a** [rank-2 array('f') with bounds (n,n)]
- **e** [rank-1 array('f') with bounds (n)]
- **info** [int]

**Other Parameters**

- **lower** [input int, optional] Default: 0
- **way** [input int, optional] Default: 0
- **overwrite_a** [input int, optional] Default: 0
scipy.linalg.lapack.dsyconv

```python
scipy.linalg.lapack.dsyconv(a, ipiv[, lower, way, overwrite_a]) = <fortran object>
```
Wrapper for dsyconv.

**Parameters**
- `a`: [input rank-2 array('d') with bounds (n,n)]
- `ipiv`: [input rank-1 array('i') with bounds (n)]

**Returns**
- `a`: [rank-2 array('d') with bounds (n,n)]
- `e`: [rank-1 array('d') with bounds (n)]
- `info`: [int]

**Other Parameters**
- `lower`: [input int, optional] Default: 0
- `way`: [input int, optional] Default: 0
- `overwrite_a`: [input int, optional] Default: 0

---

scipy.linalg.lapack.csyconv

```python
scipy.linalg.lapack.csyconv(a, ipiv[, lower, way, overwrite_a]) = <fortran object>
```
Wrapper for csyconv.

**Parameters**
- `a`: [input rank-2 array('F') with bounds (n,n)]
- `ipiv`: [input rank-1 array('i') with bounds (n)]

**Returns**
- `a`: [rank-2 array('F') with bounds (n,n)]
- `e`: [rank-1 array('F') with bounds (n)]
- `info`: [int]

**Other Parameters**
- `lower`: [input int, optional] Default: 0
- `way`: [input int, optional] Default: 0
- `overwrite_a`: [input int, optional] Default: 0

---

scipy.linalg.lapack.zsyconv

```python
scipy.linalg.lapack.zsyconv(a, ipiv[, lower, way, overwrite_a]) = <fortran object>
```
Wrapper for zsyconv.

**Parameters**
- `a`: [input rank-2 array('D') with bounds (n,n)]
- `ipiv`: [input rank-1 array('i') with bounds (n)]

**Returns**
- `a`: [rank-2 array('D') with bounds (n,n)]
- `e`: [rank-1 array('D') with bounds (n)]
- `info`: [int]

**Other Parameters**
lower [input int, optional] Default: 0
way [input int, optional] Default: 0
overwrite_a [input int, optional] Default: 0

**scipy.linalg.lapack.ssyequb**

scipy.linalg.lapack.ssyequb(a[, lower]) = <fortran object>
Wrapper for ssyequb.

Parameters

a [input rank-2 array('f') with bounds (lda,n)]

Returns

s [rank-1 array('f') with bounds (n)]
scond [float]
amax [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0

**scipy.linalg.lapack.dsyequb**

scipy.linalg.lapack.dsyequb(a[, lower]) = <fortran object>
Wrapper for dsyequb.

Parameters

a [input rank-2 array('d') with bounds (lda,n)]

Returns

s [rank-1 array('d') with bounds (n)]
scond [float]
amax [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0

**scipy.linalg.lapack.csyequb**

scipy.linalg.lapack.csyequb(a[, lower]) = <fortran object>
Wrapper for csyequb.

Parameters

a [input rank-2 array('F') with bounds (lda,n)]

Returns

s [rank-1 array('f') with bounds (n)]
scond [float]
amax [float]
info [int]

Other Parameters

lower [input int, optional] Default: 0
scipy.linalg.lapack.zsyequb

`scipy.linalg.lapack.zsyequb(a[, lower]) = <fortran object>`

Wrapper for zsyequb.

**Parameters**

- `a` : input rank-2 array('D') with bounds (lda,n)

**Returns**

- `s` : rank-1 array('d') with bounds (n)
- `scond` : float
- `amax` : float
- `info` : int

**Other Parameters**

- `lower` : input int, optional [default: 0]

scipy.linalg.lapack.ssyev

`scipy.linalg.lapack.ssyev(a[, compute_v, lower, lwork, overwrite_a]) = <fortran object>`

Wrapper for ssyev.

**Parameters**

- `a` : input rank-2 array('f') with bounds (n,n)

**Returns**

- `w` : rank-1 array('f') with bounds (n)
- `v` : rank-2 array('f') with bounds (n,n) and a storage
- `info` : int

**Other Parameters**

- `compute_v` : input int, optional [default: 1]
- `lower` : input int, optional [default: 0]
- `overwrite_a` : input int, optional [default: 0]
- `lwork` : input int, optional [default: max(3*n-1,1)]

scipy.linalg.lapack.dsyev

`scipy.linalg.lapack.dsyev(a[, compute_v, lower, lwork, overwrite_a]) = <fortran object>`

Wrapper for dsyev.

**Parameters**

- `a` : input rank-2 array('d') with bounds (n,n)

**Returns**

- `w` : rank-1 array('d') with bounds (n)
- `v` : rank-2 array('d') with bounds (n,n) and a storage
- `info` : int

**Other Parameters**

- `compute_v` : input int, optional [default: 1]
- `lower` : input int, optional [default: 0]
overwrite_a
   [input int, optional] Default: 0
lwork   [input int, optional] Default: max(3*n-1,1)

scipy.linalg.lapack.ssyev_lwork
scipy.linalg.lapack.ssyev_lwork(n[, lower]) = <fortran object>
Wrapper for ssyev_lwork.

Parameters
   n   [input int]

Returns
   work   [float]
   info   [int]

Other Parameters
   lower   [input int, optional] Default: 0

scipy.linalg.lapack.dsyev_lwork
scipy.linalg.lapack.dsyev_lwork(n[, lower]) = <fortran object>
Wrapper for dsyev_lwork.

Parameters
   n   [input int]

Returns
   work   [float]
   info   [int]

Other Parameters
   lower   [input int, optional] Default: 0

scipy.linalg.lapack.ssyevd
scipy.linalg.lapack.ssyevd(a[, compute_v, lower, lwork, liwork, overwrite_a]) = <fortran object>
Wrapper for ssyevd.

Parameters
   a   [input rank-2 array('f') with bounds (n,n)]

Returns
   w   [rank-1 array('f') with bounds (n)]
   v   [rank-2 array('f') with bounds (n,n) and a storage]
   info   [int]

Other Parameters
   compute_v   [input int, optional] Default: 1
   lower   [input int, optional] Default: 0
   overwrite_a   [input int, optional] Default: 0
   lwork   [input int, optional] Default: max((compute_v?1+6*n+2*n*n:2*n+1),1)
liwork [input int, optional] Default: (compute_v?3+5*n:1)

scipy.linalg.lapack.dsyevd

scipy.linalg.lapack.dsyevd\(a, compute_v, lower, lwork, liwork, overwrite_a\) = <fortran object>

Wrapper for dsyevd.

Parameters

\(a\) [input rank-2 array('d') with bounds (n,n)]

Returns

\(w\) [rank-1 array('d') with bounds (n)]
\(v\) [rank-2 array('d') with bounds (n,n) and a storage]
\(info\) [int]

Other Parameters

\(compute_v\) [input int, optional] Default: 1
\(lower\) [input int, optional] Default: 0
\(overwrite_a\) [input int, optional] Default: 0
\(lwork\) [input int, optional] Default: max((compute_v?1+6*n+2*n*n:2*n+1),1)
\(liwork\) [input int, optional] Default: (compute_v?3+5*n:1)

scipy.linalg.lapack.ssyevd_lwork

scipy.linalg.lapack.ssyevd_lwork\(n, compute_v, lower\) = <fortran object>

Wrapper for ssyevd_lwork.

Parameters

\(n\) [input int]

Returns

\(work\) [float]
\(iwork\) [int]
\(info\) [int]

Other Parameters

\(compute_v\) [input int, optional] Default: 1
\(lower\) [input int, optional] Default: 0

scipy.linalg.lapack.dsyevd_lwork

scipy.linalg.lapack.dsyevd_lwork\(n, compute_v, lower\) = <fortran object>

Wrapper for dsyevd_lwork.

Parameters

\(n\) [input int]

Returns

\(work\) [float]
\(iwork\) [int]
\(info\) [int]
**Other Parameters**

- **compute_v**
  - [input int, optional] Default: 1
- **lower**
  - [input int, optional] Default: 0

### scipy.linalg.lapack.ssyevr

```python
scipy.linalg.lapack.ssyevr(a[, compute_v, range, lower, vl, il, ilu, abstol, lwork, liwork, overwrite_a])
```

Wrapper for **ssyevr**.

**Parameters**

- **a**
  - [input rank-2 array('f') with bounds (n,n)]

**Returns**

- **w**
  - [rank-1 array('f') with bounds (n)]
- **z**
  - [rank-2 array('f') with bounds ((compute_v?MAX(0, n):0),(compute_v?(*range == 'I'?1 - il + ilu:MAX(I, n)):0))]
- **m**
  - [int]
- **isuppz**
  - [rank-1 array('i') with bounds ((compute_v?2 * (*range == 'A' || (*range == 1 + 'I' && il - ilu == n)?n:0):0))]
- **info**
  - [int]

**Other Parameters**

- **compute_v**
  - [input int, optional] Default 1
- **range**
  - [input string(len=1), optional] Default 'A'
- **lower**
  - [input int, optional] Default 0
- **overwrite_a**
  - [input int, optional] Default 0
- **vl**
  - [input float, optional] Default 0.0
- **vu**
  - [input float, optional] Default 1.0
- **il**
  - [input int, optional] Default 1
- **iu**
  - [input int, optional] Default n
- **abstol**
  - [input float, optional] Default 0.0
- **lwork**
  - [input int, optional] Default max(26*n,1)
- **liwork**
  - [input int, optional] Default max(1,10*n)

### scipy.linalg.lapack.dsyevr

```python
scipy.linalg.lapack.dsyevr(a[, compute_v, range, lower, vl, il, ilu, abstol, lwork, liwork, overwrite_a])
```

Wrapper for **dsyevr**.

**Parameters**

- **a**
  - [input rank-2 array('d') with bounds (n,n)]

**Returns**

- **w**
  - [rank-1 array('d') with bounds (n)]
- **z**
  - [rank-2 array('d') with bounds ((compute_v?MAX(0, n):0),(compute_v?(*range == 'I'?1 - il + ilu:MAX(I, n)):0))]
- **m**
  - [int]
- **isuppz**
  - [rank-1 array('i') with bounds ((compute_v?2 * (*range == 'A' || (*range == 1 + 'I' && il - ilu == n)?n:0):0))]

**Other Parameters**

- **compute_v**
  - [input int, optional] Default 1
- **range**
  - [input string(len=1), optional] Default 'A'
- **lower**
  - [input int, optional] Default 0
- **overwrite_a**
  - [input int, optional] Default 0
- **vl**
  - [input float, optional] Default 0.0
- **vu**
  - [input float, optional] Default 1.0
- **il**
  - [input int, optional] Default 1
- **iu**
  - [input int, optional] Default n
- **abstol**
  - [input float, optional] Default 0.0
- **lwork**
  - [input int, optional] Default max(26*n,1)
- **liwork**
  - [input int, optional] Default max(1,10*n)
Other Parameters

compute_v
    [input int, optional] Default: 1
range
    [input string(len=1), optional] Default: 'A'
lower
    [input int, optional] Default: 0
overwrite_a
    [input int, optional] Default: 0
vl
    [input float, optional] Default: 0.0
vu
    [input float, optional] Default: 1.0
il
    [input int, optional] Default: 1
iu
    [input int, optional] Default: n
abstol
    [input float, optional] Default: 0.0
lwork
    [input int, optional] Default: max(26*n, 1)
lwork
    [input int, optional] Default: max(1, 10*n)

scipy.linalg.lapack.ssyevr_lwork

scipy.linalg.lapack.ssyevr_lwork(n[, lower]) = <fortran object>
Wrapper for ssyevr_lwork.

Parameters

n
    [input int]

Returns

work
    [float]
iwork
    [int]
info
    [int]

Other Parameters

lower
    [input int, optional] Default: 0

scipy.linalg.lapack.dsyevr_lwork

scipy.linalg.lapack.dsyevr_lwork(n[, lower]) = <fortran object>
Wrapper for dsyevr_lwork.

Parameters

n
    [input int]

Returns

work
    [float]
iwork
    [int]
info
    [int]

Other Parameters

lower
    [input int, optional] Default: 0
scipy.linalg.lapack.ssyevx

scipy.linalg.lapack.ssyevx(a[, compute_v, range, lower, vl, vu, il, iu, abstol, lwork, overwrite_a]) = <fortran object>

Wrapper for ssyevx.

Parameters

a [input rank-2 array('f') with bounds (n,n)]

Returns

w [rank-1 array('f') with bounds (n)]
z [rank-2 array('f') with bounds ((compute_v?MAX(0, n):0), (compute_v?(*range == 'I'?1 - il + iu:MAX(1, n)):0))]
m [int]
ifail [rank-1 array('i') with bounds ((compute_v?n:0))]
info [int]

Other Parameters

compute_v [input int, optional] Default 1
range [input string(len=1), optional] Default 'A'
lower [input int, optional] Default 0
overwrite_a [input int, optional] Default 0
vl [input float, optional] Default 0.0
vu [input float, optional] Default 1.0
il [input int, optional] Default 1
iu [input int, optional] Default n
abstol [input float, optional] Default 0.0
lwork [input int, optional] Default max(8*n,1)

scipy.linalg.lapack.dsyevx

scipy.linalg.lapack.dsyevx(a[, compute_v, range, lower, vl, vu, il, iu, abstol, lwork, overwrite_a]) = <fortran object>

Wrapper for dsyevx.

Parameters

a [input rank-2 array('d') with bounds (n,n)]

Returns

w [rank-1 array('d') with bounds (n)]
z [rank-2 array('d') with bounds ((compute_v?MAX(0, n):0), (compute_v?(*range == 'I'?1 - il + iu:MAX(1, n)):0))]
m [int]
ifail [rank-1 array('i') with bounds ((compute_v?n:0))]
info [int]

Other Parameters

compute_v [input int, optional] Default 1
range [input string(len=1), optional] Default 'A'
lower [input int, optional] Default 0
overwrite_a [input int, optional] Default 0
### scipy.linalg.lapack.ssyevx_lwork

```python
scipy.linalg.lapack.ssyevx_lwork(n[, lower]) = <fortran object>
```

Wrapper for `ssyevx_lwork`.

#### Parameters
- **n** ([input int])

#### Returns
- **work** ([float])
- **info** ([int])

#### Other Parameters
- **lower** ([input int, optional]) Default: 0

### scipy.linalg.lapack.dsyevx_lwork

```python
scipy.linalg.lapack.dsyevx_lwork(n[, lower]) = <fortran object>
```

Wrapper for `dsyevx_lwork`.

#### Parameters
- **n** ([input int])

#### Returns
- **work** ([float])
- **info** ([int])

#### Other Parameters
- **lower** ([input int, optional]) Default: 0

### scipy.linalg.lapack.ssygst

```python
scipy.linalg.lapack.ssygst(a, b[, itype, lower, overwrite_a]) = <fortran object>
```

Wrapper for `ssygst`.

#### Parameters
- **a** ([input rank-2 array('f') with bounds (n,n)])
- **b** ([input rank-2 array('f') with bounds (n,n)])

#### Returns
- **c** ([rank-2 array('f') with bounds (n,n) and a storage])
- **info** ([int])

#### Other Parameters
- **overwrite_a** ([input int, optional]) Default: 0
- **itype** ([input int, optional]) Default: 1
- **lower** ([input int, optional]) Default: 0
scipy.linalg.lapack.dsygst

```python
scipy.linalg.lapack.dsygst(a, b[, itype, lower, overwrite_a]) = <fortran object>
```

Wrapper for dsysgst.

**Parameters**

- `a` : [input rank-2 array('d') with bounds (n,n)]
- `b` : [input rank-2 array('d') with bounds (n,n)]

**Returns**

- `c` : [rank-2 array('d') with bounds (n,n) and a storage]
- `info` : [int]

**Other Parameters**

- `overwrite_a` : [input int, optional] Default: 0
- `itype` : [input int, optional] Default: 1
- `lower` : [input int, optional] Default: 0

scipy.linalg.lapack.ssygv

```python
scipy.linalg.lapack.ssygv(a, b[, itype, jobz, uplo, lwork, overwrite_a, overwrite_b]) = <fortran object>
```

Wrapper for ssygv.

**Parameters**

- `a` : [input rank-2 array('f') with bounds (n,n)]
- `b` : [input rank-2 array('f') with bounds (n,n)]

**Returns**

- `w` : [rank-1 array('f') with bounds (n)]
- `v` : [rank-2 array('f') with bounds (n,n) and a storage]
- `info` : [int]

**Other Parameters**

- `itype` : [input int, optional] Default: 1
- `jobz` : [input string(len=1), optional] Default: 'V'
- `uplo` : [input string(len=1), optional] Default: 'L'
- `overwrite_a` : [input int, optional] Default: 0
- `overwrite_b` : [input int, optional] Default: 0
- `lwork` : [input int, optional] Default: max(3*n-1,1)

scipy.linalg.lapack.dsygv

```python
scipy.linalg.lapack.dsygv(a, b[, itype, jobz, uplo, lwork, overwrite_a, overwrite_b]) = <fortran object>
```

Wrapper for dsygv.

**Parameters**

- `a` : [input rank-2 array('d') with bounds (n,n)]
- `b` : [input rank-2 array('d') with bounds (n,n)]

**Returns**

- [ ]

w [rank-1 array('d') with bounds (n)]
v [rank-2 array('d') with bounds (n,n) and a storage]
info [int]

Other Parameters
itype [input int, optional] Default: 1
jobz [input string(len=1), optional] Default: 'V'
uplo [input string(len=1), optional] Default: 'L'
overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n-1,1)

scipy.linalg.lapack.ssygv_lwork

scipy.linalg.lapack.ssygv_lwork(n[, uplo]) = <fortran object>
Wrapper for ssygv_lwork.

Parameters
n [input int]

Returns
work [float]
info [int]

Other Parameters
uplo [input string(len=1), optional] Default: 'L'

scipy.linalg.lapack.dsygv_lwork

scipy.linalg.lapack.dsygv_lwork(n[, uplo]) = <fortran object>
Wrapper for dsygv_lwork.

Parameters
n [input int]

Returns
work [float]
info [int]

Other Parameters
uplo [input string(len=1), optional] Default: 'L'

scipy.linalg.lapack.ssygvd

scipy.linalg.lapack.ssygvd(a[, b, itype, jobz, uplo, lwork, overwrite_a, overwrite_b]) =
<fortran object>

Wrapper for ssygvd.

Parameters
a [input rank-2 array('f') with bounds (n,n)]
b [input rank-2 array('f') with bounds (n,n)]

Returns

w  [rank-1 array('f') with bounds (n)]
v  [rank-2 array('f') with bounds (n, n) with a storage]
info  [int]

Other Parameters
itype  [input int, optional] Default 1
jobz  [input string(len=1), optional] Default 'V'
uplo  [input string(len=1), optional] Default 'L'
overwrite_a  [input int, optional] Default 0
overwrite_b  [input int, optional] Default 0
lwork  [input int, optional] Default (*jobz=='N'?2*n+1:1+6*n+2*n*n)
liwork  [input int, optional] Default (*jobz=='N'?1:5*n+3)

scipy.linalg.lapack.dsygvd

scipy.linalg.lapack.dsygvd(a, b, itype, jobz, uplo, lwork, liwork, overwrite_a, overwrite_b) = <fortran object>
Wrapper for dsygvd.

Parameters
a  [input rank-2 array('d') with bounds (n, n)]
b  [input rank-2 array('d') with bounds (n, n)]

Returns
w  [rank-1 array('d') with bounds (n)]
v  [rank-2 array('d') with bounds (n, n) with a storage]
info  [int]

Other Parameters
itype  [input int, optional] Default 1
jobz  [input string(len=1), optional] Default 'V'
uplo  [input string(len=1), optional] Default 'L'
overwrite_a  [input int, optional] Default 0
overwrite_b  [input int, optional] Default 0
lwork  [input int, optional] Default (*jobz=='N'?2*n+1:1+6*n+2*n*n)
liwork  [input int, optional] Default (*jobz=='N'?1:5*n+3)

scipy.linalg.lapack.ssygvx

scipy.linalg.lapack.ssygvx(a, b, itype, jobz, range, uplo, vl, vu, il, ii, abstol, lwork, overwrite_a, overwrite_b) = <fortran object>
Wrapper for ssygvx.

Parameters
a  [input rank-2 array('f') with bounds (n, n)]
b  [input rank-2 array('f') with bounds (n, n)]

Returns
w  [rank-1 array('f') with bounds (n)]
z  [rank-2 array('f') with bounds (jobz[0] == 'V'?MAX(0, n):0),(jobz[0] == 'V'?(range[0] == 'T'?1 - il + ii:MAX(1, n)):0))]

m [int]
ifar [rank-1 array('i') with bounds ((jobz[0] == ‘N’?0:n))]
info [int]

Other Parameters

itype [input int, optional] Default: 1
jobz [input string(len=1), optional] Default: ‘V’
range [input string(len=1), optional] Default: ‘A’
uplo [input string(len=1), optional] Default: ‘L’
overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
vl [input float, optional] Default: 0.0
vu [input float, optional] Default: 1.0
il [input int, optional] Default: 1
iu [input int, optional] Default: n
abstol [input float, optional] Default: 0.0
lwork [input int, optional] Default: max(8*n,1)

scipy.linalg.lapack.dsygvx

scipy.linalg.lapack.dsygvx(a, b, itype, jobz, range, uplo, vl, vu, il, iu, abstol, lwork, overwrite_a, overwrite_b) = <fortran object>

Wrapper for dsygvx.

Parameters

a [input rank-2 array('d') with bounds (n,n)]
b [input rank-2 array('d') with bounds (n,n)]

Returns

w [rank-1 array('d') with bounds (n)]
z [rank-2 array('d') with bounds ((jobz[0] == ‘V’?MAX(0, n):0),(jobz[0] == ‘V’?(range[0] == ‘I’?1-il+iu:MAX(1,n)):0))]
m [int]
ifar [rank-1 array('i') with bounds ((jobz[0] == ‘N’?0:n))]
info [int]

Other Parameters

itype [input int, optional] Default: 1
jobz [input string(len=1), optional] Default: ‘V’
range [input string(len=1), optional] Default: ‘A’
uplo [input string(len=1), optional] Default: ‘L’
overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
vl [input float, optional] Default: 0.0
vu [input float, optional] Default: 1.0
il [input int, optional] Default: 1
iu [input int, optional] Default: n
abstol [input float, optional] Default: 0.0
lwork [input int, optional] Default: max(8*n,1)
scipy.linalg.lapack.ssygvx_lwork

scipy.linalg.lapack.ssygvx_lwork(n, uplo) = <fortran object>

Wrapper for ssygvx_lwork.

Parameters
- n [input int]

Returns
- work [float]
- info [int]

Other Parameters
- uplo [input string(len=1), optional] Default: 'L'

scipy.linalg.lapack.dsygvx_lwork

scipy.linalg.lapack.dsygvx_lwork(n, uplo) = <fortran object>

Wrapper for dsygvx_lwork.

Parameters
- n [input int]

Returns
- work [float]
- info [int]

Other Parameters
- uplo [input string(len=1), optional] Default: 'L'

scipy.linalg.lapack.ssysv

scipy.linalg.lapack.ssysv(a, b[, lwork, lower, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for ssysv.

Parameters
- a [input rank-2 array('f') with bounds (n,n)]
- b [input rank-2 array('f') with bounds (n, nrhs)]

Returns
- udut [rank-2 array('f') with bounds (n,n) and a storage]
- ipiv [rank-1 array('i') with bounds (n)]
- x [rank-2 array('f') with bounds (n, nrhs) and b storage]
- info [int]

Other Parameters
- overwrite_a [input int, optional] Default: 0
- overwrite_b [input int, optional] Default: 0
- lwork [input int, optional] Default: max(n,1)
- lower [input int, optional] Default: 0
scipy.linalg.lapack.dsysv

scipy.linalg.lapack.dsysv(a, b[, lwork, lower, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for dsyev.

Parameters

a [input rank-2 array('d') with bounds (n,n)]
b [input rank-2 array('d') with bounds (n,nrhs)]

Returns

udut [rank-2 array('d') with bounds (n,n) and a storage]
ipiv [rank-1 array('i') with bounds (n)]
x [rank-2 array('d') with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
lwork [input int, optional] Default: max(n,1)
lower [input int, optional] Default: 0

scipy.linalg.lapack.csysv

scipy.linalg.lapack.csysv(a, b[, lwork, lower, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for csysv.

Parameters

a [input rank-2 array('F') with bounds (n,n)]
b [input rank-2 array('F') with bounds (n,nrhs)]

Returns

udut [rank-2 array('F') with bounds (n,n) and a storage]
ipiv [rank-1 array('i') with bounds (n)]
x [rank-2 array('F') with bounds (n,nrhs) and b storage]
info [int]

Other Parameters

overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
lwork [input int, optional] Default: max(n,1)
lower [input int, optional] Default: 0
scipy.linalg.lapack.zsysv

`scipy.linalg.lapack.zsysv(a, b[, lwork, lower, overwrite_a, overwrite_b]) = <fortran object>`

Wrapper for zsysv.

**Parameters**

- `a` [input rank-2 array('D') with bounds (n,n)]
- `b` [input rank-2 array('D') with bounds (n,nrhs)]

**Returns**

- `udut` [rank-2 array('D') with bounds (n,n) and a storage]
- `ipiv` [rank-1 array('i') with bounds (n)]
- `x` [rank-2 array('D') with bounds (n,nrhs) and b storage]
- `info` [int]

**Other Parameters**

- `overwrite_a` [input int, optional] Default: 0
- `overwrite_b` [input int, optional] Default: 0
- `lwork` [input int, optional] Default: max(n,1)
- `lower` [input int, optional] Default: 0

scipy.linalg.lapack.ssysv_lwork

`scipy.linalg.lapack.ssysv_lwork(n[, lower]) = <fortran object>`

Wrapper for ssysv_lwork.

**Parameters**

- `n` [input int]

**Returns**

- `work` [float]
- `info` [int]

**Other Parameters**

- `lower` [input int, optional] Default: 0

scipy.linalg.lapack.dsysv_lwork

`scipy.linalg.lapack.dsysv_lwork(n[, lower]) = <fortran object>`

Wrapper for dsysv_lwork.

**Parameters**

- `n` [input int]

**Returns**

- `work` [float]
- `info` [int]

**Other Parameters**

- `lower` [input int, optional] Default: 0
scipy.linalg.lapack.csysv_lwork

```
scipy.linalg.lapack.csysv_lwork(n[, lower]) = <fortran object>
```

Wrapper for csysv_lwork.

**Parameters**

- **n** [input int]

**Returns**

- **work** [complex]
- **info** [int]

**Other Parameters**

- **lower** [input int, optional] Default: 0

scipy.linalg.lapack.zsysv_lwork

```
scipy.linalg.lapack.zsysv_lwork(n[, lower]) = <fortran object>
```

Wrapper for zsysv_lwork.

**Parameters**

- **n** [input int]

**Returns**

- **work** [complex]
- **info** [int]

**Other Parameters**

- **lower** [input int, optional] Default: 0

scipy.linalg.lapack.ssysvx

```
scipy.linalg.lapack.ssysvx(a, b[, af, ipiv, lwork, factored, lower, overwrite_a, overwrite_b]) = <fortran object>
```

Wrapper for ssyevx.

**Parameters**

- **a** [input rank-2 array('f') with bounds (n,n)]
- **b** [input rank-2 array('f') with bounds (n,nrhs)]

**Returns**

- **a_s** [rank-2 array('f') with bounds (n,n) and a storage]
- **udut** [rank-2 array('f') with bounds (n,n) and af storage]
- **ipiv** [rank-1 array('i') with bounds (n)]
- **b_s** [rank-2 array('f') with bounds (n,nrhs) and b storage]
- **x** [rank-2 array('f') with bounds (n,nrhs)]
- **rcond** [float]
- **ferr** [rank-1 array('f') with bounds (nrhs)]
- **berr** [rank-1 array('f') with bounds (nrhs)]
- **info** [int]

**Other Parameters**

- **overwrite_a** [input int, optional] Default: 0
- **af** [input rank-2 array('f') with bounds (n,n)]

scipy.linalg.lapack.dsysvx

scipy.linalg.lapack.dsysvx(a, b[, af, ipiv, lwork, factored, lower, overwrite_a, overwrite_b]) =<fortran object>

Wrapper for dsyevx.

Parameters
a [input rank-2 array('d') with bounds (n,n)]
b [input rank-2 array('d') with bounds (n,nrhs)]

Returns
a_s [rank-2 array('d') with bounds (n,n) and a storage]
udut [rank-2 array('d') with bounds (n,n) and af storage]
 ipiv [rank-1 array('i') with bounds (n)]
b_s [rank-2 array('d') with bounds (n,nrhs) and b storage]
x [rank-2 array('d') with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array('d') with bounds (nrhs)]
berr [rank-1 array('d') with bounds (nrhs)]
info [int]

Other Parameters
overwrite_a [input int, optional] Default: 0
af [input rank-2 array('d') with bounds (n,n)]
ipiv [input rank-1 array('i') with bounds (n)]
overwrite_b [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)
factored [input int, optional] Default: 0
lower [input int, optional] Default: 0

scipy.linalg.lapack.csysvx

scipy.linalg.lapack.csysvx(a, b[, af, ipiv, lwork, factored, lower, overwrite_a, overwrite_b]) =<fortran object>

Wrapper for csysvx.

Parameters
a [input rank-2 array('F') with bounds (n,n)]
b [input rank-2 array('F') with bounds (n,nrhs)]

Returns
a_s [rank-2 array('F') with bounds (n,n) and a storage]
udut [rank-2 array('F') with bounds (n,n) and af storage]
 ipiv [rank-1 array('i') with bounds (n)]
b_s [rank-2 array('F') with bounds (n,nrhs) and b storage]
x [rank-2 array('F') with bounds (n,nrhs)]
rcond [float]
ferr [rank-1 array('d') with bounds (nrhs)]
berr [rank-1 array('d') with bounds (nrhs)]
info [int]

Other Parameters
overwrite_a [input int, optional] Default: 0
af [input rank-2 array('d') with bounds (n,n)]
ipiv [input rank-1 array('i') with bounds (n)]
overwrite_b [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)
factored [input int, optional] Default: 0
lower [input int, optional] Default: 0
rcond  [float]
ferr  [rank-1 array('f') with bounds (nrhs)]
berr  [rank-1 array('f') with bounds (nrhs)]
info  [int]

Other Parameters

overwrite_a
   [input int, optional] Default: 0
af  [input rank-2 array('F') with bounds (n,n)]
ipiv  [input rank-1 array('i') with bounds (n)]

overwrite_b
   [input int, optional] Default: 0
lwork  [input int, optional] Default: max(3*n,1)
factored  [input int, optional] Default: 0
lower  [input int, optional] Default: 0

scipy.linalg.lapack.zsysvx

scipy.linalg.lapack.zsysvx(a, b[, af, ipiv, lwork, factored, lower, overwrite_a, overwrite_b]) =

<fortran object>

Wrapper for zsysvx.

Parameters

a  [input rank-2 array('D') with bounds (n,n)]
b  [input rank-2 array('D') with bounds (n,nrhs)]

Returns

a_s  [rank-2 array('D') with bounds (n,n) and a storage]
udut  [rank-2 array('D') with bounds (n,n) and af storage]
ipiv  [rank-1 array('i') with bounds (n)]
b_s  [rank-2 array('D') with bounds (n,nrhs) and b storage]
x  [rank-2 array('D') with bounds (n,nrhs)]
rcond  [float]
ferr  [rank-1 array('d') with bounds (nrhs)]
berr  [rank-1 array('d') with bounds (nrhs)]
info  [int]

Other Parameters

overwrite_a
   [input int, optional] Default: 0
af  [input rank-2 array('D') with bounds (n,n)]
ipiv  [input rank-1 array('i') with bounds (n)]

overwrite_b
   [input int, optional] Default: 0
lwork  [input int, optional] Default: max(3*n,1)
factored  [input int, optional] Default: 0
lower  [input int, optional] Default: 0
scipy.linalg.lapack.ssysvx_lwork

Wrapper for ssysvx_lwork.

Parameters

- **n** [input int]

Returns

- **work** [float]
- **info** [int]

Other Parameters

- **lower** [input int, optional] Default: 0

scipy.linalg.lapack.dsysvx_lwork

Wrapper for dsysvx_lwork.

Parameters

- **n** [input int]

Returns

- **work** [float]
- **info** [int]

Other Parameters

- **lower** [input int, optional] Default: 0

scipy.linalg.lapack.csysvx_lwork

Wrapper for csysvx_lwork.

Parameters

- **n** [input int]

Returns

- **work** [complex]
- **info** [int]

Other Parameters

- **lower** [input int, optional] Default: 0

scipy.linalg.lapack.zsysvx_lwork

Wrapper for zsysvx_lwork.

Parameters

- **n** [input int]

Returns

- **work** [complex]
- **info** [int]
Other Parameters

- lower [input int, optional] Default: 0

**scipy.linalg.lapack.ssytf2**

```python
scipy.linalg.lapack.ssytf2(a[, lower, overwrite_a]) = <fortran object>
```

Wrapper for ssytf2.

**Parameters**

- a [input rank-2 array('f') with bounds (n,n)]

**Returns**

- ldu [rank-2 array('f') with bounds (n,n) and a storage]
- ipiv [rank-1 array('i') with bounds (n)]
- info [int]

Other Parameters

- lower [input int, optional] Default: 0
- overwrite_a [input int, optional] Default: 0

**scipy.linalg.lapack.dsytf2**

```python
scipy.linalg.lapack.dsytf2(a[, lower, overwrite_a]) = <fortran object>
```

Wrapper for dsytf2.

**Parameters**

- a [input rank-2 array('d') with bounds (n,n)]

**Returns**

- ldu [rank-2 array('d') with bounds (n,n) and a storage]
- ipiv [rank-1 array('i') with bounds (n)]
- info [int]

Other Parameters

- lower [input int, optional] Default: 0
- overwrite_a [input int, optional] Default: 0

**scipy.linalg.lapack.csytf2**

```python
scipy.linalg.lapack.csytf2(a[, lower, overwrite_a]) = <fortran object>
```

Wrapper for csytf2.

**Parameters**

- a [input rank-2 array('F') with bounds (n,n)]

**Returns**

- ldu [rank-2 array('F') with bounds (n,n) and a storage]
- ipiv [rank-1 array('i') with bounds (n)]
- info [int]

Other Parameters

- lower [input int, optional] Default: 0
overwrite_a
    [input int, optional] Default: 0

scipy.linalg.lapack.zsytf2

scipy.linalg.lapack.zsytf2(a[, lower, overwrite_a]) = <fortran object>
Wrapper for zsytf2.

Parameters
    a      [input rank-2 array('D') with bounds (n,n)]

Returns
    ldu    [rank-2 array('D') with bounds (n,n) and a storage]
    ipiv   [rank-1 array('i') with bounds (n)]
    info   [int]

Other Parameters
    lower  [input int, optional] Default: 0
    overwrite_a [input int, optional] Default: 0

scipy.linalg.lapack.ssytrd

scipy.linalg.lapack.ssytrd(a[, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for ssytrd.

Parameters
    a      [input rank-2 array('f') with bounds (lda,n)]

Returns
    c      [rank-2 array('f') with bounds (lda,n) and a storage]
    d      [rank-1 array('f') with bounds (n)]
    e      [rank-1 array('f') with bounds (-1 + n)]
    tau    [rank-1 array('f') with bounds (-1 + n)]
    info   [int]

Other Parameters
    lower  [input int, optional] Default: 0
    overwrite_a [input int, optional] Default: 0
    lwork  [input int, optional] Default: MAX(n,1)

scipy.linalg.lapack.dsytrd

scipy.linalg.lapack.dsytrd(a[, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for dsytrd.

Parameters
    a      [input rank-2 array('d') with bounds (lda,n)]

Returns
    c      [rank-2 array('d') with bounds (lda,n) and a storage]
    d      [rank-1 array('d') with bounds (n)]
    e      [rank-1 array('d') with bounds (-1 + n)]
    tau    [rank-1 array('d') with bounds (-1 + n)]
info [int]

Other Parameters
lower [input int, optional] Default: 0
overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: MAX(n,1)

scipy.linalg.lapack.ssytrd_lwork

scipy.linalg.lapack.ssytrd_lwork(n[, lower]) = <fortran object>
Wrapper for ssytrd_lwork.

Parameters
n [input int]

Returns
work [float]
info [int]

Other Parameters
lower [input int, optional] Default: 0

scipy.linalg.lapack.dsytrd_lwork

scipy.linalg.lapack.dsytrd_lwork(n[, lower]) = <fortran object>
Wrapper for dsytrd_lwork.

Parameters
n [input int]

Returns
work [float]
info [int]

Other Parameters
lower [input int, optional] Default: 0

scipy.linalg.lapack.ssytrf

scipy.linalg.lapack.ssytrf(a[, lower, lwork, overwrite_a]) = <fortran object>
Wrapper for ssytrf.

Parameters
a [input rank-2 array('f') with bounds (n,n)]

Returns
ldu [rank-2 array('f') with bounds (n,n) and a storage]
ipiv [rank-1 array('i') with bounds (n)]
info [int]

Other Parameters
lower [input int, optional] Default: 0
overwrite_a [input int, optional] Default: 0

3.3. API definition

lwork [input int, optional] Default: max(n,1)

scipy.linalg.lapack.dsytrf

scipy.linalg.lapack.dsytrf(a[[], lower, lwork, overwrite_a]] = <fortran object>
Wrapper for dsytrf.

Parameters
a [input rank-2 array('d') with bounds (n,n)]

Returns
ldu [rank-2 array('d') with bounds (n,n) and a storage]
ipiv [rank-1 array('i') with bounds (n)]
info [int]

Other Parameters
lower [input int, optional] Default: 0
overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: max(n,1)

scipy.linalg.lapack.csytrf

scipy.linalg.lapack.csytrf(a[[], lower, lwork, overwrite_a]] = <fortran object>
Wrapper for csytrf.

Parameters
a [input rank-2 array('F') with bounds (n,n)]

Returns
ldu [rank-2 array('F') with bounds (n,n) and a storage]
ipiv [rank-1 array('i') with bounds (n)]
info [int]

Other Parameters
lower [input int, optional] Default: 0
overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: max(n,1)

scipy.linalg.lapack.zsytrf

scipy.linalg.lapack.zsytrf(a[[], lower, lwork, overwrite_a]] = <fortran object>
Wrapper for zsytrf.

Parameters
a [input rank-2 array('D') with bounds (n,n)]

Returns
ldu [rank-2 array('D') with bounds (n,n) and a storage]
ipiv [rank-1 array('i') with bounds (n)]
info [int]

Other Parameters
lower [input int, optional] Default: 0
overwrite_a
    [input int, optional] Default: 0
lwork
    [input int, optional] Default: max(n,1)

scipy.linalg.lapack.ssytrf_lwork

scipy.linalg.lapack.ssytrf_lwork(n[, lower]) = <fortran object>
Wrapper for ssytrf_lwork.

Parameters
    n       [input int]

Returns
    work    [float]
    info    [int]

Other Parameters
    lower   [input int, optional] Default: 0

scipy.linalg.lapack.dsytrf_lwork

scipy.linalg.lapack.dsytrf_lwork(n[, lower]) = <fortran object>
Wrapper for dsytrf_lwork.

Parameters
    n       [input int]

Returns
    work    [float]
    info    [int]

Other Parameters
    lower   [input int, optional] Default: 0

scipy.linalg.lapack.csytrf_lwork

scipy.linalg.lapack.csytrf_lwork(n[, lower]) = <fortran object>
Wrapper for csytrf_lwork.

Parameters
    n       [input int]

Returns
    work    [complex]
    info    [int]

Other Parameters
    lower   [input int, optional] Default: 0
scipy.linalg.lapack.zsytrf_lwork

scipy.linalg.lapack.zsytrf_lwork(n[, lower]) = <fortran object>

Wrapper for zsytrf_lwork.

Parameters
  n [input int]

Returns
  work [complex]
  info [int]

Other Parameters
  lower [input int, optional] Default: 0

scipy.linalg.lapack.stbtrs

scipy.linalg.lapack.stbtrs(ab, b[, uplo, trans, diag, overwrite_b]) = <fortran object>

Wrapper for stbtrs.

Parameters
  ab [input rank-2 array('f') with bounds (ldab,n)]
  b [input rank-2 array('f') with bounds (ldb,nrhs)]

Returns
  x [rank-2 array('f') with bounds (ldb,nrhs) and b storage]
  info [int]

Other Parameters
  uplo [input string(len=1), optional] Default: ‘U’
  trans [input string(len=1), optional] Default: ‘N’
  diag [input string(len=1), optional] Default: ‘N’
  overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.dtbtrs

scipy.linalg.lapack.dtbtrs(ab, b[, uplo, trans, diag, overwrite_b]) = <fortran object>

Wrapper for dtbtrs.

Parameters
  ab [input rank-2 array('d') with bounds (ldab,n)]
  b [input rank-2 array('d') with bounds (ldb,nrhs)]

Returns
  x [rank-2 array('d') with bounds (ldb,nrhs) and b storage]
  info [int]

Other Parameters
  uplo [input string(len=1), optional] Default: ‘U’
  trans [input string(len=1), optional] Default: ‘N’
  diag [input string(len=1), optional] Default: ‘N’
  overwrite_b [input int, optional] Default: 0
scipy.linalg.lapack.ctbtrs

scipy.linalg.lapack.ctbtrs(ab, b[, uplo, trans, diag, overwrite_b]) = <fortran object>

Wrapper for ctbtrs.

Parameters

- ab [input rank-2 array('F') with bounds (ldab,n)]
- b [input rank-2 array('F') with bounds (ldb,nrhs)]

Returns

- x [rank-2 array('F') with bounds (ldb,nrhs) and b storage]
- info [int]

Other Parameters

- uplo [input string(len=1), optional] Default: ‘U’
- trans [input string(len=1), optional] Default: ‘N’
- diag [input string(len=1), optional] Default: ‘N’
- overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.ztbtrs

scipy.linalg.lapack.ztbtrs(ab, b[, uplo, trans, diag, overwrite_b]) = <fortran object>

Wrapper for ztbtrs.

Parameters

- ab [input rank-2 array('D') with bounds (ldab,n)]
- b [input rank-2 array('D') with bounds (ldb,nrhs)]

Returns

- x [rank-2 array('D') with bounds (ldb,nrhs) and b storage]
- info [int]

Other Parameters

- uplo [input string(len=1), optional] Default: ‘U’
- trans [input string(len=1), optional] Default: ‘N’
- diag [input string(len=1), optional] Default: ‘N’
- overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.stfsm

scipy.linalg.lapack.stfsm(alpha, a[, transr, side, uplo, trans, diag, overwrite_b]) = <fortran object>

Wrapper for stfsm.

Parameters

- alpha [input float]
- a [input rank-1 array('f') with bounds (nt)]
- b [input rank-2 array('f') with bounds (m,n)]

Returns

- x [rank-2 array('f') with bounds (m,n) and b storage]

Other Parameters
transr [input string(len=1), optional] Default: ‘N’
side [input string(len=1), optional] Default: ‘L’
uplo [input string(len=1), optional] Default: ‘U’
trans [input string(len=1), optional] Default: ‘N’
diag [input string(len=1), optional] Default: ‘N’
overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.dtfsm

scipy.linalg.lapack.dtfsm(alpha, a, b[, transr, side, uplo, trans, diag, overwrite_b]) = <fortran object>

Wrapper for dtfsm.

Parameters

alpha [input float]
a [input rank-1 array('d') with bounds (nt)]
b [input rank-2 array('d') with bounds (m,n)]

Returns

x [rank-2 array('d') with bounds (m,n) and b storage]

Other Parameters

ctrans [input string(len=1), optional] Default: ‘N’
side [input string(len=1), optional] Default: ‘L’
uplo [input string(len=1), optional] Default: ‘U’
trans [input string(len=1), optional] Default: ‘N’
diag [input string(len=1), optional] Default: ‘N’
overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.ctfsm

scipy.linalg.lapack.ctfsm(alpha, a, b[, transr, side, uplo, trans, diag, overwrite_b]) = <fortran object>

Wrapper for ctfsm.

Parameters

alpha [input complex]
a [input rank-1 array('F') with bounds (nt)]
b [input rank-2 array('F') with bounds (m,n)]

Returns

x [rank-2 array('F') with bounds (m,n) and b storage]

Other Parameters

ctrans [input string(len=1), optional] Default: ‘N’
side [input string(len=1), optional] Default: ‘L’
uplo [input string(len=1), optional] Default: ‘U’
trans [input string(len=1), optional] Default: ‘N’
diag [input string(len=1), optional] Default: ‘N’
overwrite_b [input int, optional] Default: 0

**scipy.linalg.lapack.ztfsm**

scipy.linalg.lapack.ztfsm(alpha, a, b[, transr, side, uplo, trans, diag, overwrite_b]) = <fortran object>

Wrapper for ztfsm.

**Parameters**

- **alpha** [input complex]
- **a** [input rank-1 array(D) with bounds (nt)]
- **b** [input rank-2 array(D) with bounds (m,n)]

**Returns**

- **x** [rank-2 array(D) with bounds (m,n) and b storage]

**Other Parameters**

- **transr** [input string(len=1), optional] Default: 'N'
- **side** [input string(len=1), optional] Default: 'L'
- **uplo** [input string(len=1), optional] Default: 'U'
- **trans** [input string(len=1), optional] Default: 'N'
- **diag** [input string(len=1), optional] Default: 'N'
- **overwrite_b** [input int, optional] Default: 0

**scipy.linalg.lapack.stfttp**

scipy.linalg.lapack.stfttp(n, arf[, transr, uplo]) = <fortran object>

Wrapper for stfttp.

**Parameters**

- **n** [input int]
- **arf** [input rank-1 array(F) with bounds (nt)]

**Returns**

- **ap** [rank-1 array(F) with bounds (nt)]
- **info** [int]

**Other Parameters**

- **transr** [input string(len=1), optional] Default: 'N'
- **uplo** [input string(len=1), optional] Default: 'U'

**scipy.linalg.lapack.dtfttp**

scipy.linalg.lapack.dtfttp(n, arf[, transr, uplo]) = <fortran object>

Wrapper for dtfttp.

**Parameters**

- **n** [input int]
- **arf** [input rank-1 array(D) with bounds (nt)]

**Returns**

- **ap** [rank-1 array(D) with bounds (nt)]
- **info** [int]

**Other Parameters**

- **transr** [input string(len=1), optional] Default: 'N'
**uplo** [input string(len=1), optional] Default: ‘U’

### scipy.linalg.lapack.ctfttp

**scipy.linalg.lapack.ctfttp**

```python
scipy.linalg.lapack.ctfttp(n, arf[, transr, uplo]) = <fortran object>
```

Wrapper for `ctfttp`.

**Parameters**

- **n** [input int]
- **arf** [input rank-1 array('F') with bounds (nt)]

**Returns**

- **ap** [rank-1 array('F') with bounds (nt)]
- **info** [int]

**Other Parameters**

- **transr** [input string(len=1), optional] Default: ‘N’
- **uplo** [input string(len=1), optional] Default: ‘U’

### scipy.linalg.lapack.ztfttp

**scipy.linalg.lapack.ztfttp**

```python
scipy.linalg.lapack.ztfttp(n, arf[, transr, uplo]) = <fortran object>
```

Wrapper for `ztfttp`.

**Parameters**

- **n** [input int]
- **arf** [input rank-1 array('D') with bounds (nt)]

**Returns**

- **ap** [rank-1 array('D') with bounds (nt)]
- **info** [int]

**Other Parameters**

- **transr** [input string(len=1), optional] Default: ‘N’
- **uplo** [input string(len=1), optional] Default: ‘U’

### scipy.linalg.lapack.stfttr

**scipy.linalg.lapack.stfttr**

```python
scipy.linalg.lapack.stfttr(n, arf[, transr, uplo]) = <fortran object>
```

Wrapper for `stfttr`.

**Parameters**

- **n** [input int]
- **arf** [input rank-1 array('f') with bounds (nt)]

**Returns**

- **a** [rank-2 array('f') with bounds (lda,n)]
- **info** [int]

**Other Parameters**

- **transr** [input string(len=1), optional] Default: ‘N’
- **uplo** [input string(len=1), optional] Default: ‘U’
scipy.linalg.lapack.dfttr

scipy.linalg.lapack.dfttr(n, arf[, transr, uplo]) = <fortran object>
Wrapper for dfttr.

Parameters

n [input int]
arf [input rank-1 array('d') with bounds (nt)]

Returns

a [rank-2 array('d') with bounds (lda,n)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: 'N'
uplo [input string(len=1), optional] Default: 'U'

scipy.linalg.lapack.ctfttr

scipy.linalg.lapack.ctfttr(n, arf[, transr, uplo]) = <fortran object>
Wrapper for ctfttr.

Parameters

n [input int]
arf [input rank-1 array('F') with bounds (nt)]

Returns

a [rank-2 array('F') with bounds (lda,n)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: 'N'
uplo [input string(len=1), optional] Default: 'U'

scipy.linalg.lapack.ztfttr

scipy.linalg.lapack.ztfttr(n, arf[, transr, uplo]) = <fortran object>
Wrapper for ztfttr.

Parameters

n [input int]
arf [input rank-1 array('D') with bounds (nt)]

Returns

a [rank-2 array('D') with bounds (lda,n)]
info [int]

Other Parameters

transr [input string(len=1), optional] Default: 'N'
uplo [input string(len=1), optional] Default: 'U'
scipy.linalg.lapack.stgexc

scipy.linalg.lapack.stgexc(a, b, q, z, ifst, ilst[, lwork, overwrite_a, overwrite_b, overwrite_q, overwrite_z]), = <fortran object>

Wrapper for stgexc.

Parameters

a [input rank-2 array(‘f’) with bounds (lda,n)]
b [input rank-2 array(‘f’) with bounds (ldb,n)]
q [input rank-2 array(‘f’) with bounds (ldq,n)]
z [input rank-2 array(‘f’) with bounds (ldz,n)]
ifst [input int]
ilst [input int]

Returns

a [rank-2 array(‘f’) with bounds (lda,n)]
b [rank-2 array(‘f’) with bounds (ldb,n)]
q [rank-2 array(‘f’) with bounds (ldq,n)]
z [rank-2 array(‘f’) with bounds (ldz,n)]
work [rank-1 array(‘f’) with bounds (MAX(lwork, 1))]
info [int]

Other Parameters

overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
overwrite_q [input int, optional] Default: 0
overwrite_z [input int, optional] Default: 0
lwork [input int, optional] Default: max(4*n+16,1)

scipy.linalg.lapack.dtgexc

scipy.linalg.lapack.dtgexc(a, b, q, z, ifst, ilst[, lwork, overwrite_a, overwrite_b, overwrite_q, overwrite_z]), = <fortran object>

Wrapper for dtgexc.

Parameters

a [input rank-2 array(‘d’) with bounds (lda,n)]
b [input rank-2 array(‘d’) with bounds (ldb,n)]
q [input rank-2 array(‘d’) with bounds (ldq,n)]
z [input rank-2 array(‘d’) with bounds (ldz,n)]
ifst [input int]
ilst [input int]

Returns

a [rank-2 array(‘d’) with bounds (lda,n)]
b [rank-2 array(‘d’) with bounds (ldb,n)]
q [rank-2 array(‘d’) with bounds (ldq,n)]
z [rank-2 array(‘d’) with bounds (ldz,n)]
work [rank-1 array(‘d’) with bounds (MAX(lwork, 1))]
info [int]
Other Parameters

overwrite_a
[input int, optional] Default: 0
overwrite_b
[input int, optional] Default: 0
overwrite_q
[input int, optional] Default: 0
overwrite_z
[input int, optional] Default: 0
lwork
[input int, optional] Default: \(\max(4n+16,1)\)

scipy.linalg.lapack.ctgexc

\[
\text{scipy.linalg.lapack.ctgexc}(a, b, q, z, ifst, ilst[, overwrite_a, overwrite_b, overwrite_q, overwrite_z]) =<\text{fortran object}>
\]

Wrapper for \texttt{ctgexc}.

Parameters

\begin{itemize}
  \item \(a\) [input rank-2 array('F') with bounds (lda,n)]
  \item \(b\) [input rank-2 array('F') with bounds (ldb,n)]
  \item \(q\) [input rank-2 array('F') with bounds (ldq,n)]
  \item \(z\) [input rank-2 array('F') with bounds (ldz,n)]
  \item \(ifst\) [input int]
  \item \(ilst\) [input int]
\end{itemize}

Returns

\begin{itemize}
  \item \(a\) [rank-2 array('F') with bounds (lda,n)]
  \item \(b\) [rank-2 array('F') with bounds (ldb,n)]
  \item \(q\) [rank-2 array('F') with bounds (ldq,n)]
  \item \(z\) [rank-2 array('F') with bounds (ldz,n)]
  \item \(info\) [int]
\end{itemize}

Other Parameters

overwrite_a
[input int, optional] Default: 0
overwrite_b
[input int, optional] Default: 0
overwrite_q
[input int, optional] Default: 0
overwrite_z
[input int, optional] Default: 0

scipy.linalg.lapack.ztgexc

\[
\text{scipy.linalg.lapack.ztgexc}(a, b, q, z, ifst, ilst[, overwrite_a, overwrite_b, overwrite_q, overwrite_z]) =<\text{fortran object}>
\]

Wrapper for \texttt{ztgexc}.

Parameters

\begin{itemize}
  \item \(a\) [input rank-2 array('D') with bounds (lda,n)]
  \item \(b\) [input rank-2 array('D') with bounds (ldb,n)]
  \item \(q\) [input rank-2 array('D') with bounds (ldq,n)]
  \item \(z\) [input rank-2 array('D') with bounds (ldz,n)]
  \item \(ifst\) [input int]
\end{itemize}
ialst [input int]

Returns

a [rank-2 array('D') with bounds (lda,n)]
b [rank-2 array('D') with bounds (ldb,n)]
q [rank-2 array('D') with bounds (ldq,n)]
z [rank-2 array('D') with bounds (ldz,n)]
info [int]

Other Parameters

overwrite_a
[input int, optional] Default: 0
overwrite_b
[input int, optional] Default: 0
overwrite_q
[input int, optional] Default: 0
overwrite_z
[input int, optional] Default: 0

scipy.linalg.lapack.stgsen

scipy.linalg.lapack.stgsen(select, a, b, q, z[, ijob, wantq, wantz, lwork, liwork, overwrite_a, overwrite_b, overwrite_q, overwrite_z]) = <fortran object>

Wrapper for stgsen.

Parameters

select [input rank-1 array('i') with bounds (n)]
a [input rank-2 array('f') with bounds (n,n)]
b [input rank-2 array('f') with bounds (n,n)]
q [input rank-2 array('f') with bounds (n,n)]
z [input rank-2 array('f') with bounds (n,n)]

Returns

as [rank-2 array('f') with bounds (n,n) and a storage]
bs [rank-2 array('f') with bounds (n,n) and b storage]
alphar [rank-1 array('f') with bounds (n)]
alphai [rank-1 array('f') with bounds (n)]
beta [rank-1 array('f') with bounds (n)]
qs [rank-2 array('f') with bounds (n,n) and q storage]
zs [rank-2 array('f') with bounds (n,n) and z storage]
m [int]
pl [float]
pr [float]
dif [rank-1 array('f') with bounds (2)]
info [int]

Other Parameters

ijob [input int, optional] Default: 4
wantq [input int, optional] Default: 1
wantz [input int, optional] Default: 1
overwrite_a
[input int, optional] Default: 0
overwrite_b
[input int, optional] Default: 0
overwrite_q
  [input int, optional] Default: 0
overwrite_z
  [input int, optional] Default: 0
lwork  [input int, optional] Default: 4*n+16
liwork [input int, optional] Default: n+6

**scipy.linalg.lapack.dtgsen**

**Wrapper for dtgsen.**

**Parameters**

- **select**  [input rank-1 array('i') with bounds (n)]
- **a**  [input rank-2 array('d') with bounds (n,n)]
- **b**  [input rank-2 array('d') with bounds (n,n)]
- **q**  [input rank-2 array('d') with bounds (n,n)]
- **z**  [input rank-2 array('d') with bounds (n,n)]

**Returns**

- **as**  [rank-2 array('d') with bounds (n,n) and a storage]
- **bs**  [rank-2 array('d') with bounds (n,n) and b storage]
- **alphar**  [rank-1 array('d') with bounds (n)]
- **alphai**  [rank-1 array('d') with bounds (n)]
- **beta**  [rank-1 array('d') with bounds (n)]
- **qs**  [rank-2 array('d') with bounds (n,n) and q storage]
- **zs**  [rank-2 array('d') with bounds (n,n) and z storage]
- **m**  [int]
- **pl**  [float]
- **pr**  [float]
- **dif**  [rank-1 array('d') with bounds (2)]
- **info**  [int]

**Other Parameters**

- **ijob**  [input int, optional] Default: 4
- **wantq**  [input int, optional] Default: 1
- **wantz**  [input int, optional] Default: 1
- **overwrite_a**  [input int, optional] Default: 0
- **overwrite_b**  [input int, optional] Default: 0
- **overwrite_q**  [input int, optional] Default: 0
- **overwrite_z**  [input int, optional] Default: 0
- **lwork**  [input int, optional] Default: 4*n+16
- **liwork**  [input int, optional] Default: n+6

scipy.linalg.lapack.ctgsen

scipy.linalg.lapack.ctgsen (select, a, b, q, z, ijob, wantq, wantz, lwork, liwork, overwrite_a, overwrite_b, overwrite_q, overwrite_z) = <fortran object>

Wrapper for ctgsen.

Parameters

select [input rank-1 array('i') with bounds (n)]
a [input rank-2 array('F') with bounds (n,n)]
b [input rank-2 array('F') with bounds (n,n)]
q [input rank-2 array('F') with bounds (n,n)]
z [input rank-2 array('F') with bounds (n,n)]

Returns

as [rank-2 array('F') with bounds (n,n) and storage]
bs [rank-2 array('F') with bounds (n,n) and b storage]
alpha [rank-1 array('F') with bounds (n)]
beta [rank-1 array('F') with bounds (n)]
qs [rank-2 array('F') with bounds (n,n) and q storage]
zs [rank-2 array('F') with bounds (n,n) and z storage]
m [int]
pl [float]
pr [float]
dif [rank-1 array('F') with bounds (2)]
info [int]

Other Parameters

ijob [input int, optional] Default: 4
wantq [input int, optional] Default: 1
wantz [input int, optional] Default: 1
overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
overwrite_q [input int, optional] Default: 0
overwrite_z [input int, optional] Default: 0
lwork [input int, optional] Default: (ijob==0?1:n+2)
liwork [input int, optional] Default: (ijob==0?1:n+2)

scipy.linalg.lapack.ztgsen

scipy.linalg.lapack.ztgsen (select, a, b, q, z, ijob, wantq, wantz, lwork, liwork, overwrite_a, overwrite_b, overwrite_q, overwrite_z) = <fortran object>

Wrapper for ztgsen.

Parameters

select [input rank-1 array('i') with bounds (n)]
a [input rank-2 array('D') with bounds (n,n)]
b [input rank-2 array('D') with bounds (n,n)]
q [input rank-2 array('D') with bounds (n,n)]
z [input rank-2 array('D') with bounds (n,n)]

Returns
as [rank-2 array('D') with bounds (n,n) and a storage]
bs [rank-2 array('D') with bounds (n,n) and b storage]
alpha [rank-1 array('D') with bounds (n)]
beta [rank-1 array('D') with bounds (n)]
qs [rank-2 array('D') with bounds (n,n) and q storage]
zs [rank-2 array('D') with bounds (n,n) and z storage]
m [int]
pl [float]
pr [float]
dif [rank-1 array('d') with bounds (2)]
info [int]

Other Parameters

ijob [input int, optional] Default: 4
wantq [input int, optional] Default: 1
wantz [input int, optional] Default: 1
overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
overwrite_q [input int, optional] Default: 0
overwrite_z [input int, optional] Default: 0
lwork [input int, optional] Default: (ijob==0?1:n+2)
lwork [input int, optional] Default: (ijob==0?1:n+2)

scipy.linalg.lapack.stgsen_lwork

scipy.linalg.lapack.stgsen_lwork (select, a[:, ijob]) = <fortran object>

Parameters

select [input rank-1 array('i') with bounds (n)]
a [input rank-2 array('f') with bounds (n,n)]

Returns

work [float]
iwork [int]
info [int]

Other Parameters

ijob [input int, optional] Default: 4

scipy.linalg.lapack.dtgsen_lwork

scipy.linalg.lapack.dtgsen_lwork (select, a[:, ijob]) = <fortran object>

Parameters

select [input rank-1 array('i') with bounds (n)]
a [input rank-2 array('d') with bounds (n,n)]

Returns

work [float]

iwork [int]
info [int]

Other Parameters
ijob [input int, optional] Default: 4

scipy.linalg.lapack.ctgsen_lwork
scipy.linalg.lapack.ctgsen_lwork (select, a, b[, ijob]) = <fortran object>
Wrapper for cttgsen_lwork.

Parameters
select [input rank-1 array('i') with bounds (n)]
a [input rank-2 array('F') with bounds (n,n)]
b [input rank-2 array('F') with bounds (n,n)]

Returns
work [complex]
iwork [int]
info [int]

Other Parameters
ijob [input int, optional] Default: 4

scipy.linalg.lapack.ztgsen_lwork
scipy.linalg.lapack.ztgsen_lwork (select, a, b[, ijob]) = <fortran object>
Wrapper for zttgsen_lwork.

Parameters
select [input rank-1 array('i') with bounds (n)]
a [input rank-2 array('D') with bounds (n,n)]
b [input rank-2 array('D') with bounds (n,n)]

Returns
work [complex]
iwork [int]
info [int]

Other Parameters
ijob [input int, optional] Default: 4

scipy.linalg.lapack.stpttf
scipy.linalg.lapack.stpttf (n, ap[, transr, uplo]) = <fortran object>
Wrapper for stpttf.

Parameters
n [input int]
ap [input rank-1 array('f') with bounds (nt)]

Returns
arf [rank-1 array('f') with bounds (nt)]
info [int]

Other Parameters
transr  [input string(len=1), optional] Default: ‘N’
uplo   [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.dtpttf

scipy.linalg.lapack.dtpttf (n, ap[, transr, uplo]) = <fortran object>
Wrapper for dtpttf.

Parameters
n        [input int]
ap       [input rank-1 array('d') with bounds (nt)]

Returns
arf     [rank-1 array('d') with bounds (nt)]
info    [int]

Other Parameters
transr  [input string(len=1), optional] Default: ‘N’
uplo    [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.ctpttf

scipy.linalg.lapack.ctpttf (n, ap[, transr, uplo]) = <fortran object>
Wrapper for ctpttf.

Parameters
n        [input int]
ap       [input rank-1 array('F') with bounds (nt)]

Returns
arf     [rank-1 array('F') with bounds (nt)]
info    [int]

Other Parameters
transr  [input string(len=1), optional] Default: ‘N’
uplo    [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.ztpttf

scipy.linalg.lapack.ztpttf (n, ap[, transr, uplo]) = <fortran object>
Wrapper for ztpttf.

Parameters
n        [input int]
ap       [input rank-1 array('D') with bounds (nt)]

Returns
arf     [rank-1 array('D') with bounds (nt)]
info    [int]

Other Parameters
transr  [input string(len=1), optional] Default: ‘N’
uplo    [input string(len=1), optional] Default: ‘U’
scipy.linalg.lapack.stpttr

`scipy.linalg.lapack.stpttr(n, ap[, uplo]) = <fortran object>`

Wrapper for stpttr.

**Parameters**

- `n` [input int]
- `ap` [input rank-1 array('f') with bounds (nt)]

**Returns**

- `a` [rank-2 array('f') with bounds (n,n)]
- `info` [int]

**Other Parameters**

- `uplo` [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.dtpttr

`scipy.linalg.lapack.dtpttr(n, ap[, uplo]) = <fortran object>`

Wrapper for dtpttr.

**Parameters**

- `n` [input int]
- `ap` [input rank-1 array('d') with bounds (nt)]

**Returns**

- `a` [rank-2 array('d') with bounds (n,n)]
- `info` [int]

**Other Parameters**

- `uplo` [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.ctpttr

`scipy.linalg.lapack.ctpttr(n, ap[, uplo]) = <fortran object>`

Wrapper for ctpttr.

**Parameters**

- `n` [input int]
- `ap` [input rank-1 array('F') with bounds (nt)]

**Returns**

- `a` [rank-2 array('F') with bounds (n,n)]
- `info` [int]

**Other Parameters**

- `uplo` [input string(len=1), optional] Default: ‘U’
scipy.linalg.lapack.ztpttr

scipy.linalg.lapack.ztpttr(n, ap[, uplo]) = <fortran object>

Wrapper for ztpttr.

Parameters

n [input int]
ap [input rank-1 array('D') with bounds (nt)]

Returns

a [rank-2 array('D') with bounds (n,n)]
info [int]

Other Parameters

uplo [input string(len=1), optional] Default: 'U'

scipy.linalg.lapack.strsyl

scipy.linalg.lapack.strsyl(a, b, c[, trana, tranb, isgn, overwrite_c]) = <fortran object>

Wrapper for strsyl.

Parameters

a [input rank-2 array('f') with bounds (m,m)]
b [input rank-2 array('f') with bounds (n,n)]
c [input rank-2 array('f') with bounds (m,n)]

Returns

x [rank-2 array('f') with bounds (m,n) and c storage]
scale [float]
info [int]

Other Parameters

trana [input string(len=1), optional] Default: 'N'
tranb [input string(len=1), optional] Default: 'N'
isgn [input int, optional] Default: 1
overwrite_c [input int, optional] Default: 0

scipy.linalg.lapack.dtrsyl

scipy.linalg.lapack.dtrsyl(a, b, c[, trana, tranb, isgn, overwrite_c]) = <fortran object>

Wrapper for dtrsyl.

Parameters

a [input rank-2 array('d') with bounds (m,m)]
b [input rank-2 array('d') with bounds (n,n)]
c [input rank-2 array('d') with bounds (m,n)]

Returns

x [rank-2 array('d') with bounds (m,n) and c storage]
scale [float]
info [int]

Other Parameters

trana [input string(len=1), optional] Default: 'N'
scipy.linalg.lapack.ctrsyl

scipy.linalg.lapack.ctrsyl(a, b, c[, trana, tranb, isgn, overwrite_c]) = <fortran object>

Wrapper for ctrsyl.

Parameters

- a [input rank-2 array('F') with bounds (m,m)]
- b [input rank-2 array('F') with bounds (n,n)]
- c [input rank-2 array('F') with bounds (m,n)]

Returns

- x [rank-2 array('F') with bounds (m,n) and c storage]
- scale [float]
- info [int]

Other Parameters

- trana [input string(len=1), optional] Default: ‘N’
- tranb [input string(len=1), optional] Default: ‘N’
- isgn [input int, optional] Default: 1
- overwrite_c [input int, optional] Default: 0

scipy.linalg.lapack.ztrsyl

scipy.linalg.lapack.ztrsyl(a, b, c[, trana, tranb, isgn, overwrite_c]) = <fortran object>

Wrapper for ztrsyl.

Parameters

- a [input rank-2 array('D') with bounds (m,m)]
- b [input rank-2 array('D') with bounds (n,n)]
- c [input rank-2 array('D') with bounds (m,n)]

Returns

- x [rank-2 array('D') with bounds (m,n) and c storage]
- scale [float]
- info [int]

Other Parameters

- trana [input string(len=1), optional] Default: ‘N’
- tranb [input string(len=1), optional] Default: ‘N’
- isgn [input int, optional] Default: 1
- overwrite_c [input int, optional] Default: 0
scipy.linalg.lapack.strtri

Wrapper for _strtri_.

Parameters

- c [input rank-2 array('f') with bounds (n,n)]

Returns

- inv_c [rank-2 array('f') with bounds (n,n) and c storage]
- info [int]

Other Parameters

- overwrite_c [input int, optional] Default: 0
- lower [input int, optional] Default: 0
- unitdiag [input int, optional] Default: 0

scipy.linalg.lapack.dtrtri

Wrapper for _dtrtri_.

Parameters

- c [input rank-2 array('d') with bounds (n,n)]

Returns

- inv_c [rank-2 array('d') with bounds (n,n) and c storage]
- info [int]

Other Parameters

- overwrite_c [input int, optional] Default: 0
- lower [input int, optional] Default: 0
- unitdiag [input int, optional] Default: 0

scipy.linalg.lapack.ctrtri

Wrapper for _ctrtri_.

Parameters

- c [input rank-2 array('F') with bounds (n,n)]

Returns

- inv_c [rank-2 array('F') with bounds (n,n) and c storage]
- info [int]

Other Parameters

- overwrite_c [input int, optional] Default: 0
- lower [input int, optional] Default: 0
- unitdiag [input int, optional] Default: 0
scipy.linalg.lapack.ztrtri

scipy.linalg.lapack.ztrtri(c[, lower, unitdiag, overwrite_c]) = <fortran object>

Wrapper for ztrtri.

Parameters
- c [input rank-2 array('D') with bounds (n,n)]

Returns
- inv_c [rank-2 array('D') with bounds (n,n) and c storage]
- info [int]

Other Parameters
- overwrite_c [input int, optional] Default: 0
- lower [input int, optional] Default: 0
- unitdiag [input int, optional] Default: 0

scipy.linalg.lapack.strtrs

scipy.linalg.lapack.strtrs(a, b[, lower, trans, unitdiag, lda, overwrite_b]) = <fortran object>

Wrapper for strtrs.

Parameters
- a [input rank-2 array('f') with bounds (lda,n)]
- b [input rank-2 array('f') with bounds (ldb,nrhs)]

Returns
- x [rank-2 array('f') with bounds (ldb,nrhs) and b storage]
- info [int]

Other Parameters
- lower [input int, optional] Default: 0
- trans [input int, optional] Default: 0
- unitdiag [input int, optional] Default: 0
- lda [input int, optional] Default: shape(a,0)
- overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.dtrtrs

scipy.linalg.lapack.dtrtrs(a, b[, lower, trans, unitdiag, lda, overwrite_b]) = <fortran object>

Wrapper for dtrtrs.

Parameters
- a [input rank-2 array('d') with bounds (lda,n)]
- b [input rank-2 array('d') with bounds (ldb,nrhs)]

Returns
- x [rank-2 array('d') with bounds (ldb,nrhs) and b storage]
- info [int]

Other Parameters
- lower [input int, optional] Default: 0
- trans [input int, optional] Default: 0

unitdiag  [input int, optional] Default: 0
lda   [input int, optional] Default: shape(a,0)
overwrite_b   [input int, optional] Default: 0

**scipy.linalg.lapack.ctrtrs**

**scipy.linalg.lapack.ctrtrs**(a, b[, lower, trans, unitdiag, lda, overwrite_b]) = <fortran object>

Wrapper for ctrtrs.

**Parameters**

- a   [input rank-2 array('F') with bounds (lda,n)]
- b   [input rank-2 array('F') with bounds (ldb,nrhs)]

**Returns**

- x   [rank-2 array('F') with bounds (ldb,nrhs) and b storage]
- info   [int]

**Other Parameters**

- lower   [input int, optional] Default: 0
- trans   [input int, optional] Default: 0
- unitdiag   [input int, optional] Default: 0
- lda   [input int, optional] Default: shape(a,0)
- overwrite_b   [input int, optional] Default: 0

**scipy.linalg.lapack.ztrtrs**

**scipy.linalg.lapack.ztrtrs**(a, b[, lower, trans, unitdiag, lda, overwrite_b]) = <fortran object>

Wrapper for ztrtrs.

**Parameters**

- a   [input rank-2 array('D') with bounds (lda,n)]
- b   [input rank-2 array('D') with bounds (ldb,nrhs)]

**Returns**

- x   [rank-2 array('D') with bounds (ldb,nrhs) and b storage]
- info   [int]

**Other Parameters**

- lower   [input int, optional] Default: 0
- trans   [input int, optional] Default: 0
- unitdiag   [input int, optional] Default: 0
- lda   [input int, optional] Default: shape(a,0)
- overwrite_b   [input int, optional] Default: 0
scipy.linalg.lapack.strttf

```python
scipy.linalg.lapack.strttf(a[, transr, uplo]) = <fortran object>
```

Wrapper for strttf.

**Parameters**

- `a` [input rank-2 array('f') with bounds (lda,n)]

**Returns**

- `arf` [rank-1 array('f') with bounds ((n + n * n) / 2)]
- `info` [int]

**Other Parameters**

- `transr` [input string(len=1), optional] Default: ‘N’
- `uplo` [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.dtrttf

```python
scipy.linalg.lapack.dtrttf(a[, transr, uplo]) = <fortran object>
```

Wrapper for dtrttf.

**Parameters**

- `a` [input rank-2 array('d') with bounds (lda,n)]

**Returns**

- `arf` [rank-1 array('d') with bounds ((n + n * n) / 2)]
- `info` [int]

**Other Parameters**

- `transr` [input string(len=1), optional] Default: ‘N’
- `uplo` [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.ctrttf

```python
scipy.linalg.lapack.ctrttf(a[, transr, uplo]) = <fortran object>
```

Wrapper for ctrttf.

**Parameters**

- `a` [input rank-2 array('F') with bounds (lda,n)]

**Returns**

- `arf` [rank-1 array('F') with bounds ((n + n * n) / 2)]
- `info` [int]

**Other Parameters**

- `transr` [input string(len=1), optional] Default: ‘N’
- `uplo` [input string(len=1), optional] Default: ‘U’
scipy.linalg.lapack.ztrttf

scipy.linalg.lapack.ztrttf(a[, transr, uplo]) = <fortran object>
Wrapper for ztrttf.

    Parameters
    a       [input rank-2 array('D') with bounds (lda,n)]

    Returns
    arf     [rank-1 array('D') with bounds ((n + n * n) / 2)]
    info    [int]

    Other Parameters
    transr       [input string(len=1), optional] Default: ‘N’
    uplo         [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.strttp

scipy.linalg.lapack.strttp(a[, uplo]) = <fortran object>
Wrapper for strttp.

    Parameters
    a       [input rank-2 array('f') with bounds (lda,n)]

    Returns
    ap      [rank-1 array('f') with bounds ((n + n * n) / 2)]
    info    [int]

    Other Parameters
    uplo     [input string(len=1), optional] Default: ‘U’

scipy.linalg.lapack.dtrttp

scipy.linalg.lapack.dtrttp(a[, uplo]) = <fortran object>
Wrapper for dtrttp.

    Parameters
    a       [input rank-2 array('d') with bounds (lda,n)]

    Returns
    ap      [rank-1 array('d') with bounds ((n + n * n) / 2)]
    info    [int]

    Other Parameters
    uplo     [input string(len=1), optional] Default: ‘U’
scipy.linalg.lapack.crrtt

scipy.linalg.lapack.crrtt(a[[], uplo]) = <fortran object>
Wrapper for crrtt.

Parameters
   a [input rank-2 array('F') with bounds (lda,n)]

Returns
   ap [rank-1 array('F') with bounds ((n + n * n) / 2)]
   info [int]

Other Parameters
   uplo [input string(len=1), optional] Default: 'U'

scipy.linalg.lapack.ztrtt

scipy.linalg.lapack.ztrtt(a[[], uplo]) = <fortran object>
Wrapper for ztrtt.

Parameters
   a [input rank-2 array('D') with bounds (lda,n)]

Returns
   ap [rank-1 array('D') with bounds ((n + n * n) / 2)]
   info [int]

Other Parameters
   uplo [input string(len=1), optional] Default: 'U'

scipy.linalg.lapack.stzrzf

scipy.linalg.lapack.stzrzf(a[[], lwork, overwrite_a]) = <fortran object>
Wrapper for stzrzf.

Parameters
   a [input rank-2 array('f') with bounds (m,n)]

Returns
   rz [rank-2 array('f') with bounds (m,n) and a storage]
   tau [rank-1 array('f') with bounds (m)]
   info [int]

Other Parameters
   overwrite_a [input int, optional] Default: 0
   lwork [input int, optional] Default: MAX(m,1)
scipy.linalg.lapack.dtzrzf

scipy.linalg.lapack.dtzrzf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for dtzrzf.

Parameters
a        [input rank-2 array('d') with bounds (m,n)]

Returns
rz       [rank-2 array('d') with bounds (m,n) and a storage]
tau      [rank-1 array('d') with bounds (m)]
info     [int]

Other Parameters
overwrite_a
          [input int, optional] Default: 0
lwork     [input int, optional] Default: MAX(m,1)

scipy.linalg.lapack.ctzrzf

scipy.linalg.lapack.ctzrzf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for ctzrzf.

Parameters
a        [input rank-2 array('F') with bounds (m,n)]

Returns
rz       [rank-2 array('F') with bounds (m,n) and a storage]
tau      [rank-1 array('F') with bounds (m)]
info     [int]

Other Parameters
overwrite_a
          [input int, optional] Default: 0
lwork     [input int, optional] Default: MAX(m,1)

scipy.linalg.lapack.ztzrzf

scipy.linalg.lapack.ztzrzf(a[, lwork, overwrite_a]) = <fortran object>
Wrapper for ztzrzf.

Parameters
a        [input rank-2 array('D') with bounds (m,n)]

Returns
rz       [rank-2 array('D') with bounds (m,n) and a storage]
tau      [rank-1 array('D') with bounds (m)]
info     [int]

Other Parameters
overwrite_a
          [input int, optional] Default: 0
lwork     [input int, optional] Default: MAX(m,1)
scipy.linalg.lapack.stzrzf_lwork

Wrapper for stzrzf_lwork.

Parameters

- m [input int]
- n [input int]

Returns

- work [float]
- info [int]

scipy.linalg.lapack.dtzrzf_lwork

Wrapper for dtzrzf_lwork.

Parameters

- m [input int]
- n [input int]

Returns

- work [float]
- info [int]

scipy.linalg.lapack.ctzrzf_lwork

Wrapper for ctzrzf_lwork.

Parameters

- m [input int]
- n [input int]

Returns

- work [complex]
- info [int]

scipy.linalg.lapack.ztzrzf_lwork

Wrapper for ztzrzf_lwork.

Parameters

- m [input int]
- n [input int]

Returns

- work [complex]
- info [int]
scipy.linalg.lapack.cunghr

scipy.linalg.lapack.cunghr(a, tau[, lo, hi, lwork, overwrite_a]) = <fortran object>

Wrapper for cunghr.

Parameters
a [input rank-2 array('F') with bounds (n,n)]
tau [input rank-1 array('F') with bounds (-1 + n)]

Returns
ht [rank-2 array('F') with bounds (n,n) and a storage]
info [int]

Other Parameters
lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1
overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: max(hi-lo,1)

scipy.linalg.lapack.zunghr

scipy.linalg.lapack.zunghr(a, tau[, lo, hi, lwork, overwrite_a]) = <fortran object>

Wrapper for zunghr.

Parameters
a [input rank-2 array('D') with bounds (n,n)]
tau [input rank-1 array('D') with bounds (-1 + n)]

Returns
ht [rank-2 array('D') with bounds (n,n) and a storage]
info [int]

Other Parameters
lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1
overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: max(hi-lo,1)

scipy.linalg.lapack.cunghr_lwork

scipy.linalg.lapack.cunghr_lwork(n[, lo, hi]) = <fortran object>

Wrapper for cunghr_lwork.

Parameters
n [input int]

Returns
work [complex]
info [int]

Other Parameters
lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1
scipy.linalg.lapack.zunghr_lwork

scipy.linalg.lapack.zunghr_lwork(n[, lo, hi]) = <fortran object>

Wrapper for zunghr_lwork.

Parameters

n [input int]

Returns

work [complex]
info [int]

Other Parameters

lo [input int, optional] Default: 0
hi [input int, optional] Default: n-1

scipy.linalg.lapack.cungqr

scipy.linalg.lapack.cungqr(a, tau[, lwork, overwrite_a]) = <fortran object>

Wrapper for cungqr.

Parameters

a [input rank-2 array('F') with bounds (m,n)]
tau [input rank-1 array('F') with bounds (k)]

Returns

q [rank-2 array('F') with bounds (m,n) and a storage]
work [rank-1 array('F') with bounds (MAX(lwork, 1))]
info [int]

Other Parameters

overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)

scipy.linalg.lapack.zungqr

scipy.linalg.lapack.zungqr(a, tau[, lwork, overwrite_a]) = <fortran object>

Wrapper for zungqr.

Parameters

a [input rank-2 array('D') with bounds (m,n)]
tau [input rank-1 array('D') with bounds (k)]

Returns

q [rank-2 array('D') with bounds (m,n) and a storage]
work [rank-1 array('D') with bounds (MAX(lwork, 1))]
info [int]

Other Parameters

overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*n,1)
scipy.linalg.lapack.cungrq

scipy.linalg.lapack.cungrq(a, tau[, lwork, overwrite_a]) = <fortran object>

Wrapper for cungrq.

Parameters

a [input rank-2 array('F') with bounds (m,n)]
tau [input rank-1 array('F') with bounds (k)]

Returns

q [rank-2 array('F') with bounds (m,n) and a storage]
work [rank-1 array('F') with bounds (MAX(lwork, 1))]
info [int]

Other Parameters

overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*m,1)

scipy.linalg.lapack.zungrq

scipy.linalg.lapack.zungrq(a, tau[, lwork, overwrite_a]) = <fortran object>

Wrapper for zungrq.

Parameters

a [input rank-2 array('D') with bounds (m,n)]
tau [input rank-1 array('D') with bounds (k)]

Returns

q [rank-2 array('D') with bounds (m,n) and a storage]
work [rank-1 array('D') with bounds (MAX(lwork, 1))]
info [int]

Other Parameters

overwrite_a [input int, optional] Default: 0
lwork [input int, optional] Default: max(3*m,1)

scipy.linalg.lapack.cunmqr

scipy.linalg.lapack.cunmqr(side, trans, a, tau, c[, lwork[, overwrite_c]]) = <fortran object>

Wrapper for cunmqr.

Parameters

side [input string(len=1)]
trans [input string(len=1)]
a [input rank-2 array('F') with bounds (lda,k)]
tau [input rank-1 array('F') with bounds (k)]
c [input rank-2 array('F') with bounds (ldc,n)]
lwork [input int]

Returns

cq [rank-2 array('F') with bounds (ldc,n) and c storage]
work [rank-1 array('F') with bounds (MAX(lwork, 1))]
info [int]

3.3. API definition
**Other Parameters**

overwrite_c  
[input int, optional] Default: 0

scipy.linalg.lapack.zunmqr

scipy.linalg.lapack.zunmqr (side, trans, a, tau, c, lwork[, overwrite_c]) = <fortran object>  
Wrapper for zunmqr.

**Parameters**

- side  
[input string(len=1)]
- trans  
[input string(len=1)]
- a  
[input rank-2 array('D') with bounds (lda,k)]
- tau  
[input rank-1 array('D') with bounds (k)]
- c  
[input rank-2 array('D') with bounds (ldc,n)]
- lwork  
[input int]

**Returns**

- cq  
[rank-2 array('D') with bounds (ldc,n) and c storage]
- work  
[rank-1 array('D') with bounds (MAX(lwork, 1))]
- info  
[int]

**Other Parameters**

overwrite_c  
[input int, optional] Default: 0

scipy.linalg.lapack.sgeqrt

scipy.linalg.lapack.sgeqrt (nb, a[, overwrite_a]) = <fortran object>  
Wrapper for sgeqrt.

**Parameters**

- nb  
[input int]
- a  
[input rank-2 array('f') with bounds (m,n)]

**Returns**

- a  
[rank-2 array('f') with bounds (m,n)]
- t  
[rank-2 array('f') with bounds (nb,MIN(m,n))]
- info  
[int]

**Other Parameters**

overwrite_a  
[input int, optional] Default: 0

scipy.linalg.lapack.dgeqrt

scipy.linalg.lapack.dgeqrt (nb, a[, overwrite_a]) = <fortran object>  
Wrapper for dgeqrt.

**Parameters**

- nb  
[input int]
- a  
[input rank-2 array('d') with bounds (m,n)]

**Returns**

- a  
[rank-2 array('d') with bounds (m,n)]

```
```

```
Other Parameters
overwrite_a
[input int, optional] Default: 0
```

```
scipy.linalg.lapack.cgeqrt
scipy.linalg.lapack.cgeqrt (nb, a[, overwrite_a]) = <fortran object>
Wrapper for cgeqrt.
Parameters
nb [input int]
a [input rank-2 array('F') with bounds (m,n)]
Returns
a [rank-2 array('F') with bounds (m,n)]
t [rank-2 array('F') with bounds (nb,MIN(m,n))]
info [int]
Other Parameters
overwrite_a
[input int, optional] Default: 0
```

```
scipy.linalg.lapack.zgeqrt
scipy.linalg.lapack.zgeqrt (nb, a[, overwrite_a]) = <fortran object>
Wrapper for zgeqrt.
Parameters
nb [input int]
a [input rank-2 array('D') with bounds (m,n)]
Returns
a [rank-2 array('D') with bounds (m,n)]
t [rank-2 array('D') with bounds (nb,MIN(m,n))]
info [int]
Other Parameters
overwrite_a
[input int, optional] Default: 0
```

```
scipy.linalg.lapack.sgemqrt
scipy.linalg.lapack.sgemqrt (v, t, c[, side, trans, overwrite_c]) = <fortran object>
Wrapper for sgemqrt.
Parameters
v [input rank-2 array('f') with bounds ((side[0] == 'L'?m:n),k)]
t [input rank-2 array('f') with bounds (nb,k)]
c [input rank-2 array('f') with bounds (m,n)]
Returns
c [rank-2 array('f') with bounds (m,n)]
```

3.3. API definition

info [int]

Other Parameters
side [input string(len=1), optional] Default: ‘L’
trans [input string(len=1), optional] Default: ‘N’
overwrite_c [input int, optional] Default: 0

scipy.linalg.lapack.dgemqrt

scipy.linalg.lapack.dgemqrt(v, t[, side, trans, overwrite_c]) = <fortran object>

Wrapper for dgemqrt.

Parameters
v [input rank-2 array('d') with bounds ((side[0]=='L'?m:n),k)]
t [input rank-2 array('d') with bounds (nb,k)]
c [input rank-2 array('d') with bounds (m,n)]

Returns
c [rank-2 array('d') with bounds (m,n)]
info [int]

Other Parameters
side [input string(len=1), optional] Default: ‘L’
trans [input string(len=1), optional] Default: ‘N’
overwrite_c [input int, optional] Default: 0

scipy.linalg.lapack.cgemqrt

scipy.linalg.lapack.cgemqrt(v, t[, side, trans, overwrite_c]) = <fortran object>

Wrapper for cgemqrt.

Parameters
v [input rank-2 array('F') with bounds ((side[0]=='L'?m:n),k)]
t [input rank-2 array('F') with bounds (nb,k)]
c [input rank-2 array('F') with bounds (m,n)]

Returns
c [rank-2 array('F') with bounds (m,n)]
info [int]

Other Parameters
side [input string(len=1), optional] Default: ‘L’
trans [input string(len=1), optional] Default: ‘N’
overwrite_c [input int, optional] Default: 0
scipy.linalg.lapack.zgemqrt

`scipy.linalg.lapack.zgemqrt(v, t, c[, side, trans, overwrite_c]) = <fortran object>`

Wrapper for zgemqrt.

**Parameters**

- `v` [input rank-2 array('D') with bounds ((side[0] == 'L'?m:n),k)]
- `t` [input rank-2 array('D') with bounds (nb,k)]
- `c` [input rank-2 array('D') with bounds (m,n)]

**Returns**

- `c` [rank-2 array('D') with bounds (m,n)]
- `info` [int]

**Other Parameters**

- `side` [input string(len=1), optional] Default: 'L'
- `trans` [input string(len=1), optional] Default: 'N'
- `overwrite_c` [input int, optional] Default: 0

scipy.linalg.lapack.sgttrf

`scipy.linalg.lapack.sgttrf(dl, d, du[, overwrite_dl, overwrite_d, overwrite_du]) = <fortran object>`

Wrapper for sgttrf.

**Parameters**

- `dl` [input rank-1 array('f') with bounds (-1 + n)]
- `d` [input rank-1 array('f') with bounds (n)]
- `du` [input rank-1 array('f') with bounds (-1 + n)]

**Returns**

- `dl` [rank-1 array('f') with bounds (-1 + n)]
- `d` [rank-1 array('f') with bounds (n)]
- `du` [rank-1 array('f') with bounds (-1 + n)]
- `du2` [rank-1 array('f') with bounds (-2 + n)]
- `ipiv` [rank-1 array('i') with bounds (n)]
- `info` [int]

**Other Parameters**

- `overwrite_dl` [input int, optional] Default: 0
- `overwrite_d` [input int, optional] Default: 0
- `overwrite_du` [input int, optional] Default: 0
**scipy.linalg.lapack.dgttrf**

```python
scipy.linalg.lapack.dgttrf(dl, d, du[, overwrite_dl, overwrite_d, overwrite_du]) = <fortran object>
```

Wrapper for `dgttrf`.

**Parameters**
- `dl` [input rank-1 array('d') with bounds (-1 + n)]
- `d` [input rank-1 array('d') with bounds (n)]
- `du` [input rank-1 array('d') with bounds (-1 + n)]

**Returns**
- `dl` [rank-1 array('d') with bounds (-1 + n)]
- `d` [rank-1 array('d') with bounds (n)]
- `du` [rank-1 array('d') with bounds (-1 + n)]
- `du2` [rank-1 array('d') with bounds (-2 + n)]
- `ipiv` [rank-1 array('i') with bounds (n)]
- `info` [int]

**Other Parameters**
- `overwrite_dl` [input int, optional] Default: 0
- `overwrite_d` [input int, optional] Default: 0
- `overwrite_du` [input int, optional] Default: 0

**scipy.linalg.lapack.cgttrf**

```python
scipy.linalg.lapack.cgttrf(dl, d, du[, overwrite_dl, overwrite_d, overwrite_du]) = <fortran object>
```

Wrapper for `cgttrf`.

**Parameters**
- `dl` [input rank-1 array('F') with bounds (-1 + n)]
- `d` [input rank-1 array('F') with bounds (n)]
- `du` [input rank-1 array('F') with bounds (-1 + n)]

**Returns**
- `dl` [rank-1 array('F') with bounds (-1 + n)]
- `d` [rank-1 array('F') with bounds (n)]
- `du` [rank-1 array('F') with bounds (-1 + n)]
- `du2` [rank-1 array('F') with bounds (-2 + n)]
- `ipiv` [rank-1 array('i') with bounds (n)]
- `info` [int]

**Other Parameters**
- `overwrite_dl` [input int, optional] Default: 0
- `overwrite_d` [input int, optional] Default: 0
- `overwrite_du` [input int, optional] Default: 0
scipy.linalg.lapack.zgttrf

```python
scipy.linalg.lapack.zgttrf(dl, d, du[, overwrite_dl, overwrite_d, overwrite_du]) = <fortran object>
```

Wrapper for zgttrf.

**Parameters**

- **dl** [input rank-1 array('D') with bounds (-1 + n)]
- **d** [input rank-1 array('D') with bounds (n)]
- **du** [input rank-1 array('D') with bounds (-1 + n)]

**Returns**

- **dl** [rank-1 array('D') with bounds (-1 + n)]
- **d** [rank-1 array('D') with bounds (n)]
- **du** [rank-1 array('D') with bounds (-1 + n)]
- **du2** [rank-1 array('D') with bounds (-2 + n)]
- **ipiv** [rank-1 array('i') with bounds (n)]
- **info** [int]

**Other Parameters**

- **overwrite_dl** [input int, optional] Default: 0
- **overwrite_d** [input int, optional] Default: 0
- **overwrite_du** [input int, optional] Default: 0

scipy.linalg.lapack.sgttrs

```python
scipy.linalg.lapack.sgttrs(dl, d, du, du2, ipiv, b[, trans, overwrite_b]) = <fortran object>
```

Wrapper for sgttrs.

**Parameters**

- **dl** [input rank-1 array('F') with bounds (-1 + n)]
- **d** [input rank-1 array('F') with bounds (n)]
- **du** [input rank-1 array('F') with bounds (-1 + n)]
- **du2** [input rank-1 array('F') with bounds (-2 + n)]
- **ipiv** [input rank-1 array('i') with bounds (n)]
- **b** [input rank-2 array('F') with bounds (ldb,nrhs)]

**Returns**

- **x** [rank-2 array('F') with bounds (ldb,nrhs) and b storage]
- **info** [int]

**Other Parameters**

- **trans** [input string(len=1), optional] Default: 'N'
- **overwrite_b** [input int, optional] Default: 0
scipy.linalg.lapack.dgttrs

Wrapper for dgttrs.

Parameters

dl [input rank-1 array('d') with bounds (-1 + n)]
d [input rank-1 array('d') with bounds (n)]
du [input rank-1 array('d') with bounds (-1 + n)]
du2 [input rank-1 array('d') with bounds (-2 + n)]
ippiv [input rank-1 array('i') with bounds (n)]
b [input rank-2 array('d') with bounds (ldb,nrhs)]

Returns

x [rank-2 array('d') with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

trans [input string(len=1), optional] Default: ‘N’
overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.cgttrs

Wrapper for cgttrs.

Parameters

dl [input rank-1 array('F') with bounds (-1 + n)]
d [input rank-1 array('F') with bounds (n)]
du [input rank-1 array('F') with bounds (-1 + n)]
du2 [input rank-1 array('F') with bounds (-2 + n)]
ippiv [input rank-1 array('i') with bounds (n)]
b [input rank-2 array('F') with bounds (ldb,nrhs)]

Returns

x [rank-2 array('F') with bounds (ldb,nrhs) and b storage]
info [int]

Other Parameters

trans [input string(len=1), optional] Default: ‘N’
overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.zgttrs

Wrapper for zgttrs.

Parameters

dl [input rank-1 array('D') with bounds (-1 + n)]
d [input rank-1 array('D') with bounds (n)]
du [input rank-1 array('D') with bounds (-1 + n)]
du2 [input rank-1 array('D') with bounds (-2 + n)]
ippiv [input rank-1 array('i') with bounds (n)]

b

Returns

x

info

Other Parameters

trans

overwrite_b

scipy.linalg.lapack.stpqrt

scipy.linalg.lapack.stpqrt (l, nb, a, b[, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for stpqrt.

Parameters

l

nb

a

b

Returns

a

b

t

info

Other Parameters

overwrite_a

overwrite_b

scipy.linalg.lapack.dtpqrt

scipy.linalg.lapack.dtpqrt (l, nb, a, b[, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for dtpqrt.

Parameters

l

nb

a

b

Returns

a

b

t

info

Other Parameters

overwrite_a

overwrite_b

3.3. API definition 1085
overwrite_b
  [input int, optional] Default: 0

**scipy.linalg.lapack.ctpqrt**

```python
scipy.linalg.lapack.ctpqrt(l, nb, a[, overwrite_a, overwrite_b]) = <fortran object>
```

Wrapper for ctpqrt.

**Parameters**

- **l** [input int]
- **nb** [input int]
- **a** [input rank-2 array('F') with bounds (n,n)]
- **b** [input rank-2 array('F') with bounds (m,n)]

**Returns**

- **a** [rank-2 array('F') with bounds (n,n)]
- **b** [rank-2 array('F') with bounds (m,n)]
- **t** [rank-2 array('F') with bounds (nb,n)]
- **info** [int]

**Other Parameters**

- **overwrite_a** [input int, optional] Default: 0
- **overwrite_b** [input int, optional] Default: 0

**scipy.linalg.lapack.ztpqrt**

```python
scipy.linalg.lapack.ztpqrt(l, nb, a[, overwrite_a, overwrite_b]) = <fortran object>
```

Wrapper for ztpqrt.

**Parameters**

- **l** [input int]
- **nb** [input int]
- **a** [input rank-2 array('D') with bounds (n,n)]
- **b** [input rank-2 array('D') with bounds (m,n)]

**Returns**

- **a** [rank-2 array('D') with bounds (n,n)]
- **b** [rank-2 array('D') with bounds (m,n)]
- **t** [rank-2 array('D') with bounds (nb,n)]
- **info** [int]

**Other Parameters**

- **overwrite_a** [input int, optional] Default: 0
- **overwrite_b** [input int, optional] Default: 0
scipy.linalg.lapack.stpmqrt

scipy.linalg.lapack.stpmqrt(l, v, t, a, b[, side, trans, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for stpmqrt.

Parameters
l [input int]
v [input rank-2 array('f') with bounds ((side[0] == 'L'?m:n),k)]
t [input rank-2 array('f') with bounds (nb,k)]
a [input rank-2 array('f') with bounds ((side[0] == 'L'?k:m),(side[0] == 'L'?n:k))]
b [input rank-2 array('f') with bounds (m,n)]

Returns
a [rank-2 array('f') with bounds ((side[0] == 'L'?k:m),(side[0] == 'L'?n:k))]
b [rank-2 array('f') with bounds (m,n)]
info [int]

Other Parameters
side [input string(len=1), optional] Default: 'L'
trans [input string(len=1), optional] Default: 'N'
overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0

scipy.linalg.lapack.dtpmqrt

scipy.linalg.lapack.dtpmqrt(l, v, t, a, b[, side, trans, overwrite_a, overwrite_b]) = <fortran object>

Wrapper for dtpmqrt.

Parameters
l [input int]
v [input rank-2 array('d') with bounds ((side[0] == 'L'?m:n),k)]
t [input rank-2 array('d') with bounds (nb,k)]
a [input rank-2 array('d') with bounds ((side[0] == 'L'?k:m),(side[0] == 'L'?n:k))]
b [input rank-2 array('d') with bounds (m,n)]

Returns
a [rank-2 array('d') with bounds ((side[0] == 'L'?k:m),(side[0] == 'L'?n:k))]
b [rank-2 array('d') with bounds (m,n)]
info [int]

Other Parameters
side [input string(len=1), optional] Default: 'L'
trans [input string(len=1), optional] Default: 'N'
overwrite_a [input int, optional] Default: 0
overwrite_b [input int, optional] Default: 0
`scipy.linalg.lapack.ctpmqrt`  
`scipy.linalg.lapack.ctpmqrt(l, v, t, a[, side, trans, overwrite_a, overwrite_b]) = <fortran object>`  
Wrapper for `ctpmqrt`.

**Parameters**
- `l` [input int]  
  [input rank-2 array('F') with bounds ((side[0] == 'L'?'m:n',k))]
- `v` [input rank-2 array('F') with bounds (nb,k)]
- `t` [input rank-2 array('F') with bounds ((side[0] == 'L'?'k:m),(side[0] == 'L'?'n:k))]
- `a` [input rank-2 array('F') with bounds (m,n)]
- `b` [input rank-2 array('F') with bounds ((side[0] == 'L'?'m:n',k))]

**Returns**
- `a` [rank-2 array('F') with bounds ((side[0] == 'L'?'k:m),(side[0] == 'L'?'n:k))]
- `b` [rank-2 array('F') with bounds (m,n)]
- `info` [int]

**Other Parameters**
- `side` [input string(len=1), optional] Default: 'L'
- `trans` [input string(len=1), optional] Default: 'N'
- `overwrite_a` [input int, optional] Default: 0
- `overwrite_b` [input int, optional] Default: 0

`scipy.linalg.lapack.ztpmqrt`  
`scipy.linalg.lapack.ztpmqrt(l, v, t, a[, side, trans, overwrite_a, overwrite_b]) = <fortran object>`  
Wrapper for `ztpmqrt`.

**Parameters**
- `l` [input int]  
  [input rank-2 array('F') with bounds ((side[0] == 'L'?'m:n',k))]
- `v` [input rank-2 array('D') with bounds (nb,k)]
- `t` [input rank-2 array('D') with bounds ((side[0] == 'L'?'k:m),(side[0] == 'L'?'n:k))]
- `a` [input rank-2 array('D') with bounds (m,n)]
- `b` [input rank-2 array('D') with bounds ((side[0] == 'L'?'m:n',k))]

**Returns**
- `a` [rank-2 array('D') with bounds ((side[0] == 'L'?'k:m),(side[0] == 'L'?'n:k))]
- `b` [rank-2 array('D') with bounds (m,n)]
- `info` [int]

**Other Parameters**
- `side` [input string(len=1), optional] Default: 'L'
- `trans` [input string(len=1), optional] Default: 'N'
- `overwrite_a` [input int, optional] Default: 0
- `overwrite_b` [input int, optional] Default: 0
scipy.linalg.lapack.cuncsd

scipy.linalg.lapack.cuncsd(x11, x12, x21, x22[, compute_u1, compute_u2, compute_v1t, compute_v2t, trans, signs, lwork, lrwork, overwrite_x11, overwrite_x12, overwrite_x21, overwrite_x22]) = <fortran object>

Wrapper for cuncsd.

**Parameters**

- **x11**: [input rank-2 array('F') with bounds (p,q)]
- **x12**: [input rank-2 array('F') with bounds (p,mmq)]
- **x21**: [input rank-2 array('F') with bounds (mmp,q)]
- **x22**: [input rank-2 array('F') with bounds (mmp,mmq)]

**Returns**

- **cs11**: [rank-2 array('F') with bounds (p,q) and x11 storage]
- **cs12**: [rank-2 array('F') with bounds (p,mmq) and x12 storage]
- **cs21**: [rank-2 array('F') with bounds (mmp,q) and x21 storage]
- **cs22**: [rank-2 array('F') with bounds (mmp,mmq) and x22 storage]
- **theta**: [rank-1 array('f') with bounds (min(min(p,mmp),min(q,mmq)))]
- **u1**: [rank-2 array('F') with bounds ((compute_u1?p:0),(compute_u1?p:0))]
- **u2**: [rank-2 array('F') with bounds ((compute_u2?mmp:0),(compute_u2?mmp:0))]
- **v1t**: [rank-2 array('F') with bounds ((compute_v1t?q:0),(compute_v1t?q:0))]
- **v2t**: [rank-2 array('F') with bounds ((compute_v2t?mmq:0),(compute_v2t?mmq:0))]
- **info**: [int]

**Other Parameters**

- **compute_u1**: [input int, optional] Default: 1
- **compute_u2**: [input int, optional] Default: 1
- **compute_v1t**: [input int, optional] Default: 1
- **compute_v2t**: [input int, optional] Default: 1
- **trans**: [input int, optional] Default: 0
- **signs**: [input int, optional] Default: 0
- **overwrite_x11**: [input int, optional] Default: 0
- **overwrite_x12**: [input int, optional] Default: 0
- **overwrite_x21**: [input int, optional] Default: 0
- **overwrite_x22**: [input int, optional] Default: 0
- **lwork**: [input int, optional] Default: 2*m+MAX(1,MAX(mmp,mmq))+1
- **lrwork**: [input int, optional] Default: 5*MAX(1,q-1)+4*MAX(1,q)+8*q+1
scipy.linalg.lapack.zuncsd

Wrapper for zuncsd.

Parameters

- **x11**: [input rank-2 array('D') with bounds (p,q)]
- **x12**: [input rank-2 array('D') with bounds (p,mmq)]
- **x21**: [input rank-2 array('D') with bounds (mmp,q)]
- **x22**: [input rank-2 array('D') with bounds (mmp,mmq)]

Returns

- **cs11**: [rank-2 array('D') with bounds (p,q) and x11 storage]
- **cs12**: [rank-2 array('D') with bounds (p,mmq) and x12 storage]
- **cs21**: [rank-2 array('D') with bounds (mmp,q) and x21 storage]
- **cs22**: [rank-2 array('D') with bounds (mmp,mmq) and x22 storage]
- **theta**: [rank-1 array('d') with bounds (min(min(p,mmp), min(q, mmq)))]
- **u1**: [rank-2 array('d') with bounds ((compute_u1?p:0),(compute_u1?p:0))]
- **u2**: [rank-2 array('D') with bounds ((compute_u2?mmp:0),(compute_u2?mmp:0))]
- **v1t**: [rank-2 array('D') with bounds ((compute_v1t?q:0),(compute_v1t?q:0))]
- **v2t**: [rank-2 array('D') with bounds ((compute_v2t?mmq:0),(compute_v2t?mmq:0))]
- **info**: [int]

Other Parameters

- **compute_u1**: [input int, optional] Default: 1
- **compute_u2**: [input int, optional] Default: 1
- **compute_v1t**: [input int, optional] Default: 1
- **compute_v2t**: [input int, optional] Default: 1
- **trans**: [input int, optional] Default: 0
- **signs**: [input int, optional] Default: 0
- **overwrite_x11**: [input int, optional] Default: 0
- **overwrite_x12**: [input int, optional] Default: 0
- **overwrite_x21**: [input int, optional] Default: 0
- **overwrite_x22**: [input int, optional] Default: 0
- **lwork**: [input int, optional] Default: 2*m+MAX(1,MAX(mmp,mmq))+1
- **lrwork**: [input int, optional] Default: 5*MAX(1,q-1)+4*MAX(1,q)+8*q+1
scipy.linalg.lapack.cunmzd

scipy.linalg.lapack.cunmzd(a, tau[, side, trans, overwrite_c]) = <fortran object>
Wrapper for cunmzd.

Parameters
a [input rank-2 array('F') with bounds (k,nt)]
tau [input rank-1 array('F') with bounds (k)]
c [input rank-2 array('F') with bounds (m,n)]
side [input string(len=1), optional] Default: 'L'
trans [input string(len=1), optional] Default: 'N'
overwrite_c [input int, optional] Default: 0
lwork [input int, optional] Default: MAX((side[0]=='L'?n:m),1)

scipy.linalg.lapack.zunmzd

scipy.linalg.lapack.zunmzd(a, tau[, side, trans, overwrite_c]) = <fortran object>
Wrapper for zunmzd.

Parameters
a [input rank-2 array('F') with bounds (k,nt)]
tau [input rank-1 array('F') with bounds (k)]
c [input rank-2 array('F') with bounds (m,n)]
side [input string(len=1), optional] Default: 'L'
trans [input string(len=1), optional] Default: 'N'
overwrite_c [input int, optional] Default: 0
lwork [input int, optional] Default: MAX((side[0]=='L'?n:m),1)
scipy.linalg.lapack.zunmrz

Wrapper for zunmrz.

**Parameters**

- `a` [input rank-2 array('D') with bounds (k,nt)]
- `tau` [input rank-1 array('D') with bounds (k)]
- `c` [input rank-2 array('D') with bounds (m,n)]

**Returns**

- `cq` [rank-2 array('D') with bounds (m,n) and c storage]
- `info` [int]

**Other Parameters**

- `side` [input string(len=1), optional] Default: 'L'
- `trans` [input string(len=1), optional] Default: 'N'
- `overwrite_c` [input int, optional] Default: 0
- `lwork` [input int, optional] Default: MAX((side[0]=='L'?n:m),1)

scipy.linalg.lapack.cunmrz_lwork

Wrapper for cunmrz_lwork.

**Parameters**

- `m` [input int]
- `n` [input int]

**Returns**

- `work` [complex]
- `info` [int]

**Other Parameters**

- `side` [input string(len=1), optional] Default: 'L'
- `trans` [input string(len=1), optional] Default: 'N'

scipy.linalg.lapack.zunmrz_lwork

Wrapper for zunmrz_lwork.

**Parameters**

- `m` [input int]
- `n` [input int]

**Returns**

- `work` [complex]
- `info` [int]

**Other Parameters**

- `side` [input string(len=1), optional] Default: 'L'
- `trans` [input string(len=1), optional] Default: 'N'
```python
scipy.linalg.lapack.ilaver

scipy.linalg.lapack.ilaver = <fortran object>

Wrapper for ilaver.

Returns

- major [int]
- minor [int]
- patch [int]

3.3.13 BLAS Functions for Cython

Usable from Cython via:

```python
cimport scipy.linalg.cython_blas
```

These wrappers do not check for alignment of arrays. Alignment should be checked before these wrappers are used.

Raw function pointers (Fortran-style pointer arguments):

- caxpy
- ccopy
- cdotc
- cdotu
- cgbmv
- cgemm
- cgemv
- cgerc
- cgeru
- chbmv
- chemm
- chemv
- cher
- cher2
- cher2k
- cherk
- chpmv
- chpr
- chpr2
- crotg
- cscal
- csrot
- cscsca
• cswap
• csymm
• csyr2k
• csyrk
• ctbmv
• ctbsv
• ctpmv
• ctpsv
• ctrmm
• ctrmv
• ctrsm
• ctrsv
• dasum
• daxpy
• dcabs1
• dcopy
• ddot
• dgbmv
• dgemm
• dgemv
• dger
• dnrm2
• drot
• drotg
• drotm
• drotmg
• dsbmv
• dscal
• dsdot
• dspmv
• dspr
• dspr2
• dswap
• dsymm
• dsymv
• dsyr
• dsyr2
• dsyr2k
• dsyrk
• dtbmv
• dtpsv
• dtbsv
• dtpmv
• dtpsv
• dtrem
• dtpmv
• dtbsv
• dzasum
• dznrm2
• icamax
• idamax
• icamax
• isamax
• icamax
• icp
• icw
• icw
• sasum
• saxpy
• scasum
• scnrm2
• scopy
• sdot
• sdsdot
• sgbmv
• sgemm
• sgemv
• sger
• sgbmv
• sgbmv
• sger
• srot
• srofg
• srotm
• srofg
• sgbmv
• sgbmv
• sgbmv
• sscal
- sspmv
- sspr
- sspr2
- sswap
- ssymm
- ssymv
- ssyr
- ssyr2
- ssyr2k
- ssyrk
- stbmv
- stbmv
- stpsv
- stpsv
- strmm
- strmm
- strmv
- strmv
- strsm
- strsv
- zaxpy
- zcopy
- zdotc
- zdotu
- zdrot
- zdscal
- zgbmv
- zgemm
- zgemv
- zgerc
- zgeru
- zhbmv
- zhemm
- zhemv
- zher
- zher2
- zher2k
- zherk
• zhpmv
• zhpr
• zhpr2
• zrotg
• zscal
• zswap
• zsymm
• zsysr2k
• zsysrk
• ztbmv
• ztbmv
• ztpmv
• ztpmv
• ztrmm
• ztrmv
• ztrsm
• ztrsv

3.3.14 LAPACK functions for Cython

Usable from Cython via:

```python
cimport scipy.linalg.cython_lapack
```

This module provides Cython-level wrappers for all primary routines included in LAPACK 3.4.0 except for zcgesv since its interface is not consistent from LAPACK 3.4.0 to 3.6.0. It also provides some of the fixed-api auxiliary routines.

These wrappers do not check for alignment of arrays. Alignment should be checked before these wrappers are used.

Raw function pointers (Fortran-style pointer arguments):
• cbbcsd
• cbdsqr
• cgbbrd
• cgbbcon
• cgbequ
• cgbequ
• cgbrfs
• cgbsv
• cgbsvx
• cgbtf2
• cgbtrf
• cgtrfs
• cgebak
• cgebal
• cgebd2
• cgebrd
• cgecon
• cgeequ
• cgeequb
• cgees
• cgeesx
• cgeev
• cgeevx
• cgehd2
• cgehrd
• cgeeq2
• cgeqlf
• cgels
• cgelsd
• cgelsq
• cgelsy
• cgemqrt
• cgeq2
• cgeqlf
• cgeqp3
• cgeqr2
• cgeqr2p
• cgeqr
• cgeqr2p
• cgeqrt
• cgeqrt2
• cgeqrt3
• cgerfs
• cgerq2
• cgerqf
• cgesc2
• cgesdd
• cgesv
• cgesvd
• cgesvx
• cgetc2
• cgetf2
• cgetrf
• cgetri
• cgetrs
• cggbak
• cggbal
• cgges
• cggesx
• cggsv
• cggsvx
• cggsvx
• cggslm
• cggthd
• cggts2
• chebev
• chebevd
• chebevx
• chebkst
• chebgv
• chebgvd
• chebgvx
• chebtrd
• checon
• checon
• cheev
• cheevd
• cheevr
• cheevx
• chegs2
• chegst
• chegv
• chegvd
• chegvx
• cherfs
• chesv
• chesvx
• cheswapr
• chetd2
• chetf2
• chetrd
• chetrf
• chetri
• chetri2
• chetri2x
• chetrs
• chetrs2
• chfrk
• chgeqz
• chla_transtype
• chpcon
• chpev
• chpevd
• chpevx
• chpgst
• chpgv
• chpgvd
• chpgvx
• chprfs
• chpsv
• chpsvx
• chptrd
• chptrf
• chptri
• chptrs
• chsein
• chseqr
• clabrd
• clacgv
• clacn2
• clacon
• clacp2
• clacpy
• clacrm
• clacrt
• cladiv
• claed0
• claed7
• claed8
• claein
• claesy
• claev2
• clag2z
• clags2
• clagtm
• clahf
• clahqr
• clahr2
• claic1
• clals0
• clalsa
• clalsd
• clangb
• clange
• clangt
• clanhb
• clanhe

3.3. API definition
• clanhf
• clanhp
• clanhs
• clanht
• clansb
• clansp
• clansy
• clantb
• clantp
• clantr
• clapl1
• clapmr
• clapmt
• claqgb
• claqge
• claqhb
• claqhe
• claqhp
• claqp2
• claqps
• claqr0
• claqr1
• claqr2
• claqr3
• claqr4
• claqr5
• claqsb
• claqsp
• claqsy
• clar1v
• clar2v
• clarcm
• clarf
• clarfb
• clarfsg
• clarfsgp
- clarft
- clarfx
- clargy
- clarnv
- clarrv
- clartg
- clartv
- clarz
- clarzb
- clarzt
- clascl
- clasel
- claset
- clasr
- classq
- claswp
- clasyf
- clatbs
- clatdf
- clatps
- clatrd
- clatrs
- clatrz
- clauu2
- clauum
- cpbcon
- cpbequ
- cpbrfs
- cpbstf
- cpbsv
- cpbsvx
- cpbtf2
- cpbrtf
- cpbtrs
- cpftrf
- cpftri
- cpftrs

3.3. API definition
• cpocon
• cpoequ
• cpoequb
• cpofrs
• cposv
• cposvx
• cpotf2
• cpotrf
• cpotri
• cpotrs
• cppcon
• cppequ
• cppfrs
• cppsv
• cppsvx
• cpptrf
• cpptri
• cpptrs
• cpdf2
• cpdf
• cpdfv
• cpdfsx
• cpdfsx
• cpdftrf
• cpdftri
• cpdftrs
• cpdfs2
• crot
• cspcon
• cspmv
• cspr
• csprfrs
• cspsv
• cspsvx
• cspsvdx
• csptrf
• csptri
• csptrs
• csrsc1
• cstede
• ccste
• cste
• cstemr
• ccsteq
• ccsteq
• ccsteq
• csyt2f
• csyt2f
• csyttr
• csyttri
• csyttri
• csyttri
• csyttri2
• csyttri2
• csyttri
• ctbcon
• ctbbrfs
• ctbbrfs
• ctfsm
• ctftri
• ctftri
• ctftri
• ctgevc
• ctgevc
• ctgevc
• ctgevc
• ctgsen
• ctgsen
• ctgsen
• ctgsja

3.3. API definition
• ctgsna
• ctgsy2
• ctgsyl
• ctpcon
• ctpmqrt
• ctpqrt
• ctpqrt2
• ctprb
• ctprs
• ctptrf
• ctptrr
• ctrevc
• ctrexc
• ctrdfs
• ctrsen
• ctrsna
• ctrsyl
• ctrti2
• ctrtri
• ctrtrs
• ctrttf
• ctrttp
• ctzrzf
• cunbdb
• cuncsd
• cung2l
• cung2r
• cungbr
• cunghr
• cungl2
• cunglq
• cungql
• cungqr
• cungr2
• cungrq
• cungtr
• cunn2l
• cunn2r
• cunnbr
• cunnhr
• cunnl2
• cunnlq
• cunnml
• cunnmr
• cunnmr2
• cunnmr3
• cunnmrq
• cunnmrz
• cunnmtr
• cupgtr
• cupmtr
• dbbcsd
• dbdsdc
• dbdsqr
• ddisna
• dgbbrd
• dgbcon
• dgbequ
• dgbequb
• dgbrfs
• dgbsv
• dgbsvx
• dgbtf2
• dgbtrf
• dgbtrs
• dgebak
• dgebal
• dgebd2
• dgebrd

3.3. API definition
• dgecon
• dgeequ
• dgeequb
• dgees
• dgeesx
• dgeev
• dgeevx
• dgehd2
• dgehrd
• dgejsv
• dgelq2
• dgelqf
• dgelq
• dgels
• dgelsd
• dgels
• dgelsy
• dgemqrt
• dgeql2
• dgeqlf
• dgeqp3
• dgeqr2
• dgeqr2p
• dgeqrf
• dgeqrfp
• dgeqrt
• dgeqrt2
• dgeqrt3
• dgerfs
• dgerq2
• dgerqf
• dgerq2
• dges2
• dgesdd
• dges
• dgesvd
• dgesvj
• dgesvx
• dgetc2
• dgetf2
• dgetrf
• dgetri
• dgetrs
• dggbak
• dggbal
• dggges
• dgggesx
• dggev
• dggevx
• dggglm
• dghrd
• dgglse
• dggqrf
• dggqr
• dgsvj0
• dgsvj1
• dtcon
• dttrfs
• dtsv
• dtsvx
• dttrf
• dttrs
• dtts2
• dhgeqz
• dhsein
• dhseqr
• disnan
• dlabad
• dlabrd
• dolacn2
• dolacon
• dolacpy
• dladiv
• dlace2
• dlaebz
• dlaed0
• dlaed1
• dlaed2
• dlaed3
• dlaed4
• dlaed5
• dlaed6
• dlaed7
• dlaed8
• dlaed9
• dlaeda
• dlaein
• dlaev2
• dlaexc
• dlag2
• dlag2s
• dlags2
• dlagtf
• dlagtm
• dlags
• dlagv2
• dlahqr
• dlahr2
• dlaic1
• dlahn2
• dlals0
• dlalsa
• dlalsd
• dlamch
• dlamrg
• dlaneg
• dlangeb
• dlange
• dlant
• dlans
3.3. API definition
• dlargv
• dlarnv
• dlarra
• dlarrb
• dlarrc
• dlarrd
• dlarre
• dlarrf
• dlarrj
• dlarrk
• dlarrr
• dlarrv
• dlartg
• dlartgp
• dlartgs
• dlartv
• dlaruv
• dlarz
• dlarzb
• dlarzt
• dlas2
• dlasc1
• dlasd0
• dlasd1
• dlasd2
• dlasd3
• dlasd4
• dlasd5
• dlasd6
• dlasd7
• dlasd8
• dlasda
• dlasdq
• dlaset
• dlasq1
• dlasq2
• dlasq3
• dlasq4
• dlasq6
• dlasr
• dlasrt
• dlassq
• dlasv2
• dlaswp
• dlassy2
• dlassyf
• dlat2s
• dlatbs
• dlatdf
• dlatps
• dlatrd
• dlatrs
• dlatrz
• dlaaur2
• dlaum
• dopgtr
• dopmtr
• dorbdb
• dorcsd
• dorg2l
• dorg2r
• dorgbr
• dorghr
• dorgl2
• dorglq
• dorgql
• dorgqr
• dorgr2
• dorgrq
• dorgtr
• dorm2l
• dorm2r
• dormbr
• dormhr
• dorml2
• dormlkq
• dormql
• dormqr
• dormr2
• dormr3
• dormrq
• dormrz
• dormtr
• dpbcon
• dpbequ
• dpbrfs
• dpbstf
• dpbsv
• dpbsvx
• dpbtf2
• dpbtrf
• dpbtrs
• dpftrf
• dpftri
• dpftrs
• dpftris
• dpftrs
• dpftris
• dpftrs
• dpocon
• dpoequ
• dpoequb
• dporfs
• dposv
• dposvx
• dpotf2
• dpotrf
• dpotri
• dpotrs
• dppcon
• dppequ
• dpprfs
• dppsv
• dppsvx
• dppsvx
• dpptrf
• dpptri
• dpptrs
• dpstrf2
• dpstrf
• dptcon
• dpstrf2
• dpstrf
• dpttrf
• dpttrs
• dptts2
• drscl
• dsbev
• dsbevd
• dsbevx
• dsbgst
• dsbgv
• dsbgvd
• dsbgvx
• dsbtrd
• dsfrk
• dsjgesv
• dspcon
• dspev
• dspevd
• dspevx
• dspev
• dspevx
• dsprfs
• dspsv
• dspsvx
• dsptrd
• dsptrf
• dsptri
• dsprts
• dstebz
• dstedc
• dstegr
• dstein
• dstemr
• dsteqr
• dsterf
• dstev
• dstevd
• dstevr
• dstevx
• dsycon
• dsyconv
• dsyequb
• dsyev
• dsyevd
• dsyevr
• dsyevx
• dsygs2
• dsygst
• dsygv
• dsygvd
• dsygvx
• dsyrfs
• dsysv
• dsysvx
• dsyswapr
• dsytd2
• dsytf2
• dsytrd
• dsytrf
• dsysr
• dsysr2
• dsysr2x
• dsysrs
• dsysrs2
• dtbcon
• dtbrfs
• dtbtrs
• dtfsm
• dtftri
• dtftfp
• dtfttr
• dtgevc
• dtgev2
• dtgevc
• dtgsen
• dtgsja
• dtgsna
• dtgsy2
• dtgsyl
• dtgcon
• dtmpqrt
• dtppqrt
• dtppqrt2
• dtprfb
• dtprfs
• dtptri
• dtptrs
• dtpttf
• dtpttr
• dtrecon
• dtrevc
• dtrexc
• dtreps
• dtrsen
• dtrsna
• dtrsvl
• dtrti2
• dtrtri
• dtrtrs
• dtrttf
• dtrttp
• dtzrzf
• dzsum1
• icmax1
• icmax1
• icmax1
• ilaclc
• ilaclr
• iladiag
• iladlc
• iladlr
• ilaprec
• ilaslc
• ilaslr
• ilatrans
• ilauplo
• ilaver
• ilazlc
• ilazlr
• izmax1
• sbbscd
• sbdsdc
• sbdsqr
• scsum1
• sdisa
• sgbbrd
• sgbcnx
• sgbequ
• sgbequ
• sgbrfs
• sgbsv
• sgbsvx
• sgbtf2
• sgbtrf
• sgbtrs
• sgebak
• sgebal
• sgebd2
• sgebrd
• sgecon
• sgeequ
• sgeequb
• sgees
• sgeesx
• sgeev
• sgeevx
• sgehd2
• sgehrd
• sgejsv
• sgelq2
• sgelqf
• sgels
• sgelsd
• sgelss
• sgelsy
• sgemqrt
• sgeql2
• sgeqlf
• sgeqp3
• sgeqr2
• sgeqr2p
• sgeqrf
• sgeqrfp
• sgeqrt
• sgeqrt2
• sgeqrt3
- sgerfs
- sgerq2
- sgerqf
- sgesc2
- sgesdd
- sgesv
- sgesvd
- sgesvj
- sgesvx
- sgetc2
- sgetf2
- sgetrf
- sgetri
- sgetrs
- sggbak
- sggbal
- sgges
- sggexx
- sggev
- sggevx
- sggglm
- sghrd
- sggldc
- sggqr2
- sggqrf
- sgsvj0
- sgsvj1
- sgtcon
- sgtrfs
- sgtsv
- sgtsvx
- sgtrfs
- sgtrsl
- sgtsr
- sgts2
- shgeqz
- shsein
• shseqr
• slabad
• slabrd
• slacn2
• slacon
• slacpy
• sladiv
• slae2
• slaebz
• slaed0
• slaed1
• slaed2
• slaed3
• slaed4
• slaed5
• slaed6
• slaed7
• slaed8
• slaed9
• slaeda
• slaein
• slaev2
• slaexc
• slag2
• slag2d
• slags2
• slagtfl
• slagtm
• slagts
• slavg2
• slahqr
• slahr2
• slaic1
• slaln2
• slals0
• slalsa
- slalsd
- slamch
- slamrg
- slangb
- slange
- slangt
- slanhs
- slansb
- slansf
- slansp
- slanst
- slansy
- slantb
- slantp
- slantr
- slanv2
- slapll
- slapmr
- slapmt
- slapy2
- slapy3
- slaqgb
- slaqge
- slaqp2
- slaqps
- slaqr0
- slaqr1
- slaqr2
- slaqr3
- slaqr4
- slaqr5
- slaqsb
- slaqsp
- slaqsy
- slaqtr
- slar1v
• slar2v
• slarf
• slarf
• slarfg
• slarf
• slarft
• slarf
• slargv
• slarv
• slarra
• slarrb
• slarcc
• slarrd
• slarre
• slarrf
• slarrj
• slarrk
• slarr
• slarrv
• slartg
• slartgp
• slartgs
• slartv
• slaruv
• slarz
• slarzb
• slarzt
• slas2
• slascl
• slasd0
• slasd1
• slasd2
• slasd3
• slasd4
• slasd5
• slasd6
• slasd7
• slasd8
• slasda
• slasdq
• slasdt
• slaset
• slasq1
• slasq2
• slasq3
• slasq4
• slasq6
• slasr
• slasrt
• slassq
• slasv2
• slaswp
• slasy2
• slasyf
• slatbs
• slatdf
• slatps
• slatrd
• slatrs
• slatrz
• slaau2
• slauum
• sopgtr
• sopmtr
• sorbdb
• sorcsd
• sorg2l
• sorg2r
• sorgbr
• sorghr
• sorgl2
• sorglq
• sorgql
• sorgqr
• sorgr2
• sorgrq
• sorgtr
• sorm2l
• sorm2r
• sormbr
• sormhr
• sorml2
• sormlq
• sormql
• sormqr
• sormr2
• sormr3
• sormrq
• sormrz
• sormtr
• spbcon
• spbequ
• spbrfs
• spbstf
• spbsv
• spbsvx
• spbf2
• spbtrf
• spbtrs
• spftrf
• spftri
• spftrs
• spocon
• spoequ
• spoequb
• sporfs
• sposv
• sposvx

3.3. API definition
• spotf2
• spotrf
• spotri
• spotrs
• sppcon
• sppequ
• spprfs
• sppsv
• sppsvx
• spptrf
• spptri
• spptrs
• spstf2
• spstrf
• sptcon
• spteqr
• sptrfs
• sptsv
• sptsvx
• spptrf
• spttrs
• sptts2
• srsc1
• ssbev
• ssbevd
• ssbevx
• ssbgst
• ssbgv
• ssbgvd
• ssbgvx
• ssbtrd
• ssfrk
• ssptcon
• sspev
• sspevd
• sspevx
• ssprfs
• sspsv
• sspsvx
• ssptrd
• ssptrf
• ssptri
• ssptrs
• sstebz
• sstedc
• sstegr
• sstein
• sstemr
• ssteqr
• ssterf
• sstev
• sstevd
• sstevr
• sstevx
• ssycon
• ssyconv
• ssyequb
• ssyev
• ssyevd
• ssyevr
• ssyevx
• ssygs2
• ssygst
• ssygst
• ssygv
• ssygd
• ssygvx
• ssyrgv
• ssyrs
• ssyrv
• ssysvx
• ssyswapr
• ssysd2
• ssytf2
• ssysrd
• ssytrf
• ssytri
• ssytri2
• ssytri2x
• ssytrs
• ssytrs2
• stbcon
• stbrfs
• stbtrs
• stfsm
• stftri
• stfttp
• stftrr
• stgevc
• stgevc
• stgevc
• stgsen
• stgsja
• stgsja
• stgsy2
• stgsy2
• stgsyl
• stpcon
• stpmqrt
• stpqrt
• stpqrt2
• stppqt
• stprfs
• stptri
• stptrs
• stptrs
• stpttf
• stpttr
• strcon
• strevc
• strexc
• strrfs
• strsen
• strsna
• strsyl
• strti2
• strtri
• strs
• strtrs
• strtft
• strttp
• stzrzf
• xerbla_array
• zbbcsd
• zbdqr
• zcgsv
• zcposv
• zdrscn
• zgbbd
• zgbcn
• zgequ
• zgequb
• zgbrfs
• zgbsv
• zgbsvx
• zgbrf2
• zgbrtf
• zgbrtr
• zgbrtr
• zgebak
• zgebak
• zgebd2
• zgebrd
• zgecon
• zgeequ
• zgeequub

3.3. API definition
• zgees
• zgeesx
• zgeev
• zgeevx
• zgehd2
• zgehrd
• zgelq2
• zgelqf
• zgels
• zgelsd
• zgelsl
• zgelsy
• zgemqrt
• zgeql2
• zgeqlf
• zgeqp3
• zgeqr2
• zgeqr2p
• zgeqr3f
• zgeqr2p
• zgeqr3f
• zgesc2
• zgesdd
• zgesv
• zgesvd
• zgesvx
• zgetc2
• zgetrl2
• zgetrf
• zgetrl2
• zgetrs
• zggbak
• zggbal
• zgges
• zggesx
• zggev
• zggevx
• zgglm
• zgghrd
• zgglse
• zggrf
• zggrqf
• zgtcon
• zgtrfs
• zgtsv
• zgtsvx
• zgttrf
• zgttrs
• zgtts2
• zhbev
• zhbevd
• zhbevx
• zhbgst
• zhbgv
• zhbgvd
• zhbgvx
• zhbtrd
• zhecon
• zheequb
• zheev
• zheevd
• zheevr
• zheevx
• zhegs2
• zhegst
• zhegy
• zhegyv
• zhegyd
• zhegvx
• zherfs
• zhesv
• zhesvx
• zheswapr
• zhetd2
• zhetf2
• zhetrd
• zhetrf
• zhetri
• zhetri2
• zhetri2x
• zhetrs
• zhetrs2
• zhfrk
• zhgeqz
• zhpccon
• zhpev
• zhpevd
• zhpevx
• zhpgst
• zhpgv
• zhpgvd
• zhpgvx
• zhpfrfs
• zhpfv
• zhpfx
• zhpfr
• zhpfrd
• zhpfd
• zhpfrv
• zhpfrx
• zhpfrv
• zhsein
• zhseqr
• zlabrd
• zlabrd
• zlacgv
• zlacn2
• zlacon
• zlacp2
• zlacpy
• zlacrm
• zlacrt
• zladiv
• zlaed0
• zlaed7
• zlaed8
• zlaein
• zlaesy
• zlaev2
• zlag2c
• zlags2
• zlagtm
• zlahef
• zlahqr
• zlahr2
• zlaic1
• zlals0
• zlalsa
• zlalsd
• zlangb
• zlange
• zlangt
• zlanhb
• zlanhe
• zlanhf
• zlanhp
• zlanhs
• zlanht
• zlansb
• zlanzp
• zlansy
• zlanzb
• zlantp
• zlantr
• zlapll
• zlapmr
• zlapmt
• zlaqgb
• zlaqge
• zlaqhb
• zlaqhe
• zlaqhp
• zlaqp2
• zlaqps
• zlaqr0
• zlaqr1
• zlaqr2
• zlaqr3
• zlaqr4
• zlaqr5
• zlaqsb
• zlaqsp
• zlaqsy
• zlar1v
• zlar2v
• zlarcm
• zlarf
• zlarfb
• zlarfg
• zlarfgp
• zlarft
• zlarfx
• zlargv
• zlarnv
• zlarrv
• zlartg
• zlartv
• zlarz
• zlarzb
3.3. API definition

- zlarzt
- zlascl
- zlasct
- zlasr
- zlassq
- zlaswp
- zlaszf
- zlat2c
- zlatbs
- zlatdf
- zlatps
- zlatrd
- zlatrs
- zlatrz
- zlauu2
- zlauum
- zpbcon
- zpbequ
- zpbtrs
- zpbstf
- zpbsv
- zpbsvx
- zpbtf2
- zpbtrf
- zpbtrs
- zpftrf
- zpftri
- zpftrs
- zpocon
- zpoequ
- zpoequb
- zporfs
- zposv
- zposvx
- zpotf2
- zpotrf
• zpotri
• zpotrs
• zppcon
• zppequ
• zpprfs
• zppsv
• zppsvx
• zpptrf
• zpptri
• zpptrs
• zpptrs
• zpstrf
• zptrcon
• zpqrt
• zptrfs
• zptsv
• zptsvx
• zpttrf
• zpttrs
• zptts2
• zrot
• zpcon
• zpmv
• zpr
• zprfs
• zpsv
• zpsvxx
• zpsvtx
• zpsvtrf
• zpsvtri
• zpsvtrs
• zstedc
• zstegr
• zstein
• zstemr
• zsteqr
• zsyncon
• zsyconv
• zsyequb
• zsymv
• zsy
• zsytrfs
• zsysv
• zsysvx
• zsyswapr
• zsytf2
• zsytrf
• zsytri
• zsytri2
• zsytri2x
• zsytrs
• zsytrs2
• ztbcon
• ztbrfs
• ztbtrs
• ztfsm
• ztftri
• ztftrs
• ztftr
• ztgevc
• ztgedc
• ztgedc
• ztgsen
• ztgsja
• ztgsna
• ztgsy2
• ztgsyl
• ztpcon
• ztpmqrt
• ztpqrt
• ztpqrt2
• ztpqrt3
• ztprf
• ztprfs
• ztptri
• ztptrs
• ztpttf
• ztptrr
• ztrcns
• ztreve
• ztrecc
• ztrrf
• ztrssn
• ztrssy1
• ztrtri2
• ztrtri
• ztrtrs
• ztrttf
• ztrttp
• ztrzrf
• zunbdb
• zuncsd
• zung2l
• zung2r
• zungbr
• zunghr
• zungl2
• zunglq
• zungql
• zungqr
• zunggr
• zungqr
• zungfr
• zungfr
• zunm2l
• zunm2r
• zunmbr
• zunmhr
• zunm12
• zunm1q
• zunmql
• zunmqr
• zunmr2
• zunmr3
• zunmrq
• zunmrz
• zunmtr
• zupgtr
• zupmtr

3.3.15 Interpolative matrix decomposition (scipy.linalg.interpolative)

New in version 0.13.

An interpolative decomposition (ID) of a matrix $A \in \mathbb{C}^{m \times n}$ of rank $k \leq \min\{m, n\}$ is a factorization

$$A \Pi = [A\Pi_1 \ A\Pi_2] = A\Pi_1 [I \ T],$$

where $\Pi = [\Pi_1, \Pi_2]$ is a permutation matrix with $\Pi_1 \in \{0, 1\}^{n \times k}$, i.e., $A\Pi_2 = A\Pi_1 T$. This can equivalently be written as $A = BP$, where $B = A\Pi_1$ and $P = [I, T]\Pi^T$ are the skeleton and interpolation matrices, respectively.

If A does not have exact rank k, then there exists an approximation in the form of an ID such that $A = BP + E$, where $\|E\| \sim \sigma_{k+1}$ is on the order of the $(k + 1)$-th largest singular value of A. Note that σ_{k+1} is the best possible error for a rank-k approximation and, in fact, is achieved by the singular value decomposition (SVD) $A \approx U S V^*$, where $U \in \mathbb{C}^{m \times k}$ and $V \in \mathbb{C}^{n \times k}$ have orthonormal columns and $S = \text{diag}(\sigma_i) \in \mathbb{C}^{k \times k}$ is diagonal with nonnegative entries.

The principal advantages of using an ID over an SVD are that:

• it is cheaper to construct;
• it preserves the structure of A; and
• it is more efficient to compute with in light of the identity submatrix of P.

Routines

Main functionality:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interp_decomp(A, eps_or_k[, rand])</td>
<td>Compute ID of a matrix.</td>
</tr>
<tr>
<td>reconstruct_matrix_from_id(B, idx, proj)</td>
<td>Reconstruct matrix from its ID.</td>
</tr>
<tr>
<td>reconstruct_interp_matrix(idx, proj)</td>
<td>Reconstruct interpolation matrix from ID.</td>
</tr>
<tr>
<td>reconstruct_skel_matrix(A, k, idx)</td>
<td>Reconstruct skeleton matrix from ID.</td>
</tr>
<tr>
<td>id_to_svd(B, idx, proj)</td>
<td>Convert ID to SVD.</td>
</tr>
<tr>
<td>svd(A, eps_or_k[, rand])</td>
<td>Compute SVD of a matrix via an ID.</td>
</tr>
<tr>
<td>estimate_spectral_norm(A[, its])</td>
<td>Estimate spectral norm of a matrix by the randomized power method.</td>
</tr>
<tr>
<td>estimate_spectral_norm_diff(A, B[, its])</td>
<td>Estimate spectral norm of the difference of two matrices by the randomized power method.</td>
</tr>
<tr>
<td>estimate_rank(A, eps)</td>
<td>Estimate matrix rank to a specified relative precision using randomized methods.</td>
</tr>
</tbody>
</table>
scipy.linalg.interpolative.interp_decomp

scipy.linalg.interpolative.interp_decomp(A, eps_or_k, rand=True)

Compute ID of a matrix.

An ID of a matrix A is a factorization defined by a rank k, a column index array idx, and interpolation coefficients $proj$ such that:

\[
\text{numpy.dot}(A[:,idx[:k]], proj) = A[:,idx[k:]]
\]

The original matrix can then be reconstructed as:

\[
\text{numpy.hstack}([A[:,idx[:k]], \text{numpy.dot}(A[:,idx[:k]], proj)])[:,\text{numpy.argsort}(idx)]
\]

or via the routine `reconstruct_matrix_from_id`. This can equivalently be written as:

\[
\text{numpy.dot}(A[:,idx[:k]], \\
\quad \text{numpy.hstack}([\text{numpy.eye}(k), proj])[:,\text{np.argsort}(idx)])
\]

in terms of the skeleton and interpolation matrices:

$B = A[:,idx[:k]]$

and:

$P = \text{numpy.hstack}([\text{numpy.eye}(k), proj])[:,\text{np.argsort}(idx)]$

respectively. See also `reconstruct_interp_matrix` and `reconstruct_skel_matrix`.

The ID can be computed to any relative precision or rank (depending on the value of eps_or_k). If a precision is specified ($eps_or_k < 1$), then this function has the output signature:

$k, idx, proj = \text{interp_decomp}(A, eps_or_k)$

Otherwise, if a rank is specified ($eps_or_k >= 1$), then the output signature is:

$idx, proj = \text{interp_decomp}(A, eps_or_k)$

Parameters

- **A** [numpy.ndarray or scipy.sparse.linalg.LinearOperator with rmatvec] Matrix to be factored.
- **eps_or_k** [float or int] Relative error (if $eps_or_k < 1$) or rank (if $eps_or_k >= 1$) of approximation.
- **rand** [bool, optional] Whether to use random sampling if A is of type numpy.ndarray (randomized algorithms are always used if A is of type scipy.sparse.linalg.LinearOperator).

Returns

- **k** [int] Rank required to achieve specified relative precision if $eps_or_k < 1$.
- **idx** [numpy.ndarray] Column index array.
- **proj** [numpy.ndarray] Interpolation coefficients.
scipy.linalg.interpolative.reconstruct_matrix_from_id

scipy.linalg.interpolative.reconstruct_matrix_from_id(B, idx, proj)

Reconstruct matrix from its ID.

A matrix A with skeleton matrix B and ID indices and coefficients idx and $proj$, respectively, can be reconstructed as:

$$\text{numpy.hstack}([B, \text{numpy.dot}(B, \text{proj})])[::\text{numpy.argsort}(idx)]$$

See also \texttt{reconstruct_interp_matrix} and \texttt{reconstruct_skel_matrix}.

Parameters

- **B** ([\texttt{numpy.ndarray}]) Skeleton matrix.
- **idx** ([\texttt{numpy.ndarray}]) Column index array.
- **proj** ([\texttt{numpy.ndarray}]) Interpolation coefficients.

Returns

- **numpy.ndarray** Reconstructed matrix.

scipy.linalg.interpolative.reconstruct_interp_matrix

scipy.linalg.interpolative.reconstruct_interp_matrix(idx, proj)

Reconstruct interpolation matrix from ID.

The interpolation matrix can be reconstructed from the ID indices and coefficients idx and $proj$, respectively, as:

$$P = \text{numpy.hstack}([\text{numpy.eye}(\text{proj.shape}[0]), \text{proj})[::\text{numpy.argsort}(idx)]$$

The original matrix can then be reconstructed from its skeleton matrix B via:

$$\text{numpy.dot}(B, P)$$

See also \texttt{reconstruct_matrix_from_id} and \texttt{reconstruct_skel_matrix}.

Parameters

- **idx** ([\texttt{numpy.ndarray}]) Column index array.
- **proj** ([\texttt{numpy.ndarray}]) Interpolation coefficients.

Returns

- **numpy.ndarray** Interpolation matrix.

scipy.linalg.interpolative.reconstruct_skel_matrix

scipy.linalg.interpolative.reconstruct_skel_matrix(A, k, idx)

Reconstruct skeleton matrix from ID.

The skeleton matrix can be reconstructed from the original matrix A and its ID rank and indices k and idx, respectively, as:

$$B = A[:, idx[:k]]$$

The original matrix can then be reconstructed via:

$$\text{numpy.hstack}([B, \text{numpy.dot}(B, \text{proj})])[::\text{numpy.argsort}(idx)]$$
See also `reconstruct_matrix_from_id` and `reconstruct_interp_matrix`.

Parameters

- `k` [int] Rank of ID.
- `idx` [numpy.ndarray] Column index array.

Returns

- `numpy.ndarray` Skeleton matrix.

```python
scipy.linalg.interpolative.id_to_svd

scipy.linalg.interpolative.id_to_svd(B, idx, proj)

Convert ID to SVD.

The SVD reconstruction of a matrix with skeleton matrix $B$ and ID indices and coefficients $idx$ and $proj$, respectively, is:

```python
U, S, V = id_to_svd(B, idx, proj)
A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T))
```

See also `svd`.

**Parameters**

- `idx` [numpy.ndarray] Column index array.
- `proj` [numpy.ndarray] Interpolation coefficients.

**Returns**

- `U` [numpy.ndarray] Left singular vectors.
- `S` [numpy.ndarray] Singular values.
- `V` [numpy.ndarray] Right singular vectors.

```python
scipy.linalg.interpolative.svd

scipy.linalg.interpolative.svd(A, eps_or_k, rand=True)

Compute SVD of a matrix via an ID.

An SVD of a matrix A is a factorization:

```python
A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T))
```

where U and V have orthonormal columns and S is nonnegative.

The SVD can be computed to any relative precision or rank (depending on the value of eps_or_k).

See also `interp_decomp` and `id_to_svd`.

Parameters

- `A` [numpy.ndarray or scipy.sparse.linalg.LinearOperator] Matrix to be factored, given as either a `numpy.ndarray` or a `scipy.sparse.linalg.LinearOperator` with the `matvec` and `rmatvec` methods (to apply the matrix and its adjoint).
- `eps_or_k` [float or int] Relative error (if $eps_or_k < 1$) or rank (if $eps_or_k >= 1$) of approximation.
- `rand` [bool, optional] Whether to use random sampling if A is of type `numpy.ndarray` (randomized algorithms are always used if A is of type `scipy.sparse.linalg.LinearOperator`).
Returns

U [numpy.ndarray] Left singular vectors.
S [numpy.ndarray] Singular values.
V [numpy.ndarray] Right singular vectors.

scipy.linalg.interpolative.estimate_spectral_norm

scipy.linalg.interpolative.estimate_spectral_norm(A, its=20)
Estimates spectral norm of a matrix by the randomized power method.

Parameters

A [scipy.sparse.linalg.LinearOperator] Matrix given as a scipy.sparse.linalg.LinearOperator with the matvec and rmatvec methods (to apply the matrix and its adjoint).
its [int, optional] Number of power method iterations.

Returns

float Spectral norm estimate.

scipy.linalg.interpolative.estimate_spectral_norm_diff

scipy.linalg.interpolative.estimate_spectral_norm_diff(A, B, its=20)
Estimates spectral norm of the difference of two matrices by the randomized power method.

Parameters

A [scipy.sparse.linalg.LinearOperator] First matrix given as a scipy.sparse.linalg.LinearOperator with the matvec and rmatvec methods (to apply the matrix and its adjoint).
B [scipy.sparse.linalg.LinearOperator] Second matrix given as a scipy.sparse.linalg.LinearOperator with the matvec and rmatvec methods (to apply the matrix and its adjoint).
its [int, optional] Number of power method iterations.

Returns

float Spectral norm estimate of matrix difference.

scipy.linalg.interpolative.estimate_rank

scipy.linalg.interpolative.estimate_rank(A, eps)
Estimates matrix rank to a specified relative precision using randomized methods.

The matrix A can be given as either a numpy.ndarray or a scipy.sparse.linalg.LinearOperator, with different algorithms used for each case. If A is of type numpy.ndarray, then the output rank is typically about 8 higher than the actual numerical rank.

Parameters

A [numpy.ndarray or scipy.sparse.linalg.LinearOperator] Matrix whose rank is to be estimated, given as either a numpy.ndarray or a scipy.sparse.linalg.LinearOperator with the rmatvec method (to apply the matrix adjoint).
eps [float] Relative error for numerical rank definition.

Returns

int Estimated matrix rank.

Support functions:
SciPy Reference Guide, Release 1.8.0

<table>
<thead>
<tr>
<th><code>seed([seed])</code></th>
<th>Seed the internal random number generator used in this ID package.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rand(*shape)</code></td>
<td>Generate standard uniform pseudorandom numbers via a very efficient lagged Fibonacci method.</td>
</tr>
</tbody>
</table>

scipy.linalg.interpolative.seed

`scipy.linalg.interpolative.seed(seed=None)`

Seed the internal random number generator used in this ID package.

The generator is a lagged Fibonacci method with 55-element internal state.

Parameters

- `seed` ([int, sequence, ‘default’, optional] If ‘default’, the random seed is reset to a default value. If `seed` is a sequence containing 55 floating-point numbers in range [0, 1], these are used to set the internal state of the generator. If the value is an integer, the internal state is obtained from `numpy.random.RandomState` (MT19937) with the integer used as the initial seed. If `seed` is omitted (None), `numpy.random.rand` is used to initialize the generator.

scipy.linalg.interpolative.rand

`scipy.linalg.interpolative.rand(*shape)`

Generate standard uniform pseudorandom numbers via a very efficient lagged Fibonacci method.

This routine is used for all random number generation in this package and can affect ID and SVD results.

Parameters

- `shape` Shape of output array

References

This module uses the ID software package [R5a82238cdab4-1] by Martinsson, Rokhlin, Shkolnisky, and Tygert, which is a Fortran library for computing IDs using various algorithms, including the rank-revealing QR approach of [R5a82238cdab4-2] and the more recent randomized methods described in [R5a82238cdab4-3], [R5a82238cdab4-4], and [R5a82238cdab4-5]. This module exposes its functionality in a way convenient for Python users. Note that this module does not add any functionality beyond that of organizing a simpler and more consistent interface.

We advise the user to consult also the documentation for the ID package.

Tutorial

Initializing

The first step is to import `scipy.linalg.interpolative` by issuing the command:

```bash
>>> import scipy.linalg.interpolative as sli
```

Now let’s build a matrix. For this, we consider a Hilbert matrix, which is well know to have low rank:

```python
>>> from scipy.linalg import hilbert
>>> n = 1000
>>> A = hilbert(n)
```

We can also do this explicitly via:
```python
>>> import numpy as np
>>> n = 1000
>>> A = np.empty((n, n), order='F')
>>> for j in range(n):
...    for i in range(m):
...        A[i,j] = 1. / (i + j + 1)
```

Note the use of the flag `order='F'` in `numpy.empty`. This instantiates the matrix in Fortran-contiguous order and is important for avoiding data copying when passing to the backend.

We then define multiplication routines for the matrix by regarding it as a `scipy.sparse.linalg.LinearOperator`:

```python
>>> from scipy.sparse.linalg import aslinearoperator
>>> L = aslinearoperator(A)
```

This automatically sets up methods describing the action of the matrix and its adjoint on a vector.

Computing an ID

We have several choices of algorithm to compute an ID. These fall largely according to two dichotomies:

1. how the matrix is represented, i.e., via its entries or via its action on a vector; and
2. whether to approximate it to a fixed relative precision or to a fixed rank.

We step through each choice in turn below.

In all cases, the ID is represented by three parameters:

1. a rank \(k \);
2. an index array \(\text{idx} \); and
3. interpolation coefficients \(\text{proj} \).

The ID is specified by the relation \(\text{np.dot}(A[:, \text{idx}[k:]], \text{proj}) = A[:, \text{idx}[k:]] \).

From matrix entries

We first consider a matrix given in terms of its entries.

To compute an ID to a fixed precision, type:

```python
>>> k, idx, proj = sli.interp_decomp(A, eps)
```

where \(\text{eps} < 1 \) is the desired precision.

To compute an ID to a fixed rank, use:

```python
>>> idx, proj = sli.interp_decomp(A, k)
```

where \(k \geq 1 \) is the desired rank.

Both algorithms use random sampling and are usually faster than the corresponding older, deterministic algorithms, which can be accessed via the commands:

```python
>>> k, idx, proj = sli.interp_decomp(A, eps, rand=False)
```

and:

3.3. API definition
>>> idx, proj = sli.interp_decomp(A, k, rand=False)

respectively.

From matrix action

Now consider a matrix given in terms of its action on a vector as a `scipy.sparse.linalg.LinearOperator`.

To compute an ID to a fixed precision, type:

```python
>>> k, idx, proj = sli.interp_decomp(L, eps)
```

To compute an ID to a fixed rank, use:

```python
>>> idx, proj = sli.interp_decomp(L, k)
```

These algorithms are randomized.

Reconstructing an ID

The ID routines above do not output the skeleton and interpolation matrices explicitly but instead return the relevant information in a more compact (and sometimes more useful) form. To build these matrices, write:

```python
>>> B = sli.reconstruct_skel_matrix(A, k, idx)
```

for the skeleton matrix and:

```python
>>> P = sli.reconstruct_interp_matrix(idx, proj)
```

for the interpolation matrix. The ID approximation can then be computed as:

```python
>>> C = np.dot(B, P)
```

This can also be constructed directly using:

```python
>>> C = sli.reconstruct_matrix_from_id(B, idx, proj)
```

without having to first compute \(P \).

Alternatively, this can be done explicitly as well using:

```python
>>> B = A[:,idx[:k]]
>>> P = np.hstack([np.eye(k), proj])[:,np.argsort(idx)]
>>> C = np.dot(B, P)
```

Computing an SVD

An ID can be converted to an SVD via the command:

```python
>>> U, S, V = sli.id_to_svd(B, idx, proj)
```

The SVD approximation is then:

```python
>>> C = np.dot(U, np.dot(np.diag(S), np.dot(V.conj().T)))
```
The SVD can also be computed “fresh” by combining both the ID and conversion steps into one command. Following the various ID algorithms above, there are correspondingly various SVD algorithms that one can employ.

From matrix entries

We consider first SVD algorithms for a matrix given in terms of its entries.

To compute an SVD to a fixed precision, type:

```
>>> U, S, V = sli.svd(A, eps)
```

To compute an SVD to a fixed rank, use:

```
>>> U, S, V = sli.svd(A, k)
```

Both algorithms use random sampling; for the deterministic versions, issue the keyword `rand=False` as above.

From matrix action

Now consider a matrix given in terms of its action on a vector.

To compute an SVD to a fixed precision, type:

```
>>> U, S, V = sli.svd(L, eps)
```

To compute an SVD to a fixed rank, use:

```
>>> U, S, V = sli.svd(L, k)
```

Utility routines

Several utility routines are also available.

To estimate the spectral norm of a matrix, use:

```
>>> snorm = sli.estimate_spectral_norm(A)
```

This algorithm is based on the randomized power method and thus requires only matrix-vector products. The number of iterations to take can be set using the keyword `its` (default: `its=20`). The matrix is interpreted as a `scipy.sparse.linalg.LinearOperator`, but it is also valid to supply it as a `numpy.ndarray`, in which case it is trivially converted using `scipy.sparse.linalg.aslinearoperator`.

The same algorithm can also estimate the spectral norm of the difference of two matrices A_1 and A_2 as follows:

```
>>> diff = sli.estimate_spectral_norm_diff(A1, A2)
```

This is often useful for checking the accuracy of a matrix approximation.

Some routines in `scipy.linalg.interpolative` require estimating the rank of a matrix as well. This can be done with either:

```
>>> k = sli.estimate_rank(A, eps)
```

or:
>>> k = sli.estimate_rank(L, eps)

depending on the representation. The parameter \texttt{eps} controls the definition of the numerical rank.

Finally, the random number generation required for all randomized routines can be controlled via \texttt{scipy.linalg.interpolative.seed}. To reset the seed values to their original values, use:

```python
>>> sli.seed('default')
```

To specify the seed values, use:

```python
>>> sli.seed(s)
```

where \texttt{s} must be an integer or array of 55 floats. If an integer, the array of floats is obtained by using \texttt{numpy.random.rand} with the given integer seed.

To simply generate some random numbers, type:

```python
>>> sli.rand(n)
```

where \texttt{n} is the number of random numbers to generate.

Remarks

The above functions all automatically detect the appropriate interface and work with both real and complex data types, passing input arguments to the proper backend routine.

3.3.16 Miscellaneous routines (scipy.misc)

Various utilities that don’t have another home.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{ascent}()</td>
<td>Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy use in demos</td>
</tr>
<tr>
<td>\texttt{central_diff_weights}(Np[, ndiv])</td>
<td>Return weights for an Np-point central derivative.</td>
</tr>
<tr>
<td>\texttt{derivative}(func, x0[, dx, n, args, order])</td>
<td>Find the \texttt{n}th derivative of a function at a point.</td>
</tr>
<tr>
<td>\texttt{face}([gray])</td>
<td>Get a 1024 x 768, color image of a raccoon face.</td>
</tr>
<tr>
<td>\texttt{electrocardiogram}()</td>
<td>Load an electrocardiogram as an example for a 1-D signal.</td>
</tr>
</tbody>
</table>

scipy.misc.ascent

\texttt{scipy.misc.ascent()}
Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy use in demos

The image is derived from \texttt{accent-to-the-top.jpg} at \url{http://www.public-domain-image.com/people-public-domain-images-pictures/}

Parameters

- None

Returns

- \texttt{ascent} [ndarray] convenient image to use for testing and demonstration
```python
>>> import scipy.misc
>>> ascent = scipy.misc.ascent()
>>> ascent.shape
(512, 512)
>>> ascent.max()
255

>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(ascent)
>>> plt.show()
```

scipy.misc.central_diff_weights

scipy.misc.central_diff_weights (*Np, ndiv=1*)

Return weights for an Np-point central derivative.

Assumes equally-spaced function points.

If weights are in the vector w, then derivative is \(w[0] * f(x-h_0*\text{dx}) + \ldots + w[-1] * f(x+h_0*\text{dx}) \)

Parameters

- **Np** [int] Number of points for the central derivative.
- **ndiv** [int, optional] Number of divisions. Default is 1.

Returns

Notes

Can be inaccurate for a large number of points.

References

[1]

Examples

We can calculate a derivative value of a function.

```python
>>> from scipy.misc import central_diff_weights
>>> def f(x):
...     return 2 * x**2 + 3
>>> x = 3.0  # derivative point
>>> h = 0.1  # differential step
>>> Np = 3   # point number for central derivative
>>> weights = central_diff_weights(Np)  # weights for first derivative
>>> vals = [f(x + (i - Np/2) * h) for i in range(Np)]
>>> sum(w * v for (w, v) in zip(weights, vals)) / h
11.79999999999998
```

This value is close to the analytical solution: f'(x) = 4x, so f'(3) = 12

scipy.misc.derivative

`scipy.misc.derivative(func, x0, dx=1.0, n=1, args=(), order=3)`

Find the nth derivative of a function at a point.

Given a function, use a central difference formula with spacing `dx` to compute the nth derivative at `x0`.

Parameters

- `func` [function] Input function.
- `x0` [float] The point at which the nth derivative is found.
- `dx` [float, optional] Spacing.
- `n` [int, optional] Order of the derivative. Default is 1.
- `args` [tuple, optional] Arguments
- `order` [int, optional] Number of points to use, must be odd.

Notes

Decreasing the step size too small can result in round-off error.
Examples

```python
>>> from scipy.misc import derivative
>>> def f(x):
...     return x**3 + x**2
>>> derivative(f, 1.0, dx=1e-6)
4.9999999999217337
```

scipy.misc.face

`scipy.misc.face(gray=False)`

Get a 1024 x 768, color image of a raccoon face.

raccoon-procyon-lotor.jpg at http://www.public-domain-image.com

Parameters

- `gray` [bool, optional] If True return 8-bit grey-scale image, otherwise return a color image

Returns

- `face` [ndarray] image of a raccoon face

Examples

```python
>>> import scipy.misc
>>> face = scipy.misc.face()
>>> face.shape
(768, 1024, 3)
>>> face.max()
255
>>> face.dtype
dtype('uint8')
```

```python
>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(face)
>>> plt.show()
```

scipy.misc.electrocardiogram

`scipy.misc.electrocardiogram()`

Load an electrocardiogram as an example for a 1-D signal.

The returned signal is a 5 minute long electrocardiogram (ECG), a medical recording of the heart’s electrical activity, sampled at 360 Hz.

Returns

- `ecg` [ndarray] The electrocardiogram in millivolt (mV) sampled at 360 Hz.
Notes

The provided signal is an excerpt (19:35 to 24:35) from the record 208 (lead MLII) provided by the MIT-BIH Arrhythmia Database [1] on PhysioNet [2]. The excerpt includes noise induced artifacts, typical heartbeats as well as pathological changes.

New in version 1.1.0.

References

[1], [2]

Examples

```python
>>> from scipy.misc import electrocardiogram
>>> ecg = electrocardiogram()
>>> ecg
array([-0.245, -0.215, -0.185, ..., -0.405, -0.395, -0.385])
>>> ecg.shape, ecg.mean(), ecg.std()
((108000,), -0.16510875, 0.5992473991177294)
```

As stated the signal features several areas with a different morphology. E.g., the first few seconds show the electrical activity of a heart in normal sinus rhythm as seen below.

```python
>>> import matplotlib.pyplot as plt
>>> fs = 360
>>> time = np.arange(ecg.size) / fs
>>> plt.plot(time, ecg)
>>> plt.xlabel("time in s")
>>> plt.ylabel("ECG in mV")
>>> plt.xlim(9, 10.2)
>>> plt.ylim(-1, 1.5)
>>> plt.show()
```
After second 16, however, the first premature ventricular contractions, also called extrasystoles, appear. These have a different morphology compared to typical heartbeats. The difference can easily be observed in the following plot.

```python
>>> plt.plot(time, ecg)
>>> plt.xlabel("time in s")
>>> plt.ylabel("ECG in mV")
>>> plt.xlim(46.5, 50)
>>> plt.ylim(-2, 1.5)
>>> plt.show()
```

At several points large artifacts disturb the recording, e.g.:

```python
>>> plt.plot(time, ecg)
>>> plt.xlabel("time in s")
>>> plt.ylabel("ECG in mV")
```
Finally, examining the power spectrum reveals that most of the biosignal is made up of lower frequencies. At 60 Hz the noise induced by the mains electricity can be clearly observed.

```python
>>> from scipy.signal import welch
>>> f, Pxx = welch(ecg, fs=fs, nperseg=2048, scaling="spectrum")
>>> plt.plot(f, Pxx)
>>> plt.xlabel("Frequency in Hz")
>>> plt.ylabel("Power spectrum of the ECG in mV**2")
>>> plt.xlim(f[[0, -1]])
>>> plt.show()
```
3.3.17 Multidimensional image processing (scipy.ndimage)

This package contains various functions for multidimensional image processing.

Filters

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>convolve</code></td>
<td>Multidimensional convolution.</td>
</tr>
<tr>
<td><code>convolve1d</code></td>
<td>Calculate a 1-D convolution along the given axis.</td>
</tr>
<tr>
<td><code>correlate</code></td>
<td>Multidimensional correlation.</td>
</tr>
<tr>
<td><code>correlate1d</code></td>
<td>Calculate a 1-D correlation along the given axis.</td>
</tr>
<tr>
<td><code>gaussian_filter</code></td>
<td>Multidimensional Gaussian filter.</td>
</tr>
<tr>
<td><code>gaussian_filter1d</code></td>
<td>1-D Gaussian filter.</td>
</tr>
<tr>
<td><code>gaussian_gradient_magnitude</code></td>
<td>Multidimensional gradient magnitude using Gaussian derivatives.</td>
</tr>
<tr>
<td><code>gaussian_laplace</code></td>
<td>Multidimensional Laplace filter using Gaussian second derivatives.</td>
</tr>
<tr>
<td><code>generic_filter</code></td>
<td>Calculate a multidimensional filter using the given function.</td>
</tr>
<tr>
<td><code>generic_filter1d</code></td>
<td>Calculate a 1-D filter along the given axis.</td>
</tr>
<tr>
<td><code>generic_gradient_magnitude</code></td>
<td>Gradient magnitude using a provided gradient function.</td>
</tr>
<tr>
<td><code>generic_laplace</code></td>
<td>N-D Laplace filter using a provided second derivative function.</td>
</tr>
<tr>
<td><code>laplace</code></td>
<td>N-D Laplace filter based on approximate second derivatives.</td>
</tr>
<tr>
<td><code>maximum_filter</code></td>
<td>Calculate a multidimensional maximum filter.</td>
</tr>
<tr>
<td><code>maximum_filter1d</code></td>
<td>Calculate a 1-D maximum filter along the given axis.</td>
</tr>
<tr>
<td><code>median_filter</code></td>
<td>Calculate a multidimensional median filter.</td>
</tr>
<tr>
<td><code>minimum_filter</code></td>
<td>Calculate a multidimensional minimum filter.</td>
</tr>
<tr>
<td><code>minimum_filter1d</code></td>
<td>Calculate a 1-D minimum filter along the given axis.</td>
</tr>
<tr>
<td><code>percentile_filter</code></td>
<td>Calculate a multidimensional percentile filter.</td>
</tr>
<tr>
<td><code>prewitt</code></td>
<td>Calculate a Prewitt filter.</td>
</tr>
<tr>
<td><code>rank_filter</code></td>
<td>Calculate a multidimensional rank filter.</td>
</tr>
<tr>
<td><code>sobel</code></td>
<td>Calculate a Sobel filter.</td>
</tr>
<tr>
<td><code>uniform_filter</code></td>
<td>Calculate a 1-D uniform filter along the given axis.</td>
</tr>
</tbody>
</table>

scipy.ndimage.convolve

`scipy.ndimage.convolve (input, weights, output=None, mode='reflect', cval=0.0, origin=0)`

Multidimensional convolution.

The array is convolved with the given kernel.

Parameters

- **input** [array_like] The input array.
- **weights** [array_like] Array of weights, same number of dimensions as input.
- **output** [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- **mode** [‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’], optional] The mode parameter determines how the input array is extended beyond its boundaries. Default is ‘reflect’. Behavior for each valid value is as follows:
'reflect' (d c b a | a b c d | d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode
 is also sometimes referred to as half-sample symmetric.

'constant' (k k k k | a b c d | k k k k)
 The input is extended by filling all values beyond the edge with the same constant
 value, defined by the cval parameter.

'nearest' (a a a a | a b c d | d d d d)
 The input is extended by replicating the last pixel.

'mirror' (d c b | a b c d | c b a)
 The input is extended by reflecting about the center of the last pixel. This mode
 is also sometimes referred to as whole-sample symmetric.

'wrap' (a b c d | a b c d | a b c d)
 The input is extended by wrapping around to the opposite edge.

For consistency with the interpolation functions, the following mode names can also be used:

'grid-mirror'
 This is a synonym for 'reflect'.

'grid-constant'
 This is a synonym for 'constant'.

'grid-wrap'
 This is a synonym for 'wrap'.

cval [scalar, optional] Value to fill past edges of input if mode is 'constant'. Default is 0.0
origin [int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A
 value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter
to the left, and negative ones to the right. By passing a sequence of origins with length equal
to the number of dimensions of the input array, different shifts can be specified along each
axis.

Returns

result [ndarray] The result of convolution of input with weights.

See also:

correlate
 Correlate an image with a kernel.

Notes

Each value in result is \(C_i = \sum_j I_{i+k-j} W_j \), where \(W \) is the weights kernel, \(j \) is the N-D spatial index over \(W \), \(I \) is
 the input and \(k \) is the coordinate of the center of \(W \), specified by origin in the input parameters.

Examples

Perhaps the simplest case to understand is mode='constant', cval=0.0, because in this case borders (i.e.,
where the weights kernel, centered on any one value, extends beyond an edge of input) are treated as zeros.

```python
>>> a = np.array([[1, 2, 0, 0],
                ... [5, 3, 0, 4],
                ... [0, 0, 0, 7],
                ... [9, 3, 0, 0]])
>>> k = np.array([[1,1],[1,0],[0,0]])
>>> from scipy import ndimage
>>> ndimage.convolve(a, k, mode='constant', cval=0.0)
```
(continues on next page)
array(
 [[11, 10, 7, 4],
 [10, 3, 11, 11],
 [15, 12, 14, 7],
 [12, 3, 7, 0]]
)

Setting cval=1.0 is equivalent to padding the outer edge of input with 1.0's (and then extracting only the original region of the result).

```python
>>> ndimage.convolve(a, k, mode='constant', cval=1.0)
array(
    [[13, 11, 8, 7],
     [11, 3, 11, 14],
     [16, 12, 14, 10],
     [15, 6, 10, 5]]
)
```

With mode='reflect' (the default), outer values are reflected at the edge of input to fill in missing values.

```python
>>> b = np.array([[2, 0, 0],
                 ... [1, 0, 0],
                 ... [0, 0, 0]])
>>> k = np.array([[0, 1, 0],
                ... [0, 1, 0],
                ... [0, 1, 0]])
>>> ndimage.convolve(b, k, mode='reflect')
array(
    [[5, 0, 0],
     [3, 0, 0],
     [1, 0, 0]])
```

This includes diagonally at the corners.

```python
>>> k = np.array([[1,0,0],[0,1,0],[0,0,1]])
>>> ndimage.convolve(b, k)
array(
    [[4, 2, 0],
     [3, 2, 0],
     [1, 1, 0]])
```

With mode='nearest', the single nearest value in to an edge in input is repeated as many times as needed to match the overlapping weights.

```python
>>> c = np.array([[2, 0, 1],
                 ... [1, 0, 0],
                 ... [0, 0, 0]])
>>> k = np.array([[0, 1, 0],
                ... [0, 1, 0],
                ... [0, 1, 0],
                ... [0, 1, 0],
                ... [0, 1, 0]])
>>> ndimage.convolve(c, k, mode='nearest')
array(
    [[7, 0, 3],
     [5, 0, 2],
     [3, 0, 1]])
```
scipy.ndimage.convolve1d

scipy.ndimage.convolve1d *(input, weights, axis=-1, output=None, mode='reflect', cval=0.0, origin=0)*

Calculate a 1-D convolution along the given axis.

The lines of the array along the given axis are convolved with the given weights.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>[array_like] The input array.</td>
</tr>
<tr>
<td>weights</td>
<td>[ndarray] 1-D sequence of numbers.</td>
</tr>
<tr>
<td>axis</td>
<td>[int, optional] The axis of input along which to calculate. Default is -1.</td>
</tr>
<tr>
<td>output</td>
<td>[array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.</td>
</tr>
<tr>
<td>mode</td>
<td>[{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The mode parameter determines how the input array is extended beyond its boundaries. Default is ‘reflect’. Behavior for each valid value is as follows:</td>
</tr>
<tr>
<td></td>
<td>‘reflect’ *(d c b a</td>
</tr>
<tr>
<td></td>
<td>The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.</td>
</tr>
<tr>
<td></td>
<td>‘constant’ *(k k k k</td>
</tr>
<tr>
<td></td>
<td>The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter.</td>
</tr>
<tr>
<td></td>
<td>‘nearest’ *(a a a a</td>
</tr>
<tr>
<td></td>
<td>The input is extended by replicating the last pixel.</td>
</tr>
<tr>
<td></td>
<td>‘mirror’ *(d c b</td>
</tr>
<tr>
<td></td>
<td>The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.</td>
</tr>
<tr>
<td></td>
<td>‘wrap’ *(a b c d</td>
</tr>
<tr>
<td></td>
<td>The input is extended by wrapping around to the opposite edge.</td>
</tr>
<tr>
<td></td>
<td>For consistency with the interpolation functions, the following mode names can also be used:</td>
</tr>
<tr>
<td></td>
<td>‘grid-mirror’</td>
</tr>
<tr>
<td></td>
<td>This is a synonym for ‘reflect’.</td>
</tr>
<tr>
<td></td>
<td>‘grid-constant’</td>
</tr>
<tr>
<td></td>
<td>This is a synonym for ‘constant’.</td>
</tr>
<tr>
<td></td>
<td>‘grid-wrap’</td>
</tr>
<tr>
<td></td>
<td>This is a synonym for ‘wrap’.</td>
</tr>
<tr>
<td>cva1</td>
<td>[scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.</td>
</tr>
<tr>
<td>origin</td>
<td>[int, optional] Controls the placement of the filter on the input array's pixels. A value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter to the left, and negative ones to the right.</td>
</tr>
</tbody>
</table>

Returns

convolve1d

[ndarray] Convolved array with same shape as input
Examples

```python
>>> from scipy.ndimage import convolve1d
>>> convolve1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3])
array([14, 24,  4, 13, 12, 36, 27,  0])
```

`scipy.ndimage.correlate`

`scipy.ndimage.correlate` (input, weights, output=None, mode='reflect', cval=0.0, origin=0)

Multidimensional correlation.

The array is correlated with the given kernel.

Parameters

- **input** [array_like] The input array.
- **weights** [ndarray] array of weights, same number of dimensions as input
- **output** [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- **mode** ['reflect', 'constant', 'nearest', 'mirror', 'wrap'], optional] The `mode` parameter determines how the input array is extended beyond its boundaries. Default is 'reflect'. Behavior for each valid value is as follows:
 - **reflect** (d c b a \mid a b c d \mid d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
 - **constant** (k k k k \mid a b c d \mid k k k k)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter.
 - **nearest** (a a a a \mid a b c d \mid d d d d)
 The input is extended by replicating the last pixel.
 - **mirror** (d c b \mid a b c d \mid c b a)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.
 - **wrap** (a b c d \mid a b c d \mid a b c d)
 The input is extended by wrapping around to the opposite edge.

For consistency with the interpolation functions, the following mode names can also be used:
- **grid-mirror**
 This is a synonym for 'reflect'.
- **grid-constant**
 This is a synonym for 'constant'.
- **grid-wrap**
 This is a synonym for 'wrap'.

- **cval** [scalar, optional] Value to fill past edges of input if `mode` is 'constant'. Default is 0.0.
- **origin** [int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter to the left, and negative ones to the right. By passing a sequence of origins with length equal to the number of dimensions of the input array, different shifts can be specified along each axis.

Returns

- **result** [ndarray] The result of correlation of `input` with `weights`.

See also:
convolve

Convolve an image with a kernel.

Examples

Correlation is the process of moving a filter mask often referred to as kernel over the image and computing the sum of products at each location.

```python
>>> from scipy.ndimage import correlate
>>> input_img = np.arange(25).reshape(5,5)
>>> print(input_img)
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
```

Define a kernel (weights) for correlation. In this example, it is for sum of center and up, down, left and right next elements.

```python
>>> weights = [[0, 1, 0],
             ..., [1, 1, 1],
             ..., [0, 1, 0]]
```

We can calculate a correlation result: For example, element [2,2] is $7 + 11 + 12 + 13 + 17 = 60$.

```python
>>> correlate(input_img, weights)
array([[ 6, 10, 15, 20, 24],
       [ 26, 30, 35, 40, 44],
       [ 51, 55, 60, 65, 69],
       [ 76, 80, 85, 90, 94],
       [ 96, 100, 105, 110, 114]])
```

scipy.ndimage.correlate1d

scipy.ndimage.correlate1d(input, weights, axis=-1, output=None, mode='reflect', cval=0.0, origin=0)

Calculate a 1-D correlation along the given axis.

The lines of the array along the given axis are correlated with the given weights.

Parameters

- **input** [array_like] The input array.
- **weights** [array] 1-D sequence of numbers.
- **axis** [int, optional] The axis of input along which to calculate. Default is -1.
- **output** [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- **mode** [{'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional] The mode parameter determines how the input array is extended beyond its boundaries. Default is 'reflect'. Behavior for each valid value is as follows:
 - **‘reflect’** (d c b a | a b c d | d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter.

- **nearest** (a a a a | a b c d | d d d d)
 The input is extended by replicating the last pixel.

- **mirror** (d c b | a b c d | c b a)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

- **wrap** (a b c d | a b c d | a b c d)
 The input is extended by wrapping around to the opposite edge.

For consistency with the interpolation functions, the following mode names can also be used:

- **grid-mirror**
 This is a synonym for ‘reflect’.

- **grid-constant**
 This is a synonym for ‘constant’.

- **grid-wrap**
 This is a synonym for ‘wrap’.

Examples

```python
>>> from scipy.ndimage import correlate1d
>>> correlate1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3])
array([ 8, 26, 8, 12, 7, 28, 36, 9])
```

scipy.ndimage.gaussian_filter

Multidimensional Gaussian filter.

Parameters

- **input** [array_like] The input array.
- **sigma** [scalar or sequence of scalars] Standard deviation for Gaussian kernel. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes.
- **order** [int or sequence of ints, optional] The order of the filter along each axis is given as a sequence of integers, or as a single number. An order of 0 corresponds to convolution with a Gaussian kernel. A positive order corresponds to convolution with that derivative of a Gaussian.
- **output** [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- **mode** [str or sequence, optional] The `mode` parameter determines how the input array is extended when the filter overlaps a border. By passing a sequence of modes with length equal to the number of dimensions of the input array, different modes can be specified along each axis. Default value is ‘reflect’. The valid values and their behavior is as follows:
 - **reflect** (d c b a | a b c d | d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.

`constant` \((k\ k\ k\ |\ a\ b\ c\ d\ |\ k\ k\ k\)\)

The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter.

`nearest` \((a\ a\ a\ |\ a\ b\ c\ d\ |\ d\ d\ d\)\)

The input is extended by replicating the last pixel.

`mirror` \((d\ c\ b\ |\ a\ b\ c\ d\ |\ c\ b\ a\)\)

The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

`wrap` \((a\ b\ c\ d\ |\ a\ b\ c\ d\ |\ a\ b\ c\ d\)\)

The input is extended by wrapping around to the opposite edge.

For consistency with the interpolation functions, the following mode names can also be used:

`grid-constant`

This is a synonym for ‘constant’.

`grid-mirror`

This is a synonym for ‘reflect’.

`grid-wrap`

This is a synonym for ‘wrap’.

`cval` [scalar, optional] Value to fill past edges of input if `mode` is ‘constant’. Default is 0.0.

`truncate` [float] Truncate the filter at this many standard deviations. Default is 4.0.

Returns

gaussian_filter

```
[ndarray] Returned array of same shape as input.
```

Notes

The multidimensional filter is implemented as a sequence of 1-D convolution filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision.

Examples

```python
>>> from scipy.ndimage import gaussian_filter
>>> a = np.arange(50, step=2).reshape((5, 5))
>>> a
array([[ 0,  2,  4,  6,  8],
       [10, 12, 14, 16, 18],
       [20, 22, 24, 26, 28],
       [30, 32, 34, 36, 38],
       [40, 42, 44, 46, 48]])
>>> gaussian_filter(a, sigma=1)
array([[ 4,  6,  8,  9, 11],
       [10, 12, 14, 15, 17],
       [20, 22, 24, 25, 27],
       [29, 31, 33, 34, 36],
       [35, 37, 39, 40, 42]])
```
```python
>>> ax1 = fig.add_subplot(121)  # left side
>>> ax2 = fig.add_subplot(122)  # right side
>>> ascent = misc.ascent()
>>> result = gaussian_filter(ascent, sigma=5)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
```

scipy.ndimage.gaussian_filter1d

`scipy.ndimage.gaussian_filter1d(input, sigma, axis=-1, order=0, output=None, mode='reflect', cval=0.0, truncate=4.0)`

1-D Gaussian filter.

Parameters

- `input` ([array_like]) The input array.
- `sigma` ([scalar]) Standard deviation for Gaussian kernel.
- `axis` ([int, optional]) The axis of `input` along which to calculate. Default is `-1`.
- `order` ([int, optional]) An order of 0 corresponds to convolution with a Gaussian kernel. A positive order corresponds to convolution with that derivative of a Gaussian.
- `output` ([array or dtype, optional]) The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as `input` will be created.
- `mode` ([{'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional]) The `mode` parameter determines how the input array is extended beyond its boundaries. Default is 'reflect'. Behavior for each valid value is as follows:
 - **reflect** (`d c b a | a b c d | d c b a`)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
 - **constant** (`k k k k | a b c d | k k k k`)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter.
 - **nearest** (`a a a a | a b c d | d d d d`)
 The input is extended by replicating the last pixel.
'mirror' (d c b \ a b c d \ c b a)
 The input is extended by reflecting about the center of the last pixel. This mode
 is also sometimes referred to as whole-sample symmetric.

'wrap' (a b c d \ a b c d \ a b c d)
 The input is extended by wrapping around to the opposite edge.
For consistency with the interpolation functions, the following mode names can also be used:

'grid-mirror'
 This is a synonym for 'reflect'.

'grid-constant'
 This is a synonym for 'constant'.

'grid-wrap'
 This is a synonym for 'wrap'.

```
cval     [scalar, optional] Value to fill past edges of input if mode is 'constant'. Default is 0.0.
truncated [float, optional] Truncate the filter at this many standard deviations. Default is 4.0.
```

Returns

gaussian_filter1d
 [ndarray]

Examples

```python
>>> from scipy.ndimage import gaussian_filter1d
>>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 1)
array([ 1.42704095, 2.06782203, 3. , 3.93217797, 4.57295905])
>>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 4)
array([ 2.91948343, 2.95023502, 3. , 3.04976498, 3.08051657])
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> x = rng.standard_normal(101).cumsum()
>>> y3 = gaussian_filter1d(x, 3)
>>> y6 = gaussian_filter1d(x, 6)
>>> plt.plot(x, 'k', label='original data')
>>> plt.plot(y3, '--', label='filtered, sigma=3')
>>> plt.plot(y6, ':', label='filtered, sigma=6')
>>> plt.legend()
>>> plt.grid()
>>> plt.show()
```

scipy.ndimage.gaussian_gradient_magnitude

```
scipy.ndimage.gaussian_gradient_magnitude (input, sigma, output=None, mode='reflect', cval=0.0,
**kwargs)
```

Multidimensional gradient magnitude using Gaussian derivatives.

Parameters

- **input**
 - [array_like] The input array.

- **sigma**
 - [scalar or sequence of scalars] The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes.

- **output**
 - [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.

- **mode**
 - [str or sequence, optional] The mode parameter determines how the input array is extended when the filter overlaps a border. By passing a sequence of modes with length equal to the
number of dimensions of the input array, different modes can be specified along each axis. Default value is ‘reflect’. The valid values and their behavior is as follows:

- ‘reflect’ (*d* *c* *b* *a* | *a* *b* *c* *d* | *d* *c* *b* *a*)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.

- ‘constant’ (*k* *k* *k* *k* | *a* *b* *c* *d* | *k* *k* *k* *k*)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter.

- ‘nearest’ (*a* *a* *a* *a* | *a* *b* *c* *d* | *d* *d* *d* *d*)
 The input is extended by replicating the last pixel.

- ‘mirror’ (*d* *c* *b* | *a* *b* *c* *d* | *c* *b* *a*)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

- ‘wrap’ (*a* *b* *c* *d* | *a* *b* *c* *d* | *a* *b* *c* *d*)
 The input is extended by wrapping around to the opposite edge.

For consistency with the interpolation functions, the following mode names can also be used:

- ‘grid-constant’
 This is a synonym for ‘constant’.

- ‘grid-mirror’
 This is a synonym for ‘reflect’.

- ‘grid-wrap’
 This is a synonym for ‘wrap’.

`cval` [scalar, optional] Value to fill past edges of input if `mode` is ‘constant’. Default is 0.0.

Extra keyword arguments will be passed to `gaussian_filter()`.

Returns

- `gaussian_gradient_magnitude` [ndarray] Filtered array. Has the same shape as `input`.
Examples

```python
>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray()  # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121)  # left side
>>> ax2 = fig.add_subplot(122)  # right side
>>> ascent = misc.ascent()
>>> result = ndimage.gaussian_gradient_magnitude(ascent, sigma=5)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
```

scipy.ndimage.gaussian_laplace

scipy.ndimage.gaussian_laplace(input, sigma, output=None, mode='reflect', cval=0.0, **kwargs)

Multidimensional Laplace filter using Gaussian second derivatives.

Parameters

- **input** [array_like] The input array.
- **sigma** [scalar or sequence of scalars] The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes.
- **output** [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- **mode** [str or sequence, optional] The mode parameter determines how the input array is extended when the filter overlaps a border. By passing a sequence of modes with length equal to the number of dimensions of the input array, different modes can be specified along each axis. Default value is ‘reflect’. The valid values and their behavior is as follows:
 - **‘reflect’** (d c b a | a b c d | d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
 - **‘constant’** (k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter.

- **‘nearest’** (a a a a | a b c d | d d d d)
 - The input is extended by replicating the last pixel.

- **‘mirror’** (d c b | a b c d | c b a)
 - The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

- **‘wrap’** (a b c d | a b c d | a b c d)
 - The input is extended by wrapping around to the opposite edge.

For consistency with the interpolation functions, the following mode names can also be used:

- **‘grid-constant’**
 - This is a synonym for ‘constant’.

- **‘grid-mirror’**
 - This is a synonym for ‘reflect’.

- **‘grid-wrap’**
 - This is a synonym for ‘wrap’.

- **`cval`** [scalar, optional] Value to fill past edges of input if `mode` is ‘constant’. Default is 0.0.

Extra keyword arguments will be passed to `gaussian_filter()`.

Examples

```python
>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> ascent = misc.ascent()

>>> fig = plt.figure()
>>> plt.gray()  # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121)  # left side
>>> ax2 = fig.add_subplot(122)  # right side

>>> result = ndimage.gaussian_laplace(ascent, sigma=1)
>>> ax1.imshow(result)

>>> result = ndimage.gaussian_laplace(ascent, sigma=3)
>>> ax2.imshow(result)
>>> plt.show()
```

scipy.ndimage.generic_filter

`scipy.ndimage.generic_filter(input, function, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0, extra_arguments=(), extra_keywords=None)`

Calculate a multidimensional filter using the given function.

At each element the provided function is called. The input values within the filter footprint at that element are passed to the function as a 1-D array of double values.

Parameters

- **input** [array_like] The input array.
- **function** [[callable, scipy.LowLevelCallable]] Function to apply at each element.
- **size** [scalar or tuple, optional] See footprint, below. Ignored if footprint is given.
- **footprint** [array, optional] Either size or footprint must be defined. size gives the shape that is taken from the input array, at every element position, to define the input to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements
within this shape will get passed to the filter function. Thus size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust size to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and size is 2, then the actual size used is (2,2,2). When footprint is given, size is ignored.

output
[array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.

mode
[{'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional] The mode parameter determines how the input array is extended beyond its boundaries. Default is 'reflect'. Behavior for each valid value is as follows:

- **reflect** (d c b a | a b c d | d c b a)
The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.

- **constant** (k k k k | a b c d | k k k k)
The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter.

- **nearest** (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

- **mirror** (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

- **wrap** (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

For consistency with the interpolation functions, the following mode names can also be used:

- **grid-mirror**
 This is a synonym for ‘reflect’.

- **grid-constant**
 This is a synonym for ‘constant’.

- **grid-wrap**
 This is a synonym for ‘wrap’.

cval
[scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

origin
[int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter to the left, and negative ones to the right. By passing a sequence of origins with length equal
to the number of dimensions of the input array, different shifts can be specified along each axis.

extra_arguments
[sequence, optional] Sequence of extra positional arguments to pass to the passed function.

extra_keywords
[dict, optional] Dict of extra keyword arguments to pass to the passed function.

Notes

This function also accepts low-level callback functions with one of the following signatures and wrapped in `scipy.LowLevelCallable`:

```python
int callback(double *buffer, npy_intp filter_size,
             double *return_value, void *user_data)
int callback(double *buffer, intptr_t filter_size,
             double *return_value, void *user_data)
```

The calling function iterates over the elements of the input and output arrays, calling the callback function at each element. The elements within the footprint of the filter at the current element are passed through the `buffer` parameter, and the number of elements within the footprint through `filter_size`. The calculated value is returned in `return_value`. `user_data` is the data pointer provided to `scipy.LowLevelCallable` as-is.

The callback function must return an integer error status that is zero if something went wrong and one otherwise. If an error occurs, you should normally set the python error status with an informative message before returning, otherwise a default error message is set by the calling function.

In addition, some other low-level function pointer specifications are accepted, but these are for backward compatibility only and should not be used in new code.

`scipy.ndimage.generic_filter1d`

`scipy.ndimage.generic_filter1d` can be used to apply a 1-D filter along a given axis.

```python
scipy.ndimage.generic_filter1d(input, function, filter_size, axis=-1, output=None, mode='reflect', cval=0.0, origin=0, extra_arguments=(), extra_keywords=None)
```

Calculate a 1-D filter along the given axis.

`generic_filter1d` iterates over the lines of the array, calling the given function at each line. The arguments of the line are the input line, and the output line. The input and output lines are 1-D double arrays. The input line is extended appropriately according to the filter size and origin. The output line must be modified in-place with the result.

Parameters

- `input` [array_like] The input array.
- `function` [{callable, scipy.LowLevelCallable}] Function to apply along given axis.
- `filter_size` [scalar] Length of the filter.
- `axis` [int, optional] The axis of `input` along which to calculate. Default is -1.
- `output` [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- `mode` [‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’], optional] The `mode` parameter determines how the input array is extended beyond its boundaries. Default is ‘reflect’. Behavior for each valid value is as follows:
 - ‘reflect’ (d c b a | a b c d | d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter.

The input is extended by replicating the last pixel.

The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

The input is extended by wrapping around to the opposite edge. For consistency with the interpolation functions, the following mode names can also be used:

This is a synonym for ‘reflect’.

This is a synonym for ‘constant’.

This is a synonym for ‘wrap’.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

origin [int, optional] Controls the placement of the filter on the input array’s pixels. A value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter to the left, and negative ones to the right.

extra_arguments [sequence, optional] Sequence of extra positional arguments to pass to passed function.

extra_keywords [dict, optional] dict of extra keyword arguments to pass to passed function.

Notes

This function also accepts low-level callback functions with one of the following signatures and wrapped in `scipy.LowLevelCallable`:

```c
int function(double *input_line, npy_intp input_length, 
              double *output_line, npy_intp output_length, 
              void *user_data)

int function(double *input_line, intptr_t input_length, 
              double *output_line, intptr_t output_length, 
              void *user_data)
```

The calling function iterates over the lines of the input and output arrays, calling the callback function at each line. The current line is extended according to the border conditions set by the calling function, and the result is copied into the array that is passed through `input_line`. The length of the input line (after extension) is passed through `input_length`. The callback function should apply the filter and store the result in the array passed through `output_line`. The length of the output line is passed through `output_length`. `user_data` is the data pointer provided to `scipy.LowLevelCallable` as-is.

The callback function must return an integer error status that is zero if something went wrong and one otherwise. If an error occurs, you should normally set the python error status with an informative message before returning, otherwise a default error message is set by the calling function.

In addition, some other low-level function pointer specifications are accepted, but these are for backward compatibility only and should not be used in new code.
scipy.ndimage.generic_gradient_magnitude

scipy.ndimage.generic_gradient_magnitude *(input, derivative, output=None, mode='reflect', cval=0.0, extra_arguments=(), extra_keywords=None)*

Gradient magnitude using a provided gradient function.

Parameters

- **input** [array_like] The input array.
- **derivative** [callable] Callable with the following signature:

  ```
  derivative(input, axis, output, mode, cval, 
  *extra_arguments, **extra_keywords)
  ```

 See `extra_arguments`, `extra_keywords` below. `derivative` can assume that `input` and `output` are ndarrays. Note that the output from `derivative` is modified inplace; be careful to copy important inputs before returning them.

- **output** [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.

- **mode** [str or sequence, optional] The `mode` parameter determines how the input array is extended when the filter overlaps a border. By passing a sequence of modes with length equal to the number of dimensions of the input array, different modes can be specified along each axis. Default value is 'reflect'. The valid values and their behavior is as follows:

 - 'reflect' *(d c b a | a b c d | d c b a)*

 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.

 - 'constant' *(k k k k | a b c d | k k k k)*

 The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter.

 - 'nearest' *(a a a a | a b c d | d d d d)*

 The input is extended by replicating the last pixel.

 - 'mirror' *(d c b | a b c d | c b a)*

 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

 - 'wrap' *(a b c d | a b c d | a b c d)*

 The input is extended by wrapping around to the opposite edge.

 For consistency with the interpolation functions, the following mode names can also be used:

 - 'grid-constant'

 This is a synonym for 'constant'.

 - 'grid-mirror'

 This is a synonym for 'reflect'.

 - 'grid-wrap'

 This is a synonym for 'wrap'.

- **cval** [scalar, optional] Value to fill past edges of input if `mode` is 'constant'. Default is 0.0.

- **extra_keywords** [dict, optional] dict of extra keyword arguments to pass to passed function.

- **extra_arguments** [sequence, optional] Sequence of extra positional arguments to pass to passed function.
scipy.ndimage.generic_laplace

`scipy.ndimage.generic_laplace(input, derivative2, output=None, mode='reflect', cval=0.0, extra_arguments=(), extra_keywords=None)`

N-D Laplace filter using a provided second derivative function.

Parameters

- `input` [array_like] The input array.
- `derivative2` [callable] Callable with the following signature:
  ```python
derivative2(input, axis, output, mode, cval, *extra_arguments, **extra_keywords)
```
 See `extra_arguments`, `extra_keywords` below.
- `output` [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- `mode` [str or sequence, optional] The `mode` parameter determines how the input array is extended when the filter overlaps a border. By passing a sequence of modes with length equal to the number of dimensions of the input array, different modes can be specified along each axis. Default value is ‘reflect’. The valid values and their behavior is as follows:
 - ‘reflect’ (d c b a | a b c d | d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
 - ‘constant’ (k k k k | a b c d | k k k k)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter.
 - ‘nearest’ (a a a a | a b c d | d d d d)
 The input is extended by replicating the last pixel.
 - ‘mirror’ (d c b | a b c d | c b a)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.
 - ‘wrap’ (a b c d | a b c d | a b c d)
 The input is extended by wrapping around to the opposite edge.
 For consistency with the interpolation functions, the following mode names can also be used:
 - ‘grid-constant’
 This is a synonym for ‘constant’.
 - ‘grid-mirror’
 This is a synonym for ‘reflect’.
 - ‘grid-wrap’
 This is a synonym for ‘wrap’.
- `cval` [scalar, optional] Value to fill past edges of input if `mode` is ‘constant’. Default is 0.0.
- `extra_keywords` [dict, optional] dict of extra keyword arguments to pass to passed function.
- `extra_arguments` [sequence, optional] Sequence of extra positional arguments to pass to passed function.
scipy.ndimage.laplace

scipy.ndimage.laplace(input, output=None, mode='reflect', cval=0.0)

N-D Laplace filter based on approximate second derivatives.

Parameters

- **input** [array_like] The input array.
- **output** [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- **mode** [str or sequence, optional] The mode parameter determines how the input array is extended when the filter overlaps a border. By passing a sequence of modes with length equal to the number of dimensions of the input array, different modes can be specified along each axis. Default value is 'reflect'. The valid values and their behavior is as follows:
 - 'reflect' (d c b a | a b c d | d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
 - 'constant' (k k k k | a b c d | k k k k)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter.
 - 'nearest' (a a a a | a b c d | d d d d)
 The input is extended by replicating the last pixel.
 - 'mirror' (d c b a | a b c d | c b a)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.
 - 'wrap' (a b c d | a b c d | a b c d)
 The input is extended by wrapping around to the opposite edge.

For consistency with the interpolation functions, the following mode names can also be used:
- 'grid-constant'
 This is a synonym for 'constant'.
- 'grid-mirror'
 This is a synonym for 'reflect'.
- 'grid-wrap'
 This is a synonym for 'wrap'.
- **cval** [scalar, optional] Value to fill past edges of input if mode is 'constant'. Default is 0.0.

Examples

```python
>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray()  # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121)  # left side
>>> ax2 = fig.add_subplot(122)  # right side
>>> ascent = misc.ascent()
>>> result = ndimage.laplace(ascent)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
```
scipy.ndimage.maximum_filter

`scipy.ndimage.maximum_filter(input, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0)`

Calculate a multidimensional maximum filter.

Parameters

- `input` [array_like] The input array.
- `size` [scalar or tuple, optional] See footprint, below. Ignored if footprint is given.
- `footprint` [array, optional] Either `size` or `footprint` must be defined. `size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus `size=(n,m)` is equivalent to `footprint=np.ones((n,m))`. We adjust `size` to the number of dimensions of the input array, so that, if the input array is shape `(10,10,10)`, and `size` is 2, then the actual size used is `(2,2,2)`. When `footprint` is given, `size` is ignored.
- `output` [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- `mode` [str or sequence, optional] The `mode` parameter determines how the input array is extended when the filter overlaps a border. By passing a sequence of modes with length equal to the number of dimensions of the input array, different modes can be specified along each axis. Default value is ‘reflect’. The valid values and their behavior is as follows:
 - `'reflect'` (d b a | a b c d | d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
 - `'constant'` (k k k k | a b c d | k k k k)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter.
 - `'nearest'` (a a a a | a b c d | d d d d)
 The input is extended by replicating the last pixel.
 - `'mirror'` (d c b | a b c d | c b a)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.
 - `'wrap'` (a b c d | a b c d | a b c d)
 The input is extended by wrapping around to the opposite edge.
For consistency with the interpolation functions, the following mode names can also be used:

- **grid-constant**
 - This is a synonym for ‘constant’.
- **grid-mirror**
 - This is a synonym for ‘reflect’.
- **grid-wrap**
 - This is a synonym for ‘wrap’.

cval
- [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

origin
- [int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter to the left, and negative ones to the right. By passing a sequence of origins with length equal to the number of dimensions of the input array, different shifts can be specified along each axis.

Returns

- **maximum_filter**
 - [ndarray] Filtered array. Has the same shape as input.

Notes

A sequence of modes (one per axis) is only supported when the footprint is separable. Otherwise, a single mode string must be provided.

Examples

```python
>>> from scipy import ndimage, misc
generate a test image

>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(121) # left side
>>> asct = misc.ascent()
>>> result = ndimage.maximum_filter(asct, size=20)
>>> ax1.imshow(asct)
>>> ax2.imshow(result)
>>> plt.show()
```

scipy.ndimage.maximum_filter1d

`scipy.ndimage.maximum_filter1d(input, size, axis=-1, output=None, mode='reflect', cval=0.0, origin=0)`

Calculate a 1-D maximum filter along the given axis.

The lines of the array along the given axis are filtered with a maximum filter of given size.

Parameters

- **input**
 - [array_like] The input array.
- **size**
 - [int] Length along which to calculate the 1-D maximum.
- **axis**
 - [int, optional] The axis of input along which to calculate. Default is -1.
- **output**
 - [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- **mode**
 - [‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’], optional] The mode parameter determines how the input array is extended beyond its boundaries. Default is ‘reflect’. Behavior for each valid value is as follows:
The `maximum1d` function takes an input array and applies a maximum filter to it. This filter is used to enhance edges and details in the image. The function can be applied in 2D or 3D, and it supports various modes of boundary treatment:

- **'reflect'** \((d c b a | a b c d | d c b a)\)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.

- **'constant'** \((k k k k | a b c d | k k k k)\)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter.

- **'nearest'** \((a a a a | a b c d | d d d d)\)
 The input is extended by replicating the last pixel.

- **'mirror'** \((d c b | a b c d | c b a)\)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

- **'wrap'** \((a b c d | a b c d | a b c d)\)
 The input is extended by wrapping around to the opposite edge.

For consistency with the interpolation functions, the following mode names can also be used:

- **'grid-mirror'**
 This is a synonym for 'reflect'.

- **'grid-constant'**
 This is a synonym for 'constant'.

- **'grid-wrap'**
 This is a synonym for 'wrap'.

- **cval** [scalar, optional] Value to fill past edges of input if `mode` is 'constant'. Default is 0.0.

- **origin** [int, optional] Controls the placement of the filter on the input array's pixels. A value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter to the left, and negative ones to the right.

Returns

- **maximum1d** [ndarray, None] Maximum-filtered array with same shape as input. None if `output` is not provided.
Notes

This function implements the MAXLIST algorithm [1], as described by Richard Harter [2], and has a guaranteed \(O(n) \) performance, \(n \) being the input length, regardless of filter size.

References

[1], [2]

Examples

```python
>>> from scipy.ndimage import maximum_filter1d
>>> maximum_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3)
array([8, 8, 8, 4, 9, 9, 9, 9])
```

scipy.ndimage.median_filter

scipy.ndimage.median_filter (input, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0)

Calculate a multidimensional median filter.

Parameters

- **input** [array_like] The input array.
- **size** [scalar or tuple, optional] See footprint, below. Ignored if footprint is given.
- **footprint** [array, optional] Either size or footprint must be defined. size gives the shape that is taken from the input array, at every element position, to define the input to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust size to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and size is 2, then the actual size used is (2,2,2). When footprint is given, size is ignored.
- **output** [array or dtypes, optional] The array in which to place the output, or the dtypes of the returned array. By default an array of the same dtype as input will be created.
- **mode** [{'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional] The mode parameter determines how the input array is extended beyond its boundaries. Default is ‘reflect’. Behavior for each valid value is as follows:

 - ‘reflect’ (d c b a | a b c d | d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
 - ‘constant’ (k k k k | a b c d | k k k k)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter.
 - ‘nearest’ (a a a a | a b c d | d d d d)
 The input is extended by replicating the last pixel.
 - ‘mirror’ (d c b | a b c d | c b a)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.
 - ‘wrap’ (a b c d | a b c d | a b c d)
 The input is extended by wrapping around to the opposite edge.

For consistency with the interpolation functions, the following mode names can also be used:

 - ‘grid-mirror’
 This is a synonym for ‘reflect’.
`grid-constant`
This is a synonym for ‘constant’.

`grid-wrap`
This is a synonym for ‘wrap’.

cval
[scalar, optional] Value to fill past edges of input if `mode` is ‘constant’. Default is 0.0.

origin
[int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter to the left, and negative ones to the right. By passing a sequence of origins with length equal to the number of dimensions of the input array, different shifts can be specified along each axis.

Returns

median_filter
[ndarray] Filtered array. Has the same shape as `input`.

See also:

`scipy.signal.medfilt2d`

Notes

For 2-dimensional images with `uint8`, `float32` or `float64` dtypes the specialised function `scipy.signal.medfilt2d` may be faster. It is however limited to constant mode with `cval=0`.

Examples

```python
>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray()  # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121)  # left side
>>> ax2 = fig.add_subplot(122)  # right side
>>> ascent = misc.ascent()
>>> result = ndimage.median_filter(ascent, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
```
input array, so that, if the input array is shape (10,10,10), and size is 2, then the actual size used is (2,2,2). When footprint is given, size is ignored.

output [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.

mode [str or sequence, optional] The mode parameter determines how the input array is extended when the filter overlaps a border. By passing a sequence of modes with length equal to the number of dimensions of the input array, different modes can be specified along each axis. Default value is ‘reflect’. The valid values and their behavior is as follows:

‘reflect’ (d c b a | a b c d | d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.

‘constant’ (k k k k | a b c d | k k k k)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter.

‘nearest’ (a a a a | a b c d | d d d d)
 The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

‘wrap’ (a b c d | a b c d | a b c d)
 The input is extended by wrapping around to the opposite edge.

For consistency with the interpolation functions, the following mode names can also be used:

‘grid-constant’
 This is a synonym for ‘constant’.

‘grid-mirror’
 This is a synonym for ‘reflect’.

‘grid-wrap’
 This is a synonym for ‘wrap’.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

origin [int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter to the left, and negative ones to the right. By passing a sequence of origins with length equal to the number of dimensions of the input array, different shifts can be specified along each axis.
Returns

minimum_filter

[array] Filtered array. Has the same shape as input.

Notes

A sequence of modes (one per axis) is only supported when the footprint is separable. Otherwise, a single mode string must be provided.

Examples

```python
>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray()  # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121)  # left side
>>> ax2 = fig.add_subplot(122)  # right side
>>> ascent = misc.ascent()
>>> result = ndimage.minimum_filter(ascent, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
```
scipy.ndimage.minimum_filter1d

`scipy.ndimage.minimum_filter1d(input, size, axis=-1, output=None, mode='reflect', cval=0.0, origin=0)`

Calculate a 1-D minimum filter along the given axis.

The lines of the array along the given axis are filtered with a minimum filter of given size.

Parameters

- `input` [array_like] The input array.
- `size` [int] Length along which to calculate 1D minimum
- `axis` [int, optional] The axis of `input` along which to calculate. Default is -1.
- `output` [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- `mode` [{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional] The `mode` parameter determines how the input array is extended beyond its boundaries. Default is ‘reflect’. Behavior for each valid value is as follows:
 - ‘reflect’ (d c b a | a b c d | d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
 - ‘constant’ (k k k k | a b c d | k k k k)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter.
 - ‘nearest’ (a a a a | a b c d | d d d d)
 The input is extended by replicating the last pixel.
 - ‘mirror’ (d c b | a b c d | c b a)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.
 - ‘wrap’ (a b c d | a b c d | a b c d)
 The input is extended by wrapping around to the opposite edge.

For consistency with the interpolation functions, the following mode names can also be used:
- ‘grid-mirror’
 This is a synonym for ‘reflect’.
- ‘grid-constant’
 This is a synonym for ‘constant’.
- ‘grid-wrap’
 This is a synonym for ‘wrap’.
- `cval` [scalar, optional] Value to fill past edges of input if `mode` is ‘constant’. Default is 0.0.
- `origin` [int, optional] Controls the placement of the filter on the input array's pixels. A value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter to the left, and negative ones to the right.

Notes

This function implements the MINLIST algorithm [1], as described by Richard Harter [2], and has a guaranteed O(n) performance, n being the `input` length, regardless of filter size.
scipy.ndimage.percentile_filter

scipy.ndimage.percentile_filter(input, percentile, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0)

Calculate a multidimensional percentile filter.

Parameters

- **input** [array_like] The input array.
- **percentile** [scalar] The percentile parameter may be less than zero, i.e., percentile = -20 equals percentile = 80
- **size** [scalar or tuple, optional] See footprint, below. Ignored if footprint is given.
- **footprint** [array, optional] Either size or footprint must be defined. size gives the shape that is taken from the input array, at every element position, to define the input to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust size to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and size is 2, then the actual size used is (2,2,2). When footprint is given, size is ignored.
- **output** [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- **mode** [‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’], optional] The mode parameter determines how the input array is extended beyond its boundaries. Default is ‘reflect’. Behavior for each valid value is as follows:
 - ‘reflect’ (d c b a | a b c d | d c b a)
 - The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
 - ‘constant’ (k k k k | a b c d | k k k k)
 - The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter.
 - ‘nearest’ (a a a a | a b c d | d d d d)
 - The input is extended by replicating the last pixel.
 - ‘mirror’ (d c b | a b c d | c b a)
 - The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.
 - ‘wrap’ (a b c d | a b c d | a b c d)
 - The input is extended by wrapping around to the opposite edge.

For consistency with the interpolation functions, the following mode names can also be used:
- **grid-mirror**
 - This is a synonym for ‘reflect’.
- **grid-constant**
 - This is a synonym for ‘constant’.
- **grid-wrap**
 - This is a synonym for ‘wrap’.
cval
[scalar, optional] Value to fill past edges of input if *mode* is ‘constant’. Default is 0.0.

origin
[int or sequence, optional] Controls the placement of the filter on the input array's pixels. A value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter to the left, and negative ones to the right. By passing a sequence of origins with length equal to the number of dimensions of the input array, different shifts can be specified along each axis.

Returns

percentile_filter

[ndarray] Filtered array. Has the same shape as *input*.

Examples

```python
>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray()  # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121)  # left side
>>> ax2 = fig.add_subplot(122)  # right side
>>> ascent = misc.ascent()
>>> result = ndimage.percentile_filter(ascent, percentile=20, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
```
Calculate a Prewitt filter.

Parameters

- **input** [array_like] The input array.
- **axis** [int, optional] The axis of `input` along which to calculate. Default is -1.
- **output** [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- **mode** [str or sequence, optional] The `mode` parameter determines how the input array is extended when the filter overlaps a border. By passing a sequence of modes with length equal to the number of dimensions of the input array, different modes can be specified along each axis. Default value is ‘reflect’. The valid values and their behavior is as follows:
 - ‘reflect’ (*d c b a | a b c d | d c b a*)
 - The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
 - ‘constant’ (*k k k k | a b c d | k k k k*)
 - The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter.
 - ‘nearest’ (*a a a a | a b c d | d d d d*)
 - The input is extended by replicating the last pixel.
 - ‘mirror’ (*d c b | a b c d | c b a*)
 - The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.
 - ‘wrap’ (*a b c d | a b c d | a b c d*)
 - The input is extended by wrapping around to the opposite edge.
For consistency with the interpolation functions, the following mode names can also be used:
 - ‘grid-constant’
 - This is a synonym for ‘constant’.
 - ‘grid-mirror’
 - This is a synonym for ‘reflect’.
 - ‘grid-wrap’
 - This is a synonym for ‘wrap’.
- **cval** [scalar, optional] Value to fill past edges of input if `mode` is ‘constant’. Default is 0.0.

Examples

```python
>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray()  # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121)  # left side
>>> ax2 = fig.add_subplot(122)  # right side
>>> ascent = misc.ascent()
>>> result = ndimage.prewitt(ascent)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
```
scipy.ndimage.rank_filter

scipy.ndimage.rank_filter(input, rank, size=None, footprint=None, output=None, mode='reflect', cval=0.0, origin=0)

Calculate a multidimensional rank filter.

Parameters

input [array_like] The input array.
rank [int] The rank parameter may be less then zero, i.e., rank = -1 indicates the largest element.
size [scalar or tuple, optional] See footprint, below. Ignored if footprint is given.
footprint [array, optional] Either size or footprint must be defined. size gives the shape that is taken from the input array, at every element position, to define the input to the filter function. footprint is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus size=(n,m) is equivalent to footprint=np.ones((n,m)). We adjust size to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and size is 2, then the actual size used is (2,2,2). When footprint is given, size is ignored.
output [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
mode [‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’], optional] The mode parameter determines how the input array is extended beyond its boundaries. Default is ‘reflect’. Behavior for each valid value is as follows:

‘reflect’ (d c b a \mid a b c d \mid d c b a)
The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.

‘constant’ (k k k k \mid a b c d \mid k k k k)
The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter.

‘nearest’ (a a a a \mid a b c d \mid d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b \mid a b c d \mid c b a)
The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

‘wrap’ (a b c d \mid a b c d \mid a b c d)
The input is extended by wrapping around to the opposite edge.
For consistency with the interpolation functions, the following mode names can also be used:

‘grid-mirror’
This is a synonym for ‘reflect’.

‘grid-constant’
This is a synonym for ‘constant’.

‘grid-wrap’
This is a synonym for ‘wrap’.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
origin [int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter to the left, and negative ones to the right. By passing a sequence of origins with length equal to the number of dimensions of the input array, different shifts can be specified along each axis.

Returns

rank_filter [ndarray] Filtered array. Has the same shape as input.

Examples

```python
>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray()  # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121)  # left side
>>> ax2 = fig.add_subplot(122)  # right side
>>> ascent = misc.ascent()
>>> result = ndimage.rank_filter(ascent, rank=42, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
```
scipy.ndimage.sobel

scipy.ndimage.sobel(input, axis=-1, output=None, mode='reflect', cval=0.0)

Calculate a Sobel filter.

Parameters

- **input** [array_like] The input array.
- **axis** [int, optional] The axis of input along which to calculate. Default is -1.
- **output** [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- **mode** [str or sequence, optional] The mode parameter determines how the input array is extended when the filter overlaps a border. By passing a sequence of modes with length equal to the number of dimensions of the input array, different modes can be specified along each axis. Default value is 'reflect'. The valid values and their behavior is as follows:
 - **reflect** (d c b a | a b c d | d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
 - **constant** (k k k k | a b c d | k k k k)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter.
 - **nearest** (a a a a | a b c d | d d d d)
 The input is extended by replicating the last pixel.
 - **mirror** (d c b | a b c d | c b a)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.
 - **wrap** (a b c d | a b c d | a b c d)
 The input is extended by wrapping around to the opposite edge.
For consistency with the interpolation functions, the following mode names can also be used:
 - **grid-constant**
 This is a synonym for 'constant'.
 - **grid-mirror**
 This is a synonym for 'reflect'.
 - **grid-wrap**
 This is a synonym for 'wrap'.
- **cval** [scalar, optional] Value to fill past edges of input if mode is 'constant'. Default is 0.0.

Examples

```python
>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray()  # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121)  # left side
>>> ax2 = fig.add_subplot(122)  # right side
>>> ascent = misc.ascent()
>>> result = ndimage.sobel(ascent)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
```
scipy.ndimage.uniform_filter

scipy.ndimage.uniform_filter (input, size=3, output=None, mode='reflect', cval=0.0, origin=0)

Multidimensional uniform filter.

Parameters

input [array_like] The input array.

size [int or sequence of ints, optional] The sizes of the uniform filter are given for each axis as a sequence, or as a single number, in which case the size is equal for all axes.

output [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.

mode [str or sequence, optional] The mode parameter determines how the input array is extended when the filter overlaps a border. By passing a sequence of modes with length equal to the number of dimensions of the input array, different modes can be specified along each axis. Default value is 'reflect'. The valid values and their behavior is as follows:

- 'reflect' (d c b a | a b c d | d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.

- 'constant' (k k k k | a b c d | k k k k)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter.

- 'nearest' (a a a a | a b c d | d d d d)
 The input is extended by replicating the last pixel.

- 'mirror' (d c b | a b c d | c b a)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

- 'wrap' (a b c d | a b c d | a b c d)
 The input is extended by wrapping around to the opposite edge.

For consistency with the interpolation functions, the following mode names can also be used:

- 'grid-constant'
 This is a synonym for 'constant'.

- 'grid-mirror'
 This is a synonym for 'reflect'.

- 'grid-wrap'
 This is a synonym for 'wrap'.
cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

origin [int or sequence, optional] Controls the placement of the filter on the input array’s pixels. A value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter to the left, and negative ones to the right. By passing a sequence of origins with length equal to the number of dimensions of the input array, different shifts can be specified along each axis.

Returns
uniform_filter
[ndarray] Filtered array. Has the same shape as input.

Notes
The multidimensional filter is implemented as a sequence of 1-D uniform filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision.

Examples

```python
>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> plt.gray()  # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121)  # left side
>>> ax2 = fig.add_subplot(122)  # right side
>>> ascent = misc.ascent()
>>> result = ndimage.uniform_filter(ascent, size=20)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result)
>>> plt.show()
```

3.3. API definition

1189
scipy.ndimage.uniform_filter1d

scipy.ndimage.uniform_filter1d(input, size=1, axis=-1, output=None, mode='reflect', cval=0.0, origin=0)

Calculate a 1-D uniform filter along the given axis.

The lines of the array along the given axis are filtered with a uniform filter of given size.

Parameters

- `input` ([array_like]) The input array.
- `size` [int] length of uniform filter
- `axis` [int, optional] The axis of `input` along which to calculate. Default is -1.
- `output` [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- `mode` [{'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional] The `mode` parameter determines how the input array is extended beyond its boundaries. Default is 'reflect'. Behavior for each valid value is as follows:
 - 'reflect' (d c b a | a b c d | d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
 - 'constant' (k k k k | a b c d | k k k k)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter.
 - 'nearest' (a a a a | a b c d | d d d d)
 The input is extended by replicating the last pixel.
 - 'mirror' (d c b | a b c d | c b a)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.
 - 'wrap' (a b c d | a b c d | a b c d)
 The input is extended by wrapping around to the opposite edge.

For consistency with the interpolation functions, the following mode names can also be used:

- 'grid-mirror'
 This is a synonym for 'reflect'.
- 'grid-constant'
 This is a synonym for 'constant'.
- 'grid-wrap'
 This is a synonym for 'wrap'.

- `cval` [scalar, optional] Value to fill past edges of input if `mode` is 'constant'. Default is 0.0.
- `origin` [int, optional] Controls the placement of the filter on the input array's pixels. A value of 0 (the default) centers the filter over the pixel, with positive values shifting the filter to the left, and negative ones to the right.

Examples

```python
>>> from scipy.ndimage import uniform_filter1d
>>> uniform_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3)
array([4, 3, 4, 1, 4, 6, 6, 3])
```
Fourier filters

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fourier_ellipsoid</code></td>
<td>Multidimensional ellipsoid Fourier filter.</td>
</tr>
<tr>
<td><code>fourier_gaussian</code></td>
<td>Multidimensional Gaussian fourier filter.</td>
</tr>
<tr>
<td><code>fourier_shift</code></td>
<td>Multidimensional Fourier shift filter.</td>
</tr>
<tr>
<td><code>fourier_uniform</code></td>
<td>Multidimensional uniform fourier filter.</td>
</tr>
</tbody>
</table>

scipy.ndimage.fourier_ellipsoid

The array is multiplied with the fourier transform of an ellipsoid of given sizes.

Parameters

- `input` [array_like]: The input array.
- `size` [float or sequence]: The size of the box used for filtering. If a float, `size` is the same for all axes. If a sequence, `size` has to contain one value for each axis.
- `n` [int, optional]: If `n` is negative (default), then the input is assumed to be the result of a complex fft. If `n` is larger than or equal to zero, the input is assumed to be the result of a real fft, and `n` gives the length of the array before transformation along the real transform direction.
- `axis` [int, optional]: The axis of the real transform.
- `output` [ndarray, optional]: If given, the result of filtering the input is placed in this array. None is returned in this case.

Returns

- `fourier_ellipsoid` [ndarray]: The filtered input.

Notes

This function is implemented for arrays of rank 1, 2, or 3.

Examples

```python
>>> from scipy import ndimage, misc
>>> import numpy.fft
>>> import matplotlib.pyplot as plt
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray() # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> input_ = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_ellipsoid(input_, size=20)
>>> result = numpy.fft.ifft2(result)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result.real) # the imaginary part is an artifact
>>> plt.show()
```
scipy.ndimage.fourier_gaussian

scipy.ndimage.fourier_gaussian(input, sigma, n=-1, axis=-1, output=None)

Multidimensional Gaussian fourier filter.

The array is multiplied with the fourier transform of a Gaussian kernel.

Parameters

- **input** [array_like] The input array.
- **sigma** [float or sequence] The sigma of the Gaussian kernel. If a float, sigma is the same for all axes. If a sequence, sigma has to contain one value for each axis.
- **n** [int, optional] If n is negative (default), then the input is assumed to be the result of a complex fft. If n is larger than or equal to zero, the input is assumed to be the result of a real fft, and n gives the length of the array before transformation along the real transform direction.
- **axis** [int, optional] The axis of the real transform.
- **output** [ndarray, optional] If given, the result of filtering the input is placed in this array. None is returned in this case.

Returns

fourier_gaussian [ndarray] The filtered input.

Examples

```python
>>> from scipy import ndimage, misc
>>> import numpy.fft
>>> import matplotlib.pyplot as plt
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray()  # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> input_ = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_gaussian(input_, sigma=4)
>>> result = numpy.fft.ifft2(result)
```

(continues on next page)
scipy.ndimage.fourier_shift

scipy.ndimage.fourier_shift(input, shift, n=-1, axis=-1, output=None)
Multidimensional Fourier shift filter.

The array is multiplied with the Fourier transform of a shift operation.

Parameters

- **input** [array_like] The input array.
- **shift** [float or sequence] The size of the box used for filtering. If a float, `shift` is the same for all axes. If a sequence, `shift` has to contain one value for each axis.
- **n** [int, optional] If `n` is negative (default), then the input is assumed to be the result of a complex fft. If `n` is larger than or equal to zero, the input is assumed to be the result of a real fft, and `n` gives the length of the array before transformation along the real transform direction.
- **axis** [int, optional] The axis of the real transform.
- **output** [ndarray, optional] If given, the result of shifting the input is placed in this array. None is returned in this case.

Returns

- **fourier_shift** [ndarray] The shifted input.
Examples

```python
>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> import numpy.fft

>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray()  # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> input_ = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_shift(input_, shift=200)
>>> result = numpy.fft.ifft2(result)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result.real)  # the imaginary part is an artifact
>>> plt.show()
```

scipy.ndimage.fourier_uniform

scipy.ndimage.fourier_uniform(input, size, n=-1, axis=-1, output=None)

Multidimensional uniform fourier filter.

The array is multiplied with the Fourier transform of a box of given size.

Parameters

- `input` [array_like] The input array.
- `size` [float or sequence] The size of the box used for filtering. If a float, `size` is the same for all axes. If a sequence, `size` has to contain one value for each axis.
- `n` [int, optional] If n is negative (default), then the input is assumed to be the result of a complex fft. If n is larger than or equal to zero, the input is assumed to be the result of a real fft, and `n` gives the length of the array before transformation along the real transform direction.
- `axis` [int, optional] The axis of the real transform.
- `output` [ndarray, optional] If given, the result of filtering the input is placed in this array. None is returned in this case.

Returns
fourier_uniform
[ndarray] The filtered input.

Examples

```python
>>> from scipy import ndimage, misc
>>> import numpy.fft
>>> import matplotlib.pyplot as plt
>>> fig, (ax1, ax2) = plt.subplots(1, 2)
>>> plt.gray()  # show the filtered result in grayscale
>>> ascent = misc.ascent()
>>> input_ = numpy.fft.fft2(ascent)
>>> result = ndimage.fourier_uniform(input_, size=20)
>>> result = numpy.fft.ifft2(result)
>>> ax1.imshow(ascent)
>>> ax2.imshow(result.real)  # the imaginary part is an artifact
>>> plt.show()
```

Interpolation

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>affine_transform</td>
<td>Apply an affine transformation.</td>
</tr>
<tr>
<td>geometric_transform</td>
<td>Apply an arbitrary geometric transform.</td>
</tr>
<tr>
<td>map_coordinates</td>
<td>Map the input array to new coordinates by interpolation.</td>
</tr>
<tr>
<td>rotate</td>
<td>Rotate an array.</td>
</tr>
<tr>
<td>shift</td>
<td>Shift an array.</td>
</tr>
<tr>
<td>spline_filter</td>
<td>Multidimensional spline filter.</td>
</tr>
<tr>
<td>spline_filter1d</td>
<td>Calculate a 1-D spline filter along the given axis.</td>
</tr>
<tr>
<td>zoom</td>
<td>Zoom an array.</td>
</tr>
</tbody>
</table>
scipy.ndimage.affine_transform

scipy.ndimage.affine_transform(input, matrix, offset=0.0, output_shape=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True)

Apply an affine transformation.

Given an output image pixel index vector \(\mathbf{o} \), the pixel value is determined from the input image at position
\[
\text{np.dot(matrix, } \mathbf{o} \text{) + offset}.
\]

This does ‘pull’ (or ‘backward’) resampling, transforming the output space to the input to locate data. Affine transformations are often described in the ‘push’ (or ‘forward’) direction, transforming input to output. If you have a matrix for the ‘push’ transformation, use its inverse (numpy.linalg.inv) in this function.

Parameters

- **input** [array_like] The input array.
- **matrix** [ndarray] The inverse coordinate transformation matrix, mapping output coordinates to input coordinates. If \(\text{ndim} \) is the number of dimensions of \(\text{input} \), the given matrix must have one of the following shapes:
 - \((\text{ndim}, \text{ndim})\): the linear transformation matrix for each output coordinate.
 - \((\text{ndim},)\): assume that the 2-D transformation matrix is diagonal, with the diagonal specified by the given value. A more efficient algorithm is then used that exploits the separability of the problem.
 - \((\text{ndim} + 1, \text{ndim} + 1)\): assume that the transformation is specified using homogeneous coordinates [1]. In this case, any value passed to \text{offset} is ignored.
 - \((\text{ndim}, \text{ndim} + 1)\): as above, but the bottom row of a homogeneous transformation matrix is always \([0, 0, \ldots, 1]\), and may be omitted.
- **offset** [float or sequence, optional] The offset into the array where the transform is applied. If a float, \text{offset} is the same for each axis. If a sequence, \text{offset} should contain one value for each axis.
- **output_shape** [tuple of ints, optional] Shape tuple.
- **output** [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- **order** [int, optional] The order of the spline interpolation, default is 3. The order has to be in the range 0-5.
- **mode** ['reflect', 'grid-mirror', 'constant', 'grid-constant', 'nearest', 'mirror', 'grid-wrap', 'wrap'], optional] The \text{mode} parameter determines how the input array is extended beyond its boundaries. Default is 'constant'. Behavior for each valid value is as follows (see additional plots and details on boundary modes):
 - **reflect** \((d \quad c \quad b \quad a \quad | \quad a \quad b \quad c \quad d \quad | \quad d \quad c \quad b \quad a)\)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
 - **grid-mirror**
 This is a synonym for 'reflect'.
 - **constant** \((k \quad k \quad k \quad | \quad a \quad b \quad c \quad d \quad | \quad k \quad k \quad k \quad k)\)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the \text{cval} parameter. No interpolation is performed beyond the edges of the input.
 - **grid-constant** \((k \quad k \quad k \quad | \quad a \quad b \quad c \quad d \quad | \quad k \quad k \quad k \quad)\)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the \text{cval} parameter. Interpolation occurs for samples outside the input’s extent as well.
The input is extended by replicating the last pixel.

- **'mirror'** (d c b | a b c d | c b a)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

- **'grid-wrap'** (a b c d | a b c d | a b c d)
 The input is extended by wrapping around to the opposite edge.

- **'wrap'** (d b c d | a b c d | b c a b)
 The input is extended by wrapping around to the opposite edge, but in a way such that the last point and initial point exactly overlap. In this case it is not well defined which sample will be chosen at the point of overlap.

cval [scalar, optional] Value to fill past edges of input if mode is 'constant'. Default is 0.0.

prefilter [bool, optional] Determines if the input array is prefiltered with `spline_filter` before interpolation. The default is True, which will create a temporary `float64` array of filtered values if order > 1. If setting this to False, the output will be slightly blurred if order > 1, unless the input is prefiltered, i.e. it is the result of calling `spline_filter` on the original input.

Returns

- affine_transform [ndarray] The transformed input.

Notes

The given matrix and offset are used to find for each point in the output the corresponding coordinates in the input by an affine transformation. The value of the input at those coordinates is determined by spline interpolation of the requested order. Points outside the boundaries of the input are filled according to the given mode.

Changed in version 0.18.0: Previously, the exact interpretation of the affine transformation depended on whether the matrix was supplied as a 1-D or a 2-D array. If a 1-D array was supplied to the matrix parameter, the output pixel value at index \(o \) was determined from the input image at position \(\text{matrix} \times (o + \text{offset}) \).

For complex-valued input, this function transforms the real and imaginary components independently.

New in version 1.6.0: Complex-valued support added.

References

[1]

`scipy.ndimage.geometric_transform`

`scipy.ndimage.geometric_transform(input, mapping, output_shape=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True, extra_arguments=(), extra_keywords={})`

Apply an arbitrary geometric transform.

The given mapping function is used to find, for each point in the output, the corresponding coordinates in the input. The value of the input at those coordinates is determined by spline interpolation of the requested order.

Parameters

- input [array_like] The input array.
- mapping [{callable, `scipy.LowLevelCallable`}] A callable object that accepts a tuple of length equal to the output array rank, and returns the corresponding input coordinates as a tuple of length equal to the input array rank.
output_shape

tuple of ints, optional] Shape tuple.

output
[array or dtype, optional] The array in which to place the output, or the dtype of the returned
array. By default an array of the same dtype as input will be created.

order
[int, optional] The order of the spline interpolation, default is 3. The order has to be in the
range 0-5.

mode
[['reflect','grid-mirror','constant','grid-constant','nearest','mirror','grid-wrap','wrap'], optional] The mode parameter determines how the input array is extended beyond its bound-
daries. Default is 'constant'. Behavior for each valid value is as follows (see additional plots
and details on boundary modes):

'reflect' (d c b a | a b c d | d c b a)
The input is extended by reflecting about the edge of the last pixel. This mode
is also sometimes referred to as half-sample symmetric.

'grid-mirror'
This is a synonym for 'reflect'.

'constant' (k k k k | a b c d | k k k k)
The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter. No interpolation is performed beyond the
edges of the input.

'grid-constant' (k k k k | a b c d | k k k k)
The input is extended by filling all values beyond the edge with the same constant
value, defined by the cval parameter. Interpolation occurs for samples outside
the input's extent as well.

'nearest' (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

'mirror' (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel. This mode
is also sometimes referred to as whole-sample symmetric.

'grid-wrap' (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

'wrap' (d b c d | a b c d | b c a b)
The input is extended by wrapping around to the opposite edge, but in a way
such that the last point and initial point exactly overlap. In this case it is not well
defined which sample will be chosen at the point of overlap.

cval
[scalar, optional] Value to fill past edges of input if mode is 'constant'. Default is 0.0.

prefilter
[bool, optional] Determines if the input array is prefiltered with spline_filter before
interpolation. The default is True, which will create a temporary float64 array of filtered
values if order > 1. If setting this to False, the output will be slightly blurred if order > 1,
unless the input is prefiltered, i.e., it is the result of calling spline_filter on the original
input.

eextra_arguments
[tuple, optional] Extra arguments passed to mapping.

eextra_keywords
[dict, optional] Extra keywords passed to mapping.

Returns

output [ndarray] The filtered input.

See also:

map_coordinates, affine_transform, spline_filter1d
Notes

This function also accepts low-level callback functions with one the following signatures and wrapped in `scipy.LowLevelCallable`:

```python
int mapping(npy_intp *output_coordinates, double *input_coordinates, int output_rank, int input_rank, void *user_data)
int mapping(intptr_t *output_coordinates, double *input_coordinates, int output_rank, int input_rank, void *user_data)
```

The calling function iterates over the elements of the output array, calling the callback function at each element. The coordinates of the current output element are passed through `output_coordinates`. The callback function must return the coordinates at which the input must be interpolated in `input_coordinates`. The rank of the input and output arrays are given by `input_rank` and `output_rank` respectively. `user_data` is the data pointer provided to `scipy.LowLevelCallable` as-is.

The callback function must return an integer error status that is zero if something went wrong and one otherwise. If an error occurs, you should normally set the Python error status with an informative message before returning, otherwise a default error message is set by the calling function.

In addition, some other low-level function pointer specifications are accepted, but these are for backward compatibility only and should not be used in new code.

For complex-valued `input`, this function transforms the real and imaginary components independently.

New in version 1.6.0: Complex-valued support added.

Examples

```python
>>> import numpy as np
>>> from scipy.ndimage import geometric_transform
>>> a = np.arange(12.).reshape((4, 3))
>>> def shift_func(output_coords):
...     return (output_coords[0] - 0.5, output_coords[1] - 0.5)
...
>>> geometric_transform(a, shift_func)
array([[ 0. , 0. , 0. ],
       [ 0. , 1.362, 2.738],
       [ 0. , 4.812, 6.187],
       [ 0. , 8.263, 9.637]])
>>> b = [1, 2, 3, 4, 5]
>>> def shift_func(output_coords):
...     return (output_coords[0] - 3,)
...
>>> geometric_transform(b, shift_func, mode='constant')
array([0, 0, 0, 1, 2])
>>> geometric_transform(b, shift_func, mode='nearest')
array([1, 1, 1, 1, 2])
>>> geometric_transform(b, shift_func, mode='reflect')
array([3, 2, 1, 1, 2])
>>> geometric_transform(b, shift_func, mode='wrap')
array([2, 3, 4, 1, 2])
```
scipy.ndimage.map_coordinates

scipy.ndimage.map_coordinates *(input, coordinates, output=None, order=3, mode='constant', cval=0.0, prefilter=True)*

Map the input array to new coordinates by interpolation.

The array of coordinates is used to find, for each point in the output, the corresponding coordinates in the input. The value of the input at those coordinates is determined by spline interpolation of the requested order.

The shape of the output is derived from that of the coordinate array by dropping the first axis. The values of the array along the first axis are the coordinates in the input array at which the output value is found.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>[array_like] The input array.</td>
</tr>
<tr>
<td>coordinates</td>
<td>[array_like] The coordinates at which input is evaluated.</td>
</tr>
<tr>
<td>output</td>
<td>[array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.</td>
</tr>
<tr>
<td>order</td>
<td>[int, optional] The order of the spline interpolation, default is 3. The order has to be in the range 0-5.</td>
</tr>
</tbody>
</table>
| **mode** | [{}{'reflect', 'grid-mirror', 'constant', 'grid-constant', 'nearest', 'mirror', 'grid-wrap', 'wrap'}, optional] The mode parameter determines how the input array is extended beyond its boundaries. Default is 'constant'. Behavior for each valid value is as follows (see additional plots and details on boundary modes):
- **reflect** *(d c b a | a b c d | d c b a)*
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.
- **grid-mirror**
 This is a synonym for 'reflect'.
- **constant** *(k k k k | a b c d | k k k k)*
 The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter. No interpolation is performed beyond the edges of the input.
- **grid-constant** *(k k k k | a b c d | k k k k)*
 The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter. Interpolation occurs for samples outside the input’s extent as well.
- **nearest** *(a a a a | a b c d | d d d d)*
 The input is extended by replicating the last pixel.
- **mirror** *(d c b | a b c d | c b a)*
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.
- **grid-wrap** *(a b c d | a b c d | a b c d)*
 The input is extended by wrapping around to the opposite edge.
- **wrap** *(d b c d | a b c d | b c a b)*
 The input is extended by wrapping around to the opposite edge, but in a way such that the last point and initial point exactly overlap. In this case it is not well defined which sample will be chosen at the point of overlap. |
| **cval** | [scalar, optional] Value to fill past edges of input if mode is 'constant'. Default is 0.0. |
| **prefilter** | [bool, optional] Determines if the input array is prefiltered with **spline_filter** before interpolation. The default is True, which will create a temporary float64 array of filtered values if order > 1. If setting this to False, the output will be slightly blurred if order > 1, unless the input is prefiltered, i.e. it is the result of calling **spline_filter** on the original input. |

Returns
map_coordinates

[ndarray] The result of transforming the input. The shape of the output is derived from that of coordinates by dropping the first axis.

See also:

spline_filter, geometric_transform, scipy.interpolate

Notes

For complex-valued input, this function maps the real and imaginary components independently.

New in version 1.6.0: Complex-valued support added.

Examples

```python
>>> from scipy import ndimage
>>> a = np.arange(12.).reshape((4, 3))
>>> a
array([[ 0.,  1.,  2.],
       [ 3.,  4.,  5.],
       [ 6.,  7.,  8.],
       [ 9., 10., 11.]])
>>> ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1)
array([2., 7.])
```

Above, the interpolated value of a[0.5, 0.5] gives output[0], while a[2, 1] is output[1].

```python
>>> inds = np.array([[0.5, 2], [0.5, 4]])
>>> ndimage.map_coordinates(a, inds, order=1, cval=-33.3)
array([ 2. , -33.3])
>>> ndimage.map_coordinates(a, inds, order=1, mode='nearest')
array([ 2.,  8.])
>>> ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool)
array([ True, False], dtype=bool)
```

scipy.ndimage.rotate

scipy.ndimage.rotate(input, angle, axes=(1, 0), reshape=True, output=None, order=3, mode='constant', cval=0.0, prefilter=True)

Rotate an array.

The array is rotated in the plane defined by the two axes given by the axes parameter using spline interpolation of the requested order.

Parameters

- **input** [array_like] The input array.
- **angle** [float] The rotation angle in degrees.
- **axes** [tuple of 2 ints, optional] The two axes that define the plane of rotation. Default is the first two axes.
- **reshape** [bool, optional] If reshape is true, the output shape is adapted so that the input array is contained completely in the output. Default is True.
- **output** [array or dtye, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
order [int, optional] The order of the spline interpolation, default is 3. The order has to be in the range 0-5.

mode [{‘reflect’, ‘grid-mirror’, ‘constant’, ‘grid-constant’, ‘nearest’, ‘mirror’, ‘grid-wrap’, ‘wrap’}, optional] The mode parameter determines how the input array is extended beyond its boundaries. Default is ‘constant’. Behavior for each valid value is as follows (see additional plots and details on boundary modes):

‘reflect’ (d c b a | a b c d | d c b a)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.

‘grid-mirror’
 This is a synonym for ‘reflect’.

‘constant’ (k k k k | a b c d | k k k k)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter. No interpolation is performed beyond the edges of the input.

‘grid-constant’ (k k k k | a b c d | k k k k)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter. Interpolation occurs for samples outside the input’s extent as well.

‘nearest’ (a a a a | a b c d | d d d d)
 The input is extended by replicating the last pixel.

‘mirror’ (d c b a | a b c d | c b a)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

‘grid-wrap’ (a b c d | a b c d | a b c d)
 The input is extended by wrapping around to the opposite edge.

‘wrap’ (d b c d | a b c d | b c a b)
 The input is extended by wrapping around to the opposite edge, but in a way such that the last point and initial point exactly overlap. In this case it is not well defined which sample will be chosen at the point of overlap.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

prefilter [bool, optional] Determines if the input array is prefiltered with spline_filter before interpolation. The default is True, which will create a temporary float64 array of filtered values if order > 1. If setting this to False, the output will be slightly blurred if order > 1, unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original input.

Returns

rotate [ndarray] The rotated input.

Notes

For complex-valued input, this function rotates the real and imaginary components independently.

New in version 1.6.0: Complex-valued support added.
Examples

```python
>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure(figsize=(10, 3))
>>> ax1, ax2, ax3 = fig.subplots(1, 3)
>>> img = misc.ascent()
>>> img_45 = ndimage.rotate(img, 45, reshape=False)
>>> full_img_45 = ndimage.rotate(img, 45, reshape=True)
>>> ax1.imshow(img, cmap='gray')
>>> ax1.set_axis_off()
>>> ax2.imshow(img_45, cmap='gray')
>>> ax2.set_axis_off()
>>> ax3.imshow(full_img_45, cmap='gray')
>>> ax3.set_axis_off()
>>> fig.set_tight_layout(True)
>>> plt.show()
```

```python
>>> print(img.shape)
(512, 512)
>>> print(img_45.shape)
(512, 512)
>>> print(full_img_45.shape)
(724, 724)
```

scipy.ndimage.shift

scipy.ndimage.shift *(input, shift, output=None, order=3, mode='constant', cval=0.0, prefilter=True)*

Shift an array.

The array is shifted using spline interpolation of the requested order. Points outside the boundaries of the input are filled according to the given mode.

Parameters

- **input** [array_like] The input array.
- **shift** [float or sequence] The shift along the axes. If a float, *shift* is the same for each axis. If a sequence, *shift* should contain one value for each axis.
- **output** [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.
- **order** [int, optional] The order of the spline interpolation, default is 3. The order has to be in the range 0-5.
mode [[‘reflect’, ‘grid-mirror’, ‘constant’, ‘grid-constant’, ‘nearest’, ‘mirror’, ‘grid-wrap’, ‘wrap’}, optional] The mode parameter determines how the input array is extended beyond its boundaries. Default is ‘constant’. Behavior for each valid value is as follows (see additional plots and details on boundary modes):

‘reflect’ (d c b a | a b c d | d c b a)
The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.

‘grid-mirror’
This is a synonym for ‘reflect’.

‘constant’ (k k k k | a b c d | k k k k)
The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter. No interpolation is performed beyond the edges of the input.

‘grid-constant’ (k k k k | a b c d | k k k k)
The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter. Interpolation occurs for samples outside the input’s extent as well.

‘nearest’ (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.

‘mirror’ (d c b | a b c d | c b a)
The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

‘grid-wrap’ (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.

‘wrap’ (d b c d | a b c d | b c a b)
The input is extended by wrapping around to the opposite edge, but in a way such that the last point and initial point exactly overlap. In this case it is not well defined which sample will be chosen at the point of overlap.

cval [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

prefilter [bool, optional] Determines if the input array is prefiltered with spline_filter before interpolation. The default is True, which will create a temporary float64 array of filtered values if order > 1. If setting this to False, the output will be slightly blurred if order > 1, unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original input.

Returns

shift [ndarray] The shifted input.

Notes

For complex-valued input, this function shifts the real and imaginary components independently.

New in version 1.6.0: Complex-valued support added.
scipy.ndimage.spline_filter

`scipy.ndimage.spline_filter` *(input, order=3, output=<class 'numpy.float64'>, mode='mirror')*

Multidimensional spline filter.

For more details, see `spline_filter1d`.

See also:

`spline_filter1d`

Calculate a 1-D spline filter along the given axis.

Notes

The multidimensional filter is implemented as a sequence of 1-D spline filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision.

For complex-valued `input`, this function processes the real and imaginary components independently.

New in version 1.6.0: Complex-valued support added.

Examples

We can filter an image using multidimensional splines:

```python
>>> from scipy.ndimage import spline_filter
>>> import matplotlib.pyplot as plt
>>> orig_img = np.eye(20)  # create an image
>>> orig_img[10, :] = 1.0
>>> sp_filter = spline_filter(orig_img, order=3)
>>> f, ax = plt.subplots(1, 2, sharex=True)
>>> for ind, data in enumerate([orig_img, "original image"],
...                            [sp_filter, "spline filter"]):
...    ax[ind].imshow(data[0], cmap='gray_r')
...    ax[ind].set_title(data[1])
>>> plt.tight_layout()
>>> plt.show()
```

scipy.ndimage.spline_filter1d

`scipy.ndimage.spline_filter1d` *(input, order=3, axis=-1, output=<class 'numpy.float64'>, mode='mirror')*

Calculate a 1-D spline filter along the given axis.

The lines of the array along the given axis are filtered by a spline filter. The order of the spline must be >= 2 and <= 5.

Parameters

- `input` [array_like] The input array.
- `order` [int, optional] The order of the spline, default is 3.
- `axis` [int, optional] The axis along which the spline filter is applied. Default is the last axis.
- `output` [ndarray or dtype, optional] The array in which to place the output, or the dtype of the returned array. Default is `numpy.float64`.

3.3. API definition 1205
The `mode` parameter determines how the input array is extended beyond its boundaries. Default is 'mirror'. Behavior for each valid value is as follows (see additional plots and details on boundary modes):

- **'reflect'** \((d c b a | a b c d | d c b a)\)
 The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.

- **'grid-mirror'**
 This is a synonym for 'reflect'.

- **'constant'** \((k k k k | a b c d | k k k k)\)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter. No interpolation is performed beyond the edges of the input.

- **'grid-constant'** \((k k k k | a b c d | k k k k)\)
 The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter. Interpolation occurs for samples outside the input’s extent as well.

- **'nearest'** \((a a a a | a b c d | d d d d)\)
 The input is extended by replicating the last pixel.

- **'mirror'** \((d c b | a b c d | c b a)\)
 The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

- **'grid-wrap'** \((a b c d | a b c d | a b c d)\)
 The input is extended by wrapping around to the opposite edge.

- **'wrap'** \((d b c d | a b c d | b c a b)\)
 The input is extended by wrapping around to the opposite edge, but in a way such that the last point and initial point exactly overlap. In this case it is not well defined which sample will be chosen at the point of overlap.

Returns

spline_filter1d

[ndarray] The filtered input.

See also:
spline_filter

Multidimensional spline filter.

Notes

All of the interpolation functions in *ndimage* do spline interpolation of the input image. If using B-splines of order > 1, the input image values have to be converted to B-spline coefficients first, which is done by applying this 1-D filter sequentially along all axes of the input. All functions that require B-spline coefficients will automatically filter their inputs, a behavior controllable with the `prefilter` keyword argument. For functions that accept a `mode` parameter, the result will only be correct if it matches the `mode` used when filtering.

For complex-valued input, this function processes the real and imaginary components independently.

New in version 1.6.0: Complex-valued support added.

Examples

We can filter an image using 1-D spline along the given axis:

```python
>>> from scipy.ndimage import spline_filter1d
>>> import matplotlib.pyplot as plt
>>> orig_img = np.eye(20)  # create an image
>>> orig_img[10, :] = 1.0
>>> sp_filter_axis_0 = spline_filter1d(orig_img, axis=0)
>>> sp_filter_axis_1 = spline_filter1d(orig_img, axis=1)
>>> f, ax = plt.subplots(1, 3, sharex=True)
>>> for ind, data in enumerate([orig_img, "original image"],
                                 [sp_filter_axis_0, "spline filter (axis=0)"],
                                 [sp_filter_axis_1, "spline filter (axis=1)"])):
...    ax[ind].imshow(data[0], cmap='gray_r')
...    ax[ind].set_title(data[1])
>>> plt.tight_layout()
>>> plt.show()
```
scipy.ndimage.zoom

scipy.ndimage.zoom *(input, zoom, output=None, order=3, mode='constant', cval=0.0, prefilter=True, *, grid_mode=False)*

Zoom an array.

The array is zoomed using spline interpolation of the requested order.

Parameters

input [array_like] The input array.

zoom [float or sequence] The zoom factor along the axes. If a float, zoom is the same for each axis. If a sequence, zoom should contain one value for each axis.

output [array or dtype, optional] The array in which to place the output, or the dtype of the returned array. By default an array of the same dtype as input will be created.

order [int, optional] The order of the spline interpolation, default is 3. The order has to be in the range 0-5.

mode [{'reflect', 'grid-mirror', 'constant', 'grid-constant', 'nearest', 'mirror', 'grid-wrap', 'wrap'}, optional] The mode parameter determines how the input array is extended beyond its boundaries. Default is 'constant'. Behavior for each valid value is as follows (see additional plots and details on boundary modes):

- **reflect** (d c b a | a b c d | d c b a)

The input is extended by reflecting about the edge of the last pixel. This mode is also sometimes referred to as half-sample symmetric.

- **grid-mirror**

 This is a synonym for 'reflect'.

- **constant** (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter. No interpolation is performed beyond the edges of the input.

- **grid-constant** (k k k k | a b c d | k k k k)

The input is extended by filling all values beyond the edge with the same constant value, defined by the cval parameter. Interpolation occurs for samples outside the input's extent as well.

- **nearest** (a a a a | a b c d | d d d d)

The input is extended by replicating the last pixel.

- **mirror** (d c b | a b c d | c b a)

The input is extended by reflecting about the center of the last pixel. This mode is also sometimes referred to as whole-sample symmetric.

- **grid-wrap** (a b c d | a b c d | a b c d)

The input is extended by wrapping around to the opposite edge.

- **wrap** (d b c d | a b c d | b c a b)

The input is extended by wrapping around to the opposite edge, but in a way such that the last point and initial point exactly overlap. In this case it is not well defined which sample will be chosen at the point of overlap.

cval [scalar, optional] Value to fill past edges of input if mode is 'constant'. Default is 0.0.

prefilter [bool, optional] Determines if the input array is prefiltered with spline_filter before interpolation. The default is True, which will create a temporary float64 array of filtered values if order > 1. If setting this to False, the output will be slightly blurred if order > 1, unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original input.

grid_mode [bool, optional] If False, the distance from the pixel centers is zoomed. Otherwise, the distance including the full pixel extent is used. For example, a 1d signal of length 5 is considered to have length 4 when grid_mode is False, but length 5 when grid_mode is True. See the following visual illustration:
The starting point of the arrow in the diagram above corresponds to coordinate location 0 in each mode.

Returns

zoom [ndarray] The zoomed input.

Notes

For complex-valued `input`, this function zooms the real and imaginary components independently.

New in version 1.6.0: Complex-valued support added.

Examples

```python
>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt

>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.zoom(ascent, 3.0)
>>> ax1.imshow(ascent, vmin=0, vmax=255)
>>> ax2.imshow(result, vmin=0, vmax=255)
>>> plt.show()
```
>>> print(ascent.shape)
(512, 512)

>>> print(result.shape)
(1536, 1536)

Measurements

<table>
<thead>
<tr>
<th>function</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>center_of_mass</code></td>
<td>Calculate the center of mass of the values of an array at labels.</td>
</tr>
<tr>
<td><code>extrema</code></td>
<td>Calculate the minimums and maximums of the values of an array at labels, along with their positions.</td>
</tr>
<tr>
<td><code>find_objects</code></td>
<td>Find objects in a labeled array.</td>
</tr>
<tr>
<td><code>histogram</code></td>
<td>Calculate the histogram of the values of an array, optionally at labels.</td>
</tr>
<tr>
<td><code>label</code></td>
<td>Label features in an array.</td>
</tr>
<tr>
<td><code>labeled_comprehension</code></td>
<td>Roughly equivalent to [func(input[labels == i]) for i in index].</td>
</tr>
<tr>
<td><code>maximum</code></td>
<td>Calculate the maximum of the values of an array over labeled regions.</td>
</tr>
<tr>
<td><code>maximum_position</code></td>
<td>Find the positions of the maximums of the values of an array at labels.</td>
</tr>
<tr>
<td><code>mean</code></td>
<td>Calculate the mean of the values of an array at labels.</td>
</tr>
<tr>
<td><code>median</code></td>
<td>Calculate the median of the values of an array over labeled regions.</td>
</tr>
<tr>
<td><code>minimum</code></td>
<td>Calculate the minimum of the values of an array over labeled regions.</td>
</tr>
<tr>
<td><code>minimum_position</code></td>
<td>Find the positions of the minimums of the values of an array at labels.</td>
</tr>
<tr>
<td><code>standard_deviation</code></td>
<td>Calculate the standard deviation of the values of an N-D image array, optionally at specified sub-regions.</td>
</tr>
<tr>
<td><code>sum_labels</code></td>
<td>Calculate the sum of the values of the array.</td>
</tr>
<tr>
<td><code>variance</code></td>
<td>Calculate the variance of the values of an N-D image array, optionally at specified sub-regions.</td>
</tr>
<tr>
<td><code>watershed_if</code></td>
<td>Apply watershed from markers using image foresting transform algorithm.</td>
</tr>
</tbody>
</table>

scipy.ndimage.center_of_mass

`scipy.ndimage.center_of_mass(input, labels=None, index=None)`

Calculate the center of mass of the values of an array at labels.

Parameters

- **input**
 [ndarray] Data from which to calculate center-of-mass. The masses can either be positive or negative.
- **labels**
 [ndarray, optional] Labels for objects in `input`, as generated by `ndimage.label`. Only used with `index`. Dimensions must be the same as `input`.
- **index**
 [int or sequence of ints, optional] Labels for which to calculate centers-of-mass. If not specified, the combined center of mass of all labels greater than zero will be calculated. Only used with `labels`.
Returns

center_of_mass
[tuple, or list of tuples] Coordinates of centers-of-mass.

Examples

```python
>>> a = np.array([[0, 0, 0, 0],
                ...               [0, 1, 1, 0],
                ...               [0, 1, 1, 0],
                ...               [0, 1, 1, 0]])
>>> from scipy import ndimage
>>> ndimage.center_of_mass(a)
(2.0, 1.5)
```

Calculation of multiple objects in an image

```python
>>> b = np.array([[0, 1, 0, 0],
                ...               [0, 0, 0, 0],
                ...               [0, 0, 1, 1],
                ...               [0, 0, 1, 1]])
>>> lbl = ndimage.label(b)[0]
>>> ndimage.center_of_mass(b, lbl, [1, 2])
[(0.33333333333333331, 1.3333333333333333), (3.5, 2.5)]
```

Negative masses are also accepted, which can occur for example when bias is removed from measured data due to random noise.

```python
>>> c = np.array([[-1, 0, 0, 0],
                ...               [0, -1, -1, 0],
                ...               [0, 1, -1, 0],
                ...               [0, 1, 1, 0]])
>>> ndimage.center_of_mass(c)
(-4.0, 1.0)
```

If there are division by zero issues, the function does not raise an error but rather issues a RuntimeWarning before returning inf and/or NaN.

```python
>>> d = np.array([-1, 1])
>>> ndimage.center_of_mass(d)
(inf,)
```

scipy.ndimage.extrema

scipy.ndimage.extrema(input, labels=None, index=None)

Calculate the minimums and maximums of the values of an array at labels, along with their positions.

Parameters

- **input** [ndarray] N-D image data to process.
- **labels** [ndarray, optional] Labels of features in input. If not None, must be same shape as input.
- **index** [int or sequence of ints, optional] Labels to include in output. If None (default), all values where non-zero labels are used.

Returns
minimums, maximums
[int or ndarray] Values of minimums and maximums in each feature.

min_positions, max_positions
[tuple or list of tuples] Each tuple gives the N-D coordinates of the corresponding minimum or maximum.

See also:
maximum, minimum, maximum_position, minimum_position, center_of_mass

Examples

```python
>>> a = np.array([[1, 2, 0, 0],
...                [5, 3, 0, 4],
...                [0, 0, 0, 7],
...                [9, 3, 0, 0]])
>>> from scipy import ndimage
>>> ndimage.extrema(a)
(0, 9, (0, 2), (3, 0))
```

Features to process can be specified using labels and index:

```python
>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.extrema(a, lbl, index=np.arange(1, nlbl+1))
(array([1, 4, 3]),
 array([5, 7, 9]),
 [(0, 0), (1, 3), (3, 1)],
 [(1, 0), (2, 3), (3, 0)])
```

If no index is given, non-zero labels are processed:

```python
>>> ndimage.extrema(a, lbl)
(1, 9, (0, 0), (3, 0))
```

scipy.ndimage.find_objects

scipy.ndimage.find_objects (input, max_label=0)
Find objects in a labeled array.

Parameters

- input [ndarray of ints] Array containing objects defined by different labels. Labels with value 0 are ignored.
- max_label [int, optional] Maximum label to be searched for in input. If max_label is not given, the positions of all objects are returned.

Returns

- object_slices [list of tuples] A list of tuples, with each tuple containing N slices (with N the dimension of the input array). Slices correspond to the minimal parallelepiped that contains the object. If a number is missing, None is returned instead of a slice.

See also:

label, center_of_mass
Notes

This function is very useful for isolating a volume of interest inside a 3-D array, that cannot be “seen through”.

Examples

```python
>>> from scipy import ndimage
>>> a = np.zeros((6, 6), dtype=int)
>>> a[2:4, 2:4] = 1
>>> a[4, 4] = 1
>>> a[:, 3] = 2
>>> a[0, 5] = 3
>>> a
array([[2, 2, 2, 0, 0, 3],
       [2, 2, 2, 0, 0, 0],
       [0, 0, 1, 1, 0, 0],
       [0, 0, 1, 1, 0, 0],
       [0, 0, 0, 0, 1, 0],
       [0, 0, 0, 0, 0, 0]])
>>> ndimage.find_objects(a)
[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None)), (slice(0, 1, None), slice(5, 6, None))]
>>> ndimage.find_objects(a, max_label=2)
[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None))]
>>> ndimage.find_objects(a == 1, max_label=2)
[(slice(2, 5, None), slice(2, 5, None)), None]
```

```python
>>> loc = ndimage.find_objects(a)[0]
>>> a[loc]
array([[1, 1, 0],
       [1, 1, 0],
       [0, 0, 1]])
```

scipy.ndimage.histogram

`scipy.ndimage.histogram` (`input`, `min`, `max`, `bins`, `labels=None`, `index=None`)
Calculate the histogram of the values of an array, optionally at labels.

Histogram calculates the frequency of values in an array within bins determined by `min`, `max`, and `bins`. The `labels` and `index` keywords can limit the scope of the histogram to specified sub-regions within the array.

Parameters

- `input` : [array_like] Data for which to calculate histogram.
- `min, max` : [int] Minimum and maximum values of range of histogram bins.
- `bins` : [int] Number of bins.
- `labels` : [array_like, optional] Labels for objects in `input`. If not None, must be same shape as `input`.
- `index` : [int or sequence of ints, optional] Label or labels for which to calculate histogram. If None, all values where label is greater than zero are used.

Returns

- `hist` : [ndarray] Histogram counts.
Examples

```python
>>> a = np.array([[ 0. , 0.2146, 0.5962, 0. ],
...                 [ 0. , 0.7778, 0. , 0. ],
...                 [ 0. , 0. , 0. , 0. ],
...                 [ 0. , 0. , 0.7181, 0.2787],
...                 [ 0. , 0. , 0.6573, 0.3094]],
...                 ...
>>> from scipy import ndimage
>>> ndimage.histogram(a, 0, 1, 10)
array([13, 0, 2, 1, 0, 1, 1, 2, 0, 0])

With labels and no indices, non-zero elements are counted:

```python
>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.histogram(a, 0, 1, 10, lbl)
array([0, 0, 2, 1, 0, 1, 1, 2, 0, 0])
```

Indices can be used to count only certain objects:

```python
>>> ndimage.histogram(a, 0, 1, 10, lbl, 2)
array([0, 0, 1, 1, 0, 0, 1, 1, 0, 0])
```

scipy.ndimage.label

scipy.ndimage.label(input, structure=None, output=None)

Label features in an array.

Parameters

- **input**: [array_like] An array-like object to be labeled. Any non-zero values in input are counted as features and zero values are considered the background.
- **structure**: [array_like, optional] A structuring element that defines feature connections. structure must be centrosymmetric (see Notes). If no structuring element is provided, one is automatically generated with a squared connectivity equal to one. That is, for a 2-D input array, the default structuring element is:

  ```
 [[0,1,0],
 [1,1,1],
 [0,1,0]]
  ```

- **output**: [(None, data-type, array_like), optional] If output is a data type, it specifies the type of the resulting labeled feature array. If output is an array-like object, then output will be updated with the labeled features from this function. This function can operate in-place, by passing output=input. Note that the output must be able to store the largest label, or this function will raise an Exception.

Returns

- **label**: [ndarray or int] An integer ndarray where each unique feature in input has a unique label in the returned array.
- **num_features**: [int] How many objects were found.

See also:
**find_objects**

generate a list of slices for the labeled features (or objects); useful for finding features’ position or dimensions

**Notes**

A centrosymmetric matrix is a matrix that is symmetric about the center. See [1] for more information.

The *structure* matrix must be centrosymmetric to ensure two-way connections. For instance, if the *structure* matrix is not centrosymmetric and is defined as:

```
[[0,1,0],
 [1,1,0],
 [0,0,0]]
```

and the *input* is:

```
[[1,2],
 [0,3]]
```

then the structure matrix would indicate the entry 2 in the input is connected to 1, but 1 is not connected to 2.

**References**

[1]

**Examples**

Create an image with some features, then label it using the default (cross-shaped) structuring element:

```python
>>> from scipy.ndimage import label, generate_binary_structure
>>> a = np.array([[0,0,1,1,0],[0,0,1,0,0],
... [1,1,0,0,1],[0,0,0,1,0]])
>>> labeled_array, num_features = label(a)
```

Each of the 4 features are labeled with a different integer:

```python
>>> num_features
4
>>> labeled_array
array([[0, 0, 1, 1, 0],
 [0, 0, 1, 0, 0],
 [2, 2, 0, 0, 3],
 [0, 0, 4, 0, 0]])
```

Generate a structuring element that will consider features connected even if they touch diagonally:

```python
>>> s = generate_binary_structure(2,2)
```

or,
Label the image using the new structuring element:

```
>>> labeled_array, num_features = label(a, structure=s)
```

Show the 2 labeled features (note that features 1, 3, and 4 from above are now considered a single feature):

```
>>> num_features
2
>>> labeled_array
array([[0, 0, 1, 1, 0, 0],
 [0, 0, 0, 1, 0, 0],
 [2, 2, 0, 0, 1, 0],
 [0, 0, 0, 1, 0, 0]])
```

### scipy.ndimage.labeled_comprehension

**scipy.ndimage.labeled_comprehension**

`scipy.ndimage.labeled_comprehension(input, labels, index, func, out_dtype, default, pass_positions=False)`

Roughly equivalent to `func(input[labels == i]) for i in index`.

Sequentially applies an arbitrary function (that works on array_like input) to subsets of an N-D image array specified by `labels` and `index`. The option exists to provide the function with positional parameters as the second argument.

**Parameters**

- `input` [array_like] Data from which to select `labels` to process.
- `labels` [array_like or None] Labels to objects in `input`. If not None, array must be same shape as `input`. If None, `func` is applied to raveled `input`.
- `index` [int, sequence of ints or None] Subset of `labels` to which to apply `func`. If a scalar, a single value is returned. If None, `func` is applied to all non-zero values of `labels`.
- `func` [callable] Python function to apply to `labels` from `input`.
- `out_dtype` [dtype] Dtype to use for `result`.
- `default` [int, float or None] Default return value when a element of `index` does not exist in `labels`.
- `pass_positions` [bool, optional] If True, pass linear indices to `func` as a second argument. Default is False.

**Returns**

- `result` [ndarray] Result of applying `func` to each of `labels` to `input` in `index`.

### Examples

```
>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> from scipy import ndimage
>>> lbl, nlbl = ndimage.label(a)
>>> lbs = np.arange(1, nlbl+1)
>>> ndimage.labeled_comprehension(a, lbl, lbs, np.mean, float, 0)
array([2.75, 5.5, 6.])
```
Falling back to default:

```python
>>> lbls = np.arange(1, nlbl+2)
>>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, -1)
array([2.75, 5.5, 6., -1.])
```

Passing positions:

```python
>>> def fn(val, pos):
... print("fn says: %s : %s" % (val, pos))
... return (val.sum()) if (pos.sum() % 2 == 0) else (-val.sum())
...
>>> ndimage.labeled_comprehension(a, lbl, lbls, fn, float, 0, True)
fn says: [1 2 5 3] : [0 1 4 5]
fn says: [4 7] : [7 11]
fn says: [9 3] : [12 13]
array([11., 11., -12., 0.])
```

**scipy.ndimage.maximum**

**scipy.ndimage.maximum**(input, labels=None, index=None)

Calculate the maximum of the values of an array over labeled regions.

**Parameters**

- `input` [array_like] Array_like of values. For each region specified by `labels`, the maximal values of `input` over the region is computed.
- `labels` [array_like, optional] An array of integers marking different regions over which the maximum value of `input` is to be computed. `labels` must have the same shape as `input`. If `labels` is not specified, the maximum over the whole array is returned.
- `index` [array_like, optional] A list of region labels that are taken into account for computing the maxima. If `index` is None, the maximum over all elements where `labels` is non-zero is returned.

**Returns**

- `output` [float or list of floats] List of maxima of `input` over the regions determined by `labels` and whose index is in `index`. If `index` or `labels` are not specified, a float is returned: the maximal value of `input` if `labels` is None, and the maximal value of elements where `labels` is greater than zero if `index` is None.

**See also:**

- `label`, `minimum`, `median`, `maximum_position`, `extrema`, `sum`, `mean`, `variance`, `standard_deviation`
Notes

The function returns a Python list and not a NumPy array, use `np.array` to convert the list to an array.

Examples

```python
>>> a = np.arange(16).reshape((4,4))
>>> a
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])
>>> labels = np.zeros_like(a)
>>> labels[:2,:2] = 1
>>> labels[2:, 1:3] = 2
>>> labels
array([[1, 1, 0, 0],
 [1, 1, 0, 0],
 [0, 2, 2, 0],
 [0, 2, 2, 0]])
>>> from scipy import ndimage
>>> ndimage.maximum(a)
15.0
>>> ndimage.maximum(a, labels=labels, index=[1,2])
[5.0, 14.0]
>>> ndimage.maximum(a, labels=labels)
14.0

>>> b = np.array([[1, 2, 0, 0],
 ... [5, 3, 0, 4],
 ... [0, 0, 0, 7],
 ... [9, 3, 0, 0]])
>>> labels, labels_nb = ndimage.label(b)
>>> labels
array([[1, 1, 0, 0],
 [1, 1, 0, 2],
 [0, 0, 2, 0],
 [0, 2, 2, 0]])
>>> ndimage.maximum(b, labels=labels, index=np.arange(1, labels_nb + 1))
[5.0, 7.0, 9.0]
```

**scipy.ndimage.maximum_position**

`scipy.ndimage.maximum_position(input, labels=None, index=None)`

Find the positions of the maximums of the values of an array at labels.

For each region specified by `labels`, the position of the maximum value of `input` within the region is returned.

**Parameters**

- **input** [array_like] Array_like of values.
- **labels** [array_like, optional] An array of integers marking different regions over which the position of the maximum value of `input` is to be computed. `labels` must have the same shape as `input`. If `labels` is not specified, the location of the first maximum over the whole array is returned.
The `labels` argument only works when `index` is specified.

**index**

[array_like, optional] A list of region labels that are taken into account for finding the location of the maxima. If `index` is None, the first maximum over all elements where `labels` is non-zero is returned.

The `index` argument only works when `labels` is specified.

**Returns**

**output**

[list of tuples of ints] List of tuples of ints that specify the location of maxima of `input` over the regions determined by `labels` and whose index is in `index`.

If `index` or `labels` are not specified, a tuple of ints is returned specifying the location of the first maximal value of `input`.

See also:

`label`, `minimum`, `median`, `maximum_position`, `extrema`, `sum`, `mean`, `variance`, `standard_deviation`

**Examples**

```python
>>> from scipy import ndimage
>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> ndimage.maximum_position(a)
(3, 0)
```

Features to process can be specified using `labels` and `index`:

```python
>>> lbl = np.array([[0, 1, 2, 3],
... [0, 1, 2, 3],
... [0, 1, 2, 3],
... [0, 1, 2, 3]])
>>> ndimage.maximum_position(a, lbl, 1)
(1, 1)
```

If no index is given, non-zero `labels` are processed:

```python
>>> ndimage.maximum_position(a, lbl)
(2, 3)
```

If there are no maxima, the position of the first element is returned:

```python
>>> ndimage.maximum_position(a, lbl, 2)
(0, 2)
```
scipy.ndimage.mean

**(input, labels=None, index=None)**

Calculate the mean of the values of an array at labels.

**Parameters**

- **input**: [array_like] Array on which to compute the mean of elements over distinct regions.
- **labels**: [array_like, optional] Array of labels of same shape, or broadcastable to the same shape as input. All elements sharing the same label form one region over which the mean of the elements is computed.
- **index**: [int or sequence of ints, optional] Labels of the objects over which the mean is to be computed. Default is None, in which case the mean for all values where label is greater than 0 is calculated.

**Returns**

- **out**: [list] Sequence of same length as index, with the mean of the different regions labeled by the labels in index.

See also:

variance, standard_deviation, minimum, maximum, sum, label

**Examples**

```python
>>> from scipy import ndimage
>>> a = np.arange(25).reshape((5,5))
>>> labels = np.zeros_like(a)
>>> labels[3:5,3:5] = 1
>>> index = np.unique(labels)
>>> labels
array([[0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 1, 1, 1],
 [0, 0, 1, 1, 1]])
>>> index
array([0, 1])
>>> ndimage.mean(a, labels=labels, index=index)
[10.285714285714286, 21.0]
```

scipy.ndimage.median

**(input, labels=None, index=None)**

Calculate the median of the values of an array over labeled regions.

**Parameters**

- **input**: [array_like] Array_like of values. For each region specified by labels, the median value of input over the region is computed.
- **labels**: [array_like, optional] An array_like of integers marking different regions over which the median value of input is to be computed. labels must have the same shape as input. If labels is not specified, the median over the whole array is returned.
- **index**: [array_like, optional] A list of region labels that are taken into account for computing the medians. If index is None, the median over all elements where labels is non-zero is returned.
Returns

median  [float or list of floats] List of medians of input over the regions determined by labels and whose index is in index. If index or labels are not specified, a float is returned: the median value of input if labels is None, and the median value of elements where labels is greater than zero if index is None.

See also:

label, minimum, maximum, extrema, sum, mean, variance, standard_deviation

Notes

The function returns a Python list and not a NumPy array, use np.array to convert the list to an array.

Examples

```python
>>> from scipy import ndimage
>>> a = np.array([[1, 2, 0, 1],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> labels, labels_nb = ndimage.label(a)
>>> labels
array([[1, 1, 0, 2],
 [1, 1, 0, 2],
 [0, 0, 0, 2],
 [3, 3, 0, 0]])
>>> ndimage.median(a, labels=labels, index=np.arange(1, labels_nb + 1))
[2.5, 4.0, 6.0]
>>> ndimage.median(a)
1.0
>>> ndimage.median(a, labels=labels)
3.0
```

```
scipy.ndimage.minimum
```

scipy.ndimage.minimum(input, labels=None, index=None)

Calculate the minimum of the values of an array over labeled regions.

Parameters

- **input**  [array_like] Array_like of values. For each region specified by labels, the minimal values of input over the region is computed.
- **labels**  [array_like, optional] An array_like of integers marking different regions over which the minimum value of input is to be computed. labels must have the same shape as input. If labels is not specified, the minimum over the whole array is returned.
- **index**  [array_like, optional] A list of region labels that are taken into account for computing the minima. If index is None, the minimum over all elements where labels is non-zero is returned.

Returns

- **minimum**  [float or list of floats] List of minima of input over the regions determined by labels and whose index is in index. If index or labels are not specified, a float is returned: the minimal_value.
value of \texttt{input} if \texttt{labels} is None, and the minimal value of elements where \texttt{labels} is greater than zero if \texttt{index} is None.

See also:

\texttt{label, maximum, median, minimum\_position, extrema, sum, mean, variance standard\_deviation}

Notes

The function returns a Python list and not a NumPy array, use \texttt{np.array} to convert the list to an array.

Examples

```python
>>> from scipy import ndimage
>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> labels, labels_nb = ndimage.label(a)
>>> labels
array([[1, 1, 0, 0],
 [1, 1, 0, 2],
 [0, 0, 0, 2],
 [3, 3, 0, 0]])
>>> ndimage.minimum(a, labels=labels, index=np.arange(1, labels_nb + 1))
[1.0, 4.0, 3.0]
>>> ndimage.minimum(a)
0.0
>>> ndimage.minimum(a, labels=labels)
1.0
```

\texttt{scipy.ndimage.minimum\_position}

\texttt{scipy.ndimage.minima\_position}(\texttt{input}, \texttt{labels=\textit{None}}, \texttt{index=\textit{None}})

Find the positions of the minimums of the values of an array at labels.

**Parameters**

- \texttt{input} [\texttt{array\_like}] Array_like of values.
- \texttt{labels} [\texttt{array\_like}, \texttt{optional}] An array of integers marking different regions over which the position of the minimum value of \texttt{input} is to be computed. \texttt{labels} must have the same shape as \texttt{input}. If \texttt{labels} is not specified, the location of the first minimum over the whole array is returned. The \texttt{labels} argument only works when \texttt{index} is specified.
- \texttt{index} [\texttt{array\_like}, \texttt{optional}] A list of region labels that are taken into account for finding the location of the minima. If \texttt{index} is None, the first minimum over all elements where \texttt{labels} is non-zero is returned. The \texttt{index} argument only works when \texttt{labels} is specified.

**Returns**

- \texttt{output} [\texttt{list of tuples of ints}] Tuple of ints or list of tuples of ints that specify the location of minima of \texttt{input} over the regions determined by \texttt{labels} and whose index is in \texttt{index}. 

If \textit{index} or \textit{labels} are not specified, a tuple of ints is returned specifying the location of the first minimal value of \textit{input}.

See also:

\texttt{label}, \texttt{minimum}, \texttt{median}, \texttt{maximum_position}, \texttt{extrema}, \texttt{sum}, \texttt{mean}, \texttt{variance}

\texttt{standard_deviation}

\textbf{Examples}

```python
>>> a = np.array([[10, 20, 30],
... [40, 80, 100],
... [1, 100, 200]])
>>> b = np.array([[1, 2, 0, 1],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])

>>> from scipy import ndimage

>>> ndimage.minimum_position(a)
(2, 0)
>>> ndimage.minimum_position(b)
(0, 2)
```

Features to process can be specified using \textit{labels} and \textit{index}:

```python
>>> label, pos = ndimage.label(a)
>>> ndimage.minimum_position(a, label, index=np.arange(1, pos+1))
[(2, 0)]

>>> label, pos = ndimage.label(b)
>>> ndimage.minimum_position(b, label, index=np.arange(1, pos+1))
[(0, 0), (0, 3), (3, 1)]
```

\texttt{scipy.ndimage.standard_deviation}

\texttt{scipy.ndimage.standard_deviation (input, labels=None, index=None)}

Calculate the standard deviation of the values of an N-D image array, optionally at specified sub-regions.

\textbf{Parameters}

\begin{itemize}
    \item \texttt{input} [array_like] N-D image data to process.
    \item \texttt{labels} [array_like, optional] Labels to identify sub-regions in \textit{input}. If not None, must be same shape as \textit{input}.
    \item \texttt{index} [int or sequence of ints, optional] \textit{labels} to include in output. If None (default), all values where \textit{labels} is non-zero are used.
\end{itemize}

\textbf{Returns}

\begin{itemize}
    \item \texttt{standard_deviation} [float or ndarray] Values of standard deviation, for each sub-region if \textit{labels} and \textit{index} are specified.
\end{itemize}

See also:
label, variance, maximum, minimum, extrema

Examples

```python
>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> from scipy import ndimage
>>> ndimage.standard_deviation(a)
2.7585095613392387

Features to process can be specified using labels and index:

```python
>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.standard_deviation(a, lbl, index=np.arange(1, nlbl+1))
aarray([ 1.479, 1.5 , 3. ])
```  
If no index is given, non-zero labels are processed:

```python
>>> ndimage.standard_deviation(a, lbl)
2.4874685927665499

scipy.ndimage.sum_labels

scipy.ndimage.sum_labels (input, labels=None, index=None)
Calculate the sum of the values of the array.

Parameters

- input [array_like] Values of input inside the regions defined by labels are summed together.
- labels [array_like of ints, optional] Assign labels to the values of the array. Has to have the same shape as input.
- index [array_like, optional] A single label number or a sequence of label numbers of the objects to be measured.

Returns

- sum [ndarray or scalar] An array of the sums of values of input inside the regions defined by labels with the same shape as index. If ‘index’ is None or scalar, a scalar is returned.

See also:

mean, median

Examples

```python
>>> from scipy import ndimage
>>> input = [0, 1, 2, 3]
>>> labels = [1, 1, 2, 2]
>>> ndimage.sum(input, labels, index=[1, 2])
1.0, 5.0
>>> ndimage.sum(input, labels, index=1)
1
```  
(continues on next page)
scipy.ndimage.variance

**scipy.ndimage.variance** (*input*, *labels=None*, *index=None*)

Calculate the variance of the values of an N-D image array, optionally at specified sub-regions.

**Parameters**

- **input**  
  [array_like] Nd-image data to process.

- **labels**  
  [array_like, optional] Labels defining sub-regions in *input*. If not None, must be same shape as *input*.

- **index**  
  [int or sequence of ints, optional] *labels* to include in output. If None (default), all values where *labels* is non-zero are used.

**Returns**

- **variance**  
  [float or ndarray] Values of variance, for each sub-region if *labels* and *index* are specified.

**See also:**

*label, standard_deviation, maximum, minimum, extrema*

**Examples**

```python
>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> from scipy import ndimage
>>> ndimage.variance(a)
7.609375
```

Features to process can be specified using *labels* and *index*:

```python
>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.variance(a, lbl, index=np.arange(1, nlbl+1))
array([2.1875, 2.25 , 9.])
```

If no index is given, all non-zero *labels* are processed:

```python
>>> ndimage.variance(a, lbl)
6.1875
```
scipy.ndimage.watershed_ift

**scipy.ndimage.watershed_ift** *(input, markers, structure=None, output=None)*

Apply watershed from markers using image foresting transform algorithm.

**Parameters**

- **input** [array_like] Input.
- **markers** [array_like] Markers are points within each watershed that form the beginning of the process. Negative markers are considered background markers which are processed after the other markers.
- **structure** [structure element, optional] A structuring element defining the connectivity of the object can be provided. If None, an element is generated with a squared connectivity equal to one.
- **output** [ndarray, optional] An output array can optionally be provided. The same shape as input.

**Returns**

- **watershed_ift** [ndarray] Output. Same shape as input.

**References**

[1]

**Morphology**

- **binary_closing** *(input[, structure, ...])* Multidimensional binary closing with the given structuring element.
- **binary_dilation** *(input[, structure, ...])* Multidimensional binary dilation with the given structuring element.
- **binary_erosion** *(input[, structure, ...])* Multidimensional binary erosion with a given structuring element.
- **binary_fill_holes** *(input[, structure, ...])* Fill the holes in binary objects.
- **binary_hit_or_miss** *(input[, structure1, ...])* Multidimensional binary hit-or-miss transform.
- **binary_opening** *(input[, structure, ...])* Multidimensional binary opening with the given structuring element.
- **binary_propagation** *(input[, structure, mask, ...])* Multidimensional binary propagation with the given structuring element.
- **black_tophat** *(input[, size, footprint, ...])* Multidimensional black tophat filter.
- **distance_transform_bf** *(input[, metric, ...])* Distance transform function by a brute force algorithm.
- **distance_transform_cdt** *(input[, metric, ...])* Distance transform for chamfer type of transforms.
- **distance_transform_edt** *(input[, sampling, ...])* Exact Euclidean distance transform.
- **generate_binary_structure** *(rank, connectivity)* Generate a binary structure for binary morphological operations.
- **grey_closing** *(input[, size, footprint, ...])* Multidimensional grayscale closing.
- **grey_dilation** *(input[, size, footprint, ...])* Calculate a grey scale dilation, using either a structuring element, or a footprint corresponding to a flat structuring element.
- **grey_erosion** *(input[, size, footprint, ...])* Calculate a grey scale erosion, using either a structuring element, or a footprint corresponding to a flat structuring element.
- **grey_opening** *(input[, size, footprint, ...])* Multidimensional grayscale opening.

continues on next page
Table 113 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>iterate_structure</code></td>
<td>Iterate a structure by dilating it with itself.</td>
</tr>
<tr>
<td><code>morphological_gradient</code></td>
<td>Multidimensional morphological gradient.</td>
</tr>
<tr>
<td><code>morphological_laplace</code></td>
<td>Multidimensional morphological laplace.</td>
</tr>
<tr>
<td><code>white_tophat</code></td>
<td>Multidimensional white tophat filter.</td>
</tr>
</tbody>
</table>

### `scipy.ndimage.binary_closing`

#### `scipy.ndimage.binary_closing`

Multidimensional binary closing with the given structuring element.

The *closing* of an input image by a structuring element is the *erosion* of the *dilation* of the image by the structuring element.

**Parameters**

- **input** [array_like] Binary array_like to be closed. Non-zero (True) elements form the subset to be closed.
- **structure** [array_like, optional] Structuring element used for the closing. Non-zero elements are considered True. If no structuring element is provided an element is generated with a square connectivity equal to one (i.e., only nearest neighbors are connected to the center, diagonally-connected elements are not considered neighbors).
- **iterations** [int, optional] The dilation step of the closing, then the erosion step are each repeated `iterations` times (one, by default). If iterations is less than 1, each operations is repeated until the result does not change anymore. Only an integer of iterations is accepted.
- **output** [ndarray, optional] Array of the same shape as input, into which the output is placed. By default, a new array is created.
- **origin** [int or tuple of ints, optional] Placement of the filter, by default 0.
- **mask** [array_like, optional] If a mask is given, only those elements with a True value at the corresponding mask element are modified at each iteration. New in version 1.1.0.
- **border_value** [int (cast to 0 or 1), optional] Value at the border in the output array. New in version 1.1.0.
- **brute_force** [boolean, optional] Memory condition: if False, only the pixels whose value was changed in the last iteration are tracked as candidates to be updated in the current iteration; if true all pixels are considered as candidates for update, regardless of what happened in the previous iteration. False by default. New in version 1.1.0.

**Returns**

- **binary_closing** [ndarray of bools] Closing of the input by the structuring element.

**See also:**

- `grey_closing`
- `binary_opening`
- `binary_dilation`
- `binary_erosion`
- `generate_binary_structure`
Notes

Closing \[1\] is a mathematical morphology operation \[2\] that consists in the succession of a dilation and an erosion of the input with the same structuring element. Closing therefore fills holes smaller than the structuring element. Together with opening (binary_opening), closing can be used for noise removal.

References

[1], [2]

Examples

```python
>>> from scipy import ndimage
>>> a = np.zeros((5, 5), dtype=int)
>>> a[1:-1, 1:-1] = 1; a[2, 2] = 0
>>> a
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 0, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> # Closing removes small holes
>>> ndimage.binary_closing(a).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> # Closing is the erosion of the dilation of the input
>>> ndimage.binary_dilation(a).astype(int)
array([[0, 1, 1, 1, 0],
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 [0, 1, 1, 1, 0]])
>>> ndimage.binary_erosion(ndimage.binary_dilation(a)).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
```
In addition to removing holes, closing can also coarsen boundaries with fine hollows.

```python
>>> ndimage.binary_closing(a).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
```

```python
>>> ndimage.binary_closing(a, structure=np.ones((2,2))).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
```

`scipy.ndimage.binary_dilation`

*scipy.ndimage.binary_dilation* (*input*, *structure=None*, *iterations=1*, *mask=None*, *output=None*, *border_value=0*, *origin=0*, *brute_force=False*)

Multidimensional binary dilation with the given structuring element.

**Parameters**

- **input** [array_like] Binary array_like to be dilated. Non-zero (True) elements form the subset to be dilated.
- **structure** [array_like, optional] Structuring element used for the dilation. Non-zero elements are considered True. If no structuring element is provided an element is generated with a square connectivity equal to one.
- **iterations** [int, optional] The dilation is repeated *iterations* times (one, by default). If iterations is less than 1, the dilation is repeated until the result does not change anymore. Only an integer of iterations is accepted.
- **mask** [array_like, optional] If a mask is given, only those elements with a True value at the corresponding mask element are modified at each iteration.
- **output** [ndarray, optional] Array of the same shape as input, into which the output is placed. By default, a new array is created.
- **border_value** [int (cast to 0 or 1), optional] Value at the border in the output array.
- **origin** [int or tuple of ints, optional] Placement of the filter, by default 0.
- **brute_force** [boolean, optional] Memory condition: if False, only the pixels whose value was changed in the last iteration are tracked as candidates to be updated (dilated) in the current iteration; if True all pixels are considered as candidates for dilation, regardless of what happened in the previous iteration. False by default.

**Returns**

- **binary_dilation** [ndarray of bools] Dilation of the input by the structuring element.
See also:

grey_dilation, binary_erosion, binary_closing, binary_opening

generate_binary_structure

Notes

Dilation [1] is a mathematical morphology operation [2] that uses a structuring element for expanding the shapes in an image. The binary dilation of an image by a structuring element is the locus of the points covered by the structuring element, when its center lies within the non-zero points of the image.

References

[1], [2]

Examples

```python
>>> from scipy import ndimage
>>> a = np.zeros((5, 5))
>>> a[2, 2] = 1
>>> a
array([[0. , 0. , 0. , 0. , 0.],
 [0. , 0. , 0. , 0. , 0.],
 [0. , 0. , 1. , 0. , 0.],
 [0. , 0. , 0. , 0. , 0.],
 [0. , 0. , 0. , 0. , 0.]])
>>> ndimage.binary_dilation(a)
array([[False, False, False, False, False],
 [False, False, True, False, False],
 [False, True, True, True, False],
 [False, False, True, False, False],
 [False, False, False, False, False]], dtype=bool)
>>> ndimage.binary_dilation(a).astype(a.dtype)
array([[0. , 0. , 0. , 0. , 0.],
 [0. , 0. , 1. , 0. , 0.],
 [0. , 1. , 1. , 1. , 0.],
 [0. , 0. , 1. , 0. , 0.],
 [0. , 0. , 0. , 0. , 0.]])
>>> # 3x3 structuring element with connectivity 1, used by default
>>> struct1 = ndimage.generate_binary_structure(2, 1)
>>> struct1
array([[False, True, False],
 [True, True, True],
 [False, True, False]], dtype=bool)
>>> # 3x3 structuring element with connectivity 2
>>> struct2 = ndimage.generate_binary_structure(2, 2)
>>> struct2
array([[True, True, True],
 [True, True, True],
 [True, True, True]], dtype=bool)
```

(continues on next page)
```python
>>> ndimage.binary_dilation(a, structure=struct1).astype(a.dtype)
array([[0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 1., 1., 1., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0.]]
>>> ndimage.binary_dilation(a, structure=struct2).astype(a.dtype)
array([[0., 0., 0., 0., 0.],
[0., 1., 1., 1., 0.],
[0., 1., 1., 1., 0.],
[0., 1., 1., 1., 0.],
[0., 0., 0., 0., 0.]]
>>> ndimage.binary_dilation(a, structure=struct1,
... iterations=2).astype(a.dtype)
array([[0., 0., 1., 0., 0.],
[0., 1., 1., 1., 0.],
[1., 1., 1., 1., 1.],
[0., 1., 1., 1., 0.],
[0., 0., 1., 0., 0.]]
```

**scipy.ndimage.binary_erosion**

Multidimensional binary erosion with a given structuring element.

Binary erosion is a mathematical morphology operation used for image processing.

**Parameters**

- **input** [array_like] Binary image to be eroded. Non-zero (True) elements form the subset to be eroded.
- **structure** [array_like, optional] Structuring element used for the erosion. Non-zero elements are considered True. If no structuring element is provided, an element is generated with a square connectivity equal to one.
- **iterations** [int, optional] The erosion is repeated iterations times (one, by default). If iterations is less than 1, the erosion is repeated until the result does not change anymore.
- **mask** [array_like, optional] If a mask is given, only those elements with a True value at the corresponding mask element are modified at each iteration.
- **output** [ndarray, optional] Array of the same shape as input, into which the output is placed. By default, a new array is created.
- **border_value** [int (cast to 0 or 1), optional] Value at the border in the output array.
- **origin** [int or tuple of ints, optional] Placement of the filter, by default 0.
- **brute_force** [boolean, optional] Memory condition: if False, only the pixels whose value was changed in the last iteration are tracked as candidates to be updated (eroded) in the current iteration; if True all pixels are considered as candidates for erosion, regardless of what happened in the previous iteration. False by default.

**Returns**

- **binary_erosion** [ndarray of bools] Erosion of the input by the structuring element.

See also:
grey_erosion, binary_dilation, binary_closing, binary_opening

generate_binary_structure

Notes

Erosion [1] is a mathematical morphology operation [2] that uses a structuring element for shrinking the shapes in an image. The binary erosion of an image by a structuring element is the locus of the points where a superimposition of the structuring element centered on the point is entirely contained in the set of non-zero elements of the image.

References

[1], [2]

Examples

```python
>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[1:6, 2:5] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_erosion(a).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
```
**scipy.ndimage.binary_fill_holes**

**scipy.ndimage.binary_fill_holes**(*input*, *structure=None, output=None, origin=0)

Fill the holes in binary objects.

**Parameters**

- **input** [array_like] N-D binary array with holes to be filled
- **structure** [array_like, optional] Structuring element used in the computation; large-size elements make computations faster but may miss holes separated from the background by thin regions. The default element (with a square connectivity equal to one) yields the intuitive result where all holes in the input have been filled.
- **output** [ndarray, optional] Array of the same shape as input, into which the output is placed. By default, a new array is created.
- **origin** [int, tuple of ints, optional] Position of the structuring element.

**Returns**

- **out** [ndarray] Transformation of the initial image *input* where holes have been filled.

**See also:**

- *binary_dilation*, *binary_propagation*, *label*

**Notes**

The algorithm used in this function consists in invading the complementary of the shapes in *input* from the outer boundary of the image, using binary dilations. Holes are not connected to the boundary and are therefore not invaded. The result is the complementary subset of the invaded region.

**References**

- [1]

**Examples**

```python
>>> from scipy import ndimage
>>> a = np.zeros((5, 5), dtype=int)
>>> a[1:4, 1:4] = 1
>>> a[2,2] = 0
>>> a
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 0, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> ndimage.binary_fill_holes(a).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 1],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> # Too big structuring element
```

(continues on next page)
>>> ndimage.binary_fill_holes(a, structure=np.ones((5,5))).astype(int)
array([[0, 0, 0, 0, 0],
       [0, 1, 1, 1, 0],
       [0, 1, 0, 1, 0],
       [0, 1, 1, 1, 0],
       [0, 0, 0, 0, 0]])

scipy.ndimage.binary_hit_or_miss

scipy.ndimage.binary_hit_or_miss(input, structure1=None, structure2=None, output=None, origin1=0, origin2=None)

Multidimensional binary hit-or-miss transform.

The hit-or-miss transform finds the locations of a given pattern inside the input image.

**Parameters**

- **input** [array_like (cast to bools)] Binary image where a pattern is to be detected.
- **structure1** [array_like (cast to bools), optional] Part of the structuring element to be fitted to the foreground (non-zero elements) of input. If no value is provided, a structure of square connectivity 1 is chosen.
- **structure2** [array_like (cast to bools), optional] Second part of the structuring element that has to miss completely the foreground. If no value is provided, the complementary of structure1 is taken.
- **output** [ndarray, optional] Array of the same shape as input, into which the output is placed. By default, a new array is created.
- **origin1** [int or tuple of ints, optional] Placement of the first part of the structuring element structure1, by default 0 for a centered structure.
- **origin2** [int or tuple of ints, optional] Placement of the second part of the structuring element structure2, by default 0 for a centered structure. If a value is provided for origin1 and not for origin2, then origin2 is set to origin1.

**Returns**

- **binary_hit_or_miss** [ndarray] Hit-or-miss transform of input with the given structuring element (structure1, structure2).

See also:

- binary_erosion

**References**

[1]
Examples

```python
>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 1, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 0, 0, 0],
 [0, 0, 1, 1, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 0],
 [0, 0, 0, 0, 1, 1, 0],
 [0, 0, 0, 0, 0, 0, 0]], dtype=int)
>>> structure1 = np.array([[[1, 0, 0],
 [0, 1, 1],
 [0, 1, 1]]])
>>> structure1
array([[[1, 0, 0],
 [0, 1, 1],
 [0, 1, 1]]])
>>> # Find the matches of structure1 in the array a
>>> ndimage.binary_hit_or_miss(a, structure1=structure1).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 0]], dtype=int)
>>> # Change the origin of the filter
>>> # origin1=1 is equivalent to origin1=(1,1) here
>>> ndimage.binary_hit_or_miss(a, structure1=structure1, \... origin1=1).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]], dtype=int)
```

`scipy.ndimage.binary_opening`

`scipy.ndimage.binary_opening` *(input, structure=None, iterations=1, output=None, origin=0, mask=None, border_value=0, brute_force=False)*

Multidimensional binary opening with the given structuring element.

The opening of an input image by a structuring element is the *dilation* of the *erosion* of the image by the structuring element.

**Parameters**

- **input** [array_like] Binary array_like to be opened. Non-zero (True) elements form the subset to be opened.
- **structure** [array_like, optional] Structuring element used for the opening. Non-zero elements are considered True. If no structuring element is provided an element is generated with a square
connectivity equal to one (i.e., only nearest neighbors are connected to the center, diagonally-connected elements are not considered neighbors).

**iterations**
[int, optional] The erosion step of the opening, then the dilation step are each repeated *iterations* times (one, by default). If *iterations* is less than 1, each operation is repeated until the result does not change anymore. Only an integer of iterations is accepted.

**output**
[ndarray, optional] Array of the same shape as input, into which the output is placed. By default, a new array is created.

**origin**
[int or tuple of ints, optional] Placement of the filter, by default 0.

**mask**
[array_like, optional] If a mask is given, only those elements with a True value at the corresponding mask element are modified at each iteration. New in version 1.1.0.

**border_value**
[int (cast to 0 or 1), optional] Value at the border in the output array. New in version 1.1.0.

**brute_force**
[boolean, optional] Memory condition: if False, only the pixels whose value was changed in the last iteration are tracked as candidates to be updated in the current iteration; if true all pixels are considered as candidates for update, regardless of what happened in the previous iteration. False by default. New in version 1.1.0.

**Returns**

**binary_opening**
[ndarray of bools] Opening of the input by the structuring element.

See also:

grey_opening, binary_closing, binary_erosion, binary_dilation

generate_binary_structure

Notes

Opening [1] is a mathematical morphology operation [2] that consists in the succession of an erosion and a dilation of the input with the same structuring element. Opening, therefore, removes objects smaller than the structuring element.

Together with closing (binary_closing), opening can be used for noise removal.

References

[1], [2]

Examples

```python
>>> from scipy import ndimage
>>> a = np.zeros((5, 5), dtype=int)
>>> a[1:4, 1:4] = 1; a[4, 4] = 1
>>> a
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]], dtype=int32)
```
>>> # Opening removes small objects
>>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(int)
array([[0, 0, 0, 0, 0],
       [0, 1, 1, 1, 0],
       [0, 1, 1, 1, 0],
       [0, 1, 1, 1, 0],
       [0, 0, 0, 0, 0]])

>>> # Opening can also smooth corners
>>> ndimage.binary_opening(a).astype(int)
array([[0, 0, 0, 0, 0],
       [0, 0, 1, 0, 0],
       [0, 1, 1, 1, 0],
       [0, 0, 1, 0, 0],
       [0, 0, 0, 0, 0]])

>>> # Opening is the dilation of the erosion of the input
>>> ndimage.binary_erosion(a).astype(int)
array([[0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 1, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0]])

>>> ndimage.binary_dilation(ndimage.binary_erosion(a)).astype(int)
array([[0, 0, 0, 0, 0],
       [0, 0, 1, 0, 0],
       [0, 1, 1, 1, 0],
       [0, 0, 1, 0, 0],
       [0, 0, 0, 0, 0]])

scipy.ndimage.binary_propagation

scipy.ndimage.binary_propagation(input, structure=None, mask=None, output=None, border_value=0, origin=0)

Multidimensional binary propagation with the given structuring element.

Parameters

- **input** [array_like] Binary image to be propagated inside mask.
- **structure** [array_like, optional] Structuring element used in the successive dilations. The output may depend on the structuring element, especially if mask has several connex components. If no structuring element is provided, an element is generated with a squared connectivity equal to one.
- **mask** [array_like, optional] Binary mask defining the region into which input is allowed to propagate.
- **output** [ndarray, optional] Array of the same shape as input, into which the output is placed. By default, a new array is created.
- **border_value** [int (cast to 0 or 1), optional] Value at the border in the output array.
- **origin** [int or tuple of ints, optional] Placement of the filter, by default 0.

Returns

- **binary_propagation** [ndarray] Binary propagation of input inside mask.
Notes

This function is functionally equivalent to calling binary_dilation with the number of iterations less than one: iterative dilation until the result does not change anymore.

The succession of an erosion and propagation inside the original image can be used instead of an opening for deleting small objects while keeping the contours of larger objects untouched.

References

[1], [2]

Examples

```python
>>> from scipy import ndimage
>>> input = np.zeros((8, 8), dtype=int)
>>> input[2, 2] = 1
>>> mask = np.zeros((8, 8), dtype=int)
>>> input
array([[0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0]])
>>> mask
array([[0, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0, 0, 0, 0],
 [0, 1, 1, 1, 0, 0, 0, 0],
 [0, 1, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 1],
 [0, 0, 0, 0, 0, 0, 1, 1]])
>>> ndimage.binary_propagation(input, mask=mask).astype(int)
array([[0, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0, 0, 0, 0],
 [0, 1, 1, 1, 0, 0, 0, 0],
 [0, 1, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_propagation(input, mask=mask,
... structure=np.ones((3, 3))).astype(int)
array([[0, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0, 0, 0, 0],
 [0, 1, 1, 1, 0, 0, 0, 0],
 [0, 1, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0, 0, 0, 0],
 [0, 1, 1, 1, 0, 0, 0, 0]],)
```
```python
>>> # Comparison between opening and erosion+propagation
>>> a = np.zeros((6,6), dtype=int)
>>> a[2:5, 2:5] = 1; a[0, 0] = 1; a[5, 5] = 1
>>> a
array([[0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 0],
 [0, 0, 1, 1, 1, 0],
 [0, 0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_opening(a).astype(int)
array([[0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0],
 [0, 0, 1, 1, 1, 0],
 [0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0]])
>>> b = ndimage.binary_erosion(a)
>>> b.astype(int)
array([[0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_propagation(b, mask=a).astype(int)
array([[0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 0],
 [0, 0, 1, 1, 1, 0],
 [0, 0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0, 0]])
```

**scipy.ndimage.black_tophat**

scipy.ndimage.black_tophat (input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)

Multidimensional black tophat filter.

**Parameters**

- **input** [array_like] Input.
- **size** [tuple of ints, optional] Shape of a flat and full structuring element used for the filter. Optional if footprint or structure is provided.
- **footprint** [array of ints, optional] Positions of non-infinite elements of a flat structuring element used for the black tophat filter.
- **structure** [array of ints, optional] Structuring element used for the filter. structure may be a non-flat structuring element.
output [array, optional] An array used for storing the output of the filter may be provided.
mode [{'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional] The mode parameter determines how the array borders are handled, where \( cval \) is the value when mode is equal to 'constant'. Default is 'reflect'

cval [scalar, optional] Value to fill past edges of input if mode is 'constant'. Default is 0.0.
origin [scalar, optional] The origin parameter controls the placement of the filter. Default 0

Returns

black_tophat [ndarray] Result of the filter of input with structure.

See also:

white_tophat, grey_opening, grey_closing

Examples

Change dark peak to bright peak and subtract background.

```python
>>> from scipy.ndimage import generate_binary_structure, black_tophat
>>> square = generate_binary_structure(rank=2, connectivity=3)
>>> dark_on_gray = np.array([[7, 6, 6, 6, 7],
... [6, 4, 0, 4, 6],
... ...
... [6, 5, 4, 5, 6],
... ...
... [7, 6, 6, 6, 7]])
>>> black_tophat(input=dark_on_gray, structure=square)
array([[0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 1, 5, 1, 0],
 [0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0]])
```

scipy.ndimage.distance_transform_bf

scipy.ndimage.distance_transform_bf(input, metric='euclidean', sampling=None, return_distances=True, return_indices=False, distances=None, indices=None)

Distance transform function by a brute force algorithm.

This function calculates the distance transform of the input, by replacing each foreground (non-zero) element, with its shortest distance to the background (any zero-valued element).

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest background element to each foreground element is returned in a separate array.

Parameters

input [array_like] Input
metric [{'euclidean', 'taxicab', 'chessboard'}, optional] 'cityblock' and 'manhattan' are also valid, and map to 'taxicab'. The default is 'euclidean'.
sampling [float, or sequence of float, optional] This parameter is only used when metric is 'euclidean'. Spacing of elements along each dimension. If a sequence, must be of length equal to the input rank; if a single number, this is used for all axes. If not specified, a grid spacing of unity is implied.
return_distances
[bool, optional] Whether to calculate the distance transform. Default is True.

return_indices
[bool, optional] Whether to calculate the feature transform. Default is False.

distances
[ndarray, optional] An output array to store the calculated distance transform, instead of returning it. return_distances must be True. It must be the same shape as input, and of type float64 if metric is 'euclidean'; uint32 otherwise.

indices
[int32 ndarray, optional] An output array to store the calculated feature transform, instead of returning it. return_indices must be True. Its shape must be (input.ndim,) + input.shape.

Returns

distances
[ndarray, optional] The calculated distance transform. Returned only when return_distances is True and distances is not supplied. It will have the same shape as the input array.

indices
[int32 ndarray, optional] The calculated feature transform. It has an input-shaped array for each dimension of the input. See distance_transform_edt documentation for an example. Returned only when return_indices is True and indices is not supplied.

Notes
This function employs a slow brute force algorithm, see also the function distance_transform_cdt for more efficient taxicab and chessboard algorithms.

scipy.ndimage.distance_transform_cdt

Distance transform for chamfer type of transforms.

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest background element to each foreground element is returned in a separate array.

Parameters

input
[array_like] Input

metric
[['chessboard', 'taxicab'] or array_like, optional] The metric determines the type of chamfering that is done. If the metric is equal to 'taxicab' a structure is generated using generate_binary_structure with a squared distance equal to 1. If the metric is equal to 'chessboard', a metric is generated using generate_binary_structure with a squared distance equal to the dimensionality of the array. These choices correspond to the common interpretations of the 'taxicab' and the 'chessboard' distance metrics in two dimensions. A custom metric may be provided, in the form of a matrix where each dimension has a length of three. 'cityblock' and 'manhattan' are also valid, and map to 'taxicab'. The default is 'chessboard'.

return_distances
[bool, optional] Whether to calculate the distance transform. Default is True.

return_indices
[bool, optional] Whether to calculate the feature transform. Default is False.

distances
[int32 ndarray, optional] An output array to store the calculated distance transform, instead of returning it. return_distances must be True. It must be the same shape as input.

indices
[int32 ndarray, optional] An output array to store the calculated feature transform, instead of returning it. return_indices must be True. Its shape must be (input.ndim,) + input.shape.

Returns

distances
[int32 ndarray, optional] The calculated distance transform. Returned only when return_distances is True, and distances is not supplied. It will have the same shape as the input array.
indices [int32 ndarray, optional] The calculated feature transform. It has an input-shaped array for each dimension of the input. See distance_transform_edt documentation for an example. Returned only when return_indices is True, and indices is not supplied.

**scipy.ndimage.distance_transform_edt**

scipy.ndimage.distance_transform_edt (input, sampling=None, return_distances=True, return_indices=False, distances=None, indices=None)

Exact Euclidean distance transform.

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest background element to each foreground element is returned in a separate array.

**Parameters**

- **input** [array_like] Input data to transform. Can be any type but will be converted into binary: 1 wherever input equates to True, 0 elsewhere.
- **sampling** [float, or sequence of float, optional] Spacing of elements along each dimension. If a sequence, must be of length equal to the input rank; if a single number, this is used for all axes. If not specified, a grid spacing of unity is implied.
- **return_distances** [bool, optional] Whether to calculate the distance transform. Default is True.
- **return_indices** [bool, optional] Whether to calculate the feature transform. Default is False.
- **distances** [float64 ndarray, optional] An output array to store the calculated distance transform, instead of returning it. return_distances must be True. It must be the same shape as input.
- **indices** [int32 ndarray, optional] An output array to store the calculated feature transform, instead of returning it. return_indices must be True. Its shape must be (input.ndim,) + input.shape.

**Returns**

- **distances** [float64 ndarray, optional] The calculated distance transform. Returned only when return_distances is True and distances is not supplied. It will have the same shape as the input array.
- **indices** [int32 ndarray, optional] The calculated feature transform. It has an input-shaped array for each dimension of the input. See example below. Returned only when return_indices is True and indices is not supplied.

**Notes**

The Euclidean distance transform gives values of the Euclidean distance:

\[ y_i = \sqrt{\sum_{i} (x[i] - b[i])^2} \]

where b[i] is the background point (value 0) with the smallest Euclidean distance to input points x[i], and n is the number of dimensions.
Examples

```python
>>> from scipy import ndimage
>>> a = np.array([[0,1,1,1],
... [0,0,1,1],
... [0,1,1,1],
... [0,1,1,0],
... [0,1,0,0]])
>>> ndimage.distance_transform_edt(a)
array([[0. , 1. , 1.4142, 2.2361, 3.],
 [0. , 0. , 1. , 2. , 2.],
 [0. , 1. , 1.4142, 1.4142, 1.],
 [0. , 1. , 1.4142, 1. , 0.],
 [0. , 1. , 1. , 0. , 0.]])
```

With a sampling of 2 units along x, 1 along y:

```python
>>> ndimage.distance_transform_edt(a, sampling=[2,1])
array([[0. , 1. , 2. , 2.8284, 3.6056],
 [0. , 0. , 1. , 2. , 3.],
 [0. , 1. , 2. , 2.2361, 2.],
 [0. , 1. , 2. , 1. , 0.],
 [0. , 1. , 1. , 0. , 0.]])
```

Asking for indices as well:

```python
>>> edt, inds = ndimage.distance_transform_edt(a, return_indices=True)
>>> inds
array([[[0, 0, 1, 1, 3],
 [1, 1, 1, 3],
 [2, 2, 1, 3],
 [3, 3, 4, 3],
 [4, 4, 4, 4]],
 [[0, 0, 1, 4],
 [0, 1, 1, 4],
 [0, 0, 1, 4],
 [0, 0, 3, 4],
 [0, 0, 3, 4]]])
```

With arrays provided for inplace outputs:

```python
>>> indices = np.zeros(((np.ndim(a),) + a.shape), dtype=np.int32)
>>> ndimage.distance_transform_edt(a, return_indices=True, indices=indices)
array([[0. , 1. , 1.4142, 2.2361, 3.],
 [0. , 0. , 1. , 2. , 2.],
 [0. , 1. , 1.4142, 1.4142, 1.],
 [0. , 1. , 1.4142, 1. , 0.],
 [0. , 1. , 1. , 0. , 0.]])
>>> indices
array([[[0, 0, 1, 1, 3],
 [1, 1, 1, 3],
 [2, 2, 1, 3],
 [2, 2, 1, 3],
 [2, 2, 1, 3]],
 [[0, 0, 1, 4],
 [0, 1, 1, 4],
 [0, 0, 1, 4],
 [0, 0, 3, 4],
 [0, 0, 3, 4]]])
```

(continues on next page)
scipy.ndimage.generate_binary_structure

scipy.ndimage.generate_binary_structure(rank, connectivity)

Generate a binary structure for binary morphological operations.

Parameters

- **rank** [int] Number of dimensions of the array to which the structuring element will be applied, as returned by `np.ndim`.
- **connectivity** [int] `connectivity` determines which elements of the output array belong to the structure, i.e., are considered as neighbors of the central element. Elements up to a squared distance of `connectivity` from the center are considered neighbors. `connectivity` may range from 1 (no diagonal elements are neighbors) to `rank` (all elements are neighbors).

Returns

- **output** [ndarray of bools] Structuring element which may be used for binary morphological operations, with `rank` dimensions and all dimensions equal to 3.

See also:

- `iterate_structure`, `binary_dilation`, `binary_erosion`

Notes

generate_binary_structure can only create structuring elements with dimensions equal to 3, i.e., minimal dimensions. For larger structuring elements, that are useful e.g., for eroding large objects, one may either use `iterate_structure`, or create directly custom arrays with numpy functions such as `numpy.ones`.

Examples

```python
>>> from scipy import ndimage
>>> struct = ndimage.generate_binary_structure(2, 1)
>>> struct
array([[False, True, False],
 [True, True, True],
 [False, True, False]], dtype=bool)
>>> a = np.zeros((5,5))
>>> a[2, 2] = 1
>>> a
array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]])
```
>>> b = ndimage.binary_dilation(a, structure=struct).astype(a.dtype)
>>> b
array([[ 0.,  0.,  0.,  0.,  0.],
        [ 0.,  1.,  0.,  0.,  0.],
        [ 0.,  1.,  1.,  1.,  0.],
        [ 0.,  0.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.]])
>>> ndimage.binary_dilation(b, structure=struct).astype(a.dtype)
array([[ 0.,  0.,  1.,  0.,  0.],
        [ 0.,  1.,  1.,  1.,  0.],
        [ 1.,  1.,  1.,  1.,  1.],
        [ 0.,  1.,  1.,  1.,  0.],
        [ 0.,  0.,  1.,  0.,  0.]]
>>> struct = ndimage.generate_binary_structure(2, 2)
>>> struct
array([[ True,  True,  True],
        [ True,  True,  True],
        [ True,  True,  True]], dtype=bool)
>>> struct = ndimage.generate_binary_structure(3, 1)
>>> struct # no diagonal elements
array([[[False, False, False],
        [False,  True, False],
        [False, False, False]],
        [[False,  True, False],
        [ True,  True,  True],
        [False,  True, False]],
        [[False, False, False],
        [False,  True, False],
        [False, False, False]], dtype=bool)

scipy.ndimage.grey_closing

scipy.ndimage.grey_closing(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)

Multidimensional grayscale closing.

A grayscale closing consists in the succession of a grayscale dilation, and a grayscale erosion.

Parameters

- **input** [array_like] Array over which the grayscale closing is to be computed.
- **size** [tuple of ints] Shape of a flat and full structuring element used for the grayscale closing. Optional if footprint or structure is provided.
- **footprint** [array of ints, optional] Positions of non-infinite elements of a flat structuring element used for the grayscale closing.
- **structure** [array of ints, optional] Structuring element used for the grayscale closing. structure may be a non-flat structuring element.
- **output** [array, optional] An array used for storing the output of the closing may be provided.
- **mode** [‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’], optional] The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to ‘constant’. Default is ‘reflect’
- **cval** [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
- **origin** [scalar, optional] The origin parameter controls the placement of the filter. Default 0

3.3. API definition
Returns

grey_closing
   [ndarray] Result of the grayscale closing of input with structure.

See also:

binary_closing, grey_dilation, grey_erosion, grey_opening

generate_binary_structure

Notes

The action of a grayscale closing with a flat structuring element amounts to smoothen deep local minima, whereas
binary closing fills small holes.

References

[1]

Examples

```python
>>> from scipy import ndimage
>>> a = np.arange(36).reshape((6,6))
>>> a[3,3] = 0
>>> a
array([[0, 1, 2, 3, 4, 5],
 [6, 7, 8, 9, 10, 11],
 [12, 13, 14, 15, 16, 17],
 [18, 19, 20, 0, 22, 23],
 [24, 25, 26, 27, 28, 29],
 [30, 31, 32, 33, 34, 35]])
>>> ndimage.grey_closing(a, size=(3,3))
array([[7, 7, 8, 9, 10, 11],
 [7, 7, 8, 9, 10, 11],
 [13, 13, 14, 15, 16, 17],
 [19, 19, 20, 0, 22, 23],
 [25, 25, 26, 27, 28, 29],
 [31, 31, 32, 33, 34, 35]])
>>> # Note that the local minimum a[3,3] has disappeared
```

scipy.ndimage.grey_dilation

Calculate a greyscale dilation, using either a structuring element, or a footprint corresponding to a flat structuring
element.

Grayscale dilation is a mathematical morphology operation. For the simple case of a full and flat structuring element,
it can be viewed as a maximum filter over a sliding window.

Parameters

- `input` [array_like] Array over which the grayscale dilation is to be computed.
size [tuple of ints] Shape of a flat and full structuring element used for the grayscale dilation. Optional if footprint or structure is provided.
footprint [array of ints, optional] Positions of non-infinite elements of a flat structuring element used for the grayscale dilation. Non-zero values give the set of neighbors of the center over which the maximum is chosen.
structure [array of ints, optional] Structuring element used for the grayscale dilation. structure may be a non-flat structuring element.
output [array, optional] An array used for storing the output of the dilation may be provided.
mode ['reflect','constant','nearest','mirror','wrap'], optional] The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
cval [scalar, optional] Value to fill past edges of input if mode is 'constant'. Default is 0.0.
origin [scalar, optional] The origin parameter controls the placement of the filter. Default 0

Returns
grey_dilation [ndarray] Grayscale dilation of input.

See also:

binary_dilation, grey_erosion, grey_closing, grey_opening
generate_binary_structure, maximum_filter

Notes

The grayscale dilation of an image input by a structuring element s defined over a domain E is given by:

\[(input+s)(x) = \max\ \{input(y)+s(x-y), \text{for } y \text{ in } E\}\]

In particular, for structuring elements defined as \(s(y) = 0\) for \(y \text{ in } E\), the grayscale dilation computes the maximum of the input image inside a sliding window defined by E.

Grayscale dilation [1] is a mathematical morphology operation [2].

References

[1]. [2]

Examples

```python
>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[2:5, 2:5] = 1
>>> a[4, 4] = 2; a[2, 3] = 3
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 3, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 2, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
```

(continues on next page)
```python
>>> ndimage.grey_dilation(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 1, 3, 3, 2, 0],
 [0, 1, 1, 2, 2, 0],
 [0, 1, 1, 2, 2, 0],
 [0, 0, 0, 0, 0, 0]])
```
```python
>>> ndimage.grey_dilation(a, footprint=np.ones((3,3)))
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 1, 3, 3, 2, 0],
 [0, 1, 1, 2, 2, 0],
 [0, 1, 1, 2, 2, 0],
 [0, 0, 0, 0, 0, 0]])
```
```python
>>> s = ndimage.generate_binary_structure(2,1)
```
```python
>>> s
array([[False, True, False],
 [True, True, True],
 [False, True, False]], dtype=bool)
```
```python
>>> ndimage.grey_dilation(a, footprint=s)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 3, 1, 0, 0],
 [0, 1, 3, 3, 1, 0],
 [0, 1, 1, 2, 2, 0],
 [0, 1, 1, 2, 2, 0],
 [0, 0, 1, 2, 1, 0],
 [0, 0, 0, 0, 0, 0]])
```
```python
>>> ndimage.grey_dilation(a, size=(3,3), structure=np.ones((3,3)))
array([[1, 1, 1, 1, 1, 1, 1],
 [1, 2, 4, 4, 4, 2, 1],
 [1, 2, 4, 4, 4, 2, 1],
 [1, 2, 4, 4, 4, 3, 1],
 [1, 2, 2, 3, 3, 3, 1],
 [1, 2, 2, 3, 3, 3, 1],
 [1, 1, 1, 1, 1, 1, 1]])
```

**scipy.ndimage.grey_erosion**

`scipy.ndimage.grey_erosion` *(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)*

Calculate a greyscale erosion, using either a structuring element, or a footprint corresponding to a flat structuring element.

Grayscale erosion is a mathematical morphology operation. For the simple case of a full and flat structuring element, it can be viewed as a minimum filter over a sliding window.

**Parameters**

- `input` [array_like] Array over which the grayscale erosion is to be computed.
- `size` [tuple of ints] Shape of a flat and full structuring element used for the grayscale erosion. Optional if `footprint` or `structure` is provided.
- `footprint` [array of ints, optional] Positions of non-infinite elements of a flat structuring element used
for the grayscale erosion. Non-zero values give the set of neighbors of the center over which the minimum is chosen.

**structure**
[array of ints, optional] Structuring element used for the grayscale erosion. *structure* may be a non-flat structuring element.

**output**
[array, optional] An array used for storing the output of the erosion may be provided.

**mode**
[{'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional] The *mode* parameter determines how the array borders are handled, where *cval* is the value when mode is equal to 'constant'. Default is 'reflect'

**cval**
[scalar, optional] Value to fill past edges of input if *mode* is 'constant'. Default is 0.0.

**origin**
[scalar, optional] The *origin* parameter controls the placement of the filter. Default 0

**Returns**

output  [ndarray] Grayscale erosion of *input*.

See also:

*binary_erosion*, *grey_dilation*, *grey_opening*, *grey_closing*

*generate_binary_structure*, *minimum_filter*

**Notes**

The grayscale erosion of an image input by a structuring element *s* defined over a domain *E* is given by:

\[(\text{input}+s)(x) = \min \{\text{input}(y) - s(x-y), \text{for } y \in E\}\]

In particular, for structuring elements defined as *s*(y) = 0 for y in E, the grayscale erosion computes the minimum of the input image inside a sliding window defined by E.

Grayscale erosion [1] is a *mathematical morphology* operation [2].

**References**

[1], [2]

**Examples**

```python
>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[1:6, 1:6] = 3
>>> a[4,4] = 2; a[2,3] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 3, 3, 3, 3, 3, 0],
 [0, 3, 3, 1, 3, 3, 0],
 [0, 3, 3, 3, 3, 3, 0],
 [0, 3, 3, 3, 2, 3, 0],
 [0, 3, 3, 3, 3, 3, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.grey_erosion(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 (continues on next page)
```
scipy.ndimage.grey_opening

scipy.ndimage.grey_opening(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)

Multidimensional grayscale opening.

A grayscale opening consists in the succession of a grayscale erosion, and a grayscale dilation.

Parameters

- **input**: [array_like] Array over which the grayscale opening is to be computed.
- **size**: [tuple of ints] Shape of a flat and full structuring element used for the grayscale opening. Optional if footprint or structure is provided.
- **footprint**: [array of ints, optional] Positions of non-infinite elements of a flat structuring element used for the grayscale opening.
- **structure**: [array of ints, optional] Structuring element used for the grayscale opening. structure may be a non-flat structuring element.
- **output**: [array, optional] An array used for storing the output of the opening may be provided.
- **mode**: [{'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional] The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
- **cval**: [scalar, optional] Value to fill past edges of input if mode is 'constant'. Default is 0.0.
- **origin**: [scalar, optional] The origin parameter controls the placement of the filter. Default 0

Returns

- **grey_opening**: [ndarray] Result of the grayscale opening of input with structure.

See also:

- binary_opening, grey_dilation, grey_erosion, grey_closing
- generate_binary_structure
Notes

The action of a grayscale opening with a flat structuring element amounts to smoothen high local maxima, whereas binary opening erases small objects.

References

[1]

Examples

```python
>>> from scipy import ndimage
>>> a = np.arange(36).reshape((6, 6))
>>> a[3, 3] = 50
>>> a
array([[0, 1, 2, 3, 4, 5],
 [6, 7, 8, 9, 10, 11],
 [12, 13, 14, 15, 16, 17],
 [18, 19, 20, 50, 22, 23],
 [24, 25, 26, 27, 28, 29],
 [30, 31, 32, 33, 34, 35]])
>>> ndimage.grey_opening(a, size=(3, 3))
array([[0, 1, 2, 3, 4, 4],
 [6, 7, 8, 9, 10, 10],
 [12, 13, 14, 15, 16, 16],
 [18, 19, 20, 22, 22, 22],
 [24, 25, 26, 27, 28, 28],
 [24, 25, 26, 27, 28, 28]])
>>> # Note that the local maximum a[3,3] has disappeared
```

**scipy.ndimage.iterate_structure**

scipy.ndimage.iterate_structure(structure, iterations, origin=None)

Iterate a structure by dilating it with itself.

**Parameters**

- **structure** [array_like] Structuring element (an array of bools, for example), to be dilated with itself.
- **iterations** [int] number of dilations performed on the structure with itself
- **origin** [optional] If origin is None, only the iterated structure is returned. If not, a tuple of the iterated structure and the modified origin is returned.

**Returns**

- **iterate_structure** [ndarray of bools] A new structuring element obtained by dilating structure (iterations - 1) times with itself.

See also:

- **generate_binary_structure**
Examples

```python
>>> from scipy import ndimage
>>> struct = ndimage.generate_binary_structure(2, 1)
>>> struct.astype(int)
array([[0, 1, 0],
 [1, 1, 1],
 [0, 1, 0]])
```

```python
>>> ndimage.iterate_structure(struct, 2).astype(int)
array([[0, 0, 0, 1, 0, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 1, 1, 1, 1, 1, 0],
 [1, 1, 1, 1, 1, 1, 1],
 [0, 1, 1, 1, 1, 1, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 1, 0, 0, 0]])
```

```python
>>> ndimage.iterate_structure(struct, 3).astype(int)
array([[0, 0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 1, 1, 0, 0, 0],
 [0, 0, 1, 1, 1, 1, 0, 0],
 [0, 1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 1, 1, 1],
 [0, 1, 1, 1, 1, 1, 1, 0],
 [0, 0, 1, 1, 1, 1, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0]])
```

scipy.ndimage.morphological_gradient

scipy.ndimage.morphological_gradient (input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)

Multidimensional morphological gradient.

The morphological gradient is calculated as the difference between a dilation and an erosion of the input with a given structuring element.

Parameters

- **input** [array_like] Array over which to compute the morphological gradient.
- **size** [tuple of ints] Shape of a flat and full structuring element used for the mathematical morphology operations. Optional if footprint or structure is provided. A larger size yields a more blurred gradient.
- **footprint** [array of ints, optional] Positions of non-infinite elements of a flat structuring element used for the morphology operations. Larger footprints give a more blurred morphological gradient.
- **structure** [array of ints, optional] Structuring element used for the morphology operations. structure may be a non-flat structuring element.
- **output** [array, optional] An array used for storing the output of the morphological gradient may be provided.
- **mode** ['reflect', 'constant', 'nearest', 'mirror', 'wrap'], optional] The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'
- **cval** [scalar, optional] Value to fill past edges of input if mode is 'constant'. Default is 0.0
- **origin** [scalar, optional] The origin parameter controls the placement of the filter. Default 0

Returns

- **morphological_gradient** [ndarray] Morphological gradient of input.

See also:
grey_dilation, grey_erosion, gaussian_gradient_magnitude

Notes

For a flat structuring element, the morphological gradient computed at a given point corresponds to the maximal difference between elements of the input among the elements covered by the structuring element centered on the point.

References

[1]

Examples

```python
>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[2:5, 2:5] = 1
>>> ndimage.morphological_gradient(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 1, 1, 1, 1, 1, 0],
 [0, 1, 1, 1, 1, 1, 0],
 [0, 1, 1, 0, 1, 1, 0],
 [0, 1, 1, 1, 1, 1, 0],
 [0, 1, 1, 1, 1, 1, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> # The morphological gradient is computed as the difference
>>> # between a dilation and an erosion
>>> ndimage.grey_dilation(a, size=(3,3)) -
... ndimage.grey_erosion(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 1, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 1, 1, 1, 1, 1, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> a = np.zeros((7,7), dtype=int)
>>> a[2:5, 2:5] = 1
>>> a[4,4] = 2; a[2,3] = 3
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 3, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 2, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.morphological_gradient(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 1, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 1, 3, 3, 3, 1, 0],
 [0, 0, 0, 0, 0, 0, 0]],
(continues on next page)```
scipy.ndimage.morphological_laplace

scipy.ndimage.morphological_laplace *(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)*

Multidimensional morphological laplace.

Parameters

- **input** [array_like] Input.
- **size** [int or sequence of ints, optional] See structure.
- **footprint** [bool or ndarray, optional] See structure.
- **structure** [structure, optional] Either size, footprint, or the structure must be provided.
- **output** [ndarray, optional] An output array can optionally be provided.
- **mode** [‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’], optional] The mode parameter determines how the array borders are handled. For ‘constant’ mode, values beyond borders are set to be cval. Default is ‘reflect’.
- **cval** [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0
- **origin** [origin, optional] The origin parameter controls the placement of the filter.

Returns

- **morphological_laplace** [ndarray] Output

scipy.ndimage.white_tophat

scipy.ndimage.white_tophat *(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)*

Multidimensional white tophat filter.

Parameters

- **input** [array_like] Input.
- **size** [tuple of ints] Shape of a flat and full structuring element used for the filter. Optional if footprint or structure is provided.
- **footprint** [array of ints, optional] Positions of elements of a flat structuring element used for the white tophat filter.
- **structure** [array of ints, optional] Structuring element used for the filter. structure may be a non-flat structuring element.
- **output** [array, optional] An array used for storing the output of the filter may be provided.
- **mode** [‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’], optional] The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to ‘constant’. Default is ‘reflect’.
- **cval** [scalar, optional] Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
- **origin** [scalar, optional] The origin parameter controls the placement of the filter. Default is 0.

Returns

- **output** [ndarray] Result of the filter of input with structure.

See also:

- **black_tophat**
Examples

Subtract gray background from a bright peak.

```python
>>> from scipy.ndimage import generate_binary_structure, white_tophat
>>> square = generate_binary_structure(rank=2, connectivity=3)
>>> bright_on_gray = np.array([[2, 3, 3, 2],
                              [3, 4, 5, 4, 3],
                              [3, 5, 9, 5, 3],
                              [3, 4, 5, 4, 3],
                              [2, 3, 3, 2]])
>>> white_tophat(input=bright_on_gray, structure=square)
array([[0, 0, 0, 0, 0],
       [0, 0, 1, 0, 0],
       [0, 1, 5, 1, 0],
       [0, 0, 1, 0, 0],
       [0, 0, 0, 0, 0]])
```

3.3.18 Orthogonal distance regression (scipy.odr)

Package Content

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Data(x[, y, we, wd, fix, meta])</code></td>
<td>The data to fit.</td>
</tr>
<tr>
<td><code>RealData(x[, y, sx, sy, covx, covy, fix, meta])</code></td>
<td>The data, with weightings as actual standard deviations and/or covariances.</td>
</tr>
<tr>
<td><code>Model(fcn[, fjacb, fjacd, extra_args,...])</code></td>
<td>The Model class stores information about the function you wish to fit.</td>
</tr>
<tr>
<td><code>ODR(data, model[, beta0, delta0,ifixb,...])</code></td>
<td>The ODR class gathers all information and coordinates the running of the main fitting routine.</td>
</tr>
<tr>
<td><code>Output(output)</code></td>
<td>The Output class stores the output of an ODR run.</td>
</tr>
<tr>
<td><code>odr(fcn, beta0, y, x[, we, wd, fjacb,...])</code></td>
<td>Low-level function for ODR.</td>
</tr>
<tr>
<td><code>OdrWarning</code></td>
<td>Warning indicating that the data passed into ODR will cause problems when passed into 'odr' that the user should be aware of.</td>
</tr>
<tr>
<td><code>OdrError</code></td>
<td>Exception indicating an error in fitting.</td>
</tr>
<tr>
<td><code>OdrStop</code></td>
<td>Exception stopping fitting.</td>
</tr>
<tr>
<td><code>polynomial(order)</code></td>
<td>Factory function for a general polynomial model.</td>
</tr>
<tr>
<td><code>exponential</code></td>
<td>Exponential model</td>
</tr>
<tr>
<td><code>multilinear</code></td>
<td>Arbitrary-dimensional linear model</td>
</tr>
<tr>
<td><code>unilinear</code></td>
<td>Univariate linear model</td>
</tr>
<tr>
<td><code>quadratic</code></td>
<td>Quadratic model</td>
</tr>
</tbody>
</table>
scipy.odr.Data

class scipy.odr.Data(x, y=None, we=None, wd=None, fix=None, meta={})

The data to fit.

Parameters

x [array_like] Observed data for the independent variable of the regression

y [array_like, optional] If array-like, observed data for the dependent variable of the regression. A scalar input implies that the model to be used on the data is implicit.

we [array_like, optional] If we is a scalar, then that value is used for all data points (and all dimensions of the response variable). If we is a rank-1 array of length q (the dimensionality of the response variable), then this vector is the diagonal of the covariant weighting matrix for all data points. If we is a rank-1 array of length n (the number of data points), then the i'th element is the weight for the i'th response variable observation (single-dimensional only). If we is a rank-2 array of shape (q, q), then this is the full covariant weighting matrix broadcast to each observation. If we is a rank-2 array of shape (q, n), then we[:,i] is the diagonal of the covariant weighting matrix for the i'th observation. If we is a rank-3 array of shape (q, q, n), then we[:,:,i] is the full specification of the covariant weighting matrix for each observation. If the fit is implicit, then only a positive scalar value is used.

wd [array_like, optional] If wd is a scalar, then that value is used for all data points (and all dimensions of the input variable). If wd = 0, then the covariant weighting matrix for each observation is set to the identity matrix (so each dimension of each observation has the same weight). If wd is a rank-1 array of length m (the dimensionality of the input variable), then this vector is the diagonal of the covariant weighting matrix for all data points. If wd is a rank-1 array of length n (the number of data points), then the i'th element is the weight for the i'th input variable observation (single-dimensional only). If wd is a rank-2 array of shape (m, m), then this is the full covariant weighting matrix broadcast to each observation. If wd is a rank-2 array of shape (m, n), then wd[:,i] is the diagonal of the covariant weighting matrix for the i'th observation. If wd is a rank-3 array of shape (m, m, n), then wd[:,:,i] is the full specification of the covariant weighting matrix for each observation.

fix [array_like of ints, optional] The fix argument is the same as ifixx in the class ODR. It is an array of integers with the same shape as data.x that determines which input observations are treated as fixed. One can use a sequence of length m (the dimensionality of the input observations) to fix some dimensions for all observations. A value of 0 fixes the observation, a value > 0 makes it free.

Notes

Each argument is attached to the member of the instance of the same name. The structures of x and y are described in the Model class docstring. If y is an integer, then the Data instance can only be used to fit with implicit models where the dimensionality of the response is equal to the specified value of y.

The we argument weights the effect a deviation in the response variable has on the fit. The wd argument weights the effect a deviation in the input variable has on the fit. To handle multidimensional inputs and responses easily, the structure of these arguments has the n'th dimensional axis first. These arguments heavily use the structured arguments feature of ODRPACK to conveniently and flexibly support all options. See the ODRPACK User's Guide for a full explanation of how these weights are used in the algorithm. Basically, a higher value of the weight for a particular data point makes a deviation at that point more detrimental to the fit.
Methods

| set_meta(**kwds) | Update the metadata dictionary with the keywords and data provided by keywords. |

scipy.odr.Data.set_meta

Data.set_meta(**kwds)

Update the metadata dictionary with the keywords and data provided by keywords.

Examples

```py
data.set_meta(lab="Ph 7; Lab 26", title="Ag110 + Ag108 Decay")
```

scipy.odr.RealData

class scipy.odr.RealData(x, y=None, sx=None, sy=None, covx=None, covy=None, fix=None, meta={})

The data, with weightings as actual standard deviations and/or covariances.

Parameters

- **x** [array_like] Observed data for the independent variable of the regression
- **y** [array_like, optional] If array-like, observed data for the dependent variable of the regression. A scalar input implies that the model to be used on the data is implicit.
- **sx** [array_like, optional] Standard deviations of \(x \) \(sx \) are standard deviations of \(x \) and are converted to weights by dividing 1.0 by their squares.
- **sy** [array_like, optional] Standard deviations of \(y \) \(sy \) are standard deviations of \(y \) and are converted to weights by dividing 1.0 by their squares.
- **covx** [array_like, optional] Covariance of \(x \ \text{covx} \) is an array of covariance matrices of \(x \) and are converted to weights by performing a matrix inversion on each observation’s covariance matrix.
- **covy** [array_like, optional] Covariance of \(y \ \text{covy} \) is an array of covariance matrices and are converted to weights by performing a matrix inversion on each observation’s covariance matrix.
- **fix** [array_like, optional] The argument and member fix is the same as Data.fix and ODR.ifixx: It is an array of integers with the same shape as \(x \) that determines which input observations are treated as fixed. One can use a sequence of length \(m \) (the dimensionality of the input observations) to fix some dimensions for all observations. A value of 0 fixes the observation, a value > 0 makes it free.
- **meta** [dict, optional] Free-form dictionary for metadata.

Notes

The weights \(wd \) and \(we \) are computed from provided values as follows:

- \(sx \) and \(sy \) are converted to weights by dividing 1.0 by their squares. For example, \(wd = 1./\text{numpy.power}(\text{sx}', 2) \).
- \(\text{covx} \) and \(\text{covy} \) are arrays of covariance matrices and are converted to weights by performing a matrix inversion on each observation’s covariance matrix. For example, \(\text{we}[i] = \text{numpy.linalg.inv(\text{covy}[i])} \).

These arguments follow the same structured argument conventions as \(wd \) and we only restricted by their natures: \(sx \) and \(sy \) can’t be rank-3, but \(\text{covx} \) and \(\text{covy} \) can be.
Only set either *sx* or *covx* (not both). Setting both will raise an exception. Same with *sy* and *covy*.

Methods

```
set_meta(**kwds)  Update the metadata dictionary with the keywords and
data provided by keywords.
```

scipy.odr.RealData.set_meta

```
RealData.set_meta(**kwds)
Update the metadata dictionary with the keywords and data provided by keywords.
```

Examples

```
data.set_meta(lab="Ph 7; Lab 26", title="Ag110 + Ag108 Decay")
```

scipy.odr.Model

class scipy.odr.Model (fcn, fjacb=None, fjacd=None, extra_args=None, estimate=None, implicit=0, meta=None)

The `Model` class stores information about the function you wish to fit.

It stores the function itself, at least, and optionally stores functions which compute the Jacobians used during fitting. Also, one can provide a function that will provide reasonable starting values for the fit parameters possibly given the set of data.

Parameters

- **fcn** [function] `fcn(beta, x) -> y`
- **fjacb** [function] Jacobian of `fcn` wrt the fit parameters `beta`. `fjacb(beta, x) -> @f_i(x,B)/@B_j`
- **fjacd** [function] Jacobian of `fcn` wrt the (possibly multidimensional) input variable. `fjacd(beta, x) -> @f_i(x,B)/@x_j`
- **extra_args** [tuple, optional] If specified, `extra_args` should be a tuple of extra arguments to pass to `fcn`, `fjacb`, and `fjacd`. Each will be called by `apply(fcn, (beta, x) + extra_args)`
- **estimate** [array_like of rank-1] Provides estimates of the fit parameters from the data `estimate(data) -> estbeta`
- **implicit** [boolean] If `TRUE`, specifies that the model is implicit; i.e *fcn*(beta, x) ≈ 0 and there is no y data to fit against
- **meta** [dict, optional] freeform dictionary of metadata for the model

Notes

Note that the `fcn`, `fjacb`, and `fjacd` operate on NumPy arrays and return a NumPy array. The `estimate` object takes an instance of the `Data` class.

Here are the rules for the shapes of the argument and return arrays of the callback functions:

- **x** if the input data is single-dimensional, then x is rank-1 array; i.e., x = array([1, 2, 3, ...]); x.shape = (n,) If the input data is multi-dimensional, then x is a rank-2 array; i.e., x = array([[1, 2, ...], [2, 4, ...]]); x.shape = (m, n). In all cases, it has the same shape as the input data array passed to `odr`. `m` is the dimensionality of the input data, `n` is the number of observations.
y if the response variable is single-dimensional, then y is a rank-1 array, i.e., \(y = \text{array}([2, 4, \ldots]) \); \(y.\text{shape} = (n,). \) If the response variable is multi-dimensional, then y is a rank-2 array, i.e., \(y = \text{array}([[2, 4, \ldots], [3, 6, \ldots]]) \); \(y.\text{shape} = (q, n) \) where \(q \) is the dimensionality of the response variable.

beta rank-1 array of length \(p \) where \(p \) is the number of parameters; i.e. \(\beta = \text{array}([B_1, B_2, \ldots, B_p]) \)

fjacb if the response variable is multi-dimensional, then the return array's shape is \((q, p, n) \) such that \(\text{fjacb}(x, \beta)[l,k,i] = \frac{d f_l(X,B)}{d B_k} \) evaluated at the \(i \)th data point. If \(q == 1 \), then the return array is only rank-2 and with shape \((p, n) \).

fjacd as with fjacb, only the return array's shape is \((q, m, n) \) such that \(\text{fjacd}(x, \beta)[l,j,i] = \frac{d f_l(X,B)}{d X_j} \) at the \(i \)th data point. If \(q == 1 \), then the return array's shape is \((m, n) \). If \(m == 1 \), the shape is \((n,) \). If \(m == q == 1 \), the shape is \((n,) \).

Methods

```python
set_meta(**kwds)  Update the metadata dictionary with the keywords and data provided here.
```

```python
scipy.odr.Model.set_meta
```

```python
Model.set_meta(**kwds)
```

Update the metadata dictionary with the keywords and data provided here.

Examples

```python
set_meta(name="Exponential", equation="y = a \exp(b \times) + c")
```

```python
scipy.odr.ODR
```

```python
class scipy.odr.ODR (data, model, beta0=None, delta0=None,ifixb=None,ifixx=None, job=None, iprint=None, errfile=None, rptfile=None, ndigit=None, taufac=None, sstol=None, partol=None, maxit=None, stpb=None, stpd=None, sclb=None, scld=None, work=None, iwork=None, overwrite=False)
```

The ODR class gathers all information and coordinates the running of the main fitting routine.

Members of instances of the ODR class have the same names as the arguments to the initialization routine.

Parameters

```python
data  [Data class instance] instance of the Data class
model  [Model class instance] instance of the Model class
```

Other Parameters

```python
beta0  [array_like of rank-1] a rank-1 sequence of initial parameter values. Optional if model provides an “estimate” function to estimate these values.
```
delta0 [array_like of floats of rank-1, optional] a (double-precision) float array to hold the initial values of the errors in the input variables. Must be same shape as data.x

ifixb [array_like of ints of rank-1, optional] sequence of integers with the same length as beta0 that determines which parameters are held fixed. A value of 0 fixes the parameter, a value > 0 makes the parameter free.

ifixx [array_like of ints with same shape as data.x, optional] an array of integers with the same shape as data.x that determines which input observations are treated as fixed. One can use a sequence of length m (the dimensionality of the input observations) to fix some dimensions for all observations. A value of 0 fixes the observation, a value > 0 makes it free.

erfile [str, optional] string with the filename to print ODRPACK errors to. If the file already exists, an error will be thrown. The overwrite argument can be used to prevent this. Do Not Open This File Yourself!

rptfile [str, optional] string with the filename to print ODRPACK summaries to. If the file already exists, an error will be thrown. The overwrite argument can be used to prevent this. Do Not Open This File Yourself!

ndigit [int, optional] integer specifying the number of reliable digits in the computation of the function.

taufac [float, optional] float specifying the initial trust region. The default value is 1. The initial trust region is equal to taufac times the length of the first computed Gauss-Newton step. taufac must be less than 1.

sstol [float, optional] float specifying the tolerance for convergence based on the relative change in the sum-of-squares. The default value is eps**(1/2) where eps is the smallest value such that 1 + eps > 1 for double precision computation on the machine. sstol must be less than 1.

partol [float, optional] float specifying the tolerance for convergence based on the relative change in the estimated parameters. The default value is eps**(2/3) for explicit models and eps**(1/3) for implicit models. partol must be less than 1.

maxit [int, optional] integer specifying the maximum number of iterations to perform. For first runs, maxit is the total number of iterations performed and defaults to 50. For restarts, maxit is the number of additional iterations to perform and defaults to 10.

stpb [array_like, optional] sequence (len(stpb) == len(beta0)) of relative step sizes to compute finite difference derivatives wrt the parameters.

stdp [optional] array (stdp.shape == data.x.shape or stdp.shape == (m,)) of relative step sizes to compute finite difference derivatives wrt the input variable errors. If stdp is a rank-1 array with length m (the dimensionality of the input variable), then the values are broadcast to all observations.

sclb [array_like, optional] sequence (len(stpb) == len(beta0)) of scaling factors for the parameters. The purpose of these scaling factors are to scale all of the parameters to around unity. Normally appropriate scaling factors are computed if this argument is not specified. Specify them yourself if the automatic procedure goes awry.

scld [array_like, optional] array (scld.shape == data.x.shape or scld.shape == (m,)) of scaling factors for the errors in the input variables. Again, these factors are automatically computed if you do not provide them. If scld.shape == (m,), then the scaling factors are broadcast to all observations.

work [ndarray, optional] array to hold the double-valued working data for ODRPACK. When restarting, takes the value of self.output.work.

iwork [ndarray, optional] array to hold the integer-valued working data for ODRPACK. When restarting, takes the value of self.output.iwork.
overwrite [bool, optional] If it is True, output files defined by *errfile* and *rptfile* are overwritten. The default is False.

Attributes

- **data** [Data] The data for this fit
- **model** [Model] The model used in fit
- **output** [Output] An instance if the Output class containing all of the returned data from an invocation of ODR.run() or ODR.restart()

Methods

- **restart([iter])**
 Restarts the run with *iter* more iterations.

- **run()**
 Run the fitting routine with all of the information given and with *full_output=1*.

- **set_iprint([init, so_init, iter, so_iter, ...])**
 Set the iprint parameter for the printing of computation reports.

- **set_job([fit_type, deriv, var_calc, ...])**
 Sets the ”job” parameter is a hopefully comprehensible way.

scipy.odr.ODR.restart

ODR.restart (*iter=None*)
Restarts the run with *iter* more iterations.

Parameters

- **iter** [int, optional] ODRPACK’s default for the number of new iterations is 10.

Returns

- **output** [Output instance] This object is also assigned to the attribute .output.

scipy.odr.ODR.run

ODR.run()
Run the fitting routine with all of the information given and with *full_output=1*.

Returns

- **output** [Output instance] This object is also assigned to the attribute .output.

scipy.odr.ODR.set_iprint

ODR.set_iprint (*init=None, so_init=None, iter=None, so_iter=None, iter_step=None, final=None, so_final=None*)
Set the iprint parameter for the printing of computation reports.

If any of the arguments are specified here, then they are set in the iprint member. If iprint is not set manually or with this method, then ODRPACK defaults to no printing. If no filename is specified with the member rptfile, then ODRPACK prints to stdout. One can tell ODRPACK to print to stdout in addition to the specified filename by setting the so_* arguments to this function, but one cannot specify to print to stdout but not a file since one can do that by not specifying a rptfile filename.
There are three reports: initialization, iteration, and final reports. They are represented by the arguments init, iter, and final respectively. The permissible values are 0, 1, and 2 representing “no report”, “short report”, and “long report” respectively.

The argument iter_step (0 <= iter_step <= 9) specifies how often to make the iteration report; the report will be made for every iter_step'th iteration starting with iteration one. If iter_step == 0, then no iteration report is made, regardless of the other arguments.

If the rptfile is None, then any so_* arguments supplied will raise an exception.

scipy.odr.ODR.set_job

ODR.set_job (*fit_type=None, deriv=None, var_calc=None, del_init=None, restart=None*)

Sets the “job” parameter in a hopefully comprehensible way.

If an argument is not specified, then the value is left as is. The default value from class initialization is for all of these options set to 0.

Parameters

- **fit_type**
 - [0, 1, 2] int: 0 -> explicit ODR
 - 1 -> implicit ODR
 - 2 -> ordinary least-squares

- **deriv**
 - [0, 1, 2, 3] int: 0 -> forward finite differences
 - 1 -> central finite differences
 - 2 -> user-supplied derivatives (Jacobians) with results checked by ODRPACK
 - 3 -> user-supplied derivatives, no checking

- **var_calc**
 - [0, 1, 2] int:
 - 0 -> calculate asymptotic covariance matrix and fit parameter uncertainties (V_B, s_B) using derivatives recomputed at the final solution
 - 1 -> calculate V_B and s_B using derivatives from last iteration
 - 2 -> do not calculate V_B and s_B

- **del_init**
 - [0, 1] int: 0 -> initial input variable offsets set to 0
 - 1 -> initial offsets provided by user in variable “work”

- **restart**
 - [0, 1] int: 0 -> fit is not a restart
 - 1 -> fit is a restart

Notes

The permissible values are different from those given on pg. 31 of the ODRPACK User’s Guide only in that one cannot specify numbers greater than the last value for each variable.

If one does not supply functions to compute the Jacobians, the fitting procedure will change deriv to 0, finite differences, as a default. To initialize the input variable offsets by yourself, set del_init to 1 and put the offsets into the “work” variable correctly.
scipy.odr.Output

class scipy.odr.Output (output)

The Output class stores the output of an ODR run.

Notes

Takes one argument for initialization, the return value from the function odr. The attributes listed as “optional” above are only present if odr was run with full_output=1.

Attributes

beta [ndarray] Estimated parameter values, of shape (q,).
sd_beta [ndarray] Standard deviations of the estimated parameters, of shape (p,).
cov_beta [ndarray] Covariance matrix of the estimated parameters, of shape (p,p).
delta [ndarray, optional] Array of estimated errors in input variables, of same shape as x.
eps [ndarray, optional] Array of estimated errors in response variables, of same shape as y.
xplus [ndarray, optional] Array of x + delta.
y [ndarray, optional] Array y = fcn(x + delta).
res_var [float, optional] Residual variance.
sum_square [float, optional] Sum of squares error.
sum_square_delta [float, optional] Sum of squares of delta error.
sum_square_eps [float, optional] Sum of squares of eps error.
inv_condnum [float, optional] Inverse condition number (cf. ODRPACK UG p. 77).
rel_error [float, optional] Relative error in function values computed within fcn.
work [ndarray, optional] Final work array.
work_ind [dict, optional] Indices into work for drawing out values (cf. ODRPACK UG p. 83).
info [int, optional] Reason for returning, as output by ODRPACK (cf. ODRPACK UG p. 38).
stopreason [list of str, optional] info interpreted into English.

Methods

pprint() Pretty-print important results.

scipy.odr.Output.pprint

Output.pprint () Pretty-print important results.

scipy.odr.odr

`scipy.odr.odr(fcn, beta0, y, x, we=None, wd=None, fjacb=None, fjacd=None, extra_args=None,ifixx=None, ifixb=None, job=0, iprint=0, errfile=None, rptfile=None, ndigit=0, taufac=0.0, sstol=-1.0, partol=-1.0, maxit=-1, stpb=None, stdp=None, sclb=None, scld=None, work=None, iwork=None, full_output=0)`

Low-level function for ODR.

See also:

ODR

The ODR class gathers all information and coordinates the running of the main fitting routine.

Model

The Model class stores information about the function you wish to fit.

Data

The data to fit.

RealData

Data with weights as actual std. devs and/or covariances.

Notes

This is a function performing the same operation as the ODR, Model, and Data classes together. The parameters of this function are explained in the class documentation.

scipy.odr.OdrWarning

exception `scipy.odr.OdrWarning`

Warning indicating that the data passed into ODR will cause problems when passed into ‘odr’ that the user should be aware of.

```python
with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

scipy.odr.OdrError

exception `scipy.odr.OdrError`

Exception indicating an error in fitting.

This is raised by odr if an error occurs during fitting.

```python
with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

scipy.odr.OdrStop

exception `scipy.odr.OdrStop`

Exception stopping fitting.

You can raise this exception in your objective function to tell odr to stop fitting.

```python
with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```
scipy.odr.polynomial

scipy.odr.polynomial(order)
Factory function for a general polynomial model.

Parameters

order [int or sequence] If an integer, it becomes the order of the polynomial to fit. If a sequence of numbers, then these are the explicit powers in the polynomial. A constant term (power 0) is always included, so don’t include 0. Thus, polynomial(n) is equivalent to polynomial(range(1, n+1)).

Returns

Examples

We can fit an input data using orthogonal distance regression (ODR) with a polynomial model:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy import odr
>>> x = np.linspace(0.0, 5.0)
>>> y = np.sin(x)
>>> poly_model = odr.polynomial(3)  # using third order polynomial model
>>> data = odr.Data(x, y)
>>> odr_obj = odr.ODR(data, poly_model)
>>> output = odr_obj.run()  # running ODR fitting
>>> poly = np.poly1d(output.beta[::-1])
>>> poly_y = poly(x)
>>> plt.plot(x, y, label="input data")
>>> plt.plot(x, poly_y, label="polynomial ODR")
>>> plt.legend()
>>> plt.show()
```
scipy.odr.exponential

scipy.odr.exponential = `<scipy.odr._models._ExponentialModel object>

Exponential model

This model is defined by $y = \beta_0 + e^{\beta_1 x}$

Examples

We can calculate orthogonal distance regression with an exponential model:

```python
>>> from scipy import odr
>>> x = np.linspace(0.0, 5.0)
>>> y = -10.0 + np.exp(0.5 * x)
>>> data = odr.Data(x, y)
>>> odr_obj = odr.ODR(data, odr.exponential)
>>> output = odr_obj.run()
>>> print(output.beta)
[-10.  0.5]
```

scipy.odr.multilinear

scipy.odr.multilinear = `<scipy.odr._models._MultilinearModel object>

Arbitrary-dimension linear model

This model is defined by $y = \beta_0 + \sum_{i=1}^{m} \beta_i x_i$

Examples

We can calculate orthogonal distance regression with an arbitrary dimensional linear model:

```python
>>> from scipy import odr
>>> x = np.linspace(0.0, 5.0)
>>> y = 10.0 + 5.0 * x
>>> data = odr.Data(x, y)
>>> odr_obj = odr.ODR(data, odr.multilinear)
>>> output = odr_obj.run()
>>> print(output.beta)
[10.  5.]
```

scipy.odr.unilinear

scipy.odr.unilinear = `<scipy.odr._models._UnilinearModel object>

Univariate linear model

This model is defined by $y = \beta_0 x + \beta_1$
Examples

We can calculate orthogonal distance regression with an unlinear model:

```python
>>> from scipy import odr
>>> x = np.linspace(0.0, 5.0)
>>> y = 1.0 * x + 2.0
>>> data = odr.Data(x, y)
>>> odr_obj = odr.ODR(data, odr.unilinear)
>>> output = odr_obj.run()
>>> print(output.beta)
[1. 2.]
```

scipy.odr.quadratic

```
scipy.odr.quadratic = <scipy.odr._models._QuadraticModel object>
```

Quadratic model

This model is defined by $y = \beta_0 x^2 + \beta_1 x + \beta_2$

Examples

We can calculate orthogonal distance regression with a quadratic model:

```python
>>> from scipy import odr
>>> x = np.linspace(0.0, 5.0)
>>> y = 1.0 * x ** 2 + 2.0 * x + 3.0
>>> data = odr.Data(x, y)
>>> odr_obj = odr.ODR(data, odr.quadratic)
>>> output = odr_obj.run()
>>> print(output.beta)
[1. 2. 3.]
```

Usage information

Introduction

Why Orthogonal Distance Regression (ODR)? Sometimes one has measurement errors in the explanatory (a.k.a., “independent”) variable(s), not just the response (a.k.a., “dependent”) variable(s). Ordinary Least Squares (OLS) fitting procedures treat the data for explanatory variables as fixed, i.e., not subject to error of any kind. Furthermore, OLS procedures require that the response variables be an explicit function of the explanatory variables; sometimes making the equation explicit is impractical and/or introduces errors. ODR can handle both of these cases with ease, and can even reduce to the OLS case if that is sufficient for the problem.

ODRPACK is a FORTRAN-77 library for performing ODR with possibly non-linear fitting functions. It uses a modified trust-region Levenberg-Marquardt-type algorithm [1] to estimate the function parameters. The fitting functions are provided by Python functions operating on NumPy arrays. The required derivatives may be provided by Python functions as well, or may be estimated numerically. ODRPACK can do explicit or implicit ODR fits, or it can do OLS. Input and output variables may be multidimensional. Weights can be provided to account for different variances of the observations, and even covariances between dimensions of the variables.

The `scipy.odr` package offers an object-oriented interface to ODRPACK, in addition to the low-level `odr` function.

Additional background information about ODRPACK can be found in the ODRPACK User’s Guide, reading which is recommended.
Basic usage

1. Define the function you want to fit against:

```python
def f(B, x):
    '''Linear function y = m*x + b'''
    # B is a vector of the parameters.
    # x is an array of the current x values.
    # x is in the same format as the x passed to Data or RealData.
    #
    return B[0]*x + B[1]
```

2. Create a Model:

```python
linear = Model(f)
```

3. Create a Data or RealData instance:

```python
mydata = Data(x, y, wd=1./power(sx, 2), we=1./power(sy, 2))
```

or, when the actual covariances are known:

```python
mydata = RealData(x, y, sx=sx, sy=sy)
```

4. Instantiate ODR with your data, model and initial parameter estimate:

```python
myodr = ODR(mydata, linear, beta0=[1., 2.])
```

5. Run the fit:

```python
myoutput = myodr.run()
```

6. Examine output:

```python
myoutput.pprint()
```

References

3.3.19 Optimization and root finding (scipy.optimize)

SciPy optimize provides functions for minimizing (or maximizing) objective functions, possibly subject to constraints. It includes solvers for nonlinear problems (with support for both local and global optimization algorithms), linear programming, constrained and nonlinear least-squares, root finding, and curve fitting.

Common functions and objects, shared across different solvers, are:

`show_options([solver, method, disp])`	Show documentation for additional options of optimization solvers.
`OptimizeResult`	Represents the optimization result.
`OptimizeWarning`	
scipy.optimize.show_options

scipy.optimize.show_options(solver=None, method=None, disp=True)

Show documentation for additional options of optimization solvers.

These are method-specific options that can be supplied through the options dict.

Parameters

- **solver** [str] Type of optimization solver. One of 'minimize', 'minimize_scalar', 'root', 'root_scalar', 'linprog', or 'quadratic_assignment'.
- **method** [str, optional] If not given, shows all methods of the specified solver. Otherwise, show only the options for the specified method. Valid values corresponds to methods’ names of respective solver (e.g., 'BFGS' for 'minimize').
- **disp** [bool, optional] Whether to print the result rather than returning it.

Returns

- **text** Either None (for disp=True) or the text string (disp=False)

Notes

The solver-specific methods are:

- **scipy.optimize.minimize**
 - Nelder-Mead
 - Powell
 - CG
 - BFGS
 - Newton-CG
 - L-BFGS-B
 - TNC
 - COBYLA
 - SLSQP
 - dogleg
 - trust-ncg

- **scipy.optimize.root**
 - hybr
 - lm
 - broyden1
 - broyden2
 - anderson
 - linearmixing
 - diagbroyden
 - excitingmixing
 - krylov
• df-sane

```
scipy.optimize.minimize_scalar
• brent
• golden
• bounded

scipy.optimize.root_scalar
• bisect
• brentq
• brent
• ridder
• toms748
• newton
• secant
• halley
```

• simplex
• interior-point
• revised simplex
• highs
• highs-ds
• highs-ipm

```
scipy.optimize.quadratic_assignment
• faq
• 2opt
```

Examples

We can print documentations of a solver in stdout:

```python
>>> from scipy.optimize import show_options
>>> show_options(solver="minimize")
...```

Specifying a method is possible:

```python
>>> show_options(solver="minimize", method="Nelder-Mead")
...
```

We can also get the documentations as a string:

```python
>>> show_options(solver="minimize", method="Nelder-Mead", disp=False)
Minimization of scalar function of one or more variables using the ...
```
scipy.optimize.OptimizeResult

class scipy.optimize.OptimizeResult

Represents the optimization result.

Notes

OptimizeResult may have additional attributes not listed here depending on the specific solver being used. Since this class is essentially a subclass of dict with attribute accessors, one can see which attributes are available using the OptimizeResult.keys method.

Attributes

- **x** [ndarray] The solution of the optimization.
- **success** [bool] Whether or not the optimizer exited successfully.
- **status** [int] Termination status of the optimizer. Its value depends on the underlying solver. Refer to message for details.
- **message** [str] Description of the cause of the termination.
- **fun, jac, hess**: ndarray
  Values of objective function, its Jacobian and its Hessian (if available). The Hessians may be approximations, see the documentation of the function in question.
- **hess_inv** [object] Inverse of the objective function’s Hessian; may be an approximation. Not available for all solvers. The type of this attribute may be either np.ndarray or scipy.sparse.linalg.LinearOperator.
- **nfev, njev, nhev** [int] Number of evaluations of the objective functions and of its Jacobian and Hessian.
- **nit** [int] Number of iterations performed by the optimizer.
- **maxcv** [float] The maximum constraint violation.

Methods

- **__getitem__**
  x.__getitem__(y) <=> x[y]
- **__len__** (/)
  Return len(self).
- **clear**
- **copy**
- **fromkeys**(iterable[, value])
  Create a new dictionary with keys from iterable and values set to value.
- **get**(key[, default])
  Return the value for key if key is in the dictionary, else default.
- **items**
- **keys**
- **pop**(key[, default])
  If the key is not found, return the default if given; otherwise, raise a KeyError.
- **popitem**(/) Remove and return a (key, value) pair as a 2-tuple.
- **setdefault**(key[, default])
  Insert key with a value of default if key is not in the dictionary.

continues on next page
Table 121 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>update()</code></td>
<td>If <code>E</code> is present and has a <code>.keys()</code> method, then does: for <code>k</code> in <code>E</code>: <code>D[k] = E[k]</code> If <code>E</code> is present and lacks a <code>.keys()</code> method, then does: for <code>k, v</code> in <code>E</code>: <code>D[k] = v</code> In either case, this is followed by: for <code>k</code> in <code>F</code>: <code>D[k] = F[k]</code></td>
</tr>
</tbody>
</table>

`values()`

```python
scipy.optimize.OptimizeResult.__getitem__
```

OptimizeResult.__getitem__(y) \(\Rightarrow x[y]\)

```python
scipy.optimize.OptimizeResult.__len__
```

Return `len(self)`.

```python
scipy.optimize.OptimizeResult.clear
```

OptimizeResult.clear() \(\Rightarrow\) None. Remove all items from `D`.

```python
scipy.optimize.OptimizeResult.copy
```

OptimizeResult.copy() \(\Rightarrow\) a shallow copy of `D`.

```python
scipy.optimize.OptimizeResult.fromkeys
```

Create a new dictionary with keys from `iterable` and values set to `value`.

```python
scipy.optimize.OptimizeResult.get
```

OptimizeResult.get(key, default=None) \(\Rightarrow\) Return the value for `key` if `key` is in the dictionary, else `default`.

```python
scipy.optimize.OptimizeResult.items
```

OptimizeResult.items() \(\Rightarrow\) a set-like object providing a view on `D`'s items

```python
scipy.optimize.OptimizeResult.keys
```

OptimizeResult.keys() \(\Rightarrow\) a set-like object providing a view on `D`'s keys

```python
scipy.optimize.OptimizeResult.pop
```

OptimizeResult.pop(key, default=\(<unrepresentable>\), ...) \(\Rightarrow\) If the key is not found, return the default if given; otherwise, raise a `KeyError`.

```python
scipy.optimize.OptimizeResult.popitem
```

OptimizeResult.popitem() \(\Rightarrow\) Remove and return a `(key, value)` pair as a 2-tuple. Pairs are returned in LIFO (last-in, first-out) order. Raises `KeyError` if the dict is empty.
**scipy.optimize.OptimizeResult.setdefault**

OptimizeResult.setdefault(key, default=None, /)

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

**scipy.optimize.OptimizeResult.update**

OptimizeResult.update([E], **F) → None. Update D from dict/iterable E and F.

If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

**scipy.optimize.OptimizeResult.values**

OptimizeResult.values() → an object providing a view on D's values

**scipy.optimize.OptimizeWarning**

exception scipy.optimize.OptimizeWarning

with_traceback() → Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

**Optimization**

**Scalar functions optimization**

<table>
<thead>
<tr>
<th>minimize_scalar(fun[, bracket, bounds, ...])</th>
<th>Minimization of scalar function of one variable.</th>
</tr>
</thead>
</table>

**scipy.optimize.minimize_scalar**

scipy.optimize.minimize_scalar (fun, bracket=None, bounds=None, args=(), method='brent', tol=None, options=None)

Minimization of scalar function of one variable.

**Parameters**

| fun [callable] Objective function. Scalar function, must return a scalar. |
| bracket [sequence, optional] For methods ‘brent’ and ‘golden’, bracket defines the bracketing interval and can either have three items (a, b, c) so that a < b < c and fun(b) < fun(a), fun(c) or two items a and c which are assumed to be a starting interval for a downhill bracket search (see bracket); it doesn’t always mean that the obtained solution will satisfy a <= x <= c. |
| bounds [sequence, optional] For method ‘bounded’, bounds is mandatory and must have two items corresponding to the optimization bounds. |
| args [tuple, optional] Extra arguments passed to the objective function. |
| method [str or callable, optional] Type of solver. Should be one of: |

| Brent |
| Bound |
| Golden |

* custom - a callable object (added in version 0.14.0), see below

See the ‘Notes’ section for details of each solver.

| tol [float, optional] Tolerance for termination. For detailed control, use solver-specific options. |

3.3. API definition 1273
maxiter  [int] Maximum number of iterations to perform.
disp     [bool] Set to True to print convergence messages.

See show_options for solver-specific options.

Returns
res      [OptimizeResult] The optimization result represented as an OptimizeResult object. Important attributes are: x the solution array, success a Boolean flag indicating if the optimizer exited successfully and message which describes the cause of the termination. See OptimizeResult for a description of other attributes.

See also:

minimize

Interface to minimization algorithms for scalar multivariate functions

show_options

Additional options accepted by the solvers

Notes

This section describes the available solvers that can be selected by the ‘method’ parameter. The default method is Brent.

Method Brent uses Brent’s algorithm to find a local minimum. The algorithm uses inverse parabolic interpolation when possible to speed up convergence of the golden section method.

Method Golden uses the golden section search technique. It uses analog of the bisection method to decrease the bracketed interval. It is usually preferable to use the Brent method.

Method Bounded can perform bounded minimization. It uses the Brent method to find a local minimum in the interval x1 < xopt < x2.

Custom minimizers

It may be useful to pass a custom minimization method, for example when using some library frontend to minimize_scalar. You can simply pass a callable as the method parameter.

The callable is called as method(fun, args, **kwargs, **options) where kwargs corresponds to any other parameters passed to minimize (such as bracket, tol, etc.), except the options dict, which has its contents also passed as method parameters pair by pair. The method shall return an OptimizeResult object.

The provided method callable must be able to accept (and possibly ignore) arbitrary parameters; the set of parameters accepted by minimize may expand in future versions and then these parameters will be passed to the method. You can find an example in the scipy.optimize tutorial.

New in version 0.11.0.
Examples

Consider the problem of minimizing the following function.

```python
>>> def f(x):
... return (x - 2) * x * (x + 2)**2
```

Using the *Brent* method, we find the local minimum as:

```python
>>> from scipy.optimize import minimize_scalar
>>> res = minimize_scalar(f)
>>> res.x
1.28077640403
```

Using the *Bounded* method, we find a local minimum with specified bounds as:

```python
>>> res = minimize_scalar(f, bounds=(-3, -1), method='bounded')
>>> res.x
-2.0000002026
```

The *minimize_scalar* function supports the following methods:

*minimize_scalar(method='brent')*

```python
scipy.optimize.minimize_scalar (fun, args=(), method='brent', tol=None, options={'func': None, 'brack': None, 'xtol': 1.48e-08, 'maxiter': 500, 'disp': 0})
```

See also:

For documentation for the rest of the parameters, see *scipy.optimize.minimize_scalar*

**Options**

- `maxiter` [int] Maximum number of iterations to perform.
- `xtol` [float] Relative error in solution `xopt` acceptable for convergence.
- `disp` int, optional

If non-zero, print messages.

0: no message printing. 1: non-convergence notification messages only. 2: print a message on convergence too. 3: print iteration results.

**Notes**

Uses inverse parabolic interpolation when possible to speed up convergence of golden section method.
minimize_scalar(method='bounded')

```python
scipy.optimize.minimize_scalar (fun, bounds=None, args=(), method='bounded', tol=None,
 options={'func': None, 'xatol': 1e-05, 'maxiter': 500, 'disp': 0})
```

See also:

For documentation for the rest of the parameters, see `scipy.optimize.minimize_scalar`

**Options**

- `maxiter` [int] Maximum number of iterations to perform.
- `disp` int, optional
  - If non-zero, print messages.
    - 0: no message printing. 1: non-convergence notification messages only. 2: print a message on convergence too. 3: print iteration results.
- `xatol` [float] Absolute error in solution `xopt` acceptable for convergence.

minimize_scalar(method='golden')

```python
scipy.optimize.minimize_scalar (fun, args=(), method='golden', tol=None, options={'func': None, 'brack': None, 'xtol': 1.4901161193847656e-08, 'maxiter': 5000, 'disp': 0})
```

See also:

For documentation for the rest of the parameters, see `scipy.optimize.minimize_scalar`

**Options**

- `xtol` [float] Relative error in solution `xopt` acceptable for convergence.
- `maxiter` [int] Maximum number of iterations to perform.
- `disp` int, optional
  - If non-zero, print messages.
    - 0: no message printing. 1: non-convergence notification messages only. 2: print a message on convergence too. 3: print iteration results.

Local (multivariate) optimization

**minimize**(fun, x0[, args, method, jac, hess, ...]) Minimization of scalar function of one or more variables.

`scipy.optimize.minimize`

```python
scipy.optimize.minimize (fun, x0, args=(), method=None, jac=None, hess=None, hessp=None,
 bounds=None, constraints=(), tol=None, callback=None, options=None)
```

Minimization of scalar function of one or more variables.

**Parameters**

- `fun` [callable] The objective function to be minimized.
  - `fun(x, *args) -> float`
  - where `x` is an 1-D array with shape (n,) and `args` is a tuple of the fixed parameters needed to completely specify the function.
- `x0` [ndarray, shape (n,)] Initial guess. Array of real elements of size (n,), where n is the number of independent variables.
args [tuple, optional] Extra arguments passed to the objective function and its derivatives (fun, jac and hess functions).

method [str or callable, optional] Type of solver. Should be one of
- ‘Nelder-Mead’ (see here)
- ‘Powell’ (see here)
- ‘CG’ (see here)
- ‘BFGS’ (see here)
- ‘Newton-CG’ (see here)
- ‘L-BFGS-B’ (see here)
- ‘TNC’ (see here)
- ‘COBYLA’ (see here)
- ‘SLSQP’ (see here)
- ‘trust-constr’ (see here)
- ‘dogleg’ (see here)
- ‘trust-neg’ (see here)
- ‘trust-exact’ (see here)
- ‘trust-krylov’ (see here)
- custom - a callable object (added in version 0.14.0), see below for description.

If not given, chosen to be one of BFGS, L-BFGS-B, SLSQP, depending on whether or not the problem has constraints or bounds.

jac [{callable, ‘2-point’, ‘3-point’, ‘cs’, bool}, optional] Method for computing the gradient vector. Only for CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-neg, trust-krylov, trust-exact and trust-constr. If it is a callable, it should be a function that returns the gradient vector:

\[ \text{fun}(x, *\text{args}) \rightarrow \text{array_like, shape (n,)} \]

where \( x \) is an array with shape (n,) and \( \text{args} \) is a tuple with the fixed parameters. If \( \text{fun} \) is a Boolean and is True, \( \text{fun} \) is assumed to return a tuple \((f, g)\) containing the objective function and the gradient. Methods ‘Newton-CG’, ‘trust-neg’, ‘dogleg’, ‘trust-exact’, and ‘trust-krylov’ require that either a callable be supplied, or that \( \text{fun} \) return the objective and gradient. If None or False, the gradient will be estimated using 2-point finite difference estimation with an absolute step size. Alternatively, the keywords \{‘2-point’, ‘3-point’, ‘cs’\} can be used to select a finite difference scheme for numerical estimation of the gradient with a relative step size. These finite difference schemes obey any specified bounds.


\[ \text{fun}(x, *\text{args}) \rightarrow \{\text{LinearOperator, spmatrix, array}\}, (n, n) \]

where \( x \) is a (n,) ndarray and \( \text{args} \) is a tuple with the fixed parameters. The keywords \{‘2-point’, ‘3-point’, ‘cs’\} can also be used to select a finite difference scheme for numerical estimation of the hessian. Alternatively, objects implementing the HessianUpdateStrategy interface can be used to approximate the Hessian. Available quasi-Newton methods implementing this interface are:
- BFGS;
- SR1.

hessp [callable, optional] Hessian of objective function times an arbitrary vector \( p \). Only for Newton-CG, trust-neg, trust-krylov, trust-constr. Only one of hess or hessp needs to be given. If \( \text{hess} \) is provided, then \( \text{hessp} \) will be ignored. \( \text{hessp} \) must compute the Hessian times an arbitrary vector:

\[ \text{fun}(x, p, *\text{args}) \rightarrow \text{ndarray shape (n,)} \]

where \( x \) is a (n,) ndarray, \( p \) is an arbitrary vector with dimension (n,) and \( \text{args} \) is a tuple with the fixed parameters.

bounds [sequence or Bounds, optional] Bounds on variables for Nelder-Mead, L-BFGS-B, TNC, SLSQP, Powell, and trust-constr methods. There are two ways to specify the bounds:
1. Instance of `Bounds` class.
2. Sequence of `(min, max)` pairs for each element in `x`. None is used to specify no bound.

**constraints**

```
[({Constraint, dict} or List of {Constraint, dict}, optional] Constraints definition. Only for
COBYLA, SLSQP and trust-constr.
Constraints for ‘trust-constr’ are defined as a single object or a list of objects specifying con-
straints to the optimization problem. Available constraints are:

- LinearConstraint
- NonlinearConstraint
```

Constraints for COBYLA, SLSQP are defined as a list of dictionaries. Each dictionary with
fields:

- `fun` [callable] The function defining the constraint.
- `jac` [callable, optional] The Jacobian of `fun` (only for SLSQP).
- `args` [sequence, optional] Extra arguments to be passed to the function and Jacob-


Equality constraint means that the constraint function result is to be zero whereas inequality
means that it is to be non-negative. Note that COBYLA only supports inequality constraints.

**tol** [float, optional] Tolerance for termination. When `tol` is specified, the selected minimization
algorithm sets some relevant solver-specific tolerance(s) equal to `tol`. For detailed control,
use solver-specific options.

**options** [dict, optional] A dictionary of solver options. All methods accept the following generic
options:

- `maxiter` [int] Maximum number of iterations to perform. Depending on the method
each iteration may use several function evaluations.
- `disp` [bool] Set to True to print convergence messages.

For method-specific options, see `show_options`.

**callback** [callable, optional] Called after each iteration. For ‘trust-constr’ it is a callable with the sig-
nature:

```
callback(xk, OptimizeResult state) -> bool
```

where `xk` is the current parameter vector, and `state` is an `OptimizeResult` object,
with the same fields as the ones from the return. If callback returns True the algorithm
execution is terminated. For all the other methods, the signature is:

```
callback(xk)
```

where `xk` is the current parameter vector.

**Returns**

- `res` [OptimizeResult] The optimization result represented as an `OptimizeResult` object. Im-
portant attributes are: `x` the solution array, `success` a Boolean flag indicating if the opti-
mizer exited successfully and `message` which describes the cause of the termination. See
`OptimizeResult` for a description of other attributes.

See also:

- `minimize_scalar`
- `show_options`

Interface to minimization algorithms for scalar univariate functions

Additional options accepted by the solvers
Notes

This section describes the available solvers that can be selected by the ‘method’ parameter. The default method is BFGS.

Unconstrained minimization

Method **CG** uses a nonlinear conjugate gradient algorithm by Polak and Ribiere, a variant of the Fletcher-Reeves method described in [5] pp.120-122. Only the first derivatives are used.

Method **BFGS** uses the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5] pp. 136. It uses the first derivatives only. BFGS has proven good performance even for non-smooth optimizations. This method also returns an approximation of the Hessian inverse, stored as `hess_inv` in the `OptimizeResult` object.

Method **Newton-CG** uses a Newton-CG algorithm [5] pp. 168 (also known as the truncated Newton method). It uses a CG method to compute the search direction. See also `TNC` method for a box-constrained minimization with a similar algorithm. Suitable for large-scale problems.

Method **dogleg** uses the dog-leg trust-region algorithm [5] for unconstrained minimization. This algorithm requires the gradient and Hessian; furthermore the Hessian is required to be positive definite.

Method **trust-ncg** uses the Newton conjugate gradient trust-region algorithm [5] for unconstrained minimization. This algorithm requires the gradient and either the Hessian or a function that computes the product of the Hessian with a given vector. Suitable for large-scale problems.

Method **trust-krylov** uses the Newton GLTR trust-region algorithm [14], [15] for unconstrained minimization. This algorithm requires the gradient and either the Hessian or a function that computes the product of the Hessian with a given vector. Suitable for large-scale problems. On indefinite problems it requires usually less iterations than the `trust-ncg` method and is recommended for medium and large-scale problems.

Method **trust-exact** is a trust-region method for unconstrained minimization in which quadratic subproblems are solved almost exactly [13]. This algorithm requires the gradient and the Hessian (which is not required to be positive definite). It is, in many situations, the Newton method to converge in fewer iterations and the most recommended for small and medium-size problems.

Bound-Constrained minimization

Method **Nelder-Mead** uses the Simplex algorithm [1], [2]. This algorithm is robust in many applications. However, if numerical computation of derivative can be trusted, other algorithms using the first and/or second derivatives information might be preferred for their better performance in general.

Method **L-BFGS-B** uses the L-BFGS-B algorithm [6], [7] for bound constrained minimization.

Method **Powell** is a modification of Powell’s method [3], [4] which is a conjugate direction method. It performs sequential one-dimensional minimizations along each vector of the directions set (`direc` field in `options` and `info`), which is updated at each iteration of the main minimization loop. The function need not be differentiable, and no derivatives are taken. If bounds are not provided, then an unbounded line search will be used. If bounds are provided and the initial guess is within the bounds, then every function evaluation throughout the minimization procedure will be within the bounds. If bounds are provided, the initial guess is outside the bounds, and `direc` is full rank (default has full rank), then some function evaluations during the first iteration may be outside the bounds, but every function evaluation after the first iteration will be within the bounds. If `direc` is not full rank, then some parameters may not be optimized and the solution is not guaranteed to be within the bounds.

Method **TNC** uses a truncated Newton algorithm [5], [8] to minimize a function with variables subject to bounds. This algorithm uses gradient information; it is also called Newton Conjugate-Gradient. It differs from the `Newton-CG` method described above as it wraps a C implementation and allows each variable to be given upper and lower bounds.
Method **COBYLA** uses the Constrained Optimization BY Linear Approximation (COBYLA) method \[9\], \[10\], \[11\]. The algorithm is based on linear approximations to the objective function and each constraint. The method wraps a FORTRAN implementation of the algorithm. The constraints functions ‘fun’ may return either a single number or an array or list of numbers.

Method **SLSQP** uses Sequential Least SQuares Programming to minimize a function of several variables with any combination of bounds, equality and inequality constraints. The method wraps the SLSQP Optimization subroutine originally implemented by Dieter Kraft \[12\]. Note that the wrapper handles infinite values in bounds by converting them into large floating values.

Method **trust-constr** is a trust-region algorithm for constrained optimization. It switches between two implementations depending on the problem definition. It is the most versatile constrained minimization algorithm implemented in SciPy and the most appropriate for large-scale problems. For equality constrained problems it is an implementation of Byrd-Omojokun Trust-Region SQP method described in \[17\] and in \[5\], p. 549. When inequality constraints are imposed as well, it switches to the trust-region interior point method described in \[16\]. This interior point algorithm, in turn, solves inequality constraints by introducing slack variables and solving a sequence of equality-constrained barrier problems for progressively smaller values of the barrier parameter. The previously described equality constrained SQP method is used to solve the subproblems with increasing levels of accuracy as the iterate gets closer to a solution.

**Finite-Difference Options**

For Method **trust-constr** the gradient and the Hessian may be approximated using three finite-difference schemes: (‘2-point’, ‘3-point’, ‘cs’). The scheme ‘cs’ is, potentially, the most accurate but it requires the function to correctly handle complex inputs and to be differentiable in the complex plane. The scheme ‘3-point’ is more accurate than ‘2-point’ but requires twice as many operations. If the gradient is estimated via finite-differences the Hessian must be estimated using one of the quasi-Newton strategies.

**Method specific options for the hess keyword**

<table>
<thead>
<tr>
<th>method/Hess</th>
<th>None</th>
<th>callable</th>
<th>‘2-point’/’3-point’/’cs’</th>
<th>HUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newton-CG</td>
<td>x</td>
<td>(n, n) LO</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>dogleg</td>
<td>(n, n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trust-nlg</td>
<td>(n, n)</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>trust-krylov</td>
<td>(n, n)</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>trust-exact</td>
<td>(n, n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trust-constr</td>
<td>x</td>
<td>(n, n)LO sp</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

where LO=LinearOperator, sp=Sparse matrix, HUS=HessianUpdateStrategy

**Custom minimizers**

It may be useful to pass a custom minimization method, for example when using a frontend to this method such as scipy.optimize.basinhopping or a different library. You can simply pass a callable as the method parameter.

The callable is called as method(fun, x0, args, **kwargs, **options) where kwargs corresponds to any other parameters passed to minimize (such as callback, hess, etc.), except the options dict, which has its contents also passed as method parameters pair by pair. Also, if jac has been passed as a bool type, jac and fun are mangled so that fun returns just the function values and jac is converted to a function returning the Jacobian. The method shall return an OptimizeResult object.

The provided method callable must be able to accept (and possibly ignore) arbitrary parameters; the set of parameters accepted by minimize may expand in future versions and then these parameters will be passed to the method. You can find an example in the scipy.optimize tutorial.

New in version 0.11.0.
References

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]

Examples

Let us consider the problem of minimizing the Rosenbrock function. This function (and its respective derivatives) is implemented in rosen (resp. rosen_der, rosen_hess) in the scipy.optimize.

```python
>>> from scipy.optimize import minimize, rosen, rosen_der
```

A simple application of the Nelder-Mead method is:

```python
>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6)
>>> res.x
array([1., 1., 1., 1., 1.])
```

Now using the BFGS algorithm, using the first derivative and a few options:

```python
>>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der, ... options={'gtol': 1e-6, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 26
Function evaluations: 31
Gradient evaluations: 31
>>> res.x
array([1., 1., 1., 1., 1.])
>>> print(res.message)
Optimization terminated successfully.
>>> res.hess_inv
array([[0.00749589, 0.01255155, 0.02396251, 0.04750988, 0.09495377],
 [0.01255155, 0.02510441, 0.04794055, 0.09502834, 0.18996269],
 [0.02396251, 0.04794055, 0.09631614, 0.19092151, 0.38165151],
 [0.04750988, 0.09502834, 0.19092151, 0.38341252, 0.7664427],
 [0.09495377, 0.18996269, 0.38165151, 0.7664427, 1.53713523]])
```

Next, consider a minimization problem with several constraints (namely Example 16.4 from [5]). The objective function is:

```python
>>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2
```

There are three constraints defined as:

```python
>>> cons = [{'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},
 {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},
 {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})
```

And variables must be positive, hence the following bounds:

```python
>>> bnds = ((0, None), (0, None))
```
The optimization problem is solved using the SLSQP method as:

```python
>>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds,
 constraints=cons)
```

It should converge to the theoretical solution (1.4, 1.7).

The `minimize` function supports the following methods:

**minimize(method='Nelder-Mead')**

```python
scipy.optimize.minimize (fun, x0, args=(), method='Nelder-Mead', bounds=None, tol=None, callback=None,
 options={'func': None, 'maxiter': None, 'maxfev': None, 'disp': False, 'return_all':
 False, 'initial_simplex': None, 'xatol': 0.0001, 'fatol': 0.0001, 'adaptive': False})
```

Minimization of scalar function of one or more variables using the Nelder-Mead algorithm.

See also:

For documentation for the rest of the parameters, see `scipy.optimize.minimize`

**Options**

- `disp` [bool] Set to True to print convergence messages.
- `maxiter`, `maxfev` [int] Maximum allowed number of iterations and function evaluations. Will default to \(N \times 200\), where \(N\) is the number of variables, if neither `maxiter` or `maxfev` is set. If both `maxiter` and `maxfev` are set, minimization will stop at the first reached.
- `return_all` [bool, optional] Set to True to return a list of the best solution at each of the iterations.
- `initial_simplex` [array_like of shape (N + 1, N)] Initial simplex. If given, overrides `x0`. `initial_simplex[j, :]` should contain the coordinates of the jth vertex of the N+1 vertices in the simplex, where N is the dimension.
- `xatol` [float, optional] Absolute error in xopt between iterations that is acceptable for convergence.
- `fatol` [number, optional] Absolute error in func(xopt) between iterations that is acceptable for convergence.
- `bounds` [sequence or `Bounds`, optional] Bounds on variables. There are two ways to specify the bounds:
  1. Instance of `Bounds` class.
  2. Sequence of (min, max) pairs for each element in x. None is used to specify no bound. Note that this just clips all vertices in simplex based on the bounds.

**References**

[1]
**minimize**(*method*='Powell')

```python
scipy.optimize.minimize(fun, x0, args=(), method='Powell', bounds=None, tol=None, callback=None,
 options={'func': None, 'xtol': 0.0001, 'ftol': 0.0001, 'maxiter': None, 'maxfev': None, 'disp': False, 'direc': None, 'return_all': False})
```

Minimization of scalar function of one or more variables using the modified Powell algorithm.

**See also:**

For documentation for the rest of the parameters, see `scipy.optimize.minimize`

**Options**

- `disp` [bool] Set to True to print convergence messages.
- `xtol` [float] Relative error in solution `xopt` acceptable for convergence.
- `ftol` [float] Relative error in `fun(xopt)` acceptable for convergence.
- `maxiter`, `maxfev` [int] Maximum allowed number of iterations and function evaluations. Will default to `N*1000`, where `N` is the number of variables, if neither `maxiter` or `maxfev` is set. If both `maxiter` and `maxfev` are set, minimization will stop at the first reached.
- `direc` [ndarray] Initial set of direction vectors for the Powell method.
- `return_all` [bool, optional] Set to True to return a list of the best solution at each of the iterations.
- `bounds` [Bounds] If bounds are not provided, then an unbounded line search will be used. If bounds are provided and the initial guess is within the bounds, then every function evaluation throughout the minimization procedure will be within the bounds. If bounds are provided, the initial guess is outside the bounds, and `direc` is full rank (or left to default), then some function evaluations during the first iteration may be outside the bounds, but every function evaluation after the first iteration will be within the bounds. If `direc` is not full rank, then some parameters may not be optimized and the solution is not guaranteed to be within the bounds.
- `return_all` [bool, optional] Set to True to return a list of the best solution at each of the iterations.

**minimize**(*method*='CG')

```python
scipy.optimize.minimize(fun, x0, args=(), method='CG', jac=None, tol=None, callback=None,
 options={'gtol': 1e-05, 'norm': inf, 'eps': 1.4901161193847656e-08, 'maxiter': None, 'disp': False, 'return_all': False, 'finite_diff_rel_step': None})
```

Minimization of scalar function of one or more variables using the conjugate gradient algorithm.

**See also:**

For documentation for the rest of the parameters, see `scipy.optimize.minimize`

**Options**

- `disp` [bool] Set to True to print convergence messages.
- `maxiter` [int] Maximum number of iterations to perform.
- `gtol` [float] Gradient norm must be less than `gtol` before successful termination.
- `norm` [float] Order of norm (Inf is max, -Inf is min).
- `eps` [float or ndarray] If `jac` is `None` the absolute step size used for numerical approximation of the jacobian via forward differences.
- `return_all` [bool, optional] Set to True to return a list of the best solution at each of the iterations.
- `finite_diff_rel_step` [None or array_like, optional] If `jac` in `[2-point', '3-point', 'cs']` the relative step size to use for numerical approximation of the jacobian. The absolute step size is computed as `h = rel_step * sign(x0) * max(1, abs(x0))`, possibly adjusted to fit into the
bounds. For method='3-point' the sign of $h$ is ignored. If None (default) then step is selected automatically.

**minimize(method='BFGS')**

```python
scipy.optimize.minimize (fun, x0, args=(), method='BFGS', jac=None, tol=None, callback=None,
options={'gtol': 1e-05, 'norm': inf, 'eps': 1.4901161193847656e-08, 'maxiter':
None, 'disp': False, 'return_all': False, 'finite_diff_rel_step': None})
```

Minimization of scalar function of one or more variables using the BFGS algorithm.

**See also:**

For documentation for the rest of the parameters, see `scipy.optimize.minimize`

**Options**

- **disp** [bool] Set to True to print convergence messages.
- **maxiter** [int] Maximum number of iterations to perform.
- **gtol** [float] Gradient norm must be less than gtol before successful termination.
- **norm** [float] Order of norm (Inf is max, -Inf is min).
- **eps** [float or ndarray] If jac is None the absolute step size used for numerical approximation of the jacobian via forward differences.
- **return_all** [bool, optional] Set to True to return a list of the best solution at each of the iterations.
- **finite_diff_rel_step** [None or array_like, optional] If jac in ['2-point', '3-point', 'cs'] the relative step size to use for numerical approximation of the jacobian. The absolute step size is computed as $h = rel_step * sign(x0) * max(1, abs(x0))$, possibly adjusted to fit into the bounds. For method='3-point' the sign of $h$ is ignored. If None (default) then step is selected automatically.

**minimize(method='Newton-CG')**

```python
scipy.optimize.minimize (fun, x0, args=(), method='Newton-CG', jac=None, hess=None, hessp=None,
tol=None, callback=None, options={'xtol': 1e-05, 'eps': 1.4901161193847656e-08,
'maxiter': None, 'disp': False, 'return_all': False})
```

Minimization of scalar function of one or more variables using the Newton-CG algorithm.

Note that the jac parameter (Jacobian) is required.

**See also:**

For documentation for the rest of the parameters, see `scipy.optimize.minimize`

**Options**

- **disp** [bool] Set to True to print convergence messages.
- **xtol** [float] Average relative error in solution $xopt$ acceptable for convergence.
- **maxiter** [int] Maximum number of iterations to perform.
- **eps** [float or ndarray] If hessp is approximated, use this value for the step size.
- **return_all** [bool, optional] Set to True to return a list of the best solution at each of the iterations.
minimize(method='L-BFGS-B')

scipy.optimize.minimize (fun, x0, args=(), method='L-BFGS-B', jac=None, bounds=None, tol=None,
callback=None, options={'disp': None, 'maxcor': 10, 'ftol': 2.220446049250313e-09, 'gtol': 1e-05, 'eps': 1e-08, 'maxfun': 15000, 'maxiter': 15000, 'iprint': -1, 'maxls': 20, 'finite_diff_rel_step': None})

Minimize a scalar function of one or more variables using the L-BFGS-B algorithm.

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

disp [None or int] If disp is None (the default), then the supplied version of iprint is used. If disp is not None, then it overrides the supplied version of iprint with the behaviour you outlined.

maxcor [int] The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.)

ftol [float] The iteration stops when \( (f^k - f^{k+1}) / \max\{\|f^k\|,\|f^{k+1}\|,1\} \leq f_{tol} \).

gtol [float] The iteration will stop when \( \max\{|\text{proj g}_i| \mid i = 1, \ldots, n\} \leq g_{tol} \)

eps [float or ndarray] If jac is None the absolute step size used for numerical approximation of the jacobian via forward differences.

maxfun [int] Maximum number of function evaluations.

maxiter [int] Maximum number of iterations.

iprint [int, optional] Controls the frequency of output. iprint < 0 means no output; iprint = 0 print only one line at the last iteration; 0 < iprint < 99 print also f and \|g\| every iprint iterations; iprint = 99 print details of every iteration except n-vectors; iprint = 100 print also the changes of active set and final x; iprint > 100 print details of every iteration including x and g.

callback [callable, optional] Called after each iteration, as callback(xk), where xk is the current parameter vector.

maxls [int, optional] Maximum number of line search steps (per iteration). Default is 20.

finite_diff_rel_step [None or array_like, optional] If jac in ['2-point', '3-point', 'cs'] the relative step size to use for numerical approximation of the jacobian. The absolute step size is computed as \( h = \text{rel_step} \ast \text{sign}(x0) \ast \max(1, \text{abs}(x0)) \), possibly adjusted to fit into the bounds. For method='3-point' the sign of h is ignored. If None (default) then step is selected automatically.

Notes

The option ftol is exposed via the scipy.optimize.minimize interface, but calling scipy.optimize.fmin_l_bfgs_b directly exposes factr. The relationship between the two is ftol = factr * numpy.finfo(float).eps. I.e., factr multiplies the default machine floating-point precision to arrive at ftol.

3.3. API definition 1285
minimize(method='TNC')

```python
scipy.optimize.minimize (fun, x0, args=(), method='TNC', jac=None, bounds=None, tol=None,
callback=None, options={'eps': 1e-08, 'scale': None, 'offset': None, 'mesg_num':
'None', 'maxCGit': -1, 'maxiter': None, 'eta': -1, 'stepmx': 0, 'accuracy': 0, 'minfev':
0, 'ftol': -1, 'xtol': -1, 'gtol': -1, 'rescale': -1, 'disp': False, 'finite_diff_rel_step':
'None', 'maxfun': None})
```

Minimize a scalar function of one or more variables using a truncated Newton (TNC) algorithm.

**See also:**

For documentation for the rest of the parameters, see `scipy.optimize.minimize`

**Options**

- **eps** [float or ndarray] If `jac is None` the absolute step size used for numerical approximation of the jacobian via forward differences.
- **scale** [list of floats] Scaling factors to apply to each variable. If None, the factors are up-low for interval bounded variables and 1+|x| fo the others. Defaults to None.
- **offset** [float] Value to subtract from each variable. If None, the offsets are (up+low)/2 for interval bounded variables and x for the others.
- **disp** [bool] Set to True to print convergence messages.
- **maxCGit** [int] Maximum number of hessian*vector evaluations per main iteration. If maxCGit == 0, the direction chosen is -gradient if maxCGit < 0, maxCGit is set to max(1, min(50,n/2)). Defaults to -1.
- **maxiter** [int, optional] Maximum number of function evaluations. This keyword is deprecated in favor of `maxfun`. Only if `maxfun` is None is this keyword used.
- **eta** [float] Severity of the line search. If < 0 or > 1, set to 0.25. Defaults to -1.
- **stepmx** [float] Maximum step for the line search. May be increased during call. If too small, it will be set to 10.0. Defaults to 0.
- **accuracy** [float] Relative precision for finite difference calculations. If <= machine_precision, set to sqrt(machine_precision). Defaults to 0.
- **minfev** [float] Minimum function value estimate. Defaults to 0.
- **ftol** [float] Precision goal for the value of f in the stopping criterion. If ftol < 0.0, ftol is set to 0.0 defaults to -1.
- **xtol** [float] Precision goal for the value of x in the stopping criterion (after applying x scaling factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1.
- **gtol** [float] Precision goal for the value of the projected gradient in the stopping criterion (after applying x scaling factors). If gtol < 0.0, gtol is set to 1e-2 * sqrt(accuracy). Setting it to 0.0 is not recommended. Defaults to -1.
- **rescale** [float] Scaling factor (in log10) used to trigger f value rescaling. If 0, rescale at each iteration. If a large value, never rescale. If < 0, rescale is set to 1.3.
- **finite_diff_rel_step** [None or array_like, optional] If `jac in [2-point,'3-point','cs']` the relative step size to use for numerical approximation of the jacobian. The absolute step size is computed as h = rel_step * sign(x0) * max(1, abs(x0)), possibly adjusted to fit into the bounds. For method='3-point' the sign of h is ignored. If None (default) then step is selected automatically.
- **maxfun** [int] Maximum number of function evaluations. If None, `maxfun` is set to max(100, 10*len(x0)). Defaults to None.
minimize(method='COBYLA')

```python
c scipy.optimize.minimize(fun, x0, args=(), method='COBYLA', constraints=(), tol=None, callback=None, options={'rhobeg': 1.0, 'maxiter': 1000, 'disp': False, 'catol': 0.0002})
```

Minimize a scalar function of one or more variables using the Constrained Optimization BY Linear Approximation (COBYLA) algorithm.

See also:

For documentation for the rest of the parameters, see `scipy.optimize.minimize`

**Options**

- **rhobeg** [float] Reasonable initial changes to the variables.
- **tol** [float] Final accuracy in the optimization (not precisely guaranteed). This is a lower bound on the size of the trust region.
- **disp** [bool] Set to True to print convergence messages. If False, `verbosity` is ignored as set to 0.
- **maxiter** [int] Maximum number of function evaluations.
- **catol** [float] Tolerance (absolute) for constraint violations
- **callback** [callable, optional] Called after each iteration, as `callback(x)`, where `x` is the current parameter vector.

minimize(method='SLSQP')

```python
c scipy.optimize.minimize(fun, x0, args=(), method='SLSQP', jac=None, bounds=None, constraints=(), tol=None, callback=None, options={'func': None, 'maxiter': 100, 'ftol': 1e-06, 'iprint': 1, 'disp': False, 'eps': 1.4901161193847656e-08, 'finite_diff_rel_step': None})
```

Minimize a scalar function of one or more variables using Sequential Least Squares Programming (SLSQP).

See also:

For documentation for the rest of the parameters, see `scipy.optimize.minimize`

**Options**

- **ftol** [float] Precision goal for the value of f in the stopping criterion.
- **eps** [float] Step size used for numerical approximation of the Jacobian.
- **disp** [bool] Set to True to print convergence messages. If False, `verbosity` is ignored and set to 0.
- **maxiter** [int] Maximum number of iterations.
- **finite_diff_rel_step** [None or array_like, optional] If `jac` in ['2-point', '3-point', 'cs'] the relative step size to use for numerical approximation of `jac`. The absolute step size is computed as `h = rel_step * sign(x0) * max(1, abs(x0))`, possibly adjusted to fit into the bounds. For `method='3-point'` the sign of `h` is ignored. If None (default) then step is selected automatically.
```
minimize(method='trust-constr')
```

`scipy.optimize.minimize (fun, x0, args=(), method='trust-constr', hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options={'grad': None, 'xtol': 1e-08, 'gtol': 1e-08, 'barrier_tol': 1e-08, 'sparse_jacobian': None, 'maxiter': 1000, 'verbose': 0, 'finite_diff_rel_step': None, 'initial_constr_penalty': 1.0, 'initial_tr_radius': 1.0, 'initial_barrier_parameter': 0.1, 'initial_barrier_tolerance': 0.1, 'factorization_method': None, 'disp': False})`

Minimize a scalar function subject to constraints.

**Parameters**

- `gtol` [float, optional] Tolerance for termination by the norm of the Lagrangian gradient. The algorithm will terminate when both the infinity norm (i.e., max abs value) of the Lagrangian gradient and the constraint violation are smaller than `gtol`. Default is 1e-8.

- `xtol` [float, optional] Tolerance for termination by the change of the independent variable. The algorithm will terminate when `tr_radius < xtol`, where `tr_radius` is the radius of the trust region used in the algorithm. Default is 1e-8.

- `barrier_tol` [float, optional] Threshold on the barrier parameter for the algorithm termination. When inequality constraints are present, the algorithm will terminate only when the barrier parameter is less than `barrier_tol`. Default is 1e-8.

- `sparse_jacobian` [[bool, None], optional] Determines how to represent Jacobians of the constraints. If bool, then Jacobians of all the constraints will be converted to the corresponding format. If None (default), then Jacobians won’t be converted, but the algorithm can proceed only if they all have the same format.

- `initial_tr_radius`: float, optional
  Initial trust radius. The trust radius gives the maximum distance between solution points in consecutive iterations. It reflects the trust the algorithm puts in the local approximation of the optimization problem. For an accurate local approximation the trust-region should be large and for an approximation valid only close to the current point it should be a small one. The trust radius is automatically updated throughout the optimization process, with `initial_tr_radius` being its initial value. Default is 1 (recommended in [1], p. 19).

- `initial_constr_penalty` [float, optional] Initial constraints penalty parameter. The penalty parameter is used for balancing the requirements of decreasing the objective function and satisfying the constraints. It is used for defining the merit function: `merit_function(x) = fun(x) + constr_penalty * constr_norm_l2(x), where constr_norm_l2(x)` is the l2 norm of a vector containing all the constraints. The merit function is used for accepting or rejecting trial points and `constr_penalty` weights the two conflicting goals of reducing objective function and constraints. The penalty is automatically updated throughout the optimization process, with `initial_constr_penalty` being its initial value. Default is 1 (recommended in [1], p. 19).

- `initial_barrier_parameter, initial_barrier_tolerance`: float, optional
  Initial barrier parameter and initial tolerance for the barrier subproblem. Both are used only when inequality constraints are present. For dealing with optimization problems `min_x f(x)` subject to inequality constraints `c(x) <= 0` the algorithm introduces slack variables, solving the problem `min_(x,s) f(x) + barrier_parameter*sum(ln(s))` subject to the equality constraints `c(x) + s = 0` instead of the original problem. This subproblem is solved for decreasing values of `barrier_parameter` and with decreasing tolerances for the termination, starting with `initial_barrier_parameter` for the barrier parameter and `initial_barrier_tolerance` for the barrier tolerance. Default is 0.1 for both values (recommended in [1] p. 19). Also note that `barrier_parameter` and `barrier_tolerance` are updated with the same prefactor.
factorization_method
[string or None, optional] Method to factorize the Jacobian of the constraints. Use None (default) for the auto selection or one of:
• ‘NormalEquation’ (requires scikit-sparse)
• ‘AugmentedSystem’
• ‘QRFactorization’
• ‘SVDFactorization’
The methods ‘NormalEquation’ and ‘AugmentedSystem’ can be used only with sparse constraints. The projections required by the algorithm will be computed using, respectively, the normal equation and the augmented system approaches explained in [1]. ‘NormalEquation’ computes the Cholesky factorization of $A \ A^T$ and ‘AugmentedSystem’ performs the LU factorization of an augmented system. They usually provide similar results. ‘AugmentedSystem’ is used by default for sparse matrices.
The methods ‘QRFactorization’ and ‘SVDFactorization’ can be used only with dense constraints. They compute the required projections using, respectively, QR and SVD factorizations. The ‘SVDFactorization’ method can cope with Jacobian matrices with deficient row rank and will be used whenever other factorization methods fail (which may imply the conversion of sparse matrices to a dense format when required). By default, ‘QRFactorization’ is used for dense matrices.

finite_diff_rel_step
[None or array_like, optional] Relative step size for the finite difference approximation.

maxiter
[int, optional] Maximum number of algorithm iterations. Default is 1000.

verbose
[[0, 1, 2], optional] Level of algorithm’s verbosity:
• 0 (default) : work silently.
• 1 : display a termination report.
• 2 : display progress during iterations.
• 3 : display progress during iterations (more complete report).

disp
[bool, optional] If True (default), then verbose will be set to 1 if it was 0.

Returns

`OptimizeResult` with the fields documented below. Note the following:

1. All values corresponding to the constraints are ordered as they were passed to the solver. And values corresponding to bounds constraints are put after other constraints.
2. All numbers of function, Jacobian or Hessian evaluations correspond to numbers of actual Python function calls. It means, for example, that if a Jacobian is estimated by finite differences, then the number of Jacobian evaluations will be zero and the number of function evaluations will be incremented by all calls during the finite difference estimation.

x
[ndarray, shape (n,)] Solution found.

optimality
[float] Infinity norm of the Lagrangian gradient at the solution.

constr_violation
[float] Maximum constraint violation at the solution.

fun
[float] Objective function at the solution.

grad
[ndarray, shape (n,)] Gradient of the objective function at the solution.

lagrangian_grad
[ndarray, shape (n,)] Gradient of the Lagrangian function at the solution.

nit
[int] Total number of iterations.
nfev
[integer] Number of the objective function evaluations.
njev
[integer] Number of the objective function gradient evaluations.
nhev
[integer] Number of the objective function Hessian evaluations.
cg_niter
[int] Total number of the conjugate gradient method iterations.

method
[['equality_constrained_sqp', 'tr_interior_point']] Optimization method used.

constr
[list of ndarray] List of constraint values at the solution.
jac [list of {ndarray, sparse matrix}] List of the Jacobian matrices of the constraints at the solution.

v [list of ndarray] List of the Lagrange multipliers for the constraints at the solution. For an inequality constraint a positive multiplier means that the upper bound is active, a negative multiplier means that the lower bound is active and if a multiplier is zero it means the constraint is not active.

constr_nfev [list of int] Number of constraint evaluations for each of the constraints.

constr_njev [list of int] Number of Jacobian matrix evaluations for each of the constraints.

constr_nhev [list of int] Number of Hessian evaluations for each of the constraints.

tr_radius [float] Radius of the trust region at the last iteration.

constr_penalty [float] Penalty parameter at the last iteration, see initial_constr_penalty.

barrier_tolerance [float] Tolerance for the barrier subproblem at the last iteration. Only for problems with inequality constraints.

barrier_parameter [float] Barrier parameter at the last iteration. Only for problems with inequality constraints.

execution_time [float] Total execution time.


status [0, 1, 2, 3] Termination status:
• 0: The maximum number of function evaluations is exceeded.
• 1: gtol termination condition is satisfied.
• 2: xtol termination condition is satisfied.
• 3: callback function requested termination.

cg_stop_cond [int] Reason for CG subproblem termination at the last iteration:
• 0: CG subproblem not evaluated.
• 1: Iteration limit was reached.
• 2: Reached the trust-region boundary.
• 3: Negative curvature detected.
• 4: Tolerance was satisfied.

References

[1]

minimize(method='dogleg')

scipy.optimize.minimize (fun, x0, args=(), method='dogleg', jac=None, hess=None, tol=None, callback=None, options={})

Minimization of scalar function of one or more variables using the dog-leg trust-region algorithm.

See also:

For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

initial_trust_radius [float] Initial trust-region radius.
max_trust_radius
[float] Maximum value of the trust-region radius. No steps that are longer than this value will be proposed.

eta
[float] Trust region related acceptance stringency for proposed steps.

gtol
[float] Gradient norm must be less than gtol before successful termination.

minimize(method='trust-ncg')

scipy.optimize.minimize (fun, x0, args=(), method='trust-ncg', jac=None, hess=None, hessp=None, tol=None, callback=None, options={})

Minimization of scalar function of one or more variables using the Newton conjugate gradient trust-region algorithm.

See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

initial_trust_radius
[float] Initial trust-region radius.

max_trust_radius
[float] Maximum value of the trust-region radius. No steps that are longer than this value will be proposed.

eta
[float] Trust region related acceptance stringency for proposed steps.

gtol
[float] Gradient norm must be less than gtol before successful termination.

minimize(method='trust-krylov')

scipy.optimize.minimize (fun, x0, args=(), method='trust-krylov', jac=None, hess=None, hessp=None, tol=None, callback=None, options={'inexact': True})

Minimization of a scalar function of one or more variables using a nearly exact trust-region algorithm that only requires matrix vector products with the hessian matrix.

New in version 1.0.0.

See also:
For documentation for the rest of the parameters, see scipy.optimize.minimize

Options

inexact [bool, optional] Accuracy to solve subproblems. If True requires less nonlinear iterations, but more vector products.
minimize(method='trust-exact')

```python
scipy.optimize.minimize (fun, x0, args=(), method='trust-exact', jac=None, hess=None, tol=None,
callback=None, options={})
```

Minimization of scalar function of one or more variables using a nearly exact trust-region algorithm.

See also:

For documentation for the rest of the parameters, see `scipy.optimize.minimize`

**Options**

- `initial_tr_radius` [float] Initial trust-region radius.
- `max_tr_radius` [float] Maximum value of the trust-region radius. No steps that are longer than this value will be proposed.
- `eta` [float] Trust region related acceptance stringency for proposed steps.
- `gtol` [float] Gradient norm must be less than `gtol` before successful termination.

Constraints are passed to `minimize` function as a single object or as a list of objects from the following classes:

<table>
<thead>
<tr>
<th>NonlinearConstraint</th>
<th>LinearConstraint</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>scipy.optimize.NonlinearConstraint</code></td>
<td><code>scipy.optimize.LinearConstraint</code></td>
</tr>
</tbody>
</table>

```python
class scipy.optimize.NonlinearConstraint (fun, lb, ub[, jac, ...])
```

Nonlinear constraint on the variables.

The constraint has the general inequality form:

\[
\text{lb} \leq \text{fun}(x) \leq \text{ub}
\]

Here the vector of independent variables \(x\) is passed as `ndarray` of shape (n,) and `fun` returns a vector with m components.

It is possible to use equal bounds to represent an equality constraint or infinite bounds to represent a one-sided constraint.

**Parameters**

- `fun` [callable] The function defining the constraint. The signature is `fun(x) -> array_like, shape (m,)`.
- `lb, ub` [array_like] Lower and upper bounds on the constraint. Each array must have the shape (m,) or be a scalar, in the latter case a bound will be the same for all components of the constraint. Use `np.inf` with an appropriate sign to specify a one-sided constraint. Set components of `lb` and `ub` equal to represent an equality constraint. Note that you can mix constraints of different types: interval, one-sided or equality, by setting different components of `lb` and `ub` as necessary.
jac  [{callable, ‘2-point’, ‘3-point’, ‘cs’}, optional] Method of computing the Jacobian matrix (an m-by-n matrix, where element (i, j) is the partial derivative of f[i] with respect to x[j]). The keywords {‘2-point’, ‘3-point’, ‘cs’} select a finite difference scheme for the numerical estimation. A callable must have the following signature: jac(x) -> {ndarray, sparse matrix}, shape (m, n). Default is ‘2-point’.

hess  [{callable, ‘2-point’, ‘3-point’, ‘cs’, HessianUpdateStrategy, None}, optional] Method for computing the Hessian matrix. The keywords {‘2-point’, ‘3-point’, ‘cs’} select a finite difference scheme for numerical estimation. Alternatively, objects implementing HessianUpdateStrategy interface can be used to approximate the Hessian. Currently available implementations are:

• BFGS (default option)
• SR1

A callable must return the Hessian matrix of dot(fun, v) and must have the following signature: hess(x, v) -> {LinearOperator, sparse matrix, array_like}, shape (n, n). Here v is ndarray with shape (m,) containing Lagrange multipliers.

keep_feasible
[array_like of bool, optional] Whether to keep the constraint components feasible throughout iterations. A single value set this property for all components. Default is False. Has no effect for equality constraints.

finite_diff_rel_step: None or array_like, optional
Relative step size for the finite difference approximation. Default is None, which will select a reasonable value automatically depending on a finite difference scheme.

finite_diff_jac_sparsity: {None, array_like, sparse matrix}, optional
Defines the sparsity structure of the Jacobian matrix for finite difference estimation, its shape must be (m, n). If the Jacobian has only few non-zero elements in each row, providing the sparsity structure will greatly speed up the computations. A zero entry means that a corresponding element in the Jacobian is identically zero. If provided, forces the use of ‘lsmr’ trust-region solver. If None (default) then dense differencing will be used.

Notes
Finite difference schemes {‘2-point’, ‘3-point’, ‘cs’} may be used for approximating either the Jacobian or the Hessian. We, however, do not allow its use for approximating both simultaneously. Hence whenever the Jacobian is estimated via finite-differences, we require the Hessian to be estimated using one of the quasi-Newton strategies.

The scheme ‘cs’ is potentially the most accurate, but requires the function to correctly handles complex inputs and be analytically continuable to the complex plane. The scheme ‘3-point’ is more accurate than ‘2-point’ but requires twice as many operations.

Examples
Constrain x[0] < sin(x[1]) + 1.9

```python
>>> from scipy.optimize import NonlinearConstraint
>>> con = lambda x: x[0] - np.sin(x[1])
>>> nlc = NonlinearConstraint(con, -np.inf, 1.9)
```
**scipy.optimize.LinearConstraint**

```python
class scipy.optimize.LinearConstraint(A, lb, ub, keep_feasible=False)
```

Linear constraint on the variables.

The constraint has the general inequality form:

\[ lb \leq A \cdot x \leq ub \]

Here the vector of independent variables \( x \) is passed as ndarray of shape \((n,)\) and the matrix \( A \) has shape \((m, n)\).

It is possible to use equal bounds to represent an equality constraint or infinite bounds to represent a one-sided constraint.

**Parameters**

- **A** [{array_like, sparse matrix}, shape (m, n)] Matrix defining the constraint.
- **lb**, **ub** [array_like] Lower and upper bounds on the constraint. Each array must have the shape \((m,)\) or be a scalar, in the latter case a bound will be the same for all components of the constraint. Use `np.inf` with an appropriate sign to specify a one-sided constraint. Set components of \( lb \) and \( ub \) equal to represent an equality constraint. Note that you can mix constraints of different types: interval, one-sided or equality, by setting different components of \( lb \) and \( ub \) as necessary.
- **keep_feasible** [array_like of bool, optional] Whether to keep the constraint components feasible throughout iterations. A single value set this property for all components. Default is False. Has no effect for equality constraints.

Simple bound constraints are handled separately and there is a special class for them:

```python
Bounds(lb, ub[, keep_feasible])
```

**Boundsconstraint on the variables.**

**scipy.optimize.Bounds**

```python
class scipy.optimize.Bounds(lb, ub, keep_feasible=False)
```

Bounds constraint on the variables.

The constraint has the general inequality form:

\[ lb \leq x \leq ub \]

It is possible to use equal bounds to represent an equality constraint or infinite bounds to represent a one-sided constraint.

**Parameters**

- **lb**, **ub** [array_like] Lower and upper bounds on independent variables. Each array must have the same size as \( x \) or be a scalar, in which case a bound will be the same for all the variables. Set components of \( lb \) and \( ub \) equal to fix a variable. Use `np.inf` with an appropriate sign to disable bounds on all or some variables. Note that you can mix constraints of different types: interval, one-sided or equality, by setting different components of \( lb \) and \( ub \) as necessary.
- **keep_feasible** [array_like of bool, optional] Whether to keep the constraint components feasible throughout iterations. A single value set this property for all components. Default is False. Has no effect for equality constraints.
Quasi-Newton strategies implementing `HessianUpdateStrategy` interface can be used to approximate the Hessian in `minimize` function (available only for the ‘trust-constr’ method). Available quasi-Newton methods implementing this interface are:

<table>
<thead>
<tr>
<th>QN Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>BFGS</strong></td>
<td>Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian update strategy.</td>
</tr>
<tr>
<td><strong>SR1</strong></td>
<td>Symmetric-rank-1 Hessian update strategy.</td>
</tr>
</tbody>
</table>

### scipy.optimize.BFGS

**class** scipy.optimize.BFGS

Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian update strategy.

**Parameters**

- **exception_strategy**
  
  [{'skip_update', 'damp_update'}, optional] Define how to proceed when the curvature condition is violated. Set it to ‘skip_update’ to just skip the update. Or, alternatively, set it to ‘damp_update’ to interpolate between the actual BFGS result and the unmodified matrix. Both exceptions strategies are explained in [1], p.536-537.

- **min_curvature**
  
  [float] This number, scaled by a normalization factor, defines the minimum curvature $\text{dot}(\delta_{\text{grad}}, \delta_{\text{x}})$ allowed to go unaffected by the exception strategy. By default is equal to $1e^{-8}$ when `exception_strategy` = ‘skip_update’ and equal to 0.2 when `exception_strategy` = 'damp_update'.

- **init_scale**
  
  [{float, ‘auto’}] Matrix scale at first iteration. At the first iteration the Hessian matrix or its inverse will be initialized with $\text{init_scale}*\text{np.eye}(n)$, where $n$ is the problem dimension. Set it to ‘auto’ in order to use an automatic heuristic for choosing the initial scale. The heuristic is described in [1], p.143. By default uses ‘auto’.

**Notes**

The update is based on the description in [1], p.140.

**References**

[1]

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot(p)</code></td>
<td>Compute the product of the internal matrix with the given vector.</td>
</tr>
<tr>
<td><code>get_matrix()</code></td>
<td>Return the current internal matrix.</td>
</tr>
<tr>
<td><code>initialize(n, approx_type)</code></td>
<td>Initialize internal matrix.</td>
</tr>
<tr>
<td><code>update(deltax, deltgrad)</code></td>
<td>Update internal matrix.</td>
</tr>
</tbody>
</table>
scipy.optimize.BFGS.dot

BFGS.dot \((p)\)
Compute the product of the internal matrix with the given vector.

**Parameters**
- \(p\) [array_like] 1-D array representing a vector.

**Returns**
- \(Hp\) [array] 1-D represents the result of multiplying the approximation matrix by vector \(p\).

scipy.optimize.BFGS.get_matrix

BFGS.get_matrix()
Return the current internal matrix.

**Returns**
- \(M\) [ndarray, shape (n, n)] Dense matrix containing either the Hessian or its inverse (depending on how \(approx\_type\) was defined).

scipy.optimize.BFGS.initialize

BFGS.initialize \((n, approx\_type)\)
Initialize internal matrix.
Allocate internal memory for storing and updating the Hessian or its inverse.

**Parameters**
- \(n\) [int] Problem dimension.
- \(approx\_type\) [{'hess', 'inv_hess}] Selects either the Hessian or the inverse Hessian. When set to ‘hess’ the Hessian will be stored and updated. When set to ‘inv_hess’ its inverse will be used instead.

scipy.optimize.BFGS.update

BFGS.update \((\delta_x, \delta_grad)\)
Update internal matrix.
Update Hessian matrix or its inverse (depending on how ‘approx_type’ is defined) using information about the last evaluated points.

**Parameters**
- \(\delta_x\) [ndarray] The difference between two points the gradient function have been evaluated at: \(\delta_x = x2 - x1\).  
- \(\delta_grad\) [ndarray] The difference between the gradients: \(\delta_grad = \text{grad}(x2) - \text{grad}(x1)\).
scipy.optimize.SR1

class scipy.optimize.SR1(min_denominator=1e-08, init_scale='auto')
Symmetric-rank-1 Hessian update strategy.

Parameters

min_denominator [float] This number, scaled by a normalization factor, defines the minimum denominator magnitude allowed in the update. When the condition is violated we skip the update. By default uses 1e-8.

init_scale [float, ‘auto’], optional Matrix scale at first iteration. At the first iteration the Hessian matrix or its inverse will be initialized with init_scale*np.eye(n), where n is the problem dimension. Set it to ‘auto’ in order to use an automatic heuristic for choosing the initial scale. The heuristic is described in [1], p.143. By default uses ‘auto’.

Notes

The update is based on the description in [1], p.144-146.

References

[1]

Methods

dot(p) Compute the product of the internal matrix with the given vector.

get_matrix() Return the current internal matrix.

initialize(n, approx_type) Initialize internal matrix.

update(delta_x, delta_grad) Update internal matrix.

scipy.optimize.SR1.dot

SR1.dot(p)
Compute the product of the internal matrix with the given vector.

Parameters

p [array_like] 1-D array representing a vector.

Returns

Hp [array] 1-D represents the result of multiplying the approximation matrix by vector p.
scipy.optimize.SR1.get_matrix

SR1.get_matrix()
Return the current internal matrix.

Returns

M [ndarray, shape (n, n)] Dense matrix containing either the Hessian or its inverse (depending on how approx_type was defined).

scipy.optimize.SR1.initialize

SR1.initialize(n, approx_type)
Initialize internal matrix.

Allocate internal memory for storing and updating the Hessian or its inverse.

Parameters

n [int] Problem dimension.
approx_type
    [‘hess’, ‘inv_hess’] Selects either the Hessian or the inverse Hessian. When set to ‘hess’ the Hessian will be stored and updated. When set to ‘inv_hess’ its inverse will be used instead.

scipy.optimize.SR1.update

SR1.update(delta_x, delta_grad)
Update internal matrix.

Update Hessian matrix or its inverse (depending on how ‘approx_type’ is defined) using information about the last evaluated points.

Parameters

delta_x [ndarray] The difference between two points the gradient function have been evaluated at: delta_x = x2 - x1.
delta_grad [ndarray] The difference between the gradients: delta_grad = grad(x2) - grad(x1).

Global optimization

basinhopping(func, x0[, niter, T, stepsize, ...]) Find the global minimum of a function using the basin-hopping algorithm.
brute(func, ranges[, args, Ns, full_output, ...]) Minimize a function over a given range by brute force.
differential_evolution(func, bounds[, args, ...]) Finds the global minimum of a multivariate function.
shgo(func, bounds[, args, constraints, n, ...]) Finds the global minimum of a function using SHG optimization.
dual_annealing(func, bounds[, args, ...]) Find the global minimum of a function using Dual Annealing.
Find the global minimum of a function using the basin-hopping algorithm.

Basin-hopping is a two-phase method that combines a global stepping algorithm with local minimization at each step. Designed to mimic the natural process of energy minimization of clusters of atoms, it works well for similar problems with “funnel-like, but rugged” energy landscapes [5].

As the step-taking, step acceptance, and minimization methods are all customizable, this function can also be used to implement other two-phase methods.

**Parameters**

- **func** [callable f(x, *args)] Function to be optimized. args can be passed as an optional item in the dict `minimizer_kwargs`
- **x0** [array_like] Initial guess.
- **niter** [integer, optional] The number of basin-hopping iterations. There will be a total of niter + 1 runs of the local minimizer.
- **T** [float, optional] The “temperature” parameter for the accept or reject criterion. Higher “temperatures” mean that larger jumps in function value will be accepted. For best results T should be comparable to the separation (in function value) between local minima.
- **stepsize** [float, optional] Maximum step size for use in the random displacement.
- **minimizer_kwargs** [dict, optional] Extra keyword arguments to be passed to the local minimizer scipy.optimize.minimize() Some important options could be:
  - **method** [str] The minimization method (e.g. "L-BFGS-B")
  - **args** [tuple] Extra arguments passed to the objective function (func) and its derivatives (Jacobian, Hessian).
- **take_step** [callable take_step(x), optional] Replace the default step-taking routine with this routine. The default step-taking routine is a random displacement of the coordinates, but other step-taking algorithms may be better for some systems. `take_step` can optionally have the attribute `take_step.stepsize`. If this attribute exists, then basinhopping will adjust `take_step.stepsize` in order to try to optimize the global minimum search.
- **accept_test** [callable, accept_test(f_new=f_new, x_new=x_new, f_old=f_old, x_old=x_old), optional] Define a test which will be used to judge whether or not to accept the step. This will be used in addition to the Metropolis test based on “temperature” T. The acceptable return values are True, False, or "force accept". If any of the tests return False then the step is rejected. If the latter, then this will override any other tests in order to accept the step. This can be used, for example, to forcefully escape from a local minimum that basinhopping is trapped in.
- **callback** [callable, callback(x, f, accept), optional] A callback function which will be called for all minima found. x and f are the coordinates and function value of the trial minimum, and accept is whether or not that minimum was accepted. This can be used, for example, to save the lowest N minima found. Also, callback can be used to specify a user defined stop criterion by optionally returning True to stop the basinhopping routine.
- **interval** [integer, optional] interval for how often to update the stepsize
- **disp** [bool, optional] Set to True to print status messages
- **niter_success** [integer, optional] Stop the run if the global minimum candidate remains the same for this number of iterations.
- **seed** [{None, int, numpy.random.Generator}]
numpy.random.RandomState}, optional
If seed is None (or np.random), the numpy.random.RandomState singleton is used.
If seed is an int, a new RandomState instance is used, seeded with seed. If seed is already
a Generator or RandomState instance then that instance is used. Specify seed for
repeatable minimizations. The random numbers generated with this seed only affect the
default Metropolis accept_test and the default take_step. If you supply your own take_step
and accept_test, and these functions use random number generation, then those functions are
responsible for the state of their random number generator.

target_accept_rate
[float, optional] The target acceptance rate that is used to adjust the stepsize. If the current
acceptance rate is greater than the target, then the stepsize is increased. Otherwise, it is
decreased. Range is (0, 1). Default is 0.5.
New in version 1.8.0.

stepwise_factor
[float, optional] The stepsize is multiplied or divided by this stepwise factor upon each update.
Range is (0, 1). Default is 0.9.
New in version 1.8.0.

Returns
res [OptimizeResult] The optimization result represented as a OptimizeResult object. Im-
portant attributes are: x the solution array, fun the value of the function at the solution, and
message which describes the cause of the termination. The OptimizeResult object
returned by the selected minimizer at the lowest minimum is also contained within this ob-
ject and can be accessed through the lowest_optimization_result attribute. See
OptimizeResult for a description of other attributes.

See also:

minimize
The local minimization function called once for each basinhopping step. minimizer_kwarggs is passed to
this routine.

Notes
Basin-hopping is a stochastic algorithm which attempts to find the global minimum of a smooth scalar function of
one or more variables [1] [2] [3] [4]. The algorithm in its current form was described by David Wales and Jonathan
The algorithm is iterative with each cycle composed of the following features
1) random perturbation of the coordinates
2) local minimization
3) accept or reject the new coordinates based on the minimized function value
The acceptance test used here is the Metropolis criterion of standard Monte Carlo algorithms, although there are
many other possibilities [3].
This global minimization method has been shown to be extremely efficient for a wide variety of problems in physics
and chemistry. It is particularly useful when the function has many minima separated by large barriers. See the
Cambridge Cluster Database http://www-wales.ch.cam.ac.uk/CCD.html for databases of molecular systems that
have been optimized primarily using basin-hopping. This database includes minimization problems exceeding 300
degrees of freedom.
See the free software program GMIN (http://www-wales.ch.cam.ac.uk/GMIN) for a Fortran implementation of basin-hopping. This implementation has many different variations of the procedure described above, including more advanced step taking algorithms and alternate acceptance criterion.

For stochastic global optimization there is no way to determine if the true global minimum has actually been found. Instead, as a consistency check, the algorithm can be run from a number of different random starting points to ensure the lowest minimum found in each example has converged to the global minimum. For this reason, basinhopping will by default simply run for the number of iterations niter and return the lowest minimum found. It is left to the user to ensure that this is in fact the global minimum.

Choosing stepsize: This is a crucial parameter in basinhopping and depends on the problem being solved. The step is chosen uniformly in the region from x0-stepsize to x0+stepsize, in each dimension. Ideally, it should be comparable to the typical separation (in argument values) between local minima of the function being optimized. basinhopping will, by default, adjust stepsize to find an optimal value, but this may take many iterations. You will get quicker results if you set a sensible initial value for stepsize.

Choosing T: The parameter T is the “temperature” used in the Metropolis criterion. Basin hopping steps are always accepted if func(xnew) < func(xold). Otherwise, they are accepted with probability:

\[
\exp\left(\frac{-\text{func}(x_{\text{new}}) - \text{func}(x_{\text{old}})}{T}\right)
\]

So, for best results, T should be comparable to the typical difference (in function values) between local minima. (The height of “walls” between local minima is irrelevant.) If T is 0, the algorithm becomes Monotonic Basin-Hopping, in which all steps that increase energy are rejected. New in version 0.12.0.

References

[1], [2], [3], [4], [5]

Examples

The following example is a 1-D minimization problem, with many local minima superimposed on a parabola.

```python
>>> from scipy.optimize import basinhopping
>>> func = lambda x: np.cos(14.5 * x - 0.3) + (x + 0.2) * x
>>> x0=[1.]
```

Basinhopping, internally, uses a local minimization algorithm. We will use the parameter `minimizer_kwargs` to tell basinhopping which algorithm to use and how to set up that minimizer. This parameter will be passed to `scipy.optimize.minimize()`.

```python
>>> minimizer_kwargs = {"method": "BFGS"}
>>> ret = basinhopping(func, x0, minimizer_kwargs=minimizer_kwargs,
... niter=200)
>>> print("global minimum: x = %4f, f(x0) = %4f" % (ret.x, ret.fun))
global minimum: x = -0.1951, f(x0) = -1.0009
```

Next consider a 2-D minimization problem. Also, this time, we will use gradient information to significantly speed up the search.
```python
>>> def func2d(x):
... f = np.cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] + (x[0] + 0.2) * x[0]
... df = np.zeros(2)
... df[0] = -14.5 * np.sin(14.5 * x[0] - 0.3) + 2. * x[0] + 0.2
... df[1] = 2. * x[1] + 0.2
... return f, df

We'll also use a different local minimization algorithm. Also, we must tell the minimizer that our function returns both energy and gradient (Jacobian).

```python
>>> minimizer_kwargs = {"method":"L-BFGS-B", "jac":True}
>>> x0 = [1.0, 1.0]
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
...     niter=200)
>>> print("global minimum: x = [%s, %s], f(x0) = %.4f" % (ret.x[0],
...     ret.x[1],
...     ret.fun))
```
```
global minimum: x = [-0.1951, -0.1000], f(x0) = -1.0109
```

Here is an example using a custom step-taking routine. Imagine you want the first coordinate to take larger steps than the rest of the coordinates. This can be implemented like so:

```python
>>> class MyTakeStep:
...     def __init__(self, stepsize=0.5):
...         self.stepsize = stepsize
...         self.rng = np.random.default_rng()
...     def __call__(self, x):
...         s = self.stepsize
...         x[0] += self.rng.uniform(-2.*s, 2.*s)
...         x[1:] += self.rng.uniform(-s, s, x[1:].shape)
...         return x

Since MyTakeStep.stepsize exists basinhopping will adjust the magnitude of stepsize to optimize the search. We'll use the same 2-D function as before

```python
>>> mytakestep = MyTakeStep()
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
... niter=200, take_step=mymakestep)
>>> print("global minimum: x = [%s, %s], f(x0) = %.4f" % (ret.x[0],
... ret.x[1],
... ret.fun))
```
```
global minimum: x = [-0.1951, -0.1000], f(x0) = -1.0109
```

Now, let's do an example using a custom callback function which prints the value of every minimum found

```python
>>> def print_fun(x, f, accepted):
... print("at minimum %.4f accepted %d" % (f, int(accepted)))
```
```
We'll run it for only 10 basinhopping steps this time.

```python
>>> rng = np.random.default_rng()
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
...     niter=10, callback=print_fun, seed=rng)
```
```
at minimum 0.4159 accepted 1
at minimum -0.4317 accepted 1
at minimum -1.0109 accepted 1
at minimum -0.9073 accepted 1
at minimum -0.4317 accepted 0
at minimum -0.1021 accepted 1
at minimum -0.7425 accepted 1
at minimum -0.9073 accepted 1
at minimum -0.4317 accepted 0
at minimum -0.7425 accepted 1
at minimum -0.9073 accepted 1
The minimum at -1.0109 is actually the global minimum, found already on the 8th iteration.

Now let's implement bounds on the problem using a custom accept_test:

```python
class MyBounds:
 ... def __init__(self, xmax=[1.1, 1.1], xmin=[-1.1, -1.1]):
 self.xmax = np.array(xmax)
 self.xmin = np.array(xmin)
 ... def __call__(self, **kwargs):
 x = kwargs['x_new']
 tmax = bool(np.all(x < self.xmax))
 tmin = bool(np.all(x >= self.xmin))
 return tmax and tmin
```

```python
mybounds = MyBounds()
ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
 niter=10, accept_test=mybounds)
```

**scipy.optimize.brute**

`scipy.optimize.brute(func, ranges, args=(), Ns=20, full_output=0, finish=<function fmin>, disp=False, workers=1)`

Minimize a function over a given range by brute force.

Uses the “brute force” method, i.e., computes the function’s value at each point of a multidimensional grid of points, to find the global minimum of the function.

The function is evaluated everywhere in the range with the datatype of the first call to the function, as enforced by the `vectorize` NumPy function. The value and type of the function evaluation returned when `full_output=True` are affected in addition by the `finish` argument (see Notes).

The brute force approach is inefficient because the number of grid points increases exponentially - the number of grid points to evaluate is Ns ** len(x). Consequently, even with coarse grid spacing, even moderately sized problems can take a long time to run, and/or run into memory limitations.

**Parameters**

- **func** [callable] The objective function to be minimized. Must be in the form `f(x, *args)`, where `x` is the argument in the form of a 1-D array and `args` is a tuple of any additional fixed parameters needed to completely specify the function.
ranges [tuple] Each component of the ranges tuple must be either a “slice object” or a range tuple of the form (low, high). The program uses these to create the grid of points on which the objective function will be computed. See Note 2 for more detail.

args [tuple, optional] Any additional fixed parameters needed to completely specify the function.

Ns [int, optional] Number of grid points along the axes, if not otherwise specified. See Note 2.

full_output [bool, optional] If True, return the evaluation grid and the objective function’s values on it.

finish [callable, optional] An optimization function that is called with the result of brute force minimization as initial guess. finish should take func and the initial guess as positional arguments, and take args as keyword arguments. It may additionally take full_output and/or disp as keyword arguments. Use None if no “polishing” function is to be used. See Notes for more details.

disp [bool, optional] Set to True to print convergence messages from the finish callable.

workers [int or map-like callable, optional] If workers is an int the grid is subdivided into workers sections and evaluated in parallel (uses multiprocessing.Pool). Supply -1 to use all cores available to the Process. Alternatively supply a map-like callable, such as multiprocessing.Pool.map for evaluating the grid in parallel. This evaluation is carried out as workers(func, iterable). Requires that func be pickleable.

New in version 1.3.0.

Returns

x0 [ndarray] A 1-D array containing the coordinates of a point at which the objective function had its minimum value. (See Note 1 for which point is returned.)
fval [float] Function value at the point x0. (Returned when full_output is True.)
grid [tuple] Representation of the evaluation grid. It has the same length as x0. (Returned when full_output is True.)
Jout [ndarray] Function values at each point of the evaluation grid, i.e., Jout = func(*grid). (Returned when full_output is True.)

See also:

basinhopping, differential_evolution

Notes

Note 1: The program finds the gridpoint at which the lowest value of the objective function occurs. If finish is None, that is the point returned. When the global minimum occurs within (or not very far outside) the grid’s boundaries, and the grid is fine enough, that point will be in the neighborhood of the global minimum.

However, users often employ some other optimization program to “polish” the gridpoint values, i.e., to seek a more precise (local) minimum near brute’s best gridpoint. The brute function’s finish option provides a convenient way to do that. Any polishing program used must take brute’s output as its initial guess as a positional argument, and take brute’s input values for args as keyword arguments, otherwise an error will be raised. It may additionally take full_output and/or disp as keyword arguments.

brute assumes that the finish function returns either an OptimizeResult object or a tuple in the form: (xmin, Jmin, ..., statuscode), where xmin is the minimizing value of the argument, Jmin is the minimum value of the objective function, “...” may be some other returned values (which are not used by brute), and statuscode is the status code of the finish program.

Note that when finish is not None, the values returned are those of the finish program, not the gridpoint ones. Consequently, while brute confines its search to the input grid points, the finish program’s results usually will not coincide with any gridpoint, and may fall outside the grid’s boundary. Thus, if a minimum only needs to be found over the provided grid points, make sure to pass in finish=None.
Note 2: The grid of points is a `numpy.mgrid` object. For `brute` the *ranges* and *Ns* inputs have the following effect. Each component of the *ranges* tuple can be either a slice object or a two-tuple giving a range of values, such as (0, 5). If the component is a slice object, `brute` uses it directly. If the component is a two-tuple range, `brute` internally converts it to a slice object that interpolates *Ns* points from its low-value to its high-value, inclusive.

**Examples**

We illustrate the use of `brute` to seek the global minimum of a function of two variables that is given as the sum of a positive-definite quadratic and two deep “Gaussian-shaped” craters. Specifically, define the objective function \( f \) as the sum of three other functions, \( f = f_1 + f_2 + f_3 \). We suppose each of these has a signature \((z, *params)\), where \( z = (x, y) \), and \( params \) and the functions are as defined below.

```python
>>> params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5)
>>> def f1(z, *params):
... x, y = z
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params
... return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f)
```

```python
>>> def f2(z, *params):
... x, y = z
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params
... return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale))
```

```python
>>> def f3(z, *params):
... x, y = z
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params
... return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale))
```

```python
>>> def f(z, *params):
... return f1(z, *params) + f2(z, *params) + f3(z, *params)
```

Thus, the objective function may have local minima near the minimum of each of the three functions of which it is composed. To use `fmin` to polish its gridpoint result, we may then continue as follows:

```python
>>> rranges = (slice(-4, 4, 0.25), slice(-4, 4, 0.25))
>>> from scipy import optimize
>>> resbrute = optimize.brute(f, rranges, args=params, full_output=True,
... finish=optimize.fmin)
>>> resbrute[0] # global minimum
array([-1.05665192, 1.80834843])
>>> resbrute[1] # function value at global minimum
-3.4085818767
```

Note that if `finish` had been set to None, we would have gotten the gridpoint \([-1.0 1.75]\) where the rounded function value is -2.892.
scipy.optimize.differential_evolution

scipy.optimize.differential_evolution(func, bounds, args=(), strategy='best1bin', maxiter=1000, popsize=15, tol=0.01, mutation=(0.5, 1), recombination=0.7, seed=None, callback=None, disp=False, polish=True, init='latinhypercube', atol=0, updating='immediate', workers=1, constraints=(), x0=None)

Finds the global minimum of a multivariate function.

Differential Evolution is stochastic in nature (does not use gradient methods) to find the minimum, and can search large areas of candidate space, but often requires larger numbers of function evaluations than conventional gradient-based techniques.

The algorithm is due to Storn and Price [1].

**Parameters**

- **func** [callable] The objective function to be minimized. Must be in the form \( f(x, *args) \), where \( x \) is the argument in the form of a 1-D array and \( args \) is a tuple of any additional fixed parameters needed to completely specify the function.

- **bounds** [sequence or Bounds] Bounds for variables. There are two ways to specify the bounds:
  1. Instance of Bounds class.
  2. (min, max) pairs for each element in \( x \), defining the finite lower and upper bounds for the optimizing argument of \( func \). It is required to have \( \text{len(bounds)} == \text{len(x)} \). \( \text{len(bounds)} \) is used to determine the number of parameters in \( x \).

- **args** [tuple, optional] Any additional fixed parameters needed to completely specify the objective function.

- **strategy** [str, optional] The differential evolution strategy to use. Should be one of:
  - 'best1bin'
  - 'best1exp'
  - 'rand1exp'
  - 'randtobest1exp'
  - 'currenttobest1exp'
  - 'best2exp'
  - 'rand2exp'
  - 'randtobest1bin'
  - 'currenttobest1bin'
  - 'best2bin'
  - 'rand2bin'
  - 'rand1bin'
  The default is 'best1bin'.

- **maxiter** [int, optional] The maximum number of generations over which the entire population is evolved. The maximum number of function evaluations (with no polishing) is: \((\text{maxiter} + 1) * \text{popsize} * \text{len(x)}\)

- **popsize** [int, optional] A multiplier for setting the total population size. The population has \( \text{popsize} * \text{len(x)} \) individuals. This keyword is overridden if an initial population is supplied via the \( \text{init} \) keyword. When using \( \text{init} = \text{'sobol'} \) the population size is calculated as the next power of 2 after \( \text{popsize} * \text{len(x)} \).

- **tol** [float, optional] Relative tolerance for convergence, the solving stops when \( \text{np.std(pop)} \leq \text{atol} + \text{tol} * \text{np.abs(np.mean(population_energies))} \), where and \( \text{atol} \) and \( \text{tol} \) are the absolute and relative tolerance respectively.

- **mutation** [float or tuple(float, float), optional] The mutation constant. In the literature this is also known as differential weight, being denoted by \( F \). If specified as a float it should be in the range \([0, 2]\). If specified as a tuple \((\text{min, max})\) dithering is employed. Dithering randomly changes the mutation constant on a generation by generation basis. The mutation constant for that generation is taken from \( U[\text{min, max}] \). Dithering can help speed convergence...
significantly. Increasing the mutation constant increases the search radius, but will slow down convergence.

**recombination**

[float, optional] The recombination constant, should be in the range [0, 1]. In the literature this is also known as the crossover probability, being denoted by CR. Increasing this value allows a larger number of mutants to progress into the next generation, but at the risk of population stability.

**seed**

[[None, int, numpy.random.Generator,]
numpy.random.RandomState], optional

If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new `RandomState` instance is used, seeded with `seed`. If `seed` is already a `Generator` or `RandomState` instance then that instance is used. Specify `seed` for repeatable minimizations.

**disp**

[bool, optional] Prints the evaluated `func` at every iteration.

**callback**

[callable, callback(xk, convergence=val), optional] A function to follow the progress of the minimization. `xk` is the best solution found so far. `val` represents the fractional value of the population convergence. When `val` is greater than one the function halts. If callback returns `True`, then the minimization is halted (any polishing is still carried out).

**polish**

[bool, optional] If True (default), then `scipy.optimize.minimize` with the L-BFGS-B method is used to polish the best population member at the end, which can improve the minimization slightly. If a constrained problem is being studied then the `trust-constr` method is used instead.

**init**

[str or array-like, optional] Specify which type of population initialization is performed. Should be one of:

- ‘latinhypercube’
- ‘sobol’
- ‘halton’
- ‘random’

array specifying the initial population. The array should have shape (M, len(x)), where M is the total population size and len(x) is the number of parameters. `init` is clipped to `bounds` before use.

The default is ‘latinhypercube’. Latin Hypercube sampling tries to maximize coverage of the available parameter space.

‘sobol’ and ‘halton’ are superior alternatives and maximize even more the parameter space. ‘sobol’ will enforce an initial population size which is calculated as the next power of 2 after `popsize * len(x)`.

‘halton’ has no requirements but is a bit less efficient. See `scipy.stats.qmc` for more details.

‘random’ initializes the population randomly - this has the drawback that clustering can occur, preventing the whole of parameter space being covered. Use of an array to specify a population could be used, for example, to create a tight bunch of initial guesses in an location where the solution is known to exist, thereby reducing time for convergence.

**atol**

[float, optional] Absolute tolerance for convergence, the solving stops when \( \text{np.std(pop)} \leq \text{atol} + \text{tol} \times \text{np.abs(np.mean(population_energies))} \), where and `atol` and `tol` are the absolute and relative tolerance respectively.

**updating**

[{'immediate', 'deferred'}, optional] If 'immediate', the best solution vector is continuously updated within a single generation [4]. This can lead to faster convergence as trial vectors can take advantage of continuous improvements in the best solution. With 'deferred', the best solution vector is updated once per generation. Only 'deferred' is compatible with parallelization, and the `workers` keyword can over-ride this option.

New in version 1.2.0.

**workers**

[int or map-like callable, optional] If `workers` is an int the population is subdivided into `workers` sections and evaluated in parallel (uses `multiprocessing.Pool`). Supply -1 to use all available CPU cores. Alternatively supply a map-like callable, such as `multiprocessing.Pool.map` for evaluating the population in parallel. This evaluation is carried out as
workers(func, iterable). This option will override the updating keyword to updating='deferred' if workers != 1. Requires that func be pickleable.
New in version 1.2.0.

constraints

[[NonLinearConstraint, LinearConstraint, Bounds]] Constraints on the solver, over and above those applied by the bounds kw. Uses the approach by Lampinen [5].
New in version 1.4.0.

x0

[None or array-like, optional] Provides an initial guess to the minimization. Once the population has been initialized this vector replaces the first (best) member. This replacement is done even if init is given an initial population.
New in version 1.7.0.

Returns

res [OptimizeResult] The optimization result represented as a OptimizeResult object. Important attributes are: x the solution array, success a Boolean flag indicating if the optimizer exited successfully and message which describes the cause of the termination. See OptimizeResult for a description of other attributes. If polish was employed, and a lower minimum was obtained by the polishing, then OptimizeResult also contains the jac attribute. If the eventual solution does not satisfy the applied constraints success will be False.

Notes

Differential evolution is a stochastic population based method that is useful for global optimization problems. At each pass through the population the algorithm mutates each candidate solution by mixing with other candidate solutions to create a trial candidate. There are several strategies [2] for creating trial candidates, which suit some problems more than others. The ‘best1bin’ strategy is a good starting point for many systems. In this strategy two members of the population are randomly chosen. Their difference is used to mutate the best member (the ‘best’ in ‘best1bin’), b0, so far:

\[
b' = b_0 + \text{mutation} \times (\text{population}[\text{rand0}] - \text{population}[\text{rand1}])
\]

A trial vector is then constructed. Starting with a randomly chosen ith parameter the trial is sequentially filled (in modulo) with parameters from b’ or the original candidate. The choice of whether to use b’ or the original candidate is made with a binomial distribution (the ‘bin’ in ‘best1bin’) - a random number in [0, 1) is generated. If this number is less than the recombination constant then the parameter is loaded from b’, otherwise it is loaded from the original candidate. The final parameter is always loaded from b’. Once the trial candidate is built its fitness is assessed. If the trial is better than the original candidate then it takes its place. If it is also better than the best overall candidate it also replaces that. To improve your chances of finding a global minimum use higher popsize values, with higher mutation and (dithering), but lower recombination values. This has the effect of widening the search radius, but slowing convergence. By default the best solution vector is updated continuously within a single iteration (updating='immediate'). This is a modification [4] of the original differential evolution algorithm which can lead to faster convergence as trial vectors can immediately benefit from improved solutions. To use the original Storn and Price behaviour, updating the best solution once per iteration, set updating='deferred'.
New in version 0.15.0.
References

[1], [2], [3], [4], [5]

Examples

Let us consider the problem of minimizing the Rosenbrock function. This function is implemented in `rosen` in `scipy.optimize`.

```python
>>> from scipy.optimize import rosen, differential_evolution
>>> bounds = [(0, 2), (0, 2), (0, 2), (0, 2), (0, 2)]
>>> result = differential_evolution(rosen, bounds)
>>> result.x, result.fun
(array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)
```

Now repeat, but with parallelization.

```python
>>> bounds = [(0, 2), (0, 2), (0, 2), (0, 2), (0, 2)]
>>> result = differential_evolution(rosen, bounds, updating='deferred',
... workers=2)
>>> result.x, result.fun
(array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)
```

Let’s try and do a constrained minimization

```python
>>> from scipy.optimize import NonlinearConstraint, Bounds
>>> def constr_f(x):
... return np.array(x[0] + x[1])
... # the sum of x[0] and x[1] must be less than 1.9
>>> nlc = NonlinearConstraint(constr_f, -np.inf, 1.9)
>>> # specify limits using a `Bounds` object.
>>> bounds = Bounds([0., 0.], [2., 2.])
>>> result = differential_evolution(rosen, bounds, constraints=(nlc),
... seed=1)
>>> result.x, result.fun
(array([0.96633867, 0.93363577]), 0.0011361355854792312)
```

Next find the minimum of the Ackley function (https://en.wikipedia.org/wiki/Test_functions_for_optimization).

```python
>>> from scipy.optimize import differential_evolution
>>> import numpy as np
>>> def ackley(x):
... arg1 = -0.2 * np.sqrt(0.5 * (x[0] ** 2 + x[1] ** 2))
... arg2 = 0.5 * (np.cos(2. * np.pi * x[0]) + np.cos(2. * np.pi *
... -x[1]))
... return -20. * np.exp(arg1) - np.exp(arg2) + 20. + np.e
>>> bounds = [(-5, 5), (-5, 5)]
>>> result = differential_evolution(ackley, bounds)
>>> result.x, result.fun
(array([0., 0.]), 4.4408920985006262e-16)
```
scipy.optimize.shgo

**scipy.optimize.shgo** *(func, bounds, args=(), constraints=(), n=None, iters=1, callback=None, minimizer_kwargs=(), options=(), sampling_method='simplicial')*

Finds the global minimum of a function using SHG optimization.

SHGO stands for “simplicial homology global optimization”.

**Parameters**

- **func** [callable] The objective function to be minimized. Must be in the form \( f(x, \ *args) \), where \( x \) is the argument in the form of a 1-D array and \( args \) is a tuple of any additional fixed parameters needed to completely specify the function.

- **bounds** [sequence] Bounds for variables. \((min, \ max)\) pairs for each element in \( x \), defining the lower and upper bounds for the optimizing argument of \( func \). It is required to have \( \text{len}(\text{bounds}) = \text{len}(x) \). \( \text{len}(\text{bounds}) \) is used to determine the number of parameters in \( x \). Use \( \text{None} \) for one of \( \text{min} \) or \( \text{max} \) when there is no bound in that direction. By default bounds are \((\text{None}, \text{None})\).

- **args** [tuple, optional] Any additional fixed parameters needed to completely specify the objective function.

- **constraints** [dict or sequence of dict, optional] Constraints definition. Function(s) \( \mathbb{R}^n \) in the form:

  \[
  g(x) >= 0 \text{ applied as } g : \mathbb{R}^n \rightarrow \mathbb{R}^m \\
  h(x) == 0 \text{ applied as } h : \mathbb{R}^n \rightarrow \mathbb{R}^p
  \]

  Each constraint is defined in a dictionary with fields:

  - **fun** [callable] The function defining the constraint.
  - **jac** [callable, optional] The Jacobian of \( \text{fun} \) (only for SLSQP).
  - **args** [sequence, optional] Extra arguments to be passed to the function and Jacobian.

  Equality constraint means that the constraint function result is to be zero whereas inequality means that it is to be non-negative. Note that COBYLA only supports inequality constraints.

  **Note:** Only the COBYLA and SLSQP local minimize methods currently support constraint arguments. If the constraints sequence used in the local optimization problem is not defined in minimizer_kwargs and a constrained method is used then the global constraints will be used. (Defining a constraints sequence in minimizer_kwargs means that constraints will not be added so if equality constraints and so forth need to be added then the inequality functions in constraints need to be added to minimizer_kwargs too).

- **n** [int, optional] Number of sampling points used in the construction of the simplicial complex. Note that this argument is only used for sobol and other arbitrary sampling_methods. In case of sobol, it must be a power of 2: \( n=2^m \), and the argument will automatically be converted to the next higher power of 2. Default is 100 for sampling_method='simplicial' and 128 for sampling_method='sobol'.

- **iters** [int, optional] Number of iterations used in the construction of the simplicial complex. Default is 1.

- **callback** [callable, optional] Called after each iteration, as \( \text{callback}(xk) \), where \( xk \) is the current parameter vector.

- **minimizer_kwargs** [dict, optional] Extra keyword arguments to be passed to the minimizer scipy.optimize.minimize Some important options could be:

  - **method** [str] The minimization method, the default is SLSQP.

- **args** [tuple] Extra arguments passed to the objective function (`func`) and its derivatives (Jacobian, Hessian).
- **options** [dict, optional] Note that by default the tolerance is specified as `{ftol: 1e-12}`

**options** [dict, optional] A dictionary of solver options. Many of the options specified for the global routine are also passed to the `scipy.optimize.minimize` routine. The options that are also passed to the local routine are marked with “(L)”.

Stopping criteria, the algorithm will terminate if any of the specified criteria are met. However, the default algorithm does not require any to be specified:

- **maxfev** [int (L)] Maximum number of function evaluations in the feasible domain. (Note only methods that support this option will terminate the routine at precisely exact specified value. Otherwise the criterion will only terminate during a global iteration)
- **f_min** Specify the minimum objective function value, if it is known.
- **f_tol** [float] Precision goal for the value of f in the stopping criterion. Note that the global routine will also terminate if a sampling point in the global routine is within this tolerance.
- **maxiter** [int] Maximum number of iterations to perform.
- **maxev** [int] Maximum number of sampling evaluations to perform (includes searching in infeasible points).
- **maxtime** [float] Maximum processing runtime allowed
- **minhgrd** [int] Minimum homology group rank differential. The homology group of the objective function is calculated (approximately) during every iteration. The rank of this group has a one-to-one correspondence with the number of locally convex subdomains in the objective function (after adequate sampling points each of these subdomains contain a unique global minimum). If the difference in the hgr is 0 between iterations for `maxhgrd` specified iterations the algorithm will terminate.

Objective function knowledge:

- **symmetry** [bool] Specify True if the objective function contains symmetric variables. The search space (and therefore performance) is decreased by O(n!).
- **jac** [bool or callable, optional] Jacobian (gradient) of objective function. Only for CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg. If `jac` is a boolean and is True, `fun` is assumed to return the gradient along with the objective function. If False, the gradient will be estimated numerically. `jac` can also be a callable returning the gradient of the objective. In this case, it must accept the same arguments as `fun`. (Passed to `scipy.optimize.minimize` automatically)

- **hess**, **hessp** [callable, optional] Hessian (matrix of second-order derivatives) of objective function or Hessian of objective function times an arbitrary vector p. Only for Newton-CG, dogleg, trust-ncg. Only one of `hessp` or `hess` needs to be given. If `hess` is provided, then `hessp` will be ignored. If neither `hess` nor `hessp` is provided, then the Hessian product will be approximated using finite differences on `jac`. `hessp` must compute the Hessian times an arbitrary vector. (Passed to `scipy.optimize.minimize` automatically)

Algorithm settings:

- **minimize_every_iter** [bool] If True then promising global sampling points will be passed to a local minimization routine every iteration. If False then only the final minimizer pool will be run. Defaults to False.
- **local_iter** [int] Only evaluate a few of the best minimizer pool candidates every iteration. If False all potential points are passed to the local minimization routine.
If True then any sampling points generated which are outside will the feasible domain will be saved and given an objective function value of $\text{inf}$. If False then these points will be discarded. Using this functionality could lead to higher performance with respect to function evaluations before the global minimum is found, specifying False will use less memory at the cost of a slight decrease in performance. Defaults to True.

Feedback:

- **disp**
  - [bool (L)] Set to True to print convergence messages.

**sampling_method**

[str or function, optional] Current built in sampling method options are halton, sobol and simplicial. The default simplicial provides the theoretical guarantee of convergence to the global minimum in finite time. halton and sobol method are faster in terms of sampling point generation at the cost of the loss of guaranteed convergence. It is more appropriate for most “easier” problems where the convergence is relatively fast. User defined sampling functions must accept two arguments of $n$ sampling points of dimension $\text{dim}$ per call and output an array of sampling points with shape $n \times \text{dim}$.

**Returns**

- **res**
  - [OptimizeResult] The optimization result represented as a OptimizeResult object. Important attributes are: $x$ the solution array corresponding to the global minimum, $\text{fun}$ the function output at the global solution, $\text{xl}$ an ordered list of local minima solutions, $\text{funl}$ the function output at the corresponding local solutions, success a Boolean flag indicating if the optimizer exited successfully, $\text{message}$ which describes the cause of the termination, nfev the total number of objective function evaluations including the sampling calls, nlfev the total number of objective function evaluations culminating from all local search optimizations, nit number of iterations performed by the global routine.

**Notes**

Global optimization using simplicial homology global optimization [1]. Appropriate for solving general purpose NLP and blackbox optimization problems to global optimality (low-dimensional problems).

In general, the optimization problems are of the form:

\[
\begin{align*}
\text{minimize } f(x) \text{ subject to } \\
g_i(x) & \geq 0, \quad i = 1, \ldots, m \\
h_j(x) & = 0, \quad j = 1, \ldots, p
\end{align*}
\]

where $x$ is a vector of one or more variables. $f(x)$ is the objective function $\mathbb{R}^n \rightarrow \mathbb{R}$, $g_i(x)$ are the inequality constraints, and $h_j(x)$ are the equality constraints.

Optionally, the lower and upper bounds for each element in $x$ can also be specified using the `bounds` argument.

While most of the theoretical advantages of SHGO are only proven for when $f(x)$ is a Lipschitz smooth function, the algorithm is also proven to converge to the global optimum for the more general case where $f(x)$ is non-continuous, non-convex and non-smooth, if the default sampling method is used [1].

The local search method may be specified using the `minimizer_kwargs` parameter which is passed on to scipy.optimize.minimize. By default, the SLSQP method is used. In general, it is recommended to use the SLSQP or COBYLA local minimization if inequality constraints are defined for the problem since the other methods do not use constraints.

The halton and sobol method points are generated using scipy.stats.qmc. Any other QMC method could be used.
References

[1], [2], [3], [4]

Examples

First consider the problem of minimizing the Rosenbrock function, rosen:

```python
>>> from scipy.optimize import rosen, shgo
>>> bounds = [(0, 2), (0, 2), (0, 2), (0, 2), (0, 2)]
>>> result = shgo(rosen, bounds)
>>> result.x, result.fun
(array([1., 1., 1., 1., 1.]), 2.920392374190081e-18)
```

Note that bounds determine the dimensionality of the objective function and is therefore a required input, however you can specify empty bounds using `None` or objects like `np.inf` which will be converted to large float numbers.

```python
>>> bounds = [(None, None),]*4
>>> result = shgo(rosen, bounds)
>>> result.x
array([0.99999951, 0.99999804, 0.99999511, 0.9999882])
```

Next, we consider the Eggholder function, a problem with several local minima and one global minimum. We will demonstrate the use of arguments and the capabilities of `shgo`. (https://en.wikipedia.org/wiki/Test_functions_for_optimization)

```python
>>> def eggholder(x):
... return -((x[1] + 47.0) * np.sin(np.sqrt(abs(x[0] / 2.0 + (x[1] + 47.0))))
... - x[0] * np.sin(np.sqrt(abs(x[0] - (x[1] + 47.0))))
...)

>>> bounds = [(-512, 512), (-512, 512)]
```

`shgo` has built-in low discrepancy sampling sequences. First, we will input 64 initial sampling points of the Sobol' sequence:

```python
>>> result = shgo(eggholder, bounds, n=64, sampling_method='sobol')
>>> result.x, result.fun
(array([512. , 404.23180824]), -959.6406627208397)
```

`shgo` also has a return for any other local minima that was found, these can be called using:

```python
>>> result.xl
array([[512.0, 404.23180824],
 [283.0759062 , -487.12565635],
 [-294.66820039, -462.01964031],
 [-105.87688911, 423.15323845],
 [-242.97926 , 274.38030925],
 [-506.25823477, 6.3131022],
 [-408.71980731, -156.10116949],
 [150.23207937, 301.31376595],
 [91.00920901, -391.283763]],
 (continues on next page)
These results are useful in applications where there are many global minima and the values of other global minima are desired or where the local minima can provide insight into the system (for example morphologies in physical chemistry [4]).

If we want to find a larger number of local minima, we can increase the number of sampling points or the number of iterations. We’ll increase the number of sampling points to 64 and the number of iterations from the default of 1 to 3. Using simplicial this would have given us $64 \times 3 = 192$ initial sampling points.

```python
>>> result_2 = shgo(eggholder, bounds, n=64, iters=3, sampling_method='sobol')
>>> len(result.xl), len(result_2.xl)
(12, 20)
```

Note the difference between, e.g., $n=192$, iters=1 and $n=64$, iters=3. In the first case the promising points contained in the minimiser pool are processed only once. In the latter case it is processed every 64 sampling points for a total of 3 times.

To demonstrate solving problems with non-linear constraints consider the following example from Hock and Schittkowski problem 73 (cattle-feed) [3]:

Minimize: $f = 24.55 \times x_1 + 26.75 \times x_2 + 39 \times x_3 + 40.50 \times x_4$

Subject to:

\[
\begin{align*}
2.3 \times x_1 + 5.6 \times x_2 + 11.1 \times x_3 + 1.3 \times x_4 & - 5 & \geq 0, \\
12 \times x_1 + 11.9 \times x_2 + 41.8 \times x_3 + 52.1 \times x_4 & - 21 & \geq 0, \\
-1.645 \times \sqrt{0.28 \times x_1^{**2} + 0.19 \times x_2^{**2} + \\
20.5 \times x_3^{**2} + 0.62 \times x_4^{**2}} & \geq 0, \\
1 & \geq x_i \geq 0 \text{ for all } i
\end{align*}
\]

The approximate answer given in [3] is:

\[f([0.6355216, -0.12e-11, 0.3127019, 0.05177655]) = 29.894378\]
... - 1.645 * np.sqrt(0.28*x[0]**2 + 0.19*x[1]**2
... + 20.5*x[2]**2 + 0.62*x[3]**2)
...) # >=0

... >>> def h1(x):

... >>> cons = ({'type': 'ineq', 'fun': g1},
... {'type': 'ineq', 'fun': g2},
... {'type': 'eq', 'fun': h1})

... >>> bounds = [(0, 1.0),]*4

... >>> res = shgo(f, bounds, iters=3, constraints=cons)

... >>> res

 fun: 29.894378159142136
 funl: array([29.89437816])
 message: 'Optimization terminated successfully.'
 nfev: 114
 nit: 3
 nlfev: 35
 nlhev: 0
 nljev: 5
 success: True
 17765506e-02])
 17765506e-02]])

... g1(res.x), g2(res.x), h1(res.x)

(-5.062616992290714e-14, -2.9594104944408173e-12, 0.0)

scipy.optimize.dual_annealing

`scipy.optimize.dual_annealing` *(func, bounds, args=(), maxiter=1000, minimizer_kwags=None, initial_temp=5230.0, restart_temp_ratio=2e-05, visit=2.62, accept=- 5.0, maxfun=1000000.0, seed=None, no_local_search=False, callback=None, x0=None, local_search_options=None)*

Find the global minimum of a function using Dual Annealing.

Parameters

- **func** [callable] The objective function to be minimized. Must be in the form `f(x, *args)`, where `x` is the argument in the form of a 1-D array and `args` is a tuple of any additional fixed parameters needed to completely specify the function.

- **bounds** [sequence, shape (n, 2)] Bounds for variables. `(min, max)` pairs for each element in `x`, defining bounds for the objective function parameter.

- **args** [tuple, optional] Any additional fixed parameters needed to completely specify the objective function.

- **maxiter** [int, optional] The maximum number of global search iterations. Default value is 1000.

- **minimizer_kwags** [dict, optional] Extra keyword arguments to be passed to the local minimizer (`minimize`). Some important options could be: `method` for the minimizer method to use and `args` for objective function additional arguments.
initial_temp

[float, optional] The initial temperature, use higher values to facilitates a wider search of the energy landscape, allowing dual_annealing to escape local minima that it is trapped in. Default value is 5230. Range is (0.01, 5e4].

restart_temp_ratio

[float, optional] During the annealing process, temperature is decreasing, when it reaches \(\text{initial_temp} \times \text{restart_temp_ratio}\), the reannealing process is triggered. Default value of the ratio is 2e-5. Range is (0, 1).

visit

[float, optional] Parameter for visiting distribution. Default value is 2.62. Higher values give the visiting distribution a heavier tail, this makes the algorithm jump to a more distant region. The value range is (1, 3).

accept

[float, optional] Parameter for acceptance distribution. It is used to control the probability of acceptance. The lower the acceptance parameter, the smaller the probability of acceptance. Default value is -5.0 with a range (-1e4, -5].

maxfun

[int, optional] Soft limit for the number of objective function calls. If the algorithm is in the middle of a local search, this number will be exceeded, the algorithm will stop just after the local search is done. Default value is 1e7.

seed

[[None, int, numpy.random.Generator],
numpy.random.RandomState], optional

If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new `RandomState` instance is used, seeded with `seed`. If `seed` is already a `Generator` or `RandomState` instance then that instance is used. Specify `seed` for repeatable minimizations. The random numbers generated with this seed only affect the visiting distribution function and new coordinates generation.

no_local_search

[bool, optional] If `no_local_search` is set to True, a traditional Generalized Simulated Annealing will be performed with no local search strategy applied.

callback

[callable, optional] A callback function with signature `callback(x, f, context)`, which will be called for all minima found. \(x\) and \(f\) are the coordinates and function value of the latest minimum found, and `context` has value in \([0, 1, 2]\), with the following meaning:
- 0: minimum detected in the annealing process.
- 1: detection occurred in the local search process.
- 2: detection done in the dual annealing process.

If the callback implementation returns True, the algorithm will stop.

x0

[ndarray, shape(n,), optional] Coordinates of a single N-D starting point.

local_search_options

[dict, optional] Backwards compatible flag for `minimizer_options`, only one of these should be supplied.

Returns

[OptimizeResult] The optimization result represented as a `OptimizeResult` object. Important attributes are: `x` the solution array, `fun` the value of the function at the solution, and `message` which describes the cause of the termination. See `OptimizeResult` for a description of other attributes.
Notes

This function implements the Dual Annealing optimization. This stochastic approach derived from [3] combines the generalization of CSA (Classical Simulated Annealing) and FSA (Fast Simulated Annealing) [1] [2] coupled to a strategy for applying a local search on accepted locations [4]. An alternative implementation of this same algorithm is described in [5] and benchmarks are presented in [6]. This approach introduces an advanced method to refine the solution found by the generalized annealing process. This algorithm uses a distorted Cauchy-Lorentz visiting distribution, with its shape controlled by the parameter q_v

$$g_{qv}(\Delta x(t)) \propto \frac{[T_{qv}(t)]^{\frac{D}{3-qv}}}{\left[1 + (q_v - 1) \frac{(\Delta x(t))^2}{[T_{qv}(t)]^{\frac{D}{3-qv}}} \right]^{rac{1}{q_v-1} + \frac{D}{2}}}$$

Where t is the artificial time. This visiting distribution is used to generate a trial jump distance $\Delta x(t)$ of variable $x(t)$ under artificial temperature $T_{qv}(t)$.

From the starting point, after calling the visiting distribution function, the acceptance probability is computed as follows:

$$p_{qa} = \min\{1, \left[1 - (1 - q_a)\beta \Delta E\right]^{\frac{1}{1-q_a}}\}$$

Where q_a is a acceptance parameter. For $q_a < 1$, zero acceptance probability is assigned to the cases where

$$[1 - (1 - q_a)\beta \Delta E] < 0$$

The artificial temperature $T_{qv}(t)$ is decreased according to

$$T_{qv}(t) = T_{qv}(1) \frac{2^{q_v-1} - 1}{(1 + t)^{q_v-1} - 1}$$

Where q_v is the visiting parameter.

New in version 1.2.0.

References

[1], [2], [3], [4], [5], [6]

Examples

The following example is a 10-D problem, with many local minima. The function involved is called Rastrigin (https://en.wikipedia.org/wiki/Rastrigin_function)

```python
>>> from scipy.optimize import dual_annealing
>>> func = lambda x: np.sum(x**2 - 10*np.cos(2*np.pi*x)) + 10*np.size(x)
>>> lw = [-5.12] * 10
>>> up = [5.12] * 10
>>> ret = dual_annealing(func, bounds=list(zip(lw, up)))
>>> ret.x
array([-4.26437714e-09, -3.91699361e-09, -1.86149218e-09, -3.97165720e-09,
        -6.29151648e-09, -6.53145322e-09, -3.93616815e-09, -6.55623025e-09,
        -6.05775280e-09, -5.00668935e-09]) # random
>>> ret.fun
0.000000
```
Least-squares and curve fitting

Nonlinear least-squares

least_squares *(fun, x0[, jac, bounds, ...])* Solve a nonlinear least-squares problem with bounds on the variables.

```python
scipy.optimize.least_squares
```

Solve a nonlinear least-squares problem with bounds on the variables.

Given the residuals `f(x)` (an m-D real function of n real variables) and the loss function `rho(s)` (a scalar function), `least_squares` finds a local minimum of the cost function `F(x)`:

\[
\text{minimize } F(x) = 0.5 \sum_{i=0}^{m-1} \rho(f_i(x)^2)
\]

subject to \(lb \leq x \leq ub\)

The purpose of the loss function `rho(s)` is to reduce the influence of outliers on the solution.

Parameters

- `fun` [callable] Function which computes the vector of residuals, with the signature `fun(x, *args, **kwargs)`, i.e., the minimization proceeds with respect to its first argument. The argument `x` passed to this function is an array of shape (n,) (never a scalar, even for n=1). It must allocate and return a 1-D array_like of shape (m,) or a scalar. If the argument `x` is complex or the function `fun` returns complex residuals, it must be wrapped in a real function of real arguments, as shown at the end of the Examples section.

- `x0` [array_like with shape (n,) or float] Initial guess on independent variables. If float, it will be treated as a 1-D array with one element.

- `jac` [12-point', '3-point', 'cs', callable], optional] Method of computing the Jacobian matrix (an m-by-n matrix, where element (i, j) is the partial derivative of f[i] with respect to x[j]). The keywords select a finite difference scheme for numerical estimation. The scheme '3-point' is more accurate, but requires twice as many operations as '2-point' (default). The scheme 'cs' uses complex steps, and while potentially the most accurate, it is applicable only when `fun` correctly handles complex inputs and can be analytically continued to the complex plane. Method 'lm' always uses the '2-point' scheme. If callable, it is used as `jac(x, *args, **kwargs)` and should return a good approximation (or the exact value) for the Jacobian as an array_like (np.atleast_2d is applied), a sparse matrix (csr_matrix preferred for performance) or a `scipy.sparse.linalg.LinearOperator`.

- `bounds` [2-tuple of array_like, optional] Lower and upper bounds on independent variables. Defaults to no bounds. Each array must match the size of `x0` or be a scalar, in the latter case a bound will be the same for all variables. Use `np.inf` with an appropriate sign to disable bounds on all or some variables.

 - 'trf': Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
 - 'dogbox': dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.
- `'lm'`: Levenberg-Marquardt algorithm as implemented in MINPACK. Doesn’t handle bounds and sparse Jacobians. Usually the most efficient method for small unconstrained problems.

Default is ‘trf’. See Notes for more information.

ftol
[float or None, optional] Tolerance for termination by the change of the cost function. Default is 1e-8. The optimization process is stopped when \(dF < \text{ftol} \times F \), and there was an adequate agreement between a local quadratic model and the true model in the last step. If None and ‘method’ is not ‘lm’, the termination by this condition is disabled. If ‘method’ is ‘lm’, this tolerance must be higher than machine epsilon.

xtol
[float or None, optional] Tolerance for termination by the change of the independent variables. Default is 1e-8. The exact condition depends on the method used:
- For ‘trf’ and ‘dogbox’: \(\|dx\| < \text{xtol} \times (\|x\| + \|dx\|) \).
- For ‘lm’: \(\text{Delta} < \text{xtol} \times \|x\| \), where \(\text{Delta} \) is a trust-region radius and \(x \) is the value of \(x \) scaled according to \(x_\text{scale} \) parameter (see below).

If None and ‘method’ is not ‘lm’, the termination by this condition is disabled. If ‘method’ is ‘lm’, this tolerance must be higher than machine epsilon.

gtol
[float or None, optional] Tolerance for termination by the norm of the gradient. Default is 1e-8. The exact condition depends on a method used:
- For ‘trf’: \(\|g_\text{scaled}\| < \text{gtol} \), where \(g_\text{scaled} \) is the value of the gradient scaled to account for the presence of the bounds [STIR].
- For ‘dogbox’: \(\|g_\text{free}\| < \text{gtol} \), where \(g_\text{free} \) is the gradient with respect to the variables which are not in the optimal state on the boundary.
- For ‘lm’: the maximum absolute value of the cosine of angles between columns of the Jacobian and the residual vector is less than \(\text{gtol} \), or the residual vector is zero.

If None and ‘method’ is not ‘lm’, the termination by this condition is disabled. If ‘method’ is ‘lm’, this tolerance must be higher than machine epsilon.

x_scale
[array_like or ‘jac’, optional] Characteristic scale of each variable. Setting \(x_\text{scale} \) is equivalent to reformulating the problem in scaled variables \(x_s = x / x_\text{scale} \). An alternative view is that the size of a trust region along jth dimension is proportional to \(x_\text{scale}[j] \). Improved convergence may be achieved by setting \(x_\text{scale} \) such that a step of a given size along any of the scaled variables has a similar effect on the cost function. If set to ‘jac’, the scale is iteratively updated using the inverse norms of the columns of the Jacobian matrix (as described in [JJMore]).

loss
[str or callable, optional] Determines the loss function. The following keyword values are allowed:
- ‘linear’ (default): \(\rho(z) = z \). Gives a standard least-squares problem.
- ‘soft_l1’: \(\rho(z) = 2 \times ((1 + z)^{0.5} - 1) \). The smooth approximation of \(l_1(\text{absolute value}) \) loss. Usually a good choice for robust least squares.
- ‘huber’: \(\rho(z) = z \) if \(z \leq 1 \) else \(2z^{0.5} - 1 \). Works similarly to ‘soft_l1’.
- ‘cauchy’: \(\rho(z) = \ln(1 + z) \). Severely weakens outliers influence, but may cause difficulties in optimization process.
- ‘arctan’: \(\rho(z) = \arctan(z) \). Limits a maximum loss on a single residual, has properties similar to ‘cauchy’.

If callable, it must take a 1-D ndarray \(z=f\star2 \) and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Method ‘lm’ supports only ‘linear’ loss.

f_scale
[float, optional] Value of soft margin between inlier and outlier residuals, default is 1.0. The loss function is evaluated as follows \(\rho_\text{f}(f\star2) = C\star2 \times \rho_\text{f}(f\star2 / C\star2) \), where \(C \) is \(f_\text{scale} \), and \(\rho_\text{f} \) is determined by \(\text{loss} \) parameter. This parameter has no effect with \(\text{loss}='\text{linear}' \), but for other \(\text{loss} \) values it is of crucial importance.

max_nfev
[None or int, optional] Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically:
- For ‘trf’ and ‘dogbox’: 100 * n.
• For ‘lm’: $100 \times n$ if \texttt{jac} is callable and $100 \times n \times (n + 1)$ otherwise (because ‘lm’ counts function calls in Jacobian estimation).

diff_step

[None or array_like, optional] Determines the relative step size for the finite difference approximation of the Jacobian. The actual step is computed as $x \times \texttt{diff_step}$. If None (default), then \texttt{diff_step} is taken to be a conventional “optimal” power of machine epsilon for the finite difference scheme used [NR].

tr_solver

 • ‘exact’ is suitable for not very large problems with dense Jacobian matrices. The computational complexity per iteration is comparable to a singular value decomposition of the Jacobian matrix.

 • ‘lsmr’ is suitable for problems with sparse and large Jacobian matrices. It uses the iterative procedure \texttt{scipy.sparse.linalg.lsmr} for finding a solution of a linear least-squares problem and only requires matrix-vector product evaluations.

If None (default), the solver is chosen based on the type of Jacobian returned on the first iteration.

tr_options

[dict, optional] Keyword options passed to trust-region solver.

 • \texttt{tr_solver=’exact’}: \texttt{tr_options} are ignored.

 • \texttt{tr_solver=’lsmr’}: options for \texttt{scipy.sparse.linalg.lsmr}. Additionally, method=’trf’ supports ‘regularize’ option (bool, default is True), which adds a regularization term to the normal equation, which improves convergence if the Jacobian is rank-deficient [Byrd] (eq. 3.4).

jac_sparsity

[[None, array_like, sparse matrix], optional] Defines the sparsity structure of the Jacobian matrix for finite difference estimation, its shape must be (m, n). If the Jacobian has only few non-zero elements in each row, providing the sparsity structure will greatly speed up the computations [Curtis]. A zero entry means that a corresponding element in the Jacobian is identically zero. If provided, forces the use of ‘lsmr’ trust-region solver. If None (default), then dense differencing will be used. Has no effect for ‘lm’ method.

verbose

[[0, 1, 2], optional] Level of algorithm’s verbosity:

 • 0 (default): work silently.

 • 1: display a termination report.

 • 2: display progress during iterations (not supported by ‘lm’ method).

args, kwargs

[tuple and dict, optional] Additional arguments passed to \texttt{fun} and \texttt{jac}. Both empty by default. The calling signature is \texttt{fun(x, *args, **kwargs)} and the same for \texttt{jac}.

Returns

[OptimizeResult] \texttt{OptimizeResult} with the following fields defined:

 • \texttt{x} [ndarray, shape (n,)] Solution found.

 • \texttt{cost} [float] Value of the cost function at the solution.

 • \texttt{fun} [ndarray, shape (m,)] Vector of residuals at the solution.

 • \texttt{jac} [ndarray, sparse matrix or LinearOperator, shape (m, n)] Modified Jacobian matrix at the solution, in the sense that $J^T J$ is a Gauss-Newton approximation of the Hessian of the cost function. The type is the same as the one used by the algorithm.

 • \texttt{grad} [ndarray, shape (m,)] Gradient of the cost function at the solution.

 • \texttt{optimality} [float] First-order optimality measure. In unconstrained problems, it is always the uniform norm of the gradient. In constrained problems, it is the quantity which was compared with \texttt{gtol} during iterations.

 • \texttt{active_mask} [ndarray of int, shape (n,)] Each component shows whether a corresponding constraint is active (that is, whether a variable is at the bound):

 • 0: a constraint is not active.
-1: a lower bound is active.
1: an upper bound is active.

Might be somewhat arbitrary for ‘trf’ method as it generates a sequence of strictly feasible iterates and *active_mask* is determined within a tolerance threshold.

nfew
[int] Number of function evaluations done. Methods ‘trf’ and ‘dogbox’ do not count function calls for numerical Jacobian approximation, as opposed to ‘lm’ method.

njev
[int or None] Number of Jacobian evaluations done. If numerical Jacobian approximation is used in ‘lm’ method, it is set to None.

status
[int] The reason for algorithm termination:
-1: improper input parameters status returned from MINPACK.
0: the maximum number of function evaluations is exceeded.
1: *gtol* termination condition is satisfied.
2: *ftol* termination condition is satisfied.
3: *xtol* termination condition is satisfied.
4: Both *ftol* and *xtol* termination conditions are satisfied.

message
[str] Verbal description of the termination reason.

success
[bool] True if one of the convergence criteria is satisfied (*status > 0*).

See also:

leastsq
A legacy wrapper for the MINPACK implementation of the Levenberg-Marquadt algorithm.

curve_fit
Least-squares minimization applied to a curve-fitting problem.

Notes

Method ‘lm’ (Levenberg-Marquardt) calls a wrapper over least-squares algorithms implemented in MINPACK (lmder, lmdif). It runs the Levenberg-Marquardt algorithm formulated as a trust-region type algorithm. The implementation is based on paper [JJMore], it is very robust and efficient with a lot of smart tricks. It should be your first choice for unconstrained problems. Note that it doesn’t support bounds. Also, it doesn’t work when m < n.

Method ‘trf’ (Trust Region Reflective) is motivated by the process of solving a system of equations, which constitute the first-order optimality condition for a bound-constrained minimization problem as formulated in [STIR]. The algorithm iteratively solves trust-region subproblems augmented by a special diagonal quadratic term and with trust-region shape determined by the distance from the bounds and the direction of the gradient. This enhancements help to avoid making steps directly into bounds and efficiently explore the whole space of variables. To further improve convergence, the algorithm considers search directions reflected from the bounds. To obey theoretical requirements, the algorithm keeps iterates strictly feasible. With dense Jacobians trust-region subproblems are solved by an exact method very similar to the one described in [JJMore] (and implemented in MINPACK). The difference from the MINPACK implementation is that a singular value decomposition of a Jacobian matrix is done once per iteration, instead of a QR decomposition and series of Givens rotation eliminations. For large sparse Jacobians a 2-D subspace approach of solving trust-region subproblems is used [STIR], [Byrd]. The subspace is spanned by a scaled gradient and an approximate Gauss-Newton solution delivered by *scipy.sparse.linalg.lsmr*. When no constraints are imposed the algorithm is very similar to MINPACK and has generally comparable performance. The algorithm works quite robust in unbounded and bounded problems, thus it is chosen as a default algorithm.

Method ‘dogbox’ operates in a trust-region framework, but considers rectangular trust regions as opposed to conventional ellipsoids [Vogl]. The intersection of a current trust region and initial bounds is again rectangular, so on each iteration a quadratic minimization problem subject to bound constraints is solved approximately by Powell's
dogleg method [NumOpt]. The required Gauss-Newton step can be computed exactly for dense Jacobians or approximately by scipy.sparse.linalg.lsmr for large sparse Jacobians. The algorithm is likely to exhibit slow convergence when the rank of Jacobian is less than the number of variables. The algorithm often outperforms ‘trf’ in bounded problems with a small number of variables.

Robust loss functions are implemented as described in [BA]. The idea is to modify a residual vector and a Jacobian matrix on each iteration such that computed gradient and Gauss-Newton Hessian approximation match the true gradient and Hessian approximation of the cost function. Then the algorithm proceeds in a normal way, i.e., robust loss functions are implemented as a simple wrapper over standard least-squares algorithms.

New in version 0.17.0.

References

[STIR], [NR], [Byrd], [Curtis], [JJMore], [Voglis], [NumOpt], [BA]

Examples

In this example we find a minimum of the Rosenbrock function without bounds on independent variables.

```python
>>> def fun_rosenbrock(x):
...     return np.array([10 * (x[1] - x[0])**2, (1 - x[0])])
```

Notice that we only provide the vector of the residuals. The algorithm constructs the cost function as a sum of squares of the residuals, which gives the Rosenbrock function. The exact minimum is at \(x = [1.0, 1.0] \).

```python
>>> from scipy.optimize import least_squares
>>> x0_rosenbrock = np.array([2, 2])
>>> res_1 = least_squares(fun_rosenbrock, x0_rosenbrock)
>>> res_1.x
array([ 1.,  1.])
>>> res_1.cost
9.8669242910846867e-30
>>> res_1.optimality
8.8928864934219529e-14
```

We now constrain the variables, in such a way that the previous solution becomes infeasible. Specifically, we require that \(x[1] \geq 1.5 \), and \(x[0] \) left unconstrained. To this end, we specify the `bounds` parameter to `least_squares` in the form `bounds=([-np.inf, 1.5], np.inf)`.

We also provide the analytic Jacobian:

```python
>>> def jac_rosenbrock(x):
...     return np.array([
...         [-20 * x[0], 10],
...         [-1, 0]])
```

Putting this all together, we see that the new solution lies on the bound:

```python
>>> res_2 = least_squares(fun_rosenbrock, x0_rosenbrock, jac_rosenbrock, ...
...                        bounds=([-np.inf, 1.5], np.inf))
>>> res_2.x
array([ 1.22437075,  1.5])
>>> res_2.cost
```

(continues on next page)
Now we solve a system of equations (i.e., the cost function should be zero at a minimum) for a Broyden tridiagonal vector-valued function of 100000 variables:

```python
>>> def fun_broyden(x):
...     f = (3 - x) * x + 1
...     f[1:] = x[:-1]
...     f[1:] = 2 * x[1:
...     return f
```

The corresponding Jacobian matrix is sparse. We tell the algorithm to estimate it by finite differences and provide the sparsity structure of Jacobian to significantly speed up this process.

```python
>>> from scipy.sparse import lil_matrix
>>> def sparsity_broyden(n):
...     sparsity = lil_matrix((n, n), dtype=int)
...     i = np.arange(n)
...     sparsity[i, i] = 1
...     i = np.arange(1, n)
...     sparsity[i, i - 1] = 1
...     i = np.arange(n - 1)
...     sparsity[i, i + 1] = 1
...     return sparsity
... >>> n = 100000
>>> x0_broyden = -np.ones(n)
>>> res_3 = least_squares(fun_broyden, x0_broyden,
...                         ... jac_sparsity=sparsity_broyden(n))
>>> res_3.cost
4.5687069299604613e-23
>>> res_3.optimality
1.1650454296851518e-11
```

Let’s also solve a curve fitting problem using robust loss function to take care of outliers in the data. Define the model function as $y = a + b \times \exp(c \times t)$, where t is a predictor variable, y is an observation and a, b, c are parameters to estimate.

First, define the function which generates the data with noise and outliers, define the model parameters, and generate data:

```python
>>> from numpy.random import default_rng
>>> rng = default_rng()
>>> def gen_data(t, a, b, c, noise=0., n_outliers=0, seed=None):
...     rng = default_rng(seed)
...     y = a + b * np.exp(t * c)
...     error = noise * rng.standard_normal(t.size)
...     outliers = rng.integers(0, t.size, n_outliers)
```
... error[outliers] *= 10
... return y + error
...
>>> a = 0.5
>>> b = 2.0
>>> c = -1
>>> t_min = 0
>>> t_max = 10
>>> n_points = 15
...
>>> t_train = np.linspace(t_min, t_max, n_points)
>>> y_train = gen_data(t_train, a, b, c, noise=0.1, n_outliers=3)

Define function for computing residuals and initial estimate of parameters.

```python
>>> def fun(x, t, y):
...     return x[0] + x[1] * np.exp(x[2] * t) - y
... >>> x0 = np.array([1.0, 1.0, 0.0])
```

Compute a standard least-squares solution:

```python
>>> res_lsq = least_squares(fun, x0, args=(t_train, y_train))
```

Now compute two solutions with two different robust loss functions. The parameter `f_scale` is set to 0.1, meaning that inlier residuals should not significantly exceed 0.1 (the noise level used).

```python
>>> res_soft_l1 = least_squares(fun, x0, loss='soft_l1', f_scale=0.1,
...                               args=(t_train, y_train))
>>> res_log = least_squares(fun, x0, loss='cauchy', f_scale=0.1,
...                          args=(t_train, y_train))
```

And, finally, plot all the curves. We see that by selecting an appropriate loss we can get estimates close to optimal even in the presence of strong outliers. But keep in mind that generally it is recommended to try 'soft_l1' or 'huber' losses first (if at all necessary) as the other two options may cause difficulties in optimization process.

```python
>>> t_test = np.linspace(t_min, t_max, n_points * 10)
>>> y_true = gen_data(t_test, a, b, c)
>>> y_lsq = gen_data(t_test, *res_lsq.x)
>>> y_soft_l1 = gen_data(t_test, *res_soft_l1.x)
>>> y_log = gen_data(t_test, *res_log.x)
...
>>> import matplotlib.pyplot as plt
>>> plt.plot(t_train, y_train, 'o')
>>> plt.plot(t_test, y_true, 'k', linewidth=2, label='true')
>>> plt.plot(t_test, y_lsq, label='linear loss')
>>> plt.plot(t_test, y_soft_l1, label='soft_l1 loss')
>>> plt.plot(t_test, y_log, label='cauchy loss')
>>> plt.xlabel("t")
>>> plt.ylabel("y")
>>> plt.legend()
>>> plt.show()
```
In the next example, we show how complex-valued residual functions of complex variables can be optimized with `least_squares()`. Consider the following function:

```python
>>> def f(z):
...    return z - (0.5 + 0.5j)
```

We wrap it into a function of real variables that returns real residuals by simply handling the real and imaginary parts as independent variables:

```python
>>> def f_wrap(x):
...    fx = f(x[0] + 1j*x[1])
...    return np.array([fx.real, fx.imag])
```

Thus, instead of the original m-D complex function of n complex variables we optimize a 2m-D real function of 2n real variables:

```python
>>> from scipy.optimize import least_squares
>>> res_wrapped = least_squares(f_wrap, (0.1, 0.1), bounds=([0, 0], [1,␣-1]))
>>> z = res_wrapped.x[0] + res_wrapped.x[1]*1j
>>> z
(0.49999999999925893+0.49999999999925893j)
```

Linear least-squares

- `nnls(A, b[, maxiter])`: Solve \(\text{argmin}_x \| Ax - b \|_2 \) for \(x \geq 0 \).
- `lsq_linear(A, b[, bounds, method, tol, ...])`: Solve a linear least-squares problem with bounds on the variables.
scipy.optimize.nnls

scipy.optimize.nnls (A, b, maxiter=None)
Solve argmin_x || Ax - b ||_2 for x>=0. This is a wrapper for a FORTRAN non-negative least squares solver.

Parameters
b [ndarray] Right-hand side vector.
maxiter: int, optional
Maximum number of iterations, optional. Default is 3 * A.shape[1].

Returns
x [ndarray] Solution vector.
rnorm [float] The residual, || Ax-b ||_2.

See also:

lsq_linear
Linear least squares with bounds on the variables

Notes
The FORTRAN code was published in the book below. The algorithm is an active set method. It solves the KKT (Karush-Kuhn-Tucker) conditions for the non-negative least squares problem.

References

Examples

```python
>>> from scipy.optimize import nnls
...
>>> A = np.array([[1, 0], [1, 0], [0, 1]])
>>> b = np.array([2, 1, 1])
>>> nnls(A, b)
(array([1.5, 1.]), 0.7071067811865475)

>>> b = np.array([-1, -1, -1])
>>> nnls(A, b)
(array([0., 0.]), 1.7320508075688772)
```
scipy.optimize.lsq_linear

scipy.optimize.lsq_linear(A, b, bounds=(- inf, inf), method='trf', tol=1e-10, lsmr_tol=None, max_iter=None, verbose=0)

Solve a linear least-squares problem with bounds on the variables.

Given a m-by-n design matrix A and a target vector b with m elements, *lsq_linear* solves the following optimization problem:

\[
\begin{align*}
\text{minimize} & \quad 0.5 \times ||A x - b||^2 \\
\text{subject to} & \quad lb \leq x \leq ub
\end{align*}
\]

This optimization problem is convex, hence a found minimum (if iterations have converged) is guaranteed to be global.

Parameters

- **A** [array_like, sparse matrix of LinearOperator, shape (m, n)] Design matrix. Can be *scipy.sparse.linalg.LinearOperator*.
- **b** [array_like, shape (m,)] Target vector.
- **bounds** [2-tuple of array_like, optional] Lower and upper bounds on independent variables. Defaults to no bounds. Each array must have shape (n,) or be a scalar, in the latter case a bound will be the same for all variables. Use np.inf with an appropriate sign to disable bounds on all or some variables.
- **method** ['trf' or 'bvls', optional] Method to perform minimization.
 - 'trf' : Trust Region Reflective algorithm adapted for a linear least-squares problem. This is an interior-point-like method and the required number of iterations is weakly correlated with the number of variables.
 - 'bvls' : Bounded-variable least-squares algorithm. This is an active set method, which requires the number of iterations comparable to the number of variables. Can't be used when A is sparse or LinearOperator.
 Default is 'trf'.
- **tol** [float, optional] Tolerance parameter. The algorithm terminates if a relative change of the cost function is less than tol on the last iteration. Additionally, the first-order optimality measure is considered:
 - method='trf' terminates if the uniform norm of the gradient, scaled to account for the presence of the bounds, is less than tol.
 - method='bvls' terminates if Karush-Kuhn-Tucker conditions are satisfied within tol tolerance.
- **lsq_solver** [[None, 'exact', 'lsmr'], optional] Method of solving unbounded least-squares problems throughout iterations:
 - 'exact' : Use dense QR or SVD decomposition approach. Can't be used when A is sparse or LinearOperator.
 - 'lsmr' : Use *scipy.sparse.linalg.lsmr* iterative procedure which requires only matrix-vector product evaluations. Can't be used with method='bvls'.
 If None (default), the solver is chosen based on type of A.
- **lsmr_tol** [None, float or 'auto', optional] Tolerance parameters 'atol' and 'btol' for *scipy.sparse.linalg.lsmr* If None (default), it is set to $1e-2 \times tol$. If 'auto', the tolerance will be adjusted based on the optimality of the current iterate, which can speed up the optimization process, but is not always reliable.
- **max_iter** [None or int, optional] Maximum number of iterations before termination. If None (default), it is set to 100 for method='trf' or to the number of variables for method='bvls' (not counting iterations for 'bvls' initialization).
- **verbose** [0, 1, 2], optional] Level of algorithm's verbosity:
 - 0 : work silently (default).
• 1: display a termination report.
• 2: display progress during iterations.

Returns

OptimizeResult with the following fields defined:

x [ndarray, shape (n,)] Solution found.
cost [float] Value of the cost function at the solution.
fun [ndarray, shape (m,)] Vector of residuals at the solution.
optimality [float] First-order optimality measure. The exact meaning depends on method, refer to the description of tol parameter.
active_mask [ndarray of int, shape (n,)] Each component shows whether a corresponding constraint is active (that is, whether a variable is at the bound):
• 0: a constraint is not active.
• -1: a lower bound is active.
• 1: an upper bound is active.

Might be somewhat arbitrary for the trf method as it generates a sequence of strictly feasible iterates and active_mask is determined within a tolerance threshold.
nit [int] Number of iterations. Zero if the unconstrained solution is optimal.
status [int] Reason for algorithm termination:
• -1: the algorithm was not able to make progress on the last iteration.
• 0: the maximum number of iterations is exceeded.
• 1: the first-order optimality measure is less than tol.
• 2: the relative change of the cost function is less than tol.
• 3: the unconstrained solution is optimal.
message [str] Verbal description of the termination reason.
success [bool] True if one of the convergence criteria is satisfied (status > 0).

See also:

nnls
Linear least squares with non-negativity constraint.

least_squares
Nonlinear least squares with bounds on the variables.

Notes

The algorithm first computes the unconstrained least-squares solution by numpy.linalg.lstsq or scipy.sparse.linalg.lsmr depending on lsqlin solver. This solution is returned as optimal if it lies within the bounds.

Method ‘trf’ runs the adaptation of the algorithm described in [STIR] for a linear least-squares problem. The iterations are essentially the same as in the nonlinear least-squares algorithm, but as the quadratic function model is always accurate, we don’t need to track or modify the radius of a trust region. The line search (backtracking) is used as a safety net when a selected step does not decrease the cost function. Read more detailed description of the algorithm in scipy.optimize.least_squares.

Method ‘bvls’ runs a Python implementation of the algorithm described in [BVLS]. The algorithm maintains active and free sets of variables, on each iteration chooses a new variable to move from the active set to the free set and then solves the unconstrained least-squares problem on free variables. This algorithm is guaranteed to give an accurate solution eventually, but may require up to n iterations for a problem with n variables. Additionally, an ad-hoc initialization procedure is implemented, that determines which variables to set free or active initially. It takes some number of iterations before actual BVLS starts, but can significantly reduce the number of further iterations.
References

[STIR], [BVLS]

Examples

In this example, a problem with a large sparse matrix and bounds on the variables is solved.

```python
>>> from scipy.sparse import rand
>>> from scipy.optimize import lsq_linear
>>> rng = np.random.default_rng()
... >>> m = 20000
... >>> n = 10000
... >>> A = rand(m, n, density=1e-4, random_state=rng)
>>> b = rng.standard_normal(m)
... >>> lb = rng.standard_normal(n)
>>> ub = lb + 1
... >>> res = lsq_linear(A, b, bounds=(lb, ub), lsmr_tol='auto', verbose=1)
# may vary
The relative change of the cost function is less than `tol'.
Number of iterations 16, initial cost 1.5039e+04, final cost 1.1112e+04,
first-order optimality 4.66e-08.
```

Curve fitting

```
curve_fit(f, xdata, ydata[, p0, sigma, ...])
```

Use non-linear least squares to fit a function, f, to data.

scipy.optimize.curve_fit

```
scipy.optimize.curve_fit (f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False,
                        check_finite=True, bounds=(- inf, inf), method=None, jac=None, **kwags)
```

Use non-linear least squares to fit a function, f, to data.

Assumes ydata = f(xdata, *params) + eps.

Parameters

- **f** [callable] The model function, f(x, ...). It must take the independent variable as the first argument and the parameters to fit as separate remaining arguments.
- **xdata** [array_like or object] The independent variable where the data is measured. Should usually be an M-length sequence or an (k,M)-shaped array for functions with k predictors, but can actually be any object.
- **ydata** [array_like] The dependent data, a length M array - nominally f(xdata, ...).
- **p0** [array_like, optional] Initial guess for the parameters (length N). If None, then the initial values will all be 1 (if the number of parameters for the function can be determined using introspection, otherwise a `ValueError` is raised).
- **sigma** [None or M-length sequence or MxM array, optional] Determines the uncertainty in ydata. If we define residuals as r = ydata - f(xdata, *popt), then the interpretation of sigma depends on its number of dimensions:
• A 1-D sigma should contain values of standard deviations of errors in ydata. In this case, the optimized function is \(\text{chisq} = \sum((r / \sigma) ** 2) \).
• A 2-D sigma should contain the covariance matrix of errors in ydata. In this case, the optimized function is \(\text{chisq} = r.T \odot \text{inv}(\sigma) \odot r \).

New in version 0.19.
None (default) is equivalent of 1-D sigma filled with ones.

absolute_sigma
[bool, optional] If True, sigma is used in an absolute sense and the estimated parameter covariance pcov reflects these absolute values.
If False (default), only the relative magnitudes of the sigma values matter. The returned parameter covariance matrix pcov is based on scaling sigma by a constant factor. This constant is set by demanding that the reduced chisq for the optimal parameters popt when using the scaled sigma equals unity. In other words, sigma is scaled to match the sample variance of the residuals after the fit. Default is False. Mathematically, \(\text{pcov(absolute_sigma=False)} = \text{pcov(absolute_sigma=True)} \times \frac{\text{chisq(popt)}}{(M-N)} \)

check_finite
[bool, optional] If True, check that the input arrays do not contain nans of infs, and raise a ValueError if they do. Setting this parameter to False may silently produce nonsensical results if the input arrays do contain nans. Default is True.

bounds
[2-tuple of array_like, optional] Lower and upper bounds on parameters. Defaults to no bounds. Each element of the tuple must be either an array with the length equal to the number of parameters, or a scalar (in which case the bound is taken to be the same for all parameters). Use np.inf with an appropriate sign to disable bounds on all or some parameters.
New in version 0.17.

method
[{'lm', 'trf', 'dogbox'}, optional] Method to use for optimization. See least_squares for more details. Default is 'lm' for unconstrained problems and 'trf' if bounds are provided. The method 'lm' won't work when the number of observations is less than the number of variables, use 'trf' or 'dogbox' in this case.
New in version 0.17.

jac
[callable, string or None, optional] Function with signature \(\text{jac}(x, \ldots) \) which computes the Jacobian matrix of the model function with respect to parameters as a dense array_like structure. It will be scaled according to provided sigma. If None (default), the Jacobian will be estimated numerically. String keywords for ‘trf’ and ‘dogbox’ methods can be used to select a finite difference scheme, see least_squares.
New in version 0.18.

kwags
Keyword arguments passed to leastsq for method='lm' or least_squares otherwise.

Returns

popt
[array] Optimal values for the parameters so that the sum of the squared residuals of \(f(xdata, *\text{popt}) - ydata \) is minimized.

pcov
[2-D array] The estimated covariance of popt. The diagonals provide the variance of the parameter estimate. To compute one standard deviation errors on the parameters use \(\text{perr} = \text{np.sqrt(np.diag(pcov))} \).

How the sigma parameter affects the estimated covariance depends on absolute_sigma argument, as described above.
If the Jacobian matrix at the solution doesn’t have a full rank, then ‘lm’ method returns a matrix filled with np.inf, on the other hand ‘trf’ and ‘dogbox’ methods use Moore-Penrose pseudoinverse to compute the covariance matrix.

Raises

ValueError
if either ydata or xdata contain NaNs, or if incompatible options are used.

RuntimeError
if the least-squares minimization fails.

OptimizeWarning
if covariance of the parameters cannot be estimated.

See also:

least_squares
Minimize the sum of squares of nonlinear functions.

scipy.stats.linregress
Calculate a linear least squares regression for two sets of measurements.

Notes
With method='lm', the algorithm uses the Levenberg-Marquardt algorithm through leastsq. Note that this algorithm can only deal with unconstrained problems.

Box constraints can be handled by methods ‘trf’ and ‘dogbox’. Refer to the docstring of least_squares for more information.

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.optimize import curve_fit

>>> def func(x, a, b, c):
    ...
    return a * np.exp(-b * x) + c

Define the data to be fit with some noise:

```python
>>> xdata = np.linspace(0, 4, 50)
>>> y = func(xdata, 2.5, 1.3, 0.5)
>>> rng = np.random.default_rng()
>>> y_noise = 0.2 * rng.normal(size=xdata.size)
>>> ydata = y + y_noise
>>> plt.plot(xdata, ydata, 'b-', label='data')
```

Fit for the parameters a, b, c of the function func:

```python
>>> popt, pcov = curve_fit(func, xdata, ydata)
>>> popt
array([2.56274217, 1.37268521, 0.47427475])
>>> plt.plot(xdata, func(xdata, *popt), 'r-', label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))
```

Constrain the optimization to the region of 0 <= a <= 3, 0 <= b <= 1 and 0 <= c <= 0.5:

```python
>>> popt, pcov = curve_fit(func, xdata, ydata, bounds=(0, [3., 1., 0.5]))
>>> popt
array([2.43736712, 1. , 0.34463856])
```
```python
>>> plt.plot(xdata, func(xdata, *popt), 'g--',
... label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))

>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.legend()
>>> plt.show()
```

Root finding

Scalar functions

- `root_scalar(f, args, method, bracket, ...)`: Find a root of a scalar function.
- `brentq(f, a, b, args, xtol, rtol, maxiter, ...)`: Find a root of a function in a bracketing interval using Brent's method.
- `brenth(f, a, b, args, xtol, rtol, maxiter, ...)`: Find a root of a function in a bracketing interval using Brent's method with hyperbolic extrapolation.
- `ridder(f, a, b, args, xtol, rtol, maxiter, ...)`: Find a root of a function in an interval using Ridder's method.
- `bisect(f, a, b, args, rtol, maxiter, ...)`: Find root of a function within an interval using bisection.
- `newton(func, x0[, fprime, args, tol, ...])`: Find a zero of a real or complex function using the Newton-Raphson (or secant or Halley's) method.
- `toms748(f, a, b[, args, k, xtol, rtol, ...])`: Find a zero using TOMS Algorithm 748 method.
- `RootResults(result, iterations, ...)`: Represents the root finding result.
scipy.optimize.root_scalar

scipy.optimize.root_scalar \(f, \) \(args=(), \) \(method=None, \) \(bracket=None, \) \(fprime=None, \) \(fprime2=None, \) \(x0=None, \) \(x1=None, \) \(xtol=None, \) \(rtol=None, \) \(maxiter=None, \) \(options=None\)

Find a root of a scalar function.

**Parameters**

- \(f\) [callable] A function to find a root of.
- \(args\) [tuple, optional] Extra arguments passed to the objective function and its derivative(s).
- \(method\) [str, optional] Type of solver. Should be one of:
  - ‘bisect’ (see here)
  - ‘brentq’ (see here)
  - ‘brenth’ (see here)
  - ‘ridder’ (see here)
  - ‘toms748’ (see here)
  - ‘newton’ (see here)
  - ‘secant’ (see here)
  - ‘halley’ (see here)

- \(bracket\): A sequence of 2 floats, optional
  An interval bracketing a root. \(f(x, *args)\) must have different signs at the two endpoints.

- \(x0\) [float, optional] Initial guess.
- \(x1\) [float, optional] A second guess.

- \(fprime\) [bool or callable, optional] If \(fprime\) is a boolean and is True, \(f\) is assumed to return the value of the objective function and of the derivative. \(fprime\) can also be a callable returning the derivative of \(f\). In this case, it must accept the same arguments as \(f\).

- \(fprime2\) [bool or callable, optional] If \(fprime2\) is a boolean and is True, \(f\) is assumed to return the value of the objective function and of the first and second derivatives. \(fprime2\) can also be a callable returning the second derivative of \(f\). In this case, it must accept the same arguments as \(f\).

- \(xtol\) [float, optional] Tolerance (absolute) for termination.
- \(rtol\) [float, optional] Tolerance (relative) for termination.
- \(maxiter\) [int, optional] Maximum number of iterations.
- \(options\) [dict, optional] A dictionary of solver options. E.g., \(k\), see \(show_options()\) for details.

**Returns**

- \(sol\) [RootResults] The solution represented as a \(RootResults\) object. Important attributes are: \(root\) the solution, \(converged\) a boolean flag indicating if the algorithm exited successfully and \(flag\) which describes the cause of the termination. See \(RootResults\) for a description of other attributes.

See also:

- \(show_options\)
  Additional options accepted by the solvers
- \(root\)
  Find a root of a vector function.
Notes

This section describes the available solvers that can be selected by the 'method' parameter.

The default is to use the best method available for the situation presented. If a bracket is provided, it may use one of the bracketing methods. If a derivative and an initial value are specified, it may select one of the derivative-based methods. If no method is judged applicable, it will raise an Exception.

Examples

Find the root of a simple cubic

```python
>>> from scipy import optimize
>>> def f(x):
... return (x**3 - 1) # only one real root at x = 1

>>> def fprime(x):
... return 3*x**2
```

The `brentq` method takes as input a bracket

```python
>>> sol = optimize.root_scalar(f, bracket=[0, 3], method='brentq')
>>> sol.root, sol.iterations, sol.function_calls
(1.0, 10, 11)
```

The `newton` method takes as input a single point and uses the derivative(s)

```python
>>> sol = optimize.root_scalar(f, x0=0.2, fprime=fprime, method='newton')
>>> sol.root, sol.iterations, sol.function_calls
(1.0, 11, 22)
```

The function can provide the value and derivative(s) in a single call.

```python
>>> def f_p_pp(x):
... return (x**3 - 1), 3*x**2, 6*x

>>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, method='newton')
>>> sol.root, sol.iterations, sol.function_calls
(1.0, 11, 11)
```

```python
>>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, fprime2=True, method='halley')
>>> sol.root, sol.iterations, sol.function_calls
(1.0, 7, 8)
```
Find a root of a function in a bracketing interval using Brent’s method.

Uses the classic Brent’s method to find a zero of the function \( f \) on the sign changing interval \([a, b]\). Generally considered the best of the rootfinding routines here. It is a safe version of the secant method that uses inverse quadratic extrapolation. Brent’s method combines root bracketing, interval bisection, and inverse quadratic interpolation. It is sometimes known as the van Wijngaarden-Dekker-Brent method. Brent (1973) claims convergence is guaranteed for functions computable within \([a, b]\).

[Brent1973] provides the classic description of the algorithm. Another description can be found in a recent edition of Numerical Recipes, including [PressEtal1992]. A third description is at http://mathworld.wolfram.com/BrentsMethod.html. It should be easy to understand the algorithm just by reading our code. Our code diverges a bit from standard presentations: we choose a different formula for the extrapolation step.

**Parameters**

- **f**    
  [function] Python function returning a number. The function \( f \) must be continuous, and \( f(a) \) and \( f(b) \) must have opposite signs.

- **a**    
  [scalar] One end of the bracketing interval \([a, b]\).

- **b**    
  [scalar] The other end of the bracketing interval \([a, b]\).

- **xtol**    
  [number, optional] The computed root \( x_0 \) will satisfy \( \text{np.allclose}(x, x_0, \text{atol}=\text{xtol}, \text{rtol}=\text{rtol}) \), where \( x \) is the exact root. The parameter must be nonnegative. For nice functions, Brent’s method will often satisfy the above condition with \( \text{xtol}/2 \) and \( \text{rtol}/2 \). [Brent1973]

- **rtol**    
  [number, optional] The computed root \( x_0 \) will satisfy \( \text{np.allclose}(x, x_0, \text{atol}=\text{xtol}, \text{rtol}=\text{rtol}) \), where \( x \) is the exact root. The parameter cannot be smaller than its default value of \( 4*\text{np.finfo(float).eps} \). For nice functions, Brent’s method will often satisfy the above condition with \( \text{xtol}/2 \) and \( \text{rtol}/2 \). [Brent1973]

- **maxiter**    
  [int, optional] If convergence is not achieved in \( \text{maxiter} \) iterations, an error is raised. Must be \( \geq 0 \).

- **args**    
  [tuple, optional] Containing extra arguments for the function \( f \). \( f \) is called by \( \text{apply}(f, (x)+\text{args}) \).

- **full_output**    
  [bool, optional] If \( \text{full_output} \) is False, the root is returned. If \( \text{full_output} \) is True, the return value is \( (x, r) \), where \( x \) is the root, and \( r \) is a \text{RootResults} object.

- **disp**    
  [bool, optional] If True, raise RuntimeError if the algorithm didn’t converge. Otherwise, the convergence status is recorded in any \text{RootResults} return object.

**Returns**

- **x0**    
  [float] Zero of \( f \) between \( a \) and \( b \).

- **r**    
  [\text{RootResults} (present if \text{full_output} = True)] Object containing information about the convergence. In particular, \( r.converged \) is True if the routine converged.
Notes

$f$ must be continuous. $f(a)$ and $f(b)$ must have opposite signs.

Related functions fall into several classes:

**multivariate local optimizers**

- `fmin`, `fmin_powell`, `fmin_cg`, `fmin_bfgs`, `fmin_ncg`

**nonlinear least squares minimizer**

- `leastsq`

**constrained multivariate optimizers**

- `fmin_l_bfgs_b`, `fmin_tnc`, `fmin_cobyla`

**global optimizers**

- `basinhopping`, `brute`, `differential_evolution`

**local scalar minimizers**

- `fminbound`, `brent`, `golden`, `bracket`

**N-D root-finding**

- `fsolve`

**1-D root-finding**

- `brentq`, `ridder`, `bisect`, `newton`

**scalar fixed-point finder**

- `fixed_point`

References

[Brent1973], [PressEtal1992]

Examples

```python
>>> def f(x):
... return (x**2 - 1)

>>> from scipy import optimize

>>> root = optimize.brentq(f, -2, 0)
>>> root
-1.0

>>> root = optimize.brentq(f, 0, 2)
>>> root
1.0
```
scipy.optimize.brenth

```python
scipy.optimize.brenth(f, a, b, args=(), xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100,
 full_output=False, disp=True)
```

Find a root of a function in a bracketing interval using Brent’s method with hyperbolic extrapolation.

A variation on the classic Brent routine to find a zero of the function \( f \) between the arguments \( a \) and \( b \) that uses hyperbolic extrapolation instead of inverse quadratic extrapolation. Bus & Dekker (1975) guarantee convergence for this method, claiming that the upper bound of function evaluations here is 4 or 5 times lesser than that for bisection. \( f(a) \) and \( f(b) \) cannot have the same signs. Generally, on a par with the brent routine, but not as heavily tested. It is a safe version of the secant method that uses hyperbolic extrapolation. The version here is by Chuck Harris, and implements Algorithm M of [BusAndDekker1975], where further details (convergence properties, additional remarks and such) can be found.

**Parameters**

- \( f \) [function] Python function returning a number. \( f \) must be continuous, and \( f(a) \) and \( f(b) \) must have opposite signs.
- \( a \) [scalar] One end of the bracketing interval \([a,b]\).
- \( b \) [scalar] The other end of the bracketing interval \([a,b]\).
- \( xtol \) [number, optional] The computed root \( x_0 \) will satisfy \( \text{np.allclose}(x, x_0, atol=xtol, rtol=rtol) \), where \( x \) is the exact root. The parameter must be nonnegative. As with \( \text{brentq} \), for nice functions the method will often satisfy the above condition with \( xtol/2 \) and \( rtol/2 \).
- \( rtol \) [number, optional] The computed root \( x_0 \) will satisfy \( \text{np.allclose}(x, x_0, atol=xtol, rtol=rtol) \), where \( x \) is the exact root. The parameter cannot be smaller than its default value of \( 4*\text{np.finfo(float).eps} \). As with \( \text{brentq} \), for nice functions the method will often satisfy the above condition with \( xtol/2 \) and \( rtol/2 \).
- \( maxiter \) [int, optional] If convergence is not achieved in \( maxiter \) iterations, an error is raised. Must be \( \geq 0 \).
- \( args \) [tuple, optional] Containing extra arguments for the function \( f \). \( f \) is called by \( \text{apply}(f, (x)+args) \).
- \( full_output \) [bool, optional] If \( full_output \) is False, the root is returned. If \( full_output \) is True, the return value is \( (x, r) \), where \( x \) is the root, and \( r \) is a \( \text{RootResults} \) object.
- \( disp \) [bool, optional] If True, raise RuntimeError if the algorithm didn't converge. Otherwise, the convergence status is recorded in any \( \text{RootResults} \) return object.

**Returns**

- \( x_0 \) [float] Zero of \( f \) between \( a \) and \( b \).
- \( r \) [RootResults (present if \( full_output = True \))] Object containing information about the convergence. In particular, \( r.converged \) is True if the routine converged.

**See also:**

- \( \text{fmin, fmin_powell, fmin_cg, fmin_bfgs, fmin_ncg} \)
  - multivariate local optimizers
- \( \text{leastsq} \)
  - nonlinear least squares minimizer
- \( \text{fmin_l_bfgs_b, fmin_tnc, fmin_cobyla} \)
  - constrained multivariate optimizers
basinhopping, differential_evolution, brute
    global optimizers
fminbound, brent, golden, bracket
    local scalar minimizers
fsolve
    N-D root-finding
brentq, brent, ridder, bisect, newton
    1-D root-finding
fixed_point
    scalar fixed-point finder

References

[BusAndDekker1975]

Examples

```python
>>> def f(x):
 ... return (x**2 - 1)
```

```python
>>> from scipy import optimize
```

```python
>>> root = optimize.brent(f, -2, 0)
>>> root
-1.0
```

```python
>>> root = optimize.brent(f, 0, 2)
>>> root
1.0
```

scipy.optimize.ridder

scipy.optimize.ridder(f, a, b, args=(), xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100,
    full_output=False, disp=True)

Find a root of a function in an interval using Ridder's method.

Parameters

- f [function] Python function returning a number. f must be continuous, and f(a) and f(b) must have opposite signs.
- a [scalar] One end of the bracketing interval [a,b].
- b [scalar] The other end of the bracketing interval [a,b].
- xtol [number, optional] The computed root x0 will satisfy np.allclose(x, x0, atol=xtol, rtol=rtol), where x is the exact root. The parameter must be non-negative.
rtol  
[number, optional] The computed root $x_0$ will satisfy $\text{np.allclose}(x, x_0, atol=xtol, rtol=rtol)$, where $x$ is the exact root. The parameter cannot be smaller than its default value of $4*\text{np.finfo(float).eps}$.

maxiter  
[int, optional] If convergence is not achieved in $\text{maxiter}$ iterations, an error is raised. Must be $\geq 0$.

args  
[tuple, optional] Containing extra arguments for the function $f$. $f$ is called by $\text{apply}(f, (x)+\text{args})$.

full_output  
[bool, optional] If $\text{full_output}$ is False, the root is returned. If $\text{full_output}$ is True, the return value is $(x, r)$, where $x$ is the root, and $r$ is a $\text{RootResults}$ object.

disp  
[bool, optional] If True, raise RuntimeError if the algorithm didn’t converge. Otherwise, the convergence status is recorded in any $\text{RootResults}$ return object.

Returns

$x_0$  
[float] Zero of $f$ between $a$ and $b$.

$r$  
[$\text{RootResults}$ (present if $\text{full_output} = \text{True}$)] Object containing information about the convergence. In particular, $r.converged$ is True if the routine converged.

See also:

brentq, brent, bisect, newton

1-D root-finding

fixed_point

scalar fixed-point finder

Notes

Uses [Ridders1979] method to find a zero of the function $f$ between the arguments $a$ and $b$. Ridders’ method is faster than bisection, but not generally as fast as the Brent routines. [Ridders1979] provides the classic description and source of the algorithm. A description can also be found in any recent edition of Numerical Recipes.

The routine used here diverges slightly from standard presentations in order to be a bit more careful of tolerance.

References

[Ridders1979]

Examples

```python
>>> def f(x):
... return (x**2 - 1)

>>> from scipy import optimize

>>> root = optimize.ridder(f, 0, 2)
>>> root
1.0
```
```python
>>> root = optimize.ridder(f, -2, 0)
>>> root
-1.0
```

**scipy.optimize.bisect**

`scipy.optimize.bisect(f, a, b, args=(), tol=1e-12, rtol=8.881784197001252e-16, maxiter=100, full_output=False, disp=True)`

Find root of a function within an interval using bisection.

Basic bisection routine to find a zero of the function `f` between the arguments `a` and `b`. `f(a)` and `f(b)` cannot have the same signs. Slow but sure.

**Parameters**

- **f** [function] Python function returning a number. `f` must be continuous, and `f(a)` and `f(b)` must have opposite signs.
- **a** [scalar] One end of the bracketing interval `[a, b]`.
- **b** [scalar] The other end of the bracketing interval `[a, b]`.
- **xtol** [number, optional] The computed root `x0` will satisfy `np.allclose(x, x0, atol=xtol, rtol=rtol)`, where `x` is the exact root. The parameter must be non-negative.
- **rtol** [number, optional] The computed root `x0` will satisfy `np.allclose(x, x0, atol=xtol, rtol=rtol)`, where `x` is the exact root. The parameter cannot be smaller than its default value of `4*np.finfo(float).eps`.
- **maxiter** [int, optional] If convergence is not achieved in `maxiter` iterations, an error is raised. Must be >= 0.
- **args** [tuple, optional] Containing extra arguments for the function `f`. `f` is called by `apply(f, (x)+args)`.
- **full_output** [bool, optional] If `full_output` is False, the root is returned. If `full_output` is True, the return value is `(x, r)`, where `x` is the root, and `r` is a `RootResults` object.
- **disp** [bool, optional] If True, raise `RuntimeError` if the algorithm didn’t converge. Otherwise, the convergence status is recorded in a `RootResults` return object.

**Returns**

- **x0** [float] Zero of `f` between `a` and `b`.
- **r** [RootResults (present if full_output = True)] Object containing information about the convergence. In particular, `r.converged` is True if the routine converged.

**See also:**

- `brentq`, `brenth`, `bisect`, `newton`
- `fixed_point`
  - scalar fixed-point finder
- `fsolve`
  - n-dimensional root-finding
Examples

```python
>>> def f(x):
... return (x**2 - 1)

>>> from scipy import optimize

>>> root = optimize.bisect(f, 0, 2)
>>> root
1.0

>>> root = optimize.bisect(f, -2, 0)
>>> root
-1.0
```

**scipy.optimize.newton**

`scipy.optimize.newton` *(func, x0, fprime=None, args=(), tol=1.48e-08, maxiter=50, fprime2=None, x1=None, rtol=0.0, full_output=False, disp=True)*

Find a zero of a real or complex function using the Newton-Raphson (or secant or Halley’s) method.

Find a zero of the scalar-valued function `func` given a nearby scalar starting point `x0`. The Newton-Raphson method is used if the derivative `fprime` of `func` is provided, otherwise the secant method is used. If the second order derivative `fprime2` of `func` is also provided, then Halley’s method is used.

If `x0` is a sequence with more than one item, `newton` returns an array: the zeros of the function from each (scalar) starting point in `x0`. In this case, `func` must be vectorized and return a sequence or array of the same shape as its first argument. If `fprime` (`fprime2`) is given, then its return must also have the same shape: each element is the first (second) derivative of `func` with respect to its only variable evaluated at each element of its first argument.

`newton` is for finding roots of a scalar-valued functions of a single variable. For problems involving several variables, see `root`.

**Parameters**

- **func** [callable] The function whose zero is wanted. It must be a function of a single variable of the form `f(x, a, b, c...)`, where `a, b, c...` are extra arguments that can be passed in the `args` parameter.
- **x0** [float, sequence, or ndarray] An initial estimate of the zero that should be somewhere near the actual zero. If not scalar, then `func` must be vectorized and return a sequence or array of the same shape as its first argument.
- **fprime** [callable, optional] The derivative of the function when available and convenient. If it is None (default), then the secant method is used.
- **args** [tuple, optional] Extra arguments to be used in the function call.
- **tol** [float, optional] The allowable error of the zero value. If `func` is complex-valued, a larger `tol` is recommended as both the real and imaginary parts of `x` contribute to `|x - x0|`.
- **maxiter** [int, optional] Maximum number of iterations.
- **fprime2** [callable, optional] The second order derivative of the function when available and convenient. If it is None (default), then the normal Newton-Raphson or the secant method is used. If it is not None, then Halley’s method is used.
- **x1** [float, optional] Another estimate of the zero that should be somewhere near the actual zero. Used if `fprime` is not provided.
- **rtol** [float, optional] Tolerance (relative) for termination.
full_output
[bool, optional] If full_output is False (default), the root is returned. If True and \(x0\) is scalar, the return value is \((x, r)\), where \(x\) is the root and \(r\) is a RootResults object. If True and \(x0\) is non-scalar, the return value is \((x, converged, zero_der)\) (see Returns section for details).

disp
[bool, optional] If True, raise a RuntimeError if the algorithm didn’t converge, with the error message containing the number of iterations and current function value. Otherwise, the convergence status is recorded in a RootResults return object. Ignored if \(x0\) is not scalar. Note: this has little to do with displaying, however, the 'disp' keyword cannot be renamed for backwards compatibility.

Returns

root
[float, sequence, or ndarray] Estimated location where function is zero.

r
[RootResults, optional] Present if full_output=True and \(x0\) is scalar. Object containing information about the convergence. In particular, r.converged is True if the routine converged.

converged
[ndarray of bool, optional] Present if full_output=True and \(x0\) is non-scalar. For vector functions, indicates which elements converged successfully.

zero_der
[ndarray of bool, optional] Present if full_output=True and \(x0\) is non-scalar. For vector functions, indicates which elements had a zero derivative.

See also:

root_scalar
interface to root solvers for scalar functions

root
interface to root solvers for multi-input, multi-output functions

Notes

The convergence rate of the Newton-Raphson method is quadratic, the Halley method is cubic, and the secant method is sub-quadratic. This means that if the function is well-behaved the actual error in the estimated zero after the \(n\)th iteration is approximately the square (cube for Halley) of the error after the \((n-1)\)th step. However, the stopping criterion used here is the step size and there is no guarantee that a zero has been found. Consequently, the result should be verified. Safer algorithms are brentq, brent, ridder, and bisection, but they all require that the root first be bracketed in an interval where the function changes sign. The brentq algorithm is recommended for general use in one dimensional problems when such an interval has been found.

When newton is used with arrays, it is best suited for the following types of problems:

- The initial guesses, \(x0\), are all relatively the same distance from the roots.
- Some or all of the extra arguments, \(args\), are also arrays so that a class of similar problems can be solved together.
- The size of the initial guesses, \(x0\), is larger than \(O(100)\) elements. Otherwise, a naive loop may perform as well or better than a vector.
Examples

```python
>>> from scipy import optimize
>>> import matplotlib.pyplot as plt

>>> def f(x):
... return (x**3 - 1) # only one real root at x = 1

fprime is not provided, use the secant method:

```python
>>> root = optimize.newton(f, 1.5)
>>> root
1.0000000000000016
>>> root = optimize.newton(f, 1.5, fprime=lambda x: 6 * x)
>>> root
1.0000000000000016
```

Only fprime is provided, use the Newton-Raphson method:

```python
>>> root = optimize.newton(f, 1.5, fprime=lambda x: 3 * x**2)
>>> root
1.0
```

Both fprime2 and fprime are provided, use Halley's method:

```python
>>> root = optimize.newton(f, 1.5, fprime=lambda x: 3 * x**2,
...                         fprime2=lambda x: 6 * x)
>>> root
1.0
```

When we want to find zeros for a set of related starting values and/or function parameters, we can provide both of those as an array of inputs:

```python
>>> f = lambda x, a: x**3 - a
>>> fder = lambda x, a: 3 * x**2
>>> rng = np.random.default_rng()
>>> x = rng.standard_normal(100)
>>> a = np.arange(-50, 50)
>>> vec_res = optimize.newton(f, x, fprime=fder, args=(a,), maxiter=200)

The above is the equivalent of solving for each value in (x, a) separately in a for-loop, just faster:

```python
>>> loop_res = [optimize.newton(f, x0, fprime=fder, args=(a0,),
... maxiter=200)
... for x0, a0 in zip(x, a)]
>>> np.allclose(vec_res, loop_res)
True
```

Plot the results found for all values of a:

```python
>>> analytical_result = np.sign(a) * np.abs(a)**(1/3)
>>> fig, ax = plt.subplots()
>>> ax.plot(a, analytical_result, 'o')
>>> ax.plot(a, vec_res, '.')
```

(continues on next page)

```python
>>> ax.set_xlabel('a')
>>> ax.set_ylabel('x where $f(x, a)=0$')
>>> plt.show()
```

```
40
20
0 20 40
```

```latex
40
20
0
20
40
```

scipy.optimize.toms748

```python
scipy.optimize.toms748(f, a, b, args=(), k=1, xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100, full_output=False, disp=True)
```

Find a zero using TOMS Algorithm 748 method.

Implements the Algorithm 748 method of Alefeld, Potro and Shi to find a zero of the function \( f \) on the interval \([a, b]\), where \( f(a) \) and \( f(b) \) must have opposite signs.

It uses a mixture of inverse cubic interpolation and “Newton-quadratic” steps. [APS1995].

**Parameters**

- **f** [function] Python function returning a scalar. The function \( f \) must be continuous, and \( f(a) \) and \( f(b) \) have opposite signs.
- **a** [scalar,] lower boundary of the search interval
- **b** [scalar,] upper boundary of the search interval
- **args** [tuple, optional] containing extra arguments for the function \( f \). \( f \) is called by \( f(x, *args) \).
- **k** [int, optional] The number of Newton quadratic steps to perform each iteration. \( k \geq 1 \).
- **xtol** [scalar, optional] The computed root \( x_0 \) will satisfy \( \text{np.allclose}(x, x_0, \text{atol}=\text{xtol}, \text{rtol}=\text{rtol}) \), where \( x \) is the exact root. The parameter must be non-negative.
- **rtol** [scalar, optional] The computed root \( x_0 \) will satisfy \( \text{np.allclose}(x, x_0, \text{atol}=\text{xtol}, \text{rtol}=\text{rtol}) \), where \( x \) is the exact root.
- **maxiter** [int, optional] If convergence is not achieved in \( \text{maxiter} \) iterations, an error is raised. Must be \( \geq 0 \).
- **full_output** [bool, optional] If \( \text{full_output} \) is False, the root is returned. If \( \text{full_output} \) is True, the return value is \((x, r)\), where \( x \) is the root, and \( r \) is a \textit{RootResults} object.
disp [bool, optional] If True, raise RuntimeError if the algorithm didn’t converge. Otherwise, the convergence status is recorded in the RootResults return object.

Returns

x0 [float] Approximate Zero of f
r [RootResults (present if full_output = True)] Object containing information about the convergence. In particular, r.converged is True if the routine converged.

See also:

brentq, brent, ridder, bisect, newton
fsolve

find zeroes in N dimensions.

Notes

f must be continuous. Algorithm 748 with k=2 is asymptotically the most efficient algorithm known for finding roots of a four times continuously differentiable function. In contrast with Brent’s algorithm, which may only decrease the length of the enclosing bracket on the last step, Algorithm 748 decreases it each iteration with the same asymptotic efficiency as it finds the root.

For easy statement of efficiency indices, assume that f has 4 continuous derivatives. For k=1, the convergence order is at least 2.7, and with about asymptotically 2 function evaluations per iteration, the efficiency index is approximately 1.65. For k=2, the order is about 4.6 with asymptotically 3 function evaluations per iteration, and the efficiency index 1.66. For higher values of k, the efficiency index approaches the kth root of (3k−2), hence k=1 or k=2 are usually appropriate.

References

[APS1995]

Examples

```python
>>> def f(x):
... return (x**3 - 1) # only one real root at x = 1
>>> from scipy import optimize
>>> root, results = optimize.toms748(f, 0, 2, full_output=True)
>>> root
1.0
>>> results
 converged: True
 flag: 'converged'
 function_calls: 11
 iterations: 5
 root: 1.0
```
scipy.optimize.RootResults

class scipy.optimize.RootResults(root, iterations, function_calls, flag)

Represents the root finding result.

Attributes

   root [float] Estimated root location.
   iterations [int] Number of iterations needed to find the root.
   function_calls [int] Number of times the function was called.
   converged [bool] True if the routine converged.
   flag [str] Description of the cause of termination.

The root_scalar function supports the following methods:

root_scalar(method='brentq')

scipy.optimize.root_scalar(args=(), method='brentq', x0=None, options={})

See also:

For documentation for the rest of the parameters, see scipy.optimize.root_scalar

Options

   args [tuple, optional] Extra arguments passed to the objective function.
   xtol [float, optional] Tolerance (absolute) for termination.
   rtol [float, optional] Tolerance (relative) for termination.
   maxiter [int, optional] Maximum number of iterations.
   options: dict, optional
     Specifies any method-specific options not covered above.

root_scalar(method='brenth')

scipy.optimize.root_scalar(args=(), method='brenth', x0=None, options={})

See also:

For documentation for the rest of the parameters, see scipy.optimize.root_scalar

Options

   args [tuple, optional] Extra arguments passed to the objective function.
   xtol [float, optional] Tolerance (absolute) for termination.
   rtol [float, optional] Tolerance (relative) for termination.
   maxiter [int, optional] Maximum number of iterations.
   options: dict, optional
     Specifies any method-specific options not covered above.
root_scalar(method='bisect')

```python
scipy.optimize.root_scalar (args=(), method='bisect', x0=None, options={})
```

See also:

For documentation for the rest of the parameters, see `scipy.optimize.root_scalar`

**Options**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>args</td>
<td>[tupple, optional] Extra arguments passed to the objective function.</td>
</tr>
<tr>
<td>xtol</td>
<td>[float, optional] Tolerance (absolute) for termination.</td>
</tr>
<tr>
<td>rtol</td>
<td>[float, optional] Tolerance (relative) for termination.</td>
</tr>
<tr>
<td>maxiter</td>
<td>[int, optional] Maximum number of iterations.</td>
</tr>
<tr>
<td>options</td>
<td>dict, optional</td>
</tr>
<tr>
<td></td>
<td>Specifies any method-specific options not covered above.</td>
</tr>
</tbody>
</table>

root_scalar(method='ridder')

```python
scipy.optimize.root_scalar (args=(), method='ridder', x0=None, options={})
```

See also:

For documentation for the rest of the parameters, see `scipy.optimize.root_scalar`

**Options**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>args</td>
<td>[tupple, optional] Extra arguments passed to the objective function.</td>
</tr>
<tr>
<td>xtol</td>
<td>[float, optional] Tolerance (absolute) for termination.</td>
</tr>
<tr>
<td>rtol</td>
<td>[float, optional] Tolerance (relative) for termination.</td>
</tr>
<tr>
<td>maxiter</td>
<td>[int, optional] Maximum number of iterations.</td>
</tr>
<tr>
<td>options</td>
<td>dict, optional</td>
</tr>
<tr>
<td></td>
<td>Specifies any method-specific options not covered above.</td>
</tr>
</tbody>
</table>

root_scalar(method='newton')

```python
scipy.optimize.root_scalar (args=(), method='newton', x0=None, options={})
```

See also:

For documentation for the rest of the parameters, see `scipy.optimize.root_scalar`

**Options**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>args</td>
<td>[tupple, optional] Extra arguments passed to the objective function and its derivative.</td>
</tr>
<tr>
<td>xtol</td>
<td>[float, optional] Tolerance (absolute) for termination.</td>
</tr>
<tr>
<td>rtol</td>
<td>[float, optional] Tolerance (relative) for termination.</td>
</tr>
<tr>
<td>maxiter</td>
<td>[int, optional] Maximum number of iterations.</td>
</tr>
<tr>
<td>x0</td>
<td>[float, required] Initial guess.</td>
</tr>
<tr>
<td>fprime</td>
<td>[bool or callable, optional] If <code>fprime</code> is a boolean and is True, <code>f</code> is assumed to return the value of derivative along with the objective function. <code>fprime</code> can also be a callable returning the derivative of <code>f</code>. In this case, it must accept the same arguments as <code>f</code>.</td>
</tr>
<tr>
<td>options</td>
<td>dict, optional</td>
</tr>
<tr>
<td></td>
<td>Specifies any method-specific options not covered above.</td>
</tr>
</tbody>
</table>
root_scalar(method='toms748')

```python
scipy.optimize.root_scalar (args=(), method='toms748', x0=None, options={})
```

See also:

For documentation for the rest of the parameters, see `scipy.optimize.root_scalar`

**Options**

- **args** [tuple, optional] Extra arguments passed to the objective function.
- **xtol** [float, optional] Tolerance (absolute) for termination.
- **rtol** [float, optional] Tolerance (relative) for termination.
- **maxiter** [int, optional] Maximum number of iterations.
- **options**: dict, optional
  Specifies any method-specific options not covered above.

root_scalar(method='secant')

```python
scipy.optimize.root_scalar (args=(), method='secant', x0=None, options={})
```

See also:

For documentation for the rest of the parameters, see `scipy.optimize.root_scalar`

**Options**

- **args** [tuple, optional] Extra arguments passed to the objective function.
- **xtol** [float, optional] Tolerance (absolute) for termination.
- **rtol** [float, optional] Tolerance (relative) for termination.
- **maxiter** [int, optional] Maximum number of iterations.
- **x0** [float, required] Initial guess.
- **x1** [float, required] A second guess.
- **options**: dict, optional
  Specifies any method-specific options not covered above.

root_scalar(method='halley')

```python
scipy.optimize.root_scalar (args=(), method='halley', x0=None, options={})
```

See also:

For documentation for the rest of the parameters, see `scipy.optimize.root_scalar`

**Options**

- **args** [tuple, optional] Extra arguments passed to the objective function and its derivatives.
- **xtol** [float, optional] Tolerance (absolute) for termination.
- **rtol** [float, optional] Tolerance (relative) for termination.
- **maxiter** [int, optional] Maximum number of iterations.
- **x0** [float, required] Initial guess.
- **fprime** [bool or callable, required] If fprime is a boolean and is True, f is assumed to return the value of derivative along with the objective function. fprime can also be a callable returning the derivative of f. In this case, it must accept the same arguments as f.
- **fprime2** [bool or callable, required] If fprime2 is a boolean and is True, f is assumed to return the value of 1st and 2nd derivatives along with the objective function. fprime2 can also be a callable returning the 2nd derivative of f. In this case, it must accept the same arguments as f.
options: dict, optional

Specifies any method-specific options not covered above.

The table below lists situations and appropriate methods, along with asymptotic convergence rates per iteration (and per function evaluation) for successful convergence to a simple root(*). Bisection is the slowest of them all, adding one bit of accuracy for each function evaluation, but is guaranteed to converge. The other bracketing methods all (eventually) increase the number of accurate bits by about 50% for every function evaluation. The derivative-based methods, all built on newton, can converge quite quickly if the initial value is close to the root. They can also be applied to functions defined on (a subset of) the complex plane.

<table>
<thead>
<tr>
<th>Domain of ( f )</th>
<th>Bracket?</th>
<th>Derivatives?</th>
<th>Solvers</th>
<th>Convergence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>( f' )</td>
<td>( f'' )</td>
<td></td>
</tr>
<tr>
<td>( R )</td>
<td>Yes</td>
<td>N/A</td>
<td>N/A</td>
<td>( \cdot ) bisec-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tion ( \quad ) brentq</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>breth ( \quad ) ridders</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>( \cdot ) toms748</td>
</tr>
<tr>
<td>( R ) or ( C )</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>secant</td>
</tr>
<tr>
<td>( R ) or ( C )</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>newton</td>
</tr>
<tr>
<td>( R ) or ( C )</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>halley</td>
</tr>
</tbody>
</table>

See also:

- scipy.optimize.cython_optimize – Typed Cython versions of zeros functions

Fixed point finding:

\[
\text{fixed_point}(\text{func, x0[, args, xtol, maxiter, ...]})
\]

Find a fixed point of the function.

scipy.optimize.fixed_point

\[
\text{scipy.optimize.fixed_point}(\text{func, x0[, args=(), xtol=1e-08, maxiter=500, method='del2'})
\]

Find a fixed point of the function.

Given a function of one or more variables and a starting point, find a fixed point of the function: i.e., where \( \text{func}(x0) = x0 \).

**Parameters**

- func [function] Function to evaluate.
- x0 [array_like] Fixed point of function.
- args [tuple, optional] Extra arguments to func.
- xtol [float, optional] Convergence tolerance, defaults to 1e-08.
- maxiter [int, optional] Maximum number of iterations, defaults to 500.
method  [[“del2”, “iteration”], optional] Method of finding the fixed-point, defaults to “del2”, which uses Steffensen’s Method with Aitken’s $\text{Del}^2$ convergence acceleration [1]. The “iteration” method simply iterates the function until convergence is detected, without attempting to accelerate the convergence.

References

[1]

Examples

```python
>>> from scipy import optimize
>>> def func(x, c1, c2):
... return np.sqrt(c1/(x+c2))
>>> c1 = np.array([10, 12.])
>>> c2 = np.array([3, 5.])
>>> optimize.fixed_point(func, [1.2, 1.3], args=(c1,c2))
array([1.4920333 , 1.37228132])
```

Multidimensional

```python
root(fun, x0[, args, method, jac, tol, ...]) Find a root of a vector function.
```

```python
scipy.optimize.root (fun, x0, args=(), method='hybr', jac=None, tol=None, callback=None, options=None) Find a root of a vector function.
```

Parameters

- **fun** [callable] A vector function to find a root of.
- **x0** [ndarray] Initial guess.
- **args** [tuple, optional] Extra arguments passed to the objective function and its Jacobian.
- **method** [str, optional] Type of solver. Should be one of:
  - ‘hybr’ (see here)
  - ‘lm’ (see here)
  - ‘broyden1’ (see here)
  - ‘broyden2’ (see here)
  - ‘anderson’ (see here)
  - ‘linearmixing’ (see here)
  - ‘diagbroyden’ (see here)
  - ‘excitingmixing’ (see here)
  - ‘krylov’ (see here)
  - ‘df-sane’ (see here)
- **jac** [bool or callable, optional] If `jac` is a Boolean and is True, `fun` is assumed to return the value of Jacobian along with the objective function. If False, the Jacobian will be estimated numerically. `jac` can also be a callable returning the Jacobian of `fun`. In this case, it must accept the same arguments as `fun`.
- **tol** [float, optional] Tolerance for termination. For detailed control, use solver-specific options.
callback [function, optional] Optional callback function. It is called on every iteration as \( \text{callback}(x, f) \) where \( x \) is the current solution and \( f \) the corresponding residual. For all methods but 'hybr' and 'lm'.

options [dict, optional] A dictionary of solver options. E.g., \( \text{xtol} \) or \( \text{maxiter} \), see \texttt{show_options()} for details.

Returns

\( \text{sol} \) [\texttt{OptimizeResult}] The solution represented as a \texttt{OptimizeResult} object. Important attributes are: \( x \) the solution array, \( \text{success} \) a Boolean flag indicating if the algorithm exited successfully and \( \text{message} \) which describes the cause of the termination. See \texttt{OptimizeResult} for a description of other attributes.

See also:

\texttt{show_options}

Additional options accepted by the solvers

Notes

This section describes the available solvers that can be selected by the 'method' parameter. The default method is \( \text{hybr} \).

Method \( \text{hybr} \) uses a modification of the Powell hybrid method as implemented in MINPACK [1].

Method \( \text{lm} \) solves the system of nonlinear equations in a least squares sense using a modification of the Levenberg-Marquardt algorithm as implemented in MINPACK [1].

Method \( \text{df-sane} \) is a derivative-free spectral method. [3]

Methods \( \text{broyden1}, \text{broyden2}, \text{anderson}, \text{linearmixing}, \text{diagbroyden}, \text{excitingmixing}, \text{krylov} \) are inexact Newton methods, with backtracking or full line searches [2]. Each method corresponds to a particular Jacobian approximations.

- Method \( \text{broyden1} \) uses Broyden's first Jacobian approximation, it is known as Broyden's good method.
- Method \( \text{broyden2} \) uses Broyden's second Jacobian approximation, it is known as Broyden's bad method.
- Method \( \text{anderson} \) uses (extended) Anderson mixing.
- Method \( \text{Krylov} \) uses Krylov approximation for inverse Jacobian. It is suitable for large-scale problem.
- Method \( \text{diagbroyden} \) uses diagonal Broyden Jacobian approximation.
- Method \( \text{linearmixing} \) uses a scalar Jacobian approximation.
- Method \( \text{excitingmixing} \) uses a tuned diagonal Jacobian approximation.

\textbf{Warning:} The algorithms implemented for methods \( \text{diagbroyden}, \text{linearmixing} \) and \( \text{excitingmixing} \) may be useful for specific problems, but whether they will work may depend strongly on the problem.

New in version 0.11.0.
References

[1], [2], [3]

Examples

The following functions define a system of nonlinear equations and its jacobian.

```python
>>> def fun(x):
... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0,
... 0.5 * (x[1] - x[0])**3 + x[1]]

>>> def jac(x):
... return np.array([[(1 + 1.5 * (x[0] - x[1])**2,
... -1.5 * (x[0] - x[1])**2],
... [-1.5 * (x[1] - x[0])**2,
... 1 + 1.5 * (x[1] - x[0])**2]])
```

A solution can be obtained as follows.

```python
>>> from scipy import optimize
>>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr')
>>> sol.x
array([[0.8411639, 0.1588361]])
```

Large problem

Suppose that we needed to solve the following integrodifferential equation on the square \([0, 1] \times [0, 1]\):

\[
\nabla^2 P = 10 \left( \int_0^1 \int_0^1 \cosh(P) \, dx \, dy \right)^2
\]

with \(P(x, 1) = 1\) and \(P = 0\) elsewhere on the boundary of the square.

The solution can be found using the `method='krylov'` solver:

```python
>>> from scipy import optimize
>>> # parameters
>>> nx, ny = 75, 75
>>> hx, hy = 1. / (nx-1), 1. / (ny-1)

>>> P_left, P_right = 0, 0
>>> P_top, P_bottom = 1, 0

>>> def residual(P):
... d2x = np.zeros_like(P)
... d2y = np.zeros_like(P)
... d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx
... d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
... d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx
... d2y[:1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy

(continues on next page)
The root function supports the following methods:

root(method='hybr')

`scipy.optimize.root` supports the following methods:

```
scipy.optimize.root (fun, x0, args=(), method='hybr', jac=None, tol=None, callback=None, options={})
```

Find the roots of a multivariate function using MINPACK’s hybrd and hybrj routines (modified Powell method).

See also:

For documentation for the rest of the parameters, see `scipy.optimize.root`

Options

- **col_deriv** [bool] Specify whether the Jacobian function computes derivatives down the columns (faster, because there is no transpose operation).
xtol

[float] The calculation will terminate if the relative error between two consecutive iterates is at most $\times tol$.

maxfev

[int] The maximum number of calls to the function. If zero, then $100 \times (N+1)$ is the maximum where N is the number of elements in x_0.

band

[tuple] If set to a two-sequence containing the number of sub- and super-diagonals within the band of the Jacobi matrix, the Jacobi matrix is considered banded (only for fprime=None).

eps

[float] A suitable step length for the forward-difference approximation of the Jacobian (for fprime=None). If ε is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision.

factor

[float] A parameter determining the initial step bound ($\text{factor} \times || \text{diag} \times x||$). Should be in the interval $(0.1, 100)$.

diag

[sequence] N positive entries that serve as scale factors for the variables.

root(method='lm')

scipy.optimize.root (fun, x0, args=(), method='lm', jac=None, tol=None, callback=None,
options={'col_deriv': 0, 'xtol': 1.49012e-08, 'ftol': 1.49012e-08, 'gtol': 0.0, 'maxiter': 0,
'eps': 0.0, 'factor': 100, 'diag': None})

Solve for least squares with Levenberg-Marquardt

See also:

For documentation for the rest of the parameters, see scipy.optimize.root

Options

col_deriv [bool] non-zero to specify that the Jacobian function computes derivatives down the columns (faster, because there is no transpose operation).

ftol [float] Relative error desired in the sum of squares.

xtol [float] Relative error desired in the approximate solution.

gtol [float] Orthogonality desired between the function vector and the columns of the Jacobian.

maxiter [int] The maximum number of calls to the function. If zero, then $100 \times (N+1)$ is the maximum where N is the number of elements in x_0.

epsfcn [float] A suitable step length for the forward-difference approximation of the Jacobian (for Dfun=None). If epsfcn is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision.

factor [float] A parameter determining the initial step bound ($\text{factor} \times || \text{diag} \times x||$). Should be in the interval $(0.1, 100)$.

diag [sequence] N positive entries that serve as scale factors for the variables.

root(method='broyden1')

scipy.optimize.root (fun, x0, args=(), method='broyden1', tol=None, callback=None, options={})

See also:

For documentation for the rest of the parameters, see scipy.optimize.root

Options

nit [int, optional] Number of iterations to make. If omitted (default), make as many as required to meet tolerances.

disp [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet convergence, *NoConvergence* is raised.

ftol [float, optional] Relative tolerance for the residual. If omitted, not used.
fatol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.

xtol [float, optional] Relative minimum step size. If omitted, not used.
xatol [float, optional] Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the maximum norm.

line_search [{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

jac_options [dict, optional] Options for the respective Jacobian approximation.

alpha [float, optional] Initial guess for the Jacobian is (-1/alpha).

reduction_method [str or tuple, optional] Method used in ensuring that the rank of the Broyden matrix stays low. Can either be a string giving the name of the method, or a tuple of the form (method, param1, param2, ...) that gives the name of the method and values for additional parameters.

Methods available:

- **restart** Drop all matrix columns. Has no extra parameters.
- **simple** Drop oldest matrix column. Has no extra parameters.
- **svd** Keep only the most significant SVD components. Extra parameters:
 - **to_retain** Number of SVD components to retain when rank reduction is done. Default is max_rank - 2.

max_rank [int, optional] Maximum rank for the Broyden matrix. Default is infinity (i.e., no rank reduction).

Examples

```python
>>> def func(x):
...     return np.cos(x) + x[:-1] - [1, 2, 3, 4]
...
>>> from scipy import optimize
>>> res = optimize.root(func, [1, 1, 1, 1], method='broyden1', tol=1e-14)
>>> x = res.x
>>> x
array([4.04674914, 3.91158389, 2.71791677, 1.61756251])
>>> np.cos(x) + x[:-1]
array([1., 2., 3., 4.])
```
root(method='broyden2')

scipy.optimize.root (fun, x0, args=(), method='broyden2', tol=tol, callback=callback, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root

Options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nit</td>
<td>Number of iterations to make. If omitted (default), make as many as required to meet tolerances.</td>
</tr>
<tr>
<td>disp</td>
<td>Print status to stdout on every iteration.</td>
</tr>
<tr>
<td>maxiter</td>
<td>Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised.</td>
</tr>
<tr>
<td>ftol</td>
<td>Relative tolerance for the residual. If omitted, not used.</td>
</tr>
<tr>
<td>fatol</td>
<td>Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.</td>
</tr>
<tr>
<td>xtol</td>
<td>Relative minimum step size. If omitted, not used.</td>
</tr>
<tr>
<td>xatol</td>
<td>Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.</td>
</tr>
<tr>
<td>tol_norm</td>
<td>Norm to use in convergence check. Default is the maximum norm.</td>
</tr>
<tr>
<td>line_search</td>
<td>Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.</td>
</tr>
<tr>
<td>jac_options</td>
<td>Options for the respective Jacobian approximation.</td>
</tr>
<tr>
<td>alpha</td>
<td>Initial guess for the Jacobian is (-1/alpha).</td>
</tr>
<tr>
<td>reduction_method</td>
<td>Method used in ensuring that the rank of the Broyden matrix stays low. Can either be a string giving the name of the method, or a tuple of the form (method, param1, param2, ...) that gives the name of the method and values for additional parameters.</td>
</tr>
</tbody>
</table>

Methods available:
- **restart** Drop all matrix columns. Has no extra parameters.
- **simple** Drop oldest matrix column. Has no extra parameters.
- **svd** Keep only the most significant SVD components.

Extra parameters:
- **to_retain** Number of SVD components to retain when rank reduction is done. Default is max_rank - 2.

max_rank | Maximum rank for the Broyden matrix. Default is infinity (i.e., no rank reduction).
root(method='anderson')

```python
scipy.optimize.root(fun, x0, args=(), method='anderson', tol=None, callback=None, options={})
```

See also:

For documentation for the rest of the parameters, see `scipy.optimize.root`

Options

- `nit` [int, optional] Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
- `disp` [bool, optional] Print status to stdout on every iteration.
- `maxiter` [int, optional] Maximum number of iterations to make. If more are needed to meet convergence, `NoConvergence` is raised.
- `ftol` [float, optional] Relative tolerance for the residual. If omitted, not used.
- `fatol` [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.
- `xtol` [float, optional] Relative minimum step size. If omitted, not used.
- `xatol` [float, optional] Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
- `tol_norm` [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the maximum norm.
- `line_search` [{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.
- `jac_options` [dict, optional] Options for the respective Jacobian approximation.
- `alpha` [float, optional] Initial guess for the Jacobian is (-1/alpha).
- `M` [float, optional] Number of previous vectors to retain. Defaults to 5.
- `w0` [float, optional] Regularization parameter for numerical stability. Compared to unity, good values of the order of 0.01.

root(method='linearmixing')

```python
scipy.optimize.root(fun, x0, args=(), method='linearmixing', tol=None, callback=None, options={})
```

See also:

For documentation for the rest of the parameters, see `scipy.optimize.root`

Options

- `nit` [int, optional] Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
- `disp` [bool, optional] Print status to stdout on every iteration.
- `maxiter` [int, optional] Maximum number of iterations to make. If more are needed to meet convergence, `NoConvergence` is raised.
- `ftol` [float, optional] Relative tolerance for the residual. If omitted, not used.
- `fatol` [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.
- `xtol` [float, optional] Relative minimum step size. If omitted, not used.
- `xatol` [float, optional] Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the maximum norm.

line_search [{None, 'armijo' (default), 'wolfe'}, optional] Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to 'armijo'.

jac_options [dict, optional] Options for the respective Jacobian approximation.

alpha [float, optional] Initial guess for the jacobian is (-1/alpha).

root(method='diagbroyden')

scipy.optimize.root (fun, x0, args=(), method='diagbroyden', tol=None, callback=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root

Options

- **nit** [int, optional] Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
- **disp** [bool, optional] Print status to stdout on every iteration.
- **maxiter** [int, optional] Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised.
- **ftol** [float, optional] Relative tolerance for the residual. If omitted, not used.
- **fatol** [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.
- **xtol** [float, optional] Relative minimum step size. If omitted, not used.
- **xatol** [float, optional] Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
- **tol_norm** [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the maximum norm.
- **line_search** [{None, 'armijo' (default), 'wolfe'}, optional] Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to 'armijo'.
- **jac_options** [dict, optional] Options for the respective Jacobian approximation.
- **alpha** [float, optional] Initial guess for the jacobian is (-1/alpha).

root(method='excitingmixing')

scipy.optimize.root (fun, x0, args=(), method='excitingmixing', tol=None, callback=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root

Options

- **nit** [int, optional] Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
- **disp** [bool, optional] Print status to stdout on every iteration.
- **maxiter** [int, optional] Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised.
- **ftol** [float, optional] Relative tolerance for the residual. If omitted, not used.

fatol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.

xtol [float, optional] Relative minimum step size. If omitted, not used.

xatol [float, optional] Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.

tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the maximum norm.

line_search [{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

jac_options [dict, optional] Options for the respective Jacobian approximation.
 alpha [float, optional] Initial Jacobian approximation is (-1/alpha).
 alphamax [float, optional] The entries of the diagonal Jacobian are kept in the range [alpha, alphamax].

root(method='krylov')

scipy.optimize.root (fun, x0, args=(), method='krylov', tol=None, callback=None, options={})

See also:
For documentation for the rest of the parameters, see scipy.optimize.root

Options

disp [bool, optional] Print status to stdout on every iteration.

maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised.

ftol [float, optional] Relative tolerance for the residual. If omitted, not used.

fatol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.

xtol [float, optional] Relative minimum step size. If omitted, not used.

xatol [float, optional] Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.

tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the maximum norm.

line_search [{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

jac_options [dict, optional] Options for the respective Jacobian approximation.
 rdiff [float, optional] Relative step size to use in numerical differentiation.
 method [{‘lgmres’, ‘gmres’, ‘bicgstab’, ‘cgs’, ‘minres’} or function] Krylov method to use to approximate the Jacobian. Can be a string, or a function implementing the same interface as the iterative solvers in scipy.sparse.linalg. The default is scipy.sparse.linalg.lgmres.
 inner_M [LinearOperator or InverseJacobian] Preconditioner for the inner Krylov iteration. Note that you can use also inverse Jacobians as (adaptive) preconditioners. For example,
```python
>>> jac = BroydenFirst()
>>> kjac = KrylovJacobian(inner_M=jac.inverse).
```

If the preconditioner has a method named 'update', it will be called as update(x, f) after each nonlinear step, with x giving the current point, and f the current function value.

- **inner_tol**, **inner_maxiter**, ...
 Parameters to pass on to the “inner” Krylov solver. See `scipy.sparse.linalg.gmres` for details.

- **outer_k** [int, optional] Size of the subspace kept across LGMRES nonlinear iterations. See `scipy.sparse.linalg.lgmres` for details.

`root(method='df-sane')`

`scipy.optimize.root` *(fun, x0, args=(), method='df-sane', tol=None, callback=None, options={'func': None, 'ftol': 1e-08, 'fatol': 1e-300, 'maxfev': 1000, 'fnorm': None, 'disp': False, 'M': 10, 'eta_strategy': None, 'sigma_eps': 1e-10, 'sigma_0': 1.0, 'line_search': 'cruz'})`

Solve nonlinear equation with the DF-SANE method

See also:

For documentation for the rest of the parameters, see `scipy.optimize.root`

Options

- **ftol** [float, optional] Relative norm tolerance.
- **fatol** [float, optional] Absolute norm tolerance. Algorithm terminates when ||func(x)|| < fatol + ftol ||func(x_0)||.
- **f_norm** [callable, optional] Norm to use in the convergence check. If None, 2-norm is used.
- **maxfev** [int, optional] Maximum number of function evaluations.
- **disp** [bool, optional] Whether to print convergence process to stdout.
- **eta_strategy** [callable, optional] Choice of the eta_k parameter, which gives slack for growth of \[||F||^2\]. Called as eta_k = eta_strategy(k, x, F) with k the iteration number, x the current iterate and F the current residual. Should satisfy eta_k > 0 and sum(eta, k=0..inf) < inf. Default: \[||F||^2 / (1 + k)^2\].
- **sigma_eps** [float, optional] The spectral coefficient is constrained to sigma_eps < sigma < 1/sigma_eps. Default: 1e-10
- **sigma_0** [float, optional] Initial spectral coefficient. Default: 1.0
- **M** [int, optional] Number of iterates to include in the nonmonotonic line search. Default: 10
- **line_search** ['cruz', 'cheng'] Type of line search to employ. 'cruz' is the original one defined in [Martinez & Raydan, Math. Comp. 75, 1429 (2006)], 'cheng' is a modified search defined in [Cheng & Li. IMA J. Numer. Anal. 29, 814 (2009)]. Default: 'cruz'
References

[1], [2], [3]

Linear programming

\texttt{linprog}(c[, A_ub, b_ub, A_eq, b_eq, bounds, ...])
Linear programming: minimize a linear objective function subject to linear equality and inequality constraints.

\texttt{scipy.optimize.linprog}

\texttt{scipy.optimize.linprog}(c, A_ub=\texttt{None}, b_ub=\texttt{None}, A_eq=\texttt{None}, b_eq=\texttt{None}, bounds=\texttt{None},
\texttt{method=}'interior-point', callback=\texttt{None}, options=\texttt{None}, x0=\texttt{None})

Linear programming: minimize a linear objective function subject to linear equality and inequality constraints.

Linear programming solves problems of the following form:

$$\min_{x} c^T x$$

such that

\[A_ub x \leq b_ub, \]
\[A_eq x = b_eq, \]
\[l \leq x \leq u, \]

where \(x \) is a vector of decision variables; \(c, b_ub, b_eq, l, \) and \(u \) are vectors; and \(A_ub \) and \(A_eq \) are matrices.

Alternatively, that's:

minimize:

\[c _ A _ x \]

such that:

\[A_ub _ A _ x \leq b_ub \]
\[A_eq _ A _ x = b_eq \]
\[l _ A _ x _ ub \]

Note that by default \(lb = 0 \) and \(ub = \texttt{None} \) unless specified with \texttt{bounds}.

Parameters

- \(c \) [1-D array] The coefficients of the linear objective function to be minimized.
- \(A_ub \) [2-D array, optional] The inequality constraint matrix. Each row of \(A_ub \) specifies the coefficients of a linear inequality constraint on \(x \).
- \(b_ub \) [1-D array, optional] The inequality constraint vector. Each element represents an upper bound on the corresponding value of \(A_ub _ A _ x \).
- \(A_eq \) [2-D array, optional] The equality constraint matrix. Each row of \(A_eq \) specifies the coefficients of a linear equality constraint on \(x \).
- \(b_eq \) [1-D array, optional] The equality constraint vector. Each element of \(A_eq _ A _ x \) must equal the corresponding element of \(b_eq \).
- \texttt{bounds} [sequence, optional] A sequence of (min, max) pairs for each element in \(x \), defining the minimum and maximum values of that decision variable. Use \texttt{None} to indicate that there is no bound. By default, bounds are (0, \texttt{None}) (all decision variables are non-negative). If a single tuple (min, max) is provided, then \texttt{min} and \texttt{max} will serve as bounds for all decision variables.
method [str, optional] The algorithm used to solve the standard form problem. 'highs-ds', 'highs-ipm', 'highs', 'interior-point' (default), 'revised simplex', and 'simplex' (legacy) are supported.

callback [callable, optional] If a callback function is provided, it will be called at least once per iteration of the algorithm. The callback function must accept a single scipy.optimize.OptimizeResult consisting of the following fields:

- **x** [1-D array] The current solution vector.
- **fun** [float] The current value of the objective function \(c \cdot x \).
- **success** [bool] True when the algorithm has completed successfully.
- **slack** [1-D array] The (nominally positive) values of the slack, \(b_{ub} - A_{ub} \cdot x \).
- **con** [1-D array] The (nominally zero) residuals of the equality constraints, \(b_{eq} - A_{eq} \cdot x \).
- **phase** [int] The phase of the algorithm being executed.
- **status** [int] An integer representing the status of the algorithm.

 - 0: Optimization proceeding nominally.
 - 1: Iteration limit reached.
 - 2: Problem appears to be infeasible.
 - 3: Problem appears to be unbounded.
 - 4: Numerical difficulties encountered.
- **nit** [int] The current iteration number.
- **message** [str] A string descriptor of the algorithm status.

Callback functions are not currently supported by the HiGHS methods.

options [dict, optional] A dictionary of solver options. All methods accept the following options:

- **maxiter** [int] Maximum number of iterations to perform. Default: see method-specific documentation.
- **disp** [bool] Set to True to print convergence messages. Default: False.
- **presolve** [bool] Set to False to disable automatic presolve. Default: True.

All methods except the HiGHS solvers also accept:

- **tol** [float] A tolerance which determines when a residual is “close enough” to zero to be considered exactly zero.
- **autoscale** [bool] Set to True to automatically perform equilibration. Consider using this option if the numerical values in the constraints are separated by several orders of magnitude. Default: False.
- **rr** [bool] Set to False to disable automatic redundancy removal. Default: True.
- **rr_method** [string] Method used to identify and remove redundant rows from the equality constraint matrix after presolve. For problems with dense input, the available methods for redundancy removal are:

 - **SVD**: Repeatedly performs singular value decomposition on the matrix, detecting redundant rows based on nonzeros in the left singular vectors that correspond with zero singular values. May be fast when the matrix is nearly full rank.
 - **pivot**: Uses the algorithm presented in [5] to identify redundant rows.
 - **ID**: Uses a randomized interpolative decomposition. Identifies columns of the matrix transpose not used in a full-rank interpolative decomposition of the matrix.
 - **None**: Uses “svd” if the matrix is nearly full rank, that is, the difference between the matrix rank and the number of rows is less than five. If not, uses “pivot”. The behavior of this default is subject to change without prior notice.

Default: None. For problems with sparse input, this option is ignored, and the pivot-based algorithm presented in [5] is used.

For method-specific options, see show_options('linprog').
\[x_0 \] [1-D array, optional] Guess values of the decision variables, which will be refined by the optimization algorithm. This argument is currently used only by the ‘revised simplex’ method, and can only be used if \(x_0 \) represents a basic feasible solution.

Returns

\[\text{res} \] [OptimizeResult] A scipy.optimize.OptimizeResult consisting of the fields:

\[x \] [1-D array] The values of the decision variables that minimizes the objective function while satisfying the constraints.

\[\text{fun} \] [float] The optimal value of the objective function \(c \odot x \).

\[\text{slack} \] [1-D array] The (nominally positive) values of the slack variables, \(b_{\text{ub}} - A_{\text{ub}} \odot x \).

\[\text{con} \] [1-D array] The (nominally zero) residuals of the equality constraints, \(b_{\text{eq}} - A_{\text{eq}} \odot x \).

\[\text{success} \] [bool] True when the algorithm succeeds in finding an optimal solution.

\[\text{status} \] [int] An integer representing the exit status of the algorithm.

0 : Optimization terminated successfully.
1 : Iteration limit reached.
2 : Problem appears to be infeasible.
3 : Problem appears to be unbounded.
4 : Numerical difficulties encountered.

\[\text{nit} \] [int] The total number of iterations performed in all phases.

\[\text{message} \] [str] A string descriptor of the exit status of the algorithm.

See also:

show_options

Additional options accepted by the solvers.

Notes

This section describes the available solvers that can be selected by the ‘method’ parameter.

‘highs-ds’ and ‘highs-ipm’ are interfaces to the HiGHS simplex and interior-point method solvers [13], respectively. ‘highs’ chooses between the two automatically. These are the fastest linear programming solvers in SciPy, especially for large, sparse problems; which of these two is faster is problem-dependent. ‘interior-point’ is the default as it was the fastest and most robust method before the recent addition of the HiGHS solvers. ‘revised simplex’ is more accurate than interior-point for the problems it solves. ‘simplex’ is the legacy method and is included for backwards compatibility and educational purposes.

Method highs-ds is a wrapper of the C++ high performance dual revised simplex implementation (HSOL) [13], [14]. Method highs-ipm is a wrapper of a C++ implementation of an interior-point method [13]; it features a crossover routine, so it is as accurate as a simplex solver. Method highs chooses between the two automatically. For new code involving linprog, we recommend explicitly choosing one of these three method values.

New in version 1.6.0.

Method interior-point uses the primal-dual path following algorithm as outlined in [4]. This algorithm supports sparse constraint matrices and is typically faster than the simplex methods, especially for large, sparse problems. Note, however, that the solution returned may be slightly less accurate than those of the simplex methods and will not, in general, correspond with a vertex of the polytope defined by the constraints.

New in version 1.0.0.

Method revised simplex uses the revised simplex method as described in [9], except that a factorization [11] of the basis matrix, rather than its inverse, is efficiently maintained and used to solve the linear systems at each iteration of the algorithm.
New in version 1.3.0.

Method `simplex` uses a traditional, full-tableau implementation of Dantzig’s simplex algorithm [1], [2] (not the Nelder-Mead simplex). This algorithm is included for backwards compatibility and educational purposes.

New in version 0.15.0.

Before applying `interior-point`, `revised simplex`, or `simplex`, a presolve procedure based on [8] attempts to identify trivial infeasibilities, trivial unboundedness, and potential problem simplifications. Specifically, it checks for:

- rows of zeros in A_{eq} or A_{ub}, representing trivial constraints;
- columns of zeros in A_{eq} and A_{ub}, representing unconstrained variables;
- column singletons in A_{eq}, representing fixed variables; and
- column singletons in A_{ub}, representing simple bounds.

If presolve reveals that the problem is unbounded (e.g. an unconstrained and unbounded variable has negative cost) or infeasible (e.g., a row of zeros in A_{eq} corresponds with a nonzero in b_{eq}), the solver terminates with the appropriate status code. Note that presolve terminates as soon as any sign of unboundedness is detected; consequently, a problem may be reported as unbounded when in reality the problem is infeasible (but infeasibility has not been detected yet). Therefore, if it is important to know whether the problem is actually infeasible, solve the problem again with option `presolve=False`.

If neither infeasibility nor unboundedness are detected in a single pass of the presolve, bounds are tightened where possible and fixed variables are removed from the problem. Then, linearly dependent rows of the A_{eq} matrix are removed, (unless they represent an infeasibility) to avoid numerical difficulties in the primary solve routine. Note that rows that are nearly linearly dependent (within a prescribed tolerance) may also be removed, which can change the optimal solution in rare cases. If this is a concern, eliminate redundancy from your problem formulation and run with option `rr=False` or `presolve=False`.

Several potential improvements can be made here: additional presolve checks outlined in [8] should be implemented, the presolve routine should be run multiple times (until no further simplifications can be made), and more of the efficiency improvements from [5] should be implemented in the redundancy removal routines.

After presolve, the problem is transformed to standard form by converting the (tightened) simple bounds to upper bound constraints, introducing non-negative slack variables for inequality constraints, and expressing unbounded variables as the difference between two non-negative variables. Optionally, the problem is automatically scaled via equilibration [12]. The selected algorithm solves the standard form problem, and a postprocessing routine converts the result to a solution to the original problem.

References

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]

Examples

Consider the following problem:

$$
\min_{x_0, x_1} -x_0 + 4x_1
$$

such that

$$
-3x_0 + x_1 \leq 6,
-2x_0 + x_1 \geq -4,
-x_0 \geq -3.
$$

The problem is not presented in the form accepted by `linprog`. This is easily remedied by converting the “greater than” inequality constraint to a “less than” inequality constraint by multiplying both sides by a factor of -1. Note
also that the last constraint is really the simple bound $-3 \leq x_1 \leq \infty$. Finally, since there are no bounds on x_0, we must explicitly specify the bounds $-\infty \leq x_0 \leq \infty$, as the default is for variables to be non-negative. After collecting coefficients into arrays and tuples, the input for this problem is:

```python
>>> c = [-1, 4]
>>> A = [[-3, 1], [1, 2]]
>>> b = [6, 4]
>>> x0_bounds = (None, None)
>>> x1_bounds = (-3, None)
>>> from scipy.optimize import linprog
>>> res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds])
```

Note that the default method for `linprog` is ‘interior-point’, which is approximate by nature.

```python
>>> print(res)
con: array([], dtype=float64)
fun: -21.99999984082494 # may vary
message: 'Optimization terminated successfully.'
nit: 6 # may vary
slack: array([ 3.8999997e+01, 8.46872439e-08]) # may vary
status: 0
success: True
x: array([ 9.99999989, -2.99999999]) # may vary
```

If you need greater accuracy, try ‘revised simplex’.

```python
>>> res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds],
... method='revised simplex')
>>> print(res)
con: array([], dtype=float64)
fun: -22.0 # may vary
message: 'Optimization terminated successfully.'
nit: 1 # may vary
slack: array([39., 0.]) # may vary
status: 0
success: True
x: array([10., -3.]) # may vary
```

You can use the `options` parameter, e.g., to restrict the maximum number of iterations.

```python
>>> res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds],
... options={'maxiter': 4})
>>> print(res)
con: array([], dtype=float64)
fun: -21.35207150630407 # may vary
message: 'The iteration limit was reached before the algorithm converged.'
nit: 4
slack: array([37.19406046, 0.5727398])
status: 1
success: False
x: array([ 9.4021973, -2.98746855])
```

The `linprog` function supports the following methods:
linprog(method='simplex')

```python
scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None,
                       method='simplex', callback=None, options={'maxiter': 5000, 'disp': False, 'presolve': True, 'tol': 1e-12, 'autoscale': False, 'rr': True, 'bland': False}, x0=None)
```

Linear programming: minimize a linear objective function subject to linear equality and inequality constraints using the tableau-based simplex method.

Linear programming solves problems of the following form:

\[
\min_{x} \quad c^T x \\
\text{subject to} \quad A_{ub} x \leq b_{ub}, \quad A_{eq} x = b_{eq}, \quad l \leq x \leq u,
\]

where \(x \) is a vector of decision variables; \(c, b_{ub}, b_{eq}, l, \) and \(u \) are vectors; and \(A_{ub} \) and \(A_{eq} \) are matrices.

Alternatively, that's:

minimize:

\[
c @ x
\]

such that:

\[
A_{ub} @ x \leq b_{ub} \\
A_{eq} @ x = b_{eq} \\
lb \leq x \leq ub
\]

Note that by default \(lb = 0 \) and \(ub = None \) unless specified with `bounds`.

Parameters

- **c** [1-D array] The coefficients of the linear objective function to be minimized.
- **A_ub** [2-D array, optional] The inequality constraint matrix. Each row of \(A_{ub} \) specifies the coefficients of a linear inequality constraint on \(x \).
- **b_ub** [1-D array, optional] The inequality constraint vector. Each element represents an upper bound on the corresponding value of \(A_{ub} @ x \).
- **A_eq** [2-D array, optional] The equality constraint matrix. Each row of \(A_{eq} \) specifies the coefficients of a linear equality constraint on \(x \).
- **b_eq** [1-D array, optional] The equality constraint vector. Each element of \(A_{eq} @ x \) must equal the corresponding element of \(b_{eq} \).
- **bounds** [sequence, optional] A sequence of \((\text{min}, \text{max})\) pairs for each element in \(x \), defining the minimum and maximum values of that decision variable. Use None to indicate that there is no bound. By default, bounds are \((0, None)\) (all decision variables are non-negative). If a single tuple \((\text{min}, \text{max})\) is provided, then \text{min} and \text{max} will serve as bounds for all decision variables.
- **method** [str] This is the method-specific documentation for 'simplex', 'highs', 'highs-ds', 'highs-ipm', 'interior-point' (default), and 'revised simplex' are also available.
- **callback** [callable, optional] Callback function to be executed once per iteration.

Returns

- **res** [OptimizeResult] A `scipy.optimize.OptimizeResult` consisting of the fields:
 - **x** [1-D array] The values of the decision variables that minimizes the objective function while satisfying the constraints.
 - **fun** [float] The optimal value of the objective function \(c @ x \).
slack [1-D array] The (nominally positive) values of the slack variables, \(b_{ub} - A_{ub} @ x \).

con [1-D array] The (nominally zero) residuals of the equality constraints, \(b_{eq} - A_{eq} @ x \).

success [bool] True when the algorithm succeeds in finding an optimal solution.

status [int] An integer representing the exit status of the algorithm.
0 : Optimization terminated successfully.
1 : Iteration limit reached.
2 : Problem appears to be infeasible.
3 : Problem appears to be unbounded.
4 : Numerical difficulties encountered.

nit [int] The total number of iterations performed in all phases.

See also:

For documentation for the rest of the parameters, see `scipy.optimize.linprog`

Options

maxiter [int (default: 5000)] The maximum number of iterations to perform in either phase.

disp [bool (default: False)] Set to True if indicators of optimization status are to be printed to the console each iteration.

presolve [bool (default: True)] Presolve attempts to identify trivial infeasibilities, identify trivial unboundedness, and simplify the problem before sending it to the main solver. It is generally recommended to keep the default setting True; set to False if presolve is to be disabled.

tol [float (default: 1e-12)] The tolerance which determines when a solution is “close enough” to zero in Phase 1 to be considered a basic feasible solution or close enough to positive to serve as an optimal solution.

autoscale [bool (default: False)] Set to True to automatically perform equilibration. Consider using this option if the numerical values in the constraints are separated by several orders of magnitude.

rr [bool (default: False)] Set to False to disable automatic redundancy removal.

bland [bool] If True, use Bland’s anti-cycling rule [3] to choose pivots to prevent cycling. If False, choose pivots which should lead to a converged solution more quickly. The latter method is subject to cycling (non-convergence) in rare instances.

unknown_options [dict] Optional arguments not used by this particular solver. If unknown_options is non-empty a warning is issued listing all unused options.

References

[1], [2], [3]

linprog(method='interior-point')

`scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='interior-point', callback=None, options={'maxiter': 1000, 'disp': False, 'presolve': True, 'tol': 1e-08, 'autoscale': False, 'rr': True, 'alpha0': 0.99995, 'beta': 0.1, 'sparse': False, 'lssq': False, 'sym_pos': True, 'cholesky': True, 'pc': True, 'ip': False, 'permc_spec': 'MMD_AT_PLUS_A'}, x0=None)`

Linear programming: minimize a linear objective function subject to linear equality and inequality constraints using the interior-point method of [4].
Linear programming solves problems of the following form:

\[
\min_x \ c^T x \\
\text{such that } A_{ub} x \leq b_{ub}, \\
A_{eq} x = b_{eq}, \\
l \leq x \leq u,
\]

where \(x \) is a vector of decision variables; \(c, b_{ub}, b_{eq}, l, \) and \(u \) are vectors; and \(A_{ub} \) and \(A_{eq} \) are matrices.

Alternatively, that's:

minimize:

\[
c \cdot x
\]

such that:

\[
A_{ub} \cdot x \leq b_{ub} \\
A_{eq} \cdot x = b_{eq} \\
lb \leq x \leq ub
\]

Note that by default \(lb = 0 \) and \(ub = None \) unless specified with \(bounds \).

Parameters

- \(c \) [1-D array] The coefficients of the linear objective function to be minimized.
- \(A_{ub} \) [2-D array, optional] The inequality constraint matrix. Each row of \(A_{ub} \) specifies the coefficients of a linear inequality constraint on \(x \).
- \(b_{ub} \) [1-D array, optional] The inequality constraint vector. Each element represents an upper bound on the corresponding value of \(A_{ub} \cdot x \).
- \(A_{eq} \) [2-D array, optional] The equality constraint matrix. Each row of \(A_{eq} \) specifies the coefficients of a linear equality constraint on \(x \).
- \(b_{eq} \) [1-D array, optional] The equality constraint vector. Each element of \(A_{eq} \cdot x \) must equal the corresponding element of \(b_{eq} \).
- \(bounds \) [sequence, optional] A sequence of \((\text{min}, \text{max})\) pairs for each element in \(x \), defining the minimum and maximum values of that decision variable. Use None to indicate that there is no bound. By default, bounds are \((0, None)\) (all decision variables are non-negative). If a single tuple \((\text{min}, \text{max})\) is provided, then \text{min} and \text{max} will serve as bounds for all decision variables.
- \(method \) [str] This is the method-specific documentation for 'interior-point'. 'highs', 'highs-ds', 'highs-ipm', 'revised simplex', and 'simplex' (legacy) are also available.
- \(callback \) [callable, optional] Callback function to be executed once per iteration.

Returns

- \(res \) [OptimizeResult] A scipy.optimize.OptimizeResult consisting of the fields:
 - \(x \) [1-D array] The values of the decision variables that minimizes the objective function while satisfying the constraints.
 - \(fun \) [float] The optimal value of the objective function \(c \cdot x \).
 - \(slack \) [1-D array] The (nominally positive) values of the slack variables, \(b_{ub} - A_{ub} \cdot x \).
 - \(con \) [1-D array] The (nominally zero) residuals of the equality constraints, \(b_{eq} - A_{eq} \cdot x \).
 - \(success \) [bool] True when the algorithm succeeds in finding an optimal solution.
 - \(status \) [int] An integer representing the exit status of the algorithm. 0: Optimization terminated successfully. 1: Iteration limit reached.
2: Problem appears to be infeasible.
3: Problem appears to be unbounded.
4: Numerical difficulties encountered.

message [str] A string descriptor of the exit status of the algorithm.

nit [int] The total number of iterations performed in all phases.

See also:

For documentation for the rest of the parameters, see `scipy.optimize.linprog`

Options

maxiter [int (default: 1000)] The maximum number of iterations of the algorithm.

disp [bool (default: False)] Set to `True` if indicators of optimization status are to be printed to the console each iteration.

presolve [bool (default: True)] Presolve attempts to identify trivial infeasibilities, identify trivial unboundedness, and simplify the problem before sending it to the main solver. It is generally recommended to keep the default setting `True`; set to `False` if presolve is to be disabled.

tol [float (default: 1e-8)] Termination tolerance to be used for all termination criteria; see [4] Section 4.5.

autoscale [bool (default: False)] Set to `True` to automatically perform equilibration. Consider using this option if the numerical values in the constraints are separated by several orders of magnitude.

rr [bool (default: True)] Set to `False` to disable automatic redundancy removal.

alpha0 [float (default: 0.99995)] The maximal step size for Mehrota's predictor-corrector search direction; see \(\beta_3 \) of [4] Table 8.1.

beta [float (default: 0.1)] The desired reduction of the path parameter \(\mu \) (see [6]) when Mehrota's predictor-corrector is not in use (uncommon).

sparse [bool (default: False)] Set to `True` if the problem is to be treated as sparse after presolve. If either \(A_{eq} \) or \(A_{ub} \) is a sparse matrix, this option will automatically be set `True`, and the problem will be treated as sparse even during presolve. If your constraint matrices contain mostly zeros and the problem is not very small (less than about 100 constraints or variables), consider setting `True` or providing \(A_{eq} \) and \(A_{ub} \) as sparse matrices.

lstsq [bool (default: False)] Set to `True` if the problem is expected to be very poorly conditioned. This should always be left `False` unless severe numerical difficulties are encountered. Leave this at the default unless you receive a warning message suggesting otherwise.

sym_pos [bool (default: True)] Leave `True` if the problem is expected to yield a well conditioned symmetric positive definite normal equation matrix (almost always). Leave this at the default unless you receive a warning message suggesting otherwise.

cholesky [bool (default: True)] Set to `True` if the normal equations are to be solved by explicit Cholesky decomposition followed by explicit forward/backward substitution. This is typically faster for problems that are numerically well-behaved.

pc [bool (default: True)] Leave `True` if the predictor-corrector method of Mehrota is to be used. This is almost always (if not always) beneficial.

ip [bool (default: False)] Set to `True` if the improved initial point suggestion due to [4] Section 4.3 is desired. Whether this is beneficial or not depends on the problem.

perm_spec [str (default: ‘MMD_AT_PLUS_A’)] (Has effect only with sparse = True, lstsq = False, sym_pos = True, and no SuiteSparse.) A matrix is factorized in each iteration of the algorithm. This option specifies how to permute the columns of the matrix for sparsity preservation. Acceptable values are:
- **NATURAL:** natural ordering.
- **MMD_ATA:** minimum degree ordering on the structure of \(A^T A \).
- **MMD_AT_PLUS_A:** minimum degree ordering on the structure of \(A^T + A \).
- **COLAMD:** approximate minimum degree column ordering.
This option can impact the convergence of the interior point algorithm; test different values to determine which performs best for your problem. For more information, refer to scipy.sparse.linalg.splu.

unknown_options

[dict] Optional arguments not used by this particular solver. If unknown_options is non-empty a warning is issued listing all unused options.

Notes

This method implements the algorithm outlined in [4] with ideas from [8] and a structure inspired by the simpler methods of [6].

The primal-dual path following method begins with initial ‘guesses’ of the primal and dual variables of the standard form problem and iteratively attempts to solve the (nonlinear) Karush-Kuhn-Tucker conditions for the problem with a gradually reduced logarithmic barrier term added to the objective. This particular implementation uses a homogeneous self-dual formulation, which provides certificates of infeasibility or unboundedness where applicable.

The default initial point for the primal and dual variables is that defined in [4] Section 4.4 Equation 8.22. Optionally (by setting initial point option ip=True), an alternate (potentially improved) starting point can be calculated according to the additional recommendations of [4] Section 4.4.

A search direction is calculated using the predictor-corrector method (single correction) proposed by Mehrota and detailed in [4] Section 4.1. (A potential improvement would be to implement the method of multiple corrections described in [4] Section 4.2.) In practice, this is accomplished by solving the normal equations, [4] Section 5.1 Equations 8.31 and 8.32, derived from the Newton equations [4] Section 5 Equations 8.25 (compare to [4] Section 4 Equations 8.6-8.8). The advantage of solving the normal equations rather than 8.25 directly is that the matrices involved are symmetric positive definite, so Cholesky decomposition can be used rather than the more expensive LU factorization.

With default options, the solver used to perform the factorization depends on third-party software availability and the conditioning of the problem.

For dense problems, solvers are tried in the following order:
1. scipy.linalg.cho_factor
2. scipy.linalg.solve with option sym_pos=True
3. scipy.linalg.solve with option sym_pos=False
4. scipy.linalg.lstsq

For sparse problems:
1. sksparse.cholmod.cholesky (if scikit-sparse and SuiteSparse are installed)
2. scipy.sparse.linalg.factorized (if scikit-umfpack and SuiteSparse are installed)
3. scipy.sparse.linalg.splu (which uses SuperLU distributed with SciPy)
4. scipy.sparse.linalg.lsqr

If the solver fails for any reason, successively more robust (but slower) solvers are attempted in the order indicated. Attempting, failing, and re-starting factorization can be time consuming, so if the problem is numerically challenging, options can be set to bypass solvers that are failing. Setting cholesky=False skips to solver 2, sym_pos=False skips to solver 3, and lstsq=True skips to solver 4 for both sparse and dense problems.

Potential improvements for combatting issues associated with dense columns in otherwise sparse problems are outlined in [4] Section 5.3 and [10] Section 4.1-4.2; the latter also discusses the alleviation of accuracy issues associated with the substitution approach to free variables.
After calculating the search direction, the maximum possible step size that does not activate the non-negativity constraints is calculated, and the smaller of this step size and unity is applied (as in [4] Section 4.1.) [4] Section 4.3 suggests improvements for choosing the step size.

The new point is tested according to the termination conditions of [4] Section 4.5. The same tolerance, which can be set using the tol option, is used for all checks. (A potential improvement would be to expose the different tolerances to be set independently.) If optimality, unboundedness, or infeasibility is detected, the solve procedure terminates; otherwise it repeats.

Whereas the top level linprog module expects a problem of form:

Minimize:

\[c @ x \]

Subject to:

\[
\begin{align*}
A_{ub} @ x & \leq b_{ub} \\
A_{eq} @ x & = b_{eq} \\
lb & \leq x \leq ub \\
\end{align*}
\]

where \(lb = 0 \) and \(ub = None \) unless set in bounds. The problem is automatically converted to the form:

Minimize:

\[c @ x \]

Subject to:

\[
\begin{align*}
A @ x & = b \\
x & \geq 0 \\
\end{align*}
\]

for solution. That is, the original problem contains equality, upper-bound and variable constraints whereas the method specific solver requires equality constraints and variable non-negativity. linprog converts the original problem to standard form by converting the simple bounds to upper bound constraints, introducing non-negative slack variables for inequality constraints, and expressing unbounded variables as the difference between two non-negative variables. The problem is converted back to the original form before results are reported.

References

[4], [6], [8], [9], [10]

\[
\text{linprog(method='revised simplex')}
\]

\[
\text{scipy.optimize.linprog}(c, A_{ub}=None, b_{ub}=None, A_{eq}=None, b_{eq}=None, bounds=None, \\
method='revised_simplex', callback=None, options={'maxiter': 5000, 'disp': False, \\
'presolve': True, 'tol': 1e-12, 'autoscale': False, 'rr': True, 'maxupdate': 10, 'mast': False, 'pivot': 'mrc'}, x0=None)
\]

Linear programming: minimize a linear objective function subject to linear equality and inequality constraints using the revised simplex method.

Linear programming solves problems of the following form:

\[
\begin{align*}
\min_x c^T x \\
\text{such that } & A_{ub}x \leq b_{ub}, \\
& A_{eq}x = b_{eq}, \\
& l \leq x \leq u,
\end{align*}
\]
where \(x \) is a vector of decision variables; \(c, b_{ub}, b_{eq}, l, \) and \(u \) are vectors; and \(A_{ub} \) and \(A_{eq} \) are matrices.

Alternatively, that’s:

\[
\begin{align*}
\text{minimize:} & & c \cdot x \\
\text{subject to:} & & A_{ub} \cdot x \leq b_{ub} \\
& & A_{eq} \cdot x = b_{eq} \\
& & l \leq x \leq u
\end{align*}
\]

Note that by default \(l_b = 0 \) and \(u_b = \text{None} \) unless specified with bounds.

Parameters

- **c** [1-D array] The coefficients of the linear objective function to be minimized.
- **A_ub** [2-D array, optional] The inequality constraint matrix. Each row of \(A_{ub} \) specifies the coefficients of a linear inequality constraint on \(x \).
- **b_ub** [1-D array, optional] The inequality constraint vector. Each element represents an upper bound on the corresponding value of \(A_{ub} \cdot x \).
- **A_eq** [2-D array, optional] The equality constraint matrix. Each row of \(A_{eq} \) specifies the coefficients of a linear equality constraint on \(x \).
- **b_eq** [1-D array, optional] The equality constraint vector. Each element of \(A_{eq} \cdot x \) must equal the corresponding element of \(b_{eq} \).
- **bounds** [sequence, optional] A sequence of \((\min, \max)\) pairs for each element in \(x \), defining the minimum and maximum values of that decision variable. Use None to indicate that there is no bound. By default, bounds are \((0, \text{None})\) (all decision variables are non-negative). If a single tuple \((\min, \max)\) is provided, then \(\min \) and \(\max \) will serve as bounds for all decision variables.
- **method** [str] This is the method-specific documentation for ‘revised simplex’. ‘highs’, ‘highs-ds’, ‘highs-ipm’, ‘interior-point’ (default), and ‘simplex’ (legacy) are also available.
- **callback** [callable, optional] Callback function to be executed once per iteration.
- **x0** [1-D array, optional] Guess values of the decision variables, which will be refined by the optimization algorithm. This argument is currently used only by the ‘revised simplex’ method, and can only be used if \(x0 \) represents a basic feasible solution.

Returns

- **res** [OptimizeResult] A scipy.optimize.OptimizeResult consisting of the fields:
 - **x** [1-D array] The values of the decision variables that minimizes the objective function while satisfying the constraints.
 - **fun** [float] The optimal value of the objective function \(c \cdot x \).
 - **slack** [1-D array] The (nominally positive) values of the slack variables, \(b_{ub} - A_{ub} \cdot x \).
 - **con** [1-D array] The (nominally zero) residuals of the equality constraints, \(b_{eq} - A_{eq} \cdot x \).
 - **success** [bool] True when the algorithm succeeds in finding an optimal solution.
 - **status** [int] An integer representing the exit status of the algorithm.
 - 0: Optimization terminated successfully.
 - 1: Iteration limit reached.
 - 2: Problem appears to be infeasible.
 - 3: Problem appears to be unbounded.
 - 4: Numerical difficulties encountered.
 - 5: Problem has no constraints; turn presolve on.
6: Invalid guess provided.

message [str] A string descriptor of the exit status of the algorithm.

nit [int] The total number of iterations performed in all phases.

See also:

For documentation for the rest of the parameters, see `scipy.optimize.linprog`

Options

- **maxiter** [int (default: 5000)] The maximum number of iterations to perform in either phase.
- **disp** [bool (default: False)] Set to `True` if indicators of optimization status are to be printed to the console each iteration.
- **presolve** [bool (default: True)] Presolve attempts to identify trivial infeasibilities, identify trivial unboundedness, and simplify the problem before sending it to the main solver. It is generally recommended to keep the default setting `True`; set to `False` if presolve is to be disabled.
- **tol** [float (default: 1e-12)] The tolerance which determines when a solution is “close enough” to zero in Phase 1 to be considered a basic feasible solution or close enough to positive to serve as an optimal solution.
- **autoscale** [bool (default: False)] Set to `True` to automatically perform equilibration. Consider using this option if the numerical values in the constraints are separated by several orders of magnitude.
- **rr** [bool (default: True)] Set to `False` to disable automatic redundancy removal.
- **maxupdate** [int (default: 10)] The maximum number of updates performed on the LU factorization. After this many updates is reached, the basis matrix is factorized from scratch.
- **mast** [bool (default: False)] Minimize Amortized Solve Time. If enabled, the average time to solve a linear system using the basis factorization is measured. Typically, the average solve time will decrease with each successive solve after initial factorization, as factorization takes much more time than the solve operation (and updates). Eventually, however, the updated factorization becomes sufficiently complex that the average solve time begins to increase. When this is detected, the basis is refactorized from scratch. Enable this option to maximize speed at the risk of nondeterministic behavior. Ignored if `maxupdate` is 0.
- **pivot** ["mrc" or “bland” (default: “mrc”)] Pivot rule: Minimum Reduced Cost (“mrc”) or Bland’s rule (“bland”). Choose Bland’s rule if iteration limit is reached and cycling is suspected.
- **unknown_options** [dict] Optional arguments not used by this particular solver. If `unknown_options` is non-empty a warning is issued listing all unused options.

Notes

Method *revised simplex* uses the revised simplex method as described in [9], except that a factorization [11] of the basis matrix, rather than its inverse, is efficiently maintained and used to solve the linear systems at each iteration of the algorithm.

References

[9],[11]

linprog(method='highs-ipm')

```
scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None,
(method='highs-ipm'), callback=None, options={'maxiter': None, 'disp': False,
'presolve': True, 'time_limit': None, 'dual_feasibility_tolerance': None,
'primal_feasibility_tolerance': None, 'ipm_optimality_tolerance': None}, x0=None)
```

Linear programming: minimize a linear objective function subject to linear equality and inequality constraints using the HiGHS interior point solver.

Linear programming solves problems of the following form:

\[
\min_x \ c^T x \\
\text{such that } A_{ub} x \leq b_{ub}, \\
A_{eq} x = b_{eq}, \\
l \leq x \leq u,
\]

where \(x \) is a vector of decision variables; \(c, b_{ub}, b_{eq}, l, \) and \(u \) are vectors; and \(A_{ub} \) and \(A_{eq} \) are matrices.

Alternatively, that’s:

\[
\minimize \ c \odot x \\
\text{such that } A_{ub} \odot x \leq b_{ub} \\
A_{eq} \odot x = b_{eq} \\
lb \leq x \leq ub
\]

Note that by default \(lb = 0 \) and \(ub = None \) unless specified with \textit{bounds}.

Parameters

- **c** [1-D array] The coefficients of the linear objective function to be minimized.
- **A_ub** [2-D array, optional] The inequality constraint matrix. Each row of \(A_{ub} \) specifies the coefficients of a linear inequality constraint on \(x \).
- **b_ub** [1-D array, optional] The inequality constraint vector. Each element represents an upper bound on the corresponding value of \(A_{ub} @ x \).
- **A_eq** [2-D array, optional] The equality constraint matrix. Each row of \(A_{eq} \) specifies the coefficients of a linear equality constraint on \(x \).
- **b_eq** [1-D array, optional] The equality constraint vector. Each element of \(A_{eq} @ x \) must equal the corresponding element of \(b_{eq} \).
- **bounds** [sequence, optional] A sequence of (\textit{min}, \textit{max}) pairs for each element in \(x \), defining the minimum and maximum values of that decision variable. Use \textit{None} to indicate that there is no bound. By default, bounds are (0, None) (all decision variables are non-negative). If a single tuple (\textit{min}, \textit{max}) is provided, then \textit{min} and \textit{max} will serve as bounds for all decision variables.
- **method** [str] This is the method-specific documentation for ‘highs-ipm’. ‘highs-ipm’, ‘highs-ds’, ‘interior-point’ (default), ‘revised simplex’, and ‘simplex’ (legacy) are also available.

Returns

- **res** [OptimizeResult] A \texttt{scipy.optimize.OptimizeResult} consisting of the fields:

- **x** [1D array] The values of the decision variables that minimizes the objective function while satisfying the constraints.
- **fun** [float] The optimal value of the objective function \(c \odot x \).
- **slack** [1D array] The (nominally positive) values of the slack, \(b_{ub} - A_{ub} \odot x \).
- **con** [1D array] The (nominally zero) residuals of the equality constraints, \(b_{eq} - A_{eq} \odot x \).
- **success** [bool] True when the algorithm succeeds in finding an optimal solution.
- **status** [int] An integer representing the exit status of the algorithm.
 - 0: Optimization terminated successfully.
 - 1: Iteration or time limit reached.
 - 2: Problem appears to be infeasible.
 - 3: Problem appears to be unbounded.
 - 4: The HiGHS solver ran into a problem.
- **message** [str] A string descriptor of the exit status of the algorithm.
- **nit** [int] The total number of iterations performed. For the HiGHS interior-point method, this does not include crossover iterations.
- **crossover_nit** [int] The number of primal/dual pushes performed during the crossover routine for the HiGHS interior-point method.
- **ineqlin** [OptimizeResult] Solution and sensitivity information corresponding to the inequality constraints, \(b_{ub} \).
 - **residual** [np.ndarray] The (nominally positive) values of the slack variables, \(b_{ub} - A_{ub} \odot x \). This quantity is also commonly referred to as “slack”.
 - **marginals** [np.ndarray] The sensitivity (partial derivative) of the objective function with respect to the right-hand side of the inequality constraints, \(b_{ub} \).
- **eqlin** [OptimizeResult] Solution and sensitivity information corresponding to the equality constraints, \(b_{eq} \).
 - **residual** [np.ndarray] The (nominally zero) residuals of the equality constraints, \(b_{eq} - A_{eq} \odot x \).
 - **marginals** [np.ndarray] The sensitivity (partial derivative) of the objective function with respect to the right-hand side of the equality constraints, \(b_{eq} \).
- **lower, upper** [OptimizeResult] Solution and sensitivity information corresponding to the lower and upper bounds on decision variables, \(bounds \).
 - **residual** [np.ndarray] The (nominally positive) values of the quantity \(x - lb \) (lower) or \(ub - x \) (upper).
 - **marginals** [np.ndarray] The sensitivity (partial derivative) of the objective function with respect to the lower and upper bounds.

See also:

For documentation for the rest of the parameters, see `scipy.optimize.linprog`

Options

- **maxiter** [int] The maximum number of iterations to perform in either phase. For ‘highs-ipm’, this does not include the number of crossover iterations. Default is the largest possible value for an int on the platform.
- **disp** [bool (default: False)] Set to True if indicators of optimization status are to be printed to the console during optimization.

3.3. API definition 1375

presolve [bool (default: True)] Presolve attempts to identify trivial infeasibilities, identify trivial unboundedness, and simplify the problem before sending it to the main solver. It is generally recommended to keep the default setting True; set to False if presolve is to be disabled.

time_limit [float] The maximum time in seconds allotted to solve the problem; default is the largest possible value for a double on the platform.

dual_feasibility_tolerance [double (default: 1e-07)] The minimum of this and primal_feasibility_tolerance is used for the feasibility tolerance of 'highs-ipm'.

primal_feasibility_tolerance [double (default: 1e-07)] The minimum of this and dual_feasibility_tolerance is used for the feasibility tolerance of 'highs-ipm'.

ipm_optimality_tolerance [double (default: 1e-08)] Optimality tolerance for 'highs-ipm'. Minimum allowable value is 1e-12.

unknown_options [dict] Optional arguments not used by this particular solver. If unknown_options is non-empty, a warning is issued listing all unused options.

Notes

Method 'highs-ipm' is a wrapper of a C++ implementation of an interior-point method [13]; it features a crossover routine, so it is as accurate as a simplex solver. Method 'highs-ds' is a wrapper of the C++ high performance dual revised simplex implementation (HSOL) [13], [14]. Method 'highs' chooses between the two automatically. For new code involving linprog, we recommend explicitly choosing one of these three method values instead of 'interior-point' (default), 'revised simplex', and 'simplex' (legacy).

The result fields ineqlin, eqlin, lower, and upper all contain marginals, or partial derivatives of the objective function with respect to the right-hand side of each constraint. These partial derivatives are also referred to as “Lagrange multipliers”, “dual values”, and “shadow prices”. The sign convention of marginals is opposite that of Lagrange multipliers produced by many nonlinear solvers.

References

[13], [14]

linprog(method='highs-ds')

scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='highs-ds', callback=None, options={'maxiter': None, 'disp': False, 'presolve': True, 'time_limit': None, 'dual_feasibility_tolerance': None, 'primal_feasibility_tolerance': None, 'simplex_dual_edge_weight_strategy': None}, x0=None)

Linear programming: minimize a linear objective function subject to linear equality and inequality constraints using the HiGHS dual simplex solver.

Linear programming solves problems of the following form:

\[
\min_x \ c^T x \\
\text{such that } A_{ub} x \leq b_{ub}, \quad A_{eq} x = b_{eq}, \quad l \leq x \leq u,
\]

where \(x \) is a vector of decision variables; \(c, b_{ub}, b_{eq}, l, \) and \(u \) are vectors; and \(A_{ub} \) and \(A_{eq} \) are matrices.
Alternatively, that’s:

```
minimize:
```

\[c \odot x \]

such that:

\[
A_{ub} \odot x \leq b_{ub} \\
A_{eq} \odot x = b_{eq} \\
lb \leq x \leq ub
\]

Note that by default \(lb = 0 \) and \(ub = \text{None} \) unless specified with \textit{bounds}.

Parameters

- \(c \) [1-D array] The coefficients of the linear objective function to be minimized.
- \(A_{ub} \) [2-D array, optional] The inequality constraint matrix. Each row of \(A_{ub} \) specifies the coefficients of a linear inequality constraint on \(x \).
- \(b_{ub} \) [1-D array, optional] The inequality constraint vector. Each element represents an upper bound on the corresponding value of \(A_{ub} \odot x \).
- \(A_{eq} \) [2-D array, optional] The equality constraint matrix. Each row of \(A_{eq} \) specifies the coefficients of a linear equality constraint on \(x \).
- \(b_{eq} \) [1-D array, optional] The equality constraint vector. Each element of \(A_{eq} \odot x \) must equal the corresponding element of \(b_{eq} \).
- \textit{bounds} [sequence, optional] A sequence of \((\text{min}, \text{max})\) pairs for each element in \(x \), defining the minimum and maximum values of that decision variable. Use \text{None} to indicate that there is no bound. By default, bounds are \((0, \text{None})\) (all decision variables are non-negative). If a single tuple \((\text{min}, \text{max})\) is provided, then \text{min} and \text{max} will serve as bounds for all decision variables.
- \textit{method} [str] This is the method-specific documentation for ‘highs-ds’, ‘highs’, ‘highs-ipm’, ‘interior-point’ (default), ‘revised simplex’, and ‘simplex’ (legacy) are also available.

Returns

- \textit{res} [OptimizeResult] A \texttt{scipy.optimize.OptimizeResult} consisting of the fields:
 - \textit{x} [1D array] The values of the decision variables that minimizes the objective function while satisfying the constraints.
 - \textit{fun} [float] The optimal value of the objective function \(c \odot x \).
 - \textit{slack} [1D array] The (nominally positive) values of the slack, \(b_{ub} - A_{ub} \odot x \).
 - \textit{con} [1D array] The (nominally zero) residuals of the equality constraints, \(b_{eq} - A_{eq} \odot x \).
 - \textit{success} [bool] \text{True} when the algorithm succeeds in finding an optimal solution.
 - \textit{status} [int] An integer representing the exit status of the algorithm.
 - 0 : Optimization terminated successfully.
 - 1 : Iteration or time limit reached.
 - 2 : Problem appears to be infeasible.
 - 3 : Problem appears to be unbounded.
 - 4 : The HiGHS solver ran into a problem.
 - \textit{message} [str] A string descriptor of the exit status of the algorithm.
 - \textit{nit} [int] The total number of iterations performed. This includes iterations in all phases.
 - \textit{crossover_nit} [int] This is always 0 for the HiGHS simplex method. For the HiGHS interior-point method, this is the number of primal/dual pushes performed during the crossover routine.
ineqlin [OptimizeResult] Solution and sensitivity information corresponding to the inequality constraints, b_{ub}. A dictionary consisting of the fields:

residual [np.ndarray] The (nominally positive) values of the slack variables, $b_{ub} - A_{ub} \times x$. This quantity is also commonly referred to as "slack".

marginals [np.ndarray] The sensitivity (partial derivative) of the objective function with respect to the right-hand side of the inequality constraints, b_{ub}.

eqlin [OptimizeResult] Solution and sensitivity information corresponding to the equality constraints, b_{eq}. A dictionary consisting of the fields:

residual [np.ndarray] The (nominally zero) residuals of the equality constraints, $b_{eq} - A_{eq} \times x$.

marginals [np.ndarray] The sensitivity (partial derivative) of the objective function with respect to the right-hand side of the equality constraints, b_{eq}.

lower, upper [OptimizeResult] Solution and sensitivity information corresponding to the lower and upper bounds on decision variables, $bounds$.

residual [np.ndarray] The (nominally positive) values of the quantity $x - lb$ (lower) or $ub - x$ (upper).

marginals [np.ndarray] The sensitivity (partial derivative) of the objective function with respect to the lower and upper bounds $bounds$.

See also:

For documentation for the rest of the parameters, see scipy.optimize.linprog

Options

- **maxiter** [int] The maximum number of iterations to perform in either phase. Default is the largest possible value for an int on the platform.

- **disp** [bool (default: False)] Set to True if indicators of optimization status are to be printed to the console during optimization.

- **presolve** [bool (default: True)] Presolve attempts to identify trivial infeasibilities, identify trivial unboundedness, and simplify the problem before sending it to the main solver. It is generally recommended to keep the default setting True; set to False if presolve is to be disabled.

- **time_limit** [float] The maximum time in seconds allotted to solve the problem; default is the largest possible value for a double on the platform.

- **dual_feasibility_tolerance** [double (default: 1e-07)] Dual feasibility tolerance for 'highs-ds'.

- **primal_feasibility_tolerance** [double (default: 1e-07)] Primal feasibility tolerance for 'highs-ds'.

- **simplex_dual_edge_weight_strategy** [str (default: None)] Strategy for simplex dual edge weights. The default, None, automatically selects one of the following.

 - 'dantzig' uses Dantzig's original strategy of choosing the most negative reduced cost.
 - 'devex' uses the strategy described in [15].
 - 'steepest' uses the exact steepest edge strategy as described in [16].
 - 'steepest-devex' begins with the exact steepest edge strategy until the computation is too costly or inexact and then switches to the devex method.

 Currently, None always selects 'steepest-devex', but this may change as new options become available.

- **unknown_options** [dict] Optional arguments not used by this particular solver. If unknown_options is non-empty, a warning is issued listing all unused options.
Notes

Method ‘highs-ds’ is a wrapper of the C++ high performance dual revised simplex implementation (HSOL) [13], [14]. Method ‘highs-ipm’ is a wrapper of a C++ implementation of an interior-point method [13]: it features a crossover routine, so it is as accurate as a simplex solver. Method ‘highs’ chooses between the two automatically.

For new code involving `linprog`, we recommend explicitly choosing one of these three method values instead of ‘interior-point’ (default), ‘revised simplex’, and ‘simplex’ (legacy).

The result fields `ineqlin`, `eqlin`, `lower`, and `upper` all contain marginals, or partial derivatives of the objective function with respect to the right-hand side of each constraint. These partial derivatives are also referred to as “Lagrange multipliers”, “dual values”, and “shadow prices”. The sign convention of marginals is opposite that of Lagrange multipliers produced by many nonlinear solvers.

References

[13], [14], [15], [16]

`linprog(method='highs')`

```python
scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='highs', callback=None, options={'maxiter': None, 'disp': False, 'presolve': True, 'time_limit': None, 'dual_feasibility_tolerance': None, 'primal_feasibility_tolerance': None, 'ipm_optimality_tolerance': None, 'simplex_dual_edge_weight_strategy': None}, x0=None)
```

Linear programming: minimize a linear objective function subject to linear equality and inequality constraints using one of the HiGHS solvers.

Linear programming solves problems of the following form:

\[
\min_x \; c^T x \\
\text{such that} \; A_{ub} x \leq b_{ub}, \\
\quad A_{eq} x = b_{eq}, \\
\quad l \leq x \leq u,
\]

where \(x \) is a vector of decision variables; \(c, b_{ub}, b_{eq}, l, \) and \(u \) are vectors; and \(A_{ub} \) and \(A_{eq} \) are matrices.

Alternatively, that’s:

minimize:

\[
c @ x
\]

such that:

\[
A_{ub} @ x \; \leq \; b_{ub} \\
A_{eq} @ x \; = \; b_{eq} \\
lb \; \leq \; x \; \leq \; ub
\]

Note that by default \(lb = 0 \) and \(ub = None \) unless specified with \(bounds \).

Parameters

- `c` : [1-D array] The coefficients of the linear objective function to be minimized.
- `b_ub` : [1-D array, optional] The inequality constraint vector. Each element represents an upper bound on the corresponding value of `A_ub @ x`.

3.3. API definition 1379

A_eq [2-D array, optional] The equality constraint matrix. Each row of \(A_{eq} \) specifies the coefficients of a linear equality constraint on \(x \).

b_eq [1-D array, optional] The equality constraint vector. Each element of \(A_{eq} @ x \) must equal the corresponding element of \(b_{eq} \).

bounds [sequence, optional] A sequence of \((\text{min}, \text{max})\) pairs for each element in \(x \), defining the minimum and maximum values of that decision variable. Use \text{None} to indicate that there is no bound. By default, bounds are \((0, \text{None})\) (all decision variables are non-negative). If a single tuple \((\text{min}, \text{max})\) is provided, then \text{min} and \text{max} will serve as bounds for all decision variables.

method [str] This is the method-specific documentation for ‘highs’, which chooses automatically between ‘highs-ds’ and ‘highs-ipm’. ‘interior-point’ (default), ‘revised simplex’, and ‘simplex’ (legacy) are also available.

Returns

res [OptimizerResult] A \texttt{scipy.optimize.OptimizeResult} consisting of the fields:

\(x \) [1D array] The values of the decision variables that minimizes the objective function while satisfying the constraints.

\(\text{fun} \) [float] The optimal value of the objective function \(c @ x \).

\(\text{slack} \) [1D array] The (nominally positive) values of the slack, \(b_{ub} - A_{ub} @ x \).

\(\text{con} \) [1D array] The (nominally zero) residuals of the equality constraints, \(b_{eq} - A_{eq} @ x \).

\(\text{success} \) [bool] True when the algorithm succeeds in finding an optimal solution.

\(\text{status} \) [int] An integer representing the exit status of the algorithm.

0 : Optimization terminated successfully.

1 : Iteration or time limit reached.

2 : Problem appears to be infeasible.

3 : Problem appears to be unbounded.

4 : The HiGHS solver ran into a problem.

\(\text{message} \) [str] A string descriptor of the exit status of the algorithm.

\(\text{nit} \) [int] The total number of iterations performed. For the HiGHS simplex method, this includes iterations in all phases. For the HiGHS interior-point method, this does not include crossover iterations.

\(\text{crossover_nit} \) [int] The number of primal/dual pushes performed during the crossover routine for the HiGHS interior-point method. This is 0 for the HiGHS simplex method.

ineqlin [OptimizerResult] Solution and sensitivity information corresponding to the inequality constraints, \(b_{ub} \). A dictionary consisting of the fields:

\(\text{residual} \) [np.ndarray] The (nominally positive) values of the slack variables, \(b_{ub} - A_{ub} @ x \). This quantity is also commonly referred to as “slack”.

\(\text{marginals} \) [np.ndarray] The sensitivity (partial derivative) of the objective function with respect to the right-hand side of the inequality constraints, \(b_{ub} \).

eqlin [OptimizerResult] Solution and sensitivity information corresponding to the equality constraints, \(b_{eq} \). A dictionary consisting of the fields:

\(\text{residual} \) [np.ndarray] The (nominally zero) residuals of the equality constraints, \(b_{eq} - A_{eq} @ x \).

\(\text{marginals} \) [np.ndarray] The sensitivity (partial derivative) of the objective function with respect to the right-hand side of the equality constraints, \(b_{eq} \).

lower, upper [OptimizerResult] Solution and sensitivity information corresponding to the lower and upper bounds on decision variables, \textit{bounds}.

1380 Chapter 3. SciPy API
residual \([\text{npt.array}]\) The (nominally positive) values of the quantity \(x - lb\) (lower) or \(ub - x\) (upper).

marginals \([\text{npt.array}]\) The sensitivity (partial derivative) of the objective function with respect to the lower and upper bounds.

See also:

For documentation for the rest of the parameters, see `scipy.optimize.linprog`

Options

maxiter \([\text{int}]\) The maximum number of iterations to perform in either phase. For ‘highs-ipm’, this does not include the number of crossover iterations. Default is the largest possible value for an int on the platform.

disp \([\text{bool (default: False)}]\) Set to True if indicators of optimization status are to be printed to the console during optimization.

presolve \([\text{bool (default: True)}]\) Presolve attempts to identify trivial infeasibilities, identify trivial unboundedness, and simplify the problem before sending it to the main solver. It is generally recommended to keep the default setting True; set to False if presolve is to be disabled.

time_limit \([\text{float}]\) The maximum time in seconds allotted to solve the problem; default is the largest possible value for a double on the platform.

dual_feasibility_tolerance \([\text{double (default: 1e-07)}]\) Dual feasibility tolerance for ‘highs-ds’. The minimum of this and primal_feasibility_tolerance is used for the feasibility tolerance of ‘highs-ipm’.

primal_feasibility_tolerance \([\text{double (default: 1e-07)}]\) Primal feasibility tolerance for ‘highs-ds’. The minimum of this and dual_feasibility_tolerance is used for the feasibility tolerance of ‘highs-ipm’.

ipm_optimality_tolerance \([\text{double (default: 1e-08)}]\) Optimality tolerance for ‘highs-ipm’. Minimum allowable value is 1e-12.

simplex_dual_edge_weight_strategy \([\text{str (default: None)}]\) Strategy for simplex dual edge weights. The default, None, automatically selects one of the following.

'dantzig' uses Dantzig’s original strategy of choosing the most negative reduced cost.
'develx' uses the strategy described in [15].
'steepest' uses the exact steepest edge strategy as described in [16].
'steepest-devex' begins with the exact steepest edge strategy until the computation is too costly or inexact and then switches to the develx method.
Currently, None always selects 'steepest-devex', but this may change as new options become available.

unknown_options \([\text{dict}]\) Optional arguments not used by this particular solver. If unknown_options is non-empty, a warning is issued listing all unused options.

Notes

Method ‘highs-ds’ is a wrapper of the C++ high performance dual revised simplex implementation (HSOL) [13], [14]. Method ‘highs-ipm’ is a wrapper of a C++ implementation of an interior-point method [13]; it features a crossover routine, so it is as accurate as a simplex solver. Method ‘highs’ chooses between the two automatically. For new code involving linprog, we recommend explicitly choosing one of these three method values instead of ‘interior-point’ (default), ‘revised simplex’, and ‘simplex’ (legacy).

The result fields ineqlin, eqlin, lower, and upper all contain marginals, or partial derivatives of the objective function with respect to the right-hand side of each constraint. These partial derivatives are also referred to as “Lagrange
multipliers”, “dual values”, and “shadow prices”. The sign convention of marginals is opposite that of Lagrange multipliers produced by many nonlinear solvers.

References

[13], [14], [15], [16]

The simplex, interior-point, and revised simplex methods support callback functions, such as:

\begin{verbatim}
linprog_verbose_callback(res) A sample callback function demonstrating the linprog callback interface.
\end{verbatim}

\begin{verbatim}
scipy.optimize.linprog_verbose_callback(res)
A sample callback function demonstrating the linprog callback interface. This callback produces detailed output to sys.stdout before each iteration and after the final iteration of the simplex algorithm.
\end{verbatim}

Parameters

- \texttt{res}:
 A \texttt{scipy.optimize.OptimizeResult} consisting of the following fields:
 - \texttt{x}:
 [1-D array] The independent variable vector which optimizes the linear programming problem.
 - \texttt{fun}:
 [float] Value of the objective function.
 - \texttt{success}:
 [bool] True if the algorithm succeeded in finding an optimal solution.
 - \texttt{slack}:
 [1-D array] The values of the slack variables. Each slack variable corresponds to an inequality constraint. If the slack is zero, then the corresponding constraint is active.
 - \texttt{con}:
 [1-D array] The (nominally zero) residuals of the equality constraints, that is, \(\mathbf{b} - \mathbf{A}_{eq} \mathbf{x} \).
 - \texttt{phase}:
 [int] The phase of the optimization being executed. In phase 1 a basic feasible solution is sought and the T has an additional row representing an alternate objective function.
 - \texttt{status}:
 [int] An integer representing the exit status of the optimization:

\begin{verbatim}
0 : Optimization terminated successfully
1 : Iteration limit reached
2 : Problem appears to be infeasible
3 : Problem appears to be unbounded
4 : Serious numerical difficulties encountered
\end{verbatim}

- \texttt{nit}:
 [int] The number of iterations performed.
- \texttt{message}:
 [str] A string descriptor of the exit status of the optimization.

Assignment problems

\begin{verbatim}
linear_sum_assignment(cost_matrix[, maximize])
Solve the linear sum assignment problem.
\end{verbatim}

\begin{verbatim}
quadratic_assignment(A, B[, method, options])
Approximates solution to the quadratic assignment problem and the graph matching problem.
\end{verbatim}
scipy.optimize.linear_sum_assignment

```python
scipy.optimize.linear_sum_assignment(cost_matrix, maximize=False)
```

Solve the linear sum assignment problem.

Parameters

- `cost_matrix`
 - [array] The cost matrix of the bipartite graph.

- `maximize`
 - [bool (default: False)] Calculates a maximum weight matching if true.

Returns

- `row_ind, col_ind`
 - [array] An array of row indices and one of corresponding column indices giving the optimal assignment. The cost of the assignment can be computed as `cost_matrix[row_ind, col_ind].sum()`. The row indices will be sorted; in the case of a square cost matrix they will be equal to `numpy.arange(cost_matrix.shape[0])`.

See also:

- `scipy.sparse.csgraph.min_weight_full_bipartite_matching` for sparse inputs

Notes

The linear sum assignment problem \[1\] is also known as minimum weight matching in bipartite graphs. A problem instance is described by a matrix C, where each $C[i,j]$ is the cost of matching vertex i of the first partite set (a “worker”) and vertex j of the second set (a “job”). The goal is to find a complete assignment of workers to jobs of minimal cost.

Formally, let X be a boolean matrix where $X[i,j] = 1$ iff row i is assigned to column j. Then the optimal assignment has cost

$$\min \sum_i \sum_j C_{i,j} X_{i,j}$$

where, in the case where the matrix X is square, each row is assigned to exactly one column, and each column to exactly one row.

This function can also solve a generalization of the classic assignment problem where the cost matrix is rectangular. If it has more rows than columns, then not every row needs to be assigned to a column, and vice versa.

This implementation is a modified Jonker-Volgenant algorithm with no initialization, described in ref. \[2\].

New in version 0.17.0.

References

- [1], [2]
Examples

```python
>>> cost = np.array([[4, 1, 3], [2, 0, 5], [3, 2, 2]])
>>> from scipy.optimize import linear_sum_assignment
>>> row_ind, col_ind = linear_sum_assignment(cost)
>>> col_ind
array([1, 0, 2])
>>> cost[row_ind, col_ind].sum()
5
```

`scipy.optimize.quadratic_assignment`

`scipy.optimize.quadratic_assignment(A, B, method='faq', options=None)`

Approximates solution to the quadratic assignment problem and the graph matching problem.

Quadratic assignment solves problems of the following form:

\[
\min_{P} \text{trace}(A^T P B P^T)
\]

s.t. \(P \in \mathcal{P}\)

where \(\mathcal{P}\) is the set of all permutation matrices, and \(A\) and \(B\) are square matrices.

Graph matching tries to maximize the same objective function. This algorithm can be thought of as finding the alignment of the nodes of two graphs that minimizes the number of induced edge disagreements, or, in the case of weighted graphs, the sum of squared edge weight differences.

Note that the quadratic assignment problem is NP-hard. The results given here are approximations and are not guaranteed to be optimal.

Parameters

- **A** [2-D array, square] The square matrix \(A\) in the objective function above.
- **B** [2-D array, square] The square matrix \(B\) in the objective function above.
- **method** [str in {'faq', '2opt'} (default: 'faq')] The algorithm used to solve the problem. 'faq' (default) and '2opt' are available.
- **options** [dict, optional] A dictionary of solver options. All solvers support the following:
 - **maximize** [bool (default: False)] Maximizes the objective function if True.
 - **partial_match** [2-D array of integers, optional (default: None)] Fixes part of the matching. Also known as a “seed” [2]. Each row of `partial_match` specifies a pair of matched nodes: node `partial_match[i, 0]` of \(A\) is matched to node `partial_match[i, 1]` of \(B\). The array has shape \((m, 2)\), where \(m\) is not greater than the number of nodes, \(n\).
 - **rng** [{None, int, numpy.random.Generator, numpy.random.RandomState}, optional]
 If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new `RandomState` instance is used, seeded with `seed`. If `seed` is already a `Generator` or `RandomState` instance then that instance is used.

Returns

- **res** [OptimizeResult] `OptimizeResult` containing the following fields.
 - **col_ind** [1-D array] Column indices corresponding to the best permutation found of the nodes of \(B\).
fun [float] The objective value of the solution.
nit [int] The number of iterations performed during optimization.

Notes

The default method 'faq' uses the Fast Approximate QAP algorithm [1]; it typically offers the best combination of speed and accuracy. Method '2opt' can be computationally expensive, but may be a useful alternative, or it can be used to refine the solution returned by another method.

References

[1], [2], [3]

Examples

```python
>>> from scipy.optimize import quadratic_assignment
>>> A = np.array([[0, 80, 150, 170], [80, 0, 130, 100],
...     [150, 130, 0, 120], [170, 100, 120, 0]])
>>> B = np.array([[0, 5, 2, 7], [0, 0, 3, 8],
...     [0, 0, 0, 3], [0, 0, 0, 0]])
>>> res = quadratic_assignment(A, B)
>>> print(res)
 col_ind: array([0, 3, 2, 1])
 fun: 3260
 nit: 9
```

The see the relationship between the returned col_ind and fun, use col_ind to form the best permutation matrix found, then evaluate the objective function \(f(P) = \text{trace}(A^T P B P^T) \).

```python
>>> perm = res['col_ind']
>>> P = np.eye(len(A), dtype=int)[perm]
>>> fun = np.trace(A.T @ P @ B @ P.T)
>>> print(fun)
3260
```

Alternatively, to avoid constructing the permutation matrix explicitly, directly permute the rows and columns of the distance matrix.

```python
>>> fun = np.trace(A.T @ B[perm][:, perm])
>>> print(fun)
3260
```

Although not guaranteed in general, quadratic_assignment happens to have found the globally optimal solution.

```python
>>> from itertools import permutations
>>> perm_opt, fun_opt = None, np.inf
>>> for perm in permutations([0, 1, 2, 3]):
...     perm = np.array(perm)
...     fun = np.trace(A.T @ B[perm][:, perm])
...     if fun < fun_opt:
```

(continues on next page)
Here is an example for which the default method, ‘faq’, does not find the global optimum.

```python
>>> A = np.array([[0, 5, 8, 6], [5, 0, 5, 1],
...                [8, 5, 0, 2], [6, 1, 2, 0]])
>>> B = np.array([[0, 1, 8, 4], [1, 0, 5, 2],
...                [8, 5, 0, 5], [4, 2, 5, 0]])
>>> res = quadratic_assignment(A, B)
>>> print(res)
  col_ind: array([1, 0, 3, 2])
  fun: 178
  nit: 13
```

If accuracy is important, consider using ‘2opt’ to refine the solution.

```python
>>> guess = np.array([np.arange(len(A)), res.col_ind]).T
>>> res = quadratic_assignment(A, B, method='2opt',
...                            options={'partial_guess': guess})
>>> print(res)
  col_ind: array([1, 2, 3, 0])
  fun: 176
  nit: 17
```

The `quadratic_assignment` function supports the following methods:

`quadratic_assignment(method='faq')`

The function `scipy.optimize.quadratic_assignment` solves the Quadratic Assignment Problem (QAP) and the Graph Matching Problem (GMP) using the Fast Approximate QAP Algorithm (FAQ) [1].

Quadratic assignment solves problems of the following form:

\[
\min_P \ \text{trace}(A^T P B P^T) \\
\text{s.t. } P \in \mathcal{P}
\]

where \(\mathcal{P} \) is the set of all permutation matrices, and \(A \) and \(B \) are square matrices.

Graph matching tries to maximize the same objective function. This algorithm can be thought of as finding the alignment of the nodes of two graphs that minimizes the number of induced edge disagreements, or, in the case of weighted graphs, the sum of squared edge weight differences.

Note that the quadratic assignment problem is NP-hard. The results given here are approximations and are not guaranteed to be optimal.

Parameters

- **A** [2-D array, square] The square matrix \(A \) in the objective function above.
- **B** [2-D array, square] The square matrix \(B \) in the objective function above.
method [str in {'faq', '2opt'} (default: 'faq')] The algorithm used to solve the problem. This is the method-specific documentation for 'faq'. '2opt' is also available.

Returns

res [OptimizeResult] OptimizeResult containing the following fields.

- col_ind [1-D array] Column indices corresponding to the best permutation found of the nodes of B.
- fun [float] The objective value of the solution.
- nit [int] The number of Frank-Wolfe iterations performed.

See also:

For documentation for the rest of the parameters, see scipy.optimize.quadratic_assignment

Options

- maximize [bool (default: False)] Maximizes the objective function if True.
- partial_match [2-D array of integers, optional (default: None)] Fixes part of the matching. Also known as a “seed” [2].
 Each row of partial_match specifies a pair of matched nodes: node partial_match[i, 0] of A is matched to node partial_match[i, 1] of B. The array has shape $(m, 2)$, where m is not greater than the number of nodes, n.
- rng [None, int, numpy.random.Generator, numpy.random.RandomState], optional
 If seed is None (or np.random), the numpy.random.RandomState singleton is used.
 If seed is an int, a new RandomState instance is used, seeded with seed. If seed is already a Generator or RandomState instance then that instance is used.
- P0 [2-D array, “barycenter”, or “randomized” (default: “barycenter”)] Initial position. Must be a doubly-stochastic matrix [3].
 If the initial position is an array, it must be a doubly stochastic matrix of size $m' \times m'$ where $m' = n - m$.
 If "barycenter" (default), the initial position is the barycenter of the Birkhoff polytope (the space of doubly stochastic matrices). This is a $m' \times m'$ matrix with all entries equal to $1/m'$.
 If "randomized" the initial search position is $P_0 = (J + K)/2$, where J is the barycenter and K is a random doubly stochastic matrix.
- shuffle_input [bool (default: False)] Set to True to resolve degenerate gradients randomly. For non-degenerate gradients this option has no effect.
- maxiter [int, positive (default: 30)] Integer specifying the max number of Frank-Wolfe iterations performed.
- tol [float (default: 0.03)] Tolerance for termination. Frank-Wolfe iteration terminates when $\frac{||P_i - P_{i+1}||_F}{\sqrt{m'}} \leq tol$, where i is the iteration number.
Notes

The algorithm may be sensitive to the initial permutation matrix (or search “position”) due to the possibility of several local minima within the feasible region. A barycenter initialization is more likely to result in a better solution than a single random initialization. However, calling `quadratic_assignment` several times with different random initializations may result in a better optimum at the cost of longer total execution time.

References

[1], [2], [3]

Examples

As mentioned above, a barycenter initialization often results in a better solution than a single random initialization.

```python
>>> from numpy.random import default_rng
>>> rng = default_rng()
>>> n = 15
>>> A = rng.random((n, n))
>>> B = rng.random((n, n))
>>> res = quadratic_assignment(A, B)  # FAQ is default method
>>> print(res.fun)
46.871483385480545  # may vary

>>> options = {"P0": "randomized"}  # use randomized initialization
>>> res = quadratic_assignment(A, B, options=options)
>>> print(res.fun)
47.224831071310625  # may vary
```

However, consider running from several randomized initializations and keeping the best result.

```python
>>> res = min([quadratic_assignment(A, B, options=options)
... for i in range(30)], key=lambda x: x.fun)
>>> print(res.fun)
46.671852533681516  # may vary
```

The ‘2-opt’ method can be used to further refine the results.

```python
>>> options = {"partial_guess": np.array([np.arange(n), res.col_ind]).T}
>>> res = quadratic_assignment(A, B, method="2opt", options=options)
>>> print(res.fun)
46.47160735721583  # may vary
```
quadratic_assignment(method='2opt')

scipy.optimize.quadratic_assignment (A, B, method='2opt', options={'maximize': False, 'rng': None, 'partial_match': None, 'partial_guess': None})

Solve the quadratic assignment problem (approximately).

This function solves the Quadratic Assignment Problem (QAP) and the Graph Matching Problem (GMP) using the 2-opt algorithm [1].

Quadratic assignment solves problems of the following form:

\[
\min_P \text{trace}(A^T B P P^T) \\
\text{s.t. } P \in \mathcal{P}
\]

where \(\mathcal{P} \) is the set of all permutation matrices, and \(A \) and \(B \) are square matrices.

Graph matching tries to maximize the same objective function. This algorithm can be thought of as finding the alignment of the nodes of two graphs that minimizes the number of induced edge disagreements, or, in the case of weighted graphs, the sum of squared edge weight differences.

Note that the quadratic assignment problem is NP-hard. The results given here are approximations and are not guaranteed to be optimal.

Parameters

- **A**: [2-D array, square] The square matrix \(A \) in the objective function above.
- **B**: [2-D array, square] The square matrix \(B \) in the objective function above.
- **method** [str in {'faq', '2opt'} (default: 'faq')] The algorithm used to solve the problem. This is the method-specific documentation for '2opt'. 'faq' is also available.

Returns

- **res** [OptimizeResult] OptimizerResult containing the following fields.
 - **col_ind** [1-D array] Column indices corresponding to the best permutation found of the nodes of \(B \).
 - **fun** [float] The objective value of the solution.
 - **nit** [int] The number of iterations performed during optimization.

See also:

For documentation for the rest of the parameters, see `scipy.optimize.quadratic_assignment`

Options

- **maximize** [bool (default: False)] Maximizes the objective function if True.
- **rng** [[None, int, numpy.random.Generator], numpy.random.RandomState], optional
 - If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used.
 - If `seed` is an int, a new `RandomState` instance is used, seeded with `seed`. If `seed` is already a `Generator` or `RandomState` instance then that instance is used.
- **partial_match** [2-D array of integers, optional (default: None)] Fixes part of the matching. Also known as a "seed" [2].
 - Each row of `partial_match` specifies a pair of matched nodes: node `partial_match[i, 0]` of \(A \) is matched to node `partial_match[i, 1]` of \(B \). The array has shape \((m, 2)\), where \(m \) is not greater than the number of nodes, \(n \).
- **partial_guess** [2-D array of integers, optional (default: None)] A guess for the matching between the two matrices. Unlike `partial_match`, `partial_guess` does not fix the indices; they are still free to be optimized.
Each row of `partial_guess` specifies a pair of matched nodes: node `partial_guess[i, 0]` of `A` is matched to node `partial_guess[i, 1]` of `B`. The array has shape `(m, 2)`, where `m` is not greater than the number of nodes, `n`.

Notes

This is a greedy algorithm that works similarly to bubble sort: beginning with an initial permutation, it iteratively swaps pairs of indices to improve the objective function until no such improvements are possible.

References

[1], [2]

Utilities

Finite-difference approximation

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>approx_fprime</code></td>
<td>Finite-difference approximation of the gradient of a scalar function.</td>
</tr>
<tr>
<td><code>check_grad</code></td>
<td>Check the correctness of a gradient function by comparing it against a (forward) finite-difference approximation of the gradient.</td>
</tr>
</tbody>
</table>

scipy.optimize.approx_fprime

`scipy.optimize.approx_fprime(xk, f, epsilon=1.4901161193847656e-08, *args)`

Finite-difference approximation of the gradient of a scalar function.

Parameters

- `xk` [array_like] The coordinate vector at which to determine the gradient of `f`.
- `f` [callable] The function of which to determine the gradient (partial derivatives). Should take `xk` as first argument, other arguments to `f` can be supplied in `*args`. Should return a scalar, the value of the function at `xk`.
- `epsilon` [{float, array_like}, optional] Increment to `xk` to use for determining the function gradient. If a scalar, uses the same finite difference delta for all partial derivatives. If an array, should contain one value per element of `xk`. Defaults to `sqrt(np.finfo(float).eps)`, which is approximately `1.49e-08`.
- `*args` [args, optional] Any other arguments that are to be passed to `f`.

Returns

See also:

- `check_grad` Check correctness of gradient function against approx_fprime.
Notes

The function gradient is determined by the forward finite difference formula:

\[
\frac{f(x_k[i] + \epsilon[i]) - f(x_k[i])}{\epsilon[i]}
\]

The main use of `approx_fprime` is in scalar function optimizers like `fmin_bfgs`, to determine numerically the Jacobian of a function.

Examples

```python
>>> from scipy import optimize
>>> def func(x, c0, c1):
...    "Coordinate vector `x` should be an array of size two."
...    return c0 * x[0]**2 + c1*x[1]**2

>>> x = np.ones(2)
>>> c0, c1 = (1, 200)
>>> eps = np.sqrt(np.finfo(float).eps)
>>> optimize.approx_fprime(x, func, [eps, np.sqrt(200) * eps], c0, c1)
array([ 2. , 400.00004198])
```

`scipy.optimize.check_grad`

`scipy.optimize.check_grad` (func, grad, x0, *args, epsilon=1.4901161193847656e-08, direction='all', seed=None)

Check the correctness of a gradient function by comparing it against a (forward) finite-difference approximation of the gradient.

Parameters

- **func** ([callable func(x0, *args)]) Function whose derivative is to be checked.
- **grad** ([callable grad(x0, *args)]) Gradient of `func`.
- **x0** ([ndarray]) Points to check `grad` against forward difference approximation of grad using `func`.
- **args** ([*args, optional]) Extra arguments passed to `func` and `grad`.
- **epsilon** ([float, optional]) Step size used for the finite difference approximation. It defaults to `sqrt(np.finfo(float).eps)`, which is approximately 1.49e-08.
- **direction** ([str, optional]) If set to 'random', then gradients along a random vector are used to check `grad` against forward difference approximation using `func`. By default it is 'all', in which case, all the one hot direction vectors are considered to check `grad`.
- **seed** ([None, int, numpy.random.Generator])
 - `numpy.random.RandomState`, optional
 - If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new RandomState instance is used, seeded with `seed`. If `seed` is already a Generator or RandomState instance then that instance is used. Specify `seed` for reproducing the return value from this function. The random numbers generated with this seed affect the random vector along which gradients are computed to check `grad`. Note that `seed` is only used when `direction` argument is set to 'random'.

Returns
err [float] The square root of the sum of squares (i.e., the 2-norm) of the difference between
grad(x0, *args) and the finite difference approximation of grad using func at the
points x0.

See also:
approx_fprime

Examples

```python
>>> def func(x):
...     return x[0]**2 - 0.5 * x[1]**3
>>> def grad(x):
...     return [2 * x[0], -1.5 * x[1]**2]
>>> from scipy.optimize import check_grad
>>> check_grad(func, grad, [1.5, -1.5])
2.9802322387695312e-08 # may vary
>>> rng = np.random.default_rng()
>>> check_grad(func, grad, [1.5, -1.5],
...             direction='random', seed=rng)
2.9802322387695312e-08
```

Line search

<table>
<thead>
<tr>
<th>bracket(func[, xa, xb, args, grow_limit, ...])</th>
<th>Bracket the minimum of the function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>line_search(f, myfprime, xk, pk[, gfk,...])</td>
<td>Find alpha that satisfies strong Wolfe conditions.</td>
</tr>
</tbody>
</table>

scipy.optimize.bracket

scipy.optimize.bracket (func, xa=0.0, xb=1.0, args=(), grow_limit=110.0, maxiter=1000)
Bracket the minimum of the function.

Given a function and distinct initial points, search in the downhill direction (as defined by the initial points) and return new points xa, xb, xc that bracket the minimum of the function f(xa) > f(xb) < f(xc). It doesn’t always mean that obtained solution will satisfy xa<=x<=xb.

Parameters

- **func** [callable f(x,*args)] Objective function to minimize.
- **xa, xb** [float, optional] Bracketing interval. Defaults xa to 0.0, and xb to 1.0.
- **args** [tuple, optional] Additional arguments (if present), passed to func.
- **grow_limit** [float, optional] Maximum grow limit. Defaults to 110.0
- **maxiter** [int, optional] Maximum number of iterations to perform. Defaults to 1000.

Returns

- **xa, xb, xc** [float] Bracket.
- **fa, fb, fc** [float] Objective function values in bracket.
- **funcalls** [int] Number of function evaluations made.
Examples

This function can find a downward convex region of a function:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.optimize import bracket
>>> def f(x):
...     return 10*x**2 + 3*x + 5
>>> x = np.linspace(-2, 2)
>>> y = f(x)
>>> x, xb, xc, fa, fb, fc, funcalls = bracket(f, xa=init_xa, xb=init_xb)
>>> plt.axvline(x=init_xa, color="k", linestyle="--")
>>> plt.axvline(x=init_xb, color="k", linestyle="--")
>>> plt.plot(x, y, "-k")
>>> plt.plot(xa, fa, "bx")
>>> plt.plot(xb, fb, "rx")
>>> plt.plot(xc, fc, "bx")
>>> plt.show()
```

scipy.optimize.line_search

`scipy.optimize.line_search(f, myfprime, xk, pk, gfk=None, old_fval=None, old_old_fval=None, args=(), c1=0.0001, c2=0.9, amax=None, extra_condition=None, maxiter=10)`

Find alpha that satisfies strong Wolfe conditions.

Parameters

- `f` ([callable f(x,*args)]) Objective function.
- `myfprime` ([callable f'(x,*args)]) Objective function gradient.
- `xk` ([ndarray]) Starting point.
- `pk` ([ndarray]) Search direction.
- `gfk` ([ndarray, optional]) Gradient value for x=xk (xk being the current parameter estimate). Will be recomputed if omitted.
old_fval [float, optional] Function value for x=xk. Will be recomputed if omitted.
old_old_fval
 [float, optional] Function value for the point preceding x=xk.
 args [tuple, optional] Additional arguments passed to objective function.
c1 [float, optional] Parameter for Armijo condition rule.
c2 [float, optional] Parameter for curvature condition rule.
amax [float, optional] Maximum step size
extra_condition
 [callable, optional] A callable of the form `extra_condition(alpha, x, f, g)` returning a boolean. Arguments are the proposed step `alpha` and the corresponding `x`, `f` and `g` values. The line search accepts the value of `alpha` only if this callable returns `True`. If the callable returns `False` for the step length, the algorithm will continue with new iterates. The callable is only called for iterates satisfying the strong Wolfe conditions.
maxiter [int, optional] Maximum number of iterations to perform.

Returns
alpha [float or None] Alpha for which \(x_{new} = x_0 + alpha \times pk\), or None if the line search algorithm did not converge.
f = int] Number of function evaluations made.
ge = int] Number of gradient evaluations made.
new_fval [float or None] New function value \(f(x_{new}) = f(x_0 + alpha \times pk)\), or None if the line search algorithm did not converge.
old_fval [float] Old function value \(f(x_0)\).
new_slope [float or None] The local slope along the search direction at the new value \(<myfprime(x_{new}), pk>\), or None if the line search algorithm did not converge.

Notes

Examples

```python
>>> from scipy.optimize import line_search

A objective function and its gradient are defined.
```n
```python
def obj_func(x):
...    return (x[0])**2+(x[1])**2
>>> def obj_grad(x):
...    return [2*x[0], 2*x[1]]

We can find alpha that satisfies strong Wolfe conditions.
```n
```python
>>> start_point = np.array([1.8, 1.7])
>>> search_gradient = np.array([-1.0, -1.0])
>>> line_search(obj_func, obj_grad, start_point, search_gradient)
(1.0, 2, 1, 1.1300000000000001, 6.13, [1.6, 1.4])
```
Hessian approximation

<table>
<thead>
<tr>
<th>LbfgsInvHessProduct(*args, **kwargs)</th>
<th>Linear operator for the L-BFGS approximate inverse Hessian.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HessianUpdateStrategy()</td>
<td>Interface for implementing Hessian update strategies.</td>
</tr>
</tbody>
</table>

scipy.optimize.LbfgsInvHessProduct

class scipy.optimize.LbfgsInvHessProduct (*args, **kwargs)

Linear operator for the L-BFGS approximate inverse Hessian.

This operator computes the product of a vector with the approximate inverse of the Hessian of the objective function, using the L-BFGS limited memory approximation to the inverse Hessian, accumulated during the optimization.

Objects of this class implement the scipy.sparse.linalg.LinearOperator interface.

Parameters

- sk [array_like, shape=(n_corr, n)] Array of n_corr most recent updates to the solution vector. (See [1]).
- yk [array_like, shape=(n_corr, n)] Array of n_corr most recent updates to the gradient. (See [1]).

References

[1]

Attributes

- H Hermitian adjoint.
- T Transpose this linear operator.

Methods

- __call__(x) Call self as a function.
- adjoint() Hermitian adjoint.
- dot(x) Matrix-matrix or matrix-vector multiplication.
- matmat(X) Matrix-matrix multiplication.
- matvec(x) Matrix-vector multiplication.
- rmatmat(X) Adjoint matrix-matrix multiplication.
- rmatvec(x) Adjoint matrix-vector multiplication.
- todense() Return a dense array representation of this operator.
- transpose() Transpose this linear operator.
scipy.optimize.LbfgsInvHessProduct.__call__

LbfgsInvHessProduct.__call__(x)
Call self as a function.

scipy.optimize.LbfgsInvHessProduct.adjoint

LbfgsInvHessProduct.adjoint()
Hermitian adjoint.
Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex matrix, the Hermitian adjoint is equal to the conjugate transpose.
Can be abbreviated self.H instead of self.adjoint().

Returns

scipy.optimize.LbfgsInvHessProduct.dot

LbfgsInvHessProduct.dot(x)
Matrix-matrix or matrix-vector multiplication.

Parameters
x [array_like] 1-d or 2-d array, representing a vector or matrix.

Returns
Ax [array] 1-d or 2-d array (depending on the shape of x) that represents the result of applying this linear operator on x.

scipy.optimize.LbfgsInvHessProduct.matmat

LbfgsInvHessProduct.matmat(X)
Matrix-matrix multiplication.
Performs the operation y=A*X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters
X [matrix, ndarray] An array with shape (N,K).

Returns
Y [matrix, ndarray] A matrix or ndarray with shape (M,K) depending on the type of the X argument.
Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has the correct type.

scipy.optimize.LbfgsInvHessProduct.matvec

LbfgsInvHessProduct.matvec(x)
Matrix-vector multiplication.

Performs the operation \(y = A \times x \) where \(A \) is an MxN linear operator and \(x \) is a column vector or 1-d array.

Parameters

- \(x \)
 - [matrix, ndarray]] An array with shape (N,) or (N,1).

Returns

- \(y \)
 - [matrix, ndarray]] A matrix or ndarray with shape (M,) or (M,1) depending on the type and shape of the \(x \) argument.

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has the correct shape and type.

scipy.optimize.LbfgsInvHessProduct.rmatmat

LbfgsInvHessProduct.rmatmat(X)
Adjoint matrix-matrix multiplication.

Performs the operation \(y = A^H \times x \) where \(A \) is an MxN linear operator and \(x \) is a column vector or 1-d array, or 2-d array. The default implementation defers to the adjoint.

Parameters

- \(X \)
 - [matrix, ndarray]] A matrix or 2D array.

Returns

- \(Y \)
 - [matrix, ndarray]] A matrix or 2D array depending on the type of the input.

Notes

This rmatmat wraps the user-specified rmatmat routine.
scipy.optimize.LbfgsInvHessProduct.rmatvec

LbfgsInvHessProduct.rmatvec(x)

Adjoint matrix-vector multiplication.

Performs the operation \(y = A^H \times x \) where \(A \) is an \(M \times N \) linear operator and \(x \) is a column vector or 1-d array.

Parameters

- **x**
 - [matrix, ndarray] An array with shape \((M,)\) or \((M,1)\).

Returns

- **y**
 - [matrix, ndarray] A matrix or ndarray with shape \((N,)\) or \((N,1)\) depending on the type and shape of the \(x \) argument.

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that \(y \) has the correct shape and type.

scipy.optimize.LbfgsInvHessProduct.todense

LbfgsInvHessProduct.todense()

Return a dense array representation of this operator.

Returns

- **arr**
 - [ndarray, shape=(n, n)] An array with the same shape and containing the same data represented by this LinearOperator.

scipy.optimize.LbfgsInvHessProduct.transpose

LbfgsInvHessProduct.transpose()

Transpose this linear operator.

Returns a LinearOperator that represents the transpose of this one. Can be abbreviated self.T instead of self.transpose().

scipy.optimize.HessianUpdateStrategy

class scipy.optimize.HessianUpdateStrategy

Interface for implementing Hessian update strategies.

Many optimization methods make use of Hessian (or inverse Hessian) approximations, such as the quasi-Newton methods BFGS, SR1, L-BFGS. Some of these approximations, however, do not actually need to store the entire matrix or can compute the internal matrix product with a given vector in a very efficiently manner. This class serves as an abstract interface between the optimization algorithm and the quasi-Newton update strategies, giving freedom of implementation to store and update the internal matrix as efficiently as possible. Different choices of initialization and update procedure will result in different quasi-Newton strategies.

Four methods should be implemented in derived classes: initialize, update, dot and get_matrix.
Notes

Any instance of a class that implements this interface, can be accepted by the method `minimize` and used by the compatible solvers to approximate the Hessian (or inverse Hessian) used by the optimization algorithms.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot(p)</code></td>
<td>Compute the product of the internal matrix with the given vector.</td>
</tr>
<tr>
<td><code>get_matrix()</code></td>
<td>Return current internal matrix.</td>
</tr>
<tr>
<td><code>initialize(n, approx_type)</code></td>
<td>Initialize internal matrix.</td>
</tr>
<tr>
<td><code>update(delta_x, delta_grad)</code></td>
<td>Update internal matrix.</td>
</tr>
</tbody>
</table>

scipy.optimize.HessianUpdateStrategy.dot

`HessianUpdateStrategy.dot(p)`
Compute the product of the internal matrix with the given vector.

Parameters
- `p` [array_like] 1-D array representing a vector.

Returns
- `Hp` [array] 1-D represents the result of multiplying the approximation matrix by vector p.

scipy.optimize.HessianUpdateStrategy.get_matrix

`HessianUpdateStrategy.get_matrix()`
Return current internal matrix.

Returns
- `H` [ndarray, shape (n, n)] Dense matrix containing either the Hessian or its inverse (depending on how `approx_type` is defined).

scipy.optimize.HessianUpdateStrategy.initialize

`HessianUpdateStrategy.initialize(n, approx_type)`
Initialize internal matrix.

Allocate internal memory for storing and updating the Hessian or its inverse.

Parameters
- `n` [int] Problem dimension.
- `approx_type` [[`'hess'`, `'inv_hess'`]] Selects either the Hessian or the inverse Hessian. When set to `hess` the Hessian will be stored and updated. When set to `inv_hess` its inverse will be used instead.
scipy.optimize.HessianUpdateStrategy.update

HessianUpdateStrategy.update(delta_x, delta_grad)
Update internal matrix.
Update Hessian matrix or its inverse (depending on how ‘approx_type’ is defined) using information about
the last evaluated points.

Parameters

delta_x: [ndarray] The difference between two points the gradient function have been evaluated
at: delta_x = x2 - x1.
delta_grad: [ndarray] The difference between the gradients: delta_grad = grad(x2) -
grad(x1).

Benchmark problems

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rosen(x)</td>
<td>The Rosenbrock function.</td>
</tr>
<tr>
<td>rosen_der(x)</td>
<td>The derivative (i.e. rosen_hess).</td>
</tr>
<tr>
<td>rosen_hess(x)</td>
<td>The Hessian matrix of the Rosenbrock function.</td>
</tr>
<tr>
<td>rosen_hess_prod(x, p)</td>
<td>Product of the Hessian matrix of the Rosenbrock function with a vector.</td>
</tr>
</tbody>
</table>

scipy.optimize.rosen

scipy.optimize.rosen(x)
The Rosenbrock function.
The function computed is:

\[
\sum(100.0 \ast (x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0)
\]

Parameters

x: [array_like] 1-D array of points at which the Rosenbrock function is to be computed.

Returns

f: [float] The value of the Rosenbrock function.

See also:

rosen_der, rosen_hess, rosen_hess_prod
Examples

```python
>>> from scipy.optimize import rosen
>>> X = 0.1 * np.arange(10)
>>> rosen(X)
76.56
```

For higher-dimensional input `rosen` broadcasts. In the following example, we use this to plot a 2D landscape. Note that `rosen_hess` does not broadcast in this manner.

```python
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.mplot3d import Axes3D
>>> x = np.linspace(-1, 1, 50)
>>> X, Y = np.meshgrid(x, x)
>>> ax = plt.subplot(111, projection='3d')
>>> ax.plot_surface(X, Y, rosen([X, Y]))
>>> plt.show()
```

scipy.optimize.rosen_der

`scipy.optimize.rosen_der(x)`

The derivative (i.e. gradient) of the Rosenbrock function.

Parameters

- `x` : [array_like] 1-D array of points at which the derivative is to be computed.

Returns

- `rosen_der` : [(N,) ndarray] The gradient of the Rosenbrock function at `x`.

See also:

- `rosen`, `rosen_hess`, `rosen_hess_prod`
Examples

```python
>>> from scipy.optimize import rosen_der
>>> X = 0.1 * np.arange(9)
>>> rosen_der(X)
array([-2., 10.6, 15.6, 13.4, 6.4, -3., -12.4, -19.4, 62.])
```

`scipy.optimize.rosen_hess`

`scipy.optimize.rosen_hess(x)`

The Hessian matrix of the Rosenbrock function.

Parameters

- **x** [array_like] 1-D array of points at which the Hessian matrix is to be computed.

Returns

- **rosen_hess** [ndarray] The Hessian matrix of the Rosenbrock function at `x`.

See also:

- `rosen`, `rosen_der`, `rosen_hess_prod`

Examples

```python
>>> from scipy.optimize import rosen_hess
>>> X = 0.1 * np.arange(4)
>>> rosen_hess(X)
array([[-38., 0., 0., 0.],
       [ 0., 134., -40., 0.],
       [ 0., -40., 130., -80.],
       [ 0., 0., -80., 200.]])
```

`scipy.optimize.rosen_hess_prod`

`scipy.optimize.rosen_hess_prod(x, p)`

Product of the Hessian matrix of the Rosenbrock function with a vector.

Parameters

- **x** [array_like] 1-D array of points at which the Hessian matrix is to be computed.
- **p** [array_like] 1-D array, the vector to be multiplied by the Hessian matrix.

Returns

- **rosen_hess_prod** [ndarray] The Hessian matrix of the Rosenbrock function at `x` multiplied by the vector `p`.

See also:

- `rosen`, `rosen_der`, `rosen_hess`
Examples

```python
>>> from scipy.optimize import rosen_hess_prod
>>> X = 0.1 * np.arange(9)
>>> p = 0.5 * np.arange(9)
>>> rosen_hess_prod(X, p)
array([-0., 27., -10., -95., -192., -265., -278., -195., -180.])
```

Legacy functions

The functions below are not recommended for use in new scripts; all of these methods are accessible via a newer, more consistent interfaces, provided by the interfaces above.

Optimization

General-purpose multivariate methods:

- `fmin(func, x0[, args, xtol, ftol, maxiter, ...])`: Minimize a function using the downhill simplex algorithm.
- `fmin_powell(func, x0[, args, xtol, ftol, ...])`: Minimize a function using modified Powell’s method.
- `fmin_cg(f, x0[, fprime, args, gtol, norm, ...])`: Minimize a function using a nonlinear conjugate gradient algorithm.
- `fmin_bfgs(f, x0[, fprime, args, gtol, norm, ...])`: Minimize a function using the BFGS algorithm.
- `fmin_ncg(f, x0[, fprime[, fhess_p, fhess, ...]])`: Unconstrained minimization of a function using the Newton-CG method.

`scipy.optimize.fmin`

- `scipy.optimize.fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None, initial_simplex=None)`

Minimize a function using the downhill simplex algorithm.

This algorithm only uses function values, not derivatives or second derivatives.

Parameters

- `func` [callable func(x,*args)] The objective function to be minimized.
- `x0` [ndarray] Initial guess.
- `args` [tuple, optional] Extra arguments passed to func, i.e., f(x,*args).
- `xtol` [float, optional] Absolute error in xopt between iterations that is acceptable for convergence.
- `ftol` [number, optional] Absolute error in func(xopt) between iterations that is acceptable for convergence.
- `maxiter` [int, optional] Maximum number of iterations to perform.
- `maxfun` [number, optional] Maximum number of function evaluations to make.
- `full_output` [bool, optional] Set to True if fopt and warnflag outputs are desired.
- `disp` [bool, optional] Set to True to print convergence messages.
- `retall` [bool, optional] Set to True to return list of solutions at each iteration.
- `callback` [callable, optional] Called after each iteration, as callback(xk), where xk is the current parameter vector.
initial_simplex
[array_like of shape (N + 1, N), optional] Initial simplex. If given, overrides x0.
initial_simplex[j, :] should contain the coordinates of the jth vertex of the N+1
vertices in the simplex, where N is the dimension.

Returns
xopt [ndarray] Parameter that minimizes function.
fopt [float] Value of function at minimum: fopt = func(xopt).
iter [int] Number of iterations performed.
funcalls [int] Number of function calls made.
warnflag [int] 1: Maximum number of function evaluations made. 2: Maximum number of iterations
reached.
allvecs [list] Solution at each iteration.

See also:
minimize
Interface to minimization algorithms for multivariate functions. See the ‘Nelder-Mead’ method in particular.

Notes
Uses a Nelder-Mead simplex algorithm to find the minimum of function of one or more variables.
This algorithm has a long history of successful use in applications. But it will usually be slower than an algorithm
that uses first or second derivative information. In practice, it can have poor performance in high-dimensional
problems and is not robust to minimizing complicated functions. Additionally, there currently is no complete
theory describing when the algorithm will successfully converge to the minimum, or how fast it will if it does. Both
the ftol and xtol criteria must be met for convergence.

References
[1], [2]

Examples

```python
>>> def f(x):
    ...    return x**2

>>> from scipy import optimize

>>> minimum = optimize.fmin(f, 1)
Optimization terminated successfully.
    Current function value: 0.000000
    Iterations: 17
    Function evaluations: 34
>>> minimum[0]
-8.8817841970012523e-16
```
scipy.optimize.fmin_powell

`scipy.optimize.fmin_powell(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None, direc=None)`

Minimize a function using modified Powell’s method.

This method only uses function values, not derivatives.

Parameters

- `func` ([callable f(x,*args)]) Objective function to be minimized.
- `x0` ([ndarray]) Initial guess.
- `args` ([tuple, optional]) Extra arguments passed to func.
- `xtol` ([float, optional]) Line-search error tolerance.
- `ftol` ([float, optional]) Relative error in `func(xopt)` acceptable for convergence.
- `maxiter` ([int, optional]) Maximum number of iterations to perform.
- `maxfun` ([int, optional]) Maximum number of function evaluations to make.
- `full_output` ([bool, optional]) If True, `fopt, xi, direc, iter, funcalls, and warnflag` are returned.
- `disp` ([bool, optional]) If True, print convergence messages.
- `retall` ([bool, optional]) If True, return a list of the solution at each iteration.
- `callback` ([callable, optional]) An optional user-supplied function, called after each iteration. Called as `callback(xk)`, where `xk` is the current parameter vector.
- `direc` ([ndarray, optional]) Initial fitting step and parameter order set as an (N, N) array, where N is the number of fitting parameters in `x0`. Defaults to step size 1.0 fitting all parameters simultaneously (`np.eye((N, N))`). To prevent initial consideration of values in a step or to change initial step size, set to 0 or desired step size in the Jth position in the Mth block, where J is the position in `x0` and M is the desired evaluation step, with steps being evaluated in index order. Step size and ordering will change freely as minimization proceeds.

Returns

- `xopt` ([ndarray]) Parameter which minimizes `func`.
- `fopt` ([number]) Value of function at minimum: `fopt = func(xopt)`.
- `direc` ([ndarray]) Current direction set.
- `iter` ([int]) Number of iterations.
- `funcalls` ([int]) Number of function calls made.
- `warnflag` ([int])
 - `1` : Maximum number of function evaluations.
 - `2` : Maximum number of iterations.
 - `3` : NaN result encountered.
 - `4` : The result is out of the provided bounds.
- `allvecs` ([list]) List of solutions at each iteration.

See also:

- `minimize`

Interface to unconstrained minimization algorithms for multivariate functions. See the ‘Powell’ method in particular.
Notes

Uses a modification of Powell’s method to find the minimum of a function of N variables. Powell’s method is a conjugate direction method.

The algorithm has two loops. The outer loop merely iterates over the inner loop. The inner loop minimizes over each current direction in the direction set. At the end of the inner loop, if certain conditions are met, the direction that gave the largest decrease is dropped and replaced with the difference between the current estimated x and the estimated x from the beginning of the inner-loop.

The technical conditions for replacing the direction of greatest increase amount to checking that

1. No further gain can be made along the direction of greatest increase from that iteration.
2. The direction of greatest increase accounted for a large sufficient fraction of the decrease in the function value from that iteration of the inner loop.

References

Examples

```python
>>> def f(x):
...     return x**2

>>> from scipy import optimize

>>> minimum = optimize.fmin_powell(f, -1)
Optimization terminated successfully.
         Current function value: 0.000000
         Iterations: 2
         Function evaluations: 18

>>> minimum
array(0.0)
```

scipy.optimize.fmin_cg

scipy.optimize.fmin_cg(f, x0, fprime=None, args=(), gtol=1e-05, norm=inf, epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1, retall=0, callback=None)

Minimize a function using a nonlinear conjugate gradient algorithm.

Parameters

- `f` : [callable, f(x, *args)] Objective function to be minimized. Here x must be a 1-D array of the variables that are to be changed in the search for a minimum, and args are the other (fixed) parameters of f.

x0
[ndarray] A user-supplied initial estimate of *xopt*, the optimal value of *x*. It must be a 1-D array of values.

fprime
[callable, fprime(x, *args), optional] A function that returns the gradient of *f* at *x*. Here *x* and *args* are as described above for *f*. The returned value must be a 1-D array. Defaults to None, in which case the gradient is approximated numerically (see *epsilon*, below).

args
[tuple, optional] Parameter values passed to *f* and *fprime*. Must be supplied whenever additional fixed parameters are needed to completely specify the functions *f* and *fprime*.

gtol
[float, optional] Stop when the norm of the gradient is less than *gtol*.

norm
[float, optional] Order to use for the norm of the gradient (-np.Inf is min, np.Inf is max).

epsilon
[float or ndarray, optional] Step size(s) to use when *fprime* is approximated numerically. Can be a scalar or a 1-D array. Defaults to *sqrt(np epsilon)*, with eps the floating point machine precision. Usually *sqrt(epsei)* is about 1.5e-8.

maxiter
[int, optional] Maximum number of iterations to perform. Default is 200 * len(x0).

full_output
[bool, optional] If True, return *fopt*, *func_calls*, *grad_calls*, and *warnflag* in addition to *xopt*. See the Returns section below for additional information on optional return values.

disp
[bool, optional] If True, return a convergence message, followed by *xopt*.

retall
[bool, optional] If True, add to the returned values the results of each iteration. Called as *callback(xk)*, where *xk* is the current value of *x0*.

callback
[callable, optional] An optional user-supplied function, called after each iteration. Called as *callback(xk)*, where *xk* is the current value of *x0*.

Returns

xopt
[ndarray] Parameters which minimize *f*, i.e., *f(xopt) == fopt*. Only returned if *full_output* is True.

fopt
[float, optional] Minimum value found, *f(xopt)*. Only returned if *full_output* is True.

func_calls
[int, optional] The number of function calls made. Only returned if *full_output* is True.

grad_calls
[int, optional] The number of gradient calls made. Only returned if *full_output* is True.

warnflag
[int, optional] Integer value with warning status, only returned if *full_output* is True.
0 : Success.
1 : The maximum number of iterations was exceeded.
2 : Gradient and/or function calls were not changing. May indicate that precision was lost, i.e., the routine did not converge.
3 : NaN result encountered.

allvecs
[list of ndarray, optional] List of arrays, containing the results at each iteration. Only returned if *retall* is True.

See also:

minimize
common interface to all *scipy.optimize* algorithms for unconstrained and constrained minimization of multivariate functions. It provides an alternative way to call *fmin_cg*, by specifying *method='CG'*.

Notes

This conjugate gradient algorithm is based on that of Polak and Ribiere [1].

Conjugate gradient methods tend to work better when:

1. *f* has a unique global minimizing point, and no local minima or other stationary points,
2. *f* is, at least locally, reasonably well approximated by a quadratic function of the variables,
3. *f* is continuous and has a continuous gradient,
4. *fprime* is not too large, e.g., has a norm less than 1000,
5. The initial guess, x_0, is reasonably close to f’s global minimizing point, x_{opt}.

References

[1]

Examples

Example 1: seek the minimum value of the expression $a \cdot u^2 + b \cdot u \cdot v + c \cdot v^2 + d \cdot u + e \cdot v + f$ for given values of the parameters and an initial guess $(u, v) = (0, 0)$.

```python
>>> args = (2, 3, 7, 8, 9, 10) # parameter values
>>> def f(x, *args):
...    u, v = x
...    a, b, c, d, e, f = args
...    return a*u**2 + b*u*v + c*v**2 + d*u + e*v + f
>>> def gradf(x, *args):
...    u, v = x
...    a, b, c, d, e, f = args
...    gu = 2*a*u + b*v + d  # u-component of the gradient
...    gv = b*u + 2*c*v + e  # v-component of the gradient
...    return np.asarray((gu, gv))
>>> x0 = np.asarray((0, 0)) # Initial guess.
>>> from scipy import optimize
>>> res1 = optimize.fmin_cg(f, x0, fprime=gradf, args=args)
Optimization terminated successfully.
Current function value: 1.617021
Iterations: 4
Function evaluations: 8
Gradient evaluations: 8
>>> res1
array([-1.80851064, -0.25531915])
```

Example 2: solve the same problem using the `minimize` function. (This `myopts` dictionary shows all of the available options, although in practice only non-default values would be needed. The returned value will be a dictionary.)

```python
>>> opts = {'maxiter': None,  # default value.
...         'disp': True,  # non-default value.
...         'gtol': 1e-5,  # default value.
...         'norm': np.inf,  # default value.
...         'eps': 1.4901161193847656e-08}  # default value.
>>> res2 = optimize.minimize(f, x0, jac=gradf, args=args,
...                           method='CG', options=opts)
Optimization terminated successfully.
Current function value: 1.617021
Iterations: 4
Function evaluations: 8
Gradient evaluations: 8
>>> res2.x  # minimum found
array([-1.80851064, -0.25531915])
```
Minimize a function using the BFGS algorithm.

Parameters

- **f**
 - [callable f(x, *args)] Objective function to be minimized.
- **x0**
 - [ndarray] Initial guess.
- **fprime**
 - [callable f'(x, *args), optional] Gradient of f.
- **args**
 - [tuple, optional] Extra arguments passed to f and fprime.
- **gtol**
 - [float, optional] Gradient norm must be less than gtol before successful termination.
- **norm**
 - [float, optional] Order of norm (Inf is max, -Inf is min)
- **epsilon**
 - [int or ndarray, optional] If fprime is approximated, use this value for the step size.
- **callback**
 - [callable, optional] An optional user-supplied function to call after each iteration. Called as callback(xk), where xk is the current parameter vector.
- **maxiter**
 - [int, optional] Maximum number of iterations to perform.
- **full_output**
 - [bool, optional] If True, return fopt, func_calls, grad_calls, and warnflag in addition to xopt.
- **disp**
 - [bool, optional] Print convergence message if True.
- **retall**
 - [bool, optional] Return a list of results at each iteration if True.

Returns

- **xopt**
 - [ndarray] Parameters which minimize f, i.e., f(xopt) == fopt.
- **fopt**
 - [float] Minimum value.
- **gopt**
 - [ndarray] Value of gradient at minimum, f'(xopt), which should be near 0.
- **Bopt**
 - [ndarray] Value of 1/f''(xopt), i.e., the inverse Hessian matrix.
- **func_calls**
 - [int] Number of function_calls made.
- **grad_calls**
 - [int] Number of gradient calls made.
- **warnflag**
 - [integer] 1: Maximum number of iterations exceeded. 2: Gradient and/or function calls not changing. 3: NaN result encountered.
- **allvecs**
 - [list] The value of xopt at each iteration. Only returned if retall is True.

See also:

- **minimize**

 Interface to minimization algorithms for multivariate functions. See method='BFGS' in particular.

Notes

Optimize the function, f, whose gradient is given by fprime using the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS).
References

Examples

```python
>>> from scipy.optimize import fmin_bfgs
>>> def quadratic_cost(x, Q):
...     return x @ Q @ x
...
>>> x0 = np.array([-3, -4])
>>> cost_weight = np.diag([1., 10.])
>>> # Note that a trailing comma is necessary for a tuple with single-
... # element
>>> fmin_bfgs(quadratic_cost, x0, args=(cost_weight,))
Optimization terminated successfully.
  Current function value: 0.000000
  Iterations: 7    # may vary
  Function evaluations: 24    # may vary
  Gradient evaluations: 8   # may vary
array([[ 2.85169950e-06, -4.61820139e-07]])

>>> def quadratic_cost_grad(x, Q):
...     return 2 * Q @ x
...
>>> fmin_bfgs(quadratic_cost, x0, quadratic_cost_grad, args=(cost_weight,))
Optimization terminated successfully.
  Current function value: 0.000000
  Iterations: 7
  Function evaluations: 8
  Gradient evaluations: 8
array([[ 2.85916637e-06, -4.54371951e-07]])
```

scipy.optimize.fmin_ncg

`scipy.optimize.fmin_ncg(f, x0, fprime=None, fhess_p=None, fhess=None, args=(), avextol=1e-05, epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1, retall=0, callback=None)`

Unconstrained minimization of a function using the Newton-CG method.

Parameters

- **f**: [callable f(x, *args)](https://www.example.com) Objective function to be minimized.
- **x0**: [ndarray] Initial guess.
- **fprime**: [callable f'(x, *args)](https://www.example.com) Gradient of f.
- **fhess_p**: [callable fhess_p(x, p, *args), optional] Function which computes the Hessian of f times an arbitrary vector, p.
- **fhess**: [callable fhess(x, *args), optional] Function to compute the Hessian matrix of f.
- **args**: [tuple, optional] Extra arguments passed to f, fprime, fhess_p, and fhess (the same set of extra arguments is supplied to all of these functions).
- **epsilon**: [float or ndarray, optional] If fhess is approximated, use this value for the step size.
callback [callable, optional] An optional user-supplied function which is called after each iteration. Called as callback(xk), where xk is the current parameter vector.

avextol [float, optional] Convergence is assumed when the average relative error in the minimizer falls below this amount.

maxiter [int, optional] Maximum number of iterations to perform.

full_output [bool, optional] If True, return the optional outputs.

disp [bool, optional] If True, print convergence message.

retall [bool, optional] If True, return a list of results at each iteration.

Returns

xopt [ndarray] Parameters which minimize f, i.e., f(xopt) == fopt.
fopt [float] Value of the function at xopt, i.e., fopt = f(xopt).
fcalls [int] Number of function calls made.
gcalls [int] Number of gradient calls made.
hcalls [int] Number of Hessian calls made.
allvecs [list] The result at each iteration, if retall is True (see below).

See also:

minimize

Interface to minimization algorithms for multivariate functions. See the ‘Newton-CG’ method in particular.

Notes

Only one of fhess_p or fhess need to be given. If fhess is provided, then fhess_p will be ignored. If neither fhess nor fhess_p is provided, then the hessian product will be approximated using finite differences on fprime. fhess_p must compute the hessian times an arbitrary vector. If it is not given, finite-differences on fprime are used to compute it.

Newton-CG methods are also called truncated Newton methods. This function differs from scipy.optimize.fmin_tnc because

1. scipy.optimize.fmin_ncg is written purely in Python using NumPy

 and scipy while scipy.optimize.fmin_tnc calls a C function.

2. scipy.optimize.fmin_ncg is only for unconstrained minimization

 while scipy.optimize.fmin_tnc is for unconstrained minimization or box constrained minimization. (Box constraints give lower and upper bounds for each variable separately.)

References

Constrained multivariate methods:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fmin_l_bfgs_b</code></td>
<td>Minimize a function func using the L-BFGS-B algorithm.</td>
</tr>
<tr>
<td><code>fmin_tnc</code></td>
<td>Minimize a function with variables subject to bounds,</td>
</tr>
<tr>
<td></td>
<td>using gradient information in a truncated Newton algo-</td>
</tr>
<tr>
<td></td>
<td>rithm.</td>
</tr>
</tbody>
</table>
fmin_cobyla(func, x0, cons[, args,...]) Minimize a function using the Constrained Optimization By Linear Approximation (COBYLA) method.

fmin_slsqp(func, x0[, eqcons, f_eqcons, ...]) Minimize a function using Sequential Least Squares Programming

scipy.optimize.fmin_l_bfgs_b

scipy.optimize.fmin_l_bfgs_b (func, x0, fprime=None, args=(), approx_grad=0, bounds=None, m=10, factr=10000000.0, pgtol=1e-05, epsilon=1e-08, iprint=-1, maxfun=15000, maxiter=15000, disp=None, callback=None, maxls=20)

Minimize a function func using the L-BFGS-B algorithm.

Parameters

- **func** [callable f(x,*args)] Function to minimize.
- **x0** [ndarray] Initial guess.
- **fprime** [callable fprime(x,*args), optional] The gradient of func. If None, then func returns the function value and the gradient (f, g = func(x, *args)), unless approx_grad is True in which case func returns only f.
- **args** [sequence, optional] Arguments to pass to func and fprime.
- **approx_grad** [bool,optional] Whether to approximate the gradient numerically (in which case func returns only the function value).
- **bounds** [list, optional] (min, max) pairs for each element in x, defining the bounds on that parameter. Use None or +inf for one of min or max when there is no bound in that direction.
- **m** [int, optional] The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.)
- **factr** [float, optional] The iteration stops when (f^k - f^(k+1))/max{|f^k|, |f^(k+1)|,1} <= factr * eps, where eps is the machine precision, which is automatically generated by the code. Typical values for factr are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See Notes for relationship to ftol, which is exposed (instead of factr) by the scipy.optimize.minimize interface to L-BFGS-B.
- **pgtol** [float, optional] The iteration will stop when max{|proj g_i | i = 1, ..., n} <= pgtol where pg_i is the i-th component of the projected gradient.
- **epsilon** [float, optional] Step size used when approx_grad is True, for numerically calculating the gradient
- **iprint** [int, optional] Controls the frequency of output. iprint < 0 means no output; iprint = 0 print only one line at the last iteration; 0 < iprint < 99 print also f and |proj g| every iprint iterations; iprint = 99 print details of every iteration except n-vectors; iprint = 100 print also the changes of active set and final x; iprint > 100 print details of every iteration including x and g.
- **disp** [int, optional] If zero, then no output. If a positive number, then this over-rides iprint (i.e., iprint gets the value of disp).
- **maxfun** [int, optional] Maximum number of function evaluations. Note that this function may violate the limit because of evaluating gradients by numerical differentiation.
- **maxiter** [int, optional] Maximum number of iterations.
- **callback** [callable, optional] Called after each iteration, as callback(xk), where xk is the current parameter vector.
- **maxls** [int, optional] Maximum number of line search steps (per iteration). Default is 20.

Returns
x [array_like] Estimated position of the minimum.

f [float] Value of \textit{func} at the minimum.

d [dict] Information dictionary.
 • \text{d['warnflag']} is
 – 0 if converged,
 – 1 if too many function evaluations or too many iterations,
 – 2 if stopped for another reason, given in \text{d['task']}
 • \text{d['grad']} is the gradient at the minimum (should be 0-ish)
 • \text{d['funcalls']} is the number of function calls made.
 • \text{d['nit']} is the number of iterations.

See also:

\texttt{minimize}

Interface to minimization algorithms for multivariate functions. See the ‘L-BFGS-B’ \textit{method} in particular. Note that the \textit{ftol} option is made available via that interface, while \textit{factr} is provided via this interface, where \textit{factr} is the factor multiplying the default machine floating-point precision to arrive at \textit{ftol}: \text{ftol} = \text{factr} \times \texttt{numpy.finfo(float).eps}.

Notes

License of L-BFGS-B (FORTRAN code):

The version included here (in fortran code) is 3.0 (released April 25, 2011). It was written by Ciyou Zhu, Richard Byrd, and Jorge Nocedal <nocedal@ece.nwu.edu>. It carries the following condition for use:

This software is freely available, but we expect that all publications describing work using this software, or all commercial products using it, quote at least one of the references given below. This software is released under the BSD License.

References

\texttt{scipy.optimize.fmin_tnc}

\texttt{scipy.optimize.fmin_tnc} (\textit{func}, \textit{x0}, \textit{fprime=None}, \textit{args=()}, \textit{approx_grad=0}, \textit{bounds=None}, \textit{epsilon=1e-08}, \textit{scale=None}, \textit{offset=None}, \textit{messages=15}, \textit{maxCGit=-1}, \textit{maxfun=None}, \textit{eta=-1}, \textit{stepmx=0}, \textit{accuracy=0}, \textit{fmin=0}, \textit{ftol=-1}, \textit{xtol=-1}, \textit{pgtol=-1}, \textit{rescale=-1}, \textit{disp=None}, \textit{callback=None})

Minimize a function with variables subject to bounds, using gradient information in a truncated Newton algorithm. This method wraps a C implementation of the algorithm.

Parameters

\textbf{func} \hspace{1em} [callable \textit{func}(\textit{x}, \ *\textit{args})] Function to minimize. Must do one of:
1. Return f and g, where f is the value of the function and g its gradient (a list of floats).
2. Return the function value but supply gradient function separately as fprime.
3. Return the function value and set approx_grad=True.
 If the function returns None, the minimization is aborted.

 x0 [array_like] Initial estimate of minimum.

 fprime [callable fprime(x, *args), optional] Gradient of func. If None, then either func must return the function value and the gradient (f, g = func(x, *args)) or approx_grad must be True.

 args [tuple, optional] Arguments to pass to function.

 approx_grad [bool, optional] If true, approximate the gradient numerically.

 bounds [list, optional] (min, max) pairs for each element in x0, defining the bounds on that parameter. Use None or +/-inf for one of min or max when there is no bound in that direction.

 epsilon [float, optional] Used if approx_grad is True. The stepsize in a finite difference approximation for fprime.

 scale [array_like, optional] Scaling factors to apply to each variable. If None, the factors are up-low for interval bounded variables and 1+|x| for the others. Defaults to None.

 offset [array_like, optional] Value to subtract from each variable. If None, the offsets are (up+low)/2 for interval bounded variables and x for the others.

 messages [int, optional] Bit mask used to select messages display during minimization values defined in the MSGS dict. Defaults to MSGS_ALL.

 disp [int, optional] Integer interface to messages. 0 = no message, 5 = all messages

 maxCGit [int, optional] Maximum number of hessian*vector evaluations per main iteration. If maxCGit == 0, the direction chosen is -gradient if maxCGit < 0, maxCGit is set to max(1, min(50, n/2)). Defaults to -1.

 maxfun [int, optional] Maximum number of function evaluation. If None, maxfun is set to max(100, 10*len(x0)). Defaults to None. Note that this function may violate the limit because of evaluating gradients by numerical differentiation.

 eta [float, optional] Severity of the line search. If < 0 or > 1, set to 0.25. Defaults to -1.

 stepmx [float, optional] Maximum step for the line search. May be increased during call. If too small, it will be set to 10.0. Defaults to 0.

 accuracy [float, optional] Relative precision for finite difference calculations. If <= machine_precision, set to sqrt(machine_precision). Defaults to 0.

 fmin [float, optional] Minimum function value estimate. Defaults to 0.

 ftol [float, optional] Precision goal for the value of f in the stopping criterion. If ftol < 0.0, ftol is set to 0.0 default to -1.

 xtol [float, optional] Precision goal for the value of x in the stopping criterion (after applying x scaling factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1.

 pgtol [float, optional] Precision goal for the value of the projected gradient in the stopping criterion (after applying x scaling factors). If pgtol < 0.0, pgtol is set to 1e-2 * sqrt(accuracy). Setting it to 0.0 is not recommended. Defaults to -1.

 rescale [float, optional] Scaling factor (in log10) used to trigger f value rescaling. If 0, rescale at each iteration. If a large value, never rescale. If < 0, rescale is set to 1.3.

 callback [callable, optional] Called after each iteration, as callback(xk), where xk is the current parameter vector.

Returns

 x [ndarray] The solution.

 nfeval [int] The number of function evaluations.

 rc [int] Return code, see below

See also:

 minimize
Interface to minimization algorithms for multivariate functions. See the ‘TNC’ method in particular.

Notes

The underlying algorithm is truncated Newton, also called Newton Conjugate-Gradient. This method differs from scipy.optimize.fmin_ncg in that

1. it wraps a C implementation of the algorithm
2. it allows each variable to be given an upper and lower bound.

The algorithm incorporates the bound constraints by determining the descent direction as in an unconstrained truncated Newton, but never taking a step-size large enough to leave the space of feasible x’s. The algorithm keeps track of a set of currently active constraints, and ignores them when computing the minimum allowable step size. (The x’s associated with the active constraint are kept fixed.) If the maximum allowable step size is zero then a new constraint is added. At the end of each iteration one of the constraints may be deemed no longer active and removed. A constraint is considered no longer active if it is currently active but the gradient for that variable points inward from the constraint. The specific constraint removed is the one associated with the variable of largest index whose constraint is no longer active.

Return codes are defined as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Infeasible (lower bound > upper bound)</td>
</tr>
<tr>
<td>0</td>
<td>Local minimum reached (</td>
</tr>
<tr>
<td>1</td>
<td>Converged (</td>
</tr>
<tr>
<td>2</td>
<td>Converged (</td>
</tr>
<tr>
<td>3</td>
<td>Max. number of function evaluations reached</td>
</tr>
<tr>
<td>4</td>
<td>Linear search failed</td>
</tr>
<tr>
<td>5</td>
<td>All lower bounds are equal to the upper bounds</td>
</tr>
<tr>
<td>6</td>
<td>Unable to progress</td>
</tr>
<tr>
<td>7</td>
<td>User requested end of minimization</td>
</tr>
</tbody>
</table>

References

Wright S., Nocedal J. (2006), ‘Numerical Optimization’

scipy.optimize.fmin_cobyla

`scipy.optimize.fmin_cobyla(func, x0, cons, args=(), consargs=None, rhoend=0.0001, maxfun=1000, disp=None, catol=0.0002, *, callback=None)`

Minimize a function using the Constrained Optimization By Linear Approximation (COBYLA) method. This method wraps a FORTRAN implementation of the algorithm.

Parameters

- `func` [callable] Function to minimize. In the form `func(x, *args)`.
- `x0` [ndarray] Initial guess.
- `cons` [sequence] Constraint functions; must all be >=0 (a single function if only 1 constraint). Each function takes the parameters x as its first argument, and it can return either a single number or an array or list of numbers.
- `args` [tuple, optional] Extra arguments to pass to function.
consargs [tuple, optional] Extra arguments to pass to constraint functions (default of None means use same extra arguments as those passed to `func`). Use () for no extra arguments.

rhobeg [float, optional] Reasonable initial changes to the variables.

rhoend [float, optional] Final accuracy in the optimization (not precisely guaranteed). This is a lower bound on the size of the trust region.

disp [{0, 1, 2, 3}, optional] Controls the frequency of output; 0 implies no output.

maxfun [int, optional] Maximum number of function evaluations.

catol [float, optional] Absolute tolerance for constraint violations.

callback [callable, optional] Called after each iteration, as `callback(x)`, where `x` is the current parameter vector.

Returns

- `x` [ndarray] The argument that minimises f.

See also:

`minimize`

Interface to minimization algorithms for multivariate functions. See the ‘COBYLA’ method in particular.

Notes

This algorithm is based on linear approximations to the objective function and each constraint. We briefly describe the algorithm.

Suppose the function is being minimized over k variables. At the jth iteration the algorithm has $k+1$ points $v_1, \ldots, v_{(k+1)}$, an approximate solution x_j, and a radius RHO_j. (i.e., linear plus a constant) approximations to the objective function and constraint functions such that their function values agree with the linear approximation on the $k+1$ points $v_1, \ldots, v_{(k+1)}$. This gives a linear program to solve (where the linear approximations of the constraint functions are constrained to be non-negative).

However, the linear approximations are likely only good approximations near the current simplex, so the linear program is given the further requirement that the solution, which will become $x_{(j+1)}$, must be within RHO_j from x_j. RHO_j only decreases, never increases. The initial RHO_j is `rhobeg` and the final RHO_j is `rhoend`. In this way COBYLA’s iterations behave like a trust region algorithm.

Additionally, the linear program may be inconsistent, or the approximation may give poor improvement. For details about how these issues are resolved, as well as how the points v_i are updated, refer to the source code or the references below.

References

Examples

Minimize the objective function \(f(x, y) = x \cdot y \) subject to the constraints \(x^2 + y^2 < 1 \) and \(y > 0 \):

```python
>>> def objective(x):
    ...    return x[0] * x[1]
    ...

>>> def constr1(x):
    ...    return 1 - (x[0]**2 + x[1]**2)
    ...

>>> def constr2(x):
    ...    return x[1]
    ...

>>> from scipy.optimize import fmin_cobyla
>>> fmin_cobyla(objective, [0.0, 0.1], [constr1, constr2], rhoend=1e-7)
array([-0.70710685, 0.70710671])
```

The exact solution is \((-\sqrt{2}/2, \sqrt{2}/2)\).

scipy.optimize.fmin_slsqp

Python interface function for the SLSQP Optimization subroutine originally implemented by Dieter Kraft.

Parameters

- **func** [callable f(x,*args)] Objective function. Must return a scalar.
- **x0** [1-D ndarray of float] Initial guess for the independent variable(s).
- **eqcons** [list, optional] A list of functions of length n such that eqcons[j](x,*args) == 0.0 in a successfully optimized problem.
- **f_eqcons** [callable f(x,*args), optional] Returns a 1-D array in which each element must equal 0.0 in a successfully optimized problem. If f_eqcons is specified, eqcons is ignored.
- **ieqcons** [list, optional] A list of functions of length n such that ieqcons[j](x,*args) >= 0.0 in a successfully optimized problem.
- **f_ieqcons** [callable f(x,*args), optional] Returns an m by n array in which each element must be greater or equal to 0.0 in a successfully optimized problem. If f_ieqcons is specified, ieqcons is ignored.
- **bounds** [list, optional] A list of tuples specifying the lower and upper bound for each independent variable [(xl0, xu0),(xl1, xu1),...]. Infinite values will be interpreted as large floating values.
- **fprime** [callable f(x,*args), optional] A function that evaluates the partial derivatives of func.
- **fprime_eqcons** [callable f(x,*args), optional] A function of the form fprime_eqcons(x0, *args) that returns the m by n array of equality constraint normals. If not provided, the normals will be approximated. The array returned by fprime_eqcons should be sized as (len(eqcons), len(x0))
- **fprime_ieqcons** [callable f(x,*args), optional] A function of the form fprime_ieqcons(x0, *args) that returns the m by n array of inequality constraint normals. If not provided, the normals will be approximated. The array returned by fprime_ieqcons should be sized as (len(ieqcons), len(x0)).
- **args** [sequence, optional] Additional arguments passed to func and fprime.
iter [int, optional] The maximum number of iterations.
acc [float, optional] Requested accuracy.
iprint [int, optional] The verbosity of fmin_slsqp:
 * iprint <= 0: Silent operation
 * iprint == 1: Print summary upon completion (default)
 * iprint >= 2: Print status of each iterate and summary
disp [int, optional] Overrides the iprint interface (preferred).
full_output [bool, optional] If False, return only the minimizer of func (default). Otherwise, output final objective function and summary information.
epsilon [float, optional] The step size for finite-difference derivative estimates.
callback [callable, optional] Called after each iteration, as callback(x), where x is the current parameter vector.

Returns

callable

out [ndarray of float] The final minimizer of func.
fx [ndarray of float, if full_output is true] The final value of the objective function.
its [int, if full_output is true] The number of iterations.
imode [int, if full_output is true] The exit mode from the optimizer (see below).
smode [string, if full_output is true] Message describing the exit mode from the optimizer.

See also:

minimize

Interface to minimization algorithms for multivariate functions. See the 'SLSQP' method in particular.

Notes

Exit modes are defined as follows

-1 : Gradient evaluation required (g & a)
0 : Optimization terminated successfully
1 : Function evaluation required (f & c)
2 : More equality constraints than independent variables
3 : More than 3*n iterations in LSQ subproblem
4 : Inequality constraints incompatible
5 : Singular matrix E in LSQ subproblem
6 : Singular matrix C in LSQ subproblem
7 : Rank-deficient equality constraint subproblem HFTI
8 : Positive directional derivative for linesearch
9 : Iteration limit reached

Examples

Examples are given in the tutorial.

Univariate (scalar) minimization methods:

fminbound(func, x1, x2[, args, xtol, ...]) Bounded minimization for scalar functions.
Table 147 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>brent</code></td>
<td>Given a function of one variable and a possible bracket, return the local minimum of the function isolated to a fractional precision of <code>tol</code>.</td>
</tr>
<tr>
<td><code>golden</code></td>
<td>Return the minimum of a function of one variable using golden section method.</td>
</tr>
</tbody>
</table>

scipy.optimize.fminbound

`scipy.optimize.fminbound(func, x1, x2, args=(), xtol=1e-05, maxfun=500, full_output=0, disp=1)`

Bounded minimization for scalar functions.

Parameters

- `func` ([callable f(x,*args)]): Objective function to be minimized (must accept and return scalars).
- `x1`, `x2` ([float or array scalar]): The optimization bounds.
- `args` ([tuple, optional]): Extra arguments passed to function.
- `xtol` ([float, optional]): The convergence tolerance.
- `maxfun` ([int, optional]): Maximum number of function evaluations allowed.
- `full_output` ([bool, optional]): If True, return optional outputs.
- `disp` ([int, optional]): If non-zero, print messages. 0: no message printing. 1: non-convergence notification messages only. 2: print a message on convergence too. 3: print iteration results.

Returns

- `xopt` ([ndarray]): Parameters (over given interval) which minimize the objective function.
- `fval` ([number]): The function value at the minimum point.
- `ierr` ([int]): An error flag (0 if converged, 1 if maximum number of function calls reached).
- `numfunc` ([int]): The number of function calls made.

See also:

minimize_scalar

Interface to minimization algorithms for scalar univariate functions. See the ‘Bounded’ method in particular.

Notes

Finds a local minimizer of the scalar function `func` in the interval `x1 < xopt < x2` using Brent’s method. (See `brent` for auto-bracketing.)

Examples

`fminbound` finds the minimum of the function in the given range. The following examples illustrate the same

```python
>>> def f(x):
...     return x**2

>>> from scipy import optimize
```
```python
>>> minimum = optimize.fminbound(f, -1, 2)
>>> minimum
0.0
>>> minimum = optimize.fminbound(f, 1, 2)
>>> minimum
1.0000059608609866
```

scipy.optimize.brent

scipy.optimize.brent(func, args=(), brack=None, tol=1.48e-08, full_output=0, maxiter=500)

Given a function of one variable and a possible bracket, return the local minimum of the function isolated to a fractional precision of tol.

Parameters

- **func** *(callable f(x,*args))* Objective function.
- **args** *(tuple, optional)* Additional arguments (if present).
- **brack** *(tuple, optional)* Either a triple (xa,xb,xc) where xa<xb<xc and func(xb) < func(xa), func(xc) or a pair (xa,xb) which are used as a starting interval for a downhill bracket search (see *bracket*). Providing the pair (xa,xb) does not always mean the obtained solution will satisfy xa<=x<=xb.
- **tol** *(float, optional)* Relative error in solution xopt acceptable for convergence.
- **full_output** *(bool, optional)* If True, return all output args (xmin, fval, iter, funcalls).
- **maxiter** *(int, optional)* Maximum number of iterations in solution.

Returns

- **xmin** *(ndarray)* Optimum point.
- **fval** *(float)* Optimum value.
- **iter** *(int)* Number of iterations.
- **funcalls** *(int)* Number of objective function evaluations made.

See also:

minimize_scalar

Interface to minimization algorithms for scalar univariate functions. See the ‘Brent’ method in particular.

Notes

Uses inverse parabolic interpolation when possible to speed up convergence of golden section method.

Does not ensure that the minimum lies in the range specified by *brack*. See *fminbound*.
Examples

We illustrate the behaviour of the function when `$brack$` is of size 2 and 3 respectively. In the case where `$brack$` is of the form `(xa,xb)`, we can see for the given values, the output need not necessarily lie in the range `(xa,xb)`.

```python
>>> def f(x):
    ...    return x**2

>>> from scipy import optimize

>>> minimum = optimize.brent(f,brack=(1,2))
>>> minimum
0.0

>>> minimum = optimize.brent(f,brack=(-1,0.5,2))
>>> minimum
-2.7755575615628914e-17
```

scipy.optimize.golden

`scipy.optimize.golden(func, args=(), brack=None, tol=1.4901161193847656e-08, full_output=0, maxiter=5000)`

Return the minimum of a function of one variable using golden section method.

Given a function of one variable and a possible bracketing interval, return the minimum of the function isolated to a fractional precision of `tol`.

Parameters

- `func` [callable func(x,*args)] Objective function to minimize.
- `args` [tuple, optional] Additional arguments (if present), passed to `func`.
- `brack` [tuple, optional] Triple `(a,b,c)`, where `(a<b<c)` and `func(b)` < `func(a)` and `func(c)`. If bracket consists of two numbers `(a, c)`, then they are assumed to be a starting interval for a downhill bracket search (see `bracket`); it doesn’t always mean that obtained solution will satisfy $a\leq x\leq c$.
- `tol` [float, optional] X tolerance stop criterion
- `full_output` [bool, optional] If True, return optional outputs.
- `maxiter` [int] Maximum number of iterations to perform.

See also:

`minimize_scalar`

Interface to minimization algorithms for scalar univariate functions. See the ‘Golden’ method in particular.
Notes

Uses analog of bisection method to decrease the bracketed interval.

Examples

We illustrate the behaviour of the function when \(brack \) is of size 2 and 3, respectively. In the case where \(brack \) is of the form \((x_a, x_b)\), we can see for the given values, the output need not necessarily lie in the range \((x_a, x_b)\).

```python
>>> def f(x):
...     return x**2
```  
```python
>>> from scipy import optimize
```  
```python
>>> minimum = optimize.golden(f, brack=(1, 2))
>>> minimum
1.571727788484873e-16
>>> minimum = optimize.golden(f, brack=(-1, 0.5, 2))
>>> minimum
-1.571727788484873e-16
```

Least-squares

\[\text{leastsq}(\text{func}, \text{x0}, \text{args}, \text{Dfun}, \text{full_output}, ...) \] Minimize the sum of squares of a set of equations.

\[\text{scipy.optimize.leastsq}(\text{func}, \text{x0}, \text{args}=(), \text{Dfun}=None, \text{full_output}=0, \text{col_deriv}=0, \text{ftol}=1.49012e-08, \text{xtol}=1.49012e-08, \text{gtol}=0.0, \text{maxfev}=0, \text{epsfcn}=None, \text{factor}=100, \text{diag}=None) \]
Minimize the sum of squares of a set of equations.

```python
x = arg min(sum(func(y)**2, axis=0))
      y
```

Parameters

- **func**: [callable] Should take at least one (possibly length \(N \) vector) argument and returns \(M \) floating point numbers. It must not return NaNs or fitting might fail. \(M \) must be greater than or equal to \(N \).
- **x0**: [ndarray] The starting estimate for the minimization.
- **args**: [tuple, optional] Any extra arguments to func are placed in this tuple.
- **Dfun**: [callable, optional] A function or method to compute the Jacobian of func with derivatives across the rows. If this is None, the Jacobian will be estimated.
- **full_output**: [bool, optional] non-zero to return all optional outputs.
- **col_deriv**: [bool, optional] non-zero to specify that the Jacobian function computes derivatives down the columns (faster, because there is no transpose operation).
- **ftol**: [float, optional] Relative error desired in the sum of squares.
- **xtol**: [float, optional] Relative error desired in the approximate solution.
- **gtol**: [float, optional] Orthogonality desired between the function vector and the columns of the Jacobian.
maxfev [int, optional] The maximum number of calls to the function. If Dfun is provided, then the
default maxfev is 100*(N+1) where N is the number of elements in x0, otherwise the default
maxfev is 200*(N+1).

epsfcn [float, optional] A variable used in determining a suitable step length for the forward-difference
approximation of the Jacobian (for Dfun=None). Normally the actual step length will be
sqrt(epsfcn)*x If epsfcn is less than the machine precision, it is assumed that the relative
errors are of the order of the machine precision.
factor [float, optional] A parameter determining the initial step bound (factor * || diag *
x||). Should be in interval (0.1, 100).
diag [sequence, optional] N positive entries that serve as a scale factors for the variables.

Returns

x [ndarray] The solution (or the result of the last iteration for an unsuccessful call).
cov_x [ndarray] The inverse of the Hessian. fjac and ipvt are used to construct an estimate of
the Hessian. A value of None indicates a singular matrix, which means the curvature in
parameters x is numerically flat. To obtain the covariance matrix of the parameters x, cov_x
must be multiplied by the variance of the residuals – see curve_fit.
infodict [dict] a dictionary of optional outputs with the keys:
nfev The number of function calls
fvec The function evaluated at the output
fjac A permutation of the R matrix of a QR factorization of the final approximate
Jacobian matrix, stored column wise. Together with ipvt, the covariance of the
estimate can be approximated.
ipvt An integer array of length N which defines a permutation matrix, p, such that
fjac*p = q*r, where r is upper triangular with diagonal elements of nonincreasing
magnitude. Column j of p is column ipvt(j) of the identity matrix.
qtf The vector (transpose(q) * fvec).
mesg [str] A string message giving information about the cause of failure.
ier [int] An integer flag. If it is equal to 1, 2, 3 or 4, the solution was found. Otherwise, the
solution was not found. In either case, the optional output variable ‘mesg’ gives more infor-
mation.

See also:

least_squares

Newer interface to solve nonlinear least-squares problems with bounds on the variables. See method==’lm’
in particular.

Notes

“leastsq” is a wrapper around MINPACK’s lmdif and lmder algorithms.
cov_x is a Jacobian approximation to the Hessian of the least squares objective function. This approximation
assumes that the objective function is based on the difference between some observed target data (ydata) and a
(non-linear) function of the parameters f(xdata, params)

```python
func(params) = ydata - f(xdata, params)
```

so that the objective function is

```
min params sum((ydata - f(xdata, params))**2, axis=0)
```

The solution, x, is always a 1-D array, regardless of the shape of x0, or whether x0 is a scalar.
Examples

```python
>>> from scipy.optimize import leastsq
>>> def func(x):
...     return 2*(x-3)**2+1
>>> leastsq(func, 0)
(array([2.99999999]), 1)
```

Root finding

General nonlinear solvers:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fsolve</code></td>
<td>Find the roots of a function.</td>
</tr>
<tr>
<td><code>broyden1</code></td>
<td>Find a root of a function, using Broyden's first Jacobian approximation.</td>
</tr>
<tr>
<td><code>broyden2</code></td>
<td>Find a root of a function, using Broyden's second Jacobian approximation.</td>
</tr>
</tbody>
</table>

scipy.optimize.fsolve

Find the roots of a function. Return the roots of the (non-linear) equations defined by \(\text{func}(x) = 0 \) given a starting estimate.

Parameters

- `func`:
 - `[callable f(x, *args)]` A function that takes at least one (possibly vector) argument, and returns a value of the same length.
- `x0`:
 - `[ndarray]` The starting estimate for the roots of \(\text{func}(x) = 0 \).
- `args`:
 - `[tuple, optional]` Any extra arguments to `func`.
- `fprime`:
 - `[callable f(x, *args), optional]` A function to compute the Jacobian of `func` with derivatives across the rows. By default, the Jacobian will be estimated.
- `full_output`:
 - `[bool, optional]` If True, return optional outputs.
- `col_deriv`:
 - `[bool, optional]` Specify whether the Jacobian function computes derivatives down the columns (faster, because there is no transpose operation).
- `xtol`:
 - `[float, optional]` The calculation will terminate if the relative error between two consecutive iterates is at most `xtol`.
- `maxfev`:
 - `[int, optional]` The maximum number of calls to the function. If zero, then \(100 \times (N+1) \) is the maximum where \(N \) is the number of elements in `x0`.
- `band`:
 - `[tuple, optional]` If set to a two-sequence containing the number of sub- and super-diagonals within the band of the Jacobi matrix, the Jacobi matrix is considered banded (only for `fprime=None`).
- `epsfcn`:
 - `[float, optional]` A suitable step length for the forward-difference approximation of the Jacobian (for `fprime=None`). If `epsfcn` is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision.
- `factor`:
 - `[float, optional]` A parameter determining the initial step bound (\(\text{factor} \times \| \text{diag} \times x \| \)). Should be in the interval \((0.1, 100)\).
- `diag`:
 - `[sequence, optional]` N positive entries that serve as a scale factors for the variables.

Returns

- `[sequence, optional]` N positive entries that serve as a scale factors for the variables.

x: [ndarray] The solution (or the result of the last iteration for an unsuccessful call).

infodict: [dict] A dictionary of optional outputs with the keys:
- nfev: number of function calls
- njev: number of Jacobian calls
- fvec: function evaluated at the output
- fjac: the orthogonal matrix, q, produced by the QR factorization of the final approximate Jacobian matrix, stored column wise
- r: upper triangular matrix produced by QR factorization of the same matrix
- qtf: the vector (transpose(q) * fvec)
- ier: [int] An integer flag. Set to 1 if a solution was found, otherwise refer to mesg for more information.
- mesg: [str] If no solution is found, mesg details the cause of failure.

See also:

root

Interface to root finding algorithms for multivariate functions. See the method='hybr' in particular.

Notes

fsolve is a wrapper around MINPACK's hybrd and hybrj algorithms.

Examples

Find a solution to the system of equations: \(x_0 \cos(x_1) = 4, x_1 x_0 - x_1 = 5 \).

```python
>>> from scipy.optimize import fsolve
>>> def func(x):
...    return [x[0] * np.cos(x[1]) - 4,
...            x[1] * x[0] - x[1] - 5]
>>> root = fsolve(func, [1, 1])
>>> root
array([6.50409711, 0.90841421])
>>> np.isclose(func(root), [0.0, 0.0])  # func(root) should be almost 0.0.
array([ True, True])
```

scipy.optimize.broyden1

`scipy.optimize.broyden1(F, xin, iter=None, alpha=None, reduction_method='restart', max_rank=None, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw)`

Find a root of a function, using Broyden's first Jacobian approximation.

This method is also known as "Broyden’s good method".

Parameters

- F: [function(x) -> f] Function whose root to find; should take and return an array-like object.
- xin: [array_like] Initial guess for the solution
- alpha: [float, optional] Initial guess for the Jacobian is \((-1/\text{alpha})\).
reduction_method
[str or tuple, optional] Method used in ensuring that the rank of the Broyden matrix stays low. Can either be a string giving the name of the method, or a tuple of the form (method, param1, param2, ...) that gives the name of the method and values for additional parameters.
Methods available:
• restart: drop all matrix columns. Has no extra parameters.
• simple: drop oldest matrix column. Has no extra parameters.
• svd: keep only the most significant SVD components. Takes an extra parameter, to_retain, which determines the number of SVD components to retain when rank reduction is done. Default is max_rank - 2.
max_rank
[int, optional] Maximum rank for the Broyden matrix. Default is infinity (i.e., no rank reduction).
iter
[int, optional] Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
verbose
[bool, optional] Print status to stdout on every iteration.
maxiter
[int, optional] Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised.
f_tol
[float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.
f_rtol
[float, optional] Relative tolerance for the residual. If omitted, not used.
x_tol
[float, optional] Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
x_rtol
[float, optional] Relative minimum step size. If omitted, not used.
tol_norm
[function(vector)->scalar, optional] Norm to use in convergence check. Default is the maximum norm.
line_search
[None, ‘armijo’ (default), ‘wolfe’], optional] Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.
callback
[function, optional] Optional callback function. It is called on every iteration as callback(x, f) where x is the current solution and f the corresponding residual.

Returns
sol
[ndarray] An array (of similar array type as x0) containing the final solution.

Raises
NoConvergence
When a solution was not found.

See also:
root
Interface to root finding algorithms for multivariate functions. See method=='broyden1' in particular.
Notes

This algorithm implements the inverse Jacobian Quasi-Newton update

\[H_+ = H + (dx - H df)dx^\dagger H/(dx^\dagger H df) \]

which corresponds to Broyden’s first Jacobian update

\[J_+ = J + (df - J dx)dx^\dagger/dx^\dagger dx \]

References

[1]

Examples

The following functions define a system of nonlinear equations

```python
>>> def fun(x):
    ...     return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0, 
    ...             0.5 * (x[1] - x[0])**3 + x[1]]
```

A solution can be obtained as follows.

```python
>>> from scipy import optimize
>>> sol = optimize.broyden1(fun, [0, 0])
>>> sol
array([0.84116396, 0.15883641])
```

scipy.optimize.broyden2

Find a root of a function, using Broyden’s second Jacobian approximation.

This method is also known as “Broyden’s bad method”.

Parameters

- `F` ([function(x) -> f] Function whose root to find; should take and return an array-like object.
- `xin` ([array_like] Initial guess for the solution
- `alpha` [float, optional] Initial guess for the Jacobian is \((-1/alpha)\).
- `reduction_method` [str or tuple, optional] Method used in ensuring that the rank of the Broyden matrix stays low. Can either be a string giving the name of the method, or a tuple of the form (method, param1, param2, ...) that gives the name of the method and values for additional parameters.

 Methods available:
 - restart: drop all matrix columns. Has no extra parameters.
 - simple: drop oldest matrix column. Has no extra parameters.)
• **svd**: keep only the most significant SVD components. Takes an extra parameter, `to_retain`, which determines the number of SVD components to retain when rank reduction is done. Default is `max_rank - 2`.

max_rank [int, optional] Maximum rank for the Broyden matrix. Default is infinity (i.e., no rank reduction).

iter [int, optional] Number of iterations to make. If omitted (default), make as many as required to meet tolerances.

verbose [bool, optional] Print status to stdout on every iteration.

maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet convergence, `NoConvergence` is raised.

f_tol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.

f_rtol [float, optional] Relative tolerance for the residual. If omitted, not used.

x_tol [float, optional] Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.

x_rtol [float, optional] Relative minimum step size. If omitted, not used.

tol_norm [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the maximum norm.

line_search [None, ‘armijo’ (default), ‘wolfe’], optional Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

callback [function, optional] Optional callback function. It is called on every iteration as `callback(x, f)` where `x` is the current solution and `f` the corresponding residual.

Returns

sol [ndarray] An array (of similar array type as `x0`) containing the final solution.

Raises

`NoConvergence` When a solution was not found.

See also:

`root`

Interface to root finding algorithms for multivariate functions. See `method='broyden2'` in particular.

Notes

This algorithm implements the inverse Jacobian Quasi-Newton update

$$H_+ = H + (dx - H df)df\dagger/(df\dagger df)$$

corresponding to Broyden’s second method.
Examples

The following functions define a system of nonlinear equations:

```python
>>> def fun(x):
...     return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0,
...             0.5 * (x[1] - x[0])**3 + x[1]]
```

A solution can be obtained as follows.

```python
>>> from scipy import optimize
>>> sol = optimize.broyden2(fun, [0, 0])
>>> sol
array([0.84116365, 0.15883529])
```

Large-scale nonlinear solvers:

- `newton_krylov(F, xin[, iter, rdiff, method, ...])` Find a root of a function, using Krylov approximation for inverse Jacobian.
- `anderson(F, xin[, iter, alpha, w0, M, ...])` Find a root of a function, using (extended) Anderson mixing.

```python
scipy.optimize.newton_krylov
```

```python
scipy.optimize.newton_krylov(F, xin[, iter=None, rdiff=None, method='lgmres', inner_maxiter=20, inner_M=None, outer_k=10, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw])
```

Find a root of a function, using Krylov approximation for inverse Jacobian.

This method is suitable for solving large-scale problems.

Parameters

- `F` [function(x) -> f] Function whose root to find; should take and return an array-like object.
- `xin` [array_like] Initial guess for the solution
- `rdiff` [float, optional] Relative step size to use in numerical differentiation.
- `method` ['lgmres', 'gmres', 'bicgstab', 'cgs', 'minres'] or function] Krylov method to use to approximate the Jacobian. Can be a string, or a function implementing the same interface as the iterative solvers in `scipy.sparse.linalg`.
- `inner_maxiter` [int, optional] Parameter to pass to the “inner” Krylov solver: maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
- `inner_M` [LinearOperator or InverseJacobian] Preconditioner for the inner Krylov iteration. Note that you can use also inverse Jacobians as (adaptive) preconditioners. For example,
```python
>>> from scipy.optimize.nonlin import BroydenFirst,
    KrylovJacobian
>>> from scipy.optimize.nonlin import InverseJacobian
>>> jac = BroydenFirst()
>>> kjac = KrylovJacobian(inner_M=InverseJacobian(jac))
```

If the preconditioner has a method named 'update', it will be called as `update(x, f)` after each nonlinear step, with `x` giving the current point, and `f` the current function value.

Parameters

- `outer_k` [int, optional] Size of the subspace kept across LGMRES nonlinear iterations. See `scipy.sparse.linalg.lgmres` for details.

- `inner_kwargs` [kwargs] Keyword parameters for the “inner” Krylov solver (defined with `method`). Parameter names must start with the `inner_` prefix which will be stripped before passing on the inner method. See, e.g., `scipy.sparse.linalg.gmres` for details.

- `iter` [int, optional] Number of iterations to make. If omitted (default), make as many as required to meet tolerances.

- `verbose` [bool, optional] Print status to stdout on every iteration.

- `maxiter` [int, optional] Maximum number of iterations to make. If more are needed to meet convergence, `NoConvergence` is raised.

- `f_tol` [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is $6e^{-6}$.

- `f_rtol` [float, optional] Relative tolerance for the residual. If omitted, not used.

- `x_tol` [float, optional] Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.

- `x_rtol` [float, optional] Relative minimum step size. If omitted, not used.

- `tol_norm` [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the maximum norm.

- `line_search` [{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.

- `callback` [function, optional] Optional callback function. It is called on every iteration as `callback(x, f)` where `x` is the current solution and `f` the corresponding residual.

Returns

- `sol` [ndarray] An array (of similar array type as `x0`) containing the final solution.

Raises

- `NoConvergence` When a solution was not found.

See also:

- `root`

 Interface to root finding algorithms for multivariate functions. See `method='krylov'` in particular.

- `scipy.sparse.linalg.gmres`
- `scipy.sparse.linalg.lgmres`
Notes

This function implements a Newton-Krylov solver. The basic idea is to compute the inverse of the Jacobian with an iterative Krylov method. These methods require only evaluating the Jacobian-vector products, which are conveniently approximated by a finite difference:

\[Jv \approx \frac{(f(x + \omega \cdot v / |v|) - f(x))/\omega}{\omega} \]

Due to the use of iterative matrix inverses, these methods can deal with large nonlinear problems.

SciPy's `scipy.sparse.linalg` module offers a selection of Krylov solvers to choose from. The default here is `lgmres`, which is a variant of restarted GMRES iteration that reuses some of the information obtained in the previous Newton steps to invert Jacobians in subsequent steps.

For a review on Newton-Krylov methods, see for example [1], and for the LGMRES sparse inverse method, see [2].

References

[1], [2]

Examples

The following functions define a system of nonlinear equations

```python
>>> def fun(x):
    ...     return [x[0] + 0.5 * x[1] - 1.0,
    ...              0.5 * (x[1] - x[0]) ** 2]
```

A solution can be obtained as follows.

```python
>>> from scipy import optimize
>>> sol = optimize.newton_krylov(fun, [0, 0])
>>> sol
array([0.66731771, 0.66536458])
```

scipy.optimize.anderson

Find a root of a function, using (extended) Anderson mixing.

The Jacobian is formed by for a ‘best’ solution in the space spanned by last M vectors. As a result, only a MxM matrix inversions and MxN multiplications are required. [Ey]

Parameters

- `F [function(x) -> f]` Function whose root to find; should take and return an array-like object.
- `xin [array_like]` Initial guess for the solution
- `alpha [float, optional]` Initial guess for the Jacobian is (-1/alpha).
- `M [float, optional]` Number of previous vectors to retain. Defaults to 5.
- `w0 [float, optional]` Regularization parameter for numerical stability. Compared to unity, good values of the order of 0.01.
iter [int, optional] Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
verbose [bool, optional] Print status to stdout on every iteration.
maxiter [int, optional] Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised.
f_tol [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.
f_rtol [float, optional] Relative tolerance for the residual. If omitted, not used.
x_tol [float, optional] Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
x_rtol [float, optional] Relative minimum step size. If omitted, not used.
tol_norm [function(vector)->scalar, optional] Norm to use in convergence check. Default is the maximum norm.
line_search [{None, 'armijo' (default), 'wolfe'}, optional] Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to 'armijo'.
callback [function, optional] Optional callback function. It is called on every iteration as callback(x, f) where x is the current solution and f the corresponding residual.

Returns

sol [ndarray] An array (of similar array type as x0) containing the final solution.

Raises

NoConvergence

When a solution was not found.

See also:

root

Interface to root finding algorithms for multivariate functions. See method='anderson' in particular.

References

[Ey]

Examples

The following functions define a system of nonlinear equations

```python
>>> def fun(x):
...   return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0,
...           0.5 * (x[1] - x[0])**3 + x[1]]
```

A solution can be obtained as follows.

```python
>>> from scipy import optimize
>>> sol = optimize.anderson(fun, [0, 0])
>>> sol
array([0.84116588, 0.15883789])
```
Simple iteration solvers:

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>excitingmixing(F, xin[, iter, alpha, ...])</code></td>
<td>Find a root of a function, using a tuned diagonal Jacobian approximation.</td>
</tr>
<tr>
<td><code>linearmixing(F, xin[, iter, alpha, verbose, ...])</code></td>
<td>Find a root of a function, using a scalar Jacobian approximation.</td>
</tr>
<tr>
<td><code>diagbroyden(F, xin[, iter, alpha, verbose, ...])</code></td>
<td>Find a root of a function, using diagonal Broyden Jacobian approximation.</td>
</tr>
</tbody>
</table>

scipy.optimize.excitingmixing

```python
scipy.optimize.excitingmixing(F, xin, iter=None, alpha=None, alphamax=1.0, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw)
```

Find a root of a function, using a tuned diagonal Jacobian approximation.

The Jacobian matrix is diagonal and is tuned on each iteration.

Warning: This algorithm may be useful for specific problems, but whether it will work may depend strongly on the problem.

Parameters

- **F** [function(x) -> f] Function whose root to find; should take and return an array-like object.
- **xin** [array_like] Initial guess for the solution
- **alpha** [float, optional] Initial Jacobian approximation is (-1/alpha).
- **alphamax** [float, optional] The entries of the diagonal Jacobian are kept in the range [alpha, alphamax].
- **iter** [int, optional] Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
- **verbose** [bool, optional] Print status to stdout on every iteration.
- **maxiter** [int, optional] Maximum number of iterations to make. If more are needed to meet convergence, `NoConvergence` is raised.
- **f_tol** [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.
- **f_rtol** [float, optional] Relative tolerance for the residual. If omitted, not used.
- **x_tol** [float, optional] Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
- **x_rtol** [float, optional] Relative minimum step size. If omitted, not used.
- **tol_norm** [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the maximum norm.
- **line_search** [{None, ‘armijo’ (default), ‘wolfe’}, optional] Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to ‘armijo’.
- **callback** [function, optional] Optional callback function. It is called on every iteration as `callback(x, f)` where `x` is the current solution and `f` the corresponding residual.

Returns

- **sol** [ndarray] An array (of similar array type as x0) containing the final solution.

Raises

- `NoConvergence`
NoConvergence
When a solution was not found.

See also:

root
Interface to root finding algorithms for multivariate functions. See method='excitingmixing' in particular.

scipy.optimize.linearmixing

scipy.optimize.linearmixing(F, xin, iter=None, alpha=None, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw)

Find a root of a function, using a scalar Jacobian approximation.

Warning: This algorithm may be useful for specific problems, but whether it will work may depend strongly on the problem.

Parameters

- **F** [function(x) -> f] Function whose root to find; should take and return an array-like object.
- **xin** [array_like] Initial guess for the solution
- **alpha** [float, optional] The Jacobian approximation is (-1/alpha).
- **iter** [int, optional] Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
- **verbose** [bool, optional] Print status to stdout on every iteration.
- **maxiter** [int, optional] Maximum number of iterations to make. If more are needed to meet convergence, NoConvergence is raised.
- **f_tol** [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.
- **f_rtol** [float, optional] Relative tolerance for the residual. If omitted, not used.
- **x_tol** [float, optional] Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
- **x_rtol** [float, optional] Relative minimum step size. If omitted, not used.
- **tol_norm** [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the maximum norm.
- **line_search** [{'None', 'armijo' (default), 'wolfe'}, optional] Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to 'armijo'.
- **callback** [function, optional] Optional callback function. It is called on every iteration as callback(x, f) where x is the current solution and f the corresponding residual.

Returns

- **sol** [ndarray] An array (of similar array type as x0) containing the final solution.

Raises

- NoConvergence
 When a solution was not found.
See also:

root

Interface to root finding algorithms for multivariate functions. See `method='linearmixing'` in particular.

`scipy.optimize.diagbroyden`

`scipy.optimize.diagbroyden`(F, xin=None, alpha=None, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw)

Find a root of a function, using diagonal Broyden Jacobian approximation.

The Jacobian approximation is derived from previous iterations, by retaining only the diagonal of Broyden matrices.

Warning: This algorithm may be useful for specific problems, but whether it will work may depend strongly on the problem.

Parameters

- **F** : [function(x) -> f] Function whose root to find; should take and return an array-like object.
- **xin** : [array_like] Initial guess for the solution.
- **alpha** : [float, optional] Initial guess for the Jacobian is \((-1/alpha)\).
- **iter** : [int, optional] Number of iterations to make. If omitted (default), make as many as required to meet tolerances.
- **verbose** : [bool, optional] Print status to stdout on every iteration.
- **maxiter** : [int, optional] Maximum number of iterations to make. If more are needed to meet convergence, `NoConvergence` is raised.
- **f_tol** : [float, optional] Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6.
- **f_rtol** : [float, optional] Relative tolerance for the residual. If omitted, not used.
- **x_tol** : [float, optional] Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used.
- **x_rtol** : [float, optional] Relative minimum step size. If omitted, not used.
- **tol_norm** : [function(vector) -> scalar, optional] Norm to use in convergence check. Default is the maximum norm.
- **line_search** : [{None, 'armijo' (default), 'wolfe'}, optional] Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to 'armijo'.
- **callback** : [function, optional] Optional callback function. It is called on every iteration as `callback(x, f)` where `x` is the current solution and `f` the corresponding residual.

Returns

- **sol** : [ndarray] An array (of similar array type as x0) containing the final solution.

Raises

- **NoConvergence**

When a solution was not found.

See also:
root

Interface to root finding algorithms for multivariate functions. See method='diagbroyden' in particular.

Examples

The following functions define a system of nonlinear equations

```python
>>> def fun(x):
...     return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0,
...             0.5 * (x[1] - x[0])**3 + x[1]]
```

A solution can be obtained as follows.

```python
>>> from scipy import optimize
>>> sol = optimize.diagbroyden(fun, [0, 0])
>>> sol
array([0.84116403, 0.15883384])
```

3.3.20 Cython optimize zeros API

The underlying C functions for the following root finders can be accessed directly using Cython:

- `bisect`
- `ridder`
- `brentq`
- `brenth`

The Cython API for the zeros functions is similar except there is no disp argument. Import the zeros functions using `cimport` from `scipy.optimize.cython_optimize`.

```python
from scipy.optimize.cython_optimize cimport bisect, ridder, brentq, brent
```

Callback signature

The zeros functions in `cython_optimize` expect a callback that takes a double for the scalar independent variable as the 1st argument and a user defined struct with any extra parameters as the 2nd argument.

```c
double (*callback_type)(double, void*)
```
Examples

Usage of cython_optimize requires Cython to write callbacks that are compiled into C. For more information on compiling Cython, see the Cython Documentation.

These are the basic steps:

1. Create a Cython .pyx file, for example: myexample.pyx.
2. Import the desired root finder from cython_optimize.
3. Write the callback function, and call the selected zeros function passing the callback, any extra arguments, and the other solver parameters.

   ```python
   from scipy.optimize.cython_optimize cimport brentq
   # import math from Cython
   from libc cimport math
   myargs = {'C0': 1.0, 'C1': 0.7}  # a dictionary of extra arguments
   XLO, XHI = 0.5, 1.0  # lower and upper search boundaries
   XTOL, RTOL, MITR = 1e-3, 1e-3, 10  # other solver parameters
   # user-defined struct for extra parameters
ctypedef struct test_params:
    double C0
    double C1

   # user-defined callback
cdef double f(double x, void *args):
    cdef test_params *myargs = <test_params *> args
    return myargs.C0 - math.exp(-(x - myargs.C1))

   # Cython wrapper function
cdef double brentq_wrapper_example(dict args, double xa, double xb,
                                      double xtol, double rtol, int mitr):
    # Cython automatically casts dictionary to struct
cdef test_params myargs = args
    return brentq(f, xa, xb, <test_params *> &myargs, xtol, rtol, mitr, NULL)

   # Python function
def brentq_example(args=myargs, xa=XLO, xb=XHI, xtol=XTOL, rtol=RTOL,
                       mitr=MITR):
    '''Calls Cython wrapper from Python.''
    return brentq_wrapper_example(args, xa, xb, xtol, rtol, mitr)
   ```

4. If you want to call your function from Python, create a Cython wrapper, and a Python function that calls the wrapper, or use cpdef. Then, in Python, you can import and run the example.

   ```python
   from myexample import brentq_example
   ```
x = brentq_example()
0.6999942848231314

5. Create a Cython .pxd file if you need to export any Cython functions.

Full output

The functions in `cython_optimize` can also copy the full output from the solver to a C struct that is passed as its last argument. If you don’t want the full output, just pass NULL. The full output struct must be type `zeros_full_output`, which is defined in `scipy.optimize.cython_optimize` with the following fields:

- int funcalls: number of function calls
- int iterations: number of iterations
- int error_num: error number
- double root: root of function

The root is copied by `cython_optimize` to the full output struct. An error number of -1 means a sign error, -2 means a convergence error, and 0 means the solver converged. Continuing from the previous example:

```python
from scipy.optimize import brentq, zeros_full_output

# cython brentq solver with full output
def brent_full_output_example(myargs, XLO, XHI, XTOL, RTOL, MITR):
    '''Returns full output'''
    return brentq_full_output_wrapper_example(myargs, XLO, XHI, XTOL, RTOL, MITR)

result = brent_full_output_example()
# {'error_num': 0,
#  'funcalls': 6,
#  'iterations': 5,
#  'root': 0.6999942848231314}
```
3.3.21 Signal processing (scipy.signal)

Convolution

- `convolve(in1, in2[, mode, method])` Convolves two N-dimensional arrays.
- `correlate(in1, in2[, mode, method])` Cross-correlates two N-dimensional arrays.
- `fftconvolve(in1, in2[, mode, axes])` Convolves two N-dimensional arrays using FFT.
- `oconvolve(in1, in2[, mode, axes])` Convolves two N-dimensional arrays using the overlap-add method.
- `convolve2d(in1, in2[, mode, boundary, fillvalue])` Convolves two 2-dimensional arrays.
- `correlate2d(in1, in2[, mode, boundary, ...])` Cross-correlates two 2-dimensional arrays.
- `sepfir2d(input, hrow, hcol)` Convolves with a 2-D separable FIR filter.
- `choose_conv_method(in1, in2[, mode, measure])` Finds the fastest convolution/correlation method.
- `correlation_lags(in1_len, in2_len[, mode])` Calculates the lag / displacement indices array for 1D cross-correlation.

scipy.signal.convolve

scipy.signal.convolve (in1, in2, mode='full', method='auto')

Convolves two N-dimensional arrays.

Convolve `in1` and `in2`, with the output size determined by the `mode` argument.

Parameters

- `in1` [array_like] First input.
- `in2` [array_like] Second input. Should have the same number of dimensions as `in1`.
- `mode` [str {'full', 'valid', 'same'}, optional] A string indicating the size of the output:
 - `full`: The output is the full discrete linear convolution of the inputs. (Default)
 - `valid`: The output consists only of those elements that do not rely on the zero-padding. In `valid` mode, either `in1` or `in2` must be at least as large as the other in every dimension.
 - `same`: The output is the same size as `in1`, centered with respect to the ‘full’ output.
- `method` [str {'auto', 'direct', 'fft'}, optional] A string indicating which method to use to calculate the convolution:
 - `direct`: The convolution is determined directly from sums, the definition of convolution.
 - `fft`: The Fourier Transform is used to perform the convolution by calling `fftconvolve`.
 - `auto`: Automatically chooses direct or Fourier method based on an estimate of which is faster (default). See Notes for more detail.
 New in version 0.19.0.

Returns

- `convolve` [array] An N-dimensional array containing a subset of the discrete linear convolution of `in1` with `in2`.

See also:

- `numpy.polymul` performs polynomial multiplication (same operation, but also accepts poly1d objects)
- `choose_conv_method` chooses the fastest appropriate convolution method
fftconvolve

Always uses the FFT method.

oaconvolve

Uses the overlap-add method to do convolution, which is generally faster when the input arrays are large and significantly different in size.

Notes

By default, convolve and correlate use method='auto', which calls choose_conv_method to choose the fastest method using pre-computed values (choose_conv_method can also measure real-world timing with a keyword argument). Because fftconvolve relies on floating point numbers, there are certain constraints that may force method=direct (more detail in choose_conv_method docstring).

Examples

Smooth a square pulse using a Hann window:

```python
>>> from scipy import signal
>>> sig = np.repeat([0., 1., 0.], 100)
>>> win = signal.windows.hann(50)
>>> filtered = signal.convolve(sig, win, mode='same') / sum(win)
```

```python
>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_win, ax_filt) = plt.subplots(3, 1, sharex=True)
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('Original pulse')
>>> ax_orig.margins(0, 0.1)
>>> ax_win.plot(win)
>>> ax_win.set_title('Filter impulse response')
>>> ax_win.margins(0, 0.1)
>>> ax_filt.plot(filtered)
>>> ax_filt.set_title('Filtered signal')
>>> ax_filt.margins(0, 0.1)
>>> fig.tight_layout()
>>> fig.show()
```

scipy.signal.correlate

scipy.signal.correlate(in1, in2, mode='full', method='auto')

Cross-correlate two N-dimensional arrays.

Cross-correlate in1 and in2, with the output size determined by the mode argument.

Parameters

- **in1** [array_like] First input.
- **in2** [array_like] Second input. Should have the same number of dimensions as in1.
- **mode** [str {'full', 'valid', 'same'}, optional] A string indicating the size of the output:
 - full: The output is the full discrete linear cross-correlation of the inputs. (Default)
 - valid: The output consists only of those elements that do not rely on the zero-padding.
 In 'valid' mode, either in1 or in2 must be at least as large as the other in every dimension.
The output is the same size as `in1`, centered with respect to the ‘full’ output.

method [str {‘auto’, ‘direct’, ‘fft’}, optional] A string indicating which method to use to calculate the correlation.
- **direct** The correlation is determined directly from sums, the definition of correlation.
- **fft** The Fast Fourier Transform is used to perform the correlation more quickly (only available for numerical arrays.)
- **auto** Automatically chooses direct or Fourier method based on an estimate of which is faster (default). See `convolve` Notes for more detail. New in version 0.19.0.

Returns
- **correlate** [array] An N-dimensional array containing a subset of the discrete linear cross-correlation of `in1` with `in2`.

See also:
- `choose_conv_method` contains more documentation on `method`.
- `correlation_lags` calculates the lag / displacement indices array for 1D cross-correlation.

Notes

The correlation `z` of two d-dimensional arrays `x` and `y` is defined as:

\[
z[\ldots, k, \ldots] = \text{sum}[\ldots, i_{-1}, \ldots, x[\ldots, i_{-1}, \ldots] * \text{conj}(y[\ldots, i_{-1} - k, \ldots, \ldots])]\]

This way, if `x` and `y` are 1-D arrays and `z = correlate(x, y, 'full')` then

\[
z[k] = (x * y)(k - N + 1) = \sum_{i=0}^{||x||-1} x[i]y[i+k-N+1]
\]
for \(k = 0, 1, ..., |x| + |y| - 2 \)

where \(|x|\) is the length of \(x\), \(N = \max(|x|, |y|)\), and \(y_m\) is 0 when \(m\) is outside the range of \(y\).

method='fft' only works for numerical arrays as it relies on `fftconvolve`. In certain cases (i.e., arrays of objects or when rounding integers can lose precision), method='direct' is always used.

When using “same” mode with even-length inputs, the outputs of `correlate` and `correlate2d` differ: There is a 1-index offset between them.

Examples

Implement a matched filter using cross-correlation, to recover a signal that has passed through a noisy channel.

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()

>>> sig = np.repeat([0., 1., 1., 0., 1., 0., 0., 1.], 128)
>>> sig_noise = sig + rng.standard_normal(len(sig))
>>> corr = signal.correlate(sig_noise, np.ones(128), mode='same') / 128

>>> clock = np.arange(64, len(sig), 128)
>>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, sharex=True)
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('Original signal')
>>> ax_noise.plot(sig_noise)
>>> ax_noise.set_title('Signal with noise')
>>> ax_corr.plot(corr)
>>> ax_corr.set_title('Cross-correlated with rectangular pulse')
>>> ax_orig.margins(0.1)
>>> fig.tight_layout()
>>> plt.show()
```

Compute the cross-correlation of a noisy signal with the original signal.

```python
>>> x = np.arange(128) / 128
>>> sig = np.sin(2 * np.pi * x)
>>> sig_noise = sig + rng.standard_normal(len(sig))
>>> corr = signal.correlate(sig_noise, sig)
>>> lags = signal.correlation_lags(len(sig), len(sig_noise))
>>> corr /= np.max(corr)

>>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, figsize=(4.8, 4.8))
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('Original signal')
>>> ax_orig.set_xlabel('Sample Number')
>>> ax_noise.plot(sig_noise)
>>> ax_noise.set_title('Signal with noise')
```

(continues on next page)
scipy.signal.fftconvolve

scipy.signal.fftconvolve(in1, in2, mode='full', axes=None)

Convolves two N-dimensional arrays using FFT.

Convolve in1 and in2 using the fast Fourier transform method, with the output size determined by the mode argument.

This is generally much faster than convolve for large arrays (n > ~500), but can be slower when only a few output values are needed, and can only output float arrays (int or object array inputs will be cast to float).

As of v0.19, convolve automatically chooses this method or the direct method based on an estimation of which is faster.

Parameters

- **in1** [array_like] First input.
- **in2** [array_like] Second input. Should have the same number of dimensions as in1.
- **mode** [str {‘full’, ‘valid’, ‘same’}, optional] A string indicating the size of the output:
 - **full** The output is the full discrete linear convolution of the inputs. (Default)
 - **valid** The output consists only of those elements that do not rely on the zero-padding. In ‘valid’ mode, either in1 or in2 must be at least as large as the other in every dimension.
 - **same** The output is the same size as in1, centered with respect to the ‘full’ output.
- **axes** [int or array_like of ints or None, optional] Axes over which to compute the convolution. The default is over all axes.
Returns

- **out**: [array] An N-dimensional array containing a subset of the discrete linear convolution of `in1` with `in2`.

See also:

convolve

Uses the direct convolution or FFT convolution algorithm depending on which is faster.

oaconvolve

Uses the overlap-add method to do convolution, which is generally faster when the input arrays are large and significantly different in size.

Examples

Autocorrelation of white noise is an impulse.

```python
>>> from scipy import signal
>>> rng = np.random.default_rng()
>>> sig = rng.standard_normal(1000)
>>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full')
```

Gaussian blur implemented using FFT convolution. Notice the dark borders around the image, due to the zero-padding beyond its boundaries. The `convolve2d` function allows for other types of image boundaries, but is far slower.

```python
>>> from scipy import misc
>>> face = misc.face(gray=True)
>>> kernel = np.outer(signal.windows.gaussian(70, 8), signal.windows.gaussian(70, 8))
>>> blurred = signal.fftconvolve(face, kernel, mode='same')
```

```python
>>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(3, 1, figsize=(6, 15))
>>> ax_orig.imshow(face, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_kernel.imshow(kernel, cmap='gray')
>>> ax_kernel.set_title('Gaussian kernel')
>>> ax_kernel.set_axis_off()
>>> ax_blurred.imshow(blurred, cmap='gray')
>>> ax_blurred.set_title('Blurred')
```

(continues on next page)
```python
>>> ax_blurred.set_axis_off()
>>> fig.show()
```

```
White noise
```

```
Autocorrelation
```

scipy.signal.overlapadd

`scipy.signal.overlapadd(in1, in2, mode='full', axes=None)`

Convolves two N-dimensional arrays using the overlap-add method.

Convolves `in1` and `in2` using the overlap-add method, with the output size determined by the `mode` argument.

This is generally much faster than `convolve` for large arrays (n > ~500), and generally much faster than `fftconvolve` when one array is much larger than the other, but can be slower when only a few output values are needed or when the arrays are very similar in shape, and can only output float arrays (int or object array inputs will be cast to float).

Parameters

- `in1` [array_like] First input.
- `in2` [array_like] Second input. Should have the same number of dimensions as `in1`.
- `mode` [str {'full', 'valid', 'same'}, optional] A string indicating the size of the output:
 - `full` The output is the full discrete linear convolution of the inputs. (Default)
 - `valid` The output consists only of those elements that do not rely on the zero-padding. In ‘valid’ mode, either `in1` or `in2` must be at least as large as the other in every dimension.
 - `same` The output is the same size as `in1`, centered with respect to the ‘full’ output.
- `axes` [int or array_like of ints or None, optional] Axes over which to compute the convolution. The default is over all axes.

Returns

- `out` [array] An N-dimensional array containing a subset of the discrete linear convolution of `in1` with `in2`.

See also:

- `convolve`
3.3. API definition
Uses the direct convolution or FFT convolution algorithm depending on which is faster.

fftconvolve

An implementation of convolution using FFT.

Notes

New in version 1.4.0.

References

[1], [2]

Examples

Conolve a 100,000 sample signal with a 512-sample filter.

```python
>>> from scipy import signal
>>> rng = np.random.default_rng()
>>> sig = rng.standard_normal(100000)
>>> filt = signal.firwin(512, 0.01)
>>> fsig = signal.oaconvolve(sig, filt)
```

```python
>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1)
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('White noise')
>>> ax_mag.plot(fsig)
>>> ax_mag.set_title('Filtered noise')
>>> fig.tight_layout()
>>> fig.show()
```

![White noise](image1.png)

![Filtered noise](image2.png)
scipy.signal.convolve2d

scipy.signal.convolve2d(in1, in2, mode='full', boundary='fill', fillvalue=0)

Convolves two 2-dimensional arrays.

Convolves in1 and in2 with output size determined by mode, and boundary conditions determined by boundary and fillvalue.

Parameters

- **in1** ([array_like]) First input. Should have the same number of dimensions as in1.
- **in2** ([array_like]) Second input. Should have the same number of dimensions as in1.
- **mode** ([str {‘full’, ‘valid’, ‘same’}, optional]) A string indicating the size of the output:
 - **full** The output is the full discrete linear convolution of the inputs. (Default)
 - **valid** The output consists only of those elements that do not rely on the zero-padding. In ‘valid’ mode, either in1 or in2 must be at least as large as the other in every dimension.
 - **same** The output is the same size as in1, centered with respect to the ‘full’ output.
- **boundary** ([str {‘fill’, ‘wrap’, ‘symm’}, optional]) A flag indicating how to handle boundaries:
 - **fill** Pad input arrays with fillvalue. (default)
 - **wrap** Circular boundary conditions.
 - **symm** Symmetrical boundary conditions.
- **fillvalue** ([scalar, optional]) Value to fill pad input arrays with. Default is 0.

Returns

- **out** ([ndarray]) A 2-dimensional array containing a subset of the discrete linear convolution of in1 with in2.

Examples

Compute the gradient of an image by 2D convolution with a complex Scharr operator. (Horizontal operator is real, vertical is imaginary.) Use symmetric boundary condition to avoid creating edges at the image boundaries.

```python
>>> from scipy import signal
>>> from scipy import misc
>>> ascent = misc.ascent()
>>> scharr = np.array([[[-3-3j, 0-10j, +3-3j],
                      [-10+0j, 0+0j, +10+0j],
                      [-3+3j, 0+10j, +3+3j]]]) # Gx + j*Gy
>>> grad = signal.convolve2d(ascent, scharr, boundary='symm', mode='same')

>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_mag, ax_ang) = plt.subplots(3, 1, figsize=(6, 15))
>>> ax_orig.imshow(ascent, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_mag.imshow(np.abs(grad), cmap='gray')
>>> ax_mag.set_title('Gradient magnitude')
>>> ax_mag.set_axis_off()
>>> ax_ang.imshow(np.angle(grad), cmap='hsv') # hsv is cyclic, like angles
>>> ax_ang.set_title('Gradient orientation')
>>> ax_ang.set_axis_off()
>>> fig.show()
```
Original

Gradient magnitude

Gradient orientation
scipy.signal.correlate2d

scipy.signal.correlate2d(in1, in2, mode='full', boundary='fill', fillvalue=0)

Cross-correlate two 2-dimensional arrays.

Cross-correlate in1 and in2 with output size determined by mode, and boundary conditions determined by boundary and fillvalue.

Parameters

in1 [array_like] First input.
in2 [array_like] Second input. Should have the same number of dimensions as in1.
mode [str {'full', 'valid', 'same'}, optional] A string indicating the size of the output:
 full The output is the full discrete linear cross-correlation of the inputs. (Default)
 valid The output consists only of those elements that do not rely on the zero-padding. In ‘valid’ mode, either in1 or in2 must be at least as large as the other in every dimension.
 same The output is the same size as in1, centered with respect to the ‘full’ output.
boundary [str {'fill', 'wrap', 'symm'}, optional] A flag indicating how to handle boundaries:
 fill pad input arrays with fillvalue. (default)
 wrap circular boundary conditions.
 symm symmetrical boundary conditions.
fillvalue [scalar, optional] Value to fill pad input arrays with. Default is 0.

Returns
correlate2d [ndarray] A 2-dimensional array containing a subset of the discrete linear cross-correlation of in1 with in2.

Notes

When using “same” mode with even-length inputs, the outputs of correlate and correlate2d differ: There is a 1-index offset between them.

Examples

Use 2D cross-correlation to find the location of a template in a noisy image:

```python
>>> from scipy import signal
>>> from scipy import misc
>>> rng = np.random.default_rng()
>>> face = misc.face(gray=True) - misc.face(gray=True).mean()
>>> template = np.copy(face[300:365, 670:750])  # right eye
>>> template -= template.mean()
>>> face = face + rng.standard_normal(face.shape) * 50  # add noise
>>> corr = signal.correlate2d(face, template, boundary='symm', mode='same')
>>> y, x = np.unravel_index(np.argmax(corr), corr.shape)  # find the match
```

```python
>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_template, ax_corr) = plt.subplots(3, 1,...  figsize=(6, 15))
>>> ax_orig.imshow(face, cmap='gray')
```
(continues on next page)
```python
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_template.imshow(template, cmap='gray')
>>> ax_template.set_title('Template')
>>> ax_template.set_axis_off()
>>> ax_corr.imshow(corr, cmap='gray')
>>> ax_corr.set_title('Cross-correlation')
>>> ax_corr.set_axis_off()
>>> ax_orig.plot(x, y, 'ro')
>>> fig.show()
```

scipy.signal.sepfir2d

`scipy.signal.sepfir2d(input, hrow, hcol)`

Convolve with a 2-D separable FIR filter.

Convolve the rank-2 input array with the separable filter defined by the rank-1 arrays hrow, and hcol. Mirror symmetric boundary conditions are assumed. This function can be used to find an image given its B-spline representation.

Parameters

- **input** [ndarray] The input signal. Must be a rank-2 array.
- **hrow** [ndarray] A rank-1 array defining the row direction of the filter. Must be odd-length
- **hcol** [ndarray] A rank-1 array defining the column direction of the filter. Must be odd-length

Returns

- **output** [ndarray] The filtered signal.

Examples

Examples are given in the tutorial.

scipy.signal.choose_conv_method

`scipy.signal.choose_conv_method(in1, in2, mode='full', measure=False)`

Find the fastest convolution/correlation method.

This primarily exists to be called during the `method='auto'` option in `convolve` and `correlate`. It can also be used to determine the value of `method` for many different convolutions of the same dtype/shape. In addition, it supports timing the convolution to adapt the value of `method` to a particular set of inputs and/or hardware.

Parameters

- **in1** [array_like] The first argument passed into the convolution function.
- **in2** [array_like] The second argument passed into the convolution function.
- **mode** [str {'full', 'valid', 'same'}, optional] A string indicating the size of the output:
 - **full** The output is the full discrete linear convolution of the inputs. (Default)
 - **valid** The output consists only of those elements that do not rely on the zero-padding.
 - **same** The output is the same size as `in1`, centered with respect to the ‘full’ output.
- **measure** [bool, optional] If True, run and time the convolution of `in1` and `in2` with both methods and return the fastest. If False (default), predict the fastest method using precomputed values.

Returns

- **method** [str] A string indicating which convolution method is fastest, either ‘direct’ or ‘fft’
3.3. API definition

Original

Template

Cross-correlation
times : [dict, optional] A dictionary containing the times (in seconds) needed for each method. This value is only returned if measure=True.

See also:

convolve
correlate

Notes

Generally, this method is 99% accurate for 2D signals and 85% accurate for 1D signals for randomly chosen input sizes. For precision, use measure=True to find the fastest method by timing the convolution. This can be used to avoid the minimal overhead of finding the fastest method later, or to adapt the value of method to a particular set of inputs.

Experiments were run on an Amazon EC2 r5a.2xlarge machine to test this function. These experiments measured the ratio between the time required when using method='auto' and the time required for the fastest method (i.e., ratio = time_auto / min(time_fft, time_direct)). In these experiments, we found:

- There is a 95% chance of this ratio being less than 1.5 for 1D signals and a 99% chance of being less than 2.5 for 2D signals.
- The ratio was always less than 2.5/5 for 1D/2D signals respectively.
- This function is most inaccurate for 1D convolutions that take between 1 and 10 milliseconds with method='direct'. A good proxy for this (at least in our experiments) is \(1e6 \leq in1.size * in2.size \leq 1e7\).

The 2D results almost certainly generalize to 3D/4D/etc because the implementation is the same (the 1D implementation is different).

All the numbers above are specific to the EC2 machine. However, we did find that this function generalizes fairly decently across hardware. The speed tests were of similar quality (and even slightly better) than the same tests performed on the machine to tune this function's numbers (a mid-2014 15-inch MacBook Pro with 16GB RAM and a 2.5GHz Intel i7 processor).

There are cases when fftconvolve supports the inputs but this function returns direct (e.g., to protect against floating point integer precision).

New in version 0.19.

Examples

Estimate the fastest method for a given input:

```python
>>> from scipy import signal
>>> rng = np.random.default_rng()
>>> img = rng.random((32, 32))
>>> filter = rng.random((8, 8))
>>> method = signal.choose_conv_method(img, filter, mode='same')
>>> method
'fft'
```

This can then be applied to other arrays of the same dtype and shape:
>>> img2 = rng.random((32, 32))
>>> filter2 = rng.random((8, 8))
>>> corr2 = signal.correlate(img2, filter2, mode='same', method=method)
>>> conv2 = signal.convolve(img2, filter2, mode='same', method=method)

The output of this function (method) works with `correlate` and `convolve`.

scipy.signal.correlation_lags

scipy.signal.correlation_lags *(in1_len, in2_len, mode='full')*

Calculates the lag / displacement indices array for 1D cross-correlation.

Parameters

- `in1_size` [int] First input size.
- `in2_size` [int] Second input size.
- `mode` [str {'full', 'valid', 'same'}, optional] A string indicating the size of the output. See the documentation `correlate` for more information.

Returns

- `lags` [array] Returns an array containing cross-correlation lag/displacement indices. Indices can be indexed with the `np.argmax` of the correlation to return the lag/displacement.

See also:

- `correlate`

 Compute the N-dimensional cross-correlation.

Notes

Cross-correlation for continuous functions \(f \) and \(g \) is defined as:

\[
(f * g)(\tau) \triangleq \int_{t_0}^{t_0+T} f(t) g(t + \tau) \, dt
\]

Where \(\tau \) is defined as the displacement, also known as the lag.

Cross correlation for discrete functions \(f \) and \(g \) is defined as:

\[
(f * g)[n] \triangleq \sum_{m=-\infty}^{\infty} f[m] g[m + n]
\]

Where \(n \) is the lag.

Examples

Cross-correlation of a signal with its time-delayed self.

```python
>>> from scipy import signal
>>> from numpy.random import default_rng
>>> rng = default_rng()
>>> x = rng.standard_normal(1000)
>>> y = np.concatenate([rng.standard_normal(100), x])
>>> correlation = signal.correlate(x, y, mode="full")
```
```python
>>> lags = signal.correlation_lags(x.size, y.size, mode="full")
>>> lag = lags[np.argmax(correlation)]
```

B-splines

- `bspline(x, n)`
 B-spline basis function of order n.
- `cubic(x)`
 A cubic B-spline.
- `quadratic(x)`
 A quadratic B-spline.
- `gauss_spline(x, n)`
 Gaussian approximation to B-spline basis function of order n.
- `cspline1d(signal[, lamb])`
 Compute cubic spline coefficients for rank-1 array.
- `qspline1d(signal[, lamb])`
 Compute quadratic spline coefficients for rank-1 array.
- `cspline2d(input[, lambda, precision])`
 Coefficients for 2-D cubic (3rd order) B-spline.
- `qspline2d(input[, lambda, precision])`
 Coefficients for 2-D quadratic (2nd order) B-spline.
- `cspline1d_eval(cj,newx[, dx,x0])`
 Evaluate a cubic spline at the new set of points.
- `qspline1d_eval(cj,newx[, dx,x0])`
 Evaluate a quadratic spline at the new set of points.
- `spline_filter(Iin[, lamb])`
 Smoothing spline (cubic) filtering of a rank-2 array.

scipy.signal.bspline

scipy.signal.bspline(x, n)

B-spline basis function of order n.

Parameters

- `x` [array_like] a knot vector
- `n` [int] The order of the spline. Must be non-negative, i.e., n >= 0

Returns

- `res` [ndarray] B-spline basis function values

See also:

- `cubic`
 A cubic B-spline.
- `quadratic`
 A quadratic B-spline.

Notes

Uses numpy.piecewise and automatic function-generator.
Examples

We can calculate B-Spline basis function of several(157,65),(844,903)

```python
>>> from scipy.signal import bspline, cubic, quadratic
>>> bspline(0.0, 1)
1
```
```
>>> knots = [-1.0, 0.0, -1.0]
>>> bspline(knots, 2)
array([0.125, 0.75, 0.125])
```
```
>>> np.array_equal(bspline(knots, 2), quadratic(knots))
True
```
```
>>> np.array_equal(bspline(knots, 3), cubic(knots))
True
```

scipy.signal.cubic

scipy.signal.cubic(x)

A cubic B-spline.

This is a special case of `bspline`, and equivalent to `bspline(x, 3)`.

Parameters

- `x` : [array_like] a knot vector

Returns

- `res` : [ndarray] Cubic B-spline basis function values

See also:

- `bspline`
 B-spline basis function of order n

- `quadratic`
 A quadratic B-spline.

Examples

We can calculate B-Spline basis function of several orders:

```python
>>> from scipy.signal import bspline, cubic, quadratic
>>> bspline(0.0, 1)
1
```
```
>>> knots = [-1.0, 0.0, -1.0]
>>> bspline(knots, 2)
array([0.125, 0.75, 0.125])
```
scipy.signal.quadratic

scipy.signal.quadratic(x)
A quadratic B-spline.

This is a special case of bspline, and equivalent to bspline(x, 2).

Parameters

x : array_like a knot vector

Returns

res : ndarray Quadratic B-spline basis function values

See also:

bspline
B-spline basis function of order n
cubic
A cubic B-spline.

Examples

We can calculate B-Spline basis function of several orders:

```python
>>> from scipy.signal import bspline, cubic, quadratic
>>> bspline(0.0, 1)
1
```

```python
>>> knots = [-1.0, 0.0, -1.0]
>>> bspline(knots, 2)
array([0.125, 0.75, 0.125])
```

```python
>>> np.array_equal(bspline(knots, 2), quadratic(knots))
True
```

```python
>>> np.array_equal(bspline(knots, 3), cubic(knots))
True
```
scipy.signal.gauss_spline

`scipy.signal.gauss_spline(x, n)`

Gaussian approximation to B-spline basis function of order n.

Parameters

- `x` : array_like, a knot vector
- `n` : int, The order of the spline. Must be non-negative, i.e., `n >= 0`

Returns

- `res` : ndarray, B-spline basis function values approximated by a zero-mean Gaussian function.

Notes

The B-spline basis function can be approximated well by a zero-mean Gaussian function with standard-deviation equal to \(\sigma = (n + 1)/12 \) for large \(n \):

\[
\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma}}
\]

References

[1], [2]

Examples

We can calculate B-Spline basis functions approximated by a gaussian distribution:

```python
>>> from scipy.signal import gauss_spline, bspline
>>> knots = np.array([-1.0, 0.0, -1.0])
>>> gauss_spline(knots, 3)
array([0.15418033, 0.6909883, 0.15418033])  # may vary
```

```python
>>> bspline(knots, 3)
array([0.16666667, 0.66666667, 0.16666667])  # may vary
```

scipy.signal.cspline1d

`scipy.signal.cspline1d(signal, lamb=0.0)`

Compute cubic spline coefficients for rank-1 array.

Find the cubic spline coefficients for a 1-D signal assuming mirror-symmetric boundary conditions. To obtain the signal back from the spline representation mirror-symmetric-convolve these coefficients with a length 3 FIR window \([1.0, 4.0, 1.0]/6.0\).

Parameters

- `signal` : ndarray, A rank-1 array representing samples of a signal.
- `lamb` : float, optional, Smoothing coefficient, default is 0.0.

Returns

- `c` : ndarray, Cubic spline coefficients.

See also:
cspline1d_eval

Evaluate a cubic spline at the new set of points.

Examples

We can filter a signal to reduce and smooth out high-frequency noise with a cubic spline:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import cspline1d, cspline1d_eval
>>> rng = np.random.default_rng()
>>> sig = np.repeat([0., 1., 0.], 100)
>>> sig += rng.standard_normal(len(sig)) * 0.05  # add noise
>>> time = np.linspace(0, len(sig))
>>> filtered = cspline1d_eval(cspline1d(sig), time)
>>> plt.plot(sig, label="signal")
>>> plt.plot(time, filtered, label="filtered")
>>> plt.legend()
>>> plt.show()
```

scipy.signal.qspline1d

scipy.signal.qspline1d(signal, lamb=0.0)

Compute quadratic spline coefficients for rank-1 array.

Parameters

- **signal** [ndarray] A rank-1 array representing samples of a signal.
- **lamb** [float, optional] Smoothing coefficient (must be zero for now).

Returns

- **c** [ndarray] Quadratic spline coefficients.

See also:
qspline1d_eval

Evaluate a quadratic spline at the new set of points.

Notes

Find the quadratic spline coefficients for a 1-D signal assuming mirror-symmetric boundary conditions. To obtain the signal back from the spline representation mirror-symmetric-convolve these coefficients with a length 3 FIR window [1.0, 6.0, 1.0]/8.0.

Examples

We can filter a signal to reduce and smooth out high-frequency noise with a quadratic spline:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import qspline1d, qspline1d_eval
>>> rng = np.random.default_rng()
>>> sig = np.repeat([0., 1., 0.], 100)
>>> sig += rng.standard_normal(len(sig))*0.05  # add noise
>>> time = np.linspace(0, len(sig))
>>> filtered = qspline1d_eval(qspline1d(sig), time)
>>> plt.plot(sig, label="signal")
>>> plt.plot(time, filtered, label="filtered")
>>> plt.legend()
>>> plt.show()
```
scipy.signal.cspline2d

`scipy.signal.cspline2d(input, lambda=0.0, precision=-1.0)`

Coefficients for 2-D cubic (3rd order) B-spline.

Return the third-order B-spline coefficients over a regularly spaced input grid for the two-dimensional input image.

Parameters

- **input** [ndarray] The input signal.
- **lambda** [float] Specifies the amount of smoothing in the transfer function.
- **precision** [float] Specifies the precision for computing the infinite sum needed to apply mirror-symmetric boundary conditions.

Returns

- **output** [ndarray] The filtered signal.

Examples

Examples are given *in the tutorial*.

scipy.signal.qspline2d

`scipy.signal.qspline2d(input, lambda=0.0, precision=-1.0)`

Coefficients for 2-D quadratic (2nd order) B-spline:

Return the second-order B-spline coefficients over a regularly spaced input grid for the two-dimensional input image.

Parameters

- **input** [ndarray] The input signal.
- **lambda** [float] Specifies the amount of smoothing in the transfer function.
- **precision** [float] Specifies the precision for computing the infinite sum needed to apply mirror-symmetric boundary conditions.

Returns

- **output** [ndarray] The filtered signal.

Examples

Examples are given *in the tutorial*.

scipy.signal.cspline1d_eval

`scipy.signal.cspline1d_eval(cj, newx, dx=1.0, x0=0)`

Evaluate a cubic spline at the new set of points.

`dx` is the old sample-spacing while `x0` was the old origin. In other-words the old-sample points (knot-points) for which the `cj` represent spline coefficients were at equally-spaced points of:

\[\text{oldx} = x0 + j \times dx, j=0 \ldots N-1, \text{with} \ N=\text{len}(cj) \]

Edges are handled using mirror-symmetric boundary conditions.

Parameters

- **cj** [ndarray] cubic spline coefficients
- **newx** [ndarray] New set of points.
- **dx** [float, optional] Old sample-spacing, the default value is 1.0.
x0 [int, optional] Old origin, the default value is 0.

Returns
res [ndarray] Evaluated a cubic spline points.

See also:

cspline1d

Compute cubic spline coefficients for rank-1 array.

Examples

We can filter a signal to reduce and smooth out high-frequency noise with a cubic spline:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import cspline1d, cspline1d_eval
>>> rng = np.random.default_rng()
>>> sig = np.repeat([0., 1., 0.], 100)
>>> sig += rng.standard_normal(len(sig))*.05  # add noise
>>> time = np.linspace(0, len(sig))
>>> filtered = cspline1d_eval(cspline1d(sig), time)
>>> plt.plot(sig, label="signal")
>>> plt.plot(time, filtered, label="filtered")
>>> plt.legend()
>>> plt.show()
```
scipy.signal.qspline1d_eval

Evaluate a quadratic spline at the new set of points.

Parameters

- **cj** ([ndarray]): Quadratic spline coefficients
- **newx** ([ndarray]): New set of points.
- **dx** ([float, optional]): Old sample-spacing, the default value is 1.0.
- **x0** ([int, optional]): Old origin, the default value is 0.

Returns

- **res** ([ndarray]): Evaluated a quadratic spline points.

See also:

qspline1d

Compute quadratic spline coefficients for rank-1 array.

Notes

- \(dx\) is the old sample-spacing while \(x0\) was the old origin. In other-words the old-sample points (knot-points) for which the \(cj\) represent spline coefficients were at equally-spaced points of:

\[
\text{oldx} = x0 + j \cdot dx \quad j=0\ldots N-1, \quad \text{with} \quad N=\text{len}(cj)
\]

Edges are handled using mirror-symmetric boundary conditions.

Examples

We can filter a signal to reduce and smooth out high-frequency noise with a quadratic spline:

```python
from scipy.signal import qspline1d, qspline1d_eval

rng = np.random.default_rng()
	sig = np.repeat([0., 1., 0.], 100)
	sig += rng.standard_normal(len(sig))*0.05  # add noise

time = np.linspace(0, len(sig))

filtered = qspline1d_eval(qspline1d(sig), time)

plt.plot(sig, label="signal")
plt.plot(time, filtered, label="filtered")
plt.legend()
plt.show()
```
scipy.signal.spline_filter

scipy.signal.spline_filter (lin, lmbda=5.0)

Smoothing spline (cubic) filtering of a rank-2 array.

Filter an input data set, lin, using a (cubic) smoothing spline of fall-off lmbda.

Parameters

- **lin** [array_like] input data set
- **lmbda** [float, optional] spline smoothing fall-off value, default is 5.0.

Returns

- **res** [ndarray] filtered input data

Examples

We can filter an multi dimentional signal (ex: 2D image) using cubic B-spline filter:

```python
>>> from scipy.signal import spline_filter
>>> import matplotlib.pyplot as plt
>>> orig_img = np.eye(20)  # create an image
>>> orig_img[10, :] = 1.0
>>> sp_filter = spline_filter(orig_img, lmbda=0.1)
>>> f, ax = plt.subplots(1, 2, sharex=True)
>>> for ind, data in enumerate([orig_img, "original image"],
...                            [sp_filter, "spline filter"]):
...     ax[ind].imshow(data[0], cmap='gray_r')
...     ax[ind].set_title(data[1])
>>> plt.tight_layout()
>>> plt.show()
```
Filtering

order_filter(a, domain, rank) Perform an order filter on an N-D array.

medfilt(volume[, kernel_size]) Perform a median filter on an N-dimensional array.

medfilt2d(input[, kernel_size]) Median filter a 2-dimensional array.

wiener(im[, mysize, noise]) Implement a Wiener filter on an N-dimensional array.

symiirorder1(input, c0, z1[, precision]) Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of first-order sections. The second section uses a reversed sequence. This implements a system with the following transfer function and mirror-symmetric boundary conditions:

\[
\text{symiirorder2}(\text{input, r, omega[, precision]})
\]

Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of second-order sections. The second section uses a reversed sequence. This implements the following transfer function:

lfiltic(b, a, y[, x]) Construct initial conditions for lfilter given input and output vectors.

lfilter_zi(b, a) Construct initial conditions for lfilter for step response steady-state.

filtfilt(b, a, x[, axis, padtype, padlen,...]) Apply a digital filter forward and backward to a signal.

savvogel_filter(x, window_length, polyorder[, ...]) Apply a Savitzky-Golay filter to an array.

deconvolve(signal, divisor) Deconvolves divisor out of signal using inverse filtering.

sosfilt(sos, x[, axis, zi]) Filter data along one dimension using cascaded second-order sections.

sosfilt_zi(sos) Construct initial conditions for sosfilt for step response steady-state.

sosfiltfilt(sos, x[, axis, padtype, padlen]) A forward-backward digital filter using cascaded second-order sections.

hilbert(x[, N, axis]) Compute the analytic signal, using the Hilbert transform.

hilbert2(x[, N]) Compute the ‘2-D’ analytic signal of x.

continues on next page
Table 154 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>decimate</code></td>
<td>Downsample the signal after applying an anti-aliasing filter.</td>
</tr>
<tr>
<td><code>detrend</code></td>
<td>Remove linear trend along axis from data.</td>
</tr>
<tr>
<td><code>resample</code></td>
<td>Resample x to num samples using Fourier method along the given axis.</td>
</tr>
<tr>
<td><code>resample_poly</code></td>
<td>Resample x along the given axis using polyphase filtering.</td>
</tr>
<tr>
<td><code>upfirdn</code></td>
<td>Upsample, FIR filter, and downsample.</td>
</tr>
</tbody>
</table>

scipy.signal.order_filter

`scipy.signal.order_filter(a, domain, rank)`

Perform an order filter on an N-D array.

Perform an order filter on the array in. The domain argument acts as a mask centered over each pixel. The non-zero elements of domain are used to select elements surrounding each input pixel which are placed in a list. The list is sorted, and the output for that pixel is the element corresponding to rank in the sorted list.

Parameters

- **a** [ndarray] The N-dimensional input array.
- **domain** [array_like] A mask array with the same number of dimensions as a. Each dimension should have an odd number of elements.
- **rank** [int] A non-negative integer which selects the element from the sorted list (0 corresponds to the smallest element, 1 is the next smallest element, etc.).

Returns

- **out** [ndarray] The results of the order filter in an array with the same shape as a.

Examples

```python
gtir from scipy import signal
gtir x = np.arange(25).reshape(5, 5)
gtir domain = np.identity(3)
gtir x
array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24]])
gtir signal.order_filter(x, domain, 0)
array([[0., 0., 0., 0., 0.],
       [0., 0., 1., 2., 0.],
       [0., 5., 6., 7., 0.],
       [0., 10., 11., 12., 0.],
       [0., 0., 0., 0., 0.]])
gtir signal.order_filter(x, domain, 2)
array([[6., 7., 8., 9., 4.],
       [16., 17., 18., 19., 14.],
       [21., 22., 23., 24., 19.],
       [20., 21., 22., 23., 24.]])
```
scipy.signal.medfilt

```python
scipy.signal.medfilt(volume, kernel_size=None)
```

Perform a median filter on an N-dimensional array.

Apply a median filter to the input array using a local window-size given by `kernel_size`. The array will automatically be zero-padded.

Parameters

- `kernel_size` [array_like, optional] A scalar or an N-length list giving the size of the median filter window in each dimension. Elements of `kernel_size` should be odd. If `kernel_size` is a scalar, then this scalar is used as the size in each dimension. Default size is 3 for each dimension.

Returns

- `out` [ndarray] An array the same size as input containing the median filtered result.

Warns

- `UserWarning` If array size is smaller than kernel size along any dimension

See also:

- `scipy.ndimage.median_filter`
- `scipy.signal.medfilt2d`

Notes

The more general function `scipy.ndimage.median_filter` has a more efficient implementation of a median filter and therefore runs much faster.

For 2-dimensional images with `uint8`, `float32` or `float64` dtypes, the specialised function `scipy.signal.medfilt2d` may be faster.

scipy.signal.medfilt2d

```python
scipy.signal.medfilt2d(input, kernel_size=3)
```

Median filter a 2-dimensional array.

Apply a median filter to the `input` array using a local window-size given by `kernel_size` (must be odd). The array is zero-padded automatically.

Parameters

- `input` [array_like] A 2-dimensional input array.
- `kernel_size` [array_like, optional] A scalar or a list of length 2, giving the size of the median filter window in each dimension. Elements of `kernel_size` should be odd. If `kernel_size` is a scalar, then this scalar is used as the size in each dimension. Default is a kernel of size `(3, 3)`.

Returns

- `out` [ndarray] An array the same size as input containing the median filtered result.

See also:

- `scipy.ndimage.median_filter`
Notes

This is faster than medfilt when the input dtype is uint8, float32, or float64; for other types, this falls back to medfilt; you should use scipy.ndimage.median_filter instead as it is much faster. In some situations, scipy.ndimage.median_filter may be faster than this function.

scipy.signal.wiener

scipy.signal.wiener(im, mysize=None, noise=None)

Perform a Wiener filter on an N-dimensional array.

Apply a Wiener filter to the N-dimensional array im.

Parameters

mysize [int or array_like, optional] A scalar or an N-length list giving the size of the Wiener filter window in each dimension. Elements of mysize should be odd. If mysize is a scalar, then this scalar is used as the size in each dimension.

noise [float, optional] The noise-power to use. If None, then noise is estimated as the average of the local variance of the input.

Returns

out [ndarray] Wiener filtered result with the same shape as im.

Notes

This implementation is similar to wiener2 in Matlab/Octave. For more details see [1]

References

[1]

Examples

```python
>>> from scipy.misc import face
>>> from scipy.signal import wiener
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> rng = np.random.default_rng()
>>> img = rng.random((40, 40))  # Create a random image
>>> filtered_img = wiener(img, (5, 5))  # Filter the image
>>> f, (plot1, plot2) = plt.subplots(1, 2)
>>> plot1.imshow(img)
>>> plot2.imshow(filtered_img)
>>> plt.show()
```
scipy.signal.symiirorder1

Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of first-order sections. The second section uses a reversed sequence. This implements a system with the following transfer function and mirror-symmetric boundary conditions:

\[
H(z) = \frac{c_0}{(1-z_1/z)(1 - z_1 z)}
\]

The resulting signal will have mirror symmetric boundary conditions as well.

Parameters

- **input** [ndarray] The input signal.
- **c0, z1** [scalar] Parameters in the transfer function.
- **precision** : Specifies the precision for calculating initial conditions of the recursive filter based on mirror-symmetric input.

Returns

- **output** [ndarray] The filtered signal.

scipy.signal.symiirorder2

Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of second-order sections. The second section uses a reversed sequence. This implements the following transfer function:

\[
H(z) = \frac{c s^2}{(1 - a2/z - a3/z^2)(1 - a2 z - a3 z^2)}
\]

where:
a2 = (2 r cos omega)
a3 = - r^2
cs = 1 - 2 r cos omega + r^2

Parameters

- **input** [ndarray] The input signal.
- **r, omega** [float] Parameters in the transfer function.
- **precision** [float] Specifies the precision for calculating initial conditions of the recursive filter based on mirror-symmetric input.

Returns

- **output** [ndarray] The filtered signal.

scipy.signal.lfilter

```python
scipy.signal.lfilter(b, a, x, axis=-1, zi=None)
```

Filter data along one-dimension with an IIR or FIR filter.

Filter a data sequence, `x`, using a digital filter. This works for many fundamental data types (including Object type). The filter is a direct form II transposed implementation of the standard difference equation (see Notes).

The function `sosfilt` (and filter design using `output='sos'`) should be preferred over `lfilter` for most filtering tasks, as second-order sections have fewer numerical problems.

Parameters

- **b** [array_like] The numerator coefficient vector in a 1-D sequence.
- **a** [array_like] The denominator coefficient vector in a 1-D sequence. If `a[0]` is not 1, then both `a` and `b` are normalized by `a[0]`.
- **x** [array_like] An N-dimensional input array.
- **axis** [int, optional] The axis of the input data array along which to apply the linear filter. The filter is applied to each subarray along this axis. Default is -1.
- **zi** [array_like, optional] Initial conditions for the filter delays. It is a vector (or array of vectors for an N-dimensional input) of length `max(len(a), len(b)) - 1`. If `zi` is None or is not given then initial rest is assumed. See `lfilter_zi` for more information.

Returns

- **y** [array] The output of the digital filter.
- **zf** [array, optional] If `zi` is None, this is not returned, otherwise, `zf` holds the final filter delay values.

See also:

- `lfilter_zi` Compute initial state (steady state of step response) for `lfilter`.
- `filtfilt` A forward-backward filter, to obtain a filter with linear phase.
- `savgol_filter` A Savitzky-Golay filter.
sosfilt

Filter data using cascaded second-order sections.

sosfiltfilt

A forward-backward filter using second-order sections.

Notes

The filter function is implemented as a direct II transposed structure. This means that the filter implements:

\[-a[1]y[n-1] - \ldots - a[N]y[n-N] \]

where \(M \) is the degree of the numerator, \(N \) is the degree of the denominator, and \(n \) is the sample number. It is implemented using the following difference equations (assuming \(M = N \)):

\[
\begin{align*}
 a[0]y[n] &= b[0]x[n] + d[0][n-1] \\
 \vdots \\
 d[N-1][n] &= b[N]x[n] - a[N]y[n]
\end{align*}
\]

where \(d \) are the state variables.

The rational transfer function describing this filter in the z-transform domain is:

\[
Y(z) = \frac{-1}{b[0] + b[1]z + \ldots + b[M]z} \frac{-1}{a[0] + a[1]z + \ldots + a[N]z} X(z)
\]

Examples

Generate a noisy signal to be filtered:

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> t = np.linspace(-1, 1, 201)
>>> x = (np.sin(2*np.pi*0.75*t*(1-t) + 2.1) +
       ... 0.1*np.sin(2*np.pi*1.25*t + 1) +
       ... 0.18*np.cos(2*np.pi*3.85*t))
>>> xn = x + rng.standard_normal(len(t)) * 0.08
```

Create an order 3 lowpass butterworth filter:

```python
>>> b, a = signal.butter(3, 0.05)
```

Apply the filter to \(xn \). Use \texttt{filtfilt} to choose the initial condition of the filter:
>>> zi = signal.lfilter_zi(b, a)
>>> z, _ = signal.lfilter(b, a, xn, zi=zi*xn[0])

Apply the filter again, to have a result filtered at an order the same as filtfilt:

>>> z2, _ = signal.lfilter(b, a, z, zi=zi*z[0])

Use filtfilt to apply the filter:

>>> y = signal.filtfilt(b, a, xn)

Plot the original signal and the various filtered versions:

```python
>>> plt.figure
>>> plt.plot(t, xn,'b', alpha=0.75)
>>> plt.plot(t, z,'r--', t, z2,'r', t, y,'k', ...
... 'filtfilt'), loc='best')
>>> plt.legend(('noisy signal', 'lfilter, once', 'lfilter, twice', ...
... 'filtfilt'), loc='best')
>>> plt.grid(True)
>>> plt.show()
```

scipy.signal.lfiltic

`scipy.signal.lfiltic(b, a, y=x=None)`

Construct initial conditions for lfilter given input and output vectors.

Given a linear filter (b, a) and initial conditions on the output y and the input x, return the initial conditions on the state vector zi which is used by lfilter to generate the output given the input.

Parameters

- **b** [array_like] Linear filter term.
- **a** [array_like] Linear filter term.
- **y** [array_like] Initial conditions.
 - If \(N = \text{len}(a) - 1 \), then \(y = \{y[-1], y[-2], \ldots, y[-N]\} \).
 - If \(y \) is too short, it is padded with zeros.
x [array_like, optional] Initial conditions.
If \(M = \text{len}(b) - 1 \), then \(x = \{x[-1], x[-2], \ldots, x[-M]\} \).
If \(x \) is not given, its initial conditions are assumed zero.
If \(x \) is too short, it is padded with zeros.

Returns

zi [ndarray] The state vector \(zi = \{z_0[-1], z_1[-1], \ldots, z_K-1[-1]\} \), where \(K = \max(M, N) \).

See also:

* `lfilter`, `lfilter_zi`

scipy.signal.lfilter_zi

`scipy.signal.lfilter_zi(b, a)`
Construct initial conditions for `lfilter` for step response steady-state.

Compute an initial state \(zi \) for the `lfilter` function that corresponds to the steady state of the step response.

A typical use of this function is to set the initial state so that the output of the filter starts at the same value as the first element of the signal to be filtered.

Parameters

b, a [array_like (1-D)] The IIR filter coefficients. See `lfilter` for more information.

Returns

zi [1-D ndarray] The initial state for the filter.

See also:

* `lfilter`, `lfiltic`, `filtfilt`

Notes

A linear filter with order \(m \) has a state space representation \((A, B, C, D)\), for which the output \(y \) of the filter can be expressed as:

\[
\begin{align*}
 z(n+1) &= A*z(n) + B*x(n) \\
 y(n) &= C*z(n) + D*x(n)
\end{align*}
\]

where \(z(n) \) is a vector of length \(m \), \(A \) has shape \((m, m)\), \(B \) has shape \((m, 1)\), \(C \) has shape \((1, m)\) and \(D \) has shape \((1, 1)\) (assuming \(x(n) \) is a scalar). \(lfilter_zi \) solves:

\[
zi = A*z + B
\]

In other words, it finds the initial condition for which the response to an input of all ones is a constant.

Given the filter coefficients \(a \) and \(b \), the state space matrices for the transposed direct form II implementation of the linear filter, which is the implementation used by `scipy.signal.lfilter`, are:

\[
A = scipy.linalg.companion(a).T \\
B = b[1:] - a[1:]*b[0]
\]

assuming \(a[0] \) is 1.0; if \(a[0] \) is not 1, \(a \) and \(b \) are first divided by \(a[0] \).
Examples

The following code creates a lowpass Butterworth filter. Then it applies that filter to an array whose values are all 1.0; the output is also all 1.0, as expected for a lowpass filter. If the \(zi \) argument of \texttt{lfilter} had not been given, the output would have shown the transient signal.

```python
>>> from numpy import array, ones
>>> from scipy.signal import lfilter, lfilter_zi, butter
>>> b, a = butter(5, 0.25)
>>> zi = lfilter_zi(b, a)
>>> y, zo = lfilter(b, a, ones(10), zi=zi)
>>> y
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
```

Another example:

```python
>>> x = array([0.5, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0])
>>> y, zf = lfilter(b, a, x, zi=zi*x[0])
>>> y
array([ 0.5 , 0.5 , 0.5 , 0.49836039, 0.48610528,
        0.44399389, 0.43399389, 0.35505241])
```

Note that the \(zi \) argument to \texttt{lfilter} was computed using \texttt{lfilter_zi} and scaled by \(x[0] \). Then the output \(y \) has no transient until the input drops from 0.5 to 0.0.

\texttt{scipy.signal.filtfilt}

\texttt{scipy.signal.filtfilt}(\(b, a, x, \text{axis}=-1, \text{padtype}='\text{odd}', \text{padlen}=None, \text{method}='\text{pad}', \text{irlen}=None \))

Apply a digital filter forward and backward to a signal.

This function applies a linear digital filter twice, once forward and once backwards. The combined filter has zero phase and a filter order twice that of the original.

The function provides options for handling the edges of the signal.

The function \texttt{sosfiltfilt}(and filter design using \texttt{output='sos'}) should be preferred over \texttt{filtfilt} for most filtering tasks, as second-order sections have fewer numerical problems.

\textit{Parameters}

- \(b \) : [(\(N \)) array_like] The numerator coefficient vector of the filter.
- \(a \) : [(\(N \)) array_like] The denominator coefficient vector of the filter. If \(a[0] \) is not 1, then both \(a \) and \(b \) are normalized by \(a[0] \).
- \(x \) : [array_like] The array of data to be filtered.
- \(\text{axis} \) : [int, optional] The axis of \(x \) to which the filter is applied. Default is -1.
- \(\text{padtype} \) : [str or None, optional] Must be ‘odd’, ‘even’, ‘constant’, or None. This determines the type of extension to use for the padded signal to which the filter is applied. If \(\text{padtype} \) is None, no padding is used. The default is ‘odd’.
- \(\text{padlen} \) : [int or None, optional] The number of elements by which to extend \(x \) at both ends of \(\text{axis} \) before applying the filter. This value must be less than \(x.shape[\text{axis}] - 1 \). \(\text{padlen}=0 \) implies no padding. The default value is \(3 * \max(\text{len}(a), \text{len}(b)) \).
- \(\text{method} \) : [str, optional] Determines the method for handling the edges of the signal, either “pad” or “gust”. When \(\text{method} \) is “pad”, the signal is padded; the type of padding is determined by \(\text{padtype} \) and \(\text{padlen} \), and \(\text{irlen} \) is ignored. When \(\text{method} \) is “gust”, Gustafsson’s method is used, and \(\text{padtype} \) and \(\text{padlen} \) are ignored.
irlen [int or None, optional] When method is “gust”, irlen specifies the length of the impulse response of the filter. If irlen is None, no part of the impulse response is ignored. For a long signal, specifying irlen can significantly improve the performance of the filter.

Returns

\(y \) [ndarray] The filtered output with the same shape as \(x \).

See also:

`sosfiltfilt`, `lfilter_zi`, `lfilter`, `lfiltic`, `savgol_filter`, `sosfilt`

Notes

When method is “pad”, the function pads the data along the given axis in one of three ways: odd, even or constant. The odd and even extensions have the corresponding symmetry about the end point of the data. The constant extension extends the data with the values at the end points. On both the forward and backward passes, the initial condition of the filter is found by using `lfilter_zi` and scaling it by the end point of the extended data.

When method is “gust”, Gustafsson’s method [1] is used. Initial conditions are chosen for the forward and backward passes so that the forward-backward filter gives the same result as the backward-forward filter.

The option to use Gustaffson's method was added in scipy version 0.16.0.

References

[1]

Examples

The examples will use several functions from `scipy.signal`.

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
```

First we create a one second signal that is the sum of two pure sine waves, with frequencies 5 Hz and 250 Hz, sampled at 2000 Hz.

```python
>>> t = np.linspace(0, 1.0, 2001)
>>> xlow = np.sin(2 * np.pi * 5 * t)
>>> xhigh = np.sin(2 * np.pi * 250 * t)
>>> x = xlow + xhigh
```

Now create a lowpass Butterworth filter with a cutoff of 0.125 times the Nyquist frequency, or 125 Hz, and apply it to \(x \) with `filtfilt`. The result should be approximately \(xlow \), with no phase shift.

```python
>>> b, a = signal.butter(8, 0.125)
>>> y = signal.filtfilt(b, a, x, padlen=150)
>>> np.abs(y - xlow).max()
9.1086182074789912e-06
```

We get a fairly clean result for this artificial example because the odd extension is exact, and with the moderately long padding, the filter's transients have dissipated by the time the actual data is reached. In general, transient effects at the edges are unavoidable.
The following example demonstrates the option `method="gust"`.

First, create a filter.

```python
>>> b, a = signal.ellip(4, 0.01, 120, 0.125)  # Filter to be applied.
```

`sig` is a random input signal to be filtered.

```python
>>> rng = np.random.default_rng()
>>> n = 60
>>> sig = rng.standard_normal(n)**3 + 3*rng.standard_normal(n).cumsum()
```

Apply `filtfilt` to `sig`, once using the Gustafsson method, and once using padding, and plot the results for comparison.

```python
>>> fgust = signal.filtfilt(b, a, sig, method="gust")
>>> fpad = signal.filtfilt(b, a, sig, padlen=50)
>>> plt.plot(sig, 'k-', label='input')
>>> plt.plot(fgust, 'b-', linewidth=4, label='gust')
>>> plt.plot(fpad, 'c-', linewidth=1.5, label='pad')
>>> plt.legend(loc='best')
>>> plt.show()
```

![Plot showing input, gust, and pad signals](image)

The `irlen` argument can be used to improve the performance of Gustafsson’s method.

Estimate the impulse response length of the filter.

```python
>>> z, p, k = signal.tf2zpk(b, a)
>>> eps = 1e-9
>>> r = np.max(np.abs(p))
>>> approx_impulse_len = int(np.ceil(np.log(eps) / np.log(r)))
>>> approx_impulse_len
137
```

Apply the filter to a longer signal, with and without the `irlen` argument. The difference between `y1` and `y2` is small. For long signals, using `irlen` gives a significant performance improvement.
```python
generate code
```

scipy.signal.savgol_filter

scipy.signal.savgol_filter$(x, \text{window_length}, \text{polyorder}, \text{deriv}=0, \text{delta}=1.0, \text{axis}=-1, \text{mode}='\text{interp}', \text{cval}=0.0)$

Apply a Savitzky-Golay filter to an array.

This is a 1-D filter. If x has dimension greater than 1, $axis$ determines the axis along which the filter is applied.

Parameters

- **x** [array_like] The data to be filtered. If x is not a single or double precision floating point array, it will be converted to type `numpy.float64` before filtering.
- **window_length** [int] The length of the filter window (i.e., the number of coefficients). If $mode$ is ‘interp’, $window_length$ must be less than or equal to the size of x.
- **polyorder** [int] The order of the polynomial used to fit the samples. $polyorder$ must be less than $window_length$.
- **deriv** [int, optional] The order of the derivative to compute. This must be a nonnegative integer. The default is 0, which means to filter the data without differentiating.
- **delta** [float, optional] The spacing of the samples to which the filter will be applied. This is only used if $deriv > 0$. Default is 1.0.
- **axis** [int, optional] The axis of the array x along which the filter is to be applied. Default is -1.
- **mode** [str, optional] Must be ‘mirror’, ‘constant’, ‘nearest’, ‘wrap’ or ‘interp’. This determines the type of extension to use for the padded signal to which the filter is applied. When $mode$ is ‘constant’, the padding value is given by $cval$. See the Notes for more details on ‘mirror’, ‘constant’, ‘wrap’, and ‘nearest’. When the ‘interp’ mode is selected (the default), no extension is used. Instead, a degree $polyorder$ polynomial is fit to the last $window_length$ values of the edges, and this polynomial is used to evaluate the last $window_length // 2$ output values.
- **cval** [scalar, optional] Value to fill past the edges of the input if $mode$ is ‘constant’. Default is 0.0.

Returns

- **y** [ndarray, same shape as x] The filtered data.

See also:

`savgol_coeffs`

Notes

Details on the $mode$ options:

- **‘mirror’**:
 Repeats the values at the edges in reverse order. The value closest to the edge is not included.
- **‘nearest’**: The extension contains the nearest input value.
- **‘constant’**: The extension contains the value given by the $cval$ argument.
- **‘wrap’**: The extension contains the values from the other end of the array.
For example, if the input is [1, 2, 3, 4, 5, 6, 7, 8], and window_length is 7, the following shows the extended data for the various mode options (assuming cval is 0):

<table>
<thead>
<tr>
<th>mode</th>
<th>Ext</th>
<th>Input</th>
<th>Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td>'mirror'</td>
<td>4</td>
<td>3 2 1 2 3 4 5 6 7 8</td>
<td>7 6 5</td>
</tr>
<tr>
<td>'nearest'</td>
<td>1</td>
<td>1 1 1 1 2 3 4 5 6 7 8</td>
<td>8 8 8 8</td>
</tr>
<tr>
<td>'constant'</td>
<td>0</td>
<td>0 0 0 1 2 3 4 5 6 7 8</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>'wrap'</td>
<td>6</td>
<td>7 8 1 2 3 4 5 6 7 8</td>
<td>1 2 3</td>
</tr>
</tbody>
</table>

New in version 0.14.0.

Examples

```python
>>> from scipy.signal import savgol_filter
>>> np.set_printoptions(precision=2)  # For compact display.
>>> x = np.array([2, 2, 5, 2, 1, 0, 1, 4, 9])
```

Filter with a window length of 5 and a degree 2 polynomial. Use the defaults for all other parameters.

```python
>>> savgol_filter(x, 5, 2)
array([1.66, 3.17, 3.54, 2.86, 0.66, 0.17, 1.00, 4.00, 7.97])
```

Note that the last five values in x are samples of a parabola, so when mode='interp' (the default) is used with polyorder=2, the last three values are unchanged. Compare that to, for example, mode='nearest':

```python
>>> savgol_filter(x, 5, 2, mode='nearest')
array([1.74, 3.03, 3.54, 2.86, 0.66, 0.17, 1.00, 4.60, 7.97])
```

scipy.signal.deconvolve

scipy.signal.deconvolve(signal, divisor)

Deconvolves divisor out of signal using inverse filtering.

Returns the quotient and remainder such that signal = convolve(divisor, quotient) + remainder

Parameters

- `signal` : array_like Signal data, typically a recorded signal
- `divisor` : array_like Divisor data, typically an impulse response or filter that was applied to the original signal

Returns

- `quotient` : ndarray Quotient, typically the recovered original signal
- `remainder` : ndarray Remainder

See also:

numpy.polydiv

performs polynomial division (same operation, but also accepts poly1d objects)
Examples

Deconvolve a signal that’s been filtered:

```python
>>> from scipy import signal
>>> original = [0, 1, 0, 0, 1, 1, 0, 0]
>>> impulse_response = [2, 1]
>>> recorded = signal.convolve(impulse_response, original)
>>> recorded
array([0, 2, 1, 0, 2, 3, 1, 0, 0])
>>> recovered, remainder = signal.deconvolve(recorded, impulse_response)
>>> recovered
array([ 0., 1., 0., 0., 1., 1., 0., 0.])
```

```
scipy.signal.sosfilt

scipy.signal.sosfilt(sos, x, axis=-1, zi=None)

Filter data along one dimension using cascaded second-order sections.

Filter a data sequence, `x`, using a digital IIR filter defined by `sos`.

Parameters

- **sos** [array_like] Array of second-order filter coefficients, must have shape `(n_sections, 6)`. Each row corresponds to a second-order section, with the first three columns providing the numerator coefficients and the last three providing the denominator coefficients.
- **x** [array_like] An N-dimensional input array.
- **axis** [int, optional] The axis of the input data array along which to apply the linear filter. The filter is applied to each subarray along this axis. Default is -1.
- **zi** [array_like, optional] Initial conditions for the cascaded filter delays. It is a (at least 2D) vector of shape `(n_sections, ..., 2, ...)`, where ..., 2, ... denotes the shape of `x`, but with `x.shape[axis]` replaced by 2. If `zi` is None or is not given then initial rest (i.e. all zeros) is assumed. Note that these initial conditions are not the same as the initial conditions given by `lfilter` or `lfilter_zi`.

Returns

- **y** [ndarray] The output of the digital filter.
- **zf** [ndarray, optional] If `zi` is None, this is not returned, otherwise, `zf` holds the final filter delay values.

See also:

- `zpk2sos`, `sos2zpk`, `sosfilt_zi`, `sosfiltfilt`, `sosfreqz`

Notes

The filter function is implemented as a series of second-order filters with direct-form II transposed structure. It is designed to minimize numerical precision errors for high-order filters.

New in version 0.16.0.
Examples

Plot a 13th-order filter’s impulse response using both `lfilter` and `sosfilt`, showing the instability that results from trying to do a 13th-order filter in a single stage (the numerical error pushes some poles outside of the unit circle):

```python
>>> import matplotlib.pyplot as plt
>>> from scipy import signal
>>> b, a = signal.ellip(13, 0.009, 80, 0.05, output='ba')
>>> sos = signal.ellip(13, 0.009, 80, 0.05, output='sos')
>>> x = signal.unit_impulse(700)
>>> y_tf = signal.lfilter(b, a, x)
>>> y_sos = signal.sosfilt(sos, x)
>>> plt.plot(y_tf, 'r', label='TF')
>>> plt.plot(y_sos, 'k', label='SOS')
>>> plt.legend(loc='best')
>>> plt.show()
```

`scipy.signal.sosfilt_zi`

`scipy.signal.sosfilt_zi(sos)`

Construct initial conditions for sosfilt for step response steady-state.

A typical use of this function is to set the initial state so that the output of the filter starts at the same value as the first element of the signal to be filtered.

Parameters

- **sos** [array_like] Array of second-order filter coefficients, must have shape `(n_sections, 6)`. See `sosfilt` for the SOS filter format specification.

Returns

- **zi** [ndarray] Initial conditions suitable for use with `sosfilt`, shape `(n_sections, 2)`.

See also:
sosfilt, zpk2sos

Notes

New in version 0.16.0.

Examples

Filter a rectangular pulse that begins at time 0, with and without the use of the \texttt{zi} argument of \texttt{scipy.signal.sosfilt}.

\begin{verbatim}
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> sos = signal.butter(9, 0.125, output='sos')
>>> zi = signal.sosfilt_zi(sos)
>>> x = (np.arange(250) < 100).astype(int)
>>> f1 = signal.sosfilt(sos, x)
>>> f2, zo = signal.sosfilt(sos, x, zi=zi)

>>> plt.plot(x, 'k--', label='x')
>>> plt.plot(f1, 'b', alpha=0.5, linewidth=2, label='filtered')
>>> plt.plot(f2, 'g', alpha=0.25, linewidth=4, label='filtered with zi')
>>> plt.legend(loc='best')
>>> plt.show()
\end{verbatim}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{example_plot.png}
\caption{Example plot showing filtered pulse with and without \texttt{zi}.
\end{figure}
scipy.signal.sosfiltfilt

scipy.signal.sosfiltfilt(sos, x, axis=-1, padtype='odd', padlen=None)
A forward-backward digital filter using cascaded second-order sections.

See `filtfilt` for more complete information about this method.

Parameters

- sos [array_like] Array of second-order filter coefficients, must have shape (n_sections, 6). Each row corresponds to a second-order section, with the first three columns providing the numerator coefficients and the last three providing the denominator coefficients.
- x [array_like] The array of data to be filtered.
- axis [int, optional] The axis of x to which the filter is applied. Default is -1.
- padtype [str or None, optional] Must be 'odd', 'even', 'constant', or None. This determines the type of extension to use for the padded signal to which the filter is applied. If padtype is None, no padding is used. The default is 'odd'.
- padlen [int or None, optional] The number of elements by which to extend x at both ends of axis before applying the filter. This value must be less than x.shape[axis] - 1. padlen=0 implies no padding. The default value is:

\[
3 \times (2 \times \text{len}(\text{sos}) + 1) - \min((\text{sos}[:, 2] == 0).\text{sum()}, (\text{sos}[:, 5] == 0).\text{sum}())
\]

The extra subtraction at the end attempts to compensate for poles and zeros at the origin (e.g. for odd-order filters) to yield equivalent estimates of padlen to those of `filtfilt` for second-order section filters built with `scipy.signal` functions.

Returns

- y [ndarray] The filtered output with the same shape as x.

See also:

`filtfilt`, `sosfilt`, `sosfilt_zi`, `sosfreqz`

Notes

New in version 0.18.0.

Examples

```python
>>> from scipy.signal import sosfiltfilt, butter
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()

Create an interesting signal to filter.

```python
>>> n = 201
>>> t = np.linspace(0, 1, n)
>>> x = 1 + (t < 0.5) - 0.25*t**2 + 0.05* rng.standard_normal(n)
```  
Create a lowpass Butterworth filter, and use it to filter x.

```python
>>> sos = butter(4, 0.125, output='sos')
>>> y = sosfiltfilt(sos, x)
```
For comparison, apply an 8th order filter using \texttt{sosfilt}. The filter is initialized using the mean of the first four values of \(x\).

```python
>>> from scipy.signal import sosfilt, sosfilt_zi
>>> sos8 = butter(8, 0.125, output='sos')
>>> zi = x[:4].mean() * sosfilt_zi(sos8)
>>> y2, zo = sosfilt(sos8, x, zi=zi)
```

Plot the results. Note that the phase of \(y\) matches the input, while \(y2\) has a significant phase delay.

```python
>>> plt.plot(t, x, alpha=0.5, label='x(t)')
>>> plt.plot(t, y, label='y(t)')
>>> plt.plot(t, y2, label='y2(t)')
>>> plt.legend(framealpha=1, shadow=True)
>>> plt.grid(alpha=0.25)
>>> plt.xlabel('t')
>>> plt.show()
```

\texttt{scipy.signal.hilbert}

\texttt{scipy.signal.hilbert}(\(x, N=\text{None}, axis=-1\))

Compute the analytic signal, using the Hilbert transform.

The transformation is done along the last axis by default.

\textit{Parameters}

\begin{itemize}
\item \textbf{x} [array_like] Signal data. Must be real.
\item \textbf{N} [int, optional] Number of Fourier components. Default: \(x.shape[axis]\)
\item \textbf{axis} [int, optional] Axis along which to do the transformation. Default: \(-1\).
\end{itemize}

\textit{Returns}

\begin{itemize}
\item \textbf{xa} [ndarray] Analytic signal of \(x\), of each 1-D array along \(axis\)
Notes

The analytic signal $x_a(t)$ of signal $x(t)$ is:

$$x_a = F^{-1}(F(x)2U) = x + iy$$

where F is the Fourier transform, U the unit step function, and y the Hilbert transform of x. [1]

In other words, the negative half of the frequency spectrum is zeroed out, turning the real-valued signal into a complex signal. The Hilbert transformed signal can be obtained from `np.imag(hilbert(x))`, and the original signal from `np.real(hilbert(x))`.

References

[1], [2], [3]

Examples

In this example we use the Hilbert transform to determine the amplitude envelope and instantaneous frequency of an amplitude-modulated signal.

```python
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import hilbert, chirp

>>> duration = 1.0
>>> fs = 400.0
>>> samples = int(fs*duration)
>>> t = np.arange(samples) / fs
```

We create a chirp of which the frequency increases from 20 Hz to 100 Hz and apply an amplitude modulation.

```python
>>> signal = chirp(t, 20.0, t[-1], 100.0)
>>> signal *= (1.0 + 0.5 * np.sin(2.0*np.pi*3.0*t) )
```

The amplitude envelope is given by magnitude of the analytic signal. The instantaneous frequency can be obtained by differentiating the instantaneous phase in respect to time. The instantaneous phase corresponds to the phase angle of the analytic signal.

```python
>>> analytic_signal = hilbert(signal)
>>> amplitude_envelope = np.abs(analytic_signal)
>>> instantaneous_phase = np.unwrap(np.angle(analytic_signal))
>>> instantaneous_frequency = (np.diff(instantaneous_phase) /
...                           (2.0*np.pi) * fs)
```

```python
>>> fig, (ax0, ax1) = plt.subplots(nrows=2)
>>> ax0.plot(t, signal, label='signal')
>>> ax0.plot(t, amplitude_envelope, label='envelope')
>>> ax0.set_ylabel("time in seconds")
>>> ax0.legend()
>>> ax1.plot(t[1:], instantaneous_frequency)
>>> ax1.set_ylabel("time in seconds")
```

(continues on next page)
scipy.signal.hilbert2

scipy.signal.hilbert2(x, N=None)

Compute the ‘2-D’ analytic signal of x

Parameters

x [array_like] 2-D signal data.
N [int or tuple of two ints, optional] Number of Fourier components. Default is x.shape

Returns

xa [ndarray] Analytic signal of x taken along axes (0,1).

References

[1]

scipy.signal.decimate

scipy.signal.decimate(x, q, n=None, ftype='iir', axis=-1, zero_phase=True)

Downsample the signal after applying an anti-aliasing filter.

By default, an order 8 Chebyshev type I filter is used. A 30 point FIR filter with Hamming window is used if ftype is ‘fir’.

Parameters

x [array_like] The signal to be downsampled, as an N-dimensional array.
q [int] The downsampling factor. When using IIR downsampling, it is recommended to call decimate multiple times for downsampling factors higher than 13.
n [int, optional] The order of the filter (1 less than the length for ‘fir’). Defaults to 8 for ‘iir’ and 20 times the downsampling factor for ‘fir’.
ftype [str {'iir', 'fir'} or dlti instance, optional] If 'iir' or 'fir', specifies the type of lowpass filter. If an instance of an dlti object, uses that object to filter before downsampling.

axis [int, optional] The axis along which to decimate.

zero_phase [bool, optional] Prevent phase shift by filtering with filtfilt instead of lfilter when using an IIR filter, and shifting the outputs back by the filter’s group delay when using an FIR filter. The default value of True is recommended, since a phase shift is generally not desired. New in version 0.18.0.

Returns

y [ndarray] The down-sampled signal.

See also:

resample
Resample up or down using the FFT method.

resample_poly
Resample using polyphase filtering and an FIR filter.

Notes

The zero_phase keyword was added in 0.18.0. The possibility to use instances of dlti as ftype was added in 0.18.0.

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Define wave parameters.

>>> wave_duration = 3
>>> sample_rate = 100
>>> freq = 2
>>> q = 5

Calculate number of samples.

>>> samples = wave_duration*sample_rate
>>> samples_decimated = int(samples/q)

Create cosine wave.

>>> x = np.linspace(0, wave_duration, samples, endpoint=False)
>>> y = np.cos(x*np.pi*freq**2)

Decimate cosine wave.

>>> ydem = signal.decimate(y, q)
>>> xnew = np.linspace(0, wave_duration, samples_decimated, endpoint=False)
```
Plot original and decimated waves.

```python
>>> plt.plot(x, y, ',-', xnew, ydem, 'o-')
>>> plt.xlabel('Time, Seconds')
>>> plt.legend(['data', 'decimated'], loc='best')
>>> plt.show()
```

scipy.signal.detrend

`scipy.signal.detrend`(data, axis=-1, type='linear', bp=0, overwrite_data=False)

Remove linear trend along axis from data.

Parameters

- **data** [array_like] The input data.
- **axis** [int, optional] The axis along which to detrend the data. By default this is the last axis (-1).
- **type** [string, {'linear', 'constant'}, optional] The type of detrending. If `type == 'linear'` (default), the result of a linear least-squares fit to `data` is subtracted from `data`. If `type == 'constant'`, only the mean of `data` is subtracted.
- **bp** [array_like of ints, optional] A sequence of break points. If given, an individual linear fit is performed for each part of `data` between two break points. Break points are specified as indices into `data`. This parameter only has an effect when `type == 'linear'`.
- **overwrite_data** [bool, optional] If True, perform in place detrending and avoid a copy. Default is False

Returns

- **ret** [ndarray] The detrended input data.
Examples

```python
>>> from scipy import signal
>>> from numpy.random import default_rng
>>> rng = default_rng()
>>> npoints = 1000
>>> noise = rng.standard_normal(npoints)
>>> x = 3 + 2*np.linspace(0, 1, npoints) + noise
>>> (signal.detrend(x) - noise).max()
0.06  # random
```

scipy.signal.resample

scipy.signal.resample(x, num, t=None, axis=0, window=None, domain='time')

Resample x to num samples using Fourier method along the given axis.

The resampled signal starts at the same value as x but is sampled with a spacing of len(x) / num * (spacing of x). Because a Fourier method is used, the signal is assumed to be periodic.

Parameters

- x [array_like] The data to be resampled.
- num [int] The number of samples in the resampled signal.
- t [array_like, optional] If t is given, it is assumed to be the equally spaced sample positions associated with the signal data in x.
- axis [int, optional] The axis of x that is resampled. Default is 0.
- window [array_like, callable, string, float, or tuple, optional] Specifies the window applied to the signal in the Fourier domain. See below for details.
- domain [string, optional] A string indicating the domain of the input x: time Consider the input x as time-domain (Default), freq Consider the input x as frequency-domain.

Returns

- resampled_x or (resampled_x, resampled_t) Either the resampled array, or, if t was given, a tuple containing the resampled array and the corresponding resampled positions.

See also:

decimate

Downsample the signal after applying an FIR or IIR filter.

resample_poly

Resample using polyphase filtering and an FIR filter.

Notes

The argument window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to alleviate ringing in the resampled values for sampled signals you didn't intend to be interpreted as band-limited.

If window is a function, then it is called with a vector of inputs indicating the frequency bins (i.e. fftfreq(x.shape[axis])).

If window is an array of the same length as x.shape[axis] it is assumed to be the window to be applied directly in the Fourier domain (with dc and low-frequency first).

For any other type of window, the function scipy.signal.get_window is called to generate the window.
The first sample of the returned vector is the same as the first sample of the input vector. The spacing between samples is changed from dx to $dx \times \frac{\text{len}(x)}{\text{num}}$.

If t is not None, then it is used solely to calculate the resampled positions resampled_t.

As noted, resample uses FFT transformations, which can be very slow if the number of input or output samples is large and prime; see scipy.fft.fft.

Examples

Note that the end of the resampled data rises to meet the first sample of the next cycle:

```python
>>> from scipy import signal

>>> x = np.linspace(0, 10, 20, endpoint=False)
>>> y = np.cos(-x**2/6.0)
>>> f = signal.resample(y, 100)
>>> xnew = np.linspace(0, 10, 100, endpoint=False)

>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'go-', xnew, f, '.-', 10, y[0], 'ro')
>>> plt.legend(['data', 'resampled'], loc='best')
>>> plt.show()
```

scipy.signal.resample_poly

`scipy.signal.resample_poly(x, up, down, axis=0, window=('kaiser', 5.0), padtype='constant', cval=None)`

Resample x along the given axis using polyphase filtering.

The signal x is upsampled by the factor up, a zero-phase low-pass FIR filter is applied, and then it is downsampled by the factor $down$. The resulting sample rate is $\frac{up}{down}$ times the original sample rate. By default, values beyond the boundary of the signal are assumed to be zero during the filtering step.

Parameters

- x: [array_like] The data to be resampled.
The upsampling factor.
- **down** [int] The downsampling factor.
- **axis** [int, optional] The axis of x that is resampled. Default is 0.
- **window** [string, tuple, or array_like, optional] Desired window to use to design the low-pass filter, or the FIR filter coefficients to employ. See below for details.
- **padtype** [string, optional] `constant`, `line`, `mean`, `median`, `maximum`, `minimum` or any of the other signal extension modes supported by `scipy.signal.upfirdn`. Changes assumptions on values beyond the boundary. If `constant`, assumed to be `cval` (default zero). If `line` assumed to continue a linear trend defined by the first and last points. `mean`, `median`, `maximum` and `minimum` work as in `np.pad` and assume that the values beyond the boundary are the mean, median, maximum or minimum respectively of the array along the axis. New in version 1.4.0.
- **cval** [float, optional] Value to use if `padtype='constant'`. Default is zero. New in version 1.4.0.

Returns

- **resampled_x** [array] The resampled array.

See also:

- decimate
 Downsample the signal after applying an FIR or IIR filter.
- resample
 Resample up or down using the FFT method.

Notes

This polyphase method will likely be faster than the Fourier method in `scipy.signal.resample` when the number of samples is large and prime, or when the number of samples is large and up and down share a large greatest common denominator. The length of the FIR filter used will depend on `max(up, down) / gcd(up, down)`, and the number of operations during polyphase filtering will depend on the filter length and down (see `scipy.signal.upfirdn` for details).

The argument **window** specifies the FIR low-pass filter design.

If **window** is an array_like it is assumed to be the FIR filter coefficients. Note that the FIR filter is applied after the upsampling step, so it should be designed to operate on a signal at a sampling frequency higher than the original by a factor of `up/gcd(up, down)`. This function’s output will be centered with respect to this array, so it is best to pass a symmetric filter with an odd number of samples if, as is usually the case, a zero-phase filter is desired.

For any other type of **window**, the functions `scipy.signal.get_window` and `scipy.signal.firwin` are called to generate the appropriate filter coefficients.

The first sample of the returned vector is the same as the first sample of the input vector. The spacing between samples is changed from `dx` to `dx * down / float(up).`
Examples

By default, the end of the resampled data rises to meet the first sample of the next cycle for the FFT method, and gets closer to zero for the polyphase method:

```python
>>> from scipy import signal

>>> x = np.linspace(0, 10, 20, endpoint=False)
>>> y = np.cos(-x**2/6.0)
>>> f_fft = signal.resample(y, 100)
>>> f_poly = signal.resample_poly(y, 100, 20)
>>> xnew = np.linspace(0, 10, 100, endpoint=False)

>>> import matplotlib.pyplot as plt
>>> plt.plot(xnew, f_fft, 'b.-', xnew, f_poly, 'r.-')
>>> plt.plot(x, y, 'ko-')
>>> plt.plot(10, y[0], 'bo', 10, 0., 'ro')  # boundaries
>>> plt.legend(['resample', 'resamp_poly', 'data'], loc='best')
>>> plt.show()
```

This default behaviour can be changed by using the padtype option:

```python
>>> N = 5
>>> x = np.linspace(0, 1, N, endpoint=False)
>>> y = 2 + x**2 - 1.7*np.sin(x) + .2*np.cos(11*x)
>>> y2 = 1 + x**3 + 0.1*np.sin(x) + .1*np.cos(11*x)
>>> Y = np.stack([y, y2], axis=-1)
>>> up = 4
>>> xr = np.linspace(0, 1, N*up, endpoint=False)
```
```python
>>> y2 = signal.resample_poly(Y, up, 1, padtype='constant')
>>> y3 = signal.resample_poly(Y, up, 1, padtype='mean')
>>> y4 = signal.resample_poly(Y, up, 1, padtype='line')

>>> import matplotlib.pyplot as plt
>>> for i in [0, 1]:
...     plt.figure()
...     plt.plot(xr, y4[:, i], 'g.', label='line')
...     plt.plot(xr, y3[:, i], 'y.', label='mean')
...     plt.plot(xr, y2[:, i], 'r.', label='constant')
...     plt.plot(x, Y[:, i], 'k-')
...     plt.legend()

>>> plt.show()
```
scipy.signal.upfirdn

scipy.signal.upfirdn(h, x, up=1, down=1, axis=-1, mode='constant', cval=0)

Upsample, FIR filter, and downsample.

Parameters

- `h` [array_like] 1-D FIR (finite-impulse response) filter coefficients.
- `x` [array_like] Input signal array.
- `up` [int, optional] Upsampling rate. Default is 1.
- `down` [int, optional] Downsampling rate. Default is 1.
- `axis` [int, optional] The axis of the input data array along which to apply the linear filter. The filter is applied to each subarray along this axis. Default is -1.
- `mode` [str, optional] The signal extension mode to use. The set {"constant", "symmetric", "reflect", "edge", "wrap") correspond to modes provided by numpy.pad. "smooth" implements a smooth extension by extending based on the slope of the last 2 points at each end of the array. "antireflect" and "antisymmetric" are anti-symmetric versions of "reflect" and "symmetric". The mode "line" extends the signal based on a linear trend defined by the first and last points along the axis.
 New in version 1.4.0.
- `cval` [float, optional] The constant value to use when mode == "constant".
 New in version 1.4.0.

Returns

- `y` [ndarray] The output signal array. Dimensions will be the same as `x` except for along `axis`, which will change size according to the `h`, `up`, and `down` parameters.

Notes

The algorithm is an implementation of the block diagram shown on page 129 of the Vaidyanathan text [1] (Figure 4.3-8d).

The direct approach of upsampling by factor of P with zero insertion, FIR filtering of length \(n \), and downsampling by factor of Q is \(O(N^*Q) \) per output sample. The polyphase implementation used here is \(O(N/P) \).

New in version 0.18.

References

[1]

Examples

Simple operations:

```python
>>> from scipy.signal import upfirdn
>>> upfirdn([1], [1, 2, 3], 3) # upsampling with zeros insertion
array([ 1., 0., 0., 2., 0., 0., 3., 0., 0.])
>>> upfirdn([1, 1, 1], [1, 2, 3], 3) # upsampling with sample-and-hold
array([ 1., 1., 1., 2., 2., 2., 3., 3., 3.])
```

(continues on next page)
```python
>>> upfirdn([.5, 1, .5], [1, 1, 1], 2)  # linear interpolation
array([0.5, 1., 1., 1., 1., 0.5, 0.])
>>> upfirdn([1], np.arange(10), 1, 3)  # decimation by 3
array([3., 6., 9.])
>>> upfirdn([.5, 1, .5], np.arange(10), 2, 3)  # linear interp, rate 2/3
array([0., 2.5, 4., 5.5, 7., 8.5, 0.])
```

Apply a single filter to multiple signals:

```python
>>> x = np.reshape(np.arange(8), (4, 2))
>>> x
array([[0, 1],
       [2, 3],
       [4, 5],
       [6, 7]])
```

Apply along the last dimension of `x`:

```python
>>> h = [1, 1]
>>> upfirdn(h, x, 2)
array([[ 0.,  0.,  1.,  1.],
       [ 2.,  2.,  3.,  3.],
       [ 4.,  4.,  5.,  5.],
       [ 6.,  6.,  7.,  7.]])
```

Apply along the 0th dimension of `x`:

```python
>>> upfirdn(h, x, 2, axis=0)
array([[ 0.,  1.],
       [ 0.,  1.],
       [ 2.,  3.],
       [ 2.,  3.],
       [ 4.,  5.],
       [ 4.,  5.],
       [ 6.,  7.],
       [ 6.,  7.]])
```

Filter design

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bilinear(b, a[, fs])</code></td>
<td>Return a digital IIR filter from an analog one using a bilinear transform.</td>
</tr>
<tr>
<td><code>bilinear_zpk(z, p, k, fs)</code></td>
<td>Return a digital IIR filter from an analog one using a bilinear transform.</td>
</tr>
<tr>
<td><code>findfreqs(num, den, N[, kind])</code></td>
<td>Find array of frequencies for computing the response of an analog filter.</td>
</tr>
<tr>
<td><code>firls(numtaps, bands, desired[, weight, nyq, fs])</code></td>
<td>FIR filter design using least-squares error minimization.</td>
</tr>
<tr>
<td><code>firwin(numtaps, cutoff[, width, window,...])</code></td>
<td>FIR filter design using the window method.</td>
</tr>
<tr>
<td><code>firwin2(numtaps, freq, gain[, nfreqs,...])</code></td>
<td>FIR filter design using the window method.</td>
</tr>
<tr>
<td><code>freqs(b, a[, worN, plot])</code></td>
<td>Compute frequency response of analog filter.</td>
</tr>
<tr>
<td><code>freqs_zpk(z, p, k[, worN])</code></td>
<td>Compute frequency response of analog filter.</td>
</tr>
</tbody>
</table>

continues on next page
Table 155 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>freqz(b, a, worN, whole, plot, fs, ...)</code></td>
<td>Compute the frequency response of a digital filter.</td>
</tr>
<tr>
<td><code>freqz_zpk(z, p, k[, worN, whole, fs])</code></td>
<td>Compute the frequency response of a digital filter in ZPK form.</td>
</tr>
<tr>
<td><code>sosfreqz(sos[, worN, whole, fs])</code></td>
<td>Compute the frequency response of a digital filter in SOS format.</td>
</tr>
<tr>
<td><code>gammatone(freq, ftype[, order, numtaps, fs])</code></td>
<td>Gammatone filter design.</td>
</tr>
<tr>
<td><code>group_delay(system[, w, whole, fs])</code></td>
<td>Compute the group delay of a digital filter.</td>
</tr>
<tr>
<td><code>iirfilter(N, Wn[, rp, rs, btype, analog, ...])</code></td>
<td>IIR digital and analog filter design given order and critical points.</td>
</tr>
<tr>
<td><code>iirfilter(N, Wn[, rp, rs, btype, analog, ...])</code></td>
<td>IIR digital and analog filter design given order and critical points.</td>
</tr>
<tr>
<td><code>kaiser_atten(numtaps, width)</code></td>
<td>Compute the attenuation of a Kaiser FIR filter.</td>
</tr>
<tr>
<td><code>kaiser_beta(a)</code></td>
<td>Compute the Kaiser parameter beta, given the attenuation a.</td>
</tr>
<tr>
<td><code>kaiserord(ripple, width)</code></td>
<td>Determine the filter window parameters for the Kaiser window method.</td>
</tr>
<tr>
<td><code>minimum_phase(h[, method, n_fft])</code></td>
<td>Convert a linear-phase FIR filter to minimum phase</td>
</tr>
<tr>
<td><code>savgol_coeffs(window_length, polyorder[,...])</code></td>
<td>Compute the coefficients for a 1-D Savitzky-Golay FIR filter.</td>
</tr>
<tr>
<td><code>remez(numtaps, bands, desired[, weight, Hz, ...])</code></td>
<td>Calculate the minimax optimal filter using the Remez exchange algorithm.</td>
</tr>
<tr>
<td><code>unique_roots(p[, tol, rtype])</code></td>
<td>Determine unique roots and their multiplicities from a list of roots.</td>
</tr>
<tr>
<td><code>residue(b, a[, tol, rtype])</code></td>
<td>Compute partial-fraction expansion of b(s) / a(s).</td>
</tr>
<tr>
<td><code>residuez(b, a[, tol, rtype])</code></td>
<td>Compute partial-fraction expansion of b(z) / a(z).</td>
</tr>
<tr>
<td><code>invres(r, p, k[, tol, rtype])</code></td>
<td>Compute b(s) and a(s) from partial fraction expansion.</td>
</tr>
<tr>
<td><code>invresz(r, p, k[, tol, rtype])</code></td>
<td>Compute b(z) and a(z) from partial fraction expansion.</td>
</tr>
</tbody>
</table>

scipy.signal.bilinear

scipy.signal.bilinear *(b, a, fs=1.0)*

Return a digital IIR filter from an analog one using a bilinear transform.

Transform a set of poles and zeros from the analog s-plane to the digital z-plane using Tustin’s method, which substitutes \((z-1) / (z+1)\) for \(s\), maintaining the shape of the frequency response.

Parameters

- **b** [array_like] Numerator of the analog filter transfer function.
- **a** [array_like] Denominator of the analog filter transfer function.
- **fs** [float] Sample rate, as ordinary frequency (e.g., hertz). No prewarping is done in this function.

Returns

- **z** [ndarray] Numerator of the transformed digital filter transfer function.
- **p** [ndarray] Denominator of the transformed digital filter transfer function.

See also:

- `lp2lp`, `lp2hp`, `lp2bp`, `lp2bs`
- `bilinear_zpk`
Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> fs = 100
>>> bf = 2 * np.pi * np.array([7, 13])
>>> filts = signal.lti(*signal.butter(4, bf, btype='bandpass',
                              analog=True))
>>> filtz = signal.lti(*signal.bilinear(filts.num, filts.den, fs))
>>> wz, hz = signal.freqz(filtz.num, filtz.den)
>>> ws, hs = signal.freqs(filts.num, filts.den, worN=fs*wz)

>>> plt.semilogx(wz*fs/(2*np.pi), 20*np.log10(np.abs(hz).clip(1e-15)),
               label=r'$|H_z(e^{' + r'(j \omega)})|$')
>>> plt.semilogx(ws*fs/(2*np.pi), 20*np.log10(np.abs(hs).clip(1e-15)),
               label=r'$|H(j \omega)|$')
>>> plt.legend()
>>> plt.xlabel('Frequency [Hz]')
>>> plt.ylabel('Magnitude [dB]')
>>> plt.grid()
```

![Graph showing frequency response](image)

scipy.signal.bilinear_zpk

Return a digital IIR filter from an analog one using a bilinear transform.

Transform a set of poles and zeros from the analog s-plane to the digital z-plane using Tustin's method, which substitutes \((z-1) / (z+1)\) for \(s\), maintaining the shape of the frequency response.

Parameters

- **z**
 [array_like] Zeros of the analog filter transfer function.

- **p**
 [array_like] Poles of the analog filter transfer function.

- **k**
 [float] System gain of the analog filter transfer function.

fs

[float] Sample rate, as ordinary frequency (e.g., hertz). No prewarping is done in this function.

Returns

z

[ndarray] Zeros of the transformed digital filter transfer function.

p

[ndarray] Poles of the transformed digital filter transfer function.

k

[float] System gain of the transformed digital filter.

See also:

lp2lp_zpk, lp2hp_zpk, lp2bp_zpk, lp2bs_zpk

bilinear

Notes

New in version 1.1.0.

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> fs = 100
>>> bf = 2 * np.pi * np.array([7, 13])
>>> filts = signal.lti(*signal.butter(4, bf, btype='bandpass',
            analog=True,
            output='zpk'))
>>> filtz = signal.lti(*signal.bilinear_zpk(filts.zeros, filts.poles,
            filts.gain, fs))
>>> wz, hz = signal.freqz_zpk(filtz.zeros, filtz.poles, filtz.gain)
>>> ws, hs = signal.freqs_zpk(filts.zeros, filts.poles, filts.gain,
            worN=fs*wz)
>>> plt.semilogx(wz*fs/(2*np.pi), 20*np.log10(np.abs(hz).clip(1e-15)),
            label=r'$|H_z(e^{j \omega})|$')
>>> plt.semilogx(ws*fs/(2*np.pi), 20*np.log10(np.abs(hs).clip(1e-15)),
            label=r'$|H(e^{j \omega})|$')
>>> plt.legend()
>>> plt.xlabel('Frequency [Hz]')
>>> plt.ylabel('Magnitude [dB]')
>>> plt.grid()
```

scipy.signal.findfreqs

scipy.signal.findfreqs(num, den, N, kind='ba')

Find array of frequencies for computing the response of an analog filter.

Parameters

num, den

[array_like, 1-D] The polynomial coefficients of the numerator and denominator of the transfer function of the filter or LTI system, where the coefficients are ordered from highest to lowest degree. Or, the roots of the transfer function numerator and denominator (i.e., zeroes and poles).

N

[int] The length of the array to be computed.
kind [str {'ba', 'zp'}, optional] Specifies whether the numerator and denominator are specified by
their polynomial coefficients ('ba'), or their roots ('zp').

Returns

Examples

Find a set of nine frequencies that span the “interesting part” of the frequency response for the filter with the transfer
function

\[H(s) = \frac{s}{s^2 + 8s + 25} \]

```python
>>> from scipy import signal
>>> signal.findfreqs([1, 0], [1, 8, 25], N=9)
array([ 1.00000000e-02, 3.16227766e-02, 1.00000000e-01,
        3.16227766e-01, 1.00000000e+00, 3.16227766e+00,
        1.00000000e+01, 3.16227766e+01, 1.00000000e+02])
```

scipy.signal.firls

scipy.signal.firls (numtaps, bands, desired, weight=None, nyq=None, fs=None)
FIR filter design using least-squares error minimization.

Calculate the filter coefficients for the linear-phase finite impulse response (FIR) filter which has the best approxi-
mation to the desired frequency response described by bands and desired in the least squares sense (i.e., the integral
of the weighted mean-squared error within the specified bands is minimized).

Parameters

numtaps [int] The number of taps in the FIR filter. numtaps must be odd.
bands [array_like] A monotonic nondecreasing sequence containing the band edges in Hz. All
elements must be non-negative and less than or equal to the Nyquist frequency given by nyq.
desired [array_like] A sequence the same size as bands containing the desired gain at the start and
end point of each band.
weight [array_like, optional] A relative weighting to give to each band region when solving the least squares problem. `weight` has to be half the size of `bands`.

nyq [float, optional] Deprecated. Use `fs` instead. Nyquist frequency. Each frequency in `bands` must be between 0 and `nyq` (inclusive). Default is 1.

fs [float, optional] The sampling frequency of the signal. Each frequency in `bands` must be between 0 and `fs/2` (inclusive). Default is 2.

Returns

coeffs [ndarray] Coefficients of the optimal (in a least squares sense) FIR filter.

See also:

firwin
firwin2
minimum_phase
remez

Notes

This implementation follows the algorithm given in [1]. As noted there, least squares design has multiple advantages:

1. Optimal in a least-squares sense.
2. Simple, non-iterative method.
3. The general solution can obtained by solving a linear system of equations.
4. Allows the use of a frequency dependent weighting function.

This function constructs a Type I linear phase FIR filter, which contains an odd number of `coeffs` satisfying for $n < \text{numtaps}$:

$$coeffs(n) = coeffs(\text{numtaps} - 1 - n)$$

The odd number of coefficients and filter symmetry avoid boundary conditions that could otherwise occur at the Nyquist and 0 frequencies (e.g., for Type II, III, or IV variants).

New in version 0.18.

References

[1]

Examples

We want to construct a band-pass filter. Note that the behavior in the frequency ranges between our stop bands and pass bands is unspecified, and thus may overshoot depending on the parameters of our filter:

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> fig, axs = plt.subplots(2)
>>> fs = 10.0  # Hz
>>> desired = (0, 0, 1, 1, 0, 0)
```
>>> for bi, bands in enumerate(((0, 1, 2, 3, 4, 5), (0, 1, 2, 4, 4.5, ...))):
 ...
 fir_firls = signal.firls(73, bands, desired, fs=fs)
 ...
 fir_remez = signal.remez(73, bands, desired[::2], fs=fs)
 ...
 fir_firwin2 = signal.firwin2(73, bands, desired, fs=fs)
 ...
 hs = list()
 ...
 ax = axs[bi]
 ...
 for fir in (fir_firls, fir_remez, fir_firwin2):
 ...
 freq, response = signal.freqz(fir)
 ...
 hs.append(ax.semilogy(0.5*fs*freq/np.pi, np.abs(response))[0])
 ...
 for band, gains in zip(zip(bands[::2], bands[1::2]),
 zip(desired[::2], desired[1::2])):
 ...
 ax.semilogy(band, np.maximum(gains, 1e-7), 'k--', linewidth=2)
 ...
 if bi == 0:
 ...
 ax.legend(hs, ('firls', 'remez', 'firwin2'),
 loc='lower center', frameon=False)
 ...
 ...
 else:
 ...
 ax.set_xlabel('Frequency (Hz)')
 ...
 ax.grid(True)
 ...
 ax.set(title='Band-pass %d-%d Hz' % bands[2:4], ylabel='Magnitude',
 xlabel='Frequency (Hz)')
 ...
 ...

>>> fig.tight_layout()
>>> plt.show()
scipy.signal.firwin

scipy.signal.firwin(numtaps, cutoff, width=None, window='hamming', pass_zero=True, scale=True, nyq=None, fs=None)

FIR filter design using the window method.

This function computes the coefficients of a finite impulse response filter. The filter will have linear phase; it will be Type I if `numtaps` is odd and Type II if `numtaps` is even.

Type II filters always have zero response at the Nyquist frequency, so a ValueError exception is raised if firwin is called with `numtaps` even and having a passband whose right end is at the Nyquist frequency.

Parameters

- **numtaps** [int] Length of the filter (number of coefficients, i.e. the filter order + 1). `numtaps` must be odd if a passband includes the Nyquist frequency.
- **cutoff** [float or 1-D array_like] Cutoff frequency of filter (expressed in the same units as `fs`) OR an array of cutoff frequencies (that is, band edges). In the latter case, the frequencies in `cutoff` should be positive and monotonically increasing between 0 and `fs/2`. The values 0 and `fs/2` must not be included in `cutoff`.
- **width** [float or None, optional] If `width` is not None, then assume it is the approximate width of the transition region (expressed in the same units as `fs`) for use in Kaiser FIR filter design. In this case, the `window` argument is ignored.
- **window** [string or tuple of string and parameter values, optional] Desired window to use. See `scipy.signal.get_window` for a list of windows and required parameters.
- **pass_zero** [{True, False, 'bandpass', 'lowpass', 'highpass', 'bandstop'}, optional] If True, the gain at the frequency 0 (i.e., the “DC gain”) is 1. If False, the DC gain is 0. Can also be a string argument for the desired filter type (equivalent to `btype` in IIR design functions).
 New in version 1.3.0: Support for string arguments.
- **scale** [bool, optional] Set to True to scale the coefficients so that the frequency response is exactly unity at a certain frequency. That frequency is either:
 • 0 (DC) if the first passband starts at 0 (i.e. pass_zero is True)
 • `fs/2` (the Nyquist frequency) if the first passband ends at `fs/2` (i.e the filter is a single band highpass filter); center of first passband otherwise
- **nyq** [float, optional] Deprecated. Use `fs` instead. This is the Nyquist frequency. Each frequency in `cutoff` must be between 0 and `nyq`. Default is 1.
- **fs** [float, optional] The sampling frequency of the signal. Each frequency in `cutoff` must be between 0 and `fs/2`. Default is 2.

Returns

- **h** [(numtaps,) ndarray] Coefficients of length `numtaps` FIR filter.

Raises

- **ValueError**
 If any value in `cutoff` is less than or equal to 0 or greater than or equal to `fs/2`, if the values in `cutoff` are not strictly monotonically increasing, or if `numtaps` is even but a passband includes the Nyquist frequency.

See also:

- **firwin2**
- **firls**
- **minimum_phase**
- **remez**
Examples

Low-pass from 0 to f:

```python
>>> from scipy import signal
>>> numtaps = 3
>>> f = 0.1
>>> signal.firwin(numtaps, f)
array([ 0.06799017, 0.86401967, 0.06799017])
```

Use a specific window function:

```python
>>> signal.firwin(numtaps, f, window='nuttall')
array([ 3.56607041e-04, 9.99286786e-01, 3.56607041e-04])
```

High-pass ('stop' from 0 to f):

```python
>>> signal.firwin(numtaps, f, pass_zero=False)
array([-0.00859313, 0.98281375, -0.00859313])
```

Band-pass:

```python
>>> f1, f2 = 0.1, 0.2
>>> signal.firwin(numtaps, [f1, f2], pass_zero=False)
array([ 0.06301614, 0.88770441, 0.06301614])
```

Band-stop:

```python
>>> signal.firwin(numtaps, [f1, f2])
array([-0.00801395, 1.0160279 , -0.00801395])
```

Multi-band (passbands are [0, f1], [f2, f3] and [f4, 1]):

```python
>>> f3, f4 = 0.3, 0.4
>>> signal.firwin(numtaps, [f1, f2, f3, f4])
array([-0.01376344, 1.02752689, -0.01376344])
```

Multi-band (passbands are [f1, f2] and [f3, f4]):

```python
>>> signal.firwin(numtaps, [f1, f2, f3, f4], pass_zero=False)
array([ 0.04890915, 0.91284326, 0.04890915])
```

scipy.signal.firwin2

`scipy.signal.firwin2(numtaps, freq, gain, nfreqs=None, window='hamming', nyq=None, antisymmetric=False, fs=None)`

FIR filter design using the window method.

From the given frequencies `freq` and corresponding gains `gain`, this function constructs an FIR filter with linear phase and (approximately) the given frequency response.

Parameters

- `numtaps` : [int] The number of taps in the FIR filter. `numtaps` must be less than `nfreqs`.
- `freq` : [array_like, 1-D] The frequency sampling points. Typically 0.0 to 1.0 with 1.0 being Nyquist. The Nyquist frequency is half `fs`. The values in `freq` must be nondecreasing. A value can be
repeated once to implement a discontinuity. The first value in \(\text{freq} \) must be 0, and the last value must be \(\text{fs}/2 \). Values 0 and \(\text{fs}/2 \) must not be repeated.

gain
[array_like] The filter gains at the frequency sampling points. Certain constraints to gain values, depending on the filter type, are applied, see Notes for details.

nfreqs
[int, optional] The size of the interpolation mesh used to construct the filter. For most efficient behavior, this should be a power of 2 plus 1 (e.g., 129, 257, etc). The default is one more than the smallest power of 2 that is not less than \(\text{numtaps} \). \(\text{nfreqs} \) must be greater than \(\text{numtaps} \).

window
[string or (string, float) or float, or None, optional] Window function to use. Default is “hanning”. See scipy.signal.get_window for the complete list of possible values. If None, no window function is applied.

nyq
[float, optional] Deprecated. Use ‘\(\text{fs} \)’ instead. This is the Nyquist frequency. Each frequency in \(\text{freq} \) must be between 0 and \(\text{nyq} \). Default is 1.

antisymmetric
[bool, optional] Whether resulting impulse response is symmetric/antisymmetric. See Notes for more details.

fs
[float, optional] The sampling frequency of the signal. Each frequency in \(\text{cutoff} \) must be between 0 and \(\text{fs}/2 \). Default is 2.

Returns

taps
[ndarray] The filter coefficients of the FIR filter, as a 1-D array of length \(\text{numtaps} \).

See also:

firls
firwin
minimum_phase
remez

Notes

From the given set of frequencies and gains, the desired response is constructed in the frequency domain. The inverse FFT is applied to the desired response to create the associated convolution kernel, and the first \(\text{numtaps} \) coefficients of this kernel, scaled by \(\text{window} \), are returned.

The FIR filter will have linear phase. The type of filter is determined by the value of ‘\(\text{numtaps} \)’ and \(\text{antisymmetric} \) flag. There are four possible combinations:

- odd \(\text{numtaps} \), \(\text{antisymmetric} \) is False, type I filter is produced
- even \(\text{numtaps} \), \(\text{antisymmetric} \) is False, type II filter is produced
- odd \(\text{numtaps} \), \(\text{antisymmetric} \) is True, type III filter is produced
- even \(\text{numtaps} \), \(\text{antisymmetric} \) is True, type IV filter is produced

Magnitude response of all but type I filters are subjects to following constraints:

- type II – zero at the Nyquist frequency
- type III – zero at zero and Nyquist frequencies
- type IV – zero at zero frequency

New in version 0.9.0.
References

[1],[2]

Examples

A lowpass FIR filter with a response that is 1 on [0.0, 0.5], and that decreases linearly on [0.5, 1.0] from 1 to 0:

```python
>>> from scipy import signal
>>> taps = signal.firwin2(150, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0])
>>> print(taps[72:78])
[-0.02286961 -0.06362756 0.57310236 0.57310236 -0.06362756 -0.02286961]
```

scipy.signal.freqs

```python
scipy.signal.freqs(b, a, worN=200, plot=None)
```

Compute frequency response of analog filter.

Given the M-order numerator \(b\) and N-order denominator \(a\) of an analog filter, compute its frequency response:

\[
H(\omega) = \frac{b[0](j\omega)^M + b[1](j\omega)^{(M-1)} + \ldots + b[M]}{a[0](j\omega)^N + a[1](j\omega)^{(N-1)} + \ldots + a[N]}
\]

Parameters

- **b** [array_like] Numerator of a linear filter.
- **a** [array_like] Denominator of a linear filter.
- **worN** [{None, int, array_like}, optional] If None, then compute at 200 frequencies around the interesting parts of the response curve (determined by pole-zero locations). If a single integer, then compute at that many frequencies. Otherwise, compute the response at the angular frequencies (e.g., rad/s) given in worN.
- **plot** [callable, optional] A callable that takes two arguments. If given, the return parameters \(w\) and \(h\) are passed to plot. Useful for plotting the frequency response inside freqs.

Returns

- **w** [ndarray] The angular frequencies at which \(h\) was computed.
- **h** [ndarray] The frequency response.

See also:

freqz

Compute the frequency response of a digital filter.
Notes

Using Matplotlib’s “plot” function as the callable for plot produces unexpected results, this plots the real part of the complex transfer function, not the magnitude. Try lambda w, h: plot(w, abs(h)).

Examples

```python
>>> from scipy.signal import freqs, iirfilter

>>> b, a = iirfilter(4, [1, 10], 1, 60, analog=True, ftype='cheby1')

>>> w, h = freqs(b, a, worN=np.logspace(-1, 2, 1000))

>>> import matplotlib.pyplot as plt
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.xlabel('Frequency')
>>> plt.ylabel('Amplitude response [dB]')
>>> plt.grid()
>>> plt.show()
```

scipy.signal.freqs_zpk

`scipy.signal.freqs_zpk(z, p, k, worN=200)`

Compute frequency response of analog filter.

Given the zeros z, poles p, and gain k of a filter, compute its frequency response:

$$H(w) = k \frac{(jw-z[0]) \cdot (jw-z[1]) \cdot \ldots \cdot (jw-z[-1])}{(jw-p[0]) \cdot (jw-p[1]) \cdot \ldots \cdot (jw-p[-1])}$$

Parameters

z
[array_like] Zeroes of a linear filter
p
[array_like] Poles of a linear filter
k
[scalar] Gain of a linear filter
worN
[None, int, array_like], optional] If None, then compute at 200 frequencies around the interesting parts of the response curve (determined by pole-zero locations). If a single integer, then compute at that many frequencies. Otherwise, compute the response at the angular frequencies (e.g., rad/s) given in worN.

Returns

w
[ndarray] The angular frequencies at which h was computed.
h
[ndarray] The frequency response.

See also:

freqs
Compute the frequency response of an analog filter in TF form
freqz
Compute the frequency response of a digital filter in TF form
freqz_zpk
Compute the frequency response of a digital filter in ZPK form

Notes

New in version 0.19.0.

Examples

```python
>>> from scipy.signal import freqs_zpk, iirfilter
>>> z, p, k = iirfilter(4, [1, 10], 1, 60, analog=True, ftype='cheby1',
                        output='zpk')
>>> w, h = freqs_zpk(z, p, k, worN=np.logspace(-1, 2, 1000))
>>> import matplotlib.pyplot as plt
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.xlabel('Frequency')
>>> plt.ylabel('Amplitude response [dB]
''
>>> plt.grid()
>>> plt.show()
```
scipy.signal.freqz

`scipy.signal.freqz(b, a=1, worN=512, whole=False, plot=None, fs=6.283185307179586, include_nyquist=False)`

Compute the frequency response of a digital filter.

Given the M-order numerator b and N-order denominator a of a digital filter, compute its frequency response:

$$
H(e^{j\omega}) = \frac{b[0] + b[1]e^{-j\omega} + \ldots + b[M]e^{-jM\omega}}{a[0] + a[1]e^{-j\omega} + \ldots + a[N]e^{-jN\omega}}
$$

Parameters

- **b** [array_like] Numerator of a linear filter. If b has dimension greater than 1, it is assumed that the coefficients are stored in the first dimension, and $b.shape[1:], a.shape[1:]$, and the shape of the frequencies array must be compatible for broadcasting.

- **a** [array_like] Denominator of a linear filter. If b has dimension greater than 1, it is assumed that the coefficients are stored in the first dimension, and $b.shape[1:], a.shape[1:]$, and the shape of the frequencies array must be compatible for broadcasting.

- **worN** [(None, int, array_like), optional] If a single integer, then compute at that many frequencies (default is N=512). This is a convenient alternative to:

  ```python
  np.linspace(0, fs if whole else fs/2, N, endpoint=include_nyquist)
  ```

 Using a number that is fast for FFT computations can result in faster computations (see Notes).

 If an array_like, compute the response at the frequencies given. These are in the same units as fs.

- **whole** [bool, optional] Normally, frequencies are computed from 0 to the Nyquist frequency, $fs/2$ (upper-half of unit-circle). If *whole* is True, compute frequencies from 0 to fs. Ignored if *worN* is array_like.
plot [callable] A callable that takes two arguments. If given, the return parameters \(w \) and \(h \) are passed to plot. Useful for plotting the frequency response inside \(\text{freqz} \).

fs [float, optional] The sampling frequency of the digital system. Defaults to \(2\pi \) radians/sample \((\text{so} \ w \ \text{is from} \ 0 \ \text{to} \ \pi)\).
New in version 1.2.0.

include_nyquist [bool, optional] If \(\text{whole} \) is False and \(\text{worN} \) is an integer, setting \(\text{include_nyquist} \) to True will include the last frequency (Nyquist frequency) and is otherwise ignored.
New in version 1.5.0.

Returns

\(w \) [ndarray] The frequencies at which \(h \) was computed, in the same units as \(fs \). By default, \(w \) is normalized to the range \([0, \pi)\) (radians/sample).

\(h \) [ndarray] The frequency response, as complex numbers.

See also:

freqz_zpk
sosfreqz

Notes

Using Matplotlib’s \texttt{matplotlib.pyplot.plot} function as the callable for \(\text{plot} \) produces unexpected results, as this plots the real part of the complex transfer function, not the magnitude. Try \texttt{lambda w, h: plot(w, np.abs(h))}.

A direct computation via (R)FFT is used to compute the frequency response when the following conditions are met:

1. An integer value is given for \(\text{worN} \).
2. \(\text{worN} \) is fast to compute via FFT (i.e., \texttt{next_fast_len(worN)} equals \(\text{worN} \)).
3. The denominator coefficients are a single value \((a.\text{shape}[0] == 1)\).
4. \(\text{worN} \) is at least as long as the numerator coefficients \((\text{worN} >= b.\text{shape}[0])\).
5. If \(b.\text{ndim} > 1 \), then \(b.\text{shape}[-1] == 1 \).

For long FIR filters, the FFT approach can have lower error and be much faster than the equivalent direct polynomial calculation.

Examples

```python
>>> from scipy import signal
>>> b = signal.firwin(80, 0.5, window=('kaiser', 8))
>>> w, h = signal.freqz(b)

>>> import matplotlib.pyplot as plt
>>> fig, ax1 = plt.subplots()
>>> ax1.set_title('Digital filter frequency response')
```
Broadcasting Examples

Suppose we have two FIR filters whose coefficients are stored in the rows of an array with shape (2, 25). For this demonstration, we'll use random data:

```python
>>> rng = np.random.default_rng()
>>> b = rng.random((2, 25))
```

To compute the frequency response for these two filters with one call to `freqz`, we must pass in `b.T`, because `freqz` expects the first axis to hold the coefficients. We must then extend the shape with a trivial dimension of length 1 to allow broadcasting with the array of frequencies. That is, we pass in `b.T[..., np.newaxis]`, which has shape (25, 2, 1):

```python
>>> w, h = signal.freqz(b.T[..., np.newaxis], worN=1024)
>>> w.shape
(1024,)
>>> h.shape
(2, 1024)
```

Now, suppose we have two transfer functions, with the same numerator coefficients `b = [0.5, 0.5]`. The coefficients for the two denominators are stored in the first dimension of the 2-D array `a`:

```python
>>> w, h = signal.freqz(b.T[..., np.newaxis], worN=1024)
```
a = [1 1]
[-0.25, -0.5]

```python
>>> b = np.array([0.5, 0.5])
>>> a = np.array([[1, 1], [-0.25, -0.5]])
```

Only `a` is more than 1-D. To make it compatible for broadcasting with the frequencies, we extend it with a trivial dimension in the call to `freqz`:

```python
>>> w, h = signal.freqz(b, a[...], np.newaxis, worN=1024)
>>> w.shape
(1024,)
>>> h.shape
(2, 1024)
```

scipy.signal.freqz_zpk

* scipy.signal.freqz_zpk(z, p, k, worN=512, whole=False, fs=6.283185307179586)

Compute the frequency response of a digital filter in ZPK form.

Given the Zeros, Poles and Gain of a digital filter, compute its frequency response:

\[H(z) = k \frac{\prod_i(z - Z[i])}{\prod_j(z - P[j])} \]

where `k` is the gain, `Z` are the zeros and `P` are the poles.

Parameters

- `z` [array_like] Zeros of a linear filter
- `p` [array_like] Poles of a linear filter
- `k` [scalar] Gain of a linear filter
- `worN` [{None, int, array_like}, optional] If a single integer, then compute at that many frequencies (default is N=512). If an array_like, compute the response at the frequencies given. These are in the same units as `fs`.
- `whole` [bool, optional] Normally, frequencies are computed from 0 to the Nyquist frequency, fs/2 (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to fs. Ignored if `w` is array_like.
- `fs` [float, optional] The sampling frequency of the digital system. Defaults to 2*pi radians/sample (so `w` is from 0 to pi). New in version 1.2.0.

Returns

- `w` [ndarray] The frequencies at which `h` was computed, in the same units as `fs`. By default, `w` is normalized to the range [0, pi) (radians/sample).
- `h` [ndarray] The frequency response, as complex numbers.

See also:

- `freqs`
 - Compute the frequency response of an analog filter in TF form
- `freqs_zpk`
 - Compute the frequency response of an analog filter in ZPK form
freqz

Compute the frequency response of a digital filter in TF form

Notes

New in version 0.19.0.

Examples

Design a 4th-order digital Butterworth filter with cut-off of 100 Hz in a system with sample rate of 1000 Hz, and plot the frequency response:

```python
>>> from scipy import signal
>>> z, p, k = signal.butter(4, 100, output='zpk', fs=1000)
>>> w, h = signal.freqz_zpk(z, p, k, fs=1000)

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(1, 1, 1)
>>> ax1.set_title('Digital filter frequency response')

>>> ax1.plot(w, 20 * np.log10(abs(h)), 'b')
>>> ax1.set_ylabel('Amplitude [dB]', color='b')
>>> ax1.set_xlabel('Frequency [Hz]')

>>> ax2 = ax1.twinx()
>>> angles = np.unwrap(np.angle(h))
>>> ax2.plot(w, angles, 'g')
>>> ax2.set_ylabel('Angle [radians]', color='g')

>>> plt.axis('tight')
>>> plt.show()
```

scipy.signal.sosfreqz

Compute the frequency response of a digital filter in SOS format.

Given `sos`, an array with shape (n, 6) of second order sections of a digital filter, compute the frequency response of the system function:

\[
H(z) = \frac{B_0(z) B_1(z) \cdots B^{(n-1)}(z)}{A_0(z) A_1(z) \cdots A^{(n-1)}(z)}
\]

for \(z = \exp(\omega j)\), where \(B^{(k)}(z)\) and \(A^{(k)}(z)\) are numerator and denominator of the transfer function of the \(k\)-th second order section.

Parameters
sos: array_like Array of second-order filter coefficients, must have shape \((n_sections, 6)\). Each row corresponds to a second-order section, with the first three columns providing the numerator coefficients and the last three providing the denominator coefficients.

worN: [None, int, array_like, optional] If a single integer, then compute at that many frequencies (default is \(N=512\)). Using a number that is fast for FFT computations can result in faster computations (see Notes of freqz).

If an array_like, compute the response at the frequencies given (must be 1-D). These are in the same units as \(fs\).

whole: [bool, optional] Normally, frequencies are computed from 0 to the Nyquist frequency, \(fs/2\) (upper-half of unit-circle). If whole is True, compute frequencies from 0 to \(fs\).

fs: [float, optional] The sampling frequency of the digital system. Defaults to 2*pi radians/sample (so \(w\) is from 0 to pi).

New in version 1.2.0.

Returns

\(w\): [ndarray] The frequencies at which \(h\) was computed, in the same units as \(fs\). By default, \(w\) is normalized to the range [0, pi) (radians/sample).

\(h\): [ndarray] The frequency response, as complex numbers.

See also:

freqz, sosfilt

Notes

New in version 0.19.0.
Examples

Design a 15th-order bandpass filter in SOS format.

```python
>>> from scipy import signal
>>> sos = signal.ellip(15, 0.5, 60, (0.2, 0.4), btype='bandpass', output='sos')
```

Compute the frequency response at 1500 points from DC to Nyquist.

```python
>>> w, h = signal.sosfreqz(sos, worN=1500)
```

Plot the response.

```python
>>> import matplotlib.pyplot as plt
>>> plt.subplot(2, 1, 1)
>>> db = 20*np.log10(np.maximum(np.abs(h), 1e-5))
>>> plt.plot(w/np.pi, db)
>>> plt.ylim(-75, 5)
>>> plt.grid(True)
>>> plt.xticks([0, -np.pi, -0.5*np.pi, 0, 0.5*np.pi, np.pi], ...
             [r'$\pi$', r'$-\pi/2$', '0', r'$\pi/2$', r'$\pi$'])
>>> plt.ylabel('Gain [dB]')
>>> plt.title('Frequency Response')
>>> plt.subplot(2, 1, 2)
>>> plt.plot(w/np.pi, np.angle(h))
>>> plt.grid(True)
>>> plt.xticks([0, -np.pi, -0.5*np.pi, 0, 0.5*np.pi, np.pi], ...
             [r'$\pi$', r'$-\pi/2$', '0', r'$\pi/2$', r'$\pi$'])
>>> plt.yticks([-np.pi, -0.5*np.pi, 0, 0.5*np.pi, np.pi], ...
             [r'$\pi$', r'$-\pi/2$', '0', r'$\pi/2$', r'$\pi$'])
>>> plt.xlabel('Normalized frequency (1.0 = Nyquist)')
>>> plt.ylabel('Phase [rad]')
>>> plt.show()
```

If the same filter is implemented as a single transfer function, numerical error corrupts the frequency response:
```python
>>> b, a = signal.ellip(15, 0.5, 60, (0.2, 0.4), btype='bandpass',
                    output='ba')
>>> w, h = signal.freqz(b, a, worN=1500)
>>> db = 20*np.log10(np.maximum(np.abs(h), 1e-5))
>>> plt.plot(w/np.pi, db)
>>> plt.ylim(-75, 5)
>>> plt.grid(True)
>>> plt.xticks([0, -20, -40, -60])
>>> plt.ylabel('Gain [dB]')
>>> plt.title('Frequency Response')
>>> plt.plot(w/np.pi, np.angle(h))
>>> plt.grid(True)
>>> plt.yticks([-np.pi, -0.5*np.pi, 0, 0.5*np.pi, np.pi],
             [r'$\pi$', r'$\pi/2$', '0', r'$\pi/2$', r'$\pi$'])
>>> plt.xlabel('Normalized frequency (1.0 = Nyquist)')
>>> plt.show()
```

scipy.signal.gammatone

This function computes the coefficients of an FIR or IIR gammatone digital filter [1].

Parameters

- `freq` [float] Center frequency of the filter (expressed in the same units as `fs`).
- `ftype` [{'fir', 'iir'}] The type of filter the function generates. If 'fir', the function will generate an Nth order FIR gammatone filter. If 'iir', the function will generate an 8th order digital IIR filter, modeled as an 4th order gammatone filter.
- `order` [int, optional] The order of the filter. Only used when `ftype='fir'`. Default is 4 to model the human auditory system. Must be between 0 and 24.
numtaps [int, optional] Length of the filter. Only used when ftype='fir'. Default is $fs \times 0.015$ if fs is greater than 1000, 15 if fs is less than or equal to 1000.

fs [float, optional] The sampling frequency of the signal. freq must be between 0 and $fs/2$. Default is 2.

Returns
b, a [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the filter.

Raises
ValueError
If freq is less than or equal to 0 or greater than or equal to $fs/2$, if ftype is not ‘fir’ or ‘iir’, if order is less than or equal to 0 or greater than 24 when ftype='fir'

See also:
firwin
iirfilter

References
[1]

Examples
16-sample 4th order FIR Gammatone filter centered at 440 Hz

```python
>>> from scipy import signal
>>> b, a = signal.gammatone(440, 'fir', numtaps=16, fs=16000)
(array([0.00000000e+00, 2.22196719e-07, 1.64942101e-06, 4.99298227e-06,
   1.01993969e-05, 1.63125770e-05, 2.14648940e-05, 2.29947263e-05,
   1.76776931e-05, 2.04980537e-06, -2.72062858e-05, -7.28455299e-05,
   -1.36651076e-04, -2.19066855e-04, -3.18905076e-04, -4.33156712e-04]), [1.0])
```

IIR Gammatone filter centered at 440 Hz

```python
>>> b, a = signal.gammatone(440, 'iir', fs=16000)
>>> w, h = signal.freqz(b, a)
>>> plt.plot(w / ((2 * np.pi) / 16000), 20 * np.log10(abs(h)))
>>> plt.xscale('log')
>>> plt.title('Gammatone filter frequency response')
>>> plt.xlabel('Frequency')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(440, color='green')  # cutoff frequency
>>> plt.show()
```
scipy.signal.group_delay

scipy.signal.group_delay *(system, w=512, whole=False, fs=6.283185307179586)*

Compute the group delay of a digital filter.

The group delay measures by how many samples amplitude envelopes of various spectral components of a signal are delayed by a filter. It is formally defined as the derivative of continuous (unwrapped) phase:

\[
D(w) = -\frac{d}{dw} \arg H(e^{jw})
\]

Parameters

- **system** *(tuple of array_like (b, a))* Numerator and denominator coefficients of a filter transfer function.
- **w** *[None, int, array_like], optional]* If a single integer, then compute at that many frequencies (default is N=512).
 If an array_like, compute the delay at the frequencies given. These are in the same units as fs.
- **whole** *[bool, optional]* Normally, frequencies are computed from 0 to the Nyquist frequency, fs/2 (upper-half of unit-circle). If whole is True, compute frequencies from 0 to fs. Ignored if w is array_like.
- **fs** *[float, optional]* The sampling frequency of the digital system. Defaults to 2*pi radians/sample (so w is from 0 to pi).
 New in version 1.2.0.

Returns

- **w** *[ndarray]* The frequencies at which group delay was computed, in the same units as fs. By default, w is normalized to the range [0, pi) (radians/sample).
- **gd** *[ndarray]* The group delay.

See also:

- **freqz**
Frequency response of a digital filter

Notes

The similar function in MATLAB is called `grpdelay`.

If the transfer function $H(z)$ has zeros or poles on the unit circle, the group delay at corresponding frequencies is undefined. When such a case arises the warning is raised and the group delay is set to 0 at those frequencies.

For the details of numerical computation of the group delay refer to [1].

New in version 0.16.0.

References

[1]

Examples

```python
>>> from scipy import signal
>>> b, a = signal.iirdesign(0.1, 0.3, 5, 50, ftype='cheby1')
>>> w, gd = signal.group_delay((b, a))

>>> import matplotlib.pyplot as plt
>>> plt.title('Digital filter group delay')
>>> plt.plot(w, gd)
>>> plt.ylabel('Group delay [samples]')
>>> plt.xlabel('Frequency [rad/sample]')
>>> plt.show()
```

Digital filter group delay
scipy.signal.iirdesign

scipy.signal.iirdesign(wp, ws, gpass, gstop, analog=False, ftype='ellip', output='ba', fs=None)

Complete IIR digital and analog filter design.

Given passband and stopband frequencies and gains, construct an analog or digital IIR filter of minimum order for a given basic type. Return the output in numerator, denominator (‘ba’), pole-zero (‘zpk’) or second order sections (‘sos’) form.

Parameters

wp, ws [float or array like, shape (2,)] Passband and stopband edge frequencies. Possible values are scalars (for lowpass and highpass filters) or ranges (for bandpass and bandstop filters). For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so these are normalized from 0 to 1, where 1 is the Nyquist frequency. For example:
- Lowpass: wp = 0.2, ws = 0.3
- Highpass: wp = 0.3, ws = 0.2
- Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]
- Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]
For analog filters, wp and ws are angular frequencies (e.g., rad/s). Note, that for bandpass and bandstop filters passband must lie strictly inside stopband or vice versa.

gpass [float] The maximum loss in the passband (dB).
gstop [float] The minimum attenuation in the stopband (dB).
analog [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
ftype [str, optional] The type of IIR filter to design:
- Butterworth: ‘butter’
- Chebyshev I: ‘cheby1’
- Chebyshev II: ‘cheby2’
- Cauer/elliptic: ‘ellip’
- Bessel/Thomson: ‘bessel’

output [{'ba’, ‘zpk’, ‘sos’}, optional] Filter form of the output:
- second-order sections (recommended): ‘sos’
- numerator/denominator (default): ‘ba’
- pole-zero: ‘zpk’
In general the second-order sections (‘sos’) form is recommended because inferring the coefficients for the numerator/denominator form (‘ba’) suffers from numerical instabilities. For reasons of backward compatibility the default form is the numerator/denominator form (‘ba’), where the ‘b’ and the ‘a’ in ‘ba’ refer to the commonly used names of the coefficients used.
Note: Using the second-order sections form (‘sos’) is sometimes associated with additional computational costs: for data-intensive use cases it is therefore recommended to also investigate the numerator/denominator form (‘ba’).

fs [float, optional] The sampling frequency of the digital system.
New in version 1.2.0.

Returns

b, a [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter. Only returned if output=’ba’.

z, p, k [ndarray, ndarray, float] Zeros, poles, and system gain of the IIR filter transfer function. Only returned if output=’zpk’.
sos [ndarray] Second-order sections representation of the IIR filter. Only returned if output=’sos’.

See also:

butter

Filter design using order and critical points
cheby1, cheby2, ellip, bessel

buttord

Find order and critical points from passband and stopband spec

cheb1ord, cheb2ord, ellipord

iirfilter

General filter design using order and critical frequencies

Notes

The 'sos' output parameter was added in 0.16.0.

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> import matplotlib.ticker

>>> wp = 0.2
>>> ws = 0.3
>>> gpass = 1
>>> gstop = 40

>>> system = signal.iirdesign(wp, ws, gpass, gstop)
>>> w, h = signal.freqz('system')

>>> fig, ax1 = plt.subplots()
>>> ax1.set_title('Digital filter frequency response')
>>> ax1.plot(w, 20 * np.log10(abs(h)), 'b')
>>> ax1.set_ylabel('Amplitude [dB]', color='b')
>>> ax1.set_xlabel('Frequency [rad/sample]')
>>> ax1.grid()
>>> ax1.set_ylim([-120, 20])

>>> ax2 = ax1.twinx()
>>> angles = np.unwrap(np.angle(h))
>>> ax2.plot(w, angles, 'g')
>>> ax2.set_ylabel('Angle (radians)', color='g')
>>> ax2.grid()
>>> ax2.axis('tight')
>>> ax2.set_ylim([-6, 1])
>>> nticks = 8
>>> ax1.yaxis.set_major_locator(matplotlib.ticker.LinearLocator(nticks))
>>> ax2.yaxis.set_major_locator(matplotlib.ticker.LinearLocator(nticks))
```
scipy.signal.iirfilter

scipy.signal.iirfilter(N, Wn=None, rp=None, rs=None, btype='band', analog=False, ftype='butter', output='ba', fs=None)

IIR digital and analog filter design given order and critical points.

Design an Nth-order digital or analog filter and return the filter coefficients.

Parameters

N : int
 The order of the filter.
Wn : array_like
 A scalar or length-2 sequence giving the critical frequencies.
For digital filters, Wn are in the same units as fs. By default, fs is 2 half-cycles/sample, so these are normalized from 0 to 1, where 1 is the Nyquist frequency. (Wn is thus in half-cycles / sample.)
For analog filters, Wn is an angular frequency (e.g., rad/s).
rp : float, optional
 For Chebyshev and elliptic filters, provides the maximum ripple in the passband. (dB)
rs : float, optional
 For Chebyshev and elliptic filters, provides the minimum attenuation in the stop band. (dB)
btype : {'bandpass', 'lowpass', 'highpass', 'bandstop'}, optional
 The type of filter. Default is 'bandpass'.
analog : bool, optional
 When True, return an analog filter, otherwise a digital filter is returned.
ftype : str, optional
 The type of IIR filter to design:
 • Butterworth : 'butter'
 • Chebyshev I : 'cheby1'
 • Chebyshev II : 'cheby2'
 • Cauer/elliptic : 'ellip'
 • Bessel/Thomson: 'bessel'
output : {'ba', 'zpk', 'sos'}, optional
 Filter form of the output:
 • second-order sections (recommended): 'sos'
 • numerator/denominator (default) : 'ba'
 • pole-zero : 'zpk'

In general the second-order sections ('sos') form is recommended because inferring the coefficients for the numerator/denominator form ('ba') suffers from numerical instabilities. For
reasons of backward compatibility the default form is the numerator/denominator form ('ba'), where the 'b' and the 'a' in 'ba' refer to the commonly used names of the coefficients used. Note: Using the second-order sections form ('sos') is sometimes associated with additional computational costs: for data-intense use cases it is therefore recommended to also investigate the numerator/denominator form ('ba').

fs
[float, optional] The sampling frequency of the digital system.
New in version 1.2.0.

Returns

- **b, a** [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter. Only returned if output='ba'.
- **z, p, k** [ndarray, ndarray, float] Zeros, poles, and system gain of the IIR filter transfer function. Only returned if output='zpk'.
- **sos** [ndarray] Second-order sections representation of the IIR filter. Only returned if output=='sos'.

See also:

- **butter**
 Filter design using order and critical points
- **cheby1, cheby2, ellip, bessel**
- **buttord**
 Find order and critical points from passband and stopband spec
- **cheblord, cheb2ord, ellipord**
- **iirdesign**
 General filter design using passband and stopband spec

Notes

The 'sos' output parameter was added in 0.16.0.

Examples

Generate a 17th-order Chebyshev II analog bandpass filter from 50 Hz to 200 Hz and plot the frequency response:

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.iirfilter(17, [2*np.pi*50, 2*np.pi*200], rs=60,
...                          btype='band', analog=True, ftype='cheby2')
>>> w, h = signal.freqs(b, a, 1000)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(1, 1, 1)
>>> ax.semilogx(w / (2*np.pi), 20 * np.log10(np.maximum(abs(h), 1e-5)))
>>> ax.set_title('Chebyshev Type II bandpass frequency response')
>>> ax.set_xlabel('Frequency [Hz]')
>>> ax.set_ylabel('Amplitude [dB]')
>>> ax.axis((10, 1000, -100, 10))
```
Create a digital filter with the same properties, in a system with sampling rate of 2000 Hz, and plot the frequency response. (Second-order sections implementation is required to ensure stability of a filter of this order):

```python
>>> sos = signal.iirfilter(17, [50, 200], rs=60, btype='band',
...                        analog=False, ftype='cheby2', fs=2000,
...                        output='sos')
>>> w, h = signal.sosfreqz(sos, 2000, fs=2000)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(1, 1, 1)
>>> ax.semilogx(w, 20*np.log10(np.maximum(abs(h), 1e-5)))
>>> ax.set_title('Chebyshev Type II bandpass frequency response')
>>> ax.set_xlabel('Frequency [Hz]')
>>> ax.set_ylabel('Amplitude [dB]')
>>> ax.axis((10, 1000, -100, 10))
>>> ax.grid(which='both', axis='both')
>>> plt.show()
```

scipy.signal.kaiser_atten

`scipy.signal.kaiser_atten(numtaps, width)`

Compute the attenuation of a Kaiser FIR filter.

Given the number of taps N and the transition width $width$, compute the attenuation a in dB, given by Kaiser’s formula:

$$a = 2.285 \times (N - 1) \times \pi \times width + 7.95$$

Parameters

- `numtaps` [int] The number of taps in the FIR filter.
- `width` [float] The desired width of the transition region between passband and stopband (or, in general, at any discontinuity) for the filter, expressed as a fraction of the Nyquist frequency.
Chebyshev Type II bandpass frequency response

<table>
<thead>
<tr>
<th>Frequency [Hz]</th>
<th>Amplitude [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>-80</td>
</tr>
<tr>
<td>40</td>
<td>-60</td>
</tr>
<tr>
<td>60</td>
<td>-40</td>
</tr>
<tr>
<td>80</td>
<td>-20</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Returns

a [float] The attenuation of the ripple, in dB.

See also:

kaiserord, kaiser_beta

Examples

Suppose we want to design a FIR filter using the Kaiser window method that will have 211 taps and a transition width of 9 Hz for a signal that is sampled at 480 Hz. Expressed as a fraction of the Nyquist frequency, the width is 9/(0.5*480) = 0.0375. The approximate attenuation (in dB) is computed as follows:

```python
>>> from scipy.signal import kaiser_atten
>>> kaiser_atten(211, 0.0375)
64.48099630593983
```

scipy.signal.kaiser_beta

scipy.signal.kaiser_beta(a)

Compute the Kaiser parameter beta, given the attenuation a.

Parameters

a [float] The desired attenuation in the stopband and maximum ripple in the passband, in dB. This should be a positive number.

Returns

beta [float] The beta parameter to be used in the formula for a Kaiser window.
References

Examples

Suppose we want to design a lowpass filter, with 65 dB attenuation in the stop band. The Kaiser window parameter to be used in the window method is computed by \texttt{kaiser_beta(65)}:

\begin{verbatim}
>>> from scipy.signal import kaiser_beta
>>> kaiser_beta(65)
6.20426
\end{verbatim}

\texttt{scipy.signal.kaiserord}

\texttt{scipy.signal.kaiserord}(\texttt{ripple, width})

Determine the filter window parameters for the Kaiser window method.

The parameters returned by this function are generally used to create a finite impulse response filter using the window method, with either \texttt{firwin} or \texttt{firwin2}.

\textit{Parameters}

\begin{itemize}
 \item \texttt{ripple} [float] Upper bound for the deviation (in dB) of the magnitude of the filter's frequency response from that of the desired filter (not including frequencies in any transition intervals). That is, if \(w \) is the frequency expressed as a fraction of the Nyquist frequency, \(A(w) \) is the actual frequency response of the filter and \(D(w) \) is the desired frequency response, the design requirement is that:
 \[
 \text{abs}(A(w) - D(w)) < 10^{-\text{ripple}/20}
 \]
 for \(0 \leq w \leq 1 \) and \(w \) not in a transition interval.
 \item \texttt{width} [float] Width of transition region, normalized so that 1 corresponds to \(\pi \) radians / sample. That is, the frequency is expressed as a fraction of the Nyquist frequency.
\end{itemize}

\textit{Returns}

\begin{itemize}
 \item \texttt{numtaps} [int] The length of the Kaiser window.
 \item \texttt{beta} [float] The beta parameter for the Kaiser window.
\end{itemize}

See also:

\texttt{kaiser_beta, kaiser_atten}

Notes

There are several ways to obtain the Kaiser window:

\begin{itemize}
 \item \texttt{signal.windows.kaiser(numtaps, beta, sym=True)}
 \item \texttt{signal.get_window(beta, numtaps)}
 \item \texttt{signal.get_window('kaiser', beta), numtaps)}
\end{itemize}

The empirical equations discovered by Kaiser are used.
References

Examples

We will use the Kaiser window method to design a lowpass FIR filter for a signal that is sampled at 1000 Hz.
We want at least 65 dB rejection in the stop band, and in the pass band the gain should vary no more than 0.5%.

We want a cutoff frequency of 175 Hz, with a transition between the pass band and the stop band of 24 Hz. That
is, in the band [0, 163], the gain varies no more than 0.5%, and in the band [187, 500], the signal is attenuated by
at least 65 dB.

```python
>>> from scipy.signal import kaiserord, firwin, freqz
>>> import matplotlib.pyplot as plt
>>> fs = 1000.0
>>> cutoff = 175
>>> width = 24
```

The Kaiser method accepts just a single parameter to control the pass band ripple and the stop band rejection, so
we use the more restrictive of the two. In this case, the pass band ripple is 0.005, or 46.02 dB, so we will use 65
dB as the design parameter.

Use `kaiserord` to determine the length of the filter and the parameter for the Kaiser window.

```python
>>> numtaps, beta = kaiserord(65, width/(0.5*fs))
>>> numtaps
167
>>> beta
6.20426
```

Use `firwin` to create the FIR filter.

```python
>>> taps = firwin(numtaps, cutoff, window=('kaiser', beta),
...                scale=False, nyq=0.5*fs)
```

Compute the frequency response of the filter. *w* is the array of frequencies, and *h* is the corresponding complex
array of frequency responses.

```python
>>> w, h = freqz(taps, worN=8000)
>>> w *= 0.5*fs/np.pi  # Convert w to Hz.
```

Compute the deviation of the magnitude of the filter's response from that of the ideal lowpass filter. Values in the
transition region are set to `np.nan`, so they won't appear in the plot.

```python
>>> ideal = w < cutoff  # The "ideal" frequency response.
>>> deviation = np.abs(np.abs(h) - ideal)
>>> deviation[(w > cutoff - 0.5*width) & (w < cutoff + 0.5*width)] = np.nan
```

Plot the deviation. A close look at the left end of the stop band shows that the requirement for 65 dB attenuation
is violated in the first lobe by about 0.125 dB. This is not unusual for the Kaiser window method.
```python
>>> plt.plot(w, 20*np.log10(np.abs(deviation)))
>>> plt.xlim(0, 0.5*fs)
>>> plt.ylim(-90, -60)
>>> plt.grid(alpha=0.25)
>>> plt.axhline(-65, color='r', ls='--', alpha=0.3)
>>> plt.xlabel('Frequency (Hz)')
>>> plt.ylabel('Deviation from ideal (dB)')
>>> plt.title('Lowpass Filter Frequency Response')
>>> plt.show()
```

scipy.signal.minimum_phase

`scipy.signal.minimum_phase(h, method='homomorphic', n_fft=None)`

Convert a linear-phase FIR filter to minimum phase

Parameters

- **h**
 - [array] Linear-phase FIR filter coefficients.

- **method**
 - [str] The method to use:
 - `'homomorphic'` (default)
 - This method works best with filters with an odd number of taps, and the resulting minimum phase filter will have a magnitude response that approximates the square root of the original filter’s magnitude response.
 - `'hilbert'`
 - This method is designed to be used with equiripple filters (e.g., from `remez`) with unity or zero gain regions.

- **n_fft**
 - [int] The number of points to use for the FFT. Should be at least a few times larger than the signal length (see Notes).

Returns

- **h_minimum**
 - [array] The minimum-phase version of the filter, with length `(length(h) + 1) // 2`.

See also:

`firwin`

In the case of the Hilbert method, the deviation from the ideal spectrum \(\epsilon \) is related to the number of stopband zeros \(n_{\text{stop}} \) and FFT length \(n_{\text{fft}} \) as:

\[
\epsilon = 2 \times \frac{n_{\text{stop}}}{n_{\text{fft}}}
\]

For example, with 100 stopband zeros and a FFT length of 2048, \(\epsilon = 0.0976 \). If we conservatively assume that the number of stopband zeros is one less than the filter length, we can take the FFT length to be the next power of 2 that satisfies \(\epsilon = 0.01 \) as:

\[
n_{\text{fft}} = 2^{\lceil \frac{\log_2(2 \times (\text{len}(h) - 1) / 0.01)\rceil}}
\]

This gives reasonable results for both the Hilbert and homomorphic methods, and gives the value used when \(n_{\text{fft}} = \text{None} \).

Alternative implementations exist for creating minimum-phase filters, including zero inversion [2] and spectral factorization [3] [4]. For more information, see:

http://dspguru.com/dsp/howtos/how-to-design-minimum-phase-fir-filters

References

[1], [2], [3], [4], [5]

Examples

Create an optimal linear-phase filter, then convert it to minimum phase:

```python
>>> from scipy.signal import remez, minimum_phase, freqz, group_delay
>>> import matplotlib.pyplot as plt
>>> freq = [0, 0.2, 0.3, 1.0]
>>> desired = [1, 0]
>>> h_linear = remez(151, freq, desired, Hz=2.)
```

Convert it to minimum phase:

```python
>>> h_min_hom = minimum_phase(h_linear, method='homomorphic')
>>> h_min_hil = minimum_phase(h_linear, method='hilbert')
```

Compare the three filters:

```python
>>> fig, axs = plt.subplots(4, figsize=(4, 8))
>>> for h, style, color in zip((h_linear, h_min_hom, h_min_hil),
... ('-', '-.', '--'), ('k', 'r', 'c')):
...     w, H = freqz(h)
...     w, gd = group_delay((h, 1))
(continues on next page)```
... w /= np.pi
... axs[0].plot(h, color=color, linestyle=style)
... axs[1].plot(w, np.abs(H), color=color, linestyle=style)
... axs[2].plot(w, 20 * np.log10(np.abs(H)), color=color, linestyle=style)
... axs[3].plot(w, gd, color=color, linestyle=style)

```python
>>> for ax in axs:
... ax.grid(True, color='0.5')
... ax.fill_between(freq[1:], *ax.get_ylim(), color='#ffeeaa', zorder=1)
>>> axs[0].set(xlim=[0, len(h_linear) - 1], ylabel='Amplitude', xlabel='Samples')
>>> axs[1].legend(['Linear', 'Min-Hom', 'Min-Hil'], title='Phase')
>>> for ax, ylim in zip(axs[1:], ([0, 1.1], [-150, 10], [-60, 60])):
... ax.set(xlim=[0, 1], ylim=ylim, xlabel='Frequency')
>>> axs[1].set(ylabel='Magnitude')
>>> axs[2].set(ylabel='Magnitude (dB)')
>>> axs[3].set(ylabel='Group delay')
>>> plt.tight_layout()
```

**scipy.signal.savgol_coeffs**

(scipy.signal.savgol_coeffs (window_length, polyorder, deriv=0, delta=1.0, pos=None, use='conv')

Compute the coefficients for a 1-D Savitzky-Golay FIR filter.

**Parameters**

- **window_length**
  - [int] The length of the filter window (i.e., the number of coefficients).

- **polyorder**
  - [int] The order of the polynomial used to fit the samples. polyorder must be less than window_length.

- **deriv**
  - [int, optional] The order of the derivative to compute. This must be a nonnegative integer. The default is 0, which means to filter the data without differentiating.

- **delta**
  - [float, optional] The spacing of the samples to which the filter will be applied. This is only used if deriv > 0.

- **pos**
  - [int or None, optional] If pos is not None, it specifies evaluation position within the window. The default is the middle of the window.

- **use**
  - [str, optional] Either ‘conv’ or ‘dot’. This argument chooses the order of the coefficients. The default is ‘conv’, which means that the coefficients are ordered to be used in a convolution. With use='dot', the order is reversed, so the filter is applied by dotting the coefficients with the data set.

**Returns**

- **coeffs**
  - [1-D ndarray] The filter coefficients.

**See also:**

savgol_filter
Notes

New in version 0.14.0.

References


Examples

```python
>>> from scipy.signal import savgol_coeffs
>>> savgol_coeffs(5, 2)
array([-0.08571429, 0.34285714, 0.48571429, 0.34285714, -0.08571429])
>>> savgol_coeffs(5, 2, deriv=1)
array([2.00000000e-01, 1.00000000e-01, 2.07548111e-16, -1.00000000e-01,
 -2.00000000e-01])
Note that use='dot' simply reverses the coefficients.
```
```python
>>> savgol_coeffs(5, 2, pos=3)
array([0.25714286, 0.37142857, 0.34285714, 0.17142857, -0.14285714])
>>> savgol_coeffs(5, 2, pos=3, use='dot')
array([-0.25714286, -0.37142857, -0.34285714, -0.17142857, 0.14285714])
>>> savgol_coeffs(4, 2, pos=3, deriv=1, use='dot')
array([0.45, -0.85, -0.65, 1.05])
```

`x` contains data from the parabola `x = t**2`, sampled at `t = -1, 0, 1, 2, 3`. `c` holds the coefficients that will compute the derivative at the last position. When dotted with `x` the result should be 6.

```python
>>> x = np.array([1, 0, 1, 4, 9])
>>> c = savgol_coeffs(5, 2, pos=4, deriv=1, use='dot')
>>> c.dot(x)
6.0
```

`scipy.signal.remez`

`scipy.signal.remez`(numtaps, bands, desired, weight=None, Hz=None, type='bandpass', maxiter=25,
grid_density=16, fs=None)

Calculate the minimax optimal filter using the Remez exchange algorithm.

Calculate the filter-coefficients for the finite impulse response (FIR) filter whose transfer function minimizes the maximum error between the desired gain and the realized gain in the specified frequency bands using the Remez exchange algorithm.

**Parameters**

- **numtaps**  [int] The desired number of taps in the filter. The number of taps is the number of terms in the filter, or the filter order plus one.
- **bands**  [array_like] A monotonic sequence containing the band edges. All elements must be non-negative and less than half the sampling frequency as given by `fs`.
- **desired**  [array_like] A sequence half the size of bands containing the desired gain in each of the specified bands.
weight [array_like, optional] A relative weighting to give to each band region. The length of weight has to be half the length of bands.
type [{‘bandpass’, ‘differentiator’, ‘hilbert’}, optional] The type of filter:
  • ‘bandpass’: flat response in bands. This is the default.
  • ‘differentiator’: frequency proportional response in bands.
  • ‘hilbert’ [filter with odd symmetry, that is, type III] (for even order) or type IV (for odd order) linear phase filters.
maxiter [int, optional] Maximum number of iterations of the algorithm. Default is 25.
grid_density [int, optional] Grid density. The dense grid used in `remez` is of size \((\text{numtaps} + 1) \times \text{grid\_density}\). Default is 16.
fs [float, optional] The sampling frequency of the signal. Default is 1.

Returns
out [ndarray] A rank-1 array containing the coefficients of the optimal (in a minimax sense) filter.

See also:
- firls
- firwin
- firwin2
- minimum_phase

References
[1], [2]

Examples
In these examples `remez` gets used creating a bandpass, bandstop, lowpass and highpass filter. The used parameters are the filter order, an array with according frequency boundaries, the desired attenuation values and the sampling frequency. Using `freqz` the corresponding frequency response gets calculated and plotted.

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> def plot_response(fs, w, h, title):
... """Utility function to plot response functions""
... fig = plt.figure()
... ax = fig.add_subplot(111)
... ax.plot(0.5*fs*w/np.pi, 20*np.log10(np.abs(h)))
... ax.set_ylim(-40, 5)
... ax.set_xlim(0, 0.5*fs)
... ax.grid(True)
... ax.set_xlabel('Frequency (Hz)')
... ax.set_ylabel('Gain (dB)')
... ax.set_title(title)
```

This example shows a steep low pass transition according to the small transition width and high filter order:
```python
>>> fs = 22050.0 # Sample rate, Hz
>>> cutoff = 8000.0 # Desired cutoff frequency, Hz
>>> trans_width = 100 # Width of transition from pass band to stop band, in Hz
>>> numtaps = 400 # Size of the FIR filter.
>>> taps = signal.remez(numtaps, [0, cutoff, cutoff + trans_width, 0.
-5*fs], [1, 0], Hz=fs)
>>> w, h = signal.freqz(taps, [1], worN=2000)
>>> plot_response(fs, w, h, "Low-pass Filter")

This example shows a high pass filter:
```n
```python
>>> fs = 22050.0 # Sample rate, Hz
>>> cutoff = 2000.0 # Desired cutoff frequency, Hz
>>> trans_width = 250 # Width of transition from pass band to stop band, in Hz
>>> numtaps = 125 # Size of the FIR filter.
>>> taps = signal.remez(numtaps, [0, cutoff - trans_width, cutoff, 0.
-5*fs], [0, 1], Hz=fs)
>>> w, h = signal.freqz(taps, [1], worN=2000)
>>> plot_response(fs, w, h, "High-pass Filter")

For a signal sampled with 22 kHz a bandpass filter with a pass band of 2-5 kHz gets calculated using the Remez algorithm. The transition width is 260 Hz and the filter order 10:
```n
```python
>>> fs = 22000.0 # Sample rate, Hz
>>> band = [2000, 5000] # Desired pass band, Hz
>>> trans_width = 260 # Width of transition from pass band to stop band, Hz
>>> numtaps = 10 # Size of the FIR filter.
>>> edges = [0, band[0] - trans_width, band[0], band[1],
band[1] + trans_width, 0.5*fs]
>>> taps = signal.remez(numtaps, edges, [0, 1, 0], Hz=fs)
>>> w, h = signal.freqz(taps, [1], worN=2000)
>>> plot_response(fs, w, h, "Band-pass Filter")

It can be seen that for this bandpass filter, the low order leads to higher ripple and less steep transitions. There is very low attenuation in the stop band and little overshoot in the pass band. Of course the desired gain can be better approximated with a higher filter order.

The next example shows a bandstop filter. Because of the high filter order the transition is quite steep:
```n
```python
>>> fs = 20000.0 # Sample rate, Hz
>>> band = [6000, 8000] # Desired stop band, Hz
>>> trans_width = 200 # Width of transition from pass band to stop band, Hz
>>> numtaps = 175 # Size of the FIR filter.
>>> edges = [0, band[0] - trans_width, band[0], band[1], band[1] + trans_width, 0.5*fs]
>>> taps = signal.remez(numtaps, edges, [1, 0, 1], Hz=fs)
>>> w, h = signal.freqz(taps, [1], worN=2000)
>>> plot_response(fs, w, h, "Band-stop Filter")

3.3. API definition
```python
>>> plt.show()
```

scipy.signal.unique_roots

`scipy.signal.unique_roots(p, tol=0.001, rtype='min')`

Determine unique roots and their multiplicities from a list of roots.

Parameters

- `p` [array_like] The list of roots.
- `tol` [float, optional] The tolerance for two roots to be considered equal in terms of the distance between them. Default is $1e^{-3}$. Refer to Notes about the details on roots grouping.
 - ‘max’, ‘maximum’: pick the maximum of those roots
 - ‘min’, ‘minimum’: pick the minimum of those roots
3.3. API definition
• ‘avg’, ‘mean’: take the average of those roots
When finding minimum or maximum among complex roots they are compared first by the real part and then by the imaginary part.

Returns

- **unique** [ndarray] The list of unique roots.
- **multiplicity** [ndarray] The multiplicity of each root.

Notes

If we have 3 roots a, b, and c, such that a is close to b and b is close to c (distance is less than tol), then it doesn’t necessarily mean that a is close to c. It means that roots grouping is not unique. In this function we use “greedy” grouping going through the roots in the order they are given in the input p.

This utility function is not specific to roots but can be used for any sequence of values for which uniqueness and multiplicity has to be determined. For a more general routine, see `numpy.unique`.

Examples

```python
>>> from scipy import signal
>>> vals = [0, 1.3, 1.31, 2.8, 1.25, 2.2, 10.3]
>>> uniq, mult = signal.unique_roots(vals, tol=2e-2, rtype='avg')
```

Check which roots have multiplicity larger than 1:

```python
>>> uniq[mult > 1]
array([1.305])
```

scipy.signal.residue

`scipy.signal.residue(b, a, tol=0.001, rtype='avg')`

Compute partial-fraction expansion of b(s) / a(s).

If M is the degree of numerator b and N the degree of denominator a:

\[
H(s) = \frac{b(s)}{a(s)} = \frac{b[0] s^M + b[1] s^{M-1} + \ldots + b[M]}{a[0] s^N + a[1] s^{N-1} + \ldots + a[N]}
\]

then the partial-fraction expansion H(s) is defined as:

\[
\frac{r[0]}{(s-p[0])} + \frac{r[1]}{(s-p[1])} + \ldots + \frac{r[-1]}{(s-p[-1])} + k(s)
\]

If there are any repeated roots (closer together than tol), then H(s) has terms like:

\[
\frac{r[i]}{(s-p[i])} + \frac{r[i+1]}{(s-p[i])^2} + \ldots + \frac{r[i+n-1]}{(s-p[i])^n}
\]
This function is used for polynomials in positive powers of s or z, such as analog filters or digital filters in controls engineering. For negative powers of z (typical for digital filters in DSP), use `residuez`.

See Notes for details about the algorithm.

Parameters

- **b** [array_like] Numerator polynomial coefficients.
- **a** [array_like] Denominator polynomial coefficients.
- **tol** [float, optional] The tolerance for two roots to be considered equal in terms of the distance between them. Default is 1e-3. See `unique_roots` for further details.

Returns

- **r** [ndarray] Residues corresponding to the poles. For repeated poles, the residues are ordered to correspond to ascending by power fractions.
- **p** [ndarray] Poles ordered by magnitude in ascending order.
- **k** [ndarray] Coefficients of the direct polynomial term.

See also:

`invres`, `residuez`, `numpy.poly`, `unique_roots`

Notes

The “deflation through subtraction” algorithm is used for computations — method 6 in [1].

The form of partial fraction expansion depends on poles multiplicity in the exact mathematical sense. However there is no way to exactly determine multiplicity of roots of a polynomial in numerical computing. Thus you should think of the result of `residue` with given `tol` as partial fraction expansion computed for the denominator composed of the computed poles with empirically determined multiplicity. The choice of `tol` can drastically change the result if there are close poles.

References

[1]

`scipy.signal.residuez`

`scipy.signal.residuez` ($b, a, tol=0.001, rtype='avg'$)

Compute partial-fraction expansion of $b(z) / a(z)$.

If M is the degree of numerator b and N the degree of denominator a:

$$
\frac{b(z)}{a(z)} = \frac{b[0] + b[1] z^*(-1) + \ldots + b[M] z^*(-M)}{a[0] + a[1] z^*(-1) + \ldots + a[N] z^*(-N)}
$$

then the partial-fraction expansion $H(z)$ is defined as:

$$
\begin{align*}
 r[0] & \quad r[-1] \\
 (1-p[0] z^*(-1)) & \quad (1-p[-1] z^*(-1))
\end{align*}
$$

If there are any repeated roots (closer than `tol`), then the partial fraction expansion has terms like:
This function is used for polynomials in negative powers of \(z \), such as digital filters in DSP. For positive powers, use \texttt{residue}.

See Notes of \texttt{residue} for details about the algorithm.

Parameters

- \(b \) [array_like] Numerator polynomial coefficients.
- \(a \) [array_like] Denominator polynomial coefficients.
- \(\textbf{tol} \) [float, optional] The tolerance for two roots to be considered equal in terms of the distance between them. Default is 1e-3. See \texttt{unique_roots} for further details.
- \(\textbf{rtype} \) ['avg', 'min', 'max'], optional] Method for computing a root to represent a group of identical roots. Default is 'avg'. See \texttt{unique_roots} for further details.

Returns

- \(r \) [ndarray] Residues corresponding to the poles. For repeated poles, the residues are ordered to correspond to ascending by power fractions.
- \(p \) [ndarray] Poles ordered by magnitude in ascending order.
- \(k \) [ndarray] Coefficients of the direct polynomial term.

See also:

\texttt{invresz, residue, unique_roots}

\textit{scipy.signal.invres}\n
\textit{scipy.signal.invres}(r, p, k, tol=0.001, rtype='avg')

Compute \(b(s) \) and \(a(s) \) from partial fraction expansion.

If \(M \) is the degree of numerator \(b \) and \(N \) the degree of denominator \(a \):

\[
H(s) = \frac{b(s)}{a(s)} = \frac{b[0]}{a[0]} s^{**}(M) + \frac{b[1]}{a[1]} s^{**}(M-1) + \ldots + \frac{b[M]}{a[M]}
\]

then the partial-fraction expansion \(H(s) \) is defined as:

\[
\frac{r[0]}{(s-p[0])} + \frac{r[1]}{(s-p[1])} + \ldots + \frac{r[-1]}{(s-p[-1])} + k(s)
\]

If there are any repeated roots (closer together than \(\textbf{tol} \)), then \(H(s) \) has terms like:

\[
\frac{r[i]}{(s-p[i])} + \frac{r[i+1]}{(s-p[i])} + \ldots + \frac{r[i+n-1]}{(s-p[i])} + \frac{r[i+n]}{(s-p[i])} + \ldots
\]

This function is used for polynomials in positive powers of \(s \) or \(z \), such as analog filters or digital filters in controls engineering. For negative powers of \(z \) (typical for digital filters in DSP), use \texttt{invresz}.

Parameters

- \(r \) [array_like] Residues corresponding to the poles. For repeated poles, the residues must be ordered to correspond to ascending by power fractions.

residue, invresz

scipy.signal.invresz

scipy.signal.invresz(r, p, k, tol=0.001, rtype='avg')

Compute \(b(z) \) and \(a(z) \) from partial fraction expansion.

If \(M \) is the degree of numerator \(b \) and \(N \) the degree of denominator \(a \):

\[
\frac{b(z)}{a(z)} = \frac{b[0] + b[1] z^{-1} + \ldots + b[M] z^{-M}}{a[0] + a[1] z^{-1} + \ldots + a[N] z^{-N}}
\]

then the partial-fraction expansion \(H(z) \) is defined as:

\[
\begin{align*}
\frac{r[0]}{1-p[0] z^{-1}} & + \frac{r[-1]}{1-p[-1] z^{-1}} \\
& \ldots \\
\end{align*}
\]

If there are any repeated roots (closer than \(tol \)), then the partial fraction expansion has terms like:

\[
\begin{align*}
\frac{r[i]}{1-p[i] z^{-1}} & + \frac{r[i+1]}{1-p[i+1] z^{-1}} & + \frac{r[i+n-1]}{1-p[i+n-1] z^{-1}} \\
& \ldots \\
\end{align*}
\]

This function is used for polynomials in negative powers of \(z \), such as digital filters in DSP. For positive powers, use \texttt{invres}.

Parameters

- \(r \) [array_like] Residues corresponding to the poles. For repeated poles, the residues must be ordered to correspond to ascending by power fractions.
- \(p \) [array_like] Poles. Equal poles must be adjacent.
- \(k \) [array_like] Coefficients of the direct polynomial term.
- \(tol \) [float, optional] The tolerance for two roots to be considered equal in terms of the distance between them. Default is 1e-3. See \texttt{unique_roots} for further details.
- \(rtype \) [{'avg', 'min', 'max'}, optional] Method for computing a root to represent a group of identical roots. Default is 'avg'. See \texttt{unique_roots} for further details.

Returns

- \(b \) [ndarray] Numerator polynomial coefficients.
- \(a \) [ndarray] Denominator polynomial coefficients.

See also:

residue, invres, unique_roots
residuez, unique_roots, invres

scipy.signal.BadCoefficients

exception scipy.signal.BadCoefficients
 Warning about badly conditioned filter coefficients

 with_traceback()
 Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

Lower-level filter design functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>abcd_normalize([A, B, C, D])</code></td>
<td>Check state-space matrices and ensure they are 2-D.</td>
</tr>
<tr>
<td><code>band_stop_obj(wp, ind, passb, stopb, gpass, ...)</code></td>
<td>Band Stop Objective Function for order minimization.</td>
</tr>
<tr>
<td><code>besselap(N[, norm])</code></td>
<td>Return (z,p,k) for analog prototype of an Nth-order Bessel filter.</td>
</tr>
<tr>
<td><code>butter(N)</code></td>
<td>Return (z,p,k) for analog prototype of Nth-order Butterworth filter.</td>
</tr>
<tr>
<td><code>cheb1ap(N, rp)</code></td>
<td>Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter.</td>
</tr>
<tr>
<td><code>cheb2ap(N, rs)</code></td>
<td>Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter.</td>
</tr>
<tr>
<td><code>cmplx_sort(p)</code></td>
<td>Sort roots based on magnitude.</td>
</tr>
<tr>
<td><code>ellipap(N, rp, rs)</code></td>
<td>Return (z,p,k) of Nth-order elliptic analog lowpass filter.</td>
</tr>
<tr>
<td><code>lp2bp(b, a[, wo, bw])</code></td>
<td>Transform a lowpass filter prototype to a bandpass filter.</td>
</tr>
<tr>
<td><code>lp2bp_zpk(z, p, k[, wo, bw])</code></td>
<td>Transform a lowpass filter prototype to a bandpass filter.</td>
</tr>
<tr>
<td><code>lp2bs(b, a[, wo, bw])</code></td>
<td>Transform a lowpass filter prototype to a bandstop filter.</td>
</tr>
<tr>
<td><code>lp2bs_zpk(z, p, k[, wo, bw])</code></td>
<td>Transform a lowpass filter prototype to a bandstop filter.</td>
</tr>
<tr>
<td><code>lp2hp(b, a[, wo])</code></td>
<td>Transform a lowpass filter prototype to a highpass filter.</td>
</tr>
<tr>
<td><code>lp2hp_zpk(z, p, k[, wo])</code></td>
<td>Transform a lowpass filter prototype to a highpass filter.</td>
</tr>
<tr>
<td><code>lp2lp(b, a[, wo])</code></td>
<td>Transform a lowpass filter prototype to a different frequency.</td>
</tr>
<tr>
<td><code>lp2lp_zpk(z, p, k[, wo])</code></td>
<td>Transform a lowpass filter prototype to a different frequency.</td>
</tr>
<tr>
<td><code>normalize(b, a)</code></td>
<td>Normalize numerator/denominator of a continuous-time transfer function.</td>
</tr>
</tbody>
</table>

scipy.signal.abcd_normalize

scipy.signal.abcd_normalize(A=None, B=None, C=None, D=None)
 Check state-space matrices and ensure they are 2-D.

 If enough information on the system is provided, that is, enough properly-shaped arrays are passed to the function, the missing ones are built from this information, ensuring the correct number of rows and columns. Otherwise a ValueError is raised.

 Parameters

 A, B, C, D [array_like, optional] State-space matrices. All of them are None (missing) by default. See `ss2tf` for format.

 Returns

 Raises
ValueError

If not enough information on the system was provided.

scipy.signal.band_stop_obj

`scipy.signal.band_stop_obj(wp, ind, passb, stopb, gpass, gstop, type)`
Band Stop Objective Function for order minimization.

Returns the non-integer order for an analog band stop filter.

Parameters

- `wp` [scalar] Edge of passband `passb`.
- `ind` [int, {0, 1}] Index specifying which `passb` edge to vary (0 or 1).
- `passb` [ndarray] Two element sequence of fixed passband edges.
- `stopb` [ndarray] Two element sequence of fixed stopband edges.
- `gstop` [float] Amount of attenuation in stopband in dB.
- `gpass` [float] Amount of ripple in the passband in dB.
- `type` [{‘butter’, ‘cheby’, ‘ellip’}] Type of filter.

Returns

- `n` [scalar] Filter order (possibly non-integer).

scipy.signal.besselap

`scipy.signal.besselap(N, norm='phase')`
Return (z,p,k) for analog prototype of an Nth-order Bessel filter.

Parameters

- `N` [int] The order of the filter.
- `norm` [{‘phase’, ‘delay’, ‘mag’}, optional] Frequency normalization:
 - `phase` The filter is normalized such that the phase response reaches its midpoint at an angular (e.g., rad/s) cutoff frequency of 1. This happens for both low-pass and high-pass filters, so this is the “phase-matched” case. [6]
 The magnitude response asymptotes are the same as a Butterworth filter of the same order with a cutoff of `Wn`.
 This is the default, and matches MATLAB’s implementation.
 - `delay` The filter is normalized such that the group delay in the passband is 1 (e.g., 1 second). This is the “natural” type obtained by solving Bessel polynomials.
 - `mag` The filter is normalized such that the gain magnitude is -3 dB at angular frequency 1. This is called “frequency normalization” by Bond. [1]
 New in version 0.18.0.

Returns

- `z` [ndarray] Zeros of the transfer function. Is always an empty array.
- `p` [ndarray] Poles of the transfer function.
- `k` [scalar] Gain of the transfer function. For phase-normalized, this is always 1.

See also:

- `bessel`
 Filter design function using this prototype
Notes

To find the pole locations, approximate starting points are generated \([2]\) for the zeros of the ordinary Bessel polynomial \([3]\), then the Aberth-Ehrlich method \([4] [5]\) is used on the \(K_v(x)\) Bessel function to calculate more accurate zeros, and these locations are then inverted about the unit circle.

References

[1], [2], [3], [4], [5], [6]

scipy.signal.buttap

```python
scipy.signal.buttap(N)
```

Return \((z,p,k)\) for analog prototype of \(N\)th-order Butterworth filter.

The filter will have an angular (e.g., rad/s) cutoff frequency of 1.

See also:

butter

Filter design function using this prototype

scipy.signal.cheb1ap

```python
scipy.signal.cheb1ap(N, rp)
```

Return \((z,p,k)\) for \(N\)th-order Chebyshev type I analog lowpass filter.

The returned filter prototype has \(rp\) decibels of ripple in the passband.

The filter’s angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first drops below \(-rp\).

See also:

cheby1

Filter design function using this prototype

scipy.signal.cheb2ap

```python
scipy.signal.cheb2ap(N, rs)
```

Return \((z,p,k)\) for \(N\)th-order Chebyshev type I analog lowpass filter.

The returned filter prototype has \(rs\) decibels of ripple in the stopband.

The filter’s angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first reaches \(-rs\).

See also:

cheby2

Filter design function using this prototype
scipy.signal.cmplx_sort

scipy.signal.cmplx_sort(p)
Sort roots based on magnitude.

Parameters

p [array_like] The roots to sort, as a 1-D array.

Returns

indx [ndarray] Array of indices needed to sort the input p.

Examples

```python
>>> from scipy import signal
>>> vals = [1, 4, 1+1.j, 3]
>>> p_sorted, indx = signal.cmplx_sort(vals)
>>> p_sorted
array([1.+0.j, 1.+1.j, 3.+0.j, 4.+0.j])
>>> indx
array([0, 2, 3, 1])
```

scipy.signal.ellipap

scipy.signal.ellipap(N, rp, rs)
Return (z,p,k) of Nth-order elliptic analog lowpass filter.

The filter is a normalized prototype that has rp decibels of ripple in the passband and a stopband rs decibels down.

The filter’s angular (e.g., rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first drops below -rp.

See also:

ellip
Filter design function using this prototype

References

[1], [2]

scipy.signal.lp2bp

scipy.signal.lp2bp(b, a, wo=1.0, bw=1.0)
Transform a lowpass filter prototype to a bandpass filter.

Return an analog band-pass filter with center frequency wo and bandwidth bw from an analog low-pass filter prototype with unity cutoff frequency, in transfer function (‘ba’) representation.

Parameters

b [array_like] Numerator polynomial coefficients.
a [array_like] Denominator polynomial coefficients.
wo [float] Desired passband center, as angular frequency (e.g., rad/s). Defaults to no change.
bw [float] Desired passband width, as angular frequency (e.g., rad/s). Defaults to 1.
Returns

- **b** (array_like) Numerator polynomial coefficients of the transformed band-pass filter.
- **a** (array_like) Denominator polynomial coefficients of the transformed band-pass filter.

See also:

- `lp2lp`, `lp2hp`, `lp2bs`, `bilinear`
- `lp2bp_zpk`

Notes

This is derived from the s-plane substitution

\[s \rightarrow \frac{s^2 + \omega_0^2}{s \cdot BW} \]

This is the “wideband” transformation, producing a passband with geometric (log frequency) symmetry about \(\omega_0 \).

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> lp = signal.lti([1.0], [1.0, 1.0])
>>> bp = signal.lti(signal.lp2bp(lp.num, lp.den))
>>> w, mag_lp, p_lp = lp.bode()
>>> w, mag_bp, p_bp = bp.bode(w)

>>> plt.plot(w, mag_lp, label='Lowpass')
>>> plt.plot(w, mag_bp, label='Bandpass')
>>> plt.semilogx()
>>> plt.grid()
>>> plt.xlabel('Frequency [rad/s]')
>>> plt.ylabel('Magnitude [dB]')
>>> plt.legend()
```

scipy.signal.lp2bp_zpk

`scipy.signal.lp2bp_zpk(z, p, k, wo=1.0, bw=1.0)`
Transform an analog low-pass filter prototype to a bandpass filter.

Return an analog band-pass filter with center frequency \(\omega_0 \) and bandwidth \(bw \) from an analog low-pass filter prototype with unity cutoff frequency, using zeros, poles, and gain ('zpk') representation.

Parameters

- **z** [array_like] Zeros of the analog filter transfer function.
- **p** [array_like] Poles of the analog filter transfer function.
- **k** [float] System gain of the analog filter transfer function.
- **wo** [float] Desired passband center, as angular frequency (e.g., rad/s). Defaults to no change.
- **bw** [float] Desired passband width, as angular frequency (e.g., rad/s). Defaults to 1.
z [ndarray] Zeros of the transformed band-pass filter transfer function.
p [ndarray] Poles of the transformed band-pass filter transfer function.
k [float] System gain of the transformed band-pass filter.

See also:

lp2lp_zpk, lp2hp_zpk, lp2bs_zpk, bilinear
lp2bp

Notes

This is derived from the s-plane substitution

\[s \rightarrow \frac{s^2 + \omega_0^2}{s \cdot BW} \]

This is the “wideband” transformation, producing a passband with geometric (log frequency) symmetry about \(\omega_0 \).

New in version 1.1.0.

scipy.signal.lp2bs

`scipy.signal.lp2bs(b, a=1.0, wo=1.0, bw=1.0)`

Transform a lowpass filter prototype to a bandstop filter.

Return an analog band-stop filter with center frequency \(\omega_0 \) and bandwidth \(bw \) from an analog low-pass filter prototype with unity cutoff frequency, in transfer function ('ba') representation.

Parameters

- `b` [array_like] Numerator polynomial coefficients.
- `a` [array_like] Denominator polynomial coefficients.
- `wo` [float] Desired stopband center, as angular frequency (e.g., rad/s). Defaults to no change.
- `bw` [float] Desired stopband width, as angular frequency (e.g., rad/s). Defaults to 1.

Returns

- `b` [array_like] Numerator polynomial coefficients of the transformed band-stop filter.
a [array_like] Denominator polynomial coefficients of the transformed band-stop filter.

See also:

lp2lp, lp2hp, lp2bp, bilinear
lp2bs_zpk

Notes

This is derived from the s-plane substitution

\[s \rightarrow \frac{s \cdot BW}{s^2 + \omega_0^2} \]

This is the “wideband” transformation, producing a stopband with geometric (log frequency) symmetry about \(\omega_0 \).

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> lp = signal.lti([1.0], [1.0, 1.5])
>>> bs = signal.lti(signal.lp2bs(lp.num, lp.den))
>>> w, mag_lp, p_lp = lp.bode()
>>> w, mag_bs, p_bs = bs.bode(w)
>>> plt.plot(w, mag_lp, label='Lowpass')
>>> plt.plot(w, mag_bs, label='Bandstop')
>>> plt.semilogx()
>>> plt.grid()
>>> plt.xlabel('Frequency [rad/s]')
>>> plt.ylabel('Magnitude [dB]')
>>> plt.legend()
```

![Magnitude plot comparing Lowpass and Bandstop filters](image)

10^{-1} 10^0 10^1

Magnitude [dB]
scipy.signal.lp2bs_zpk

Parameters

- z: [array_like] Zeros of the analog filter transfer function.
- p: [array_like] Poles of the analog filter transfer function.
- k: [float] System gain of the analog filter transfer function.
- wo: [float] Desired stopband center, as angular frequency (e.g., rad/s). Defaults to no change.
- bw: [float] Desired stopband width, as angular frequency (e.g., rad/s). Defaults to 1.

Returns

- z: [ndarray] Zeros of the transformed band-stop filter transfer function.
- p: [ndarray] Poles of the transformed band-stop filter transfer function.
- k: [float] System gain of the transformed band-stop filter.

Notes

This is derived from the s-plane substitution

\[s \rightarrow \frac{s \cdot BW}{s^2 + \omega_0^2} \]

This is the “wideband” transformation, producing a stopband with geometric (log frequency) symmetry about wo.

New in version 1.1.0.

scipy.signal.lp2hp

Parameters

- b: [array_like] Numerator polynomial coefficients.
- a: [array_like] Denominator polynomial coefficients.
- wo: [float] Desired cutoff, as angular frequency (e.g., rad/s). Defaults to no change.

Returns

- b: [array_like] Numerator polynomial coefficients of the transformed high-pass filter.
- a: [array_like] Denominator polynomial coefficients of the transformed high-pass filter.

Notes

This is derived from the s-plane substitution

\[s \rightarrow \frac{s}{s^2 + \omega_0^2} \]

3.3. API definition
Notes

This is derived from the s-plane substitution

\[s \rightarrow \frac{\omega_0}{s} \]

This maintains symmetry of the lowpass and highpass responses on a logarithmic scale.

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> lp = signal.lti([1.0], [1.0, 1.0])
>>> hp = signal.lti(*signal.lp2hp(lp.num, lp.den))
>>> w, mag_lp, p_lp = lp.bode()
>>> w, mag_hp, p_hp = hp.bode(w)

>>> plt.plot(w, mag_lp, label='Lowpass')
>>> plt.plot(w, mag_hp, label='Highpass')
>>> plt.semilogx()
>>> plt.grid()
>>> plt.xlabel('Frequency [rad/s]')
>>> plt.ylabel('Magnitude [dB]')
>>> plt.legend()
```

![Magnitude vs Frequency plot](image)

- Lowpass
- Highpass
scipy.signal.lp2hp_zpk

scipy.signal.lp2hp_zpk(z, p, k, wo=1.0)

Transform a lowpass filter prototype to a highpass filter.

Return an analog high-pass filter with cutoff frequency \(\omega_0\) from an analog low-pass filter prototype with unity cutoff frequency, using zeros, poles, and gain ('zpk') representation.

Parameters

- \(z\) : [array_like] Zeros of the analog filter transfer function.
- \(p\) : [array_like] Poles of the analog filter transfer function.
- \(k\) : [float] System gain of the analog filter transfer function.
- \(\omega_0\) : [float] Desired cutoff, as angular frequency (e.g., rad/s). Defaults to no change.

Returns

- \(z\) : [ndarray] Zeros of the transformed high-pass filter transfer function.
- \(p\) : [ndarray] Poles of the transformed high-pass filter transfer function.
- \(k\) : [float] System gain of the transformed high-pass filter.

See also:

lp2lp_zpk, lp2bp_zpk, lp2bs_zpk, bilinear

lp2hp

Notes

This is derived from the s-plane substitution

\[s \rightarrow \frac{\omega_0}{s} \]

This maintains symmetry of the lowpass and highpass responses on a logarithmic scale.

New in version 1.1.0.

scipy.signal.lp2lp

scipy.signal.lp2lp(b, a, wo=1.0)

Transform a lowpass filter prototype to a different frequency.

Return an analog low-pass filter with cutoff frequency \(\omega_0\) from an analog low-pass filter prototype with unity cutoff frequency, in transfer function ('ba') representation.

Parameters

- \(b\) : [array_like] Numerator polynomial coefficients.
- \(a\) : [array_like] Denominator polynomial coefficients.
- \(\omega_0\) : [float] Desired cutoff, as angular frequency (e.g., rad/s). Defaults to no change.

Returns

- \(b\) : [array_like] Numerator polynomial coefficients of the transformed low-pass filter.
- \(a\) : [array_like] Denominator polynomial coefficients of the transformed low-pass filter.

See also:

lp2hp, lp2bp, lp2bs, bilinear

lp2lp_zpk
Notes

This is derived from the s-plane substitution

\[s \rightarrow \frac{s}{\omega_0} \]

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> lp = signal.lti([1.0], [1.0, 1.0])
>>> lp2 = signal.lti(*signal.lp2lp(lp.num, lp.den, 2))
>>> w, mag_lp, p_lp = lp.bode()
>>> w, mag_lp2, p_lp2 = lp2.bode(w)

>>> plt.plot(w, mag_lp, label='Lowpass')
>>> plt.plot(w, mag_lp2, label='Transformed Lowpass')
>>> plt.semilogx()
>>> plt.grid()
>>> plt.xlabel('Frequency [rad/s]')
>>> plt.ylabel('Magnitude [dB]')
>>> plt.legend()
```

![Bode plot example](image.png)
scipy.signal.lp2lp_zpk

scipy.signal.lp2lp_zpk \((z, p, k, wo=1.0) \)

Transform a lowpass filter prototype to a different frequency.

Return an analog low-pass filter with cutoff frequency \(wo \) from an analog low-pass filter prototype with unity cutoff frequency, using zeros, poles, and gain (‘zpk’) representation.

Parameters

- \(z \) [array_like] Zeros of the analog filter transfer function.
- \(p \) [array_like] Poles of the analog filter transfer function.
- \(k \) [float] System gain of the analog filter transfer function.
- \(wo \) [float] Desired cutoff, as angular frequency (e.g., rad/s). Defaults to no change.

Returns

- \(z \) [ndarray] Zeros of the transformed low-pass filter transfer function.
- \(p \) [ndarray] Poles of the transformed low-pass filter transfer function.
- \(k \) [float] System gain of the transformed low-pass filter.

See also:

- \(lp2hp_zpk \)
- \(lp2bp_zpk \)
- \(lp2bs_zpk \)
- \(bilinear \)
- \(lp2lp \)

Notes

This is derived from the s-plane substitution

\[
s \rightarrow \frac{s}{\omega_0}
\]

New in version 1.1.0.

scipy.signal.normalize

scipy.signal.normalize \((b, a) \)

Normalize numerator/denominator of a continuous-time transfer function.

If values of \(b \) are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted.

Parameters

- \(b \): array_like
 Numerator of the transfer function. Can be a 2-D array to normalize multiple transfer functions.
- \(a \): array_like
 Denominator of the transfer function. At most 1-D.

Returns

- \(num \): array
 The numerator of the normalized transfer function. At least a 1-D array. A 2-D array if the input \(num \) is a 2-D array.
- \(den \): 1-D array
 The denominator of the normalized transfer function.
Notes
Coefficients for both the numerator and denominator should be specified in descending exponent order (e.g., \(s^2 + 3s + 5 \) would be represented as \([1, 3, 5]\)).

Matlab-style IIR filter design

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{butter}</td>
<td>Butterworth digital and analog filter design.</td>
</tr>
<tr>
<td>\texttt{butord}</td>
<td>Butterworth filter order selection.</td>
</tr>
<tr>
<td>\texttt{cheby1}</td>
<td>Chebyshev type I digital and analog filter design.</td>
</tr>
<tr>
<td>\texttt{cheby2}</td>
<td>Chebyshev type II digital and analog filter design.</td>
</tr>
<tr>
<td>\texttt{ellip}</td>
<td>Elliptic (Cauer) digital and analog filter design.</td>
</tr>
<tr>
<td>\texttt{bessel}</td>
<td>Bessel/Thomson digital and analog filter design.</td>
</tr>
<tr>
<td>\texttt{iirnotch}</td>
<td>Design second-order IIR notch digital filter.</td>
</tr>
<tr>
<td>\texttt{iirpeak}</td>
<td>Design second-order IIR peak (resonant) digital filter.</td>
</tr>
<tr>
<td>\texttt{iircomb}</td>
<td>Design IIR notching or peaking digital comb filter.</td>
</tr>
</tbody>
</table>

\texttt{scipy.signal.butter} (\texttt{N, Wn[, btype, analog, output, fs]})
Butterworth digital and analog filter design.

Design an Nth-order digital or analog Butterworth filter and return the filter coefficients.

Parameters
- \texttt{N} [int] The order of the filter.
- \texttt{Wn} [array_like] The critical frequency or frequencies. For lowpass and highpass filters, \(Wn \) is a scalar; for bandpass and bandstop filters, \(Wn \) is a length-2 sequence. For a Butterworth filter, this is the point at which the gain drops to 1/sqrt(2) that of the passband (the “-3 dB point”). For digital filters, if \(fs \) is not specified, \(Wn \) units are normalized from 0 to 1, where 1 is the Nyquist frequency (\(Wn \) is thus in half cycles / sample and defined as 2*critical frequencies / \(fs \)). If \(fs \) is specified, \(Wn \) is in the same units as \(fs \). For analog filters, \(Wn \) is an angular frequency (e.g., rad/s).
- \texttt{btype} ['lowpass', 'highpass', 'bandpass', 'bandstop'], optional The type of filter. Default is 'low-pass'.
- \texttt{analog} [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
- \texttt{output} ['ba', 'zpk', 'sos'], optional Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or second-order sections ('sos'). Default is 'ba' for backwards compatibility, but 'sos' should be used for general-purpose filtering.
- \texttt{fs} [float, optional] The sampling frequency of the digital system. New in version 1.2.0.

Returns
- \texttt{b, a} [ndarray, ndarray] Numerator (\(b \)) and denominator (\(a \)) polynomials of the IIR filter. Only returned if \texttt{output='ba'}.
- \texttt{z, p, k} [ndarray, ndarray, float] Zeros, poles, and system gain of the IIR filter transfer function. Only returned if \texttt{output='zpk'}.
- \texttt{sos} [ndarray] Second-order sections representation of the IIR filter. Only returned if \texttt{output='sos'}.

1552 Chapter 3. SciPy API
See also:

`buttord`, `buttap`

Notes

The Butterworth filter has maximally flat frequency response in the passband. The 'sos' output parameter was added in 0.16.0.

If the transfer function form \([b, a]\) is requested, numerical problems can occur since the conversion between roots and the polynomial coefficients is a numerically sensitive operation, even for \(N >= 4\). It is recommended to work with the SOS representation.

Examples

Design an analog filter and plot its frequency response, showing the critical points:

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.butter(4, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Butterworth filter frequency response')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.show()
```

Generate a signal made up of 10 Hz and 20 Hz, sampled at 1 kHz.
Design a digital high-pass filter at 15 Hz to remove the 10 Hz tone, and apply it to the signal. (It’s recommended to use second-order sections format when filtering, to avoid numerical error with transfer function (ba) format):

```python
>>> t = np.linspace(0, 1, 1000, False)  # 1 second
>>> sig = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t)
>>> fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
>>> ax1.plot(t, sig)
>>> ax1.set_title('10 Hz and 20 Hz sinusoids')
>>> ax1.axis([0, 1, -2, 2])

scipy.signal.buttord

scipy.signal.buttord(wp, ws, gpass, gstop, analog=False, fs=None)

Butterworth filter order selection.

Return the order of the lowest order digital or analog Butterworth filter that loses no more than `gpass` dB in the passband and has at least `gstop` dB attenuation in the stopband.

Parameters

wp, ws (float)  Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so these are normalized from 0 to 1, where 1 is the Nyquist frequency. (wp and ws are thus in half-cycles / sample.) For example:

- Lowpass: wp = 0.2, ws = 0.3
- Highpass: wp = 0.3, ws = 0.2
- Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]
• Bandstop: \( wp = [0.1, 0.6], ws = [0.2, 0.5] \)

For analog filters, \( wp \) and \( ws \) are angular frequencies (e.g., \( \text{rad/s} \)).

- \( \text{gpass} \) [float] The maximum loss in the passband (dB).
- \( \text{gstop} \) [float] The minimum attenuation in the stopband (dB).
- \( \text{analog} \) [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
- \( \text{fs} \) [float, optional] The sampling frequency of the digital system.

New in version 1.2.0.

**Returns**

- \( \text{ord} \) [int] The lowest order for a Butterworth filter which meets specs.
- \( \text{wn} \) [ndarray or float] The Butterworth natural frequency (i.e. the “3dB frequency”). Should be used with \texttt{butter} to give filter results. If \( \text{fs} \) is specified, this is in the same units, and \( \text{fs} \) must also be passed to \texttt{butter}.

**See also:**

- \texttt{butter} Filter design using order and critical points
- \texttt{cheb1ord} Find order and critical points from passband and stopband spec
- \texttt{cheb2ord, ellipord}
- \texttt{iirfilter} General filter design using order and critical frequencies
- \texttt{iirdesign} General filter design using passband and stopband spec

### Examples

Design an analog bandpass filter with passband within 3 dB from 20 to 50 rad/s, while rejecting at least -40 dB below 14 and above 60 rad/s. Plot its frequency response, showing the passband and stopband constraints in gray.

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> N, Wn = signal.buttord([20, 50], [14, 60], 3, 40, True)
>>> b, a = signal.butter(N, Wn, 'band', True)
>>> w, h = signal.freqs(b, a, np.logspace(1, 2, 500))
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Butterworth bandpass filter fit to constraints')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.grid(which='both', axis='both')
>>> plt.fill([1, 14, 14, 1], [-40, -40, 99, 99], '0.9', lw=0) # stop
>>> plt.fill([20, 20, 50, 50], [-99, -3, -3, -99], '0.9', lw=0) # pass
>>> plt.fill([60, 60, 1e9, 1e9], [99, -40, -40, 99], '0.9', lw=0) # stop
>>> plt.axis([10, 100, -60, 3])
>>> plt.show()
```
scipy.signal.

scipy.signal.

scipy.signal.cheyby1(N, rp, Wn, btype='low', analog=False, output='ba', fs=None)

Chebyshev type I digital and analog filter design.

Design an Nth-order digital or analog Chebyshev type I filter and return the filter coefficients.

Parameters

N [int] The order of the filter.

rp [float] The maximum ripple allowed below unity gain in the passband. Specified in decibels, as a positive number.

Wn [array_like] A scalar or length-2 sequence giving the critical frequencies. For Type I filters, this is the point in the transition band at which the gain first drops below -rp.

btype [ {'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional] The type of filter. Default is 'lowpass'.

analog [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.

output [ {'ba', 'zpk', 'sos'}, optional] Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or second-order sections ('sos'). Default is 'ba' for backwards compatibility, but 'sos' should be used for general-purpose filtering.


Returns

b, a [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter. Only returned if output='ba'.

z, p, k [ndarray, ndarray, float] Zeros, poles, and system gain of the IIR filter transfer function. Only returned if output='zpk'.

sos [ndarray] Second-order sections representation of the IIR filter. Only returned if output=='sos'.

See also:
cheb1ord, cheb1ap

Notes

The Chebyshev type I filter maximizes the rate of cutoff between the frequency response’s passband and stopband, at the expense of ripple in the passband and increased ringing in the step response.

Type I filters roll off faster than Type II (cheby2), but Type II filters do not have any ripple in the passband.

The equiripple passband has N maxima or minima (for example, a 5th-order filter has 3 maxima and 2 minima). Consequently, the DC gain is unity for odd-order filters, or -rp dB for even-order filters.

The 'sos' output parameter was added in 0.16.0.

Examples

Design an analog filter and plot its frequency response, showing the critical points:

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.cheby1(4, 5, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Chebyshev Type I frequency response (rp=5)')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.axhline(-5, color='green') # rp
>>> plt.show()
```

Generate a signal made up of 10 Hz and 20 Hz, sampled at 1 kHz
```python
>>> t = np.linspace(0, 1, 1000, False) # 1 second
>>> sig = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t)
>>> fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
>>> ax1.plot(t, sig)
>>> ax1.set_title('10 Hz and 20 Hz sinusoids')
>>> ax1.axis([0, 1, -2, 2])

Design a digital high-pass filter at 15 Hz to remove the 10 Hz tone, and apply it to the signal. (It’s recommended to use second-order sections format when filtering, to avoid numerical error with transfer function (ba) format):

```python
>>> sos = signal.cheby1(10, 1, 15, 'hp', fs=1000, output='sos')
>>> filtered = signal.sosfilt(sos, sig)
>>> ax2.plot(t, filtered)
>>> ax2.set_title('After 15 Hz high-pass filter')
>>> ax2.axis([0, 1, -2, 2])
>>> ax2.set_xlabel('Time [seconds]')
>>> plt.tight_layout()
>>> plt.show()
```

`scipy.signal.cheb1ord`

`scipy.signal.cheb1ord` ([wp, ws], gpass, gstop, analog=False, fs=None)

Chebyshev type I filter order selection.

Return the order of the lowest order digital or analog Chebyshev Type I filter that loses no more than `gpass` dB in the passband and has at least `gstop` dB attenuation in the stopband.

Parameters

- **wp, ws** [float] Passband and stopband edge frequencies.
 For digital filters, these are in the same units as `fs`. By default, `fs` is 2 half-cycles/sample, so these are normalized from 0 to 1, where 1 is the Nyquist frequency. (`wp` and `ws` are thus in half-cycles/sample.) For example:
 - Lowpass: `wp = 0.2, ws = 0.3`
 - Highpass: `wp = 0.3, ws = 0.2`
 - Bandpass: `wp = [0.2, 0.5], ws = [0.1, 0.6]`
• Bandstop: \(\text{wp} = [0.1, 0.6] \), \(\text{ws} = [0.2, 0.5] \)

For analog filters, \(\text{wp} \) and \(\text{ws} \) are angular frequencies (e.g., rad/s).

- \(\text{gpass} \) [float] The maximum loss in the passband (dB).
- \(\text{gstg} \) [float] The minimum attenuation in the stopband (dB).
- \(\text{analog} \) [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
- \(\text{fs} \) [float, optional] The sampling frequency of the digital system.

New in version 1.2.0.

Returns

- \(\text{ord} \) [int] The lowest order for a Chebyshev type I filter that meets specs.
- \(\text{wn} \) [ndarray or float] The Chebyshev natural frequency (the “3dB frequency”) for use with \text{cheby1} to give filter results. If \(\text{fs} \) is specified, this is in the same units, and \(\text{fs} \) must also be passed to \text{cheby1}.

See also:

- \text{cheby1}
 Filter design using order and critical points
- \text{butord}
 Find order and critical points from passband and stopband spec
- \text{cheb2ord, ellipord}
- \text{iirfilter}
 General filter design using order and critical frequencies
- \text{iirdesign}
 General filter design using passband and stopband spec

Examples

Design a digital lowpass filter such that the passband is within 3 dB up to 0.2*(fs/2), while rejecting at least -40 dB above 0.3*(fs/2). Plot its frequency response, showing the passband and stopband constraints in gray.

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> N, Wn = signal.cheb1ord(0.2, 0.3, 3, 40)
>>> b, a = signal.cheby1(N, 3, Wn, 'low')
>>> w, h = signal.freqz(b, a)
>>> plt.semilogx(w / np.pi, 20 * np.log10(abs(h)))
>>> plt.title('Chebyshev I lowpass filter fit to constraints')
>>> plt.xlabel('Normalized frequency')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.grid(which='both', axis='both')
>>> plt.fill([0.01, 0.2, 0.2, 0.01], [-3, -3, -99, -99], '0.9', lw=0) # stop
>>> plt.fill([0.3, 0.3, 2, 2], [9, -40, -40, 9], '0.9', lw=0) # pass
>>> plt.axis([0.08, 1, -60, 3])
>>> plt.show()
```
scipy.signal.cheby2

`scipy.signal.cheby2(N, rs, Wn, btype='low', analog=False, output='ba', fs=None)`

Chebyshev type II digital and analog filter design.

Design an Nth-order digital or analog Chebyshev type II filter and return the filter coefficients.

Parameters

- `N` [int] The order of the filter.
- `rs` [float] The minimum attenuation required in the stop band. Specified in decibels, as a positive number.
- `Wn` [array_like] A scalar or length-2 sequence giving the critical frequencies. For Type II filters, this is the point in the transition band at which the gain first reaches `-rs`. For digital filters, `Wn` are in the same units as `fs`. By default, `fs` is 2 half-cycles/sample, so these are normalized from 0 to 1, where 1 is the Nyquist frequency. (`Wn` is thus in half-cycles / sample.) For analog filters, `Wn` is an angular frequency (e.g., rad/s).
- `analog` [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
- `output` [‘ba’, ‘zpk’, ‘sos’], optional] Type of output: numerator/denominator (‘ba’), pole-zero (‘zpk’), or second-order sections (‘sos’). Default is ‘ba’ for backwards compatibility, but ‘sos’ should be used for general-purpose filtering.

Returns

- `b, a` [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter. Only returned if `output='ba'`.
- `z, p, k` [ndarray, ndarray, float] Zeros, poles, and system gain of the IIR filter transfer function. Only returned if `output='zpk'`.

See also:
cheb2ord, cheb2ap

Notes

The Chebyshev type II filter maximizes the rate of cutoff between the frequency response’s passband and stopband, at the expense of ripple in the stopband and increased ringing in the step response.

Type II filters do not roll off as fast as Type I (cheby1).

The 'sos' output parameter was added in 0.16.0.

Examples

Design an analog filter and plot its frequency response, showing the critical points:

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.cheby2(4, 40, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Chebyshev Type II frequency response (rs=40)')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.axhline(-40, color='green') # rs
>>> plt.show()
```

Generate a signal made up of 10 Hz and 20 Hz, sampled at 1 kHz
```python
>>> t = np.linspace(0, 1, 1000, False) # 1 second
>>> sig = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t)
>>> fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
>>> ax1.plot(t, sig)
>>> ax1.set_title('10 Hz and 20 Hz sinusoids')
>>> ax1.axis([0, 1, -2, 2])
Design a digital high-pass filter at 17 Hz to remove the 10 Hz tone, and apply it to the signal. (It's recommended to use second-order sections format when filtering, to avoid numerical error with transfer function (ba) format):

```python
>>> sos = signal.cheby2(12, 20, 17, 'hp', fs=1000, output='sos')
>>> filtered = signal.sosfilt(sos, sig)
>>> ax2.plot(t, filtered)
>>> ax2.set_title('After 17 Hz high-pass filter')
>>> ax2.axis([0, 1, -2, 2])
>>> ax2.set_xlabel('Time [seconds]')
>>> plt.show()
```
For analog filters, \(wp\) and \(ws\) are angular frequencies (e.g., rad/s).

**gpass** [float] The maximum loss in the passband (dB).

**gstop** [float] The minimum attenuation in the stopband (dB).

**analog** [bool, optional] When True, return an analog filter, otherwise a digital filter is returned. New in version 1.2.0.

**fs** [float, optional] The sampling frequency of the digital system.

**Returns**

**ord** [int] The lowest order for a Chebyshev type II filter that meets specs.

**wn** [ndarray or float] The Chebyshev natural frequency (the “3dB frequency”) for use with `cheby2` to give filter results. If \(fs\) is specified, this is in the same units, and \(fs\) must also be passed to `cheby2`.

See also:

- `cheby2`
  - Filter design using order and critical points
- `butterord`
  - Find order and critical points from passband and stopband spec
- `cheb1ord`, `ellipord`
- `iirfilter`
  - General filter design using order and critical frequencies
- `iirdesign`
  - General filter design using passband and stopband spec

### Examples

Design a digital bandstop filter which rejects -60 dB from 0.2*(fs/2) to 0.5*(fs/2), while staying within 3 dB below 0.1*(fs/2) or above 0.6*(fs/2). Plot its frequency response, showing the passband and stopband constraints in gray.

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> N, Wn = signal.cheb2ord([0.1, 0.6], [0.2, 0.5], 3, 60)
>>> b, a = signal.cheby2(N, 60, Wn, 'stop')
>>> w, h = signal.freqz(b, a)
>>> plt.semilogx(w / np.pi, 20 * np.log10(abs(h)))
>>> plt.title('Chebyshev II bandstop filter fit to constraints')
>>> plt.xlabel('Normalized frequency')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.grid(which='both', axis='both')
>>> plt.fill([.01, .1, .1, .01], [-3, -3, -99, -99], '0.9', lw=0) # stop
>>> plt.fill([.2, .2, .5, .5], [9, -60, -60, 9], '0.9', lw=0) # pass
>>> plt.fill([.6, .6, 2, 2], [-99, -3, -99, 0.9], '0.9', lw=0) # stop
>>> plt.axis([0.06, 1, -80, 3])
>>> plt.show()
```
scipy.signal.ellip

`scipy.signal.ellip(N, rp, rs, Wn, btype='low', analog=False, output='ba', fs=None)`

Elliptic (Cauer) digital and analog filter design.

Design an Nth-order digital or analog elliptic filter and return the filter coefficients.

**Parameters**

- **N** [int] The order of the filter.
- **rp** [float] The maximum ripple allowed below unity gain in the passband. Specified in decibels, as a positive number.
- **rs** [float] The minimum attenuation required in the stop band. Specified in decibels, as a positive number.
- **Wn** [array_like] A scalar or length-2 sequence giving the critical frequencies. For elliptic filters, this is the point in the transition band at which the gain first drops below -rp.
  - For digital filters, Wn are in the same units as fs. By default, fs is 2 half-cycles/sample, so these are normalized from 0 to 1, where 1 is the Nyquist frequency. (Wn is thus in half-cycles / sample.)
  - For analog filters, Wn is an angular frequency (e.g., rad/s).
- **btype** [str] The type of filter. Default is ‘lowpass’.
- **analog** [bool, optional] When True, return an analog filter, otherwise a digital filter is returned.
- **output** [str] Type of output: numerator/denominator (‘ba’), pole-zero (‘zpk’), or second-order sections (‘sos’). Default is ‘ba’ for backwards compatibility, but ‘sos’ should be used for general-purpose filtering.
- **fs** [float, optional] The sampling frequency of the digital system.

**Returns**

- **b, a** [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter. Only returned if output='ba'.
- **z, p, k** [ndarray, ndarray, float] Zeros, poles, and system gain of the IIR filter transfer function. Only returned if output='zpk'.
- **sos** [ndarray] Second-order sections representation of the IIR filter. Only returned if output=='sos'.
See also:

ellipord, ellipap

Notes

Also known as Cauer or Zolotarev filters, the elliptical filter maximizes the rate of transition between the frequency response's passband and stopband, at the expense of ripple in both, and increased ringing in the step response.

As \( rp \) approaches 0, the elliptical filter becomes a Chebyshev type II filter (cheby2). As \( rs \) approaches 0, it becomes a Chebyshev type I filter (cheby1). As both approach 0, it becomes a Butterworth filter (butter).

The equiripple passband has \( N \) maxima or minima (for example, a 5th-order filter has 3 maxima and 2 minima). Consequently, the DC gain is unity for odd-order filters, or \(-rp\) dB for even-order filters.

The 'sos' output parameter was added in 0.16.0.

Examples

Design an analog filter and plot its frequency response, showing the critical points:

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.ellip(4, 5, 40, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(abs(h)))
>>> plt.title('Elliptic filter frequency response (rp=5, rs=40)')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.axhline(-40, color='green') # rs
>>> plt.axhline(-5, color='green') # rp
>>> plt.show()
```

Generate a signal made up of 10 Hz and 20 Hz, sampled at 1 kHz

```python
>>> t = np.linspace(0, 1, 1000, False) # 1 second
>>> sig = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t)
>>> fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
>>> ax1.plot(t, sig)
>>> ax1.set_title('10 Hz and 20 Hz sinusoids')
>>> ax1.axis([0, 1, -2, 2])
```

Design a digital high-pass filter at 17 Hz to remove the 10 Hz tone, and apply it to the signal. (It's recommended to use second-order sections format when filtering, to avoid numerical error with transfer function (ba) format):

```python
>>> sos = signal.ellip(8, 1, 100, 17, 'hp', fs=1000, output='sos')
>>> filtered = signal.sosfilt(sos, sig)
>>> ax2.plot(t, filtered)
>>> ax2.set_title('After 17 Hz high-pass filter')
```
Elliptic filter frequency response (rp=5, rs=40)

Frequency [radians / second]
100
80
60
40
20
0
Amplitude [dB]

(continued from previous page)

```python
>>> ax2.axis([0, 1, -2, 2])
>>> ax2.set_xlabel('Time [seconds]

```
**scipy.signal.ellipord**

*scipy.signal.ellipord(wp, ws, gpass, gstop, analog=False, fs=None)*

Elliptic (Cauer) filter order selection.

Return the order of the lowest order digital or analog elliptic filter that loses no more than gpass dB in the passband and has at least gstop dB attenuation in the stopband.

**Parameters**

- **wp, ws** [float]: Passband and stopband edge frequencies.
  For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so these are normalized from 0 to 1, where 1 is the Nyquist frequency. (wp and ws are thus in half-cycles / sample.) For example:
  - Lowpass: wp = 0.2, ws = 0.3
  - Highpass: wp = 0.3, ws = 0.2
  - Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]
  - Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]
  For analog filters, wp and ws are angular frequencies (e.g., rad/s).

- **gpass** [float]: The maximum loss in the passband (dB).

- **gstop** [float]: The minimum attenuation in the stopband (dB).

- **analog** [bool, optional]: When True, return an analog filter, otherwise a digital filter is returned.

- **fs** [float, optional]: The sampling frequency of the digital system.
  New in version 1.2.0.

**Returns**

- **ord** [int]: The lowest order for an Elliptic (Cauer) filter that meets specs.

- **wn** [ndarray or float]: The Chebyshev natural frequency (the “3dB frequency”) for use with *ellip* to give filter results. If fs is specified, this is in the same units, and fs must also be passed to *ellip*.

**See also:**

- **ellip**: Filter design using order and critical points
- **buttord**: Find order and critical points from passband and stopband spec
- **cheb1ord, cheb2ord**: General filter design using order and critical frequencies
- **iirfilter**: General filter design using order and critical frequencies
- **iirdesign**: General filter design using passband and stopband spec

---

3.3. API definition 1567
Examples

Design an analog highpass filter such that the passband is within 3 dB above 30 rad/s, while rejecting -60 dB at 10 rad/s. Plot its frequency response, showing the passband and stopband constraints in gray.

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> N, Wn = signal.ellipord(30, 10, 3, 60, True)
>>> b, a = signal.ellip(N, 3, 60, Wn, 'high', True)
>>> w, h = signal.freqs(b, a, np.logspace(0, 3, 500))
>>> plt.semilogx(w, 20 * np.log10(abs(h)));
>>> plt.title('Elliptical highpass filter fit to constraints')
>>> plt.xlabel('Frequency [radians / second]
' >>> plt.ylabel('Amplitude [dB]')
>>> plt.grid(which='both', axis='both')
>>> plt.fill([.1, 10, 10, .1], [1e4, 1e4, -60, -60], '0.9', lw=0) # stop
>>> plt.fill([30, 30, 1e9, 1e9], [-99, -3, -3, -99], '0.9', lw=0) # pass
>>> plt.axis([1, 300, -80, 3])
>>> plt.show()
```

Elliptical highpass filter fit to constraints

### scipy.signal.bessel

scipy.signal.bessel \((N, \text{Wn}, \text{btype}='\text{low}', \text{analog}=False, \text{output}='ba', \text{norm}='\text{phase}', \text{fs}=None)\)

Bessel/Thomson digital and analog filter design.

Design an Nth-order digital or analog Bessel filter and return the filter coefficients.

**Parameters**

N  
[int] The order of the filter.

Wn  
[array_like] A scalar or length-2 sequence giving the critical frequencies (defined by the \text{norm} parameter). For analog filters, \text{Wn} is an angular frequency (e.g., rad/s). For digital filters, \text{Wn} are in the same units as \text{fs}. By default, \text{fs} is 2 half-cycles/sample, so these are normalized from 0 to 1, where 1 is the Nyquist frequency. (\text{Wn} is thus in half-cycles / sample.)
btype  [['lowpass', 'highpass', 'bandpass', 'bandstop'], optional] The type of filter. Default is 'low-pass'.

analog  [bool, optional] When True, return an analog filter, otherwise a digital filter is returned. (See Notes.)

output  [['ba', 'zpk', 'sos'], optional] Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or second-order sections ('sos'). Default is 'ba'.

norm  [['phase', 'delay', 'mag'], optional] Critical frequency normalization:

  phase  The filter is normalized such that the phase response reaches its midpoint at angular (e.g. rad/s) frequency $W_n$. This happens for both low-pass and high-pass filters, so this is the “phase-matched” case. The magnitude response asymptotes are the same as a Butterworth filter of the same order with a cutoff of $W_n$. This is the default, and matches MATLAB’s implementation.

delay  The filter is normalized such that the group delay in the passband is $1/W_n$ (e.g., seconds). This is the “natural” type obtained by solving Bessel polynomials.

mag  The filter is normalized such that the gain magnitude is -3 dB at angular frequency $W_n$. New in version 0.18.0.


Returns

b, a  [ndarray, ndarray] Numerator ($b$) and denominator ($a$) polynomials of the IIR filter. Only returned if output='ba'.

z, p, k  [ndarray, ndarray, float] Zeros, poles, and system gain of the IIR filter transfer function. Only returned if output='zpk'.

sos  [ndarray] Second-order sections representation of the IIR filter. Only returned if output=='sos'.

Notes

Also known as a Thomson filter, the analog Bessel filter has maximally flat group delay and maximally linear phase response, with very little ringing in the step response. [1]

The Bessel is inherently an analog filter. This function generates digital Bessel filters using the bilinear transform, which does not preserve the phase response of the analog filter. As such, it is only approximately correct at frequencies below about $fs/4$. To get maximally-flat group delay at higher frequencies, the analog Bessel filter must be transformed using phase-preserving techniques.

See besselap for implementation details and references.
The 'sos' output parameter was added in 0.16.0.

References

[1]
Examples

Plot the phase-normalized frequency response, showing the relationship to the Butterworth’s cutoff frequency (green):

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.butter(4, 100, 'low', analog=True)
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(np.abs(h)), color='silver', ls='dashed')
>>> b, a = signal.bessel(4, 100, 'low', analog=True, norm='phase')
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(np.abs(h)))

```

Bessel filter magnitude response (with Butterworth)

```

and the phase midpoint:

```python
>>> plt.figure()
>>> plt.semilogx(w, np.unwrap(np.angle(h)))
>>> plt.axvline(100, color='green') # cutoff frequency
>>> plt.axhline(-np.pi, color='red') # phase midpoint
```
Plot the magnitude-normalized frequency response, showing the -3 dB cutoff:

```python
>>> b, a = signal.bessel(3, 10, 'low', analog=True, norm='mag')
>>> w, h = signal.freqs(b, a)
>>> plt.semilogx(w, 20 * np.log10(np.abs(h)))
>>> plt.axhline(-3, color='red')  # -3 dB magnitude
>>> plt.axvline(10, color='green')  # cutoff frequency
>>> plt.title('Magnitude-normalized Bessel filter frequency response')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Amplitude [dB]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.show()
```

Plot the delay-normalized filter, showing the maximally-flat group delay at 0.1 seconds:
>>> b, a = signal.bessel(5, 1/0.1, 'low', analog=True, norm='delay')
>>> w, h = signal.freqs(b, a)
>>> plt.figure()
>>> plt.semilogx(w[1:], -np.diff(np.unwrap(np.angle(h)))/np.diff(w))
>>> plt.axhline(0.1, color='red') # 0.1 seconds group delay
>>> plt.title('Bessel filter group delay')
>>> plt.xlabel('Frequency [radians / second]')
>>> plt.ylabel('Group delay [seconds]')
>>> plt.margins(0, 0.1)
>>> plt.grid(which='both', axis='both')
>>> plt.show()

scipy.signal.iirnotch

scipy.signal.iirnotch(w0, Q, fs=2.0)

Design second-order IIR notch digital filter.

A notch filter is a band-stop filter with a narrow bandwidth (high quality factor). It rejects a narrow frequency band and leaves the rest of the spectrum little changed.

Parameters

- **w0** [float] Frequency to remove from a signal. If `fs` is specified, this is in the same units as `fs`. By default, it is a normalized scalar that must satisfy 0 < w0 < 1, with w0 = 1 corresponding to half of the sampling frequency.
- **Q** [float] Quality factor. Dimensionless parameter that characterizes notch filter -3 dB bandwidth bw relative to its center frequency, Q = w0/bw.
- **fs** [float, optional] The sampling frequency of the digital system. New in version 1.2.0.

Returns

- **b, a** [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter.

See also:

iirpeak
Notes

New in version 0.19.0.

References

[1]

Examples

Design and plot filter to remove the 60 Hz component from a signal sampled at 200 Hz, using a quality factor Q = 30

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> fs = 200.0  # Sample frequency (Hz)
>>> f0 = 60.0   # Frequency to be removed from signal (Hz)
>>> Q = 30.0   # Quality factor
>>> # Design notch filter
>>> b, a = signal.iirnotch(f0, Q, fs)

>>> # Frequency response
>>> freq, h = signal.freqz(b, a, fs=fs)
>>> # Plot
>>> fig, ax = plt.subplots(2, 1, figsize=(8, 6))
>>> ax[0].plot(freq, 20*np.log10(abs(h)), color='blue')
>>> ax[0].set_title("Frequency Response")
>>> ax[0].set_ylabel("Amplitude (dB)", color='blue')
>>> ax[0].set_xlim([0, 100])
>>> ax[0].set_ylim([-25, 10])
>>> ax[0].grid()
>>> ax[1].plot(freq, np.unwrap(np.angle(h))*180/np.pi, color='green')
>>> ax[1].set_ylabel("Angle (degrees)", color='green')
>>> ax[1].set_xlim([0, 100])
>>> ax[1].set_xticks([-90, -60, -30, 0, 30, 60, 90])
>>> ax[1].set_yticks([-90, 90])
>>> ax[1].grid()
>>> plt.show()
```

scipy.signal.iirpeak

scipy.signal.iirpeak *(w0, Q, fs=2.0)*

Design second-order IIR peak (resonant) digital filter.

A peak filter is a band-pass filter with a narrow bandwidth (high quality factor). It rejects components outside a narrow frequency band.

Parameters

- **w0** *(float)* Frequency to be retained in a signal. If `fs` is specified, this is in the same units as `fs`. By default, it is a normalized scalar that must satisfy 0 < w0 < 1, with w0 = 1 corresponding to half of the sampling frequency.

Q [float] Quality factor. Dimensionless parameter that characterizes peak filter -3 dB bandwidth bw relative to its center frequency, \(Q = \omega_0 / \omega_b \).

Returns

b, a [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter.

See also:

iirnotch

Notes

New in version 0.19.0.

References

[1]

Examples

Design and plot filter to remove the frequencies other than the 300 Hz component from a signal sampled at 1000 Hz, using a quality factor Q = 30

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> fs = 1000.0  # Sample frequency (Hz)
>>> f0 = 300.0  # Frequency to be retained (Hz)
>>> Q = 30.0  # Quality factor
>>> # Design peak filter
>>> b, a = signal.iirpeak(f0, Q, fs)

>>> # Frequency response
>>> freq, h = signal.freqz(b, a, fs=fs)

>>> fig, ax = plt.subplots(2, 1, figsize=(8, 6))
 >>> ax[0].plot(freq, 20*np.log10(np.maximum(abs(h), 1e-5)), color='blue')
 >>> ax[0].set_title('Frequency Response')
 >>> ax[0].set_ylabel('Amplitude (dB)', color='blue')
 >>> ax[0].set_xlabel('Frequency (Hz)')
 >>> ax[0].set_xlim([0, 500])
 >>> ax[0].set_ylim([-90, 90])
 >>> ax[0].grid()

>>> ax[1].plot(freq, np.unwrap(np.angle(h)) * 180/np.pi, color='green')
 >>> ax[1].set_ylabel('Angle (degrees)', color='green')
 >>> ax[1].set_xlabel('Frequency (Hz)')
 >>> ax[1].set_xlim([0, 500])
 >>> ax[1].set_yticks([-90, -60, -30, 0, 30, 60, 90])
 >>> ax[1].set_ylim([-90, 90])
```

(continues on next page)
scipy.signal.iircomb

```python
scipy.signal.iircomb(w0, Q, ftype='notch', fs=2.0)
```

Design IIR notching or peaking digital comb filter.

A notching comb filter is a band-stop filter with a narrow bandwidth (high quality factor). It rejects a narrow frequency band and leaves the rest of the spectrum little changed.

A peaking comb filter is a band-pass filter with a narrow bandwidth (high quality factor). It rejects components outside a narrow frequency band.

Parameters

- **w0**
 [float] Frequency to attenuate (notching) or boost (peaking). If `fs` is specified, this is in the same units as `fs`. By default, it is a normalized scalar that must satisfy $0 < w0 < 1$, with $w0 = 1$ corresponding to half of the sampling frequency.

- **Q**
 [float] Quality factor. Dimensionless parameter that characterizes notch filter -3 dB bandwidth bw relative to its center frequency, $Q = w0/bw$.

- **ftype**
 [{'notch', 'peak'}] The type of comb filter generated by the function. If 'notch', then it returns a filter with notches at frequencies $0, w0, 2 * w0$, etc. If 'peak', then it returns a filter with peaks at frequencies $0.5 * w0, 1.5 * w0, 2.5 * w0$, etc. Default is 'notch'.

```python
>>> ax[1].grid()
>>> plt.show()
```
fs [float, optional] The sampling frequency of the signal. Default is 2.0.

Returns
b, a [ndarray, ndarray] Numerator (b) and denominator (a) polynomials of the IIR filter.

Raises
ValueError
 If \(w0 \) is less than or equal to 0 or greater than or equal to \(fs/2 \), if \(fs \) is not divisible by \(w0 \), if \(ftype \) is not ‘notch’ or ‘peak’

See also:
iirnotch
iirpeak

Notes
For implementation details, see [1]. The TF implementation of the comb filter is numerically stable even at higher orders due to the use of a single repeated pole, which won’t suffer from precision loss.

References
[1]

Examples
Design and plot notching comb filter at 20 Hz for a signal sampled at 200 Hz, using quality factor \(Q = 30 \)

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> fs = 200.0  # Sample frequency (Hz)
>>> f0 = 20.0   # Frequency to be removed from signal (Hz)
>>> Q = 30.0   # Quality factor
>>> # Design notching comb filter
>>> b, a = signal.iircomb(f0, Q, ftype='notch', fs=fs)

>>> # Frequency response
>>> freq, h = signal.freqz(b, a, fs=fs)
>>> response = abs(h)
>>> # To avoid divide by zero when graphing
>>> response[response == 0] = 1e-20

>>> fig, ax = plt.subplots(2, 1, figsize=(8, 6))
>>> ax[0].plot(freq, 20*np.log10(abs(response)), color='blue')
>>> ax[0].set_title("Frequency Response")
>>> ax[0].set_ylabel("Amplitude (dB)", color='blue')
>>> ax[0].set_xlim([0, 100])
>>> ax[0].set_ylim([-30, 10])
>>> ax[0].grid()  
```
Design and plot peaking comb filter at 250 Hz for a signal sampled at 1000 Hz, using quality factor Q = 30

```python
>>> fs = 1000.0  # Sample frequency (Hz)
>>> f0 = 250.0   # Frequency to be retained (Hz)
>>> Q = 30.0    # Quality factor
>>> # Design peaking filter
>>> b, a = signal.iircomb(f0, Q, ftype='peak', fs=fs)

>>> # Frequency response
>>> freq, h = signal.freqz(b, a, fs=fs)
>>> response = abs(h)
>>> # To avoid divide by zero when graphing
```
```python
>>> response[response == 0] = 1e-20
>>> # Plot
>>> fig, ax = plt.subplots(2, 1, figsize=(8, 6))
>>> ax[0].plot(freq, 20*np.log10(np.maximum(abs(h), 1e-5)), color='blue')
>>> ax[0].set_title("Frequency Response")
>>> ax[0].set_ylabel("Amplitude (dB)", color='blue')
>>> ax[0].set_xlim([0, 500])
>>> ax[0].set_ylim([-80, 10])
>>> ax[0].grid()
>>> ax[1].plot(freq, np.unwrap(np.angle(h))*180/np.pi, color='green')
>>> ax[1].set_ylabel("Angle (degrees)", color='green')
>>> ax[1].set_xlabel("Frequency (Hz)"")
>>> ax[1].set_xlim([0, 500])
>>> ax[1].set_ylim([-90, 90])
>>> ax[1].grid()
>>> plt.show()
```
Continuous-time linear systems

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>lti(*system)</code></td>
<td>Continuous-time linear time invariant system base class.</td>
</tr>
<tr>
<td><code>StateSpace(*system, **kwargs)</code></td>
<td>Linear Time Invariant system in state-space form.</td>
</tr>
<tr>
<td><code>TransferFunction(*system, **kwargs)</code></td>
<td>Linear Time Invariant system class in transfer function form.</td>
</tr>
<tr>
<td><code>ZerosPolesGain(*system, **kwargs)</code></td>
<td>Linear Time Invariant system class in zeros, poles, gain form.</td>
</tr>
<tr>
<td><code>lsim(system, U, T, X0[, interp])</code></td>
<td>Simulate output of a continuous-time linear system.</td>
</tr>
<tr>
<td><code>lsim2(system[, U, T, X0])</code></td>
<td>Simulate output of a continuous-time linear system, by using the ODE solver <code>scipy.integrate.odeint</code>.</td>
</tr>
<tr>
<td><code>impulse(system[, X0, T, N])</code></td>
<td>Impulse response of continuous-time system.</td>
</tr>
<tr>
<td><code>impulse2(system[, X0, T, N])</code></td>
<td>Impulse response of a single-input, continuous-time linear system.</td>
</tr>
<tr>
<td><code>step(system[, X0, T, N])</code></td>
<td>Step response of continuous-time system.</td>
</tr>
<tr>
<td><code>step2(system[, X0, T, N])</code></td>
<td>Step response of continuous-time system.</td>
</tr>
<tr>
<td><code>freqresp(system[, w, n])</code></td>
<td>Calculate the frequency response of a continuous-time system.</td>
</tr>
<tr>
<td><code>bode(system[, w, n])</code></td>
<td>Calculate Bode magnitude and phase data of a continuous-time system.</td>
</tr>
</tbody>
</table>

scipy.signal.lti

```python
class scipy.signal.lti(*system)
```

Continuous-time linear time invariant system base class.

Parameters

- `*system` [arguments] The `lti` class can be instantiated with either 2, 3 or 4 arguments. The following gives the number of arguments and the corresponding continuous-time subclass that is created:
 - 2: `TransferFunction` (numerator, denominator)
 - 3: `ZerosPolesGain` (zeros, poles, gain)
 - 4: `StateSpace` (A, B, C, D)

Each argument can be an array or a sequence.

See also:

`ZerosPolesGain, StateSpace, TransferFunction, dlti`

Notes

`lti` instances do not exist directly. Instead, `lti` creates an instance of one of its subclasses: `StateSpace`, `TransferFunction` or `ZerosPolesGain`.

If (numerator, denominator) is passed in for `*system`, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g., \(s^2 + 3s + 5\) would be represented as \([1, 3, 5]\)).

Changing the value of properties that are not directly part of the current system representation (such as the zeros of a `StateSpace` system) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call `sys = sys.to_zpk()` before accessing/changing the zeros, poles or gain.
Examples

```python
from scipy import signal

>>> signal.lti(1, 2, 3, 4)
StateSpaceContinuous(
    array([[1]]),
    array([[2]]),
    array([[3]]),
    array([[4]]),
dt: None
)

Construct the transfer function \( H(s) = \frac{5(s-1)(s-2)}{(s-3)(s-4)} \):

```python
>>> signal.lti([1, 2], [3, 4], 5)
ZerosPolesGainContinuous(
 array([1, 2]),
 array([3, 4]),
 5,
 dt: None
)

Construct the transfer function \(H(s) = \frac{3s+4}{s+2} \):

```python
>>> signal.lti([3, 4], [1, 2])
TransferFunctionContinuous(
    array([3., 4.]),
    array([1., 2.]),
dt: None
)
```

Attributes

dt

Return the sampling time of the system, None for lti systems.

poles

Poles of the system.

zeros

Zeros of the system.

Methods

bode([w, n])

Calculate Bode magnitude and phase data of a continuous-time system.

freqresp([w, n])

Calculate the frequency response of a continuous-time system.

impulse([X0, T, N])

Return the impulse response of a continuous-time system.

output(U, T[, X0])

Return the response of a continuous-time system to input U.

step([X0, T, N])

Return the step response of a continuous-time system.

to_discrete(dt[, method, alpha])

Return a discretized version of the current system.
scipy.signal.lti.bode

```python
lti.bode(w=None, n=100)
```
Calculate Bode magnitude and phase data of a continuous-time system.

Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude [dB] and phase [deg]. See `bode` for details.

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> sys = signal.TransferFunction([1], [1, 1])
>>> w, mag, phase = sys.bode()

>>> plt.figure()
>>> plt.semilogx(w, mag)  # Bode magnitude plot
>>> plt.figure()
>>> plt.semilogx(w, phase)  # Bode phase plot
>>> plt.show()
```

![Bode magnitude and phase plots](image)

scipy.signal.lti.freqresp

```python
lti.freqresp(w=None, n=10000)
```
Calculate the frequency response of a continuous-time system.

Returns a 2-tuple containing arrays of frequencies [rad/s] and complex magnitude. See `freqresp` for details.
scipy.signal.lti.impulse

`lti.impulse(X0=None, T=None, N=None)`
Return the impulse response of a continuous-time system. See `impulse` for details.

scipy.signal.lti.output

`lti.output(U, T, X0=None)`
Return the response of a continuous-time system to input U. See `lsim` for details.

scipy.signal.lti.step

`lti.step(X0=None, T=None, N=None)`
Return the step response of a continuous-time system. See `step` for details.

scipy.signal.lti.to_discrete

`lti.to_discrete(dt, method='zoh', alpha=None)`
Return a discretized version of the current system.

Parameters: See `cont2discrete` for details.

Returns

```
sys: instance of dlti
```
scipy.signal.StateSpace

*class scipy.signal.StateSpace(*system, **kwargs*)*

Linear Time Invariant system in state-space form.

Represents the system as the continuous-time, first order differential equation \(\dot{x} = Ax + Bu \) or the discrete-time difference equation \(x[k+1] = Ax[k] + Bu[k] \). StateSpace systems inherit additional functionality from the \(lti \), respectively the \(dlti \) classes, depending on which system representation is used.

Parameters

system: arguments

The StateSpace class can be instantiated with 1 or 4 arguments. The following gives the number of input arguments and their interpretation:

- 1: \(lti \) or \(dlti \) system: \((StateSpace, TransferFunction \text{ or } ZerosPolesGain) \)
- 4: array_like: \((A, B, C, D) \)

dt: float, optional

Sampling time [s] of the discrete-time systems. Defaults to \(None \) (continuous-time). Must be specified as a keyword argument, for example, \(dt=0.1 \).

See also:

\(TransferFunction, ZerosPolesGain, lti, dlti \)

\(ss2zpk, ss2tf, zpk2sos \)

Notes

Changing the value of properties that are not part of the StateSpace system representation (such as zeros or poles) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call \(sys = sys.to_zpk() \) before accessing/changing the zeros, poles or gain.

Examples

```python
>>> from scipy import signal

>>> a = np.array([[0, 1], [0, 0]])
>>> b = np.array([[0], [1]])
>>> c = np.array([[1, 0]])
>>> d = np.array([[0]])

>>> sys = signal.StateSpace(a, b, c, d)
>>> print(sys)
StateSpaceContinuous(array([[0, 1],
    [0, 0]]),
array([[0],
    [1]]),
array([[1, 0]]),
array([[0]]),
dt: None)
```
```python
>>> sys.to_discrete(0.1)
StateSpaceDiscrete(
    array([[1. , 0.1],
           [0. , 1. ]]),
    array([[0.005],
           [0.1 ]]),
    array([[1, 0]]),
    array([[0]]),
    dt: 0.1
)
```

```python
>>> a = np.array([[1, 0.1], [0, 1]])
>>> b = np.array([[0.005], [0.1]])

>>> signal.StateSpace(a, b, c, d, dt=0.1)
StateSpaceDiscrete(
    array([[1. , 0.1],
           [0. , 1. ]]),
    array([[0.005],
           [0.1 ]]),
    array([[1, 0]]),
    array([[0]]),
    dt: 0.1
)
```

Attributes

- **A**: State matrix of the `StateSpace` system.
- **B**: Input matrix of the `StateSpace` system.
- **C**: Output matrix of the `StateSpace` system.
- **D**: Feedthrough matrix of the `StateSpace` system.
- **dt**: Return the sampling time of the system, `None` for `lti` systems.
- **poles**: Poles of the system.
- **zeros**: Zeros of the system.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>__mul__(other)</code></td>
<td>Post-multiply another system or a scalar</td>
</tr>
<tr>
<td><code>to_ss()</code></td>
<td>Return a copy of the current <code>StateSpace</code> system.</td>
</tr>
<tr>
<td><code>to_tf(**kwargs)</code></td>
<td>Convert system representation to <code>TransferFunction</code>.</td>
</tr>
<tr>
<td><code>to_zpk(**kwargs)</code></td>
<td>Convert system representation to <code>ZerosPolesGain</code>.</td>
</tr>
</tbody>
</table>
scipy.signal.StateSpace.__mul__

`StateSpace.__mul__(other)`

Post-multiply another system or a scalar

Handles multiplication of systems in the sense of a frequency domain multiplication. That means, given two systems $E_1(s)$ and $E_2(s)$, their multiplication, $H(s) = E_1(s) * E_2(s)$, means that applying $H(s)$ to $U(s)$ is equivalent to first applying $E_2(s)$, and then $E_1(s)$.

Notes

For SISO systems the order of system application does not matter. However, for MIMO systems, where the two systems are matrices, the order above ensures standard Matrix multiplication rules apply.

scipy.signal.StateSpace.to_ss

`StateSpace.to_ss()`

Return a copy of the current `StateSpace` system.

Returns

- `sys` [instance of `StateSpace`] The current system (copy)

scipy.signal.StateSpace.to_tf

`StateSpace.to_tf(**kwargs)`

Convert system representation to `TransferFunction`.

Parameters

- `kwargs` [dict, optional] Additional keywords passed to `ss2zpk`

Returns

- `sys` [instance of `TransferFunction`] Transfer function of the current system

scipy.signal.StateSpace.to_zpk

`StateSpace.to_zpk(**kwargs)`

Convert system representation to `ZerosPolesGain`.

Parameters

- `kwargs` [dict, optional] Additional keywords passed to `ss2zpk`

Returns

- `sys` [instance of `ZerosPolesGain`] Zeros, poles, gain representation of the current system
scipy.signal.TransferFunction

class scipy.signal.TransferFunction(*system, **kwargs)

Linear Time Invariant system class in transfer function form.

Represents the system as the continuous-time transfer function
\[H(s) = \sum_{i=0}^{N} b[N - i]s^i / \sum_{j=0}^{M} a[M - j]s^j \]
or the discrete-time transfer function
\[H(s) = \sum_{i=0}^{N} b[N - i]z^i / \sum_{j=0}^{M} a[M - j]z^j, \]
where \(b \) are elements of the numerator \(\text{num} \), \(a \) are elements of the denominator \(\text{den} \), and \(N = len(b) - 1, M = len(a) - 1 \). **TransferFunction** systems inherit additional functionality from the **lti**, respectively the **dlti** classes, depending on which system representation is used.

Parameters

*system: arguments

The **TransferFunction** class can be instantiated with 1 or 2 arguments. The following gives the number of input arguments and their interpretation:

- 1: \(\text{lti or dlti system: (StateSpace, TransferFunction or ZerosPoles-Gain)} \)
- 2: array_like: (numerator, denominator)

dt: float, optional

Sampling time [s] of the discrete-time systems. Defaults to None (continuous-time). Must be specified as a keyword argument, for example, \(dt=0.1 \).

See also:

ZerosPolesGain, StateSpace, lti, dlti

tf2ss, tf2zpk, tf2sos

Notes

Changing the value of properties that are not part of the \(\text{TransferFunction} \) system representation (such as the \(A, B, C, D \) state-space matrices) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call \(sys = sys.to_ss() \) before accessing/changing the \(A, B, C, D \) system matrices.

If (numerator, denominator) is passed in for \(*system \), coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. \(s^2 + 3s + 5 \) or \(z^2 + 3z + 5 \) would be represented as \([1, 3, 5] \))

Examples

Construct the transfer function \(H(s) = \frac{s^2+3s+3}{s^2+2s+1} \).

```python
>>> from scipy import signal

>>> num = [1, 3, 3]
>>> den = [1, 2, 1]

>>> signal.TransferFunction(num, den)
TransferFunctionContinuous(
array([1., 3., 3.]),
array([1., 2., 1.]),
dt: None)
```
Construct the transfer function $H(z) = \frac{z^2 + 3z + 3}{z^2 + 2z + 1}$ with a sampling time of 0.1 seconds:

```python
>>> signal.TransferFunction(num, den, dt=0.1)
TransferFunctionDiscrete(
    array([[1., 3., 3.]],
    array([[1., 2., 1.]],
    dt: 0.1
)
```

Attributes
- `den`: Denominator of the `TransferFunction` system.
- `dt`: Return the sampling time of the system, `None` for `lti` systems.
- `num`: Numerator of the `TransferFunction` system.
- `poles`: Poles of the system.
- `zeros`: Zeros of the system.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>to_ss()</code></td>
<td>Convert system representation to <code>StateSpace</code>.</td>
</tr>
<tr>
<td><code>to_tf()</code></td>
<td>Return a copy of the current <code>TransferFunction</code> system.</td>
</tr>
<tr>
<td><code>to_zpk()</code></td>
<td>Convert system representation to <code>ZerosPoles-Gain</code>.</td>
</tr>
</tbody>
</table>

scipy.signal.TransferFunction.to_ss

`TransferFunction.to_ss()` Convert system representation to `StateSpace`.

Returns
- `sys` [instance of `StateSpace`] State space model of the current system

scipy.signal.TransferFunction.to_tf

`TransferFunction.to_tf()` Return a copy of the current `TransferFunction` system.

Returns
- `sys` [instance of `TransferFunction`] The current system (copy)
scipy.signal.TransferFunction.to_zpk

```python
TransferFunction.to_zpk()
```

Convert system representation to `ZerosPolesGain`.

Returns
sys
[instance of `ZerosPolesGain`] Zeros, poles, gain representation of the current system

scipy.signal.ZerosPolesGain

class scipy.signal.ZerosPolesGain(*system, **kwargs)

Linear Time Invariant system class in zeros, poles, gain form.

Represents the system as the continuous- or discrete-time transfer function $H(s) = k \prod_i (s-z[i])/\prod_j (s-p[j])$, where k is the gain, z are the zeros and p are the poles. `ZerosPolesGain` systems inherit additional functionality from the `lti`, respectively the `dlti` classes, depending on which system representation is used.

Parameters

*system [arguments] The `ZerosPolesGain` class can be instantiated with 1 or 3 arguments. The following gives the number of input arguments and their interpretation:
• 1: `lti` or `dlti` system: (StateSpace, TransferFunction or `ZerosPolesGain`)
• 3: array_like: (zeros, poles, gain)

dt: float, optional
Sampling time [s] of the discrete-time systems. Defaults to `None` (continuous-time). Must be specified as a keyword argument, for example, `dt=0.1`.

See also:
TransferFunction, StateSpace, `lti`, `dlti`
zpk2ss, zpk2tf, zpk2sos

Notes

Changing the value of properties that are not part of the `ZerosPolesGain` system representation (such as the A, B, C, D state-space matrices) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call `sys = sys.to_ss()` before accessing/changing the A, B, C, D system matrices.

Examples

Construct the transfer function $H(s) = \frac{5(s-1)(s-2)}{(s-3)(s-4)}$:

```python
>>> from scipy import signal

>>> signal.ZerosPolesGain([[1, 2], [3, 4]], 5)
ZerosPolesGainContinuous(
    array([[1, 2]],
    array([[3, 4]],
    5,
```

(continues on next page)
dt: None
)

Construct the transfer function \(H(z) = \frac{5(z-1)(z-2)}{(z-3)(z-4)} \) with a sampling time of 0.1 seconds:

```python
>>> signal.ZerosPolesGain([[1, 2], [3, 4]], 5, dt=0.1)
ZerosPolesGainDiscrete(
    array([[1, 2]]),
    array([[3, 4]]),
    5,
    dt: 0.1
)
```

Attributes

- **dt**: Return the sampling time of the system, *None* for *lti* systems.
- **gain**: Gain of the *ZerosPolesGain* system.
- **poles**: Poles of the *ZerosPolesGain* system.
- **zeros**: Zeros of the *ZerosPolesGain* system.

Methods

- **to_ss()**: Convert system representation to *StateSpace*.
- **to_tf()**: Convert system representation to *TransferFunction*.
- **to_zpk()**: Return a copy of the current *ZerosPolesGain* system.

scipy.signal.ZerosPolesGain.to_ss

ZerosPolesGain.to_ss()

Convert system representation to *StateSpace*.

Returns

sys ([instance of *StateSpace*] State space model of the current system

scipy.signal.ZerosPolesGain.to_tf

ZerosPolesGain.to_tf()

Convert system representation to *TransferFunction*.

Returns

sys ([instance of *TransferFunction*] Transfer function of the current system
scipy.signal.ZerosPolesGain.to_zpk

ZerosPolesGain.to_zpk()

Return a copy of the current ‘ZerosPolesGain’ system.

Returns

sys [instance of ZerosPolesGain] The current system (copy)

scipy.signal.lsim

scipy.signal.lsim(system, U, T, X0=None, interp=True)

Simulate output of a continuous-time linear system.

Parameters

system [an instance of the LTI class or a tuple describing the system.] The following gives the number of elements in the tuple and the interpretation:

• 1: (instance of lti)
• 2: (num, den)
• 3: (zeros, poles, gain)
• 4: (A, B, C, D)

U [array_like] An input array describing the input at each time T (interpolation is assumed between given times). If there are multiple inputs, then each column of the rank-2 array represents an input. If U = 0 or None, a zero input is used.

T [array_like] The time steps at which the input is defined and at which the output is desired. Must be nonnegative, increasing, and equally spaced.

X0 [array_like, optional] The initial conditions on the state vector (zero by default).

interp [bool, optional] Whether to use linear (True, the default) or zero-order-hold (False) interpolation for the input array.

Returns

T [1D ndarray] Time values for the output.

yout [1D ndarray] System response.

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. \(s^2 + 3s + 5\) would be represented as \([1, 3, 5]\)).

Examples

We’ll use lsim to simulate an analog Bessel filter applied to a signal.

```python
>>> from scipy.signal import bessel, lsim
>>> import matplotlib.pyplot as plt
```

Create a low-pass Bessel filter with a cutoff of 12 Hz.

```python
>>> b, a = bessel(N=5, Wn=2*np.pi*12, btype='lowpass', analog=True)
```

Generate data to which the filter is applied.
The input signal is the sum of three sinusoidal curves, with frequencies 4 Hz, 40 Hz, and 80 Hz. The filter should mostly eliminate the 40 Hz and 80 Hz components, leaving just the 4 Hz signal.

In a second example, we simulate a double integrator $y'' = u$, with a constant input $u = 1$. We'll use the state space representation of the integrator.
Compute the simulation, and then plot y. As expected, the plot shows the curve $y = 0.5t^2$.

```python
>>> tout, y, x = lsim(system, u, t)
>>> plt.plot(t, y)
>>> plt.grid(alpha=0.3)
>>> plt.xlabel('t')
>>> plt.show()
```

scipy.signal.lsim2

`scipy.signal.lsim2(system, U=None, T=None, X0=None, **kwargs)`
Simulate output of a continuous-time linear system, by using the ODE solver `scipy.integrate.odeint`.

Parameters

- `system` ([an instance of the `lti` class or a tuple describing the system.]) The following gives the number of elements in the tuple and the interpretation:
 - 1: (instance of `lti`)
 - 2: (num, den)
 - 3: (zeros, poles, gain)
 - 4: (A, B, C, D)
- `U` ([array_like (1D or 2D), optional]) An input array describing the input at each time T. Linear interpolation is used between given times. If there are multiple inputs, then each column of the rank-2 array represents an input. If U is not given, the input is assumed to be zero.
- `T` ([array_like (1D or 2D), optional]) The time steps at which the input is defined and at which the output is desired. The default is 101 evenly spaced points on the interval [0,10.0].
- `X0` ([array_like (1D), optional]) The initial condition of the state vector. If X0 is not given, the initial conditions are assumed to be 0.
- `kwargs` ([dict]) Additional keyword arguments are passed on to the function `odeint`. See the notes below for more details.

Returns

- `T` ([1D ndarray]) The time values for the output.
- `yout` ([ndarray]) The response of the system.
- `xout` ([ndarray]) The time-evolution of the state-vector.
See also:

lsim

Notes

This function uses \texttt{scipy.integrate.odeint} to solve the system's differential equations. Additional keyword arguments given to \texttt{lsim2} are passed on to \texttt{odeint}. See the documentation for \texttt{scipy.integrate.odeint} for the full list of arguments.

If (num, den) is passed in for \texttt{system}, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. $s^2 + 3s + 5$ would be represented as [1, 3, 5]).

Examples

We'll use \texttt{lsim2} to simulate an analog Bessel filter applied to a signal.

```python
>>> from scipy.signal import bessel, lsim
>>> import matplotlib.pyplot as plt

Create a low-pass Bessel filter with a cutoff of 12 Hz.

```python
>>> b, a = bessel(N=5, Wn=2*np.pi*12, btype='lowpass', analog=True)
``` 

Generate data to which the filter is applied.

```python
>>> t = np.linspace(0, 1.25, 500, endpoint=False)
``` 

The input signal is the sum of three sinusoidal curves, with frequencies 4 Hz, 40 Hz, and 80 Hz. The filter should mostly eliminate the 40 Hz and 80 Hz components, leaving just the 4 Hz signal.

```python
>>> u = (np.cos(2*np.pi*4*t) + 0.6*np.sin(2*np.pi*40*t) +
... 0.5*np.cos(2*np.pi*80*t))
``` 

Simulate the filter with \texttt{lsim2}.

```python
>>> tout, yout, xout = lsim2((b, a), U=u, T=t)
``` 

Plot the result.

```python
>>> plt.plot(t, u, 'r', alpha=0.5, linewidth=1, label='input')
>>> plt.plot(tout, yout, 'k', linewidth=1.5, label='output')
>>> plt.legend(loc='best', shadow=True, framealpha=1)
>>> plt.grid(alpha=0.3)
>>> plt.xlabel('t')
>>> plt.show()
``` 

In a second example, we simulate a double integrator $y'' = u$, with a constant input $u = 1$. We'll use the state space representation of the integrator.

```python
>>> from scipy.signal import lti
>>> A = np.array([[0, 1], [0, 0]])
>>> B = np.array([[0], [1]])
```
(continued from previous page)

```python
>>> C = np.array([[1, 0]])
>>> D = 0
>>> system = lti(A, B, C, D)
```

\( t \) and \( u \) define the time and input signal for the system to be simulated.

```python
>>> t = np.linspace(0, 5, num=50)
>>> u = np.ones_like(t)
```

Compute the simulation, and then plot \( y \). As expected, the plot shows the curve \( y = 0.5t^2 \).

```python
>>> tout, y, x = lsim2(system, u, t)
>>> plt.plot(t, y)
>>> plt.grid(alpha=0.3)
>>> plt.xlabel('t')
>>> plt.show()
```

**scipy.signal.impulse**

```python
scipy.signal.impulse(system, X0=None, T=None, N=None)
```

Impulse response of continuous-time system.

**Parameters**

- `system` [an instance of the LTI class or a tuple of array_like] describing the system. The following gives the number of elements in the tuple and the interpretation:
  - 1 (instance of `lti`)
  - 2 (num, den)
  - 3 (zeros, poles, gain)
  - 4 (A, B, C, D)
- `X0` [array_like, optional] Initial state-vector. Defaults to zero.
- `N` [int, optional] The number of time points to compute (if `T` is not given).

**Returns**
**T**  [ndarray] A 1-D array of time points.

**yout**  [ndarray] A 1-D array containing the impulse response of the system (except for singularities at zero).

**Notes**

If (num, den) is passed in for *system*, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. \( s^2 + 3s + 5 \) would be represented as \([1, 3, 5]\)).

**Examples**

Compute the impulse response of a second order system with a repeated root: \( x''(t) + 2*x'(t) + x(t) = u(t) \)

```python
>>> from scipy import signal
>>> system = ([1.0], [1.0, 2.0, 1.0])
>>> t, y = signal.impulse(system)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, y)
```

**scipy.signal.impulse2**

*scipy.signal.impulse2* (*system*, *X0=None*, *T=None*, *N=None*, **kwargs)

Impulse response of a single-input, continuous-time linear system.

**Parameters**

- **system**  [an instance of the LTI class or a tuple of array_like] describing the system. The following gives the number of elements in the tuple and the interpretation:
  - 1 (instance of *lti*)
  - 2 (num, den)
  - 3 (zeros, poles, gain)
  - 4 (A, B, C, D)
X0 [1-D array_like, optional] The initial condition of the state vector. Default: 0 (the zero vector).
T [1-D array_like, optional] The time steps at which the input is defined and at which the output is desired. If T is not given, the function will generate a set of time samples automatically.
N [int, optional] Number of time points to compute. Default: 100.
kwarg [various types] Additional keyword arguments are passed on to the function scipy.signal.lsim2, which in turn passes them on to scipy.integrate.odeint; see the latter’s documentation for information about these arguments.

Returns

T [ndarray] The time values for the output.
yout [ndarray] The output response of the system.

See also:

impulse, lsim2, scipy.integrate.odeint

Notes

The solution is generated by calling scipy.signal.lsim2, which uses the differential equation solver scipy.integrate.odeint.

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

New in version 0.8.0.
Examples

Compute the impulse response of a second order system with a repeated root: \( x''(t) + 2x'(t) + x(t) = u(t) \)

```python
>>> from scipy import signal
>>> system = ([1.0], [1.0, 2.0, 1.0])
>>> t, y = signal.impulse2(system)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, y)
```

scipy.signal.step

scipy.signal.step(system, X0=None, T=None, N=None)

Step response of continuous-time system.

Parameters

- **system** [an instance of the LTI class or a tuple of array_like] describing the system. The following gives the number of elements in the tuple and the interpretation:
  - 1 (instance of lti)
  - 2 (num, den)
  - 3 (zeros, poles, gain)
  - 4 (A, B, C, D)
- **X0** [array_like, optional] Initial state-vector (default is zero).
- **T** [array_like, optional] Time points (computed if not given).
- **N** [int, optional] Number of time points to compute if T is not given.

Returns

- **T** [1D ndarray] Output time points.
- **yout** [1D ndarray] Step response of system.

See also:

scipy.signal.step2
Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. \(s^2 + 3s + 5\) would be represented as \([1, 3, 5]\)).

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> lti = signal.lti([1.0], [1.0, 1.0])
>>> t, y = signal.step(lti)
>>> plt.plot(t, y)
>>> plt.xlabel('Time [s]')
>>> plt.ylabel('Amplitude')
>>> plt.title('Step response for 1. Order Lowpass')
>>> plt.grid()
```

![Step response for 1. Order Lowpass](image)

scipy.signal.step2

scipy.signal.step2(system, X0=None, T=None, N=None, **kwargs)

Step response of continuous-time system.

This function is functionally the same as `scipy.signal.step`, but it uses the function `scipy.signal.lsim2` to compute the step response.

Parameters

- **system** [an instance of the LTI class or a tuple of array_like] describing the system. The following gives the number of elements in the tuple and the interpretation:
  - 1 (instance of `lti`)
  - 2 (num, den)
  - 3 (zeros, poles, gain)
  - 4 (A, B, C, D)
- **X0** [array_like, optional] Initial state-vector (default is zero).
- **T** [array_like, optional] Time points (computed if not given).
[N, optional] Number of time points to compute if T is not given.

[kwargs] Additional keyword arguments are passed on the function `scipy.signal.lsim2`, which in turn passes them on to `scipy.integrate.odeint`. See the documentation for `scipy.integrate.odeint` for information about these arguments.

**Returns**

[T] [1D ndarray] Output time points.

[yout] [1D ndarray] Step response of system.

**See also:**

`scipy.signal.step`

**Notes**

If (num, den) is passed in for `system`, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. $s^2 + 3s + 5$ would be represented as `[1, 3, 5]`).

New in version 0.8.0.

**Examples**

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> lti = signal.lti([1.0], [1.0, 1.0])
>>> t, y = signal.step2(lti)
>>> plt.plot(t, y)
>>> plt.xlabel('Time [s]')
>>> plt.ylabel('Amplitude')
>>> plt.title('Step response for 1. Order Lowpass')
>>> plt.grid()
```

![Step response for 1. Order Lowpass](image)
scipy.signal.freqresp

scipy.signal.freqresp(system, w=None, n=10000)

Calculate the frequency response of a continuous-time system.

Parameters

- **system** [an instance of the lti class or a tuple describing the system.] The following gives the number of elements in the tuple and the interpretation:
  - 1 (instance of lti)
  - 2 (num, den)
  - 3 (zeros, poles, gain)
  - 4 (A, B, C, D)
- **w** [array_like, optional] Array of frequencies (in rad/s). Magnitude and phase data is calculated for every value in this array. If not given, a reasonable set will be calculated.
- **n** [int, optional] Number of frequency points to compute if w is not given. The n frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system.

Returns

- **w** [1D ndarray] Frequency array [rad/s]
- **H** [1D ndarray] Array of complex magnitude values

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. \(s^2 + 3s + 5\) would be represented as \([1, 3, 5]\)).

Examples

Generating the Nyquist plot of a transfer function

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Construct the transfer function \(H(s) = \frac{5}{(s-1)^2}\):

```python
>>> s1 = signal.ZerosPolesGain([], [1, 1, 1], [5])
```n

```python
>>> w, H = signal.freqresp(s1)
```n
```python
>>> plt.figure()
>>> plt.plot(H.real, H.imag, "b")
>>> plt.plot(H.real, -H.imag, "r")
>>> plt.show()
```
scipy.signal.bode

scipy.signal.bode(system, w=None, n=100)

Calculate Bode magnitude and phase data of a continuous-time system.

Parameters

- **system** [an instance of the LTI class or a tuple describing the system.] The following gives the number of elements in the tuple and the interpretation:
 - 1 (instance of `lti`)
 - 2 (num, den)
 - 3 (zeros, poles, gain)
 - 4 (A, B, C, D)
- **w** [array_like, optional] Array of frequencies (in rad/s). Magnitude and phase data is calculated for every value in this array. If not given a reasonable set will be calculated.
- **n** [int, optional] Number of frequency points to compute if `w` is not given. The `n` frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system.

Returns

- **w** [1D ndarray] Frequency array [rad/s]
- **mag** [1D ndarray] Magnitude array [dB]
- **phase** [1D ndarray] Phase array [deg]

Notes

If (num, den) is passed in for `system`, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. \(s^2 + 3s + 5\) would be represented as `[1, 3, 5]`).

New in version 0.11.0.
Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> sys = signal.TransferFunction([1], [1, 1])
>>> w, mag, phase = signal.bode(sys)

>>> plt.figure()
>>> plt.semilogx(w, mag)  # Bode magnitude plot
>>> plt.figure()
>>> plt.semilogx(w, phase)  # Bode phase plot
>>> plt.show()
```

![Bode magnitude plot](image1.png)

![Bode phase plot](image2.png)
Discrete-time linear systems

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dlti(*system, **kwargs)</code></td>
<td>Discrete-time linear time invariant system base class.</td>
</tr>
<tr>
<td><code>StateSpace(*system, **kwargs)</code></td>
<td>Linear Time Invariant system in state-space form.</td>
</tr>
<tr>
<td><code>TransferFunction(*system, **kwargs)</code></td>
<td>Linear Time Invariant system class in transfer function form.</td>
</tr>
<tr>
<td><code>ZerosPolesGain(*system, **kwargs)</code></td>
<td>Linear Time Invariant system class in zeros, poles, gain form.</td>
</tr>
<tr>
<td><code>dlsim(system, u[, t, x0])</code></td>
<td>Simulate output of a discrete-time linear system.</td>
</tr>
<tr>
<td><code>dimpulse(system[, x0, t, n])</code></td>
<td>Impulse response of discrete-time system.</td>
</tr>
<tr>
<td><code>dstep(system[, x0, t, n])</code></td>
<td>Step response of discrete-time system.</td>
</tr>
<tr>
<td><code>dfreqresp(system[, w, n, whole])</code></td>
<td>Calculate the frequency response of a discrete-time system.</td>
</tr>
<tr>
<td><code>dbode(system[, w, n])</code></td>
<td>Calculate Bode magnitude and phase data of a discrete-time system.</td>
</tr>
</tbody>
</table>

scipy.signal.dlti

```python
class scipy.signal.dlti(*system, **kwargs)
```

Discrete-time linear time invariant system base class.

Parameters

*system: arguments

The `dlti` class can be instantiated with either 2, 3 or 4 arguments. The following gives the number of arguments and the corresponding discrete-time subclass that is created:

- **2**: `TransferFunction`: (numerator, denominator)
- **3**: `ZerosPolesGain`: (zeros, poles, gain)
- **4**: `StateSpace`: (A, B, C, D)

Each argument can be an array or a sequence.

dt: float, optional

Sampling time [s] of the discrete-time systems. Defaults to True (unspecified sampling time). Must be specified as a keyword argument, for example, `dt=0.1`.

See also:

`ZerosPolesGain, StateSpace, TransferFunction, lti`

Notes

`dlti` instances do not exist directly. Instead, `dlti` creates an instance of one of its subclasses: `StateSpace`, `TransferFunction` or `ZerosPolesGain`.

Changing the value of properties that are not directly part of the current system representation (such as the zeros of a `StateSpace` system) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call `sys = sys.to_zpk()` before accessing/changing the zeros, poles or gain.

If (numerator, denominator) is passed in for *system, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g., \(z^2 + 3z + 5\) would be represented as \([1, 3, 5]\)).

New in version 0.18.0.
Examples

```python
>>> from scipy import signal

>>> signal.dlti(1, 2, 3, 4)
StateSpaceDiscrete(
    array([[1]]),
    array([[2]]),
    array([[3]]),
    array([[4]]),
dt: True
)

>>> signal.dlti(1, 2, 3, 4, dt=0.1)
StateSpaceDiscrete(
    array([[1]]),
    array([[2]]),
    array([[3]]),
    array([[4]]),
dt: 0.1
)

Construct the transfer function $H(z) = \frac{5(z-1)(z-2)}{(z-3)(z-4)}$ with a sampling time of 0.1 seconds:

```python
>>> signal.dlti([1, 2], [3, 4], 5, dt=0.1)
ZerosPolesGainDiscrete(
 array([1, 2]),
 array([3, 4]),
 5,
 dt: 0.1
)
```

Construct the transfer function $H(z) = \frac{3z+4}{1z+2}$ with a sampling time of 0.1 seconds:

```python
>>> signal.dlti([3, 4], [1, 2], dt=0.1)
TransferFunctionDiscrete(
 array([3., 4.]),
 array([1., 2.]),
 dt: 0.1
)
```

Attributes

- `dt`: Return the sampling time of the system.
- `poles`: Poles of the system.
- `zeros`: Zeros of the system.
## Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bode([w, n])</code></td>
<td>Calculate Bode magnitude and phase data of a discrete-time system.</td>
</tr>
<tr>
<td><code>freqresp([w, n, whole])</code></td>
<td>Calculate the frequency response of a discrete-time system.</td>
</tr>
<tr>
<td><code>impulse([x0, t, n])</code></td>
<td>Return the impulse response of the discrete-time <code>dlti</code> system.</td>
</tr>
<tr>
<td><code>output(u, t[, x0])</code></td>
<td>Return the response of the discrete-time system to input <code>u</code>.</td>
</tr>
<tr>
<td><code>step([x0, t, n])</code></td>
<td>Return the step response of the discrete-time <code>dlti</code> system.</td>
</tr>
</tbody>
</table>

### `scipy.signal.dlti.bode`

```python
dlti.bode (w=None, n=100)
```

Calculate Bode magnitude and phase data of a discrete-time system. Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude [dB] and phase [deg]. See `dbode` for details.

### Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Construct the transfer function \(H(z) = \frac{1}{z^2 + 2z + 3} \) with sampling time 0.5s:

```python
>>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.5)
```  
Equivalent: `signal.dbode(sys)`

```python
>>> w, mag, phase = sys.bode()
>>> plt.figure()
>>> plt.semilogx(w, mag)  # Bode magnitude plot
>>> plt.figure()
>>> plt.semilogx(w, phase)  # Bode phase plot
>>> plt.show()
```

`scipy.signal.dlti.freqresp`

```python
dlti.freqresp (w=None, n=10000, whole=False)
```

Calculate the frequency response of a discrete-time system. Returns a 2-tuple containing arrays of frequencies [rad/s] and complex magnitude. See `dfreqresp` for details.
3.3. API definition
scipy.signal.dlti.impulse

```python
dlti.impulse(x0=None, t=None, n=None)
```

Return the impulse response of the discrete-time `dlti` system. See `dimpulse` for details.

scipy.signal.dlti.output

```python
dlti.output(u, t, x0=None)
```

Return the response of the discrete-time system to input `u`. See `dlsim` for details.

scipy.signal.dlti.step

```python
dlti.step(x0=None, t=None, n=None)
```

Return the step response of the discrete-time `dlti` system. See `dstep` for details.

scipy.signal.dlsim

```python
scipy.signal.dlsim(system, u, t=None, x0=None)
```

Simulate output of a discrete-time linear system.

Parameters

- `system` [tuple of array_like or instance of `dlti`]: A tuple describing the system. The following gives the number of elements in the tuple and the interpretation:
 - 1: (instance of `dlti`)
 - 3: (num, den, dt)
 - 4: (zeros, poles, gain, dt)
 - 5: (A, B, C, D, dt)
- `u` [array_like]: An input array describing the input at each time `t` (interpolation is assumed between given times). If there are multiple inputs, then each column of the rank-2 array represents an input.
- `t` [array_like, optional]: The time steps at which the input is defined. If `t` is given, it must be the same length as `u`, and the final value in `t` determines the number of steps returned in the output.
- `x0` [array_like, optional]: The initial conditions on the state vector (zero by default).

Returns

- `tout` [ndarray]: Time values for the output, as a 1-D array.
- `yout` [ndarray]: System response, as a 1-D array.
- `xout` [ndarray, optional]: Time-evolution of the state-vector. Only generated if the input is a `StateSpace` system.

See also:

- `lsim`, `dstep`, `dimpulse`, `cont2discrete`
Examples

A simple integrator transfer function with a discrete time step of 1.0 could be implemented as:

```python
>>> from scipy import signal
>>> tf = ([1.0,], [1.0, -1.0, 1.0])
>>> t_in = [0.0, 1.0, 2.0, 3.0]
>>> u = np.asarray([0.0, 0.0, 1.0, 1.0])
>>> t_out, y = signal.dlsim(tf, u, t=t_in)
>>> y.T
array([[ 0.,  0.,  0.,  1.]])
```

scipy.signal.dimpulse

scipy.signal.dimpulse (system, x0=None, t=None, n=None)

Impulse response of discrete-time system.

Parameters

- `system`: [tuple of array_like or instance of dlti] A tuple describing the system. The following gives the number of elements in the tuple and the interpretation:
 - 1: (instance of dlti)
 - 3: (num, den, dt)
 - 4: (zeros, poles, gain, dt)
 - 5: (A, B, C, D, dt)
- `x0`: [array_like, optional] Initial state-vector. Defaults to zero.
- `n`: [int, optional] The number of time points to compute (if `t` is not given).

Returns

- `tout`: [ndarray] Time values for the output, as a 1-D array.
- `yout`: [tuple of ndarray] Impulse response of system. Each element of the tuple represents the output of the system based on an impulse in each input.

See also:

impulse, dstep, dlsim, cont2discrete

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> butter = signal.dlti(*signal.butter(3, 0.5))
>>> t, y = signal.dimpulse(butter, n=25)
>>> plt.step(t, np.squeeze(y))
>>> plt.grid()
>>> plt.xlabel('n [samples]')
>>> plt.ylabel('Amplitude')
```
scipy.signal.dstep

scipy.signal.dstep(system, x0=None, t=None, n=None)
Step response of discrete-time system.

Parameters

- **system** [tuple of array_like] A tuple describing the system. The following gives the number of elements in the tuple and the interpretation:
 - 1: (instance of dlti)
 - 3: (num, den, dt)
 - 4: (zeros, poles, gain, dt)
 - 5: (A, B, C, D, dt)

- **x0** [array_like, optional] Initial state-vector. Defaults to zero.

- **t** [array_like, optional] Time points. Computed if not given.

- **n** [int, optional] The number of time points to compute (if t is not given).

Returns

- **tout** [ndarray] Output time points, as a 1-D array.

- **yout** [tuple of ndarray] Step response of system. Each element of the tuple represents the output of the system based on a step response to each input.

See also:

- step, dimpulse, dlsim, cont2discrete
Examples

```python
from scipy import signal
import matplotlib.pyplot as plt

butter = signal.dlti(signal.butter(3, 0.5))
t, y = signal.dstep(butter, n=25)
plt.step(t, np.squeeze(y))
plt.grid()
plt.xlabel('n [samples]')
plt.ylabel('Amplitude')
```

scipy.signal.dfreqresp

scipy.signal.dfreqresp *(system, w=None, n=10000, whole=False)*

Calculate the frequency response of a discrete-time system.

Parameters

- **system** [an instance of the `dlti` class or a tuple describing the system.] The following gives the number of elements in the tuple and the interpretation:
 - 1 (instance of `dlti`)
 - 2 (numerator, denominator, dt)
 - 3 (zeros, poles, gain, dt)
 - 4 (A, B, C, D, dt)
- **w** [array_like, optional] Array of frequencies (in radians/sample). Magnitude and phase data is calculated for every value in this array. If not given a reasonable set will be calculated.
- **n** [int, optional] Number of frequency points to compute if `w` is not given. The `n` frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system.
- **whole** [bool, optional] Normally, if ‘w’ is not given, frequencies are computed from 0 to the Nyquist frequency, pi radians/sample (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to 2*pi radians/sample.

Returns
\[w \quad [1D \text{ndarray}] \text{ Frequency array [radians/sample]} \]
\[H \quad [1D \text{ndarray}] \text{ Array of complex magnitude values} \]

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. \(z^2 + 3z + 5 \) would be represented as \([1, 3, 5]\)).

New in version 0.18.0.

Examples

Generating the Nyquist plot of a transfer function

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Construct the transfer function \( H(z) = \frac{1}{z^2 + 2z + 3} \) with a sampling time of 0.05 seconds:

```python
>>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.05)
```

```python
>>> w, H = signal.dfreqresp(sys)

```python
>>> plt.figure()
>>> plt.plot(H.real, H.imag, "b")
>>> plt.plot(H.real, -H.imag, "r")
>>> plt.show()
```

![Nyquist plot example](image-url)
scipy.signal.dbode

`scipy.signal.dbode(system, w=None, n=100)`

Calculate Bode magnitude and phase data of a discrete-time system.

Parameters

- **system** [an instance of the LTI class or a tuple describing the system.] The following gives the number of elements in the tuple and the interpretation:
 - 1 (instance of `dlti`)
 - 2 (num, den, dt)
 - 3 (zeros, poles, gain, dt)
 - 4 (A, B, C, D, dt)
- **w** [array_like, optional] Array of frequencies (in radians/sample). Magnitude and phase data is calculated for every value in this array. If not given a reasonable set will be calculated.
- **n** [int, optional] Number of frequency points to compute if w is not given. The n frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system.

Returns

- **w** [1D ndarray] Frequency array [rad/time_unit]
- **mag** [1D ndarray] Magnitude array [dB]
- **phase** [1D ndarray] Phase array [deg]

Notes

If (num, den) is passed in for `system`, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. \(z^2 + 3z + 5\) would be represented as [1, 3, 5]).

New in version 0.18.0.

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

Construct the transfer function \(H(z) = \frac{1}{z^2 + 2z + 3}\) with a sampling time of 0.05 seconds:

```python
>>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.05)
```  
Equivalent: `sys.bode()`

```python
>>> w, mag, phase = signal.dbode(sys)
```

```python
>>> plt.figure()
>>> plt.semilogx(w, mag) # Bode magnitude plot
>>> plt.figure()
>>> plt.semilogx(w, phase) # Bode phase plot
>>> plt.show()
```
## LTI representations

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tf2zpk(b, a)</code></td>
<td>Return zero, pole, gain (z, p, k) representation from a numerator, denominator representation of a linear filter.</td>
</tr>
<tr>
<td><code>tf2sos(b, a[, pairing, analog])</code></td>
<td>Return second-order sections from transfer function representation</td>
</tr>
<tr>
<td><code>tf2ss(num, den)</code></td>
<td>Transfer function to state-space representation.</td>
</tr>
<tr>
<td><code>zpk2tf(z, p, k)</code></td>
<td>Return polynomial transfer function representation from zeros and poles</td>
</tr>
<tr>
<td><code>zpk2sos(z, p, k[, pairing, analog])</code></td>
<td>Return second-order sections from zeros, poles, and gain of a system</td>
</tr>
<tr>
<td><code>zpk2ss(z, p, k)</code></td>
<td>Zero-pole-gain representation to state-space representation</td>
</tr>
<tr>
<td><code>ss2tf(A, B, C, D[, input])</code></td>
<td>State-space to transfer function.</td>
</tr>
<tr>
<td><code>ss2zpk(A, B, C, D[, input])</code></td>
<td>State-space representation to zero-pole-gain representation.</td>
</tr>
<tr>
<td><code>sos2zpk(sos)</code></td>
<td>Return zeros, poles, and gain of a series of second-order sections</td>
</tr>
<tr>
<td><code>sos2tf(sos)</code></td>
<td>Return a single transfer function from a series of second-order sections</td>
</tr>
<tr>
<td><code>cont2discrete(system, dt[, method, alpha])</code></td>
<td>Transform a continuous to a discrete state-space system.</td>
</tr>
<tr>
<td><code>place_poles(A, B, poles[, method, rtol, maxiter])</code></td>
<td>Compute K such that eigenvalues (A - dot(B, K))=poles.</td>
</tr>
</tbody>
</table>

### scipy.signal.tf2zpk

**scipy.signal.tf2zpk**(b, a)

Return zero, pole, gain (z, p, k) representation from a numerator, denominator representation of a linear filter.

**Parameters**

- **b** [array_like] Numerator polynomial coefficients.
- **a** [array_like] Denominator polynomial coefficients.

**Returns**

- **z** [ndarray] Zeros of the transfer function.
- **p** [ndarray] Poles of the transfer function.
- **k** [float] System gain.

**Notes**

If some values of `b` are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted.

The `b` and `a` arrays are interpreted as coefficients for positive, descending powers of the transfer function variable. So the inputs `b = [b_0, b_1, ..., b_M]` and `a = [a_0, a_1, ..., a_N]` can represent an analog filter of the form:

\[
H(s) = \frac{b_0s^M + b_1s^{(M-1)} + \cdots + b_M}{a_0s^N + a_1s^{(N-1)} + \cdots + a_N}
\]

or a discrete-time filter of the form:

\[
H(z) = \frac{b_0z^M + b_1z^{(M-1)} + \cdots + b_M}{a_0z^N + a_1z^{(N-1)} + \cdots + a_N}
\]
This “positive powers” form is found more commonly in controls engineering. If \( M \) and \( N \) are equal (which is true for all filters generated by the bilinear transform), then this happens to be equivalent to the “negative powers” discrete-time form preferred in DSP:

\[
H(z) = \frac{b_0 + b_1 z^{-1} + \cdots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \cdots + a_N z^{-N}}
\]

Although this is true for common filters, remember that this is not true in the general case. If \( M \) and \( N \) are not equal, the discrete-time transfer function coefficients must first be converted to the “positive powers” form before finding the poles and zeros.

**scipy.signal.tf2sos**

`scipy.signal.tf2sos(b, a, pairing=None, *, analog=False)`

Return second-order sections from transfer function representation

**Parameters**

- **b** [array_like] Numerator polynomial coefficients.
- **a** [array_like] Denominator polynomial coefficients.
- **pairing** [[None, ‘nearest’, ‘keep_odd’, ‘minimal’], optional] The method to use to combine pairs of poles and zeros into sections. See `zpk2sos` for information and restrictions on `pairing` and `analog` arguments.
- **analog** [bool, optional] If True, system is analog, otherwise discrete. New in version 1.8.0.

**Returns**

- **sos** [ndarray] Array of second-order filter coefficients, with shape \((n\_sections, 6)\). See `sosfilt` for the SOS filter format specification.

See also:

`zpk2sos, sosfilt`

**Notes**

It is generally discouraged to convert from TF to SOS format, since doing so usually will not improve numerical precision errors. Instead, consider designing filters in ZPK format and converting directly to SOS. TF is converted to SOS by first converting to ZPK format, then converting ZPK to SOS.

New in version 0.16.0.

**scipy.signal.tf2ss**

`scipy.signal.tf2ss(num, den)`

Transfer function to state-space representation.

**Parameters**

- **num, den** [array_like] Sequences representing the coefficients of the numerator and denominator polynomials, in order of descending degree. The denominator needs to be at least as long as the numerator.

**Returns**

- **A, B, C, D** [ndarray] State space representation of the system, in controller canonical form.
Examples

Convert the transfer function:

\[
H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}
\]

```python
>>> num = [1, 3, 3]
>>> den = [1, 2, 1]
```

to the state-space representation:

\[
\dot{x}(t) = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)
\]

\[
y(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \end{bmatrix} u(t)
\]

```python
>>> from scipy.signal import tf2ss
>>> A, B, C, D = tf2ss(num, den)
>>> A
array([[-2., -1.],
 [1., 0.]])
>>> B
array([[1.],
 [0.]])
>>> C
array([[1., 2.]])
>>> D
array([[1.]])
```

scipy.signal.zpk2tf

```
scipy.signal.zpk2tf(z, p, k)
```

Return polynomial transfer function representation from zeros and poles

**Parameters**

- `z` [array_like] Zeros of the transfer function.
- `p` [array_like] Poles of the transfer function.
- `k` [float] System gain.

**Returns**

- `b` [ndarray] Numerator polynomial coefficients.
- `a` [ndarray] Denominator polynomial coefficients.

scipy.signal.zpk2sos

```
scipy.signal.zpk2sos(z, p, k, pairing=None, *, analog=False)
```

Return second-order sections from zeros, poles, and gain of a system

**Parameters**

- `z` [array_like] Zeros of the transfer function.
- `p` [array_like] Poles of the transfer function.
- `k` [float] System gain.
pairing  [[None, 'nearest', 'keep_odd', 'minimal'], optional] The method to use to combine pairs of poles and zeros into sections. If analog is False and pairing is None, pairing is set to 'nearest'; if analog is True, pairing must be 'minimal', and is set to that if it is None.

analog  [bool, optional] If True, system is analog, otherwise discrete. New in version 1.8.0.

Returns
sos  [ndarray] Array of second-order filter coefficients, with shape (n_sections, 6). See sosfilt for the SOS filter format specification.

See also:
sosfilt

Notes
The algorithm used to convert ZPK to SOS format is designed to minimize errors due to numerical precision issues. The pairing algorithm attempts to minimize the peak gain of each biquadratic section. This is done by pairing poles with the nearest zeros, starting with the poles closest to the unit circle for discrete-time systems, and poles closest to the imaginary axis for continuous-time systems.

pairing='minimal' outputs may not be suitable for sosfilt, and analog=True outputs will never be suitable for sosfilt.

Algorithms
The steps in the pairing='nearest', pairing='keep_odd', and pairing='minimal' algorithms are mostly shared. The 'nearest' algorithm attempts to minimize the peak gain, while 'keep_odd' minimizes peak gain under the constraint that odd-order systems should retain one section as first order. 'minimal' is similar to 'keep_odd', but no additional poles or zeros are introduced.

The algorithm steps are as follows:

As a pre-processing step for pairing='nearest', pairing='keep_odd', add poles or zeros to the origin as necessary to obtain the same number of poles and zeros for pairing. If pairing == 'nearest' and there are an odd number of poles, add an additional pole and a zero at the origin.

The following steps are then iterated over until no more poles or zeros remain:

1. Take the (next remaining) pole (complex or real) closest to the unit circle (or imaginary axis, for analog=True) to begin a new filter section.
2. If the pole is real and there are no other remaining real poles\(^1\), add the closest real zero to the section and leave it as a first order section. Note that after this step we are guaranteed to be left with an even number of real poles, complex poles, real zeros, and complex zeros for subsequent pairing iterations.
3. Else:
   1. If the pole is complex and the zero is the only remaining real zero*, then pair the pole with the next closest zero (guaranteed to be complex). This is necessary to ensure that there will be a real zero remaining to eventually create a first-order section (thus keeping the odd order).
   2. Else pair the pole with the closest remaining zero (complex or real).
3. Proceed to complete the second-order section by adding another pole and zero to the current pole and zero in the section:
   1. If the current pole and zero are both complex, add their conjugates.

\(^1\) This conditional can only be met for specific odd-order inputs with the pairing = 'keep_odd' or 'minimal' methods.
2. Else if the pole is complex and the zero is real, add the conjugate pole and the next closest real zero.
3. Else if the pole is real and the zero is complex, add the conjugate zero and the real pole closest to those zeros.
4. Else (we must have a real pole and real zero) add the next real pole closest to the unit circle, and then add the real zero closest to that pole.

New in version 0.16.0.

Examples

Design a 6th order low-pass elliptic digital filter for a system with a sampling rate of 8000 Hz that has a pass-band corner frequency of 1000 Hz. The ripple in the pass-band should not exceed 0.087 dB, and the attenuation in the stop-band should be at least 90 dB.

In the following call to `ellip`, we could use `output='sos'`, but for this example, we'll use `output='zpk'`, and then convert to SOS format with `zpk2sos`:

```python
>>> from scipy import signal
>>> z, p, k = signal.ellip(6, 0.087, 90, 1000/(0.5*8000), output='zpk')
```

Now convert to SOS format.

```python
>>> sos = signal.zpk2sos(z, p, k)
```

The coefficients of the numerators of the sections:

```python
>>> sos[:, :3]
array([[0.0014154 , 0.00248707, 0.0014154],
 [1. , 0.72965193, 1.],
 [1. , 0.17594966, 1.]])
```

The symmetry in the coefficients occurs because all the zeros are on the unit circle.

The coefficients of the denominators of the sections:

```python
>>> sos[:, 3:]
array([[1. , -1.32543251, 0.46989499],
 [1. , -1.26117915, 0.6262586],
 [1. , -1.25707217, 0.86199667]])
```

The next example shows the effect of the `pairing` option. We have a system with three poles and three zeros, so the SOS array will have shape (2, 6). The means there is, in effect, an extra pole and an extra zero at the origin in the SOS representation.

```python
>>> z1 = np.array([-1, -0.5-0.5j, -0.5+0.5j])
>>> p1 = np.array([0.75, 0.8+0.1j, 0.8-0.1j])
```

With `pairing='nearest'` (the default), we obtain

```python
>>> signal.zpk2sos(z1, p1, 1)
array([[1. , 1. , 0.5 , 1. , -0.75, 0.],
 [1. , 1. , 0. , 1. , -1.6 , 0.65]])
```
The first section has the zeros {-0.5-0.05j, -0.5+0.5j} and the poles {0, 0.75}, and the second section has the zeros {-1, 0} and poles {0.8+0.1j, 0.8-0.1j}. Note that the extra pole and zero at the origin have been assigned to different sections.

With `pairing='keep_odd'`, we obtain:

```python
>>> signal.zpk2sos(z1, p1, 1, pairing='keep_odd')
array([[1. , 1. , 0. , 1. , -0.75, 0.],
 [1. , 1. , 0.5 , 1. , -1.6 , 0.65]])
```

The extra pole and zero at the origin are in the same section. The first section is, in effect, a first-order section.

With `pairing='minimal'`, the first-order section doesn’t have the extra pole and zero at the origin:

```python
>>> signal.zpk2sos(z1, p1, 1, pairing='minimal')
array([[0. , 1. , 1. , 0. , 1. , -0.75],
 [1. , 1. , 0.5 , 1. , -1.6 , 0.65]])
```

`sparse.signal.zpk2ss`

`sparse.signal.zpk2ss(z, p, k)`

Zero-pole-gain representation to state-space representation

**Parameters**

- `z` [sequence] Zeros and poles.
- `p` [float] System gain.
- `k` [float] System gain.

**Returns**

- `A, B, C, D` [ndarray] State space representation of the system, in controller canonical form.

`sparse.signal.ss2tf`

`sparse.signal.ss2tf(A, B, C, D, input=0)`  
State-space to transfer function.

A, B, C, D defines a linear state-space system with `p` inputs, `q` outputs, and `n` state variables.

**Parameters**

- `A` [array_like] State (or system) matrix of shape `(n, n)`
- `B` [array_like] Input matrix of shape `(n, p)`
- `C` [array_like] Output matrix of shape `(q, n)`
- `D` [array_like] Feedthrough (or feedforward) matrix of shape `(q, p)`
- `input` [int, optional] For multiple-input systems, the index of the input to use.

**Returns**

- `num` [2-D ndarray] Numerator(s) of the resulting transfer function(s). `num` has one row for each of the system’s outputs. Each row is a sequence representation of the numerator polynomial.
- `den` [1-D ndarray] Denominator of the resulting transfer function(s). `den` is a sequence representation of the denominator polynomial.
Examples

Convert the state-space representation:

\[
\begin{align*}
\dot{x}(t) &= \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t) \\
y(t) &= \begin{bmatrix} 1 & 2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \end{bmatrix} u(t)
\end{align*}
\]

```python
>>> A = [[-2, -1], [1, 0]]
>>> B = [[1], [0]] # 2-D column vector
>>> C = [[1, 2]] # 2-D row vector
>>> D = 1
```
to the transfer function:

\[
H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}
\]

```python
>>> from scipy.signal import ss2tf
>>> ss2tf(A, B, C, D)
(array([[1., 3., 3.]]), array([1., 2., 1.]))
```

**scipy.signal.ss2zpk**

**scipy.signal.ss2zpk** (*A*, *B*, *C*, *D*, *input*=`0`)

State-space representation to zero-pole-gain representation.

*A*, *B*, *C*, *D* defines a linear state-space system with *p* inputs, *q* outputs, and *n* state variables.

**Parameters**

- **A** : [array_like] State (or system) matrix of shape (*n*, *n*)
- **B** : [array_like] Input matrix of shape (*n*, *p*)
- **C** : [array_like] Output matrix of shape (*q*, *n*)
- **D** : [array_like] Feedthrough (or feedforward) matrix of shape (*q*, *p*)
- **input** : [int, optional] For multiple-input systems, the index of the input to use.

**Returns**

- **z** : [sequence] Zeros and poles.
- **p** : [array] Poles of the transfer function.
- **k** : [float] System gain.

**scipy.signal.sos2zpk**

**scipy.signal.sos2zpk** (*sos*)

Return zeros, poles, and gain of a series of second-order sections.

**Parameters**

- **sos** : [array_like] Array of second-order filter coefficients, must have shape (*n_sections*, 6). See *sosfilt* for the SOS filter format specification.

**Returns**

- **z** : [ndarray] Zeros of the transfer function.
- **p** : [ndarray] Poles of the transfer function.
- **k** : [float] System gain.
**Notes**

The number of zeros and poles returned will be \( n \_sections \times 2 \) even if some of these are (effectively) zero.

New in version 0.16.0.

**scipy.signal.sos2tf**

`scipy.signal.sos2tf(sos)`

Return a single transfer function from a series of second-order sections

**Parameters**

- `sos` [array_like] Array of second-order filter coefficients, must have shape \((n \_sections, 6)\). See `sosfilt` for the SOS filter format specification.

**Returns**

- `b` [ndarray] Numerator polynomial coefficients.
- `a` [ndarray] Denominator polynomial coefficients.

**Notes**

New in version 0.16.0.

**scipy.signal.cont2discrete**

`scipy.signal.cont2discrete(system, dt, method='zoh', alpha=None)`

Transform a continuous to a discrete state-space system.

**Parameters**

- `system` [a tuple describing the system or an instance of lti] The following gives the number of elements in the tuple and the interpretation:
  - 1: (instance of lti)
  - 2: (num, den)
  - 3: (zeros, poles, gain)
  - 4: (A, B, C, D)
- `dt` [float] The discretization time step.
- `method` [str, optional] Which method to use:
  - gbt: generalized bilinear transformation
  - bilinear: Tustin's approximation (“gbt” with alpha=0.5)
  - euler: Euler (or forward differencing) method (“gbt” with alpha=0)
  - backward_diff: Backwards differencing (“gbt” with alpha=1.0)
  - zoh: zero-order hold (default)
  - foh: first-order hold (versionadded: 1.3.0)
  - impulse: equivalent impulse response (versionadded: 1.3.0)
- `alpha` [float within [0, 1], optional] The generalized bilinear transformation weighting parameter, which should only be specified with method="gbt", and is ignored otherwise

**Returns**

- `sysd` [tuple containing the discrete system] Based on the input type, the output will be of the form
  - (num, den, dt) for transfer function input
  - (zeros, poles, gain, dt) for zeros-poles-gain input
  - (A, B, C, D, dt) for state-space system input
Notes

By default, the routine uses a Zero-Order Hold (zoh) method to perform the transformation. Alternatively, a
generalized bilinear transformation may be used, which includes the common Tustin's bilinear approximation, an
Euler’s method technique, or a backwards differencing technique.

The Zero-Order Hold (zoh) method is based on [1], the generalized bilinear approximation is based on [2] and [3],
the First-Order Hold (foh) method is based on [4].

References

[1], [2], [3], [4]

Examples

We can transform a continuous state-space system to a discrete one:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import cont2discrete, lti, dlti, dstep

Define a continuous state-space system.

```python
>>> A = np.array([[0, 1], [-10., -3]])
>>> B = np.array([[0], [10.]])
>>> C = np.array([[1., 0]])
>>> D = np.array([[0.]])
>>> l_system = lti(A, B, C, D)
>>> t, x = l_system.step(T=np.linspace(0, 5, 100))
>>> fig, ax = plt.subplots()
>>> ax.plot(t, x, label='Continuous', linewidth=3)
```

Transform it to a discrete state-space system using several methods.

```python
>>> dt = 0.1
>>> for method in ['zoh', 'bilinear', 'euler', 'backward_diff', 'foh',
                 'impulse']:
...    d_system = cont2discrete((A, B, C, D), dt, method=method)
...    s, x_d = dstep(d_system)
...    ax.step(s, np.squeeze(x_d), label=method, where='post')
>>> ax.axis([t[0], t[-1], x[0], 1.4])
>>> ax.legend(loc='best')
>>> fig.tight_layout()
>>> plt.show()
```
scipy.signal.place_poles

`scipy.signal.place_poles(A, B, poles, method='YT', rtol=0.001, maxiter=30)`

Compute K such that eigenvalues \((A - \text{dot}(B, K))\) = poles.

K is the gain matrix such as the plant described by the linear system \(AX + BU\) will have its closed-loop poles, i.e. the eigenvalues \(A - B*K\), as close as possible to those asked for in poles.

SISO, MISO and MIMO systems are supported.

Parameters

- **A, B** [ndarray] State-space representation of linear system \(AX + BU\).
- **poles** [array_like] Desired real poles and/or complex conjugates poles. Complex poles are only supported with method='YT' (default).
- **method:** {'YT', 'KNV0'}, optional
 Which method to choose to find the gain matrix K. One of:
 - ‘YT’: Yang Tits
 - ‘KNV0’: Kautsky, Nichols, Van Dooren update method 0
 See References and Notes for details on the algorithms.
- **rtol:** float, optional
 After each iteration the determinant of the eigenvectors of \(A - B*K\) is compared to its previous value, when the relative error between these two values becomes lower than \(rtol\) the algorithm stops. Default is 1e-3.
- **maxiter:** int, optional
 Maximum number of iterations to compute the gain matrix. Default is 30.

Returns

- **full_state_feedback** [Bunch object]
 full_state_feedback is composed of:
 - **gain_matrix** [1-D ndarray] The closed loop matrix K such as the eigenvalues of \(A-BK\) are as close as possible to the requested poles.
computed_poles

[1-D ndarray] The poles corresponding to $A - BK$ sorted as first the real poles in increasing order, then the complex conjugates in lexicographic order.

requested_poles

[1-D ndarray] The poles the algorithm was asked to place sorted as above, they may differ from what was achieved.

X

[2-D ndarray] The transfer matrix such as $X \times \text{diag}(\text{poles}) = (A - B*K) \times X$ (see Notes)

rtol

[float] The relative tolerance achieved on $\det(X)$ (see Notes). \text{rtol} will be NaN if it is possible to solve the system $\text{diag}(\text{poles}) = (A - B*K)$, or 0 when the optimization algorithms can’t do anything i.e when $B\.shape[1] == 1$.

nb_iter

[int] The number of iterations performed before converging. \text{nb_iter} will be NaN if it is possible to solve the system $\text{diag}(\text{poles}) = (A - B*K)$, or 0 when the optimization algorithms can’t do anything i.e when $B\.shape[1] == 1$.

Notes

The Tits and Yang (YT), [2] paper is an update of the original Kautsky et al. (KNV) paper [1]. KNV relies on rank-1 updates to find the transfer matrix X such that $X \times \text{diag}(\text{poles}) = (A - B*K) \times X$, whereas YT uses rank-2 updates. This yields on average more robust solutions (see [2] pp 21-22), furthermore the YT algorithm supports complex poles whereas KNV does not in its original version. Only update method 0 proposed by KNV has been implemented here, hence the name 'KNV0'.

KNV extended to complex poles is used in Matlab’s \texttt{place} function, YT is distributed under a non-free licence by Slicot under the name \texttt{robpole}. It is unclear and undocumented how KNV0 has been extended to complex poles (Tits and Yang claim on page 14 of their paper that their method can not be used to extend KNV to complex poles), therefore only YT supports them in this implementation.

As the solution to the problem of pole placement is not unique for MIMO systems, both methods start with a tentative transfer matrix which is altered in various way to increase its determinant. Both methods have been proven to converge to a stable solution, however depending on the way the initial transfer matrix is chosen they will converge to different solutions and therefore there is absolutely no guarantee that using 'KNV0' will yield results similar to Matlab’s or any other implementation of these algorithms.

Using the default method 'YT' should be fine in most cases; 'KNV0' is only provided because it is needed by 'YT' in some specific cases. Furthermore 'YT' gives on average more robust results than 'KNV0' when $\text{abs}(\det(X))$ is used as a robustness indicator.

[2] is available as a technical report on the following URL: \url{https://hdl.handle.net/1903/5598}

References

[1], [2]
Examples

A simple example demonstrating real pole placement using both KNV and YT algorithms. This is example number 1 from section 4 of the reference KNV publication ([1]):

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> A = np.array([[ 1.380, -0.2077,  6.715, -5.676 ],
                [-0.5814, -4.290,  0,  0.6750 ],
                [ 1.067,  4.273, -6.654,  5.893 ],
                [ 0.0480,  4.273,  1.343, -2.104 ]])
>>> B = np.array([[ 0,  5.679 ],
                [ 1.136,  1.136 ],
                [ 0,  0 ],
                [-3.146,  0 ]])
>>> P = np.array([-0.2, -0.5, -5.0566, -8.6659])

Now compute K with KNV method 0, with the default YT method and with the YT method while forcing 100 iterations of the algorithm and print some results after each call.

```python
>>> fsf1 = signal.place_poles(A, B, P, method='KNV0')
>>> fsf1.gain_matrix
array([[0.20071427, -0.96665799, 0.24066128, -0.10279785],
 [0.50587268, 0.57779091, 0.51795763, -0.41991442]])
```

```python
>>> fsf2 = signal.place_poles(A, B, P) # uses YT method
>>> fsf2.computed_poles
array([-8.6659, -5.0566, -0.5 , -0.2])
```  

```python
>>> fsf3 = signal.place_poles(A, B, P, rtol=-1, maxiter=100)
>>> fsf3.X
array([[0.52072442+0.j, -0.08409372+0.j, -0.56847937+0.j, 0.74823657+0.j],
 [-0.04977751+0.j, -0.80872954+0.j, 0.13566234+0.j, -0.29322906+0.j],
 [-0.82266932+0.j, -0.19168026+0.j, -0.56348322+0.j, -0.43815060+0.j],
 [0.22267347+0.j, 0.54967577+0.j, -0.58387806+0.j, -0.40271926+0.j]])
```

The absolute value of the determinant of X is a good indicator to check the robustness of the results, both 'KNV0' and 'YT' aim at maximizing it. Below a comparison of the robustness of the results above:

```python
>>> abs(np.linalg.det(fsf1.X)) < abs(np.linalg.det(fsf2.X))
True
>>> abs(np.linalg.det(fsf2.X)) < abs(np.linalg.det(fsf3.X))
True
```

Now a simple example for complex poles:

```python
>>> A = np.array([[0, 7/3., 0, 0],
 [0, 0, 0, 7/9.],
 [0, -0.25, 0, 0.25],
 [0, 0, -0.25, 0.25]])
>>> B = np.array([[0, 5/3.],
 [0, 0],
 [0, 0],
 [0, 0]])
>>> P = np.array([-0.5, -0.5, -0.5, -0.5])
```
>>> B = np.array([[0, 0],
...                [0, 0],
...                [1, 0],
...                [0, 1]])
>>> P = np.array([-3, -1, -2-1j, -2+1j]) / 3.
>>> fsf = signal.place_poles(A, B, P, method='YT')

We can plot the desired and computed poles in the complex plane:

```python
>>> t = np.linspace(0, 2*np.pi, 401)
>>> plt.plot(np.cos(t), np.sin(t), 'k--') # unit circle
>>> plt.plot(fsf.requested_poles.real, fsf.requested_poles.imag, 'wo', label='Desired')
>>> plt.plot(fsf.computed_poles.real, fsf.computed_poles.imag, 'bx', label='Placed')
>>> plt.grid()
>>> plt.axis('image')
>>> plt.axis([-1.1, 1.1, -1.1, 1.1])
>>> plt.legend(bbox_to_anchor=(1.05, 1), loc=2, numpoints=1)
```

### Waveforms

- **chirp(t, f0, t1, f1[, method, phi, vertex_zero])**: Frequency-swept cosine generator.
- **gausspulse(t[, fc, bw, bwrl, tpr, retquad, ...])**: Return a Gaussian modulated sinusoid.
- **max_len_seq(nbits[, state, length, taps])**: Maximum length sequence (MLS) generator.
- **sawtooth(t[, width])**: Return a periodic sawtooth or triangle waveform.
- **square(t[, duty])**: Return a periodic square-wave waveform.

continues on next page
Table 166 – continued from previous page

**Parameters**
- `t` [array_like] Times at which to evaluate the waveform.
- `f0` [float] Frequency (e.g. Hz) at time t=0.
- `t1` [float] Time at which f1 is specified.
- `f1` [float] Frequency (e.g. Hz) of the waveform at time t1.
- `method` [ {'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional ] Kind of frequency sweep. If not given, `linear` is assumed. See Notes below for more details.
- `phi` [float, optional] Phase offset, in degrees. Default is 0.
- `vertex_zero` [bool, optional] This parameter is only used when `method` is 'quadratic'. It determines whether the vertex of the parabola that is the graph of the frequency is at t=0 or t=t1.

**Returns**
- `y` [ndarray] A numpy array containing the signal evaluated at t with the requested time-varying frequency. More precisely, the function returns \( \cos(\mathrm{phase} + (\pi/180)\times\phi) \) where \( \mathrm{phase} \) is the integral (from 0 to t) of \( 2\pi f(t) \). f(t) is defined below.

**See also:**
- `sweep_poly`

**Notes**

There are four options for the `method`. The following formulas give the instantaneous frequency (in Hz) of the signal generated by `chirp()`. For convenience, the shorter names shown below may also be used.

linear, lin, li:
- \( f(t) = f0 + (f1 - f0) \times t / t1 \)

quadratic, quad, q:
- The graph of the frequency f(t) is a parabola through (0, f0) and (t1, f1). By default, the vertex of the parabola is at (0, f0). If `vertex_zero` is False, then the vertex is at (t1, f1). The formula is:
  - if `vertex_zero` is True:
    \( f(t) = f0 + (f1 - f0) \times t**2 / t1**2 \)
  - else:
    \( f(t) = f1 - (f1 - f0) \times (t1 - t)**2 / t1**2 \)
- To use a more general quadratic function, or an arbitrary polynomial, use the function `scipy.signal.sweep_poly`.

logarithmic, log, lo:

\[ f(t) = f_0 \times (f_1/f_0)^{t/t_1} \]

\( f_0 \) and \( f_1 \) must be nonzero and have the same sign.
This signal is also known as a geometric or exponential chirp.

Hyperbolic, hyp:
\[
f(t) = \frac{f_0 \times f_1 \times t_1}{(f_0 - f_1) \times t + f_1 \times t_1}
\]

\( f_0 \) and \( f_1 \) must be nonzero.

### Examples

The following will be used in the examples:

```python
>>> from scipy.signal import chirp, spectrogram
>>> import matplotlib.pyplot as plt
```

For the first example, we’ll plot the waveform for a linear chirp from 6 Hz to 1 Hz over 10 seconds:

```python
>>> t = np.linspace(0, 10, 1500)
>>> w = chirp(t, f0=6, f1=1, t1=10, method='linear')
>>> plt.plot(t, w)
>>> plt.title("Linear Chirp, f(0)=6, f(10)=1")
>>> plt.xlabel('t (sec)')
>>> plt.show()
```

For the remaining examples, we’ll use higher frequency ranges, and demonstrate the result using `scipy.signal.spectrogram`. We’ll use a 4 second interval sampled at 7200 Hz.

```python
>>> fs = 7200
>>> T = 4
>>> t = np.arange(0, int(T*fs)) / fs
```

We’ll use this function to plot the spectrogram in each example.
```python
>>> def plot_spectrogram(title, w, fs):
 ... ff, tt, Sxx = spectrogram(w, fs=fs, nperseg=256, nfft=576)
 ... plt.pcolormesh(tt, ff[:145], Sxx[:145], cmap='gray_r', shading='gouraud')
 ... plt.title(title)
 ... plt.xlabel('t (sec)')
 ... plt.ylabel('Frequency (Hz)')
 ... plt.grid()

Quadratic chirp from 1500 Hz to 250 Hz (vertex of the parabolic curve of the frequency is at t=0):

```python
>>> w = chirp(t, f0=1500, f1=250, t1=T, method='quadratic')
>>> plot_spectrogram(f'Quadratic Chirp, f(0)=1500, f(T)=250', w, fs)
>>> plt.show()

```

```

Quadratic chirp from 1500 Hz to 250 Hz (vertex of the parabolic curve of the frequency is at t=T):

```python
>>> w = chirp(t, f0=1500, f1=250, t1=T, method='quadratic',
 ... vertex_zero=False)
>>> plot_spectrogram(f'Quadratic Chirp, f(0)=1500, f(T)=250
... (vertex_zero=False)', w, fs)
>>> plt.show()

Logarithmic chirp from 1500 Hz to 250 Hz:

```python
>>> w = chirp(t, f0=1500, f1=250, t1=T, method='logarithmic')
>>> plot_spectrogram(f'Logarithmic Chirp, f(0)=1500, f(T)=250', w, fs)
>>> plt.show()

Hyperbolic chirp from 1500 Hz to 250 Hz:

```python
>>> w = chirp(t, f0=1500, f1=250, t1=T, method='hyperbolic')
>>> plot_spectrogram(f'Hyperbolic Chirp, f(0)=1500, f(T)=250', w, fs)
>>> plt.show()
```
Quadratic Chirp, $f(0)=1500$, $f(4)=250$  
(vertex_zero=False)

Logarithmic Chirp, $f(0)=1500$, $f(4)=250$
scipy.signal.gausspulse

scipy.signal.gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False, retenv=False)

Return a Gaussian modulated sinusoid:

\[ \exp(-a t^2) \exp(1j*2*pi*fc*t) \].

If retquad is True, then return the real and imaginary parts (in-phase and quadrature). If retenv is True, then return the envelope (unmodulated signal). Otherwise, return the real part of the modulated sinusoid.

**Parameters**

- t : [ndarray or the string 'cutoff'] Input array.
- fc : [float, optional] Center frequency (e.g. Hz). Default is 1000.
- bw : [float, optional] Fractional bandwidth in frequency domain of pulse (e.g. Hz). Default is 0.5.
- bwr : [float, optional] Reference level at which fractional bandwidth is calculated (dB). Default is -6.
- tpr : [float, optional] If t is ‘cutoff’, then the function returns the cutoff time for when the pulse amplitude falls below tpr (in dB). Default is -60.
- retquad : [bool, optional] If True, return the quadrature (imaginary) as well as the real part of the signal. Default is False.
- retenv : [bool, optional] If True, return the envelope of the signal. Default is False.

**Returns**

- yI : [ndarray] Real part of signal. Always returned.
- yQ : [ndarray] Imaginary part of signal. Only returned if retquad is True.
- yenv : [ndarray] Envelope of signal. Only returned if retenv is True.

**See also:**

scipy.signal.morlet
Examples

Plot real component, imaginary component, and envelope for a 5 Hz pulse, sampled at 100 Hz for 2 seconds:

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(-1, 1, 2 * 100, endpoint=False)
>>> i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=True)
>>> plt.plot(t, i, t, q, t, e, '--')
```

scipy.signal.max_len_seq

`scipy.signal.max_len_seq(nbits, state=None, length=None, taps=None)`

Maximum length sequence (MLS) generator.

**Parameters**

- `nbits` [int] Number of bits to use. Length of the resulting sequence will be \((2^{*nbits}) - 1\). Note that generating long sequences (e.g., greater than `nbits == 16`) can take a long time.
- `state` [array_like, optional] If array, must be of length `nbits`, and will be cast to binary (bool) representation. If None, a seed of ones will be used, producing a repeatable representation. If `state` is all zeros, an error is raised as this is invalid. Default: None.
- `length` [int, optional] Number of samples to compute. If None, the entire length \((2^{*nbits}) - 1\) is computed.
- `taps` [array_like, optional] Polynomial taps to use (e.g., [7, 6, 1] for an 8-bit sequence). If None, taps will be automatically selected (for up to `nbits == 32`).

**Returns**

- `seq` [array] Resulting MLS sequence of 0’s and 1’s.
- `state` [array] The final state of the shift register.
Notes

The algorithm for MLS generation is generically described in:

https://en.wikipedia.org/wiki/Maximum_length_sequence

The default values for taps are specifically taken from the first option listed for each value of nbits in:


New in version 0.15.0.

Examples

MLS uses binary convention:

```python
>>> from scipy.signal import max_len_seq
>>> max_len_seq(4)[0]
array([1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0], dtype=int8)
```

MLS has a white spectrum (except for DC):

```python
>>> import matplotlib.pyplot as plt
>>> from numpy.fft import fft, ifft, fftshift, fftfreq
>>> seq = max_len_seq(6)[0]*2-1 # +1 and -1
>>> spec = fft(seq)
>>> N = len(seq)
>>> plt.plot(fftshift(fftfreq(N)), fftshift(np.abs(spec)), '-.')
>>> plt.margins(0.1, 0.1)
>>> plt.grid(True)
>>> plt.show()
```

Circular autocorrelation of MLS is an impulse:
Linear autocorrelation of MLS is approximately an impulse:

```python
>>> acorr = np.correlate(seq, seq, 'full')
>>> plt.figure()
>>> plt.plot(np.arange(-N+1, N), acorr, '.-')
>>> plt.margins(0.1, 0.1)
>>> plt.grid(True)
>>> plt.show()
```

scipy.signal.sawtooth

`scipy.signal.sawtooth(t, width=1)`

Return a periodic sawtooth or triangle waveform.

The sawtooth waveform has a period $2\pi$, rises from -1 to 1 on the interval 0 to $width \cdot 2\pi$, then drops from 1 to -1 on the interval $width \cdot 2\pi$ to $2\pi$. `width` must be in the interval $[0, 1]$.

Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth across the frequency spectrum.

- **Parameters**
  - `t` [array_like] Time.
  - `width` [array_like, optional] Width of the rising ramp as a proportion of the total cycle. Default is 1, producing a rising ramp, while 0 produces a falling ramp. `width = 0.5` produces a triangle wave. If an array, causes wave shape to change over time, and must be the same length as `t`.

- **Returns**
  - `y` [ndarray] Output array containing the sawtooth waveform.
Examples

A 5 Hz waveform sampled at 500 Hz for 1 second:

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(0, 1, 500)
>>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t))
```
scipy.signal.square

`scipy.signal.square(t, duty=0.5)`

Return a periodic square-wave waveform.

The square wave has a period $2\pi$, has value +1 from 0 to $2\pi \cdot \text{duty}$ and -1 from $2\pi \cdot \text{duty}$ to $2\pi$. 

duty must be in the interval [0,1].

Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth across the frequency spectrum.

**Parameters**

- **t** [array_like] The input time array.
- **duty** [array_like, optional] Duty cycle. Default is 0.5 (50% duty cycle). If an array, causes wave shape to change over time, and must be the same length as t.

**Returns**

- **y** [ndarray] Output array containing the square waveform.

**Examples**

A 5 Hz waveform sampled at 500 Hz for 1 second:

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(0, 1, 500, endpoint=False)
>>> plt.plot(t, signal.square(2 * np.pi * 5 * t))
>>> plt.ylim(-2, 2)
```

A pulse-width modulated sine wave:

```python
>>> plt.figure()
>>> sig = np.sin(2 * np.pi * t)
>>> pwm = signal.square(2 * np.pi * 30 * t, duty=(sig + 1)/2)
>>> plt.subplot(2, 1, 1)
>>> plt.plot(t, sig)
>>> plt.subplot(2, 1, 2)
>>> plt.plot(t, pwm)
>>> plt.ylim(-1.5, 1.5)
```

scipy.signal.sweep_poly

`scipy.signal.sweep_poly(t, poly, phi=0)`

Frequency-swept cosine generator, with a time-dependent frequency.

This function generates a sinusoidal function whose instantaneous frequency varies with time. The frequency at time $t$ is given by the polynomial $poly$.

**Parameters**

- **t** [ndarray] Times at which to evaluate the waveform.
- **poly** [1-D array_like or instance of numpy.poly1d] The desired frequency expressed as a polynomial. If poly is a list or ndarray of length n, then the elements of poly are the coefficients of the polynomial, and the instantaneous frequency is $f(t) = \text{poly}[0]*t^{(n-1)} + \text{poly}[1]*t^{(n-2)} + ... + \text{poly}[n-1]$.

If poly is an instance of numpy.poly1d, then the instantaneous frequency is $f(t) = \text{poly}(t)$.
**phi**          [float, optional] Phase offset, in degrees, Default: 0.

**Returns**

**sweep_poly**          [ndarray] A numpy array containing the signal evaluated at \( t \) with the requested time-varying frequency. More precisely, the function returns \( \cos(\text{phase} + (\pi/180)\times\phi) \), where \( \text{phase} \) is the integral (from 0 to \( t \)) of \( 2 \times \pi \times f(t) \); \( f(t) \) is defined above.

**See also:**

chirp

**Notes**

New in version 0.8.0.

If \( \text{poly} \) is a list or ndarray of length \( n \), then the elements of \( \text{poly} \) are the coefficients of the polynomial, and the instantaneous frequency is:

\[
f(t) = \text{poly}[0] t^{(n-1)} + \text{poly}[1] t^{(n-2)} + \ldots + \text{poly}[n-1]
\]

If \( \text{poly} \) is an instance of numpy.poly1d, then the instantaneous frequency is:

\[
f(t) = \text{poly}(t)
\]

Finally, the output \( s \) is:

\[
\cos(\text{phase} + (\pi/180)\times\phi)
\]

where \( \text{phase} \) is the integral from 0 to \( t \) of \( 2 \times \pi \times f(t) \), \( f(t) \) as defined above.

**Examples**

Compute the waveform with instantaneous frequency:

\[
f(t) = 0.025 t^3 - 0.36 t^2 + 1.25 t + 2
\]

over the interval \( 0 \leq t \leq 10 \).

```plaintext
>>> from scipy.signal import sweep_poly
>>> p = np.poly1d([0.025, -0.36, 1.25, 2.0])
>>> t = np.linspace(0, 10, 5001)
>>> w = sweep_poly(t, p)
```

Plot it:

```plaintext
>>> import matplotlib.pyplot as plt
>>> plt.subplot(2, 1, 1)
>>> plt.plot(t, w)
>>> plt.title("Sweep Poly with frequency "$f(t)$ = 0.025t^3 - 0.36t^2 + 1.25t + 2$")
>>> plt.subplot(2, 1, 2)
>>> plt.plot(t, p(t), 'r', label='$f(t)$')
>>> plt.legend()
>>> plt.xlabel('t')
>>> plt.tight_layout()
>>> plt.show()
```
Sweep Poly
with frequency \( f(t) = 0.025t^3 - 0.36t^2 + 1.25t + 2 \)

\[ \text{scipy.signal.unit_impulse} \]

\texttt{scipy.signal.unit_impulse}(\texttt{shape, idx=None, dtype=\texttt{class 'float'}>)
Unit impulse signal (discrete delta function) or unit basis vector.

\textit{Parameters}

- \texttt{shape} [int or tuple of int] Number of samples in the output (1-D), or a tuple that represents the shape of the output (N-D).
- \texttt{idx} [None or int or tuple of int or 'mid', optional] Index at which the value is 1. If None, defaults to the 0th element. If \texttt{idx='mid'}, the impulse will be centered at \texttt{shape // 2} in all dimensions. If an int, the impulse will be at \texttt{idx} in all dimensions.
- \texttt{dtype} [data-type, optional] The desired data-type for the array, e.g., \texttt{numpy.int8}. Default is \texttt{numpy.float64}.

\textit{Returns}

- \texttt{y} [ndarray] Output array containing an impulse signal.

\textit{Notes}

The 1D case is also known as the Kronecker delta.
New in version 0.19.0.

\textit{Examples}

An impulse at the 0th element (\( \delta[n] \)):

```python
>>> from scipy import signal
>>> signal.unit_impulse(8)
array([1., 0., 0., 0., 0., 0., 0., 0.])
```

Impulse offset by 2 samples (\( \delta[n-2] \)):
```python
>>> signal.unit_impulse(7, 2)
array([0., 0., 1., 0., 0., 0., 0.])
```

2-dimensional impulse, centered:

```python
>>> signal.unit_impulse((3, 3), 'mid')
array([[0., 0., 0.],
 [0., 1., 0.],
 [0., 0., 0.]])
```

Impulse at (2, 2), using broadcasting:

```python
>>> signal.unit_impulse((4, 4), 2)
array([[0., 0., 0., 0.],
 [0., 0., 0., 0.],
 [0., 0., 1., 0.],
 [0., 0., 0., 0.]])
```

Plot the impulse response of a 4th-order Butterworth lowpass filter:

```python
>>> imp = signal.unit_impulse(100, 'mid')
>>> b, a = signal.butter(4, 0.2)
>>> response = signal.lfilter(b, a, imp)
>>> import matplotlib.pyplot as plt
>>> plt.plot(np.arange(-50, 50), imp)
>>> plt.plot(np.arange(-50, 50), response)
>>> plt.margins(0.1, 0.1)
>>> plt.xlabel('Time [samples]')
>>> plt.ylabel('Amplitude')
>>> plt.grid(True)
>>> plt.show()
```
Window functions

For window functions, see the `scipy.signal.windows` namespace.

In the `scipy.signal` namespace, there is a convenience function to obtain these windows by name:

```python
scipy.signal.get_window(window, Nx[, fftbins])
```

Return a window of a given length and type.

**Parameters**
- `window` [string, float, or tuple] The type of window to create. See below for more details.
- `Nx` [int] The number of samples in the window.
- `fftbins` [bool, optional] If True (default), create a “periodic” window, ready to use with `ifftshift` and be multiplied by the result of an FFT (see also `fftfreq`). If False, create a “symmetric” window, for use in filter design.

**Returns**
- `get_window` [ndarray] Returns a window of length `Nx` and type `window`

**Notes**

Window types:
- boxcar
- triang
- blackman
- hamming
- hann
- bartlett
- flattop
- parzen
- bohman
- blackmanharris
- nuttall
- barthann
- cosine
- exponential
- tukey
- taylor
- kaiser (needs beta)


- **gaussian** (needs standard deviation)
- **general_cosine** (needs weighting coefficients)
- **general_gaussian** (needs power, width)
- **general_hamming** (needs window coefficient)
- **dpss** (needs normalized half-bandwidth)
- **chebwin** (needs attenuation)

If the window requires no parameters, then *window* can be a string.

If the window requires parameters, then *window* must be a tuple with the first argument the string name of the window, and the next arguments the needed parameters.

If *window* is a floating point number, it is interpreted as the beta parameter of the *kaiser* window.

Each of the window types listed above is also the name of a function that can be called directly to create a window of that type.

### Examples

```python
>>> from scipy import signal
generate windows
>>> signal.get_window('triang', 7)
a = array([0.125, 0.375, 0.625, 0.875, 0.875, 0.625, 0.375])
>>> signal.get_window('kaiser', 4.0, 9)
a = array([0.08848053, 0.29425961, 0.56437221, 0.82160913, 0.97885093,
 0.97885093, 0.82160913, 0.56437221, 0.29425961])
>>> signal.get_window('exponential', None, 1.), 9)
a = array([0.011109 , 0.03019738, 0.082085 , 0.22313016, 0.60653066,
 0.60653066, 0.22313016, 0.082085 , 0.03019738])
>>> signal.get_window(4.0, 9)
a = array([0.08848053, 0.29425961, 0.56437221, 0.82160913, 0.97885093,
 0.97885093, 0.82160913, 0.56437221, 0.29425961])
```

### Wavelets

- **cascade(hk[, J])**
  - Return (x, phi, psi) at dyadic points $k/2^{*J}$ from filter coefficients.

- **daub(p)**
  - The coefficients for the FIR low-pass filter producing Daubechies wavelets.

- **morlet(M[, w, s, complete])**
  - Complex Morlet wavelet.

- **gqmf(hk)**
  - Return high-pass qmf filter from low-pass

- **ricker(points, a)**
  - Return a Ricker wavelet, also known as the "Mexican hat wavelet".

- **morlet2(M, s[, w])**
  - Complex Morlet wavelet, designed to work with *cwt*.

- **cwt(data, wavelet, widths[, dtype])**
  - Continuous wavelet transform.
scipy.signal.cascade

scipy.signal.cascade(hk, J=7)
Return (x, phi, psi) at dyadic points $K/2^J$ from filter coefficients.

Parameters
- **hk** [array_like] Coefficients of low-pass filter.
- **J** [int, optional] Values will be computed at grid points $K/2^J$. Default is 7.

Returns
- **x** [ndarray] The dyadic points $K/2^J$ for $K=0...N * (2^J)-1$ where $\text{len}(hk) = \text{len}(gk) = N+1$.
- **phi** [ndarray] The scaling function $\phi(x)$ at $x$: $\phi(x) = \sum(hk \times \phi(2x-k))$, where $k$ is from 0 to N.
- **psi** [ndarray, optional] The wavelet function $\psi(x)$ at $x$: $\psi(x) = \sum(gk \times \phi(2x-k))$, where $k$ is from 0 to N. $\psi$ is only returned if $gk$ is not None.

Notes
The algorithm uses the vector cascade algorithm described by Strang and Nguyen in “Wavelets and Filter Banks”. It builds a dictionary of values and slices for quick reuse. Then inserts vectors into final vector at the end.

scipy.signal.daub

scipy.signal.daub(p)
The coefficients for the FIR low-pass filter producing Daubechies wavelets.

$p\geq1$ gives the order of the zero at $f=1/2$. There are $2p$ filter coefficients.

Parameters
- **p** [int] Order of the zero at $f=1/2$, can have values from 1 to 34.

Returns
- **daub** [ndarray] Return

scipy.signal.morlet

scipy.signal.morlet(M, w=5.0, s=1.0, complete=True)
Complex Morlet wavelet.

Parameters
- **M** [int] Length of the wavelet.
- **w** [float, optional] Omega0. Default is 5
- **s** [float, optional] Scaling factor, windowed from $-s^2\times\pi$ to $+s^2\times\pi$. Default is 1.
- **complete** [bool, optional] Whether to use the complete or the standard version.

Returns
- **morlet** [((M,)) ndarray]

See also:
- **morlet2**

Implementation of Morlet wavelet, compatible with $\text{cwt}$.
scipy.signal.gausspulse

Notes

The standard version:

\[ \pi^{-0.25} \cdot \exp(1j\omega x) \cdot \exp(-0.5(x^2)) \]

This commonly used wavelet is often referred to simply as the Morlet wavelet. Note that this simplified version can cause admissibility problems at low values of \( \omega \).

The complete version:

\[ \pi^{-0.25} \cdot (\exp(1j\omega x) - \exp(-0.5(\omega^2))) \cdot \exp(-0.5(x^2)) \]

This version has a correction term to improve admissibility. For \( \omega \) greater than 5, the correction term is negligible. Note that the energy of the return wavelet is not normalised according to \( s \).

The fundamental frequency of this wavelet in Hz is given by \( f = 2s\omega r / M \) where \( r \) is the sampling rate.

Note: This function was created before cwt and is not compatible with it.

scipy.signal.qmf

scipy.signal.qmf(hk)

Return high-pass qmf filter from low-pass

Parameters

- \( hk \) [array_like] Coefficients of high-pass filter.

scipy.signal.ricker

scipy.signal.ricker(points, a)

Return a Ricker wavelet, also known as the “Mexican hat wavelet”.

It models the function:

\[ A \cdot (1 - (x/a)^2) \cdot \exp(-0.5(x/a)^2), \]

where \( A = 2/(\sqrt{3a}(\pi^{0.25})) \).

Parameters

- \( points \) [int] Number of points in vector. Will be centered around 0.
- \( a \) [scalar] Width parameter of the wavelet.

Returns

- \( vector \) [(N,) ndarray] Array of length \( points \) in shape of ricker curve.
Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> points = 100
>>> a = 4.0
>>> vec2 = signal.ricker(points, a)
>>> print(len(vec2))
100
>>> plt.plot(vec2)
>>> plt.show()
```

![Plot of the Ricker wavelet](image)

**scipy.signal.morlet2**

*scipy.signal.morlet2*(M, s, w=5)

Complex Morlet wavelet, designed to work with *cwt*.

Returns the complete version of morlet wavelet, normalised according to `s`:

\[
\exp(i \omega_0 x / s) \times \exp(-0.5(x/s)^2) \times \pi^{(-0.25)} \times \sqrt{1/s}
\]

**Parameters**

- M [int] Length of the wavelet.
- w [float, optional] Omega0. Default is 5

**Returns**

- morlet [(M,) ndarray]

**See also:**

*morlet*
Implementation of Morlet wavelet, incompatible with \texttt{cwt}

\textbf{Notes}

New in version 1.4.0.

This function was designed to work with \texttt{cwt}. Because \texttt{morlet2} returns an array of complex numbers, the \texttt{dtype} argument of \texttt{cwt} should be set to \texttt{complex128} for best results.

Note the difference in implementation with \texttt{morlet}. The fundamental frequency of this wavelet in Hz is given by:

\begin{equation}
    f = \frac{w \times fs}{2 \times s \times np.pi}
\end{equation}

where \(fs\) is the sampling rate and \(s\) is the wavelet width parameter. Similarly we can get the wavelet width parameter at \(f\):

\begin{equation}
    s = \frac{w \times fs}{2 \times f \times np.pi}
\end{equation}

\textbf{Examples}

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> M = 100
>>> s = 4.0
>>> w = 2.0
>>> wavelet = signal.morlet2(M, s, w)
>>> plt.plot(abs(wavelet))
>>> plt.show()
```

This example shows basic use of \texttt{morlet2} with \texttt{cwt} in time-frequency analysis:
```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt

>>> t, dt = np.linspace(0, 1, 200, retstep=True)
>>> fs = 1/dt
>>> w = 6.
>>> sig = np.cos(2*np.pi*(50 + 10*t)*t) + np.sin(40*np.pi*t)
>>> freq = np.linspace(1, fs/2, 100)
>>> widths = w*fs / (2*freq*np.pi)
>>> cwtm = signal.cwt(sig, signal.morlet2, widths, w=w)
>>> plt.pcolormesh(t, freq, np.abs(cwtm), cmap='viridis', shading='gouraud')
>>> plt.show()
```

**scipy.signal.cwt**

`scipy.signal.cwt(data, wavelet, widths, dtype=None, **kwargs)`  
Continuous wavelet transform.

Performs a continuous wavelet transform on `data`, using the `wavelet` function. A CWT performs a convolution with `data` using the `wavelet` function, which is characterized by a width parameter and length parameter. The `wavelet` function is allowed to be complex.

**Parameters**

- **data**  
  [(N,) ndarray] data on which to perform the transform.

- **wavelet**  
  [function] Wavelet function, which should take 2 arguments. The first argument is the number of points that the returned vector will have (len(wavelet(length,width)) == length). The second is a width parameter, defining the size of the wavelet (e.g. standard deviation of a gaussian). See `ricker`, which satisfies these requirements.

- **widths**  
  [(M,) sequence] Widths to use for transform.

- **dtype**  
  [data-type, optional] The desired data type of output. Defaults to `float64` if the output of `wavelet` is real and `complex128` if it is complex.

- **kwargs**  
  Keyword arguments passed to wavelet function.

New in version 1.4.0.
**Returns**

cwt: (M, N) ndarray
Will have shape of (len(widths), len(data)).

**Notes**

New in version 1.4.0.

For non-symmetric, complex-valued wavelets, the input signal is convolved with the time-reversed complex-conjugate of the wavelet data [1].

```python
length = min(10 * width[ii], len(data))
cwt[ii,:] = signal.convolve(data, np.conj(wavelet(length, width[ii], **kwargs))[:-1], mode='same')
```

**References**

[1]

**Examples**

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(-1, 1, 200, endpoint=False)
>>> sig = np.cos(2 * np.pi * 7 * t) + signal.gausspulse(t - 0.4, fc=2)
>>> widths = np.arange(1, 31)
>>> cwtmatr = signal.cwt(sig, signal.ricker, widths)
>>> plt.imshow(cwtmatr, extent=[-1, 1, 31, 1], cmap='PRGn', aspect='auto',
... vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max())
>>> plt.show()
```
Peak finding

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>argrelmin(data[, axis, order, mode])</code></td>
<td>Calculate the relative minima of data.</td>
</tr>
<tr>
<td><code>argrelmax(data[, axis, order, mode])</code></td>
<td>Calculate the relative maxima of data.</td>
</tr>
<tr>
<td><code>argrelextrema(data, comparator[, axis, ...])</code></td>
<td>Calculate the relative extrema of data.</td>
</tr>
<tr>
<td><code>find_peaks(x[, height, threshold, distance,...])</code></td>
<td>Find peaks inside a signal based on peak properties.</td>
</tr>
<tr>
<td><code>find_peaks_cwt(vector, widths[, wavelet,...])</code></td>
<td>Find peaks in a 1-D array with wavelet transformation.</td>
</tr>
<tr>
<td><code>peak_prominences(x, peaks[, wlen])</code></td>
<td>Calculate the prominence of each peak in a signal.</td>
</tr>
<tr>
<td><code>peak_widths(x, peaks[, rel_height, ...])</code></td>
<td>Calculate the width of each peak in a signal.</td>
</tr>
</tbody>
</table>

**scipy.signal.argrelmin**

`scipy.signal.argrelmin(data, axis=0, order=1, mode='clip')`

Calculate the relative minima of data.

**Parameters**

- **data** [ndarray] Array in which to find the relative minima.
- **axis** [int, optional] Axis over which to select from data. Default is 0.
- **order** [int, optional] How many points on each side to use for the comparison to consider comparator(n, n+x) to be True.
- **mode** [str, optional] How the edges of the vector are treated. Available options are 'wrap' (wrap around) or 'clip' (treat overflow as the same as the last (or first) element). Default 'clip'. See `numpy.take`.

**Returns**

- **extrema** [tuple of ndarrays] Indices of the minima in arrays of integers. extrema[k] is the array of indices of axis k of data. Note that the return value is a tuple even when data is 1-D.

**See also:**

- `argrelextrema`, `argrelmax`, `find_peaks`

**Notes**

This function uses `argrelextrema` with `np.less` as comparator. Therefore, it requires a strict inequality on both sides of a value to consider it a minimum. This means flat minima (more than one sample wide) are not detected. In case of 1-D `data find_peaks` can be used to detect all local minima, including flat ones, by calling it with negated `data`.

New in version 0.11.0.

**Examples**

```python
>>> from scipy.signal import argrelmin
>>> x = np.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelmin(x)
(array([1, 5]),)
>>> y = np.array([[1, 2, 1, 2],
... [2, 2, 0, 0],
... [5, 3, 4, 4]])
...```
```python
>>> argrelmin(y, axis=1)
(array([0, 2]), array([2, 1]))
```

scipy.signal.argrelmax

`scipy.signal.argrelmax(data, axis=0, order=1, mode='clip')`

Calculate the relative maxima of `data`.

Parameters

- **data** [ndarray] Array in which to find the relative maxima.
- **axis** [int, optional] Axis over which to select from `data`. Default is 0.
- **order** [int, optional] How many points on each side to use for the comparison to consider \(comparator(n, n+x) \) to be True.
- **mode** [str, optional] How the edges of the vector are treated. Available options are 'wrap' (wrap around) or 'clip' (treat overflow as the same as the last (or first) element). Default 'clip'. See `numpy.take`.

Returns

- **extrema** [tuple of ndarrays] Indices of the maxima in arrays of integers. `extrema[k]` is the array of indices of axis `k` of `data`. Note that the return value is a tuple even when `data` is 1-D.

See also:

`argrelextrema`, `argrelmin`, `find_peaks`

Notes

This function uses `argrelextrema` with `np.greater` as comparator. Therefore, it requires a strict inequality on both sides of a value to consider it a maximum. This means flat maxima (more than one sample wide) are not detected. In case of 1-D `data` `find_peaks` can be used to detect all local maxima, including flat ones.

New in version 0.11.0.

Examples

```python
>>> from scipy.signal import argrelmax
>>> x = np.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelmax(x)
(array([3, 6]),)
>>> y = np.array([[1, 2, 1, 2],
                [2, 2, 0, 0],
                [5, 3, 4, 4]])
>>> argrelmax(y, axis=1)
(array([0]), array([1]))
```
scipy.signal.argrelextrema

scipy.signal.argrelextrema(data, comparator, axis=0, order=1, mode='clip')

Calculate the relative extrema of data.

Parameters

data [ndarray] Array in which to find the relative extrema.
comparator [callable] Function to use to compare two data points. Should take two arrays as arguments.
axis [int, optional] Axis over which to select from data. Default is 0.
order [int, optional] How many points on each side to use for the comparison to consider comparator(n, n+x) to be True.
mode [str, optional] How the edges of the vector are treated. ‘wrap’ (wrap around) or ‘clip’ (treat overflow as the same as the last (or first) element). Default is ‘clip’. See numpy.take.

Returns

extrema [tuple of ndarrays] Indices of the maxima in arrays of integers. extrema[k] is the array of indices of axis k of data. Note that the return value is a tuple even when data is 1-D.

See also:

argrelmin, argrelmax

Notes

New in version 0.11.0.

Examples

```python
>>> from scipy.signal import argrelextrema
>>> x = np.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelextrema(x, np.greater)
(array([3, 6]),)
>>> y = np.array([[1, 2, 1, 2],
                ... [2, 2, 0, 0],
                ... [5, 3, 4, 4]])
>>> argrelextrema(y, np.less, axis=1)
(array([0, 2]), array([2, 1]))
```

scipy.signal.find_peaks

scipy.signal.find_peaks(x, height=None, threshold=None, distance=None, prominence=None, width=None, wlen=None, rel_height=0.5, plateau_size=None)

Find peaks inside a signal based on peak properties.

This function takes a 1-D array and finds all local maxima by simple comparison of neighboring values. Optionally, a subset of these peaks can be selected by specifying conditions for a peak’s properties.

Parameters

x [sequence] A signal with peaks.
height [number or ndarray or sequence, optional] Required height of peaks. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required height.
threshold [number or ndarray or sequence, optional] Required threshold of peaks, the vertical distance to its neighboring samples. Either a number, `None`, an array matching `x` or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required threshold.

distance [number, optional] Required minimal horizontal distance (>= 1) in samples between neighbouring peaks. Smaller peaks are removed first until the condition is fulfilled for all remaining peaks.

prominence [number or ndarray or sequence, optional] Required prominence of peaks. Either a number, `None`, an array matching `x` or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required prominence.

width [number or ndarray or sequence, optional] Required width of peaks in samples. Either a number, `None`, an array matching `x` or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required width.

wlen [int, optional] Used for calculation of the peaks prominences, thus it is only used if one of the arguments `prominence` or `width` is given. See argument `wlen` in `peak_prominences` for a full description of its effects.

rel_height [float, optional] Used for calculation of the peaks width, thus it is only used if `width` is given. See argument `rel_height` in `peak_widths` for a full description of its effects.

plateau_size [number or ndarray or sequence, optional] Required size of the flat top of peaks in samples. Either a number, `None`, an array matching `x` or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required plateau size. New in version 1.2.0.

Returns

peaks [ndarray] Indices of peaks in `x` that satisfy all given conditions.

properties [dict] A dictionary containing properties of the returned peaks which were calculated as intermediate results during evaluation of the specified conditions:

- `‘peak_heights’`
 If `height` is given, the height of each peak in `x`.

- `‘left_thresholds’, ‘right_thresholds’`
 If `threshold` is given, these keys contain a peaks vertical distance to its neighbouring samples.

- `‘prominences’, ‘right_bases’, ‘left_bases’`
 If `prominence` is given, these keys are accessible. See `peak_prominences` for a description of their content.

- `‘width_heights’, ‘left_ips’, ‘right_ips’`
 If `width` is given, these keys are accessible. See `peak_widths` for a description of their content.

- `‘plateau_sizes’, ‘left_edges’, ‘right_edges’`
 If `plateau_size` is given, these keys are accessible and contain the indices of a peak’s edges (edges are still part of the plateau) and the calculated plateau sizes.

 New in version 1.2.0.

To calculate and return properties without excluding peaks, provide the open interval `(None, None)` as a value to the appropriate argument (excluding `distance`).

Warns

PeakPropertyWarning
Raised if a peak’s properties have unexpected values (see `peak_prominences` and `peak_widths`).
Warning: This function may return unexpected results for data containing NaNs. To avoid this, NaNs should either be removed or replaced.

See also:

- `find_peaks_cwt`
 Find peaks using the wavelet transformation.
- `peak_prominences`
 Directly calculate the prominence of peaks.
- `peak_widths`
 Directly calculate the width of peaks.

Notes

In the context of this function, a peak or local maximum is defined as any sample whose two direct neighbours have a smaller amplitude. For flat peaks (more than one sample of equal amplitude wide) the index of the middle sample is returned (rounded down in case the number of samples is even). For noisy signals the peak locations can be off because the noise might change the position of local maxima. In those cases consider smoothing the signal before searching for peaks or use other peak finding and fitting methods (like `find_peaks_cwt`).

Some additional comments on specifying conditions:

- Almost all conditions (excluding `distance`) can be given as half-open or closed intervals, e.g., 1 or `(1, None)` defines the half-open interval `[1, ∞)` while `(None, 1)` defines the interval `[−∞, 1]`. The open interval `(None, None)` can be specified as well, which returns the matching properties without exclusion of peaks.
- The border is always included in the interval used to select valid peaks.
- For several conditions the interval borders can be specified with arrays matching `x` in shape which enables dynamic constrains based on the sample position.
- The conditions are evaluated in the following order: `plateau_size`, `height`, `threshold`, `distance`, `prominence`, `width`. In most cases this order is the fastest one because faster operations are applied first to reduce the number of peaks that need to be evaluated later.
- While indices in `peaks` are guaranteed to be at least `distance` samples apart, edges of flat peaks may be closer than the allowed `distance`.
- Use `wlen` to reduce the time it takes to evaluate the conditions for `prominence` or `width` if `x` is large or has many local maxima (see `peak_prominences`).

New in version 1.1.0.
Examples

To demonstrate this function’s usage we use a signal \(x\) supplied with SciPy (see \texttt{scipy.misc.electrocardiogram}). Let’s find all peaks (local maxima) in \(x\) whose amplitude lies above 0.

\begin{verbatim}
>>> import matplotlib.pyplot as plt
>>> from scipy.misc import electrocardiogram
>>> from scipy.signal import find_peaks

>>> x = electrocardiogram()[2000:4000]
>>> peaks, _ = find_peaks(x, height=0)

>>> plt.plot(x)
>>> plt.plot(peaks, x[peaks], "x")
>>> plt.plot(np.zeros_like(x), "--", color="gray")
>>> plt.show()
\end{verbatim}

We can select peaks below 0 with \texttt{height=(None, 0)} or use arrays matching \(x\) in size to reflect a changing condition for different parts of the signal.

\begin{verbatim}
>>> border = np.sin(np.linspace(0, 3 * np.pi, x.size))
>>> peaks, _ = find_peaks(x, height=(-border, border))

>>> np.diff(peaks)
array([186, 180, 177, 171, 177, 169, 167, 164, 158, 162, 172])

>>> plt.plot(x)
\end{verbatim}

Another useful condition for periodic signals can be given with the \texttt{distance} argument. In this case, we can easily select the positions of QRS complexes within the electrocardiogram (ECG) by demanding a distance of at least 150 samples.

\begin{verbatim}
>>> peaks, _ = find_peaks(x, distance=150)
>>> np.diff(peaks)
array([186, 180, 177, 171, 177, 169, 167, 164, 158, 162, 172])

>>> plt.plot(x)
\end{verbatim}
Especially for noisy signals peaks can be easily grouped by their prominence (see `peak_prominences`). E.g., we can select all peaks except for the mentioned QRS complexes by limiting the allowed prominence to 0.6.

```python
>>> peaks, properties = find_peaks(x, prominence=(None, 0.6))
>>> properties['prominences'].max()
0.5049999999999999
>>> plt.plot(x)
>>> plt.plot(peaks, x[peaks], "x")
>>> plt.show()
```

And, finally, let's examine a different section of the ECG which contains beat forms of different shape. To select
only the atypical heart beats, we combine two conditions: a minimal prominence of 1 and width of at least 20 samples.

```python
>>> x = electrocardiogram()[17000:18000]
>>> peaks, properties = find_peaks(x, prominence=1, width=20)
>>> properties["prominences"], properties["widths"]
(array([1.495, 2.3]), array([36.93773946, 39.32723577]))
>>> plt.plot(x)
>>> plt.plot(peaks, x[peaks], "x")
>>> plt.vlines(x=peaks, ymin=x[peaks] - properties["prominences"],
...           ymax = x[peaks], color = "C1")
>>> plt.hlines(y=properties["width_heights"], xmin=properties["left_ips"],
...           xmax=properties["right_ips"], color = "C1")
>>> plt.show()
```
scipy.signal.find_peaks_cwt

```python
scipy.signal.find_peaks_cwt(vector, widths, wavelet=None, max_distances=None, gap_thresh=None, min_length=None, min_snr=1, noise_perc=10, window_size=None)
```

Find peaks in a 1-D array with wavelet transformation.

The general approach is to smooth `vector` by convolving it with `wavelet(width)` for each width in `widths`. Relative maxima which appear at enough length scales, and with sufficiently high SNR, are accepted.

Parameters

- `vector` [ndarray] 1-D array in which to find the peaks.
- `widths` [float or sequence] Single width or 1-D array-like of widths to use for calculating the CWT matrix. In general, this range should cover the expected width of peaks of interest.
- `wavelet` [callable, optional] Should take two parameters and return a 1-D array to convolve with `vector`. The first parameter determines the number of points of the returned wavelet array, the second parameter is the scale (width) of the wavelet. Should be normalized and symmetric. Default is the ricker wavelet.
- `max_distances` [ndarray, optional] At each row, a ridge line is only connected if the relative max at row[n] is within `max_distances[n]` from the relative max at row[n+1]. Default value is `widths/4`.
- `gap_thresh` [float, optional] If a relative maximum is not found within `max_distances`, there will be a gap. A ridge line is discontinued if there are more than `gap_thresh` points without connecting a new relative maximum. Default is the first value of the `widths` array i.e. `widths[0]`.
- `min_length` [int, optional] Minimum length a ridge line needs to be acceptable. Default is `cwt.shape[0] / 4`, i.e. 1/4-th the number of widths.
- `min_snr` [float, optional] Minimum SNR ratio. Default 1. The signal is the value of the cwt matrix at the shortest length scale (`cwt[0, loc]`), the noise is the `noise_perc`th percentile of datapoints contained within a window of `window_size` around `cwt[0, loc]`.
- `noise_perc` [float, optional] When calculating the noise floor, percentile of data points examined below which to consider noise. Calculated using `stats.scoreatpercentile`. Default is 10.

Returns

- `peaks_indices` [ndarray] Indices of the locations in the `vector` where peaks were found. The list is sorted.

See also:

- `cwt`
 - Continuous wavelet transform.
- `find_peaks`
 - Find peaks inside a signal based on peak properties.
Notes

This approach was designed for finding sharp peaks among noisy data, however with proper parameter selection it should function well for different peak shapes.

The algorithm is as follows:

1. Perform a continuous wavelet transform on vector, for the supplied widths. This is a convolution of vector with wavelet(width) for each width in widths. See cwt.
2. Identify “ridge lines” in the cwt matrix. These are relative maxima at each row, connected across adjacent rows. See identify_ridge_lines
3. Filter the ridge_lines using filter_ridge_lines.

New in version 0.11.0.

References

[1]

Examples

```python
>>> from scipy import signal
>>> xs = np.arange(0, np.pi, 0.05)
>>> data = np.sin(xs)
>>> peakind = signal.find_peaks_cwt(data, np.arange(1,10))
>>> peakind, xs[peakind], data[peakind]
([[32], array([ 1.6]), array([ 0.9995736])])
```

scipy.signal.peak_prominences

scipy.signal.peak_prominences(x, peaks, wlen=None)

Calculate the prominence of each peak in a signal.

The prominence of a peak measures how much a peak stands out from the surrounding baseline of the signal and is defined as the vertical distance between the peak and its lowest contour line.

Parameters

- **x** ([sequence]) A signal with peaks.
- **peaks** ([sequence]) Indices of peaks in x.
- **wlen** ([int, optional]) A window length in samples that optionally limits the evaluated area for each peak to a subset of x. The peak is always placed in the middle of the window therefore the given length is rounded up to the next odd integer. This parameter can speed up the calculation (see Notes).

Returns

- **prominences** ([ndarray]) The calculated prominences for each peak in peaks.
- **left_bases, right_bases** ([ndarray]) The peaks’ bases as indices in x to the left and right of each peak. The higher base of each pair is a peak’s lowest contour line.

Raises

3.3. API definition 1659
ValueError

If a value in peaks is an invalid index for x.

Warns

PeakPropertyWarning

For indices in peaks that don’t point to valid local maxima in x, the returned prominence will be 0 and this warning is raised. This also happens if wlen is smaller than the plateau size of a peak.

Warning: This function may return unexpected results for data containing NaNs. To avoid this, NaNs should either be removed or replaced.

See also:

find_peaks

Find peaks inside a signal based on peak properties.

peak_widths

Calculate the width of peaks.

Notes

Strategy to compute a peak’s prominence:

1. Extend a horizontal line from the current peak to the left and right until the line either reaches the window border (see wlen) or intersects the signal again at the slope of a higher peak. An intersection with a peak of the same height is ignored.

2. On each side find the minimal signal value within the interval defined above. These points are the peak’s bases.

3. The higher one of the two bases marks the peak’s lowest contour line. The prominence can then be calculated as the vertical difference between the peaks height itself and its lowest contour line.

Searching for the peak’s bases can be slow for large x with periodic behavior because large chunks or even the full signal need to be evaluated for the first algorithmic step. This evaluation area can be limited with the parameter wlen which restricts the algorithm to a window around the current peak and can shorten the calculation time if the window length is short in relation to x. However, this may stop the algorithm from finding the true global contour line if the peak’s true bases are outside this window. Instead, a higher contour line is found within the restricted window leading to a smaller calculated prominence. In practice, this is only relevant for the highest set of peaks in x. This behavior may even be used intentionally to calculate “local” prominences.

New in version 1.1.0.
References

[1]

Examples

```python
>>> from scipy.signal import find_peaks, peak_prominences
>>> import matplotlib.pyplot as plt

Create a test signal with two overlayed harmonics

```python
>>> x = np.linspace(0, 6 * np.pi, 1000)
>>> x = np.sin(x) + 0.6 * np.sin(2.6 * x)
``` 

Find all peaks and calculate prominences

```python
>>> peaks, _ = find_peaks(x)
>>> prominences = peak_prominences(x, peaks)[0]
>>> prominences
array([1.24159486, 0.47840168, 0.28470524, 3.10716793, 0.284603,
 0.47822491, 2.48340261, 0.47822491])
``` 

Calculate the height of each peak’s contour line and plot the results

```python
>>> contour_heights = x[peaks] - prominences
>>> plt.plot(x)
>>> plt.plot(peaks, x[peaks], "x")
>>> plt.vlines(x=peaks, ymin=contour_heights, ymax=x[peaks])
>>> plt.show()
```

Let’s evaluate a second example that demonstrates several edge cases for one peak at index 5.
```python
>>> x = np.array([0, 1, 0, 3, 1, 3, 0, 4, 0])
>>> peaks = np.array([5])
>>> plt.plot(x)
>>> plt.plot(peaks, x[peaks], "x")
>>> plt.show()
```

```python
>>> peak_prominences(x, peaks)
-> (prominences, left_bases, right_bases)
(array([3.]), array([2]), array([6]))
```

Note how the peak at index 3 of the same height is not considered as a border while searching for the left base. Instead, two minima at 0 and 2 are found in which case the one closer to the evaluated peak is always chosen. On the right side, however, the base must be placed at 6 because the higher peak represents the right border to the evaluated area.

```python
>>> peak_prominences(x, peaks, wlen=3.1)
(array([2.]), array([4]), array([6]))
```

Here, we restricted the algorithm to a window from 3 to 7 (the length is 5 samples because `wlen` was rounded up to the next odd integer). Thus, the only two candidates in the evaluated area are the two neighboring samples and a smaller prominence is calculated.

**scipy.signal.peak_widths**

`scipy.signal.peak_widths(x, peaks, rel_height=0.5, prominence_data=None, wlen=None)`

Calculate the width of each peak in a signal.

This function calculates the width of a peak in samples at a relative distance to the peak’s height and prominence.

**Parameters**

- `x` [sequence] A signal with peaks.
- `peaks` [sequence] Indices of peaks in `x`.
- `rel_height` [float, optional] Chooses the relative height at which the peak width is measured as a percentage of its prominence. 1.0 calculates the width of the peak at its lowest contour line.
while 0.5 evaluates at half the prominence height. Must be at least 0. See notes for further explanation.

**prominence_data**

[tuple, optional] A tuple of three arrays matching the output of `peak_prominences` when called with the same arguments `x` and `peaks`. This data are calculated internally if not provided.

**wlen**

[int, optional] A window length in samples passed to `peak_prominences` as an optional argument for internal calculation of `prominence_data`. This argument is ignored if `prominence_data` is given.

**Returns**

- **widths** [ndarray] The widths for each peak in samples.
- **width_heights** [ndarray] The height of the contour lines at which the `widths` were evaluated.
- **left_ips, right_ips** [ndarray] Interpolated positions of left and right intersection points of a horizontal line at the respective evaluation height.

**Raises**

- **ValueError**

  If `prominence_data` is supplied but doesn’t satisfy the condition `0 <= left_base <= peak <= right_base < x.shape[0]` for each peak, has the wrong dtype, is not C-contiguous or does not have the same shape.

**Warns**

- **PeakPropertyWarning**

  Raised if any calculated width is 0. This may stem from the supplied `prominence_data` or if `rel_height` is set to 0.

---

**Warning:** This function may return unexpected results for data containing NaNs. To avoid this, NaNs should either be removed or replaced.

**See also:**

- **find_peaks**

  Find peaks inside a signal based on peak properties.

- **peak_prominences**

  Calculate the prominence of peaks.

**Notes**

The basic algorithm to calculate a peak’s width is as follows:

- Calculate the evaluation height $h_{eval}$ with the formula $h_{eval} = h_{peak} - P \cdot R$, where $h_{peak}$ is the height of the peak itself, $P$ is the peak’s prominence and $R$ a positive ratio specified with the argument `rel_height`.

- Draw a horizontal line at the evaluation height to both sides, starting at the peak’s current vertical position until the lines either intersect a slope, the signal border or cross the vertical position of the peak’s base (see `peak_prominences` for an definition). For the first case, intersection with the signal, the true intersection point is estimated with linear interpolation.
• Calculate the width as the horizontal distance between the chosen endpoints on both sides. As a consequence of this, the maximal possible width for each peak is the horizontal distance between its bases.

As shown above to calculate a peak’s width its prominence and bases must be known. You can supply these yourself with the argument prominence_data. Otherwise, they are internally calculated (see peak_prominences).

New in version 1.1.0.

Examples

```python
>>> from scipy.signal import chirp, find_peaks, peak_widths
>>> import matplotlib.pyplot as plt

Create a test signal with two overlayed harmonics

```python
>>> x = np.linspace(0, 6 * np.pi, 1000)
>>> x = np.sin(x) + 0.6 * np.sin(2.6 * x)
``` 

Find all peaks and calculate their widths at the relative height of 0.5 (contour line at half the prominence height) and 1 (at the lowest contour line at full prominence height).

```python
>>> peaks, _ = find_peaks(x)
>>> results_half = peak_widths(x, peaks, rel_height=0.5)
>>> results_half[0] # widths
array([ 64.25172825, 41.29465463, 35.46943289, 104.71586081,
        35.46729324, 41.30429622, 181.93835853, 45.37078546])
``` 

```python
>>> results_full = peak_widths(x, peaks, rel_height=1)
>>> results_full[0] # widths
array([181.9396084 , 72.99284945, 61.28657872, 373.84622694,
        61.78404617, 72.48822812, 253.09161876, 79.36860878])
``` 

Plot signal, peaks and contour lines at which the widths were calculated

```python
>>> plt.plot(x)
>>> plt.plot(peaks, x[peaks], "x")
>>> plt.hlines(*results_half[1:], color="C2")
>>> plt.hlines(*results_full[1:], color="C3")
>>> plt.show()
``` 

Spectral analysis

- `periodogram(x[, fs, window, nfft, detrend, ...])` Estimate power spectral density using a periodogram.
- `welch(x[, fs, window, nperseg, noverlap, ...])` Estimate power spectral density using Welch’s method.
- `csd(x, y[, fs, window, nperseg, noverlap, ...])` Estimate the cross power spectral density, Pxy, using Welch’s method.
- `coherence(x, y[, fs, window, nperseg, ...])` Estimate the magnitude squared coherence estimate, Cxy, of discrete-time signals X and Y using Welch’s method.
- `spectrogram(x[, fs, window, nperseg, ...])` Compute a spectrogram with consecutive Fourier transforms.
- `lombscargle(x, y, freqs)` Computes the Lomb-Scargle periodogram.
Table 170 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vectorstrength</code></td>
<td>Determine the vector strength of the events corresponding to the given period.</td>
</tr>
<tr>
<td><code>stft</code></td>
<td>Compute the Short Time Fourier Transform (STFT).</td>
</tr>
<tr>
<td><code>istft</code></td>
<td>Perform the inverse Short Time Fourier transform (iSTFT).</td>
</tr>
<tr>
<td><code>check_COLA</code></td>
<td>Check whether the Constant OverLap Add (COLA) constraint is met.</td>
</tr>
<tr>
<td><code>check_NOLA</code></td>
<td>Check whether the Nonzero OverLap Add (NOLA) constraint is met.</td>
</tr>
</tbody>
</table>

scipy.signal.periodogram

Estimate power spectral density using a periodogram.

```
scipy.signal.periodogram(x, fs=1.0, window='boxcar', nfft=None, detrend='constant',
                          return_onesided=True, scaling='density', axis=-1)
```

Parameters

- **x** [array_like] Time series of measurement values
- **fs** [float, optional] Sampling frequency of the x time series. Defaults to 1.0.
- **window** [str or tuple or array_like, optional] Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to 'boxcar'.
- **nfft** [int, optional] Length of the FFT used. If `None` the length of `x` will be used.
- **detrend** [str or function or False, optional] Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'.
- **return_onesided** [bool, optional] If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Defaults to `True`, but for complex data, a two-sided spectrum is always returned.
- **scaling** [['density', 'spectrum'], optional] Selects between computing the power spectral density ('density') where `Pxx` has units of V**2/Hz and computing the power spectrum ('spectrum') where `Pxx` has units of V**2, if `x` is measured in V and `fs` is measured in Hz. Defaults to 'density'.
- **axis** [int, optional] Axis along which the periodogram is computed; the default is over the last axis (i.e. `axis=-1`).

Returns

- **f** [ndarray] Array of sample frequencies.
- **Pxx** [ndarray] Power spectral density or power spectrum of `x`.

See also:

- **welch**
 Estimate power spectral density using Welch’s method
- **lombscargle**
 Lomb-Scargle periodogram for unevenly sampled data

3.3. API definition 1665
Notes

New in version 0.12.0.

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()

Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz.

```python
>>> fs = 10e3
>>> N = 1e5
>>> amp = 2*np.sqrt(2)
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> x = amp*np.sin(2*np.pi*freq*time)
>>> x += rng.normal(scale=np.sqrt(noise_power), size=time.shape)
```  
Compute and plot the power spectral density.

```python
>>> f, Pxx_den = signal.periodogram(x, fs)
>>> plt.semilogy(f, Pxx_den)
>>> plt.xlim([1e-7, 1e2])
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD [V**2/Hz]')
>>> plt.show()
```  
If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal.
Now compute and plot the power spectrum.

```python
>>> np.mean(Pxx_den[25000:]
0.000985320699252543

The peak height in the power spectrum is an estimate of the RMS amplitude.

3.3. API definition
scipy.signal.welch

scipy.signal.welch(x, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1, average='mean')

Estimate power spectral density using Welch’s method.

Welch’s method [1] computes an estimate of the power spectral density by dividing the data into overlapping segments, computing a modified periodogram for each segment and averaging the periodograms.

Parameters

- **x** [array_like] Time series of measurement values
- **fs** [float, optional] Sampling frequency of the x time series. Defaults to 1.0.
- **window** [str or tuple or array_like, optional] Desired window to use. If window is a string or tuple, it is passed to get_window to generate the window values, which are DFT-even by default. See get_window for a list of windows and required parameters. If window is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window.
- **nperseg** [int, optional] Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window.
- **noverlap** [int, optional] Number of points to overlap between segments. If None, noverlap = nperseg // 2. Defaults to None.
- **nfft** [int, optional] Length of the FFT used, if a zero padded FFT is desired. If None, the FFT length is nperseg. Defaults to None.
- **detrend** [str or function or False, optional] Specifies how to detrend each segment. If detrend is a string, it is passed as the type argument to the detrend function. If it is a function, it takes a segment and returns a detrended segment. If detrend is False, no detrending is done. Defaults to 'constant'.
- **return_onesided** [bool, optional] If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Defaults to True, but for complex data, a two-sided spectrum is always returned.
- **scaling** [{ 'density', 'spectrum' }, optional] Selects between computing the power spectral density ('density') where Pxx has units of V**2/Hz and computing the power spectrum ('spectrum') where Pxx has units of V**2, if x is measured in V and fs is measured in Hz. Defaults to 'density'.
- **axis** [int, optional] Axis along which the periodogram is computed; the default is over the last axis (i.e. axis=-1).
- **average** [{ 'mean', 'median' }, optional] Method to use when averaging periodograms. Defaults to 'mean'. New in version 1.2.0.

Returns

- **f** [ndarray] Array of sample frequencies.
- **Pxx** [ndarray] Power spectral density or power spectrum of x.

See also:

- **periodogram**
 - Simple, optionally modified periodogram
- **lombscargle**
 - Lomb-Scargle periodogram for unevenly sampled data
Notes

An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap.

If `noverlap` is 0, this method is equivalent to Bartlett’s method [2].

New in version 0.12.0.

References

[1], [2]

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()

Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz.

```python
>>> fs = 10e3
>>> N = 1e5
>>> amp = 2*np.sqrt(2)
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> x = amp*np.sin(2*np.pi*freq*time)
>>> x += rng.normal(scale=np.sqrt(noise_power), size=time.shape)
```  
Compute and plot the power spectral density.

```python
>>> f, Pxx_den = signal.welch(x, fs, nperseg=1024)
>>> plt.semilogy(f, Pxx_den)
>>> plt.ylim([0.5e-3, 1])
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD [V**2/Hz]')
>>> plt.show()
```  
If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal.

```python
>>> np.mean(Pxx_den[256:])
0.0009924865443739191
```  
Now compute and plot the power spectrum.

```python
>>> f, Pxx_spec = signal.welch(x, fs, 'flattop', 1024, scaling='spectrum')
>>> plt.figure()
>>> plt.semilogy(f, np.sqrt(Pxx_spec))
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('Linear spectrum [V RMS]')
>>> plt.show()
```
The top graph shows the power spectral density (PSD) in $V^2/Hz$ and the bottom graph shows the linear spectrum in $V$ RMS versus frequency in Hz.
The peak height in the power spectrum is an estimate of the RMS amplitude.

```python
>>> np.sqrt(Pxx_spec.max())
2.0077340678640727
```

If we now introduce a discontinuity in the signal, by increasing the amplitude of a small portion of the signal by 50, we can see the corruption of the mean average power spectral density, but using a median average better estimates the normal behaviour.

```python
>>> f, Pxx_den = signal.welch(x, fs, nperseg=1024)
>>> f_med, Pxx_den_med = signal.welch(x, fs, nperseg=1024, average='median')
>>> plt.semilogy(f, Pxx_den, label='mean')
>>> plt.semilogy(f_med, Pxx_den_med, label='median')
>>> plt.ylim([0.5e-3, 1])
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('PSD [V**2/Hz]')
>>> plt.legend()
>>> plt.show()
```

**scipy.signal.csd**

Estimate the cross power spectral density, Pxy, using Welch's method.

```python
scipy.signal.csd(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1, average='mean')
```

**Parameters**

- `x` [array_like] Time series of measurement values
- `y` [array_like] Time series of measurement values
- `fs` [float, optional] Sampling frequency of the x and y time series. Defaults to 1.0.
- `window` [str, tuple, or array_like, optional] Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like
it will be used directly as the window and its length must be nperseg. Defaults to a Hann window.

**nperseg**

[int, optional] Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window.

**noverlap**

[int, optional] Number of points to overlap between segments. If *None*, `noverlap = nperseg // 2`. Defaults to *None*.

**nfft**

[int, optional] Length of the FFT used, if a zero padded FFT is desired. If *None*, the FFT length is `nperseg`. Defaults to *None*.

**detrend**

[str or function or *False*, optional] Specifies how to detrend each segment. If `detrend` is a string, it is passed as the *type* argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is *False*, no detrending is done. Defaults to 'constant'.

**return_onesided**

[bool, optional] If *True*, return a one-sided spectrum for real data. If *False* return a two-sided spectrum. Defaults to *True*, but for complex data, a two-sided spectrum is always returned.

**scaling**

[{'density', 'spectrum'}, optional] Selects between computing the cross spectral density ('density') where `Pxy` has units of V**2/Hz and computing the cross spectrum ('spectrum') where `Pxy` has units of V**2, if `x` and `y` are measured in V and `fs` is measured in Hz. Defaults to 'density'.

**axis**

[int, optional] Axis along which the CSD is computed for both inputs; the default is over the last axis (i.e. `axis=-1`).

**average**

[{'mean', 'median'}, optional] Method to use when averaging periodograms. If the spectrum is complex, the average is computed separately for the real and imaginary parts. Defaults to 'mean'.

New in version 1.2.0.

**Returns**

- **f**
  [ndarray] Array of sample frequencies.
- **Pxy**
  [ndarray] Cross spectral density or cross power spectrum of `x,y`.

See also:

- **periodogram**
  Simple, optionally modified periodogram
- **lombscargle**
  Lomb-Scargle periodogram for unevenly sampled data
- **welch**
  Power spectral density by Welch’s method. [Equivalent to `csd(x,x)`]
- **coherence**
  Magnitude squared coherence by Welch’s method.
Notes

By convention, Pxy is computed with the conjugate FFT of X multiplied by the FFT of Y.

If the input series differ in length, the shorter series will be zero-padded to match.

An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap.

New in version 0.16.0.

References

[1], [2]

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()

Generate two test signals with some common features.

```python
>>> fs = 10e3  
>>> N = 1e5  
>>> amp = 20  
>>> freq = 1234.0  
>>> noise_power = 0.001 * fs / 2  
>>> time = np.arange(N) / fs  
>>> b, a = signal.butter(2, 0.25, 'low')  
>>> x = rng.normal(scale=np.sqrt(noise_power), size=time.shape)  
>>> y = signal.lfilter(b, a, x)  
>>> x += amp*np.sin(2*np.pi*freq*time)  
>>> y += rng.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)
```

Compute and plot the magnitude of the cross spectral density.

```python
>>> f, Pxy = signal.csd(x, y, fs, nperseg=1024)  
>>> plt.semilogy(f, np.abs(Pxy))  
>>> plt.xlabel('frequency [Hz]')  
>>> plt.ylabel('CSD [V**2/Hz]')  
>>> plt.show()
```
Estimate the magnitude squared coherence estimate, C_{xy}, of discrete-time signals X and Y using Welch’s method.

$$C_{xy} = \frac{|P_{xy}|^2}{P_{xx}P_{yy}}$$

where P_{xx} and P_{yy} are power spectral density estimates of X and Y, and P_{xy} is the cross spectral density estimate of X and Y.

Parameters

- `x` [array_like] Time series of measurement values
- `y` [array_like] Time series of measurement values
- `fs` [float, optional] Sampling frequency of the `x` and `y` time series. Defaults to 1.0.
- `window` [str or tuple or array_like, optional] Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be `nperseg`. Defaults to a Hann window.
- `nperseg` [int, optional] Length of each segment. Defaults to None, but if `window` is str or tuple, is set to 256, and if `window` is array_like, is set to the length of the window.
- `noverlap` [int, optional] Number of points to overlap between segments. If `None`, `noverlap = nperseg // 2`. Defaults to `None`.
- `nfft` [int, optional] Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`.
- `detrend` [str or function or `False`, optional] Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to ‘constant’.
- `axis` [int, optional] Axis along which the coherence is computed for both inputs; the default is over the last axis (i.e. `axis=-1`).

Returns

- `Cxy` [ndarray] Magnitude squared coherence of `x` and `y`.

```python
scipy.signal.coherence

scipy.signal.coherence(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', axis=-1)
```

Estimate the magnitude squared coherence estimate, C_{xy}, of discrete-time signals X and Y using Welch’s method.

$$C_{xy} = \frac{|P_{xy}|^2}{P_{xx}P_{yy}}$$

where P_{xx} and P_{yy} are power spectral density estimates of X and Y, and P_{xy} is the cross spectral density estimate of X and Y.
See also:

periodogram
 Simple, optionally modified periodogram

lombscargle
 Lomb-Scargle periodogram for unevenly sampled data

welch
 Power spectral density by Welch's method.

csd
 Cross spectral density by Welch’s method.

Notes

An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap.

New in version 0.16.0.

References

[1], [2]

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
```

Generate two test signals with some common features.

```python
>>> fs = 10e3
>>> N = 1e5
>>> amp = 20
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / fs
>>> b, a = signal.butter(2, 0.25, 'low')
>>> x = rng.normal(scale=np.sqrt(noise_power), size=time.shape)
>>> y = signal.lfilter(b, a, x)
>>> x += amp*np.sin(2*np.pi*freq*time)
>>> y += rng.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)
```

Compute and plot the coherence.

```python
>>> f, Cxy = signal.coherence(x, y, fs, nperseg=1024)
>>> plt.semilogy(f, Cxy)
>>> plt.xlabel('frequency [Hz]')
```

(continues on next page)
scipy.signal.spectrogram

scipy.signal.spectrogram(x, fs=1.0, window=('tukey', 0.25), nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1, mode='psd')

Compute a spectrogram with consecutive Fourier transforms.

Spectrograms can be used as a way of visualizing the change of a nonstationary signal’s frequency content over time.

Parameters

- **x**: array_like, Time series of measurement values
- **fs**: float, optional, Sampling frequency of the x time series. Defaults to 1.0.
- **window**: str or tuple or array_like, optional, Desired window to use. If window is a string or tuple, it is passed to get_window to generate the window values, which are DFT-even by default. See get_window for a list of windows and required parameters. If window is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Tukey window with shape parameter of 0.25.
- **nperseg**: int, optional, Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window.
- **noverlap**: int, optional, Number of points to overlap between segments. If None, noverlap = nperseg // 8. Defaults to None.
- **nfft**: int, optional, Length of the FFT used, if a zero padded FFT is desired. If None, the FFT length is nperseg. Defaults to None.
- **detrend**: str or function or False, optional, Specifies how to detrend each segment. If detrend is a string, it is passed as the type argument to the detrend function. If it is a function, it takes a segment and returns a detrended segment. If detrend is False, no detrending is done. Defaults to ‘constant’.
- **return_onesided**: bool, optional, If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Defaults to True, but for complex data, a two-sided spectrum is always returned.
...
Examples

```python
>>> from scipy import signal
>>> from scipy.fft import fftshift
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()

Generate a test signal, a 2 Vrms sine wave whose frequency is slowly modulated around 3 kHz, corrupted by white noise of exponentially decreasing magnitude sampled at 10 kHz.

```python
>>> fs = 10e3
>>> N = 1e5
>>> amp = 2 * np.sqrt(2)
>>> noise_power = 0.01 * fs / 2
>>> time = np.arange(N) / float(fs)
>>> mod = 500*np.cos(2*np.pi*0.25*time)
>>> carrier = amp * np.sin(2*np.pi*3e3*time + mod)
>>> noise = rng.normal(scale=np.sqrt(noise_power), size=time.shape)
>>> noise *= np.exp(-time/5)
>>> x = carrier + noise
```

Compute and plot the spectrogram.

```python
>>> f, t, Sxx = signal.spectrogram(x, fs)
>>> plt.pcolormesh(t, f, Sxx, shading='gouraud')
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()
```

Note, if using output that is not one sided, then use the following:

```python
>>> f, t, Sxx = signal.spectrogram(x, fs, return_onesided=False)
>>> plt.pcolormesh(t, fftshift(f), fftshift(Sxx, axes=0), shading='gouraud')
```
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()
istft
Inverse Short Time Fourier Transform

check_COLA
Check whether the Constant OverLap Add (COLA) constraint is met

welch
Power spectral density by Welch’s method

spectrogram
Spectrogram by Welch’s method

csd
Cross spectral density by Welch’s method

Notes
This subroutine calculates the periodogram using a slightly modified algorithm due to Townsend [3] which allows the periodogram to be calculated using only a single pass through the input arrays for each frequency.
The algorithm running time scales roughly as O(x * freqs) or O(N^2) for a large number of samples and frequencies.

References
[1], [2], [3]

Examples

```python
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
```

First define some input parameters for the signal:

```python
>>> A = 2.
>>> w0 = 1. # rad/sec
>>> nin = 150
>>> nout = 100000
```

Randomly generate sample times:

```python
>>> x = rng.uniform(0, 10*np.pi, nin)
```

Plot a sine wave for the selected times:

```python
>>> y = A * np.cos(w0*x)
```

Define the array of frequencies for which to compute the periodogram:

```python
>>> w = np.linspace(0.01, 10, nout)
```

Calculate Lomb-Scargle periodogram:
```python
>>> import scipy.signal as signal
>>> pgram = signal.lombscargle(x, y, w, normalize=True)
```

Now make a plot of the input data:

```python
>>> fig, (ax_t, ax_w) = plt.subplots(2, 1, constrained_layout=True)
>>> ax_t.plot(x, y, 'b+')
>>> ax_t.set_xlabel('Time [s]')

Then plot the normalized periodogram:

```python
>>> ax_w.plot(w, pgram)
>>> ax_w.set_xlabel('Angular frequency [rad/s]')
>>> ax_w.set_ylabel('Normalized amplitude')
>>> plt.show()
```

scipy.signal.vectorstrength

`scipy.signal.vectorstrength(events, period)`

Determine the vector strength of the events corresponding to the given period.

The vector strength is a measure of phase synchrony, how well the timing of the events is synchronized to a single period of a periodic signal.

If multiple periods are used, calculate the vector strength of each. This is called the “resonating vector strength”.

Parameters

- `events` [1D array_like] An array of time points containing the timing of the events.
- `period` [float or array_like] The period of the signal that the events should synchronize to. The period is in the same units as `events`. It can also be an array of periods, in which case the outputs are arrays of the same length.

Returns

- `strength` [float or 1D array] The strength of the synchronization. 1.0 is perfect synchronization and 0.0 is no synchronization. If `period` is an array, this is also an array with each element containing the vector strength at the corresponding period.
phase [float or array] The phase that the events are most strongly synchronized to in radians. If period is an array, this is also an array with each element containing the phase for the corresponding period.

References

scipy.signal.stft

scipy.signal.stft(x, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None, detrend=False, return_onesided=True, boundary='zeros', padded=True, axis=-1)

Compute the Short Time Fourier Transform (STFT).

STFTs can be used as a way of quantifying the change of a nonstationary signal’s frequency and phase content over time.

Parameters

x [array_like] Time series of measurement values
fs [float, optional] Sampling frequency of the x time series. Defaults to 1.0.
window [str or tuple or array_like, optional] Desired window to use. If window is a string or tuple, it is passed to get_window to generate the window values, which are DFT-even by default. See get_window for a list of windows and required parameters. If window is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window.
nperseg [int, optional] Length of each segment. Defaults to 256.
noverlap [int, optional] Number of points to overlap between segments. If None, noverlap = nperseg // 2. Defaults to None. When specified, the COLA constraint must be met (see Notes below).
nfft [int, optional] Length of the FFT used, if a zero padded FFT is desired. If None, the FFT length is nperseg. Defaults to None.
detrend [str or function or False, optional] Specifies how to detrend each segment. If detrend is a string, it is passed as the type argument to the detrend function. If it is a function, it takes a segment and returns a detrended segment. If detrend is False, no detrending is done. Defaults to False.
return_onesided [bool, optional] If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Defaults to True, but for complex data, a two-sided spectrum is always returned.
boundary [str or None, optional] Specifies whether the input signal is extended at both ends, and how to generate the new values, in order to center the first windowed segment on the first input point. This has the benefit of enabling reconstruction of the first input point when the employed window function starts at zero. Valid options are ['even', 'odd', 'constant', 'zeros', None]. Defaults to 'zeros', for zero padding extension. I.e. [1, 2, 3, 4] is extended to [0, 1, 2, 3, 4, 0] for nperseg=3.
padded [bool, optional] Specifies whether the input signal is zero-padded at the end to make the signal fit exactly into an integer number of window segments, so that all of the signal is included in the output. Defaults to True. Padding occurs after boundary extension, if boundary is not None, and padded is True, as is the default.

axis [int, optional] Axis along which the STFT is computed; the default is over the last axis (i.e. axis=-1).

Returns

f [ndarray] Array of sample frequencies.
t [ndarray] Array of segment times.
Zxx [ndarray] STFT of x. By default, the last axis of Zxx corresponds to the segment times.

See also:

istft
Inverse Short Time Fourier Transform

check_COLA
Check whether the Constant OverLap Add (COLA) constraint is met

check_NOLA
Check whether the Nonzero Overlap Add (NOLA) constraint is met

welch
Power spectral density by Welch’s method.
spectrogram
Spectrogram by Welch’s method.
csd
Cross spectral density by Welch’s method.
lombscargle
Lomb-Scargle periodogram for unevenly sampled data

Notes

In order to enable inversion of an STFT via the inverse STFT in istft, the signal windowing must obey the constraint of “Nonzero OverLap Add” (NOLA), and the input signal must have complete windowing coverage (i.e. (x.shape[axis] - nperseg) % (nperseg - noverlap) == 0). The padded argument may be used to accomplish this.

Given a time-domain signal $x[n]$, a window $w[n]$, and a hop size $H = nperseg - noverlap$, the windowed frame at time index t is given by

$$x_t[n] = x[n]w[n - tH]$$

The overlap-add (OLA) reconstruction equation is given by

$$x[n] = \sum_t x_t[n]w[n - tH] \quad \sum_t w^2[n - tH]$$

The NOLA constraint ensures that every normalization term that appears in the denominator of the OLA reconstruction equation is nonzero. Whether a choice of window, nperseg, and noverlap satisfy this constraint can be tested with check_NOLA.
New in version 0.19.0.

References

[1], [2]

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
Generate a test signal, a 2 Vrms sine wave whose frequency is slowly modulated around 3kHz, corrupted by white noise of exponentially decreasing magnitude sampled at 10 kHz.
```

```python
>>> fs = 10e3
>>> N = 1e5
>>> amp = 2 * np.sqrt(2)
>>> noise_power = 0.01 * fs / 2
>>> time = np.arange(N) / float(fs)
>>> mod = 500*np.cos(2*np.pi*0.25*time)
>>> carrier = amp * np.sin(2*np.pi*3e3*time + mod)
>>> noise = rng.normal(scale=np.sqrt(noise_power),
... size=time.shape)
>>> noise *= np.exp(-time/5)
>>> x = carrier + noise
```

Compute and plot the STFT's magnitude.
```
>>> f, t, Zxx = signal.stft(x, fs, nperseg=1000)
>>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp, shading='gouraud')
>>> plt.title('STFT Magnitude')
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()
```

`scipy.signal.istft`

`scipy.signal.istft`(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, input_onesided=True, boundary=True, time_axis=-1, freq_axis=-2)

Perform the inverse Short Time Fourier transform (iSTFT).

Parameters

- **Zxx**: [array_like] STFT of the signal to be reconstructed. If a purely real array is passed, it will be cast to a complex data type.
- **fs**: [float, optional] Sampling frequency of the time series. Defaults to 1.0.
- **window**: [str or tuple or array_like, optional] Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. Must match the window used to generate the STFT for faithful inversion.
nperseg [int, optional] Number of data points corresponding to each STFT segment. This parameter must be specified if the number of data points per segment is odd, or if the STFT was padded via nfft > nperseg. If None, the value depends on the shape of Zxx and input_onesided. If input_onesided is True, nperseg=2*(Zxx.shape[freq_axis] - 1). Otherwise, nperseg=Zxx.shape[freq_axis]. Defaults to None.

noverlap [int, optional] Number of points to overlap between segments. If None, half of the segment length. Defaults to None. When specified, the COLA constraint must be met (see Notes below), and should match the parameter used to generate the STFT. Defaults to None.

nfft [int, optional] Number of FFT points corresponding to each STFT segment. This parameter must be specified if the STFT was padded via nfft > nperseg. If None, the default values are the same as for nperseg, detailed above, with one exception: if input_onesided is True and nperseg==2*Zxx.shape[freq_axis] - 1, nfft also takes on that value. This case allows the proper inversion of an odd-length unpadded STFT using nfft=None. Defaults to None.

input_onesided [bool, optional] If True, interpret the input array as one-sided FFTs, such as is returned by stft with return_onesided=True and numpy.fft.rfft. If False, interpret the input as a two-sided FFT. Defaults to True.

boundary [bool, optional] Specifies whether the input signal was extended at its boundaries by supplying a non-None boundary argument to stft. Defaults to True.

time_axis [int, optional] Where the time segments of the STFT is located; the default is the last axis (i.e. axis=-1).

draw_onesided [int, optional] Where the frequency axis of the STFT is located; the default is the penultimate axis (i.e. axis=-2).

Returns

- t [ndarray] Array of output data times.
- x [ndarray] iSTFT of Zxx.

See also:

- stft
 Short Time Fourier Transform
- check_COLA

3.3. API definition 1685
Check whether the Constant OverLap Add (COLA) constraint is met

check_NOLA

Check whether the Nonzero Overlap Add (NOLA) constraint is met

Notes

In order to enable inversion of an STFT via the inverse STFT with *istft*, the signal windowing must obey the constraint of “nonzero overlap add” (NOLA):

\[
\sum_t w^2[n - tH] \neq 0
\]

This ensures that the normalization factors that appear in the denominator of the overlap-add reconstruction equation

\[
x[n] = \frac{\sum_t x_t[n] w[n - tH]}{\sum_t w^2[n - tH]}
\]

are not zero. The NOLA constraint can be checked with the `check_NOLA` function.

An STFT which has been modified (via masking or otherwise) is not guaranteed to correspond to a exactly realizable signal. This function implements the iSTFT via the least-squares estimation algorithm detailed in [2], which produces a signal that minimizes the mean squared error between the STFT of the returned signal and the modified STFT.

New in version 0.19.0.

References

[1], [2]

Examples

```python
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
```

Generate a test signal, a 2 Vrms sine wave at 50Hz corrupted by 0.001 V**2/Hz of white noise sampled at 1024 Hz.

```python
>>> fs = 1024
>>> N = 10*fs
>>> nperseg = 512
>>> amp = 2 * np.sqrt(2)
>>> noise_power = 0.001 * fs / 2
>>> time = np.arange(N) / float(fs)
>>> carrier = amp * np.sin(2*np.pi*50*time)
>>> noise = rng.normal(scale=np.sqrt(noise_power),
... size=time.shape)
>>> x = carrier + noise
```

Compute the STFT, and plot its magnitude

```python
>>> f, t, Zxx = signal.stft(x, fs=fs, nperseg=nperseg)
>>> plt.figure()
>>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp, shading='gouraud')
>>> plt.ylim([f[1], f[-1]])
>>> plt.title('STFT Magnitude')
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.yscale('log')
>>> plt.show()
```

Zero the components that are 10% or less of the carrier magnitude, then convert back to a time series via inverse STFT

```python
>>> Zxx = np.where(np.abs(Zxx) >= amp/10, Zxx, 0)
>>> _, xrec = signal.istft(Zxx, fs)
```

Compare the cleaned signal with the original and true carrier signals.

```python
>>> plt.figure()
>>> plt.plot(time, x, time, xrec, time, carrier)
>>> plt.xlim([2, 2.1])
>>> plt.xlabel('Time [sec]')
>>> plt.ylabel('Signal')
>>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
>>> plt.show()
```

Note that the cleaned signal does not start as abruptly as the original, since some of the coefficients of the transient were also removed:

```python
>>> plt.figure()
>>> plt.plot(time, x, time, xrec, time, carrier)
>>> plt.xlim([0, 0.1])
>>> plt.xlabel('Time [sec]')
>>> plt.ylabel('Signal')
```

(continues on next page)

3.3. API definition 1687
scipy.signal.check_COLA

scipy.signal.check_COLA(window, nperseg, noverlap, tol=1e-10)
Check whether the Constant OverLap Add (COLA) constraint is met.

Parameters

- window [str or tuple or array_like] Desired window to use. If window is a string or tuple, it is passed to get_window to generate the window values, which are DFT-even by default. See get_window for a list of windows and required parameters. If window is array_like it will be used directly as the window and its length must be nperseg.
- nperseg [int] Length of each segment.
The `check_COLA` function is used to verify whether a given combination of STFT parameters satisfies the Constant Overlap Add (COLA) constraint. It takes two parameters:

- `noverlap` [int] Number of points to overlap between segments.
- `tol` [float, optional] The allowed variance of a bin's weighted sum from the median bin sum.

Returns

- `verdict` [bool] True if chosen combination satisfies COLA within `tol`, False otherwise

See also:

- `check_NOLA` Check whether the Nonzero Overlap Add (NOLA) constraint is met
- `stft` Short Time Fourier Transform
- `istft` Inverse Short Time Fourier Transform

Notes

In order to enable inversion of an STFT via the inverse STFT in `istft`, it is sufficient that the signal windowing obeys the constraint of “Constant Overlap Add” (COLA). This ensures that every point in the input data is equally weighted, thereby avoiding aliasing and allowing full reconstruction.

Some examples of windows that satisfy COLA:

- Rectangular window at overlap of 0, 1/2, 2/3, 3/4, …
- Bartlett window at overlap of 1/2, 3/4, 5/6, …
- Hann window at 1/2, 2/3, 3/4, …
- Any Blackman family window at 2/3 overlap
- Any window with `noverlap = nperseg-1`

A very comprehensive list of other windows may be found in [2], wherein the COLA condition is satisfied when the “Amplitude Flatness” is unity.

New in version 0.19.0.

References

[1], [2]

Examples

```python
>>> from scipy import signal

Confirm COLA condition for rectangular window of 75% (3/4) overlap:

```python
>>> signal.check_COLA(signal.windows.boxcar(100), 100, 75)
True
```

COLA is not true for 25% (1/4) overlap, though:
```python
>>> signal.check_COLA(signal.windows.boxcar(100), 100, 25)
False

“Symmetrical” Hann window (for filter design) is not COLA:

```python
>>> signal.check_COLA(signal.windows.hann(120, sym=True), 120, 60)
False

“Periodic” or “DFT-even” Hann window (for FFT analysis) is COLA for overlap of 1/2, 2/3, 3/4, etc.:

```python
>>> signal.check_COLA(signal.windows.hann(120, sym=False), 120, 60)
True

```python
>>> signal.check_COLA(signal.windows.hann(120, sym=False), 120, 80)
True

```python
>>> signal.check_COLA(signal.windows.hann(120, sym=False), 120, 90)
True
```

scipy.signal.check_NOLA

scipy.signal.check_NOLA(window, nperseg, noverlap, tol=1e-10)

Check whether the Nonzero Overlap Add (NOLA) constraint is met.

Parameters

- **window** [str or tuple or array_like] Desired window to use. If *window* is a string or tuple, it is passed to *get_window* to generate the window values, which are DFT-even by default. See *get_window* for a list of windows and required parameters. If *window* is array_like it will be used directly as the window and its length must be *nperseg*.
- **nperseg** [int] Length of each segment.
- **noverlap** [int] Number of points to overlap between segments.
- **tol** [float, optional] The allowed variance of a bin’s weighted sum from the median bin sum.

Returns

- **verdict** [bool] *True* if chosen combination satisfies the NOLA constraint within *tol*, *False* otherwise

See also:

- check_COLA
- check_NOLA
- stft
- Short Time Fourier Transform
- istft
- Inverse Short Time Fourier Transform
Notes

In order to enable inversion of an STFT via the inverse STFT in `istft`, the signal windowing must obey the constraint of “nonzero overlap add” (NOLA):

\[ \sum_{t} w^2[n - tH] \neq 0 \]

for all \( n \), where \( w \) is the window function, \( t \) is the frame index, and \( H \) is the hop size (\( H = nperseg - noverlap \)). This ensures that the normalization factors in the denominator of the overlap-add inversion equation are not zero. Only very pathological windows will fail the NOLA constraint.

New in version 1.2.0.

References

[1], [2]

Examples

```python
>>> from scipy import signal

Confirm NOLA condition for rectangular window of 75% (3/4) overlap:

>>> signal.check_NOLA(signal.windows.boxcar(100), 100, 75)
True

NOLA is also true for 25% (1/4) overlap:

>>> signal.check_NOLA(signal.windows.boxcar(100), 100, 25)
True

“Symmetrical” Hann window (for filter design) is also NOLA:

>>> signal.check_NOLA(signal.windows.hann(120, sym=True), 120, 60)
True

As long as there is overlap, it takes quite a pathological window to fail NOLA:

>>> w = np.ones(64, dtype="float")
>>> w[::2] = 0
>>> signal.check_NOLA(w, 64, 32)
False

If there is not enough overlap, a window with zeros at the ends will not work:

>>> signal.check_NOLA(signal.windows.hann(64), 64, 0)
False
>>> signal.check_NOLA(signal.windows.hann(64), 64, 1)
False
>>> signal.check_NOLA(signal.windows.hann(64), 64, 2)
True
```
Chirp Z-transform and Zoom FFT

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>czt(x[, m, w, a, axis])</code></td>
<td>Compute the frequency response around a spiral in the Z plane.</td>
</tr>
<tr>
<td><code>zoom_fft(x, fn[, m, fs, endpoint, axis])</code></td>
<td>Compute the DFT of <code>x</code> only for frequencies in range <code>fn</code>.</td>
</tr>
<tr>
<td><code>CZT(n[, m, w, a])</code></td>
<td>Create a callable chirp z-transform function.</td>
</tr>
<tr>
<td><code>ZoomFFT(n, fn[, m, fs, endpoint])</code></td>
<td>Create a callable zoom FFT transform function.</td>
</tr>
<tr>
<td><code>czt_points(m[, w, a])</code></td>
<td>Return the points at which the chirp z-transform is computed.</td>
</tr>
</tbody>
</table>

`scipy.signal.czt`

`scipy.signal.czt(x, m=None, w=None, a=1 + 0j, *, axis=-1)`

Compute the frequency response around a spiral in the Z plane.

**Parameters**

- `x` [array] The signal to transform.
- `m` [int, optional] The number of output points desired. Default is the length of the input data.
- `w` [complex, optional] The ratio between points in each step. This must be precise or the accumulated error will degrade the tail of the output sequence. Defaults to equally spaced points around the entire unit circle.
- `a` [complex, optional] The starting point in the complex plane. Default is `1+0j`.
- `axis` [int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

**Returns**

- `out` [ndarray] An array of the same dimensions as `x`, but with the length of the transformed axis set to `m`.

**See also:**

- `CZT`
  
  Class that creates a callable chirp z-transform function.

- `zoom_fft`
  
  Convenience function for partial FFT calculations.

**Notes**

The defaults are chosen such that `signal.czt(x)` is equivalent to `fft.fft(x)` and, if `m > len(x)`, that `signal.czt(x, m)` is equivalent to `fft.fft(x, m)`.

If the transform needs to be repeated, use `CZT` to construct a specialized transform function which can be reused without recomputing constants.

An example application is in system identification, repeatedly evaluating small slices of the z-transform of a system, around where a pole is expected to exist, to refine the estimate of the pole's true location. [1]
References

[1]

Examples

Generate a sinusoid:

```python
>>> f1, f2, fs = 8, 10, 200 # Hz
>>> t = np.linspace(0, 1, fs, endpoint=False)
>>> x = np.sin(2*np.pi*t*f2)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, x)
>>> plt.axis([0, 1, -1.1, 1.1])
>>> plt.show()
```

Its discrete Fourier transform has all of its energy in a single frequency bin:

```python
>>> from scipy.fft import rfft, rfftfreq
>>> from scipy.signal import czt, czt_points
>>> plt.plot(rfftfreq(fs, 1/fs), abs(rfft(x)))
>>> plt.margins(0, 0.1)
>>> plt.show()
```

However, if the sinusoid is logarithmically-decaying:

```python
>>> x = np.exp(-t*f1) * np.sin(2*np.pi*t*f2)
>>> plt.plot(t, x)
>>> plt.axis([0, 1, -1.1, 1.1])
>>> plt.show()
```

the DFT will have spectral leakage:
While the DFT always samples the z-transform around the unit circle, the chirp z-transform allows us to sample the Z-transform along any logarithmic spiral, such as a circle with radius smaller than unity:

```python
>>> M = fs // 2 # Just positive frequencies, like rfft
>>> a = np.exp(-f1/fs) # Starting point of the circle, radius < 1
>>> w = np.exp(-1j*np.pi/M) # "Step size" of circle
>>> points = czt_points(M + 1, w, a) # M + 1 to include Nyquist
>>> plt.plot(points.real, points.imag, '.')
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
>>> plt.axis('equal'); plt.axis([-1.05, 1.05, -0.05, 1.05])
>>> plt.show()
```

With the correct radius, this transforms the decaying sinusoid (and others with the same decay rate) without spectral leakage:

```python
>>> z_vals = czt(x, M + 1, w, a) # Include Nyquist for comparison to rfft
>>> freqs = np.angle(points)*fs/(2*np.pi) # angle = omega, radius = sigma
>>> plt.plot(freqs, abs(z_vals))
>>> plt.margins(0, 0.1)
>>> plt.show()
```
`scipy.signal.zoom_fft`

`scipy.signal.zoom_fft(x, fn=m=, fs=2, endpoint=False, axis=-1)`

Compute the DFT of `x` only for frequencies in range `fn`.

**Parameters**

- `x` [array] The signal to transform.
- `fn` [array_like] A length-2 sequence `[f1, f2]` giving the frequency range, or a scalar, for which the range `[0, fn]` is assumed.
- `m` [int, optional] The number of points to evaluate. The default is the length of `x`.
- `fs` [float, optional] The sampling frequency. If `fs=10` represented 10 kHz, for example, then `f1` and `f2` would also be given in kHz. The default sampling frequency is 2, so `f1` and `f2` should be in the range `[0, 1]` to keep the transform below the Nyquist frequency.
- `endpoint` [bool, optional] If True, `f2` is the last sample. Otherwise, it is not included. Default is False.
- `axis` [int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

**Returns**

- `out` [ndarray] The transformed signal. The Fourier transform will be calculated at the points `f1`, `f1+df`, `f1+2df`, ..., `f2`, where `df=(f2-f1)/m`.

**See also:**

- `ZoomFFT`
  
  Class that creates a callable partial FFT function.

**Notes**

The defaults are chosen such that `signal.zoom_fft(x, 2)` is equivalent to `fft.fft(x)` and, if `m > len(x)`, that `signal.zoom_fft(x, 2, m)` is equivalent to `fft.fft(x, m)`.

To graph the magnitude of the resulting transform, use:

```python
plot(linspace(f1, f2, m, endpoint=False), abs(zoom_fft(x, [f1, f2], m)))
```

If the transform needs to be repeated, use `ZoomFFT` to construct a specialized transform function which can be reused without recomputing constants.

**Examples**

To plot the transform results use something like the following:

```python
>>> from scipy.signal import zoom_fft
>>> t = np.linspace(0, 1, 1021)
>>> x = np.cos(2*np.pi*15*t) + np.sin(2*np.pi*17*t)
>>> f1, f2 = 5, 27
>>> X = zoom_fft(x, [f1, f2], len(x), fs=1021)
>>> f = np.linspace(f1, f2, len(x))
>>> import matplotlib.pyplot as plt
>>> plt.plot(f, 20*np.log10(np.abs(X)))
>>> plt.show()
```
scipy.signal.CZT

class scipy.signal.CZT(n, m=None, w=None, a=1 + 0j)

Create a callable chirp z-transform function.

Transform to compute the frequency response around a spiral. Objects of this class are callables which can compute the chirp z-transform on their inputs. This object precalculates the constant chirps used in the given transform.

Parameters

- **n** [int] The size of the signal.
- **m** [int, optional] The number of output points desired. Default is \( n \).
- **w** [complex, optional] The ratio between points in each step. This must be precise or the accumulated error will degrade the tail of the output sequence. Defaults to equally spaced points around the entire unit circle.
- **a** [complex, optional] The starting point in the complex plane. Default is \( 1+0j \).

Returns

- **f** [CZT] Callable object \( f(x, \ axis=-1) \) for computing the chirp z-transform on \( x \).

See also:

czt

Convenience function for quickly calculating CZT.

ZoomFFT

Class that creates a callable partial FFT function.
Notes

The defaults are chosen such that \( f(x) \) is equivalent to `fft.fft(x)` and, if \( m > \text{len}(x) \), that \( f(x, m) \) is equivalent to `fft.fft(x, m)`.

If \( w \) does not lie on the unit circle, then the transform will be around a spiral with exponentially-increasing radius. Regardless, angle will increase linearly.

For transforms that do lie on the unit circle, accuracy is better when using `ZoomFFT`, since any numerical error in \( w \) is accumulated for long data lengths, drifting away from the unit circle.

The chirp z-transform can be faster than an equivalent FFT with zero padding. Try it with your own array sizes to see.

However, the chirp z-transform is considerably less precise than the equivalent zero-padded FFT.

As this CZT is implemented using the Bluestein algorithm, it can compute large prime-length Fourier transforms in \( O(N \log N) \) time, rather than the \( O(N^{**2}) \) time required by the direct DFT calculation. (`scipy.fft` also uses Bluestein's algorithm'.)

(The name “chirp z-transform” comes from the use of a chirp in the Bluestein algorithm. It does not decompose signals into chirps, like other transforms with “chirp” in the name.)

References

[1], [2]

Examples

Compute multiple prime-length FFTs:

```python
>>> from scipy.signal import CZT
>>> a = np.random.rand(7)
>>> b = np.random.rand(7)
>>> c = np.random.rand(7)
>>> czt_7 = CZT(n=7)
>>> A = czt_7(a)
>>> B = czt_7(b)
>>> C = czt_7(c)
```

Display the points at which the FFT is calculated:

```python
>>> czt_7.points()
array([[1.00000000+0.j, 0.62348980+0.78183148j,
 -0.22252093+0.97492791j, -0.90096887+0.43388374j,
 -0.90096887-0.43388374j, -0.22252093-0.97492791j,
 0.62348980-0.78183148j]], dtype=complex)
>>> import matplotlib.pyplot as plt
>>> plt.plot(czt_7.points().real, czt_7.points().imag, 'o')
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
>>> plt.axis('equal')
>>> plt.show()
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>call</strong>(x, *[, axis])</td>
<td>Calculate the chirp z-transform of a signal.</td>
</tr>
<tr>
<td>points()</td>
<td>Return the points at which the chirp z-transform is computed.</td>
</tr>
</tbody>
</table>

#### scipy.signal.CZT.__call__

CZT.__call__(x, *[, axis=- 1])

Calculate the chirp z-transform of a signal.

**Parameters**

- **x** : [array] The signal to transform.
- **axis** : [int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

**Returns**

- **out** : [ndarray] An array of the same dimensions as x, but with the length of the transformed axis set to m.

#### scipy.signal.CZT.points

CZT.points()

Return the points at which the chirp z-transform is computed.
scipy.signal.ZoomFFT

class scipy.signal.ZoomFFT(n, fn=None, *, fs=2, endpoint=False)

Create a callable zoom FFT transform function.

This is a specialization of the chirp z-transform (CZT) for a set of equally-spaced frequencies around the unit circle, used to calculate a section of the FFT more efficiently than calculating the entire FFT and truncating.

Parameters

- **n** [int] The size of the signal.
- **fn** [array_like] A length-2 sequence \([f_1, f_2]\) giving the frequency range, or a scalar, for which the range \([0, fn]\) is assumed.
- **m** [int, optional] The number of points to evaluate. Default is \(n\).
- **fs** [float, optional] The sampling frequency. If \(fs=10\) represented 10 kHz, for example, then \(f1\) and \(f2\) would also be given in kHz. The default sampling frequency is 2, so \(f1\) and \(f2\) should be in the range \([0, 1]\) to keep the transform below the Nyquist frequency.
- **endpoint** [bool, optional] If True, \(f2\) is the last sample. Otherwise, it is not included. Default is False.

Returns

- **f** [ZoomFFT] Callable object \(f(x, \text{axis}=-1)\) for computing the zoom FFT on \(x\).

See also:

zoom_fft

Convenience function for calculating a zoom FFT.

Notes

The defaults are chosen such that \(f(x, 2)\) is equivalent to \(\text{fft.fft}(x)\) and, if \(m > \text{len}(x)\), that \(f(x, 2, m)\) is equivalent to \(\text{fft.fft}(x, m)\).

Sampling frequency is \(1/dt\), the time step between samples in the signal \(x\). The unit circle corresponds to frequencies from 0 up to the sampling frequency. The default sampling frequency of 2 means that \(f1, f2\) values up to the Nyquist frequency are in the range \([0, 1]\). For \(f1, f2\) values expressed in radians, a sampling frequency of \(2*\pi\) should be used.

Remember that a zoom FFT can only interpolate the points of the existing FFT. It cannot help to resolve two separate nearby frequencies. Frequency resolution can only be increased by increasing acquisition time.

These functions are implemented using Bluestein’s algorithm (as is scipy.fft). [2]

References

[1], [2]
Examples

To plot the transform results use something like the following:

```python
>>> from scipy.signal import ZoomFFT
>>> t = np.linspace(0, 1, 1021)
>>> x = np.cos(2*np.pi*15*t) + np.sin(2*np.pi*17*t)
>>> f1, f2 = 5, 27
>>> transform = ZoomFFT(len(x), [f1, f2], len(x), fs=1021)
>>> X = transform(x)
>>> f = np.linspace(f1, f2, len(x))
>>> import matplotlib.pyplot as plt
>>> plt.plot(f, 20*np.log10(np.abs(X)))
>>> plt.show()
```

Methods

```python
scipy.signal.ZoomFFT.__call__(x, *, axis=–1)

Calculate the chirp z-transform of a signal.
```

**Parameters**

- `x` [array] The signal to transform.
- `axis` [int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

**Returns**
```python
out [ndarray] An array of the same dimensions as x, but with the length of the transformed axis set to m.

scipy.signal.ZoomFFT.points

ZoomFFT.points()
Return the points at which the chirp z-transform is computed.

scipy.signal.czt_points

scipy.signal.czt_points(m, w=None, a=1 + 0j)
Return the points at which the chirp z-transform is computed.

Parameters
m [int] The number of points desired.
w [complex, optional] The ratio between points in each step. Defaults to equally spaced points around the entire unit circle.
a [complex, optional] The starting point in the complex plane. Default is 1+0j.

Returns
out [ndarray] The points in the Z plane at which CZT samples the z-transform, when called with arguments m, w, and a, as complex numbers.

See also:

CZT
Class that creates a callable chirp z-transform function.
czt
Convenience function for quickly calculating CZT.

Examples
Plot the points of a 16-point FFT:
```
>>> from scipy.signal import czt_points
>>> points = czt_points(16)
>>> import matplotlib.pyplot as plt
>>> plt.plot(points.real, points.imag, 'o')
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
>>> plt.axis('equal')
>>> plt.show()
```
and a 91-point logarithmic spiral that crosses the unit circle:
```
>>> m, w, a = 91, 0.995*np.exp(-1j*np.pi*.05), 0.8*np.exp(1j*np.pi/6)
>>> points = czt_points(m, w, a)
>>> plt.plot(points.real, points.imag, 'o')
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
>>> plt.axis('equal')
>>> plt.show()
```

3.3. API definition
The functions are simpler to use than the classes, but are less efficient when using the same transform on many arrays of the same length, since they repeatedly generate the same chirp signal with every call. In these cases, use the classes to create a reusable function instead.

3.3.22 Sparse matrices (scipy.sparse)

SciPy 2-D sparse array package for numeric data.

Note: This package is switching to an array interface, compatible with NumPy arrays, from the older matrix interface. We recommend that you use the array objects (bsr_array, coo_array, etc.) for all new work.

When using the array interface, please note that:

- $x \cdot y$ no longer performs matrix multiplication, but element-wise multiplication (just like with NumPy arrays). To make code work with both arrays and matrices, use $x \odot y$ for matrix multiplication.
- Operations such as `sum`, that used to produce dense matrices, now produce arrays, whose multiplication behavior differs similarly.
- Sparse arrays currently must be two-dimensional. This also means that all `slicing` operations on these objects must produce two-dimensional results, or they will result in an error. This will be addressed in a future version.

The construction utilities (`eye, kron, random, diags`, etc.) have not yet been ported, but their results can be wrapped into arrays:

```python
A = csr_array(eye(3))
```

Contents

Sparse array classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bsr_array(arg1[, shape, dtype, copy, blocksize])</code></td>
<td>Block Sparse Row array</td>
</tr>
<tr>
<td><code>coo_array(arg1[, shape, dtype, copy])</code></td>
<td>A sparse array in COOrdinate format.</td>
</tr>
<tr>
<td><code>csc_array(arg1[, shape, dtype, copy])</code></td>
<td>Compressed Sparse Column array</td>
</tr>
<tr>
<td><code>csr_array(arg1[, shape, dtype, copy])</code></td>
<td>Compressed Sparse Row array</td>
</tr>
<tr>
<td><code>dia_array(arg1[, shape, dtype, copy])</code></td>
<td>Sparse array with DIAgonal storage</td>
</tr>
<tr>
<td><code>dok_array(arg1[, shape, dtype, copy])</code></td>
<td>Dictionary Of Keys based sparse array.</td>
</tr>
<tr>
<td><code>lil_array(arg1[, shape, dtype, copy])</code></td>
<td>Row-based list of lists sparse array</td>
</tr>
</tbody>
</table>

scipy.sparse.bsr_array

class `scipy.sparse.bsr_array` *(arg1, shape=None, dtype=None, copy=False, blocksize=None)*

Block Sparse Row array

This can be instantiated in several ways:

- `bsr_array(D, [blocksize=(R,C)])`
 - where D is a dense array or 2-D ndarray.
- `bsr_array(S, [blocksize=(R,C)])`
 - with another sparse array S (equivalent to S.tobsr())

1705
bsr_array((M, N), [blocksize=(R,C), dtype])

to construct an empty array with shape (M, N) dtype is optional, defaulting to dtype='d'.

bsr_array((data, ij), [blocksize=(R,C), shape=(M, N)])

where data and ij satisfy a[ij[0, k], ij[1, k]] = data[k]

bsr_array((data, indices, indptr), [shape=(M, N)])

is the standard BSR representation where the block column indices for row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding block values are stored in data[indptr[i]: indptr[i+1]]. If the shape parameter is not supplied, the array dimensions are inferred from the index arrays.

Notes

Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and array power.

Summary of BSR format

The Block Compressed Row (BSR) format is very similar to the Compressed Sparse Row (CSR) format. BSR is appropriate for sparse arrays with dense sub arrays like the last example below. Block arrays often arise in vector-valued finite element discretizations. In such cases, BSR is considerably more efficient than CSR and CSC for many sparse arithmetic operations.

Blocksize

The blocksize (R,C) must evenly divide the shape of the array (M,N). That is, R and C must satisfy the relationship M % R = 0 and N % C = 0.

If no blocksize is specified, a simple heuristic is applied to determine an appropriate blocksize.

Examples

```python
>>> from scipy.sparse import bsr_array

>>> bsr_array((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 0, 1, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> bsr_array((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [1, 0, 2],
       [4, 5, 6]])

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6]).repeat(4).reshape(6, 2, 2)
>>> bsr_array((data, indices, indptr), shape=(6, 6)).toarray()
array([[1, 1, 0, 0, 2, 2],
       [1, 1, 0, 0, 2, 2],
       (continues on next page)]]
```
Attributes

dtype [dtype] Data type of the array
ndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.
data Data array of the array
indices BSR format index array
indptr BSR format index pointer array
blocksize Block size of the array
has_sorted_indices
Determine whether the matrix has sorted indices

Methods

__len__()
__mul__(*args, **kwargs)

arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
argmax([axis, out]) Return indices of maximum elements along an axis.
argmin([axis, out]) Return indices of minimum elements along an axis.
asformat(format[, copy]) Return this matrix in the passed format.
asfptype() Upcast matrix to a floating point format (if necessary)
astype(dtype[, casting, copy]) Cast the matrix elements to a specified type.
ceil() Element-wise ceil.
check_format([full_check]) check whether the matrix format is valid
conjugate([copy]) Element-wise complex conjugation.
conjugate() Returns a copy of this matrix.
copy() Returns a copy of this matrix.
count_nonzero() Number of non-zero entries, equivalent to
deg2rad() Element-wise deg2rad.
diagonal([k]) Returns the kth diagonal of the matrix.
dot(other) Ordinary dot product
def2rad() Element-wise deg2rad.
ediagonal_zeroes() Remove zero elements in-place.
extpm() Element-wise expm1.
floor() Element-wise floor.
getH() Return the Hermitian transpose of this matrix.
get_shape() Get shape of a matrix.
getcol(j) Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

continues on next page
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>getformat()</code></td>
<td>Format of a matrix representation as a string.</td>
</tr>
<tr>
<td><code>getmaxprint()</code></td>
<td>Maximum number of elements to display when printed.</td>
</tr>
<tr>
<td><code>getnnz([axis])</code></td>
<td>Number of stored values, including explicit zeros.</td>
</tr>
<tr>
<td><code>getrow(i)</code></td>
<td>Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).</td>
</tr>
<tr>
<td><code>log1p()</code></td>
<td>Element-wise log1p.</td>
</tr>
<tr>
<td><code>matmat(**kwds)</code></td>
<td><code>matmat</code> is deprecated! BSR matmat is deprecated in SciPy 0.19.0.</td>
</tr>
<tr>
<td><code>matvec(**kwds)</code></td>
<td><code>matvec</code> is deprecated! BSR matvec is deprecated in SciPy 0.19.0.</td>
</tr>
<tr>
<td><code>max([axis, out])</code></td>
<td>Return the maximum of the matrix or maximum along an axis.</td>
</tr>
<tr>
<td><code>maximum(other)</code></td>
<td>Element-wise maximum between this and another matrix.</td>
</tr>
<tr>
<td><code>mean([axis, dtype, out])</code></td>
<td>Compute the arithmetic mean along the specified axis.</td>
</tr>
<tr>
<td><code>min([axis, out])</code></td>
<td>Return the minimum of the matrix or maximum along an axis.</td>
</tr>
<tr>
<td><code>minimum(other)</code></td>
<td>Element-wise minimum between this and another matrix.</td>
</tr>
<tr>
<td><code>multiply(other)</code></td>
<td>Point-wise multiplication by another matrix, vector, or scalar.</td>
</tr>
<tr>
<td><code>nonzero()</code></td>
<td>nonzero indices</td>
</tr>
<tr>
<td><code>power(n[, dtype])</code></td>
<td>This function performs element-wise power.</td>
</tr>
<tr>
<td><code>prune()</code></td>
<td>Remove empty space after all non-zero elements.</td>
</tr>
<tr>
<td><code>rad2deg()</code></td>
<td>Element-wise rad2deg.</td>
</tr>
<tr>
<td><code>reshape(self, shape[, order, copy])</code></td>
<td>Gives a new shape to a sparse matrix without changing its data.</td>
</tr>
<tr>
<td><code>resize(*shape)</code></td>
<td>Resize the matrix in-place to dimensions given by shape</td>
</tr>
<tr>
<td><code>rint()</code></td>
<td>Element-wise rint.</td>
</tr>
<tr>
<td><code>set_shape(shape)</code></td>
<td>See reshape.</td>
</tr>
<tr>
<td><code>setdiag(values[, k])</code></td>
<td>Set diagonal or off-diagonal elements of the array.</td>
</tr>
<tr>
<td><code>sign()</code></td>
<td>Element-wise sign.</td>
</tr>
<tr>
<td><code>sin()</code></td>
<td>Element-wise sin.</td>
</tr>
<tr>
<td><code>sinh()</code></td>
<td>Element-wise sinh.</td>
</tr>
<tr>
<td><code>sort_indices()</code></td>
<td>Sort the indices of this matrix in place</td>
</tr>
<tr>
<td><code>sorted_indices()</code></td>
<td>Return a copy of this matrix with sorted indices</td>
</tr>
<tr>
<td><code>sqrt()</code></td>
<td>Element-wise sqrt.</td>
</tr>
<tr>
<td><code>sum([axis, dtype, out])</code></td>
<td>Sum the matrix elements over a given axis.</td>
</tr>
<tr>
<td><code>sum_duplicates()</code></td>
<td>Eliminate duplicate matrix entries by adding them together</td>
</tr>
<tr>
<td><code>tan()</code></td>
<td>Element-wise tan.</td>
</tr>
<tr>
<td><code>tanh()</code></td>
<td>Element-wise tanh.</td>
</tr>
<tr>
<td><code>toarray([order, out])</code></td>
<td>Return a dense ndarray representation of this matrix.</td>
</tr>
<tr>
<td><code>tobsr([blocksize, copy])</code></td>
<td>Convert this matrix into Block Sparse Row Format.</td>
</tr>
<tr>
<td><code>tocoo([copy])</code></td>
<td>Convert this matrix to COOrdinate format.</td>
</tr>
<tr>
<td><code>tocsc([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Column format.</td>
</tr>
<tr>
<td><code>tocsr([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Row format.</td>
</tr>
</tbody>
</table>

continues on next page
Table 175 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>todense(order, out)</code></td>
<td>Return a dense matrix representation of this matrix.</td>
</tr>
<tr>
<td><code>todia(copy)</code></td>
<td>Convert this matrix to sparse DIAgonal format.</td>
</tr>
<tr>
<td><code>todok(copy)</code></td>
<td>Convert this matrix to Dictionary Of Keys format.</td>
</tr>
<tr>
<td><code>tolil(copy)</code></td>
<td>Convert this matrix to List of Lists format.</td>
</tr>
<tr>
<td><code>trace(offset)</code></td>
<td>Returns the sum along diagonals of the sparse matrix.</td>
</tr>
<tr>
<td><code>transpose(axes, copy)</code></td>
<td>Reverses the dimensions of the sparse matrix.</td>
</tr>
</tbody>
</table>

```python
scipy.sparse.bsr_array.__len__
```

```python
bsr_array.__len__()
```

```python
scipy.sparse.bsr_array.__mul__
```

```python
bsr_array.__mul__(*args, **kwargs)
```

```python
scipy.sparse.bsr_array.arcsin
```

```python
bsr_array.arcsin()
```

Element-wise arcsin.

See `numpy.arcsin` for more information.

```python
scipy.sparse.bsr_array.arcsinh
```

```python
bsr_array.arcsinh()
```

Element-wise arcsinh.

See `numpy.arcsinh` for more information.

```python
scipy.sparse.bsr_array.arctan
```

```python
bsr_array.arctan()
```

Element-wise arctan.

See `numpy.arctan` for more information.

```python
scipy.sparse.bsr_array.arctanh
```

```python
bsr_array.arctanh()
```

Element-wise arctanh.

See `numpy.arctanh` for more information.
scipy.sparse.bsr_array.argmax

```python
bsr_array.argmax(axis=None, out=None)
```
Return indices of maximum elements along an axis.

Implicit zero elements are also taken into account. If there are several maximum values, the index of the first occurrence is returned.

Parameters

- `axis` : {-2, -1, 0, 1, None}, optional
 Axis along which the argmax is computed. If None (default), index of the maximum element in the flattened data is returned.

- `out` : [None, optional]
 This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns

- `ind` : [numpy.matrix or int]
 Indices of maximum elements. If matrix, its size along `axis` is 1.

scipy.sparse.bsr_array.argmin

```python
bsr_array.argmin(axis=None, out=None)
```
Return indices of minimum elements along an axis.

Implicit zero elements are also taken into account. If there are several minimum values, the index of the first occurrence is returned.

Parameters

- `axis` : {-2, -1, 0, 1, None}, optional
 Axis along which the argmin is computed. If None (default), index of the minimum element in the flattened data is returned.

- `out` : [None, optional]
 This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns

- `ind` : [numpy.matrix or int]
 Indices of minimum elements. If matrix, its size along `axis` is 1.

scipy.sparse.bsr_array.asformat

```python
bsr_array.asformat(format, copy=False)
```
Return this matrix in the passed format.

Parameters

- `format` : [{str, None}] The desired matrix format ("csr", "csc", "lil", "dok", "array", ...) or None for no conversion.

- `copy` : [bool, optional]
 If True, the result is guaranteed to not share data with self.

Returns

- `A` : [This matrix in the passed format.]
scipy.sparse.bsr_array.asfptype

bsr_array.asfptype()
 Upcast matrix to a floating point format (if necessary)

scipy.sparse.bsr_array.astype

bsr_array.astype(dtype, casting='unsafe', copy=True)
 Cast the matrix elements to a specified type.

 Parameters

 dtype [string or numpy dtype] Typecode or data-type to which to cast the data.
 casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’ means only casts which can preserve values are allowed. ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data conversions may be done.
 copy [bool, optional] If copy is False, the result might share some memory with this matrix. If copy is True, it is guaranteed that the result and this matrix do not share any memory.

scipy.sparse.bsr_array.ceil

bsr_array.ceil()
 Element-wise ceil.

 See numpy.ceil for more information.

scipy.sparse.bsr_array.check_format

bsr_array.check_format (full_check=True)
 check whether the matrix format is valid

 Parameters:

 full_check:

 True - rigorous check, O(N) operations : default False - basic check, O(1) operations

scipy.sparse.bsr_array.conj

bsr_array.conj (copy=True)
 Element-wise complex conjugation.

 If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not copied.

 Parameters

 copy [bool, optional] If True, the result is guaranteed to not share data with self.

 Returns
A

[The element-wise complex conjugate.]

scipy.sparse.bsr_array.conjugate

```python
csr_array.conjugate(copy=True)
```

Element-wise complex conjugation.

If the matrix is of non-complex data type and `copy` is False, this method does nothing and the data is not copied.

Parameters

- `copy` [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

A

[The element-wise complex conjugate.]

scipy.sparse.bsr_array.copy

```python
csr_array.copy()
```

Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.

scipy.sparse.bsr_array.count_nonzero

```python
csr_array.count_nonzero()
```

Number of non-zero entries, equivalent to

```python
np.count_nonzero(a.toarray())
```

Unlike `getnnz()` and the `nnz` property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.bsr_array.deg2rad

```python
csr_array.deg2rad()
```

Element-wise deg2rad.

See `numpy.deg2rad` for more information.

scipy.sparse.bsr_array.diagonal

```python
csr_array.diagonal(k=0)
```

Returns the kth diagonal of the matrix.

Parameters

- `k` [int, optional] Which diagonal to get, corresponding to elements a[i, i+k]. Default: 0 (the main diagonal).

New in version 1.0.

See also:
numpy.diagonal

Equivalent numpy function.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])
```

scipy.sparse.bsr_array.dot

bsr_array.dot(other)
Ordinary dot product

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
```

scipy.sparse.bsr_array.eliminate_zeros

bsr_array.eliminate_zeros()
Remove zero elements in-place.

scipy.sparse.bsr_array.expm1

bsr_array.expm1()
Element-wise expm1.

See numpy.expm1 for more information.
scipy.sparse.bsr_array.floor

bsr_array.floor()
Element-wise floor.

See numpy.floor for more information.

scipy.sparse.bsr_array.getH

bsr_array.getH()
Return the Hermitian transpose of this matrix.

See also:

numpy.matrix.getH

NumPy’s implementation of getH for matrices

scipy.sparse.bsr_array.get_shape

bsr_array.get_shape()
Get shape of a matrix.

scipy.sparse.bsr_array.getcol

bsr_array.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

scipy.sparse.bsr_array.getformat

bsr_array.getformat()
Format of a matrix representation as a string.

scipy.sparse.bsr_array.getmaxprint

bsr_array.getmaxprint()
Maximum number of elements to display when printed.

scipy.sparse.bsr_array.getnnz

bsr_array.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters
axis [None, 0, or 1] Select between the number of values across the whole matrix, in each column, or in each row.

See also:
count_nonzero

Number of non-zero entries

scipy.sparse.bsr_array.getrow

bsr_array.getrow(i)

Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).

scipy.sparse.bsr_array.log1p

bsr_array.log1p()

Element-wise log1p.

See numpy.log1p for more information.

scipy.sparse.bsr_array.matmat

bsr_array.matmat(**kwds)

matmat is deprecated! BSR matmat is deprecated in SciPy 0.19.0. Use * operator instead.

Multiply this sparse matrix by other matrix.

scipy.sparse.bsr_array.matvec

bsr_array.matvec(**kwds)

matvec is deprecated! BSR matvec is deprecated in SciPy 0.19.0. Use * operator instead.

Multiply matrix by vector.

scipy.sparse.bsr_array.max

bsr_array.max(axis=None, out=None)

Return the maximum of the matrix or maximum along an axis. This takes all elements into account, not just
the non-zero ones.

Parameters

axis
{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is
to compute the maximum over all the matrix elements, returning a scalar (i.e., axis =
None).

out
[None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

amax
[coo_matrix or scalar] Maximum of a. If axis is None, the result is a scalar value. If
axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

min

The minimum value of a sparse matrix along a given axis.
numpy.matrix.max

NumPy’s implementation of ‘max’ for matrices

scipy.sparse.bsr_array.maximum

`bsr_array.maximum(other)`

Element-wise maximum between this and another matrix.

scipy.sparse.bsr_array.mean

`bsr_array.mean(axis=None, dtype=None, out=None)`

Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken over all elements in the matrix by default, otherwise over the specified axis. `float64` intermediate and return values are used for integer inputs.

Parameters

- `axis` ([{-2, -1, 0, 1, None}] optional) Axis along which the mean is computed. The default is to compute the mean of all elements in the matrix (i.e., `axis = None`).
- `dtype` ([data-type, optional]) Type to use in computing the mean. For integer inputs, the default is `float64`; for floating point inputs, it is the same as the input `dtype`. New in version 0.18.0.
- `out` ([np.matrix, optional]) Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. New in version 0.18.0.

Returns

- `m` [np.matrix]

See also:

numpy.matrix.mean

NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.bsr_array.min

`bsr_array.min(axis=None, out=None)`

Return the minimum of the matrix or maximum along an axis. This takes all elements into account, not just the non-zero ones.

Parameters

- `axis` ([{-2, -1, 0, 1, None}] optional) Axis along which the sum is computed. The default is to compute the minimum over all the matrix elements, returning a scalar (i.e., `axis = None`).
- `out` [None, optional] This argument is in the signature *solely* for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns

- `amin` [coo_matrix or scalar] Minimum of `a`. If `axis` is None, the result is a scalar value. If `axis` is given, the result is a sparse.coo_matrix of dimension `a.ndim - 1`.
See also:

max

The maximum value of a sparse matrix along a given axis.

numpy.matrix.min

NumPy’s implementation of ‘min’ for matrices

scipy.sparse.bsr_array.minimum

bsr_array.minimum(other)

Element-wise minimum between this and another matrix.

scipy.sparse.bsr_array.multiply

bsr_array.multiply(other)

Point-wise multiplication by another matrix, vector, or scalar.

scipy.sparse.bsr_array.nonzero

bsr_array.nonzero()

nonzero indices

Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
```

scipy.sparse.bsr_array.power

bsr_array.power(n, dtype=None)

This function performs element-wise power.

Parameters

n [n is a scalar]
dtype [If dtype is not specified, the current dtype will be preserved.]
scipy.sparse.bsr_array.prune

bsr_array.prune()
Remove empty space after all non-zero elements.

scipy.sparse.bsr_array.rad2deg

bsr_array.rad2deg()
Element-wise rad2deg.
See numpy.rad2deg for more information.

scipy.sparse.bsr_array.reshape

bsr_array.reshape(self, shape, order='C', copy=False)
Gives a new shape to a sparse matrix without changing its data.

Parameters

- shape [length-2 tuple of ints] The new shape should be compatible with the original shape.
- order [{‘C’, ‘F’}, optional] Read the elements using this index order. ‘C’ means to read and write the elements using C-like index order; e.g., read entire first row, then second row, etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g., read entire first column, then second column, etc.
- copy [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

- reshaped_matrix [sparse matrix] A sparse matrix with the given shape, not necessarily of the same format as the current object.

See also:

numpy.matrix.reshape
NumPy’s implementation of ‘reshape’ for matrices

scipy.sparse.bsr_array.resize

bsr_array.resize(*shape)
Resize the matrix in-place to dimensions given by shape
Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying outside the new shape are removed.

Parameters

- shape [(int, int)] number of rows and columns in the new matrix
Notes

The semantics are not identical to `numpy.ndarray.resize` or `numpy.resize`. Here, the same data will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy, resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or replaced with new objects.

```python
scipy.sparse.bsr_array.rint

bsr_array.rint()
Element-wise rint.
See `numpy.rint` for more information.
```

```python
scipy.sparse.bsr_array.set_shape

bsr_array.set_shape(shape)
See `reshape`.
```

```python
scipy.sparse.bsr_array.setdiag

bsr_array.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters

values [array_like] New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values, then the remaining diagonal entries will not be set. If values are longer than the diagonal, then the remaining values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0 (the main diagonal).
```

```python
scipy.sparse.bsr_array.sign

bsr_array.sign()
Element-wise sign.
See `numpy.sign` for more information.
```
scipy.sparse.bsr_array.sin

bsr_array.sin()

Element-wise sin.

See numpy.sin for more information.

scipy.sparse.bsr_array.sinh

bsr_array.sinh()

Element-wise sinh.

See numpy.sinh for more information.

scipy.sparse.bsr_array.sort_indices

bsr_array.sort_indices()

Sort the indices of this matrix in place

scipy.sparse.bsr_array.sorted_indices

bsr_array.sorted_indices()

Return a copy of this matrix with sorted indices

scipy.sparse.bsr_array.sqrt

bsr_array.sqrt()

Element-wise sqrt.

See numpy.sqrt for more information.

scipy.sparse.bsr_array.sum

bsr_array.sum(axis=None, dtype=None, out=None)

Sum the matrix elements over a given axis.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e., axis = None).

dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the elements are summed. The dtype of a is used by default unless a has an integer dtype of less precision than the default platform integer. In that case, if a is signed then the platform integer is used while if a is unsigned then an unsigned integer of the same precision as the platform integer is used.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.

New in version 0.18.0.
Returns

`sum_along_axis`

[np.matrix] A matrix with the same shape as `self`, with the specified axis removed.

See also:

`numpy.matrix.sum`

NumPy's implementation of 'sum' for matrices

scipy.sparse.bsr_array.sum_duplicates

`bsr_array.sum_duplicates()`
Eliminate duplicate matrix entries by adding them together
The is an *in place* operation

scipy.sparse.bsr_array.tan

`bsr_array.tan()`
Element-wise tan.
See `numpy.tan` for more information.

scipy.sparse.bsr_array.tanh

`bsr_array.tanh()`
Element-wise tanh.
See `numpy.tanh` for more information.

scipy.sparse.bsr_array.toarray

`bsr_array.toarray(order=None, out=None)`
Return a dense ndarray representation of this matrix.

Parameters

- `order`
 {{C, ‘F’}, optional] Whether to store multidimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the `out` argument.

- `out`
 [ndarray, 2-D, optional] If specified, uses this array as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. For most sparse types, `out` is required to be memory contiguous (either C or Fortran ordered).

Returns

- `arr`
 [ndarray, 2-D] An array with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If `out` was passed, the same object is returned after being modified in-place to contain the appropriate values.
.. py:method:: scipy.sparse.bsr_array.tobsr

 \texttt{bsr_array.tobsr}(\texttt{blocksize=\textit{None}, \textit{copy=False}})

 Convert this matrix into Block Sparse Row Format.

 With copy=False, the data/indices may be shared between this matrix and the resultant \textit{bsr_matrix}.

 If \textit{blocksize}=(R, C) is provided, it will be used for determining block size of the \textit{bsr_matrix}.

.. py:method:: scipy.sparse.bsr_array.tocoo

 \texttt{bsr_array.tocoo}(\texttt{\textit{copy=True}})

 Convert this matrix to COOrdinate format.

 When copy=False the data array will be shared between this matrix and the resultant \textit{coo_matrix}.

.. py:method:: scipy.sparse.bsr_array.tocsc

 \texttt{bsr_array.tocsc}(\texttt{\textit{copy=False}})

 Convert this matrix to Compressed Sparse Column format.

 With copy=False, the data/indices may be shared between this matrix and the resultant \textit{csc_matrix}.

.. py:method:: scipy.sparse.bsr_array.tocsr

 \texttt{bsr_array.tocsr}(\texttt{\textit{copy=False}})

 Convert this matrix to Compressed Sparse Row format.

 With copy=False, the data/indices may be shared between this matrix and the resultant \textit{csr_matrix}.

.. py:method:: scipy.sparse.bsr_array.todense

 \texttt{bsr_array.todense}(\texttt{\textit{order=\textit{None}, \textit{out=\textit{None}}}})

 Return a dense matrix representation of this matrix.

 Parameters

 \texttt{order} [\{'C', 'F'}, \texttt{optional}] Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘\textit{None}’, which provides no ordering guarantees. Cannot be specified in conjunction with the \texttt{out} argument.

 \texttt{out} [\texttt{ndarray}, \texttt{2-D}, \texttt{optional}] If specified, uses this array (or \texttt{numpy.matrix}) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method.

 Returns

 \texttt{arr} [\texttt{numpy.matrix}, \texttt{2-D}] A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If \texttt{out} was passed and was an array (rather than a \texttt{numpy.matrix}), it will be filled with the appropriate values and returned wrapped in a \texttt{numpy.matrix} object that shares the same memory.
scipy.sparse.bsr_array.todia

`bsr_array.todia(copy=False)`
Convert this matrix to sparse DIAgonal format.
With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.

scipy.sparse.bsr_array.todok

`bsr_array.todok(copy=False)`
Convert this matrix to Dictionary Of Keys format.
With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.bsr_array.tolil

`bsr_array.tolil(copy=False)`
Convert this matrix to List of Lists format.
With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.bsr_array.trace

`bsr_array.trace(offset=0)`
Returns the sum along diagonals of the sparse matrix.

Parameters

offset [int, optional] Which diagonal to get, corresponding to elements a[i, i+offset]. Default: 0 (the main diagonal).

scipy.sparse.bsr_array.transpose

`bsr_array.transpose(axes=None, copy=False)`
Reverses the dimensions of the sparse matrix.

Parameters

axes [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value.
copy [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

p [self with the dimensions reversed.]

See also:

`numpy.matrix.transpose`
NumPy's implementation of ‘transpose’ for matrices
scipy.sparse.bsr_array.trunc

bsr_array.trunc()
Element-wise trunc.

See numpy.trunc for more information.

scipy.sparse.coo_array

class scipy.sparse.coo_array(arg1, shape=None, dtype=None, copy=False)
A sparse array in COOrdinate format.

Also known as the ‘ijv’ or ‘triplet’ format.

This can be instantiated in several ways:

coo_array(D)
 with a dense array D

coo_array(S)
 with another sparse array S (equivalent to S.tocoo())

coo_array((M, N), [dtype])
 to construct an empty array with shape (M, N) dtype is optional, defaulting to dtype='d'.

coo_array((data, (i, j)), [shape=(M, N)])
 to construct from three arrays:
 1. data[:]: the entries of the array, in any order
 2. i[:]: the row indices of the array entries
 3. j[:]: the column indices of the array entries

 Where A[i[k], j[k]] = data[k]. When shape is not specified, it is inferred from the
 index arrays

Notes

Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and
array power.

Advantages of the COO format

- facilitates fast conversion among sparse formats
- permits duplicate entries (see example)
- very fast conversion to and from CSR/CSC formats

Disadvantages of the COO format
• does not directly support:
 – arithmetic operations
 – slicing

Intended Usage

• COO is a fast format for constructing sparse arrays

• Once a array has been constructed, convert to CSR or CSC format for fast arithmetic and array vector operations

• By default when converting to CSR or CSC format, duplicate (i,j) entries will be summed together. This facilitates efficient construction of finite element arrays and the like. (see example)

Examples

```python
>>> # Constructing an empty array
>>> from scipy.sparse import coo_array
>>> coo_array((3, 4), dtype=np.int8).toarray()
array([[0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.]], dtype=int8)
```

```python
>>> # Constructing a array using ijv format
>>> row = np.array([0, 3, 1, 0])
>>> col = np.array([0, 3, 1, 2])
>>> data = np.array([4, 5, 7, 9])
>>> coo_array((data, (row, col)), shape=(4, 4)).toarray()
array([[4, 0, 9, 0],
       [0, 7, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 5]])
```

```python
>>> # Constructing a array with duplicate indices
>>> row = np.array([0, 0, 1, 3, 1, 0])
>>> col = np.array([0, 2, 1, 3, 1, 0])
>>> data = np.array([1, 1, 1, 1, 1, 1])
>>> coo = coo_array((data, (row, col)), shape=(4, 4))
>>> # Duplicate indices are maintained until implicitly or explicitly summed
>>> np.max(coo.data)
1
>>> coo.toarray()
array([[3, 0, 1, 0],
       [0, 2, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 1]])
```

Attributes

- **dtype** [dtype] Data type of the array
ndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.
data COO format data array of the array
row COO format row index array of the array
col COO format column index array of the array

Methods

__len__()

__mul__(*args, **kwargs)

arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
argmax([axis, out]) Return indices of maximum elements along an axis.
argmin([axis, out]) Return indices of minimum elements along an axis.
asformat(format[, copy]) Return this matrix in the passed format.
asfptype() Upcast matrix to a floating point format (if necessary)
astype(dtype[, casting, copy]) Cast the matrix elements to a specified type.
ceil() Element-wise ceil.
conj([copy]) Element-wise complex conjugation.
conjugate([copy]) Element-wise complex conjugation.
copy() Returns a copy of this matrix.
count_nonzero() Number of non-zero entries, equivalent to
deg2rad() Element-wise deg2rad.
diagonal([k]) Returns the kth diagonal of the matrix.
dot(other) Ordinary dot product
eliminate_zeros() Remove zero entries from the matrix
expm1() Element-wise expm1.
floor() Element-wise floor.
getH() Return the Hermitian transpose of this matrix.
get_shape() Get shape of a matrix.
getcol(j) Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).
getformat() Format of a matrix representation as a string.
getmaxprint() Maximum number of elements to display when printed.
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).
log1p() Element-wise log1p.
max([axis, out]) Return the maximum of the matrix or maximum along an axis.
maximum(other) Element-wise maximum between this and another matrix.
mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis.
min([axis, out]) Return the minimum of the matrix or maximum along an axis.

continues on next page
Table 176 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>minimum(other)</code></td>
<td>Element-wise minimum between this and another matrix.</td>
</tr>
<tr>
<td><code>multiply(other)</code></td>
<td>Point-wise multiplication by another matrix</td>
</tr>
<tr>
<td><code>nonzero()</code></td>
<td>nonzero indices</td>
</tr>
<tr>
<td><code>power(n[, dtype])</code></td>
<td>This function performs element-wise power.</td>
</tr>
<tr>
<td><code>rad2deg()</code></td>
<td>Element-wise rad2deg.</td>
</tr>
<tr>
<td><code>reshape(self, shape[, order, copy])</code></td>
<td>Gives a new shape to a sparse matrix without changing its data.</td>
</tr>
<tr>
<td><code>rint()</code></td>
<td>Element-wise rint.</td>
</tr>
<tr>
<td><code>set_shape(shape)</code></td>
<td>See reshape.</td>
</tr>
<tr>
<td><code>setdiag(values[, k])</code></td>
<td>Set diagonal or off-diagonal elements of the array.</td>
</tr>
<tr>
<td><code>sign()</code></td>
<td>Element-wise sign.</td>
</tr>
<tr>
<td><code>sin()</code></td>
<td>Element-wise sin.</td>
</tr>
<tr>
<td><code>sinh()</code></td>
<td>Element-wise sinh.</td>
</tr>
<tr>
<td><code>sqrt()</code></td>
<td>Element-wise sqrt.</td>
</tr>
<tr>
<td><code>sum([axis, dtype, out])</code></td>
<td>Sum the matrix elements over a given axis.</td>
</tr>
<tr>
<td><code>sum_duplicates()</code></td>
<td>Eliminate duplicate matrix entries by adding them together.</td>
</tr>
<tr>
<td><code>tan()</code></td>
<td>Element-wise tan.</td>
</tr>
<tr>
<td><code>tanh()</code></td>
<td>Element-wise tanh.</td>
</tr>
<tr>
<td><code>toarray([order, out])</code></td>
<td>See the docstring for <code>spmatrix.toarray</code>.</td>
</tr>
<tr>
<td><code>tobsr([blocksize, copy])</code></td>
<td>Convert this matrix to Block Sparse Row format.</td>
</tr>
<tr>
<td><code>tocoo([copy])</code></td>
<td>Convert this matrix to COOrdinate format.</td>
</tr>
<tr>
<td><code>tocsc([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Column format.</td>
</tr>
<tr>
<td><code>tocsr([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Row format</td>
</tr>
<tr>
<td><code>todense([order, out])</code></td>
<td>Return a dense matrix representation of this matrix.</td>
</tr>
<tr>
<td><code>todia([copy])</code></td>
<td>Convert this matrix to sparse DIAgonal format.</td>
</tr>
<tr>
<td><code>todok([copy])</code></td>
<td>Convert this matrix to Dictionary Of Keys format.</td>
</tr>
<tr>
<td><code>tolil([copy])</code></td>
<td>Convert this matrix to List of Lists format.</td>
</tr>
<tr>
<td><code>trace([offset])</code></td>
<td>Returns the sum along diagonals of the sparse matrix.</td>
</tr>
<tr>
<td><code>transpose([axes, copy])</code></td>
<td>Reverses the dimensions of the sparse matrix.</td>
</tr>
<tr>
<td><code>trunc()</code></td>
<td>Element-wise trunc.</td>
</tr>
</tbody>
</table>

scipy.sparse.coo_array.__len__

coo_array.__len__()
scipy.sparse.coo_array.__mul__

coo_array.__mul__(*args, **kwargs)

scipy.sparse.coo_array.arcsin

coo_array.arcsin()
Element-wise arcsin.

See numpy.arcsin for more information.

scipy.sparse.coo_array.arcsinh

coo_array.arcsinh()
Element-wise arcsinh.

See numpy.arcsinh for more information.

scipy.sparse.coo_array.arctan

coo_array.arctan()
Element-wise arctan.

See numpy.arctan for more information.

scipy.sparse.coo_array.arctanh

coo_array.arctanh()
Element-wise arctanh.

See numpy.arctanh for more information.

scipy.sparse.coo_array.argmax

coo_array.argmax(axis=None, out=None)
Return indices of maximum elements along an axis.
Implicit zero elements are also taken into account. If there are several maximum values, the index of the first occurrence is returned.

Parameters

- **axis**
 - [[-2, -1, 0, 1, None], optional] Axis along which the argmax is computed. If None (default), index of the maximum element in the flatten data is returned.

- **out**
 - [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns

- **ind**
 - [numpy.matrix or int] Indices of maximum elements. If matrix, its size along axis is 1.
scipy.sparse.coo_array.argmin

```python
coo_array.argmin(axis=None, out=None)
```

Return indices of minimum elements along an axis. Implicit zero elements are also taken into account. If there are several minimum values, the index of the first occurrence is returned.

Parameters

- **axis**
 - [{-2, -1, 0, 1, None}, optional] Axis along which the argmin is computed. If None (default), index of the minimum element in the flattened data is returned.
- **out**
 - [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns

- **ind**
 - [numpy.matrix or int] Indices of minimum elements. If matrix, its size along axis is 1.

scipy.sparse.coo_array.asformat

```python
coo_array.asformat(format, copy=False)
```

Return this matrix in the passed format.

Parameters

- **format**
 - [str, None] The desired matrix format ("csr", "csc", "lil", "dok", "array", ...) or None for no conversion.
- **copy**
 - [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- **A**
 - [This matrix in the passed format.]

scipy.sparse.coo_array.asfptype

```python
coo_array.asfptype()
```

Upcast matrix to a floating point format (if necessary)

scipy.sparse.coo_array.astype

```python
coo_array.astype(dtype, casting='unsafe', copy=True)
```

Cast the matrix elements to a specified type.

Parameters

- **dtype**
 - [string or numpype dtype] Typecode or data-type to which to cast the data.
- **casting**
 - ["no", "equiv", "safe", "same_kind", "unsafe"], optional] Controls what kind of data casting may occur. Defaults to 'unsafe' for backwards compatibility. 'no' means the data types should not be cast at all. 'equiv' means only byte-order changes are allowed. 'safe' means only casts which can preserve values are allowed. 'same_kind' means only safe casts or casts within a kind, like float64 to float32, are allowed. 'unsafe' means any data conversions may be done.
- **copy**
 - [bool, optional] If copy is False, the result might share some memory with this matrix. If copy is True, it is guaranteed that the result and this matrix do not share any memory.
scipy.sparse.coo_array.ceil

```python
coo_array.ceil()
```

Element-wise ceil.

See `numpy.ceil` for more information.

scipy.sparse.coo_array.conj

```python
coo_array.conj(copy=True)
```

Element-wise complex conjugation.

If the matrix is of non-complex data type and `copy` is False, this method does nothing and the data is not copied.

Parameters

- `copy` [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- `A` [The element-wise complex conjugate.]

scipy.sparse.coo_array.conjugate

```python
coo_array.conjugate(copy=True)
```

Element-wise complex conjugation.

If the matrix is of non-complex data type and `copy` is False, this method does nothing and the data is not copied.

Parameters

- `copy` [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- `A` [The element-wise complex conjugate.]

scipy.sparse.coo_array.copy

```python
coo_array.copy()
```

Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.

scipy.sparse.coo_array.count_nonzero

```python
coo_array.count_nonzero()
```

Number of non-zero entries, equivalent to `np.count_nonzero(a.toarray())`

Unlike `getnnz()` and the `nnz` property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data.
scipy.sparse.coo_array.deg2rad

coo_array.deg2rad()
Element-wise deg2rad.
See numpy.deg2rad for more information.

scipy.sparse.coo_array.diagonal

coo_array.diagonal(k=0)
Returns the kth diagonal of the matrix.

Parameters

- k [int, optional] Which diagonal to get, corresponding to elements a[i, i+k]. Default: 0 (the main diagonal).
New in version 1.0.

See also:

numpy.diagonal

Equivalent numpy function.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])
```

scipy.sparse.coo_array.dot

coo_array.dot(other)
Ordinary dot product

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([1, -3, -1], dtype=int64)
```
scipy.sparse.coo_array.eliminate_zeros

```python
coo_array.eliminate_zeros()
```
Remove zero entries from the matrix
This is an in place operation

scipy.sparse.coo_array.expm1

```python
coo_array.expm1()
```
Element-wise expm1.
See numpy.expm1 for more information.

scipy.sparse.coo_array.floor

```python
coo_array.floor()
```
Element-wise floor.
See numpy.floor for more information.

scipy.sparse.coo_array.getH

```python
coo_array.getH()
```
Return the Hermitian transpose of this matrix.
See also:

```
numpy.matrix.getH
```
NumPy's implementation of getH for matrices

scipy.sparse.coo_array.get_shape

```python
coo_array.get_shape()
```
Get shape of a matrix.

scipy.sparse.coo_array.getcol

```python
coo_array.getcol(j)
```
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).
scipy.sparse.coo_array.getformat

coo_array.getformat()
Format of a matrix representation as a string.

scipy.sparse.coo_array.getmaxprint

coo_array.getmaxprint()
Maximum number of elements to display when printed.

scipy.sparse.coo_array.getnnz

coo_array.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters
axis [None, 0, or 1] Select between the number of values across the whole matrix, in each column, or in each row.

See also:
count_nonzero
Number of non-zero entries

scipy.sparse.coo_array.getrow

coo_array.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).

scipy.sparse.coo_array.log1p

coo_array.log1p()
Element-wise log1p.

See numpy.log1p for more information.

scipy.sparse.coo_array.max

coo_array.max(axis=None, out=None)
Return the maximum of the matrix or maximum along an axis. This takes all elements into account, not just the non-zero ones.

Parameters
axis [-2, -1, 0, 1, None] optional] Axis along which the sum is computed. The default is to compute the maximum over all the matrix elements, returning a scalar (i.e., axis = None).
out [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.
Returns

amax [coo_matrix or scalar] Maximum of a. If $axis$ is None, the result is a scalar value. If $axis$ is given, the result is a sparse.cooc_matrix of dimension a.ndim - 1.

See also:

min

The minimum value of a sparse matrix along a given axis.

numpy.matrix.max

NumPy's implementation of 'max' for matrices

scipy.sparse.coo_array.maximum

coo_array.maximum(other)

Element-wise maximum between this and another matrix.

scipy.sparse.coo_array.mean

coo_array.mean(axis=None, dtype=None, out=None)

Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken over all elements in the matrix by default, otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters

axis [-2, -1, 0, 1, None] optional] Axis along which the mean is computed. The default is to compute the mean of all elements in the matrix (i.e., $axis$ = None).

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype.

New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.

New in version 0.18.0.

Returns

m [np.matrix]

See also:

numpy.matrix.mean

NumPy's implementation of 'mean' for matrices
scipy.sparse.coo_array.min

`coo_array.min(axis=None, out=None)`

Return the minimum of the matrix or maximum along an axis. This takes all elements into account, not just the non-zero ones.

Parameters

- `axis` [-2, -1, 0, 1, None] optional
 - Axis along which the sum is computed. The default is to compute the minimum over all the matrix elements, returning a scalar (i.e., `axis = None`).
- `out` [None, optional]
 - This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns

- `amin` [coo_matrix or scalar]
 - Minimum of `a`. If `axis` is None, the result is a scalar value. If `axis` is given, the result is a sparse.coo_matrix of dimension `a.ndim - 1`.

See also:

- `numpy.matrix.min`
 - NumPy's implementation of 'min' for matrices

scipy.sparse.coo_array.minimum

`coo_array.minimum(other)`

Element-wise minimum between this and another matrix.

scipy.sparse.coo_array.multiply

`coo_array.multiply(other)`

Point-wise multiplication by another matrix.

scipy.sparse.coo_array.nonzero

`coo_array.nonzero()`

nonzero indices

- Returns a tuple of arrays (row, col) containing the indices of the non-zero elements of the matrix.
Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
```

scipy.sparse.coo_array.power

coo_array.power(n, dtype=None)

This function performs element-wise power.

Parameters

- **n** [n is a scalar]
- **dtype** [If dtype is not specified, the current dtype will be preserved.]

scipy.sparse.coo_array.rad2deg

coo_array.rad2deg()

Element-wise rad2deg.

See `numpy.rad2deg` for more information.

scipy.sparse.coo_array.reshape

coo_array.reshape(self, shape, order='C', copy=False)

Gives a new shape to a sparse matrix without changing its data.

Parameters

- **shape** [length-2 tuple of ints] The new shape should be compatible with the original shape.
- **order** ['C', 'F'], optional] Read the elements using this index order. ‘C’ means to read and write the elements using C-like index order; e.g., read entire first row, then second row, etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g., read entire first column, then second column, etc.
- **copy** [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

- **reshaped_matrix** [sparse matrix] A sparse matrix with the given shape, not necessarily of the same format as the current object.

See also:

- `numpy.matrix.reshape`

NumPy’s implementation of ‘reshape’ for matrices
scipy.sparse.coo_array.resize

```python
coo_array.resize(*shape)
```

Resize the matrix in-place to dimensions given by `shape`.

Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying outside the new shape are removed.

Parameters

- `shape` [(int, int)] number of rows and columns in the new matrix

Notes

The semantics are not identical to `numpy.ndarray.resize` or `numpy.resize`. Here, the same data will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy, resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or replaced with new objects.

scipy.sparse.coo_array.rint

```python
coo_array.rint()
```

Element-wise rint.

See `numpy.rint` for more information.

scipy.sparse.coo_array.set_shape

```python
coo_array.set_shape(shape)
```

See `reshape`.

scipy.sparse.coo_array.setdiag

```python
coo_array.setdiag(values, k=0)
```

Set diagonal or off-diagonal elements of the array.

Parameters

- `values` [array_like] New values of the diagonal elements.

 Values may have any length. If the diagonal is longer than values, then the remaining diagonal entries will not be set. If values are longer than the diagonal, then the remaining values are ignored.

 If a scalar value is given, all of the diagonal is set to it.

- `k` [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0 (the main diagonal).
scipy.sparse.coo_array.sign

coo_array.sign()
Element-wise sign.

See numpy.sign for more information.

scipy.sparse.coo_array.sin

coo_array.sin()
Element-wise sin.

See numpy.sin for more information.

scipy.sparse.coo_array.sinh

coo_array.sinh()
Element-wise sinh.

See numpy.sinh for more information.

scipy.sparse.coo_array.sqrt

coo_array.sqrt()
Element-wise sqrt.

See numpy.sqrt for more information.

scipy.sparse.coo_array.sum

coo_array.sum(axis=None, dtype=None, out=None)
Sum the matrix elements over a given axis.

Parameters

- **axis**
 [-2, -1, 0, 1, None] optional] Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e., axis = None).

- **dtype**
 [dtype, optional] The type of the returned matrix and of the accumulator in which the elements are summed. The dtype of a is used by default unless a has an integer dtype of less precision than the default platform integer. In that case, if a is signed then the platform integer is used while if a is unsigned then an unsigned integer of the same precision as the platform integer is used.

- **out**
 [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.

Returns

- **sum_along_axis**
 [np.matrix] A matrix with the same shape as self, with the specified axis removed.

See also:
numpy.matrix.sum

NumPy's implementation of 'sum' for matrices

scipy.sparse.coo_array.sum_duplicates

coo_array.sum_duplicates()

Eliminate duplicate matrix entries by adding them together

This is an *in place* operation

scipy.sparse.coo_array.tan

coo_array.tan()

Element-wise tan.

See *numpy.tan* for more information.

scipy.sparse.coo_array.tanh

coo_array.tanh()

Element-wise tanh.

See *numpy.tanh* for more information.

scipy.sparse.coo_array.toarray

coo_array.toarray(order=None, out=None)

See the docstring for *spmatrix.toarray*.

scipy.sparse.coo_array.tobsr

coo_array.tobsr(blocksize=None, copy=False)

Convert this matrix to Block Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.

When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix.

scipy.sparse.coo_array.tocoo

coo_array.tocoo(copy=False)

Convert this matrix to COOrdinate format.

With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.
scipy.sparse.coo_array.tocsc

coo_array.tocsc *(copy=False)*

Convert this matrix to Compressed Sparse Column format

Duplicate entries will be summed together.

Examples

```python
>>> from numpy import array
>>> from scipy.sparse import coo_matrix
>>> row = array([0, 0, 1, 3, 1, 0, 0])
>>> col = array([0, 2, 1, 3, 1, 0, 0])
>>> data = array([1, 1, 1, 1, 1, 1, 1])
>>> A = coo_matrix((data, (row, col)), shape=(4, 4)).tocsc()
>>> A.toarray()
array([[3, 0, 1, 0],
       [0, 2, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 1]])
```

scipy.sparse.coo_array.tocsr

coo_array.tocsr *(copy=False)*

Convert this matrix to Compressed Sparse Row format

Duplicate entries will be summed together.

Examples

```python
>>> from numpy import array
>>> from scipy.sparse import coo_matrix
>>> row = array([0, 0, 1, 3, 1, 0, 0])
>>> col = array([0, 2, 1, 3, 1, 0, 0])
>>> data = array([1, 1, 1, 1, 1, 1, 1])
>>> A = coo_matrix((data, (row, col)), shape=(4, 4)).tocsr()
>>> A.toarray()
array([[3, 0, 1, 0],
       [0, 2, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 1]])
```
scipy.sparse.coo_array.todense

coo_array.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters
 order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the out argument.
 out [ndarray, 2-D, optional] If specified, uses this array (or numpy.matrix) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns
 arr [numpy.matrix, 2-D] A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If out was passed and was an array (rather than a numpy.matrix), it will be filled with the appropriate values and returned wrapped in a numpy.matrix object that shares the same memory.

scipy.sparse.coo_array.todia

coo_array.todia(copy=False)
Convert this matrix to sparse DIAgonal format.

 With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.

scipy.sparse.coo_array.todok

coo_array.todok(copy=False)
Convert this matrix to Dictionary Of Keys format.

 With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.coo_array.tolil

coo_array.tolil(copy=False)
Convert this matrix to List of Lists format.

 With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.coo_array.trace

coo_array.trace(offset=0)
Returns the sum along diagonals of the sparse matrix.

Parameters
 offset [int, optional] Which diagonal to get, corresponding to elements a[i, i+offset]. Default: 0 (the main diagonal).
scipy.sparse.coo_array.transpose

`coo_array.transpose(axes=None, copy=False)`

Reverses the dimensions of the sparse matrix.

Parameters

- **axes** ([None, optional]) This argument is in the signature *solely* for NumPy compatibility reasons. Do not pass in anything except for the default value.
- **copy** ([bool, optional]) Indicates whether or not attributes of `self` should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

- **p** `[self with the dimensions reversed.]`

See also:

- `numpy.matrix.transpose`

 NumPy's implementation of 'transpose' for matrices

scipy.sparse.coo_array.trunc

`coo_array.trunc()`

Element-wise trunc.

See `numpy.trunc` for more information.

scipy.sparse.csc_array

`class scipy.sparse.csc_array(arg1, shape=None, dtype=None, copy=False)`

Compressed Sparse Column array

This can be instantiated in several ways:

- `csc_array(D)` with a dense array or rank-2nd array `D`
- `csc_array(S)` with another sparse array `S` (equivalent to `S.tocsc()`)
- `csc_array((M, N), [dtype])` to construct an empty array with shape `(M, N)` dtype is optional, defaulting to dtype='d'.
- `csc_array((data, (row_ind, col_ind)), [shape=(M, N)])` where `data`, `row_ind` and `col_ind` satisfy the relationship `a[row_ind[k], col_ind[k]] = data[k].`
- `csc_array((data, indices, indptr), [shape=(M, N)])` is the standard CSC representation where the row indices for column `i` are stored in `indices[indptr[i]:indptr[i+1]]` and their corresponding values are stored in `data[indptr[i]:indptr[i+1]]`. If the shape parameter is not supplied, the array dimensions are inferred from the index arrays.
Notes

Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and array power.

Advantages of the CSC format

• efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
• efficient column slicing
• fast array vector products (CSR, BSR may be faster)

Disadvantages of the CSC format

• slow row slicing operations (consider CSR)
• changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csc_array
>>> csc_array((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 2, 2, 0, 1])
>>> col = np.array([0, 0, 1, 2, 2])
>>> data = np.array([1, 2, 3, 4, 5])
>>> csc_array((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 4],
       [0, 0, 5],
       [2, 3, 6]])
```

Attributes

dtype [dtype] Data type of the array
ndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.
data Data array of the array
indices CSC format index array
indptr CSC format index pointer array
has_sorted_indices
Determine whether the matrix has sorted indices

Methods

__len__()

__mul__(*args, **kwargs)

arcsin()
Element-wise arcsin.
arcsinh()
Element-wise arccosh.
arctan()
Element-wise arctan.
arctanh()
Element-wise arctanh.
armax([axis, out])
Return indices of maximum elements along an axis.
armin([axis, out])
Return indices of minimum elements along an axis.
asformat(format[, copy])
Return this matrix in the passed format.
asfptype()
Upcast matrix to a floating point format (if necessary)
astype(dtype[, casting, copy])
Cast the matrix elements to a specified type.
ceil()
Element-wise ceil.
check_format([full_check])
check whether the matrix format is valid
conj([copy])
Element-wise complex conjugation.
conjugate([copy])
Element-wise complex conjugation.
copy()
Returns a copy of this matrix.
count_nonzero()
Number of non-zero entries, equivalent to
deg2rad()
Element-wise deg2rad.
diagonal([k])
Returns the kth diagonal of the matrix.
dot(other)
Ordinary dot product
eliminate_zeros()
Remove zero entries from the matrix
expm1()
Element-wise expm1.
floor()
Element-wise floor.
getH()
Return the Hermitian transpose of this matrix.
get_shape()
Get shape of a matrix.
getcol(i)
Returns a copy of column i of the matrix, as a (m x 1) CSC matrix (column vector).
getformat()
Format of a matrix representation as a string.
getmaxprint()
Maximum number of elements to display when printed.
getnnz([axis])
Number of stored values, including explicit zeros.
getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).
log1p()
Element-wise log1p.
max([axis, out])
Return the maximum of the matrix or maximum along an axis.
maximum(other)
Element-wise maximum between this and another matrix.
mean([axis, dtype, out])
Compute the arithmetic mean along the specified axis.
min([axis, out])
Return the minimum of the matrix or maximum along an axis.
minimum(other)
Element-wise minimum between this and another matrix.
Table 177 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>multiply(other)</code></td>
<td>Point-wise multiplication by another matrix, vector, or scalar.</td>
</tr>
<tr>
<td><code>nonzero()</code></td>
<td>nonzero indices</td>
</tr>
<tr>
<td><code>power(n[, dtype])</code></td>
<td>This function performs element-wise power.</td>
</tr>
<tr>
<td><code>prune()</code></td>
<td>Remove empty space after all non-zero elements.</td>
</tr>
<tr>
<td><code>rad2deg()</code></td>
<td>Element-wise rad2deg.</td>
</tr>
<tr>
<td><code>reshape(self, shape[, order, copy])</code></td>
<td>Gives a new shape to a sparse matrix without changing its data.</td>
</tr>
<tr>
<td><code>resize(*shape)</code></td>
<td>Resize the matrix in-place to dimensions given by shape</td>
</tr>
<tr>
<td><code>rint()</code></td>
<td>Element-wise rint.</td>
</tr>
<tr>
<td><code>set_shape(shape)</code></td>
<td>See <code>reshape</code>.</td>
</tr>
<tr>
<td><code>setdiag(values[, k])</code></td>
<td>Set diagonal or off-diagonal elements of the array.</td>
</tr>
<tr>
<td><code>sign()</code></td>
<td>Element-wise sign.</td>
</tr>
<tr>
<td><code>sin()</code></td>
<td>Element-wise sin.</td>
</tr>
<tr>
<td><code>sinh()</code></td>
<td>Element-wise sinh.</td>
</tr>
<tr>
<td><code>sort_indices()</code></td>
<td>Sort the indices of this matrix in place</td>
</tr>
<tr>
<td><code>sorted_indices()</code></td>
<td>Return a copy of this matrix with sorted indices</td>
</tr>
<tr>
<td><code>sqrt()</code></td>
<td>Element-wise sqrt.</td>
</tr>
<tr>
<td><code>sum(axis, dtype, out)</code></td>
<td>Sum the matrix elements over a given axis.</td>
</tr>
<tr>
<td><code>sum_duplicates()</code></td>
<td>Eliminate duplicate matrix entries by adding them together</td>
</tr>
<tr>
<td><code>tan()</code></td>
<td>Element-wise tan.</td>
</tr>
<tr>
<td><code>tanh()</code></td>
<td>Element-wise tanh.</td>
</tr>
<tr>
<td><code>toarray([order, out])</code></td>
<td>Return a dense ndarray representation of this matrix.</td>
</tr>
<tr>
<td><code>tobsr([blocksize, copy])</code></td>
<td>Convert this matrix to Block Sparse Row format.</td>
</tr>
<tr>
<td><code>tocoo([copy])</code></td>
<td>Convert this matrix to COOrdinate format.</td>
</tr>
<tr>
<td><code>tocsc([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Column format.</td>
</tr>
<tr>
<td><code>tocsr([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Row format.</td>
</tr>
<tr>
<td><code>todense([order, out])</code></td>
<td>Return a dense matrix representation of this matrix.</td>
</tr>
<tr>
<td><code>todia([copy])</code></td>
<td>Convert this matrix to sparse DIAgonal format.</td>
</tr>
<tr>
<td><code>todok([copy])</code></td>
<td>Convert this matrix to Dictionary Of Keys format.</td>
</tr>
<tr>
<td><code>tolil([copy])</code></td>
<td>Convert this matrix to List of Lists format.</td>
</tr>
<tr>
<td><code>trace([offset])</code></td>
<td>Returns the sum along diagonals of the sparse matrix.</td>
</tr>
<tr>
<td><code>transpose([axes, copy])</code></td>
<td>Reverses the dimensions of the sparse matrix.</td>
</tr>
<tr>
<td><code>trunc()</code></td>
<td>Element-wise trunc.</td>
</tr>
</tbody>
</table>

```python
scipy.sparse.csc_array.__len__
```

csc_array.__len__()
scipy.sparse.csc_array.__mul__

csc_array.__mul__(*args, **kwargs)

scipy.sparse.csc_array.arcsin

csc_array.arcsin()
Element-wise arcsin.
See numpy.arcsin for more information.

scipy.sparse.csc_array.arcsinh

csc_array.arcsinh()
Element-wise arcsinh.
See numpy.arcsinh for more information.

scipy.sparse.csc_array.arctan

csc_array.arctan()
Element-wise arctan.
See numpy.arctan for more information.

scipy.sparse.csc_array.arctanh

csc_array.arctanh()
Element-wise arctanh.
See numpy.arctanh for more information.

scipy.sparse.csc_array.argmax

csc_array.argmax(axis=None, out=None)
Return indices of maximum elements along an axis.
Implicit zero elements are also taken into account. If there are several maximum values, the index of the first occurrence is returned.

Parameters:
axis [[-2, -1, 0, 1, None], optional] Axis along which the argmax is computed. If None (default), index of the maximum element in the flatten data is returned.
out [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns:
ind [numpy.matrix or int] Indices of maximum elements. If matrix, its size along axis is 1.
scipy.sparse.csc_array.argmin

csc_array.argmin(axis=None, out=None)
Return indices of minimum elements along an axis.
Implicit zero elements are also taken into account. If there are several minimum values, the index of the first occurrence is returned.

Parameters
axis [{-2, -1, 0, 1, None}, optional] Axis along which the argmin is computed. If None (default), index of the minimum element in the flattened data is returned.
out [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns
ind [numpy.matrix or int] Indices of minimum elements. If matrix, its size along axis is 1.

scipy.sparse.csc_array.asformat

csc_array.asformat(format, copy=False)
Return this matrix in the passed format.

Parameters
format [[str, None]] The desired matrix format ("csr", "csc", "lil", "dok", "array", ...) or None for no conversion.
copy [bool, optional] If True, the result is guaranteed to not share data with self.

Returns
A [This matrix in the passed format.]

scipy.sparse.csc_array.asfptype

csc_array.asfptype()
Upcast matrix to a floating point format (if necessary)

scipy.sparse.csc_array.astype

csc_array.astype(dtype, casting='unsafe', copy=True)
Cast the matrix elements to a specified type.

Parameters
dtype [string or numpym dtype] Typecode or data-type to which to cast the data.
casting [{'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional] Controls what kind of data casting may occur. Defaults to 'unsafe' for backwards compatibility. ‘no’ means the data types should not be cast at all, ‘equiv’ means only byte-order changes are allowed, ‘safe’ means only casts which can preserve values are allowed. ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data conversions may be done.
copy [bool, optional] If copy is False, the result might share some memory with this matrix. If copy is True, it is guaranteed that the result and this matrix do not share any memory.
scipy.sparse.csc_array.ceil

csc_array.ceil()
Element-wise ceil.
See numpy.ceil for more information.

scipy.sparse.csc_array.check_format

csc_array.check_format(full_check=True)
check whether the matrix format is valid

Parameters

full_check [bool, optional] If True, rigorous check, O(N) operations. Otherwise basic check, O(1) operations (default True).

scipy.sparse.csc_array.conj

csc_array.conj(copy=True)
Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

A [The element-wise complex conjugate.]

scipy.sparse.csc_array.conjugate

csc_array.conjugate(copy=True)
Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

A [The element-wise complex conjugate.]
scipy.sparse.csc_array.copy

csc_array.copy()
Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.

scipy.sparse.csc_array.count_nonzero

csc_array.count_nonzero()
Number of non-zero entries, equivalent to

np.count_nonzero(a.toarray())

Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.csc_array.deg2rad

csc_array.deg2rad()
Element-wise deg2rad.

See numpy.deg2rad for more information.

scipy.sparse.csc_array.diagonal

csc_array.diagonal(k=0)
Returns the kth diagonal of the matrix.

Parameters

- k [int, optional] Which diagonal to get, corresponding to elements a[i, i+k]. Default: 0 (the main diagonal). New in version 1.0.

See also:

- numpy.diagonal

 Equivalent numpy function.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix(([1, 2, 0], [0, 0, 3], [4, 0, 5]))
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])
```
scipy.sparse.csc_array.dot

csc_array.dot(other)
Ordinary dot product

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
```

scipy.sparse.csc_array.eliminate_zeros

csc_array.eliminate_zeros()
Remove zero entries from the matrix
This is an in place operation.

scipy.sparse.csc_array.expm1

csc_array.expm1()
Element-wise expm1.
See numpy.expm1 for more information.

scipy.sparse.csc_array.floor

csc_array.floor()
Element-wise floor.
See numpy.floor for more information.

scipy.sparse.csc_array.getH

csc_array.getH()
Return the Hermitian transpose of this matrix.
See also:

 numpy.matrix.getH
NumPy's implementation of getH for matrices
scipy.sparse.csc_array.get_shape

```
csc_array.get_shape()
```

Get shape of a matrix.

scipy.sparse.csc_array.getcol

```
csc_array.getcol(i)
```

Returns a copy of column i of the matrix, as a (m x 1) CSC matrix (column vector).

scipy.sparse.csc_array.getformat

```
csc_array.getformat()
```

Format of a matrix representation as a string.

scipy.sparse.csc_array.getmaxprint

```
csc_array.getmaxprint()
```

Maximum number of elements to display when printed.

scipy.sparse.csc_array.getnnz

```
csc_array.getnnz(axis=None)
```

Number of stored values, including explicit zeros.

Parameters

- `axis` [None, 0, or 1] Select between the number of values across the whole matrix, in each column, or in each row.

See also:

- `count_nonzero`

 Number of non-zero entries

scipy.sparse.csc_array.getrow

```
csc_array.getrow(i)
```

Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).
scipy.sparse.csc_array.log1p

csc_array.log1p()
Element-wise log1p.

See numpy.log1p for more information.

scipy.sparse.csc_array.max

csc_array.max(axis=None, out=None)
Return the maximum of the matrix or maximum along an axis. This takes all elements into account, not just
the non-zero ones.

Parameters
axis [-2, -1, 0, 1, None] optional] Axis along which the sum is computed. The default is
to compute the maximum over all the matrix elements, returning a scalar (i.e., axis =
None).
out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns
amax [coo_matrix or scalar] Maximum of a. If axis is None, the result is a scalar value. If
axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

min
The minimum value of a sparse matrix along a given axis.

numpy.matrix.max
NumPy's implementation of ‘max’ for matrices

scipy.sparse.csc_array.maximum

csc_array.maximum(other)
Element-wise maximum between this and another matrix.

scipy.sparse.csc_array.mean

csc_array.mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken over all elements in the matrix by default,
otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters
axis [-2, -1, 0, 1, None] optional] Axis along which the mean is computed. The default is
to compute the mean of all elements in the matrix (i.e., axis = None).
dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the input dtype.
New in version 0.18.0.
out [np.matrix, optional] Alternative output matrix in which to place the result. It must have
the same shape as the expected output, but the type of the output values will be cast if
necessary.
New in version 0.18.0.

Returns

m [np.matrix]

See also:

numpy.matrix.mean

NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.csc_array.min

csc_array.min(axis=None, out=None)
Return the minimum of the matrix or maximum along an axis. This takes all elements into account, not just
the non-zero ones.

Parameters

axis [[-2, -1, 0, 1, None] optional] Axis along which the sum is computed. The default is
to compute the minimum over all the matrix elements, returning a scalar (i.e., axis =
None).

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

amin [coo_matrix or scalar] Minimum of a. If axis is None, the result is a scalar value. If
axis is given, the result is a sparse.coo_matrix of dimension a.ndim – 1.

See also:

max

The maximum value of a sparse matrix along a given axis.

numpy.matrix.min

NumPy’s implementation of ‘min’ for matrices

scipy.sparse.csc_array.minimum

csc_array.minimum(other)
Element-wise minimum between this and another matrix.
scipy.sparse.csc_array.multiply

csc_array.multiply(other)

Point-wise multiplication by another matrix, vector, or scalar.

scipy.sparse.csc_array.nonzero

csc_array.nonzero()

nonzero indices

Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
```

scipy.sparse.csc_array.power

csc_array.power(n, dtype=None)

This function performs element-wise power.

Parameters

- `n` [n is a scalar]
- `dtype` [If dtype is not specified, the current dtype will be preserved.]

scipy.sparse.csc_array.prune

csc_array.prune()

Remove empty space after all non-zero elements.

scipy.sparse.csc_array.rad2deg

csc_array.rad2deg()

Element-wise rad2deg.

See numpy.rad2deg for more information.
scipy.sparse.csc_array.reshape

csc_array.reshape(self, shape, order='C', copy=False)

Gives a new shape to a sparse matrix without changing its data.

Parameters

- **shape** [length-2 tuple of ints] The new shape should be compatible with the original shape.
- **order** [{‘C’, ‘F’}, optional] Read the elements using this index order. ‘C’ means to read and write the elements using C-like index order; e.g., read entire first row, then second row, etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g., read entire first column, then second column, etc.
- **copy** [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

- **reshaped_matrix** [sparse matrix] A sparse matrix with the given shape, not necessarily of the same format as the current object.

See also:

- **numpy.matrix.reshape**
 NumPy's implementation of 'reshape' for matrices

scipy.sparse.csc_array.resize

csc_array.resize(*shape)

Resize the matrix in-place to dimensions given by shape

Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying outside the new shape are removed.

Parameters

- **shape** [(int, int)] number of rows and columns in the new matrix

Notes

The semantics are not identical to numpy.ndarray.resize or numpy.resize. Here, the same data will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy, resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or replaced with new objects.
scipy.sparse.csc_array.rint

csc_array.rint()
Element-wise rint.

See numpy.rint for more information.

scipy.sparse.csc_array.set_shape

csc_array.set_shape(shape)
See reshape.

scipy.sparse.csc_array.setdiag

csc_array.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters
values [array_like] New values of the diagonal elements. Values may have any length. If the diagonal is longer than values, then the remaining diagonal entries will not be set. If values are longer than the diagonal, then the remaining values are ignored. If a scalar value is given, all of the diagonal is set to it.
k [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0 (the main diagonal).

scipy.sparse.csc_array.sign

csc_array.sign()
Element-wise sign.

See numpy.sign for more information.

scipy.sparse.csc_array.sin

csc_array.sin()
Element-wise sin.

See numpy.sin for more information.

scipy.sparse.csc_array.sinh

csc_array.sinh()
Element-wise sinh.

See numpy.sinh for more information.
scipy.sparse.csc_array.sort_indices

csc_array.sort_indices()
Sort the indices of this matrix in place

scipy.sparse.csc_array.sorted_indices

csc_array.sorted_indices()
Return a copy of this matrix with sorted indices

scipy.sparse.csc_array.sqrt

csc_array.sqrt()
Element-wise sqrt.
See numpy.sqrt for more information.

scipy.sparse.csc_array.sum

csc_array.sum(axis=None, dtype=None, out=None)
Sum the matrix elements over a given axis.

Parameters
axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e., axis = None).
dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the elements are summed. The dtype of a is used by default unless a has an integer dtype of less precision than the default platform integer. In that case, if a is signed then the platform integer is used while if a is unsigned then an unsigned integer of the same precision as the platform integer is used. New in version 0.18.0.
out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. New in version 0.18.0.

Returns
sum_along_axis [np.matrix] A matrix with the same shape as self, with the specified axis removed.

See also:

numpy.matrix.sum
NumPy's implementation of 'sum' for matrices
scipy.sparse.csc_array.sum_duplicates

```python
csc_array.sum_duplicates()
```
Eliminate duplicate matrix entries by adding them together
This is an **in place** operation.

scipy.sparse.csc_array.tan

```python
csc_array.tan()
```
Element-wise tan.
See **numpy.tan** for more information.

scipy.sparse.csc_array.tanh

```python
csc_array.tanh()
```
Element-wise tanh.
See **numpy.tanh** for more information.

scipy.sparse.csc_array.toarray

```python
csc_array.toarray(order=None, out=None)
```
Return a dense ndarray representation of this matrix.

Parameters

- **order** [{‘C’, ‘F’}, optional] Whether to store multidimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ’None’, which provides no ordering guarantees. Cannot be specified in conjunction with the **out** argument.
- **out** [ndarray, 2-D, optional] If specified, uses this array as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. For most sparse types, **out** is required to be memory contiguous (either C or Fortran ordered).

Returns

- **arr** [ndarray, 2-D] An array with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If **out** was passed, the same object is returned after being modified in-place to contain the appropriate values.

scipy.sparse.csc_array.tobsr

```python
csc_array.tobsr(blocksize=None, copy=False)
```
Convert this matrix to Block Sparse Row format.

With **copy=False**, the data/indices may be shared between this matrix and the resultant bsr_matrix.

When **blocksize=(R, C)** is provided, it will be used for construction of the bsr_matrix.
scipy.sparse.csc_array.tocoo

csc_array.tocoo(copy=True)

Convert this matrix to COOrdinate format.

With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

scipy.sparse.csc_array.tocsc

csc_array.tocsc(copy=False)

Convert this matrix to Compressed Sparse Column format.

With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

scipy.sparse.csc_array.tocsr

csc_array.tocsr(copy=False)

Convert this matrix to Compressed Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.csc_array.todense

csc_array.todense(order=None, out=None)

Return a dense matrix representation of this matrix.

Parameters

- **order** [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the out argument.

- **out** [ndarray, 2-D, optional] If specified, uses this array (or numpy.matrix) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

- **arr** [numpy.matrix, 2-D] A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If out was passed and was an array (rather than a numpy.matrix), it will be filled with the appropriate values and returned wrapped in a numpy.matrix object that shares the same memory.

scipy.sparse.csc_array.todia

csc_array.todia(copy=False)

Convert this matrix to sparse DIAgonal format.

With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.
scipy.sparse.csc_array.todok

csc_array.todok(copy=False)
Convert this matrix to Dictionary Of Keys format.
With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.csc_array.tolil

csc_array.tolil(copy=False)
Convert this matrix to List of Lists format.
With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.csc_array.trace

csc_array.trace(offset=0)
Returns the sum along diagonals of the sparse matrix.

Parameters

offset [int, optional] Which diagonal to get, corresponding to elements a[i, i+offset]. Default: 0 (the main diagonal).

scipy.sparse.csc_array.transpose

csc_array.transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

Parameters

axes [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value.
copy [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

p [self with the dimensions reversed.]

See also:
numpy.matrix.transpose

NumPy's implementation of 'transpose' for matrices

scipy.sparse.csc_array.trunc

csc_array.trunc() Element-wise trunc.

See numpy.trunc for more information.

scipy.sparse.csr_array

class scipy.sparse.csr_array(arg1, shape=None, dtype=None, copy=False)

Compressed Sparse Row array

This can be instantiated in several ways:

csr_array(D)
with a dense array or rank-2 ndarray D
csr_array(S)
with another sparse array S (equivalent to S.tocsr())
csr_array((M, N), [dtype])
to construct an empty array with shape (M, N) dtype is optional, defaulting to dtype='d'.
csr_array((data, (row_ind, col_ind)), [shape=(M, N)])
where data, row_ind and col_ind satisfy the relationship a[row_ind[k],
col_ind[k]] = data[k].
csr_array((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for row i are stored in
indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in
data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the array di-
mensions are inferred from the index arrays.

Notes

Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and array power.

Advantages of the CSR format

• efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
• efficient row slicing
• fast array vector products

Disadvantages of the CSR format

• slow column slicing operations (consider CSC)
• changes to the sparsity structure are expensive (consider LIL or DOK)

3.3. API definition 1761
Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csr_array
>>> csr_array(((3, 4), dtype=np.int8)).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)
```

```python
>>> row = np.array([0, 0, 0, 0])
>>> col = np.array([0, 1, 2, 3])
>>> data = np.array([1, 2, 3, 4])
>>> csr_array((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])
```

Duplicate entries are summed together:

```python
>>> row = np.array([0, 1, 2, 3])
>>> col = np.array([0, 1, 1, 0])
>>> data = np.array([1, 2, 3, 4])
>>> csr_array((data, (row, col)), shape=(3, 3)).toarray()
array([[9, 0, 0],
       [0, 2, 0],
       [0, 4, 0]])
```

As an example of how to construct a CSR array incrementally, the following snippet builds a term-document array from texts:

```python
>>> docs = ["hello", "world", "hello"], ["goodbye", "cruel", "world"]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
...     for term in d:
...         index = vocabulary.setdefault(term, len(vocabulary))
...         indices.append(index)
...         data.append(1)
...         indptr.append(len(indices))
...     vocabary = {}
>>> csr_array((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
       [0, 1, 1, 1]])
```
Attributes

dtype [dtype] Data type of the array
ndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.
data CSR format data array of the array
indices CSR format index array of the array
indptr CSR format index pointer array of the array
has_sorted_indices Determine whether the matrix has sorted indices

Methods

__len__()

__mul__(*args, **kwargs)

arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
argmax([axis, out]) Return indices of maximum elements along an axis.
argmin([axis, out]) Return indices of minimum elements along an axis.
astformat(format[, copy]) Return this matrix in the passed format.
astype(dtype[, casting, copy]) Cast the matrix elements to a specified type.
ceil() Element-wise ceil.
check_format([full_check]) check whether the matrix format is valid
conj([copy]) Element-wise complex conjugation.
conjugate([copy]) Element-wise complex conjugation.
copy() Returns a copy of this matrix.
count_nonzero() Number of non-zero entries, equivalent to
deg2rad() Element-wise deg2rad.
diagonal([k]) Returns the kth diagonal of the matrix.
dot(other) Ordinary dot product
eliminate_zeros() Remove zero entries from the matrix
expm1() Element-wise expm1.
floor() Element-wise floor.
getH() Return the Hermitian transpose of this matrix.
get_shape() Get shape of a matrix.
getcol(i) Returns a copy of column i of the matrix, as a (m x 1) CSR matrix (column vector).
getformat() Format of a matrix representation as a string.
getmaxprint() Maximum number of elements to display when printed.
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).
log1p() Element-wise log1p.

continues on next page
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>max([axis, out])</code></td>
<td>Return the maximum of the matrix or maximum along an axis.</td>
</tr>
<tr>
<td><code>maximum(other)</code></td>
<td>Element-wise maximum between this and another matrix.</td>
</tr>
<tr>
<td><code>mean([axis, dtype, out])</code></td>
<td>Compute the arithmetic mean along the specified axis.</td>
</tr>
<tr>
<td><code>min([axis, out])</code></td>
<td>Return the minimum of the matrix or maximum along an axis.</td>
</tr>
<tr>
<td><code>minimum(other)</code></td>
<td>Element-wise minimum between this and another matrix.</td>
</tr>
<tr>
<td><code>multiply(other)</code></td>
<td>Point-wise multiplication by another matrix, vector, or scalar.</td>
</tr>
<tr>
<td><code>nonzero()</code></td>
<td>nonzero indices</td>
</tr>
<tr>
<td><code>power(n[, dtype])</code></td>
<td>This function performs element-wise power.</td>
</tr>
<tr>
<td><code>prune()</code></td>
<td>Remove empty space after all non-zero elements.</td>
</tr>
<tr>
<td><code>rad2deg()</code></td>
<td>Element-wise rad2deg.</td>
</tr>
<tr>
<td><code>reshape(self, shape[, order, copy])</code></td>
<td>Gives a new shape to a sparse matrix without changing its data.</td>
</tr>
<tr>
<td><code>rint()</code></td>
<td>Element-wise rint.</td>
</tr>
<tr>
<td><code>set_shape(shape)</code></td>
<td>See <code>reshape</code>.</td>
</tr>
<tr>
<td><code>setdiag(values[, k])</code></td>
<td>Set diagonal or off-diagonal elements of the array.</td>
</tr>
<tr>
<td><code>sign()</code></td>
<td>Element-wise sign.</td>
</tr>
<tr>
<td><code>sin()</code></td>
<td>Element-wise sin.</td>
</tr>
<tr>
<td><code>sinh()</code></td>
<td>Element-wise sinh.</td>
</tr>
<tr>
<td><code>sort_indices()</code></td>
<td>Sort the indices of this matrix in place</td>
</tr>
<tr>
<td><code>sorted_indices()</code></td>
<td>Return a copy of this matrix with sorted indices</td>
</tr>
<tr>
<td><code>sqrt()</code></td>
<td>Element-wise sqrt.</td>
</tr>
<tr>
<td><code>sum([axis, dtype, out])</code></td>
<td>Sum the matrix elements over a given axis.</td>
</tr>
<tr>
<td><code>sum_duplicates()</code></td>
<td>Eliminate duplicate matrix entries by adding them together</td>
</tr>
<tr>
<td><code>tan()</code></td>
<td>Element-wise tan.</td>
</tr>
<tr>
<td><code>tanh()</code></td>
<td>Element-wise tanh.</td>
</tr>
<tr>
<td><code>tarray(order, out)</code></td>
<td>Return a dense ndarray representation of this matrix.</td>
</tr>
<tr>
<td><code>tobsr([blocksize, copy])</code></td>
<td>Convert this matrix to Block Sparse Row format.</td>
</tr>
<tr>
<td><code>tocoo([copy])</code></td>
<td>Convert this matrix to COOrdinate format.</td>
</tr>
<tr>
<td><code>tocsc([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Column format.</td>
</tr>
<tr>
<td><code>tocsr([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Row format.</td>
</tr>
<tr>
<td><code>todense([order, out])</code></td>
<td>Return a dense matrix representation of this matrix.</td>
</tr>
<tr>
<td><code>todia([copy])</code></td>
<td>Convert this matrix to sparse DIAgonal format.</td>
</tr>
<tr>
<td><code>todok([copy])</code></td>
<td>Convert this matrix to Dictionary Of Keys format.</td>
</tr>
<tr>
<td><code>tolil([copy])</code></td>
<td>Convert this matrix to List of Lists format.</td>
</tr>
<tr>
<td><code>trace([offset])</code></td>
<td>Returns the sum along diagonals of the sparse matrix.</td>
</tr>
<tr>
<td><code>transpose([axes, copy])</code></td>
<td>Reverses the dimensions of the sparse matrix.</td>
</tr>
<tr>
<td><code>trunc()</code></td>
<td>Element-wise trunc.</td>
</tr>
</tbody>
</table>
scipy.sparse.csr_array.__len__

csr_array.__len__()

scipy.sparse.csr_array.__mul__

csr_array.__mul__(*args, **kwargs)

scipy.sparse.csr_array.arcsin

csr_array.arcsin()
Element-wise arcsin.
See numpy.arcsin for more information.

scipy.sparse.csr_array.arcsinh

csr_array.arcsinh()
Element-wise arcsinh.
See numpy.arcsinh for more information.

scipy.sparse.csr_array.arctan

csr_array.arctan()
Element-wise arctan.
See numpy.arctan for more information.

scipy.sparse.csr_array.arctanh

csr_array.arctanh()
Element-wise arctanh.
See numpy.arctanh for more information.

scipy.sparse.csr_array.argmax

csr_array.argmax(axis=None, out=None)
Return indices of maximum elements along an axis. Implicit zero elements are also taken into account. If there are several maximum values, the index of the first occurrence is returned.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>axis</td>
<td>[{-2, -1, 0, 1, None}, optional] Axis along which the argmax is computed. If None (default), index of the maximum element in the flattened data is returned.</td>
</tr>
<tr>
<td>out</td>
<td>[None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.</td>
</tr>
</tbody>
</table>
Returns
ind [numpy.matrix or int] Indices of maximum elements. If matrix, its size along axis is 1.

scipy.sparse.csr_array.argmin
csr_array.argmin(axis=None, out=None)
Return indices of minimum elements along an axis.
Implicit zero elements are also taken into account. If there are several minimum values, the index of the first occurrence is returned.

Parameters
axis [{-2, -1, 0, 1, None}, optional] Axis along which the argmin is computed. If None (default), index of the minimum element in the flatten data is returned.
out [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns
ind [numpy.matrix or int] Indices of minimum elements. If matrix, its size along axis is 1.

scipy.sparse.csr_array.asformat
csr_array.asformat(format, copy=False)
Return this matrix in the passed format.

Parameters
format [{str, None}] The desired matrix format ("csr", "csc", "lil", "dok", "array", …) or None for no conversion.
copy [bool, optional] If True, the result is guaranteed to not share data with self.

Returns
A [This matrix in the passed format.]

scipy.sparse.csr_array.asfptype
csr_array.asfptype()
Upcast matrix to a floating point format (if necessary)

scipy.sparse.csr_array.astype
csr_array.astype(dtype, casting='unsafe', copy=True)
Cast the matrix elements to a specified type.

Parameters
dtype [string or numpy dtype] Typecode or data-type to which to cast the data.
casting

[{'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional] Controls what kind of data casting may occur. Defaults to 'unsafe' for backwards compatibility. 'no' means the data types should not be cast at all. 'equiv' means only byte-order changes are allowed. 'safe' means only casts which can preserve values are allowed. 'same_kind' means only safe casts or casts within a kind, like float64 to float32, are allowed. 'unsafe' means any data conversions may be done.

copy

[bool, optional] If `copy` is False, the result might share some memory with this matrix. If `copy` is True, it is guaranteed that the result and this matrix do not share any memory.

scipy.sparse.csr_array.ceil

csr_array.ceil()

Element-wise ceiling.

See `numpy.ceil` for more information.

scipy.sparse.csr_array.check_format

csr_array.check_format (full_check=True)

check whether the matrix format is valid

Parameters

- **full_check** [bool, optional] If True, rigorous check, O(N) operations. Otherwise basic check, O(1) operations (default True).

scipy.sparse.csr_array.conj

csr_array.conj (copy=True)

Element-wise complex conjugation.

If the matrix is of non-complex data type and `copy` is False, this method does nothing and the data is not copied.

Parameters

- **copy** [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- **A** [The element-wise complex conjugate.]

scipy.sparse.csr_array.conjugate

csr_array.conjugate (copy=True)

Element-wise complex conjugation.

If the matrix is of non-complex data type and `copy` is False, this method does nothing and the data is not copied.

Parameters

- **copy** [bool, optional] If True, the result is guaranteed to not share data with self.

Returns
A [The element-wise complex conjugate.]

scipy.sparse.csr_array.copy

csr_array.copy()
Returns a copy of this matrix.
No data/indices will be shared between the returned value and current matrix.

scipy.sparse.csr_array.count_nonzero

csr_array.count_nonzero()
Number of non-zero entries, equivalent to
np.count_nonzero(a.toarray())
Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.csr_array.deg2rad

csr_array.deg2rad()
Element-wise deg2rad.
See numpy.deg2rad for more information.

scipy.sparse.csr_array.diagonal

csr_array.diagonal(k=0)
Returns the kth diagonal of the matrix.

Parameters

k [int, optional] Which diagonal to get, corresponding to elements a[i, i+k]. Default: 0
(the main diagonal).
New in version 1.0.

Examples

```python  
>>> from scipy.sparse import csr_matrix  
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])  
>>> A.diagonal()  
array([1, 0, 5])  
>>> A.diagonal(k=1)  
array([2, 3])  
```
scipy.sparse.csr_array.dot

```python
csr_array.dot(other)
```

Ordinary dot product

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
```

scipy.sparse.csr_array.eliminate_zeros

```python
csr_array.eliminate_zeros()
```

Remove zero entries from the matrix

This is an *in place* operation.

scipy.sparse.csr_array.expm1

```python
csr_array.expm1()
```

Element-wise expm1.

See *numpy.expm1* for more information.

scipy.sparse.csr_array.floor

```python
csr_array.floor()
```

Element-wise floor.

See *numpy.floor* for more information.

scipy.sparse.csr_array.getH

```python
csr_array.getH()
```

Return the Hermitian transpose of this matrix.

See also:

```
numpy.matrix.getH
```

NumPy’s implementation of *getH* for matrices
scipy.sparse.csr_array.get_shape

csr_array.get_shape()
Get shape of a matrix.

scipy.sparse.csr_array.getcol

csr_array.getcol(i)
Returns a copy of column i of the matrix, as a (m x 1) CSR matrix (column vector).

scipy.sparse.csr_array.getformat

csr_array.getformat()
Format of a matrix representation as a string.

scipy.sparse.csr_array.getmaxprint

csr_array.getmaxprint()
Maximum number of elements to display when printed.

scipy.sparse.csr_array.getnnz

csr_array.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters
axis [None, 0, or 1] Select between the number of values across the whole matrix, in each
column, or in each row.

See also:
count_nonzero
Number of non-zero entries

scipy.sparse.csr_array.getrow

csr_array.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).
scipy.sparse.csr_array.log1p

csr_array.log1p()
Element-wise log1p.

See numpy.log1p for more information.

scipy.sparse.csr_array.max

csr_array.max(axis=None, out=None)
Return the maximum of the matrix or maximum along an axis. This takes all elements into account, not just
the non-zero ones.

Parameters

axis [-2, -1, 0, 1, None] optional] Axis along which the sum is computed. The default is
to compute the maximum over all the matrix elements, returning a scalar (i.e., axis = None).

out [None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

amax [coo_matrix or scalar] Maximum of a. If axis is None, the result is a scalar value. If
axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

min

The minimum value of a sparse matrix along a given axis.

numpy.matrix.max

NumPy's implementation of 'max' for matrices

scipy.sparse.csr_array.maximum

csr_array.maximum(other)
Element-wise maximum between this and another matrix.

scipy.sparse.csr_array.mean

csr_array.mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken over all elements in the matrix by default,
otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters

axis [-2, -1, 0, 1, None] optional] Axis along which the mean is computed. The default is
to compute the mean of all elements in the matrix (i.e., axis = None).

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default is
float64; for floating point inputs, it is the same as the input dtype.
New in version 0.18.0.
out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.
New in version 0.18.0.

Returns

m [np.matrix]

See also:

numpy.matrix.mean

NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.csr_array.min

csr_array.min(axis=None, out=None)
Return the minimum of the matrix or maximum along an axis. This takes all elements into account, not just the non-zero ones.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to compute the minimum over all the matrix elements, returning a scalar (i.e., axis = None).

out [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns

amin [coo_matrix or scalar] Minimum of a. If axis is None, the result is a scalar value. If axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

max

The maximum value of a sparse matrix along a given axis.

numpy.matrix.min

NumPy’s implementation of ‘min’ for matrices

scipy.sparse.csr_array.minimum

csr_array.minimum(other)
Element-wise minimum between this and another matrix.
scipy.sparse.csr_array.multiply

csr_array.multiply(other)
 Point-wise multiplication by another matrix, vector, or scalar.

scipy.sparse.csr_array.nonzero

csr_array.nonzero()
 nonzero indices
 Returns a tuple of arrays (row, col) containing the indices of the non-zero elements of the matrix.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
```

scipy.sparse.csr_array.power

csr_array.power(n, dtype=None)
 This function performs element-wise power.

 Parameters

 n [n is a scalar]
 dtype [If dtype is not specified, the current dtype will be preserved.]

scipy.sparse.csr_array.prune

csr_array.prune()
 Remove empty space after all non-zero elements.

scipy.sparse.csr_array.rad2deg

csr_array.rad2deg()
 Element-wise rad2deg.

 See numpy.rad2deg for more information.
scipy.sparse.csr_array.reshape

csr_array.reshape(self, shape, order='C', copy=False)

Gives a new shape to a sparse matrix without changing its data.

Parameters

- **shape** [length-2 tuple of ints] The new shape should be compatible with the original shape.
- **order** [{‘C’, ‘F’}, optional] Read the elements using this index order. ‘C’ means to read and write the elements using C-like index order; e.g., read entire first row, then second row, etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g., read entire first column, then second column, etc.
- **copy** [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

- **reshaped_matrix** [sparse matrix] A sparse matrix with the given shape, not necessarily of the same format as the current object.

See also:

- **numpy.matrix.reshape**

 NumPy’s implementation of ‘reshape’ for matrices

scipy.sparse.csr_array.resize

csr_array.resize(*shape)

Resize the matrix in-place to dimensions given by shape

Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying outside the new shape are removed.

Parameters

- **shape** [(int, int)] number of rows and columns in the new matrix

Notes

The semantics are not identical to `numpy.ndarray.resize` or `numpy.resize`. Here, the same data will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy, resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or replaced with new objects.
scipy.sparse.csr_array.rint

csr_array.rint()

Element-wise rint.

See `numpy.rint` for more information.

scipy.sparse.csr_array.set_shape

csr_array.set_shape(shape)

See `reshape`.

scipy.sparse.csr_array.setdiag

csr_array.setdiag(values, k=0)

Set diagonal or off-diagonal elements of the array.

Parameters

- **values** [array_like] New values of the diagonal elements. Values may have any length. If the diagonal is longer than values, then the remaining diagonal entries will not be set. If values are longer than the diagonal, then the remaining values are ignored. If a scalar value is given, all of the diagonal is set to it.
- **k** [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0 (the main diagonal).

scipy.sparse.csr_array.sign

csr_array.sign()

Element-wise `sign`.

See `numpy.sign` for more information.

scipy.sparse.csr_array.sin

csr_array.sin()

Element-wise `sin`.

See `numpy.sin` for more information.

scipy.sparse.csr_array.sinh

csr_array.sinh()

Element-wise `sinh`.

See `numpy.sinh` for more information.
scipy.sparse.csr_array.sort_indices

csr_array.sort_indices()

Sort the indices of this matrix in place

scipy.sparse.csr_array.sorted_indices

csr_array.sorted_indices()

Return a copy of this matrix with sorted indices

scipy.sparse.csr_array.sqrt

csr_array.sqrt()

Element-wise sqrt.

See numpy.sqrt for more information.

scipy.sparse.csr_array.sum

csr_array.sum(axis=None, dtype=None, out=None)

Sum the matrix elements over a given axis.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e., axis = None).

dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the elements are summed. The dtype of a is used by default unless a has an integer dtype of less precision than the default platform integer. In that case, if a is signed then the platform integer is used while if a is unsigned then an unsigned integer of the same precision as the platform integer is used.

New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.

New in version 0.18.0.

Returns

sum_along_axis [np.matrix] A matrix with the same shape as self, with the specified axis removed.

See also:

numpy.matrix.sum

NumPy's implementation of `sum' for matrices
scipy.sparse.csr_array.sum_duplicates

csr_array.sum_duplicates()
 Eliminate duplicate matrix entries by adding them together
 This is an in place operation.

scipy.sparse.csr_array.tan

csr_array.tan()
 Element-wise tan.
 See numpy.tan for more information.

scipy.sparse.csr_array.tanh

csr_array.tanh()
 Element-wise tanh.
 See numpy.tanh for more information.

scipy.sparse.csr_array.toarray

csr_array.toarray(order=None, out=None)
 Return a dense ndarray representation of this matrix.
 Parameters
 order [{‘C’, ‘F’}, optional] Whether to store multidimensional data in
 C (row-major) or Fortran (column-major) order in memory. The default is
 ‘None’, which provides no ordering guarantees. Cannot be specified in
 conjunction with the out argument.
 out [ndarray, 2-D, optional] If specified, uses this array as the output
 buffer instead of allocating a new array to return. The provided array
 must have the same shape and dtype as the sparse matrix on which you
 are calling the method. For most sparse types, out is required to
 be memory contiguous (either C or Fortran ordered).
 Returns
 arr [ndarray, 2-D] An array with the same shape and containing the same
 data represented by the sparse matrix, with the requested memory
 order. If out was passed, the same object is returned after being
 modified in-place to contain the appropriate values.

scipy.sparse.csr_array.tobsr

csr_array.tobsr(blocksize=None, copy=True)
 Convert this matrix to Block Sparse Row format.
 With copy=False, the data/indices may be shared between this matrix
 and the resultant bsr_matrix.
 When blocksize=(R, C) is provided, it will be used for construction of
 the bsr_matrix.
scipy.sparse.csr_array.tocoo

```python
csr_array.tocoo(copy=True)
```
Convert this matrix to COOrdinate format.

With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

scipy.sparse.csr_array.tocsc

```python
csr_array.tocsc(copy=False)
```
Convert this matrix to Compressed Sparse Column format.

With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

scipy.sparse.csr_array.tocsr

```python
csr_array.tocsr(copy=False)
```
Convert this matrix to Compressed Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.csr_array.todense

```python
csr_array.todense(order=None, out=None)
```
Return a dense matrix representation of this matrix.

Parameters

- **order** [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the out argument.

- **out** [ndarray, 2-D, optional] If specified, uses this array (or numpy.matrix) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

- **arr** [numpy.matrix, 2-D] A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If out was passed and was an array (rather than a numpy.matrix), it will be filled with the appropriate values and returned wrapped in a numpy.matrix object that shares the same memory.

scipy.sparse.csr_array.todia

```python
csr_array.todia(copy=False)
```
Convert this matrix to sparse DIAGONal format.

With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.
scipy.sparse.csr_array.todok

`csr_array.todok(copy=False)`
Convert this matrix to Dictionary Of Keys format.

With `copy=False`, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.csr_array.tolil

`csr_array.tolil(copy=False)`
Convert this matrix to List of Lists format.

With `copy=False`, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.csr_array.trace

`csr_array.trace(offset=0)`
Returns the sum along diagonals of the sparse matrix.

Parameters

offset [int, optional] Which diagonal to get, corresponding to elements $a[i, i+offset]$. Default: 0 (the main diagonal).

scipy.sparse.csr_array.transpose

`csr_array.transpose(axes=None, copy=False)`
Reverses the dimensions of the sparse matrix.

Parameters

axes [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

p [self with the dimensions reversed.]

See also:

numpy.matrix.transpose
NumPy's implementation of ‘transpose’ for matrices
scipy.sparse.csr_array.trunc

csr_array.trunc()
 Element-wise trunc.
 See numpy.trunc for more information.

__getitem__

scipy.sparse.dia_array

class scipy.sparse.dia_array(arg1, shape=None, dtype=None, copy=False)
 Sparse array with DIAGONAL storage

 This can be instantiated in several ways:

 dia_array(D)
 with a dense array

 dia_array(S)
 with another sparse array S (equivalent to S.todia())

 dia_array((M, N), [dtype])
 to construct an empty array with shape (M, N), dtype is optional, defaulting to dtype=`d`

 dia_array((data, offsets), shape=(M, N))
 where the data[k,:] stores the diagonal entries for diagonal offsets[k] (See example below)

Notes

Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and array power.

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import dia_array
>>> dia_array((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)

>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0)
>>> offsets = np.array([0, -1, 2])
>>> dia_array((data, offsets), shape=(4, 4)).toarray()
array([[1, 0, 3, 0],
       [1, 2, 0, 4],
       [0, 2, 3, 0],
       [0, 0, 3, 4]])
```
```python
>>> from scipy.sparse import dia_array
>>> n = 10
>>> ex = np.ones(n)
>>> data = np.array([ex, 2 * ex, ex])
>>> offsets = np.array([-1, 0, 1])
>>> dia_array((data, offsets), shape=(n, n)).toarray()
array([[2., 1., 0., ..., 0., 0., 0.],
       [1., 2., 1., ..., 0., 0., 0.],
       [0., 1., 2., ..., 0., 0., 0.],
       ...,
       [0., 0., 0., ..., 2., 1., 0.],
       [0., 0., 0., ..., 1., 2., 1.],
       [0., 0., 0., ..., 0., 1., 2.]])
```

Attributes

- `dtype` [dtype] Data type of the array
- `ndim` [int] Number of dimensions (this is always 2)
- `nnz` Number of stored values, including explicit zeros.
- `data` DIA format data array of the array
- `offsets` DIA format offset array of the array

Methods

- `__len__()`
- `__mul__(*args, **kwargs)`

 - `arcsin()` Element-wise arcsin.
 - `arcsinh()` Element-wise arcsinh.
 - `arctan()` Element-wise arctan.
 - `arctanh()` Element-wise arctanh.
 - `asformat(format[, copy])` Return this matrix in the passed format.
 - `asfptype()` Upcast matrix to a floating point format (if necessary)
 - `astype(dtype[, casting, copy])` Cast the matrix elements to a specified type.
 - `ceil()` Element-wise ceil.
 - `conj([copy])` Element-wise complex conjugation.
 - `conjugate([copy])` Element-wise complex conjugation.
 - `copy()` Returns a copy of this matrix.
 - `count_nonzero()` Number of non-zero entries, equivalent to
 - `deg2rad()` Element-wise deg2rad.
 - `diagonal([k])` Returns the kth diagonal of the matrix.
 - `dot(other)` Ordinary dot product
 - `expm1()` Element-wise expm1.
 - `floor()` Element-wise floor.
 - `getH()` Return the Hermitian transpose of this matrix.
 - `get_shape()` Get shape of a matrix.
 - `getcol(j)` Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

continues on next page

3.3. API definition
getformat() Format of a matrix representation as a string.
getmaxprint() Maximum number of elements to display when printed.
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).
log1p() Element-wise log1p.
maximum(other) Element-wise maximum between this and another matrix.
mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis.
minimum(other) Element-wise minimum between this and another matrix.
multiply(other) Point-wise multiplication by another matrix
nonzero() nonzero indices
power(n[, dtype]) This function performs element-wise power.
rad2deg() Element-wise rad2deg.
reshape(self, shape[, order, copy]) Gives a new shape to a sparse matrix without changing its data.
rint() Element-wise rint.
set_shape(shape) See reshape.
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sign() Element-wise sign.
sin() Element-wise sin.
sinh() Element-wise sinh.
sqrt() Element-wise sqrt.
sum([axis, dtype, out]) Sum the matrix elements over a given axis.
tan() Element-wise tan.
tanh() Element-wise tanh.
todense([order, out]) Return a dense ndarray representation of this matrix.
todok([copy]) Convert this matrix to Dictionary Of Keys format.
todense([order, out]) Return a dense matrix representation of this matrix.
todok([copy]) Convert this matrix to sparse DIAgonal format.
toarray([order, out]) Convert this matrix to Block Sparse Row format.
tocsr([copy]) Convert this matrix to Compressed Sparse Row format.
toci([copy]) Convert this matrix to Compressed Sparse Column format.
trace([offset]) Returns the sum along diagonals of the sparse matrix.
transpose([axes, copy]) Reverses the dimensions of the sparse matrix.
trunc() Element-wise trunc.
scipy.sparse.dia_array.__len__

dia_array.__len__()

scipy.sparse.dia_array.__mul__

dia_array.__mul__(*args, **kwargs)

scipy.sparse.dia_array.arcsin

dia_array.arcsin()
 Element-wise arcsin.
 See numpy.arcsin for more information.

scipy.sparse.dia_array.arcsinh

dia_array.arcsinh()
 Element-wise arcsinh.
 See numpy.arcsinh for more information.

scipy.sparse.dia_array.arctan

dia_array.arctan()
 Element-wise arctan.
 See numpy.arctan for more information.

scipy.sparse.dia_array.arctanh

dia_array.arctanh()
 Element-wise arctanh.
 See numpy.arctanh for more information.

scipy.sparse.dia_array.asformat

dia_array.asformat(format, copy=False)
 Return this matrix in the passed format.

 Parameters

 format: [str, None]
 The desired matrix format ("csr", "csc", "lil", "dok", "array", ...) or None
 for no conversion.
 copy: [bool, optional]
 If True, the result is guaranteed to not share data with self.

 Returns

 A: [This matrix in the passed format.]
scipy.sparse.dia_array.asfptype

dia_array.asfptype()
 Upcast matrix to a floating point format (if necessary)

scipy.sparse.dia_array.astype

dia_array.astype(dtype, casting='unsafe', copy=True)
 Cast the matrix elements to a specified type.

 Parameters

 dtype [string or numpy dtype] Typecode or data-type to which to cast the data.

 casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may occur. ‘no’ means the data types should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’ means only casts which can preserve values are allowed. ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data conversions may be done.

 copy [bool, optional] If copy is False, the result might share some memory with this matrix. If copy is True, it is guaranteed that the result and this matrix do not share any memory.

scipy.sparse.dia_array.ceil

dia_array.ceil()
 Element-wise ceil.

 See numpy.ceil for more information.

scipy.sparse.dia_array.conj

dia_array.conj(copy=True)
 Element-wise complex conjugation.

 If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not copied.

 Parameters

 copy [bool, optional] If True, the result is guaranteed to not share data with self.

 Returns

 A [The element-wise complex conjugate.]
scipy.sparse.dia_array.conjugate

dia_array.conjugate(copy=True)
Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

A [The element-wise complex conjugate.]

scipy.sparse.dia_array.copy

dia_array.copy()
Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.

scipy.sparse.dia_array.count_nonzero

dia_array.count_nonzero()
Number of non-zero entries, equivalent to
np.count_nonzero(a.toarray())

Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.dia_array.deg2rad

dia_array.deg2rad()
Element-wise deg2rad.

See numpy.deg2rad for more information.

scipy.sparse.dia_array.diagonal

dia_array.diagonal(k=0)
Returns the kth diagonal of the matrix.

Parameters

k [int, optional] Which diagonal to get, corresponding to elements a[i, i+k]. Default: 0 (the main diagonal).

New in version 1.0.

See also:

numpy.diagonal
Equivalent numpy function.
Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])
```

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
```

scipy.sparse.dia_array.dot

dia_array.dot(other)

Ordinary dot product

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
```

scipy.sparse.dia_array.expm1

dia_array.expm1()

Element-wise expm1.

See numpy.expm1 for more information.

scipy.sparse.dia_array.floor

dia_array.floor()

Element-wise floor.

See numpy.floor for more information.

scipy.sparse.dia_array.getH

dia_array.getH()

Return the Hermitian transpose of this matrix.

See also:

 numpy.matrix.getH

 NumPy's implementation of getH for matrices
scipy.sparse.dia_array.get_shape

```python
dia_array.get_shape()
```
Get shape of a matrix.

scipy.sparse.dia_array.getcol

```python
dia_array.getcol(j)
```
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

scipy.sparse.dia_array.getformat

```python
dia_array.getformat()
```
Format of a matrix representation as a string.

scipy.sparse.dia_array.getmaxprint

```python
dia_array.getmaxprint()
```
Maximum number of elements to display when printed.

scipy.sparse.dia_array.getnnz

```python
dia_array.getnnz(axis=None)
```
Number of stored values, including explicit zeros.

Parameters

- **axis** [None, 0, or 1] Select between the number of values across the whole matrix, in each column, or in each row.

See also:

- **count_nonzero**
 Number of non-zero entries

scipy.sparse.dia_array.getrow

```python
dia_array.getrow(i)
```
Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).
scipy.sparse.dia_array.log1p

dia_array.log1p()
 Element-wise log1p.
 See numpy.log1p for more information.

scipy.sparse.dia_array.maximum

dia_array.maximum(other)
 Element-wise maximum between this and another matrix.

scipy.sparse.dia_array.mean

dia_array.mean(axis=None, dtype=None, out=None)
 Compute the arithmetic mean along the specified axis.
 Returns the average of the matrix elements. The average is taken over all elements in the matrix by default, otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

 Parameters
 axis [{-2, -1, 0, 1, None} optional] Axis along which the mean is computed. The default is to compute the mean of all elements in the matrix (i.e., axis = None).
 dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype. New in version 0.18.0.
 out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. New in version 0.18.0.

 Returns
 m [np.matrix]

 See also:

 numpy.matrix.mean
 NumPy's implementation of 'mean' for matrices

scipy.sparse.dia_array.minimum

dia_array.minimum(other)
 Element-wise minimum between this and another matrix.
scipy.sparse.dia_array.multiply

`dia_array.multiply(other)`
Point-wise multiplication by another matrix

scipy.sparse.dia_array.nonzero

`dia_array.nonzero()`
nonzero indices
Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
```

scipy.sparse.dia_array.power

`dia_array.power(n, dtype=None)`
This function performs element-wise power.

Parameters

- `n` [n is a scalar]
- `dtype` [If dtype is not specified, the current dtype will be preserved.]

scipy.sparse.dia_array.rad2deg

`dia_array.rad2deg()`
Element-wise rad2deg.

See `numpy.rad2deg` for more information.

scipy.sparse.dia_array.reshape

`dia_array.reshape(self, shape, order='C', copy=False)`
Gives a new shape to a sparse matrix without changing its data.

Parameters

- `shape` [length-2 tuple of ints] The new shape should be compatible with the original shape.
- `order` [‘C’, ‘F’, optional] Read the elements using this index order. ‘C’ means to read and write the elements using C-like index order; e.g., read entire first row, then second row, etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g., read entire first column, then second column, etc.
- `copy` [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.
Returns

`reshaped_matrix`

[sparse matrix] A sparse matrix with the given `shape`, not necessarily of the same format as the current object.

See also:

`numpy.matrix.reshape`

NumPy’s implementation of ‘reshape’ for matrices

scipy.sparse.dia_array.resize

dia_array.resize(*shape*)

Resize the matrix in-place to dimensions given by `shape`

Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying outside the new shape are removed.

Parameters

`shape` [(int, int)] number of rows and columns in the new matrix

Notes

The semantics are not identical to `numpy.ndarray.resize` or `numpy.resize`. Here, the same data will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy, resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or replaced with new objects.

scipy.sparse.dia_array.rint

dia_array.rint()

Element-wise rint.

See `numpy.rint` for more information.

scipy.sparse.dia_array.set_shape

dia_array.set_shape(shape)

See `reshape`.
scipy.sparse.dia_array.setdiag
dia_array.setdiag(values, k=0)
 Set diagonal or off-diagonal elements of the array.
 Parameters
 values [array_like] New values of the diagonal elements.
 Values may have any length. If the diagonal is longer than values, then the remaining
diagonal entries will not be set. If values are longer than the diagonal, then the remaining
values are ignored.
 If a scalar value is given, all of the diagonal is set to it.
 k [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0
 (the main diagonal).

scipy.sparse.dia_array.sign
dia_array.sign()
 Element-wise sign.
 See numpy.sign for more information.

scipy.sparse.dia_array.sin
dia_array.sin()
 Element-wise sin.
 See numpy.sin for more information.

scipy.sparse.dia_array.sinh
dia_array.sinh()
 Element-wise sinh.
 See numpy.sinh for more information.

scipy.sparse.dia_array.sqrt
dia_array.sqrt()
 Element-wise sqrt.
 See numpy.sqrt for more information.
scipy.sparse.dia_array.sum

dia_array.sum (axis=None, dtype=None, out=None)
Sum the matrix elements over a given axis.

Parameters
axis [{-2,-1,0,1,None} optional] Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e., axis = None).
dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the elements are summed. The dtype of a is used by default unless a has an integer dtype of less precision than the default platform integer. In that case, if a is signed then the platform integer is used while if a is unsigned then an unsigned integer of the same precision as the platform integer is used.
out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.

Returns
sum_along_axis [np.matrix] A matrix with the same shape as self, with the specified axis removed.

See also:
numpy.matrix.sum
NumPy's implementation of 'sum' for matrices

scipy.sparse.dia_array.tan

dia_array.tan()
Element-wise tan.

See numpy.tan for more information.

scipy.sparse.dia_array.tanh

dia_array.tanh()
Element-wise tanh.

See numpy.tanh for more information.

scipy.sparse.dia_array.toarray

dia_array.toarray(order=None, out=None)
Return a dense ndarray representation of this matrix.

Parameters

order [{'C', 'F'}, optional] Whether to store multidimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-D, optional] If specified, uses this array as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. For most sparse types, out is required to be memory contiguous (either C or Fortran ordered).

Returns

arr [ndarray, 2-D] An array with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If out was passed, the same object is returned after being modified in-place to contain the appropriate values.

scipy.sparse.dia_array.tobsr

dia_array.tobsr(blocksize=None, copy=False)
Convert this matrix to Block Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.

When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix.

scipy.sparse.dia_array.tocoo

dia_array.tocoo(copy=False)
Convert this matrix to COOrdinate format.

With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

scipy.sparse.dia_array.tocsc

dia_array.tocsc(copy=False)
Convert this matrix to Compressed Sparse Column format.

With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.
scipy.sparse.dia_array.tocsr

dia_array.tocsr(copy=False)

Convert this matrix to Compressed Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.dia_array.todense

dia_array.todense(order=None, out=None)

Return a dense matrix representation of this matrix.

Parameters

- **order** [{'C', 'F'}, optional] Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the `out` argument.
- **out** [ndarray, 2-D, optional] If specified, uses this array (or `numpy.matrix`) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

- **arr** [numpy.matrix, 2-D] A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If `out` was passed and was an array (rather than a `numpy.matrix`), it will be filled with the appropriate values and returned wrapped in a `numpy.matrix` object that shares the same memory.

scipy.sparse.dia_array.todia

dia_array.todia(copy=False)

Convert this matrix to sparse DIAgonal format.

With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.

scipy.sparse.dia_array.todok

dia_array.todok(copy=False)

Convert this matrix to Dictionary Of Keys format.

With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.dia_array.tolil

dia_array.tolil(copy=False)

Convert this matrix to List of Lists format.

With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.
scipy.sparse.dia_array.trace

dia_array.trace(offset=0)

Returns the sum along diagonals of the sparse matrix.

Parameters

offset [int, optional] Which diagonal to get, corresponding to elements a[i, i+offset]. Default: 0 (the main diagonal).

scipy.sparse.dia_array.transpose

dia_array.transpose(axes=None, copy=False)

Reverses the dimensions of the sparse matrix.

Parameters

axes [None, optional] This argument is in the signature *solely* for NumPy compatibility reasons. Do not pass in anything except for the default value.

copy [bool, optional] Indicates whether or not attributes of *self* should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

p [self with the dimensions reversed.]

See also:

numpy.matrix.transpose

NumPy’s implementation of ‘transpose’ for matrices

scipy.sparse.dia_array.trunc

dia_array.trunc()

Element-wise trunc.

See numpy.trunc for more information.

scipy.sparse.dok_array

class scipy.sparse.dok_array(arg1, shape=None, dtype=None, copy=False)

Dictionary Of Keys based sparse array.

This is an efficient structure for constructing sparse arrays incrementally.

This can be instantiated in several ways:

dok_array(D)
with a dense array, D

dok_array(S)
with a sparse array, S

dok_array((M,N), [dtype])

create the array with initial shape (M,N) dtype is optional, defaulting to dtype='d'

Notes

Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and array power.

Allows for efficient O(1) access of individual elements. Duplicates are not allowed. Can be efficiently converted to a coo_array once constructed.

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import dok_array
>>> S = dok_array((5, 5), dtype=np.float32)
>>> for i in range(5):
...     for j in range(5):
...         S[i, j] = i + j  # Update element
```

Attributes

- **dtype** [dtype] Data type of the array
- **ndim** [int] Number of dimensions (this is always 2)
- **nnz** Number of stored values, including explicit zeros.

Methods

- **__len__()** Return len(self).
- **__mul__(*)** Return len(self).
- **asformat(format[, copy])** Return this matrix in the passed format.
- **asfptype()** Upcast matrix to a floating point format (if necessary)
- **astype(dtype[, casting, copy])** Cast the matrix elements to a specified type.
- **clear()**
- **conj([copy])** Element-wise complex conjugation.
- **conjugate([copy])** Element-wise complex conjugation.
- **copy()** Returns a copy of this matrix.
- **count_nonzero()** Number of non-zero entries, equivalent to
diagonal([k]) Returns the kth diagonal of the matrix.
- **dot(other)** Ordinary dot product
- **fromkeys(iterable[, value])** Create a new dictionary with keys from iterable and values set to value.
- **get(key[, default])** This overrides the dict.get method, providing type checking but otherwise equivalent functionality.
- **getH()** Return the Hermitian transpose of this matrix.

continues on next page
Table 180 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>get_shape()</code></td>
<td>Get shape of a matrix.</td>
</tr>
<tr>
<td><code>getcol(j)</code></td>
<td>Returns a copy of column (j) of the matrix, as an ((m \times 1))</td>
</tr>
<tr>
<td></td>
<td>sparse matrix (column vector).</td>
</tr>
<tr>
<td><code>getformat()</code></td>
<td>Format of a matrix representation as a string.</td>
</tr>
<tr>
<td><code>getmaxprint()</code></td>
<td>Maximum number of elements to display when printed.</td>
</tr>
<tr>
<td><code>getnnz([axis])</code></td>
<td>Number of stored values, including explicit zeros.</td>
</tr>
<tr>
<td><code>getrow(i)</code></td>
<td>Returns a copy of row (i) of the matrix, as a ((1 \times n))</td>
</tr>
<tr>
<td></td>
<td>sparse matrix (row vector).</td>
</tr>
<tr>
<td><code>items()</code></td>
<td></td>
</tr>
<tr>
<td><code>keys()</code></td>
<td></td>
</tr>
<tr>
<td><code>maximum(other)</code></td>
<td>Element-wise maximum between this and another matrix.</td>
</tr>
<tr>
<td><code>mean([axis, dtype, out])</code></td>
<td>Compute the arithmetic mean along the specified axis.</td>
</tr>
<tr>
<td><code>minimum(other)</code></td>
<td>Element-wise minimum between this and another matrix.</td>
</tr>
<tr>
<td><code>multiply(other)</code></td>
<td>Point-wise multiplication by another matrix</td>
</tr>
<tr>
<td><code>nonzero()</code></td>
<td>nonzero indices</td>
</tr>
<tr>
<td><code>pop(key[, default])</code></td>
<td>If the key is not found, return the default if given; otherwise, raise a KeyError.</td>
</tr>
<tr>
<td><code>popitem()</code></td>
<td>Remove and return a (key, value) pair as a 2-tuple.</td>
</tr>
<tr>
<td><code>power(n[, dtype])</code></td>
<td>Element-wise power.</td>
</tr>
<tr>
<td><code>reshape(self, shape[, order, copy])</code></td>
<td>Gives a new shape to a sparse matrix without changing its data.</td>
</tr>
<tr>
<td><code>resize(*shape)</code></td>
<td>Resize the matrix in-place to dimensions given by shape</td>
</tr>
<tr>
<td><code>set_shape(shape)</code></td>
<td>See <code>reshape</code>.</td>
</tr>
<tr>
<td><code>setdefault(key[, default])</code></td>
<td>Insert key with a value of default if key is not in the dictionary.</td>
</tr>
<tr>
<td><code>setdiag(values[, k])</code></td>
<td>Set diagonal or off-diagonal elements of the array.</td>
</tr>
<tr>
<td><code>sum([axis, dtype, out])</code></td>
<td>Sum the matrix elements over a given axis.</td>
</tr>
<tr>
<td><code>tobarray([order, out])</code></td>
<td>Return a dense ndarray representation of this matrix.</td>
</tr>
<tr>
<td><code>tobsr([blocksize, copy])</code></td>
<td>Convert this matrix to Block Sparse Row format.</td>
</tr>
<tr>
<td><code>tocoo([copy])</code></td>
<td>Convert this matrix to COOrdinate format.</td>
</tr>
<tr>
<td><code>tocsc([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Column format.</td>
</tr>
<tr>
<td><code>tocsr([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Row format.</td>
</tr>
<tr>
<td><code>todense([order, out])</code></td>
<td>Return a dense matrix representation of this matrix.</td>
</tr>
<tr>
<td><code>todia([copy])</code></td>
<td>Convert this matrix to sparse DIAgonal format.</td>
</tr>
<tr>
<td><code>todok([copy])</code></td>
<td>Convert this matrix to Dictionary Of Keys format.</td>
</tr>
<tr>
<td><code>tolil([copy])</code></td>
<td>Convert this matrix to List of Lists format.</td>
</tr>
<tr>
<td><code>trace([offset])</code></td>
<td>Returns the sum along diagonals of the sparse matrix.</td>
</tr>
<tr>
<td><code>transpose([axes, copy])</code></td>
<td>Reverses the dimensions of the sparse matrix.</td>
</tr>
<tr>
<td><code>update(E, **F)</code></td>
<td>If (E) is present and has a <code>.keys()</code> method, then does: for (k)</td>
</tr>
<tr>
<td></td>
<td>in (E: D[k] = E[k]) If (E) is present and lacks a <code>.keys()</code></td>
</tr>
<tr>
<td></td>
<td>method, then does: for (k, v) in (E: D[k] = v) In either case,</td>
</tr>
<tr>
<td></td>
<td>this is followed by: for (k) in (F: D[k] = F[k])</td>
</tr>
</tbody>
</table>

3.3. API definition

![continues on next page]
Table 180 – continued from previous page

values()

scipy.sparse.dok_array.__len__

dok_array.__len__()
 Return len(self).

scipy.sparse.dok_array.__mul__

dok_array.__mul__(*args, **kwargs)

scipy.sparse.dok_array.asformat

dok_array.asformat(format, copy=False)
 Return this matrix in the passed format.

Parameters

format [{str, None}] The desired matrix format ("csr", "csc", "lil", "dok", "array", ...) or None for no conversion.
copy [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

A [This matrix in the passed format.]

scipy.sparse.dok_array.asfptype

dok_array.asfptype()
 Upcast matrix to a floating point format (if necessary)

scipy.sparse.dok_array.astype

dok_array.astype(dtype, casting='unsafe', copy=True)
 Cast the matrix elements to a specified type.

Parameters

dtype [string or numpy dtype] Typecode or data-type to which to cast the data.
casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’ means only casts which can preserve values are allowed. ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data conversions may be done.
copy [bool, optional] If copy is False, the result might share some memory with this matrix. If copy is True, it is guaranteed that the result and this matrix do not share any memory.
scipy.sparse.dok_array.clear

dok_array.clear() → None. Remove all items from D.

scipy.sparse.dok_array.conj

dok_array.conj(copy=True)
Element-wise complex conjugation.

 If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not copied.

 Parameters
 copy [bool, optional] If True, the result is guaranteed to not share data with self.

 Returns
 A [The element-wise complex conjugate.]

scipy.sparse.dok_array.conjtransp

dok_array.conjtransp()
Return the conjugate transpose.

scipy.sparse.dok_array.conjugate

dok_array.conjugate(copy=True)
Element-wise complex conjugation.

 If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not copied.

 Parameters
 copy [bool, optional] If True, the result is guaranteed to not share data with self.

 Returns
 A [The element-wise complex conjugate.]

scipy.sparse.dok_array.copy

dok_array.copy()
Returns a copy of this matrix.

 No data/indices will be shared between the returned value and current matrix.
scipy.sparse.dok_array.count_nonzero

dok_array.count_nonzero()
 Number of non-zero entries, equivalent to
 np.count_nonzero(a.toarray())

 Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data
 attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.dok_array.diagonal

dok_array.diagonal(k=0)
 Returns the kth diagonal of the matrix.

 Parameters
 k [int, optional] Which diagonal to get, corresponding to elements a[j, i+k]. Default: 0
 (the main diagonal).
 New in version 1.0.

 See also:

 numpy.diagonal

 Equivalent numpy function.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])

scipy.sparse.dok_array.dot

dok_array.dot(other)
 Ordinary dot product

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([1, -3, -1], dtype=int64)
scipy.sparse.dok_array.fromkeys

```python
dok_array.fromkeys(iterable, value=None, /)
```

Create a new dictionary with keys from iterable and values set to value.

scipy.sparse.dok_array.get

```python
dok_array.get(key, default=0.0)
```

This overrides the dict.get method, providing type checking but otherwise equivalent functionality.

scipy.sparse.dok_array.getH

```python
dok_array.getH()
```

Return the Hermitian transpose of this matrix.

See also:

```python
numpy.matrix.getH
```

NumPy's implementation of `getH` for matrices

scipy.sparse.dok_array.get_shape

```python
dok_array.get_shape()
```

Get shape of a matrix.

scipy.sparse.dok_array.getcol

```python
dok_array.getcol(j)
```

Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

scipy.sparse.dok_array.getformat

```python
dok_array.getformat()
```

Format of a matrix representation as a string.

scipy.sparse.dok_array.getmaxprint

```python
dok_array.getmaxprint()
```

Maximum number of elements to display when printed.
scipy.sparse.dok_array.getnnz

dok_array.getnnz(\textit{axis=None})
Number of stored values, including explicit zeros.

\textbf{Parameters}

axis [None, 0, or 1] Select between the number of values across the whole matrix, in each column, or in each row.

\textbf{See also:}

count_nonzero

Number of non-zero entries

scipy.sparse.dok_array.getrow

dok_array.getrow(\textit{i})
Returns a copy of row \textit{i} of the matrix, as a (1 x n) sparse matrix (row vector).

scipy.sparse.dok_array.items

dok_array.items() \rightarrow \text{a set-like object providing a view on D's items}

scipy.sparse.dok_array.keys

dok_array.keys() \rightarrow \text{a set-like object providing a view on D's keys}

scipy.sparse.dok_array.maximum

dok_array.maximum(\textit{other})
Element-wise maximum between this and another matrix.

scipy.sparse.dok_array.mean

dok_array.mean(\textit{axis=None, dtype=None, out=None})
Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken over all elements in the matrix by default, otherwise over the specified axis. \texttt{float64} intermediate and return values are used for integer inputs.

\textbf{Parameters}

axis [{-2, -1, 0, 1, None} optional] Axis along which the mean is computed. The default is to compute the mean of all elements in the matrix (i.e., \texttt{axis = None}).

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default is \texttt{float64}; for floating point inputs, it is the same as the input dtype. New in version 0.18.0.
out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. New in version 0.18.0.

Returns

m [np.matrix]

See also:

numpy.matrix.mean

NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.dok_array.minimum
dok_array.minimum(other)
Element-wise minimum between this and another matrix.

scipy.sparse.dok_array.multiply
dok_array.multiply(other)
Point-wise multiplication by another matrix

scipy.sparse.dok_array.nonzero
dok_array.nonzero()
nonzero indices
Returns a tuple of arrays (row, col) containing the indices of the non-zero elements of the matrix.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix(([1,2,0],[0,0,3],[4,0,5]))
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
```

scipy.sparse.dok_array.pop
dok_array.pop(key, default=<unrepresentable>, /)
If the key is not found, return the default if given; otherwise, raise a KeyError.
scipy.sparse.dok_array.popitem

dok_array.popitem()
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

scipy.sparse.dok_array.power

dok_array.power(n, dtype=None)
Element-wise power.

scipy.sparse.dok_array.reshape

dok_array.reshape(self, shape, order='C', copy=False)
Gives a new shape to a sparse matrix without changing its data.

Parameters

- **shape** [length-2 tuple of ints] The new shape should be compatible with the original shape.
- **order** [{‘C’, ‘F’}, optional] Read the elements using this index order. ‘C’ means to read and write the elements using C-like index order; e.g., read entire first row, then second row, etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g., read entire first column, then second column, etc.
- **copy** [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

- **reshaped_matrix** [sparse matrix] A sparse matrix with the given shape, not necessarily of the same format as the current object.

See also:

numpy.matrix.reshape
NumPy’s implementation of ‘reshape’ for matrices

scipy.sparse.dok_array.resize

dok_array.resize(*shape)
Resize the matrix in-place to dimensions given by shape.

Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying outside the new shape are removed.

Parameters

- **shape** [(int, int)] number of rows and columns in the new matrix
Notes

The semantics are not identical to numpy.ndarray.resize or numpy.resize. Here, the same data will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy, resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or replaced with new objects.

scipy.sparse.dok_array.set_shape

dok_array.set_shape(shape)

See reshape.

scipy.sparse.dok_array.setdefault

dok_array.setdefault(key, default=None, /)

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

scipy.sparse.dok_array.setdiag

dok_array.setdiag(values, k=0)

Set diagonal or off-diagonal elements of the array.

Parameters

values [array_like] New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values, then the remaining diagonal entries will not be set. If values are longer than the diagonal, then the remaining values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0 (the main diagonal).

scipy.sparse.dok_array.sum

dok_array.sum(axis=None, dtype=None, out=None)

Sum the matrix elements over a given axis.

Parameters

axis [-2, -1, 0, 1, None] optional] Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e., axis = None).
dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the elements are summed. The dtype of a is used by default unless a has an integer dtype of less precision than the default platform integer. In that case, if a is signed then the platform integer is used while if a is unsigned then an unsigned integer of the same precision as the platform integer is used.
New in version 0.18.0.
out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. New in version 0.18.0.

Returns

sum_along_axis [np.matrix] A matrix with the same shape as self, with the specified axis removed.

See also:

numpy.matrix.sum

NumPy's implementation of 'sum' for matrices

scipy.sparse.dok_array.toarray
dok_array.toarray(order=None, out=None)

Return a dense ndarray representation of this matrix.

Parameters

order [{'C', 'F'}, optional] Whether to store multidimensional data in C (row-major) or Fortran (column-major) order in memory. The default is 'None', which provides no ordering guarantees. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-D, optional] If specified, uses this array as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. For most sparse types, out is required to be memory contiguous (either C or Fortran ordered).

Returns

arr [ndarray, 2-D] An array with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If out was passed, the same object is returned after being modified in-place to contain the appropriate values.

scipy.sparse.dok_array.tobsr
dok_array.tobsr(blocksize=None, copy=False)

Convert this matrix to Block Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.

When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix.

scipy.sparse.dok_array.tocoo
dok_array.tocoo(copy=False)

Convert this matrix to COOrdinate format.

With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.
scipy.sparse.dok_array.tocsc

dok_array.tocsc(copy=False)
 Convert this matrix to Compressed Sparse Column format.
 With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

scipy.sparse.dok_array.tocsr

dok_array.tocsr(copy=False)
 Convert this matrix to Compressed Sparse Row format.
 With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.dok_array.todense

dok_array.todense(order=None, out=None)
 Return a dense matrix representation of this matrix.

 Parameters

 order : {'C', 'F'}, optional
 Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is 'None', which provides no ordering guarantees. Cannot be specified in conjunction with the out argument.
 out : ndarray, 2-D, optional
 If specified, uses this array (or numpy.matrix) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method.

 Returns

 arr : numpy.matrix, 2-D
 A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If out was passed and was an array (rather than a numpy.matrix), it will be filled with the appropriate values and returned wrapped in a numpy.matrix object that shares the same memory.

scipy.sparse.dok_array.todia

dok_array.todia(copy=False)
 Convert this matrix to sparse DIAgonal format.
 With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.

scipy.sparse.dok_array.todok

dok_array.todok(copy=False)
 Convert this matrix to Dictionary Of Keys format.
 With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.
scipy.sparse.dok_array.tolil

dok_array.tolil(copy=False)
Convert this matrix to List of Lists format.

With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.dok_array.trace

dok_array.trace(offset=0)
Returns the sum along diagonals of the sparse matrix.

Parameters
offset [int, optional] Which diagonal to get, corresponding to elements a[i, i+offset]. Default: 0 (the main diagonal).

scipy.sparse.dok_array.transpose

dok_array.transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

Parameters
axes [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value.
copy [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns
p [self with the dimensions reversed.]

See also:
numpy.matrix.transpose
NumPy’s implementation of ‘transpose’ for matrices

scipy.sparse.dok_array.update

dok_array.update([E], **F) → None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
scipy.sparse.dok_array.values

dok_array.values() → an object providing a view on D’s values

scipy.sparse.lil_array

class scipy.sparse.lil_array(arg1, shape=None, dtype=None, copy=False)
Row-based list of lists sparse array
This is a structure for constructing sparse arrays incrementally. Note that inserting a single item can take linear
time in the worst case; to construct a array efficiently, make sure the items are pre-sorted by index, per row.

This can be instantiated in several ways:

lil_array(D)
with a dense array or rank-2 ndarray D

lil_array(S)
with another sparse array S (equivalent to S.tolil())

lil_array((M, N), [dtype])
to construct an empty array with shape (M, N) dtype is optional, defaulting to dtype='d'.

Notes
Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and
array power.

Advantages of the LIL format
• supports flexible slicing
• changes to the array sparsity structure are efficient

Disadvantages of the LIL format
• arithmetic operations LIL + LIL are slow (consider CSR or CSC)
• slow column slicing (consider CSC)
• slow array vector products (consider CSR or CSC)

Intended Usage
• LIL is a convenient format for constructing sparse arrays
• once a array has been constructed, convert to CSR or CSC format for fast arithmetic and array vector
 operations
• consider using the COO format when constructing large arrays

Data Structure
• An array (self.rows) of rows, each of which is a sorted list of column indices of non-zero elements.
• The corresponding nonzero values are stored in similar fashion in self.data.

Attributes

- **dtype** [dtype] Data type of the array
- **ndim** [int] Number of dimensions (this is always 2)
- **nnz** Number of stored values, including explicit zeros.
- **data** LIL format data array of the array
- **rows** LIL format row index array of the array

Methods

- **__len__()**
- **__mul__(**args, **kwargs**)**

  ```python
  asformat(format[, copy])
  asfptype()
  astype(dtype[, casting, copy])
  conj([copy])
  conjugate([copy])
  copy()
  count_nonzero()
  diagonal([k])
  dot(other)
  getH()
  get_shape()
  getcol(j)
  getformat()
  getmaxprint()
  getnnz([axis])
  getrow(i)
  getrowview(i)
  maximum(other)
  mean([axis, dtype, out])
  minimum(other)
  multiply(other)
  nonzero()
  power(n[, dtype])
  reshape(self, shape[, order, copy])
  resize(*shape)
  set_shape(shape)
  ```

 continues on next page
Table 181 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>setdiag</code></td>
<td>Set diagonal or off-diagonal elements of the array.</td>
</tr>
<tr>
<td><code>sum</code></td>
<td>Sum the matrix elements over a given axis.</td>
</tr>
<tr>
<td><code>toarray</code></td>
<td>Return a dense ndarray representation of this matrix.</td>
</tr>
<tr>
<td><code>tobsr</code></td>
<td>Convert this matrix to Block Sparse Row format.</td>
</tr>
<tr>
<td><code>tocoo</code></td>
<td>Convert this matrix to COOrdinate format.</td>
</tr>
<tr>
<td><code>tocsc</code></td>
<td>Convert this matrix to Compressed Sparse Column format.</td>
</tr>
<tr>
<td><code>tocsr</code></td>
<td>Convert this matrix to Compressed Sparse Row format.</td>
</tr>
<tr>
<td><code>todense</code></td>
<td>Return a dense matrix representation of this matrix.</td>
</tr>
<tr>
<td><code>todia</code></td>
<td>Convert this matrix to sparse DIAgonal format.</td>
</tr>
<tr>
<td><code>todok</code></td>
<td>Convert this matrix to Dictionary Of Keys format.</td>
</tr>
<tr>
<td><code>tolil</code></td>
<td>Convert this matrix to List of Lists format.</td>
</tr>
<tr>
<td><code>trace</code></td>
<td>Returns the sum along diagonals of the sparse matrix.</td>
</tr>
<tr>
<td><code>transpose</code></td>
<td>Reverses the dimensions of the sparse matrix.</td>
</tr>
</tbody>
</table>

scipy.sparse.lil_array.__len__

lil_array.__len__()

scipy.sparse.lil_array.__mul__

lil_array.__mul__(*args, **kwargs)*

scipy.sparse.lil_array.asformat

lil_array.asformat(format, copy=False)

Return this matrix in the passed format.

Parameters

- **format** [{str, None}] The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …) or None for no conversion.
- **copy** [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

A [This matrix in the passed format.]

scipy.sparse.lil_array.asfptype

lil_array.asfptype()

Upcast matrix to a floating point format (if necessary)
scipy.sparse.lil_array.astype

lil_array.astype(*dtype*, *casting=unsafe*, *copy=True*)

Cast the matrix elements to a specified type.

Parameters

- **dtype** [string or numpy dtype] Typecode or data-type to which to cast the data.
- **casting** [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’ means only casts which can preserve values are allowed. ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data conversions may be done.
- **copy** [bool, optional] If *copy* is False, the result might share some memory with this matrix. If *copy* is True, it is guaranteed that the result and this matrix do not share any memory.

scipy.sparse.lil_array.conj

lil_array.conj(*copy=True*)

Element-wise complex conjugation.

If the matrix is of non-complex data type and *copy* is False, this method does nothing and the data is not copied.

Parameters

- **copy** [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- **A** [The element-wise complex conjugate.]

scipy.sparse.lil_array.conjugate

lil_array.conjugate(*copy=True*)

Element-wise complex conjugation.

If the matrix is of non-complex data type and *copy* is False, this method does nothing and the data is not copied.

Parameters

- **copy** [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- **A** [The element-wise complex conjugate.]
scipy.sparse.lil_array.copy

lil_array.copy()
 Returns a copy of this matrix.
 No data/indices will be shared between the returned value and current matrix.

scipy.sparse.lil_array.count_nonzero

lil_array.count_nonzero()
 Number of non-zero entries, equivalent to
 np.count_nonzero(a.toarray())
 Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data
 attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.lil_array.diagonal

lil_array.diagonal(k=0)
 Returns the kth diagonal of the matrix.

 Parameters

 k [int, optional] Which diagonal to get, corresponding to elements a[i, i+k]. Default: 0
 (the main diagonal).
 New in version 1.0.

 See also:

 numpy.diagonal
 Equivalent numpy function.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])

scipy.sparse.lil_array.dot

lil_array.dot(other)
 Ordinary dot product
Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
```

scipy.sparse.lil_array.getH

`lil_array.getH()`
Return the Hermitian transpose of this matrix.

See also:

`numpy.matrix.getH`
NumPy's implementation of `getH` for matrices

scipy.sparse.lil_array.get_shape

`lil_array.get_shape()`
Get shape of a matrix.

scipy.sparse.lil_array.getcol

`lil_array.getcol(j)`
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

scipy.sparse.lil_array.getformat

`lil_array.getformat()`
Format of a matrix representation as a string.

scipy.sparse.lil_array.getmaxprint

`lil_array.getmaxprint()`
Maximum number of elements to display when printed.
scipy.sparse.lil_array.getnnz

lil_array.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters
axis [None, 0, or 1] Select between the number of values across the whole matrix, in each column, or in each row.

See also:
count_nonzero
Number of non-zero entries

scipy.sparse.lil_array.getrow

lil_array.getrow(i)
Returns a copy of the ‘i’th row.

scipy.sparse.lil_array.getrowview

lil_array.getrowview(i)
Returns a view of the ‘i’th row (without copying).

scipy.sparse.lil_array.maximum

lil_array.maximum(other)
Element-wise maximum between this and another matrix.

scipy.sparse.lil_array.mean

lil_array.mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken over all elements in the matrix by default, otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters
axis [{-2, -1, 0, 1, None} optional] Axis along which the mean is computed. The default is to compute the mean of all elements in the matrix (i.e., axis = None).
dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype.
New in version 0.18.0.
out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.
New in version 0.18.0.

Returns
m [np.matrix]
See also:

```
numpy.matrix.mean
```

NumPy's implementation of ‘mean’ for matrices

```
scipy.sparse.lil_array.minimum
```

```
lil_array.minimum(other)
```

Element-wise minimum between this and another matrix.

```
scipy.sparse.lil_array.multiply
```

```
lil_array.multiply(other)
```

Point-wise multiplication by another matrix

```
scipy.sparse.lil_array.nonzero
```

```
lil_array.nonzero()
```

Nonzero indices

Returns a tuple of arrays (row, col) containing the indices of the non-zero elements of the matrix.

Examples

```
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
```

```
scipy.sparse.lil_array.power
```

```
lil_array.power(n, dtype=None)
```

Element-wise power.

```
scipy.sparse.lil_array.reshape
```

```
lil_array.reshape(self, shape, order='C', copy=False)
```

Gives a new shape to a sparse matrix without changing its data.

Parameters

- **shape**
 - [length-2 tuple of ints] The new shape should be compatible with the original shape.
- **order**
 - [‘C’, ‘F’], optional) Read the elements using this index order. ‘C’ means to read and write the elements using C-like index order; e.g., read entire first row, then second row, etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g., read entire first column, then second column, etc.
copy [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

reshaped_matrix

[sparse matrix] A sparse matrix with the given shape, not necessarily of the same format as the current object.

See also:

`numpy.matrix.reshape`

NumPy’s implementation of ‘reshape’ for matrices

scipy.sparse.lil_array.resize

`lil_array.resize(*shape)`

Resizes the matrix in-place to dimensions given by shape

Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying outside the new shape are removed.

Parameters

- **shape**

 [(int, int)] number of rows and columns in the new matrix

Notes

The semantics are not identical to `numpy.ndarray.resize` or `numpy.resize`. Here, the same data will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy, resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or replaced with new objects.

scipy.sparse.lil_array.set_shape

`lil_array.set_shape(shape)`

See `reshape`.

scipy.sparse.lil_array.setdiag

`lil_array.setdiag(values, k=0)`

Set diagonal or off-diagonal elements of the array.

Parameters

- **values**

 [array_like] New values of the diagonal elements.

 Values may have any length. If the diagonal is longer than values, then the remaining diagonal entries will not be set. If values are longer than the diagonal, then the remaining values are ignored.

 If a scalar value is given, all of the diagonal is set to it.
k [int, optional] Which off-diagonal to set, corresponding to elements $a[i,i+k]$. Default: 0 (the main diagonal).

scipy.sparse.lil_array.sum

`lil_array.sum(axis=None, dtype=None, out=None)`

Sum the matrix elements over a given axis.

Parameters

- **axis** [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e., $axis = None$).
- **dtype** [dtype, optional] The type of the returned matrix and of the accumulator in which the elements are summed. The dtype of a is used by default unless a has an integer dtype of less precision than the default platform integer. In that case, if a is signed then the platform integer is used while if a is unsigned then an unsigned integer of the same precision as the platform integer is used. New in version 0.18.0.
- **out** [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. New in version 0.18.0.

Returns

- **sum_along_axis** [np.matrix] A matrix with the same shape as $self$, with the specified axis removed.

See also:

numpy.matrix.sum

NumPy's implementation of 'sum' for matrices

scipy.sparse.lil_array.toarray

`lil_array.toarray(order=None, out=None)`

Return a dense ndarray representation of this matrix.

Parameters

- **order** [‘C’, ‘F’], optional] Whether to store multidimensional data in C (row-major) or Fortran (column-major) order in memory. The default is 'None', which provides no ordering guarantees. Cannot be specified in conjunction with the `out` argument.
- **out** [ndarray, 2-D, optional] If specified, uses this array as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. For most sparse types, `out` is required to be memory contiguous (either C or Fortran ordered).

Returns

- **arr** [ndarray, 2-D] An array with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If `out` was passed, the same object is returned after being modified in-place to contain the appropriate values.
scipy.sparse.lil_array.tobsr

```python
lil_array.tobsr(blocksize=None, copy=False)
```

Convert this matrix to Block Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.

When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix.

scipy.sparse.lil_array.tocoo

```python
lil_array.tocoo(copy=False)
```

Convert this matrix to COOrdinate format.

With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

scipy.sparse.lil_array.tocsc

```python
lil_array.tocsc(copy=False)
```

Convert this matrix to Compressed Sparse Column format.

With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

scipy.sparse.lil_array.tocsr

```python
lil_array.tocsr(copy=False)
```

Convert this matrix to Compressed Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.lil_array.todense

```python
lil_array.todense(order=None, out=None)
```

Return a dense matrix representation of this matrix.

Parameters

- `order` ([`‘C’, ‘F’`], optional) Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the `out` argument.

- `out` ([ndarray, 2-D, optional]) If specified, uses this array (or `numpy.matrix`) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

- `arr` ([`numpy.matrix`, 2-D]) A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If `out` was passed and was an array (rather than a `numpy.matrix`), it will be filled with the appropriate values and returned wrapped in a `numpy.matrix` object that shares the same memory.
scipy.sparse.lil_array.todia

lil_array.todia(copy=False)
Convert this matrix to sparse DIAgonal format.

With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.

scipy.sparse.lil_array.todok

lil_array.todok(copy=False)
Convert this matrix to Dictionary Of Keys format.

With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.lil_array.tolil

lil_array.tolil(copy=False)
Convert this matrix to List of Lists format.

With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.lil_array.trace

lil_array.trace(offset=0)
Returns the sum along diagonals of the sparse matrix.

Parameters

offset [int, optional] Which diagonal to get, corresponding to elements a[i, i+offset]. Default: 0 (the main diagonal).

scipy.sparse.lil_array.transpose

lil_array.transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

Parameters

axes [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value.
copy [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

p [self with the dimensions reversed.]

See also:

numpy.matrix.transpose

NumPy's implementation of ‘transpose’ for matrices
Sparse matrix classes

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bsr_matrix</code></td>
<td>Block Sparse Row matrix</td>
</tr>
<tr>
<td><code>coo_matrix</code></td>
<td>A sparse matrix in COOrdinate format.</td>
</tr>
<tr>
<td><code>csc_matrix</code></td>
<td>Compressed Sparse Column matrix</td>
</tr>
<tr>
<td><code>csr_matrix</code></td>
<td>Compressed Sparse Row matrix</td>
</tr>
<tr>
<td><code>dia_matrix</code></td>
<td>Sparse matrix with DIAgonal storage</td>
</tr>
<tr>
<td><code>dok_matrix</code></td>
<td>Dictionary Of Keys based sparse matrix.</td>
</tr>
<tr>
<td><code>lil_matrix</code></td>
<td>Row-based list of lists sparse matrix</td>
</tr>
<tr>
<td><code>spmatrix</code></td>
<td>This class provides a base class for all sparse matrices.</td>
</tr>
</tbody>
</table>

scipy.sparse.bsr_matrix

class scipy.sparse.bsr_matrix *(arg1, shape=None, dtype=None, copy=False, blocksize=None)*
Block Sparse Row matrix

This can be instantiated in several ways:

- `bsr_matrix(D, [blocksize=(R,C)])`
 where D is a dense matrix or 2-D ndarray.

- `bsr_matrix(S, [blocksize=(R,C)])`
 with another sparse matrix S (equivalent to S.tobsr())

- `bsr_matrix((M, N), [blocksize=(R,C), dtype])`
 to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.

- `bsr_matrix((data, ij), [blocksize=(R,C), shape=(M, N)])`
 where data and ij satisfy `a[ij[0, k], ij[1, k]] = data[k]`

- `bsr_matrix((data, indices, indptr), [shape=(M, N)])`
 is the standard BSR representation where the block column indices for row i are stored in `indices[indptr[i]:indptr[i+1]]` and their corresponding block values are stored in `data[indptr[i]: indptr[i+1]]`. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.

Summary of BSR format

The Block Compressed Row (BSR) format is very similar to the Compressed Sparse Row (CSR) format. BSR is appropriate for sparse matrices with dense sub matrices like the last example below. Block matrices often arise in vector-valued finite element discretizations. In such cases, BSR is considerably more efficient than CSR and CSC for many sparse arithmetic operations.

Blocksize
The blocksize \((R,C)\) must evenly divide the shape of the matrix \((M,N)\). That is, \(R\) and \(C\) must satisfy the relationship \(M \% R = 0\) and \(N \% C = 0\).

If no blocksize is specified, a simple heuristic is applied to determine an appropriate blocksize.

Examples

```python
>>> from scipy.sparse import bsr_matrix
>>> bsr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)
```

```python
>>> row = np.array([0, 0, 1, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> bsr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])
```

```python
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6]).repeat(4).reshape(6, 2)
>>> bsr_matrix((data,indices,indptr), shape=(6, 6)).toarray()
array([[1, 1, 0, 0, 2, 2],
       [1, 1, 0, 0, 2, 2],
       [0, 0, 0, 0, 3, 3],
       [0, 0, 0, 0, 3, 3],
       [4, 4, 5, 5, 6, 6],
       [4, 4, 5, 5, 6, 6]])
```

Attributes

- `dtype` [dtype] Data type of the matrix
- `ndim` [int] Number of dimensions (this is always 2)
- `nnz` Number of stored values, including explicit zeros.
- `data` Data array of the matrix
- `indices` BSR format index array
- `indptr` BSR format index pointer array
- `blocksize` Block size of the matrix
- `has_sorted_indices` Determine whether the matrix has sorted indices
Methods

```python
__len__()  

arcsin()  
arcsinh()  
arctan()  
arctanh()  
argmax([axis, out])  
argmin([axis, out])  
asformat(format[, copy])  
asfptype()  
astype(dtype[, casting, copy])  
cell()  
check_format([full_check])  
conj([copy])  
conjugate([copy])  
copy()  
count_nonzero()  
deg2rad()  
diagonal([k])  
dot(other)  
eliminate_zeros()  
expm1()  
floor()  
getH()  
get_shape()  
getcol(j)  
getformat()  
getmaxprint()  
getnnz([axis])  
getrow(i)  
log1p()  
matmat(**kwds)  
matvec(**kwds)  
max([axis, out])  
maximum(other)  
mean([axis, dtype, out])  
min([axis, out])  
minimum(other)  
multiply(other)  
```

continued on next page
Table 183 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonzero()</td>
<td>nonzero indices</td>
</tr>
<tr>
<td>power(n, dtype)</td>
<td>This function performs element-wise power.</td>
</tr>
<tr>
<td>prune()</td>
<td>Remove empty space after all non-zero elements.</td>
</tr>
<tr>
<td>rad2deg()</td>
<td>Element-wise rad2deg.</td>
</tr>
<tr>
<td>reshape(self, shape[, order, copy])</td>
<td>Gives a new shape to a sparse matrix without changing its data.</td>
</tr>
<tr>
<td>*resize(shape)</td>
<td>Resize the matrix in-place to dimensions given by shape</td>
</tr>
<tr>
<td>rint()</td>
<td>Element-wise rint.</td>
</tr>
<tr>
<td>set_shape(shape)</td>
<td>See reshape.</td>
</tr>
<tr>
<td>setdiag(values[, k])</td>
<td>Set diagonal or off-diagonal elements of the array.</td>
</tr>
<tr>
<td>sign()</td>
<td>Element-wise sign.</td>
</tr>
<tr>
<td>sin()</td>
<td>Element-wise sin.</td>
</tr>
<tr>
<td>sinh()</td>
<td>Element-wise sinh.</td>
</tr>
<tr>
<td>sort_indices()</td>
<td>Sort the indices of this matrix in place</td>
</tr>
<tr>
<td>sorted_indices()</td>
<td>Return a copy of this matrix with sorted indices</td>
</tr>
<tr>
<td>sqrt()</td>
<td>Element-wise sqrt.</td>
</tr>
<tr>
<td>sum(axis, dtype, out)</td>
<td>Sum the matrix elements over a given axis.</td>
</tr>
<tr>
<td>sum_duplicates()</td>
<td>Eliminate duplicate matrix entries by adding them together</td>
</tr>
<tr>
<td>tan()</td>
<td>Element-wise tan.</td>
</tr>
<tr>
<td>tanh()</td>
<td>Element-wise tanh.</td>
</tr>
<tr>
<td>toarray([order, out])</td>
<td>Return a dense ndarray representation of this matrix.</td>
</tr>
<tr>
<td>tobsr([blocksize, copy])</td>
<td>Convert this matrix into Block Sparse Row Format.</td>
</tr>
<tr>
<td>tocoo([copy])</td>
<td>Convert this matrix to COOrdinate format.</td>
</tr>
<tr>
<td>tocsc([copy])</td>
<td>Convert this matrix to Compressed Sparse Column format.</td>
</tr>
<tr>
<td>tocsr([copy])</td>
<td>Convert this matrix to Compressed Sparse Row format.</td>
</tr>
<tr>
<td>todense([order, out])</td>
<td>Return a dense matrix representation of this matrix.</td>
</tr>
<tr>
<td>todok([copy])</td>
<td>Convert this matrix to sparse DIAGONAL format.</td>
</tr>
<tr>
<td>todil([copy])</td>
<td>Convert this matrix to Dictionary Of Keys format.</td>
</tr>
<tr>
<td>transpose([axes, copy])</td>
<td>Reverses the dimensions of the sparse matrix.</td>
</tr>
<tr>
<td>trunc()</td>
<td>Element-wise trunc.</td>
</tr>
</tbody>
</table>

```python
scipy.sparse.bsr_matrix.__len__
```

```python
bsr_matrix.__len__()
```
scipy.sparse.bsr_matrix.arcsin

bsr_matrix.arcsin()

Element-wise arcsin.

See numpy.arcsin for more information.

scipy.sparse.bsr_matrix.arcsinh

bsr_matrix.arcsinh()

Element-wise arcsinh.

See numpy.arcsinh for more information.

scipy.sparse.bsr_matrix.arctan

bsr_matrix.arctan()

Element-wise arctan.

See numpy.arctan for more information.

scipy.sparse.bsr_matrix.arctanh

bsr_matrix.arctanh()

Element-wise arctanh.

See numpy.arctanh for more information.

scipy.sparse.bsr_matrix.argmax

bsr_matrix.argmax(axis=None, out=None)

Return indices of maximum elements along an axis.

Implicit zero elements are also taken into account. If there are several maximum values, the index of the first occurrence is returned.

Parameters

- **axis**([-2, -1, 0, 1, None], optional) Axis along which the argmax is computed. If None (default), index of the maximum element in the flatten data is returned.
- **out**([None, optional]) This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns

- **ind**([numpy.matrix or int]) Indices of maximum elements. If matrix, its size along axis is 1.
scipy.sparse.bsr_matrix.argmin

bsr_matrix.argmin(axis=None, out=None)

Return indices of minimum elements along an axis.
Implicit zero elements are also taken into account. If there are several minimum values, the index of the first occurrence is returned.

Parameters

axis [{-2, -1, 0, 1, None}, optional] Axis along which the argmin is computed. If None (default), index of the minimum element in the flattened data is returned.
out [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns

ind [numpy.matrix or int] Indices of minimum elements. If matrix, its size along axis is 1.

scipy.sparse.bsr_matrix.asformat

bsr_matrix.asformat(format, copy=False)

Return this matrix in the passed format.

Parameters

format [[str, None]] The desired matrix format ("csr", "csc", "lil", "dok", "array", …) or None for no conversion.
copy [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

A [This matrix in the passed format.]

scipy.sparse.bsr_matrix.asfptype

bsr_matrix.asfptype()

Upcast matrix to a floating point format (if necessary)

scipy.sparse.bsr_matrix.astype

bsr_matrix.astype(dtype, casting='unsafe', copy=True)

Cast the matrix elements to a specified type.

Parameters

dtype [string or numy dtype] Typecode or data-type to which to cast the data.
casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’ means only casts which can preserve values are allowed. ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data conversions may be done.
copy [bool, optional] If copy is False, the result might share some memory with this matrix. If copy is True, it is guaranteed that the result and this matrix do not share any memory.
scipy.sparse.bsr_matrix.ceil

`bsr_matrix.ceil()`
Element-wise ceiling.
See `numpy.ceil` for more information.

scipy.sparse.bsr_matrix.check_format

`bsr_matrix.check_format(full_check=True)`
Check whether the matrix format is valid.
Parameters:

- `full_check`:
 True - rigorous check, O(N) operations; default False - basic check, O(1) operations

scipy.sparse.bsr_matrix.conj

`bsr_matrix.conj(copy=True)`
Element-wise complex conjugation.
If the matrix is of non-complex data type and `copy` is False, this method does nothing and the data is not copied.
Parameters

- `copy` [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- `A` [The element-wise complex conjugate.]

scipy.sparse.bsr_matrix.conjugate

`bsr_matrix.conjugate(copy=True)`
Element-wise complex conjugation.
If the matrix is of non-complex data type and `copy` is False, this method does nothing and the data is not copied.
Parameters

- `copy` [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- `A` [The element-wise complex conjugate.]
scipy.sparse.bsr_matrix.copy

bsr_matrix.copy()
Returns a copy of this matrix.
No data/indices will be shared between the returned value and current matrix.

scipy.sparse.bsr_matrix.count_nonzero

bsr_matrix.count_nonzero()
Number of non-zero entries, equivalent to
np.count_nonzero(a.toarray())
Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.bsr_matrix.deg2rad

bsr_matrix.deg2rad()
Element-wise deg2rad.
See numpy.deg2rad for more information.

scipy.sparse.bsr_matrix.diagonal

bsr_matrix.diagonal(k=0)
Returns the kth diagonal of the matrix.

Parameters
k [int, optional] Which diagonal to get, corresponding to elements a[i, i+k]. Default: 0 (the main diagonal).
New in version 1.0.

See also:
numpy.diagonal
Equivalent numpy function.

Examples

>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])
scipy.sparse.bsr_matrix.dot

bsr_matrix.dot(other)
Ordinary dot product

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
```

scipy.sparse.bsr_matrix.eliminate_zeros

bsr_matrix.eliminate_zeros()
Remove zero elements in-place.

scipy.sparse.bsr_matrix.expm1

bsr_matrix.expm1()
Element-wise expm1.
See numpy.expm1 for more information.

scipy.sparse.bsr_matrix.floor

bsr_matrix.floor()
Element-wise floor.
See numpy.floor for more information.

scipy.sparse.bsr_matrix.getH

bsr_matrix.getH()
Return the Hermitian transpose of this matrix.
See also:
	numpy.matrix.getH

NumPy's implementation of getH for matrices
scipy.sparse.bsr_matrix.get_shape

bsr_matrix.get_shape()
Get shape of a matrix.

scipy.sparse.bsr_matrix.getcol

bsr_matrix.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

scipy.sparse.bsr_matrix.getformat

bsr_matrix.getformat()
Format of a matrix representation as a string.

scipy.sparse.bsr_matrix.getmaxprint

bsr_matrix.getmaxprint()
Maximum number of elements to display when printed.

scipy.sparse.bsr_matrix.getnnz

bsr_matrix.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters

 axis [None, 0, or 1] Select between the number of values across the whole matrix, in each
 column, or in each row.

See also:

count_nonzero
Number of non-zero entries

scipy.sparse.bsr_matrix.getrow

bsr_matrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).
scipy.sparse.bsr_matrix.log1p

bsr_matrix.log1p()
Element-wise log1p.
See numpy.log1p for more information.

scipy.sparse.bsr_matrix.matmat

bsr_matrix.matmat(**kwds)
matmat is deprecated! BSR matmat is deprecated in SciPy 0.19.0. Use * operator instead.
Multiply this sparse matrix by other matrix.

scipy.sparse.bsr_matrix.matvec

bsr_matrix.matvec(**kwds)
matvec is deprecated! BSR matvec is deprecated in SciPy 0.19.0. Use * operator instead.
Multiply matrix by vector.

scipy.sparse.bsr_matrix.max

bsr_matrix.max(axis=None, out=None)
Return the maximum of the matrix or maximum along an axis. This takes all elements into account, not just the non-zero ones.

Parameters
axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to compute the maximum over all the matrix elements, returning a scalar (i.e., axis = None).
out [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns
amax [coo_matrix or scalar] Maximum of a. If axis is None, the result is a scalar value. If axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

min
The minimum value of a sparse matrix along a given axis.

numpy.matrix.max
NumPy’s implementation of ‘max’ for matrices
scipy.sparse.bsr_matrix.maximum

```python
bsr_matrix.maximum(other)
```

Element-wise maximum between this and another matrix.

scipy.sparse.bsr_matrix.mean

```python
bsr_matrix.mean(axis=None, dtype=None, out=None)
```

Computes the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken over all elements in the matrix by default, otherwise over the specified axis. `float64` intermediate and return values are used for integer inputs.

Parameters

- `axis` [-2, -1, 0, 1, None] optional
 - Axis along which the mean is computed. The default is to compute the mean of all elements in the matrix (i.e., `axis = None`).
- `dtype` [data-type, optional]
 - Type to use in computing the mean. For integer inputs, the default is `float64`; for floating point inputs, it is the same as the input dtype.
- `out` [np.matrix, optional]
 - Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.

Returns

- `m` [np.matrix]

See also:

- **numpy.matrix.mean**
 - NumPy's implementation of ‘mean’ for matrices

scipy.sparse.bsr_matrix.min

```python
bsr_matrix.min(axis=None, out=None)
```

Return the minimum of the matrix or maximum along an axis. This takes all elements into account, not just the non-zero ones.

Parameters

- `axis` [-2, -1, 0, 1, None] optional
 - Axis along which the sum is computed. The default is to compute the minimum over all the matrix elements, returning a scalar (i.e., `axis = None`).
- `out` [None, optional]
 - This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns

- `amin` [coo_matrix or scalar]
 - Minimum of `a`. If `axis` is None, the result is a scalar value. If `axis` is given, the result is a sparse.coo_matrix of dimension `a.ndim - 1`.

See also:
max

The maximum value of a sparse matrix along a given axis.

numpy.matrix.min

NumPy's implementation of 'min' for matrices

scipy.sparse.bsr_matrix.minimum

bsr_matrix.minimum(other)
Element-wise minimum between this and another matrix.

scipy.sparse.bsr_matrix.multiply

bsr_matrix.multiply(other)
Point-wise multiplication by another matrix, vector, or scalar.

scipy.sparse.bsr_matrix.nonzero

bsr_matrix.nonzero()
nonzero indices
Returns a tuple of arrays (row, col) containing the indices of the non-zero elements of the matrix.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
```

scipy.sparse.bsr_matrix.power

bsr_matrix.power(n, dtype=None)
This function performs element-wise power.

Parameters

- **n**: [n is a scalar]
- **dtype**: [If dtype is not specified, the current dtype will be preserved.]
scipy.sparse.bsr_matrix.prune

bsr_matrix.prune()

Remove empty space after all non-zero elements.

scipy.sparse.bsr_matrix.rad2deg

bsr_matrix.rad2deg()

Element-wise rad2deg.

See numpy.rad2deg for more information.

scipy.sparse.bsr_matrix.reshape

bsr_matrix.reshape(self, shape, order='C', copy=False)

Gives a new shape to a sparse matrix without changing its data.

Parameters

- shape [length-2 tuple of ints] The new shape should be compatible with the original shape.
- order [{‘C’, ‘F’}, optional] Read the elements using this index order. ‘C’ means to read and write the elements using C-like index order; e.g., read entire first row, then second row, etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g., read entire first column, then second column, etc.
- copy [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

- reshaped_matrix [sparse matrix] A sparse matrix with the given shape, not necessarily of the same format as the current object.

See also:

numpy.matrix.reshape

NumPy’s implementation of ‘reshape’ for matrices

scipy.sparse.bsr_matrix.resize

bsr_matrix.resize(*shape)

Resize the matrix in-place to dimensions given by shape

Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying outside the new shape are removed.

Parameters

- shape [(int, int)] number of rows and columns in the new matrix
Notes

The semantics are not identical to `numpy.ndarray.resize` or `numpy.resize`. Here, the same data will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy, resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or replaced with new objects.

scipy.sparse.bsr_matrix.rint

```python
csr_matrix.rint()
```

Element-wise `rint`.

See `numpy.rint` for more information.

scipy.sparse.bsr_matrix.set_shape

```python
csr_matrix.set_shape(shape)
```

See `reshape`.

scipy.sparse.bsr_matrix.setdiag

```python
csr_matrix.setdiag(values, k=0)
```

Set diagonal or off-diagonal elements of the array.

Parameters

- `values`
 [array_like] New values of the diagonal elements. Values may have any length. If the diagonal is longer than values, then the remaining diagonal entries will not be set. If values are longer than the diagonal, then the remaining values are ignored. If a scalar value is given, all of the diagonal is set to it.

- `k`
 [int, optional] Which off-diagonal to set, corresponding to elements `a[i,i+k]`. Default: 0 (the main diagonal).

scipy.sparse.bsr_matrix.sign

```python
csr_matrix.sign()
```

Element-wise `sign`.

See `numpy.sign` for more information.
scipy.sparse.bsr_matrix.sin

bsr_matrix.sin()
Element-wise sin.

See numpy.sin for more information.

scipy.sparse.bsr_matrix.sinh

bsr_matrix.sinh()
Element-wise sinh.

See numpy.sinh for more information.

scipy.sparse.bsr_matrix.sort_indices

bsr_matrix.sort_indices()
Sort the indices of this matrix in place.

scipy.sparse.bsr_matrix.sorted_indices

bsr_matrix.sorted_indices()
Return a copy of this matrix with sorted indices.

scipy.sparse.bsr_matrix.sqrt

bsr_matrix.sqrt()
Element-wise sqrt.

See numpy.sqrt for more information.

scipy.sparse.bsr_matrix.sum

bsr_matrix.sum(axis=None, dtype=None, out=None)
Sum the matrix elements over a given axis.

Parameters
axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e., axis = None).
dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the elements are summed. The dtype of a is used by default unless a has an integer dtype of less precision than the default platform integer. In that case, if a is signed then the platform integer is used while if a is unsigned then an unsigned integer of the same precision as the platform integer is used. New in version 0.18.0.
out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. New in version 0.18.0.
Returns

sum_along_axis

[np.matrix] A matrix with the same shape as `self`, with the specified axis removed.

See also:

- `numpy.matrix.sum`
 - NumPy’s implementation of ‘sum’ for matrices

- `scipy.sparse.bsr_matrix.sum_duplicates`
 - Eliminate duplicate matrix entries by adding them together
 - The is an *in place* operation

- `scipy.sparse.bsr_matrix.tan`
 - Element-wise tan.
 - See `numpy.tan` for more information.

- `scipy.sparse.bsr_matrix.tanh`
 - Element-wise tanh.
 - See `numpy.tanh` for more information.

- `scipy.sparse.bsr_matrix.toarray`
 - Return a dense ndarray representation of this matrix.

 Parameters

 - `order` [{‘C’, ‘F’}, optional] Whether to store multidimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the `out` argument.

 - `out` [ndarray, 2-D, optional] If specified, uses this array as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. For most sparse types, `out` is required to be memory contiguous (either C or Fortran ordered).

 Returns

 - `arr` [ndarray, 2-D] An array with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If `out` was passed, the same object is returned after being modified in-place to contain the appropriate values.
scipy.sparse.bsr_matrix.tobsr

bsr_matrix.tobsr(blocksize=None, copy=False)

- **Convert this matrix into Block Sparse Row Format.**
- With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.
- If blocksize=(R, C) is provided, it will be used for determining block size of the bsr_matrix.

scipy.sparse.bsr_matrix.tocoo

bsr_matrix.tocoo(copy=True)

- **Convert this matrix to COOrdinate format.**
- When copy=False the data array will be shared between this matrix and the resultant coo_matrix.

scipy.sparse.bsr_matrix.tocsc

bsr_matrix.tocsc(copy=False)

- **Convert this matrix to Compressed Sparse Column format.**
- With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

scipy.sparse.bsr_matrix.tocsr

bsr_matrix.tocsr(copy=False)

- **Convert this matrix to Compressed Sparse Row format.**
- With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.bsr_matrix.todense

bsr_matrix.todense(order=None, out=None)

- **Return a dense matrix representation of this matrix.**

Parameters

- **order**
 - [‘C’, ‘F’, optional] Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the *out* argument.

- **out**
 - [ndarray, 2-D, optional] If specified, uses this array (or numpy.matrix) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

- **arr**
 - [numpy.matrix, 2-D] A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If *out* was passed and was an array (rather than a numpy.matrix), it will be filled with the appropriate values and returned wrapped in a numpy.matrix object that shares the same memory.
scipy.sparse.bsr_matrix.todia

`bsr_matrix.todia(copy=False)`

Convert this matrix to sparse DIAGONAL format.

With `copy=False`, the data/indices may be shared between this matrix and the resultant `dia_matrix`.

scipy.sparse.bsr_matrix.todok

`bsr_matrix.todok(copy=False)`

Convert this matrix to Dictionary Of Keys format.

With `copy=False`, the data/indices may be shared between this matrix and the resultant `dok_matrix`.

scipy.sparse.bsr_matrix.tolil

`bsr_matrix.tolil(copy=False)`

Convert this matrix to List of Lists format.

With `copy=False`, the data/indices may be shared between this matrix and the resultant `lil_matrix`.

scipy.sparse.bsr_matrix.trace

`bsr_matrix.trace(offset=0)`

Returns the sum along diagonals of the sparse matrix.

Parameters

- `offset` : [int, optional] Which diagonal to get, corresponding to elements `a[i, i+offset]`. Default: 0 (the main diagonal).

scipy.sparse.bsr_matrix.transpose

`bsr_matrix.transpose(axes=None, copy=False)`

Reverses the dimensions of the sparse matrix.

Parameters

- `axes` : [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value.
- `copy` : [bool, optional] Indicates whether or not attributes of `self` should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

- `p` : [self with the dimensions reversed.]

See also:

- `numpy.matrix.transpose`
 NumPy's implementation of ‘transpose’ for matrices
SciPy Reference Guide, Release 1.8.0

scipy.sparse.bsr_matrix.trunc

```python
bsr_matrix.trunc()
```

Element-wise trunc.

See `numpy.trunc` for more information.

scipy.sparse.coo_matrix

```python
class scipy.sparse.coo_matrix(arg1, shape=None, dtype=None, copy=False)
```

A sparse matrix in COOrdinate format.

Also known as the ‘ijv’ or ‘triplet’ format.

This can be instantiated in several ways:

- `coo_matrix(D)`
 - with a dense matrix D
- `coo_matrix(S)`
 - with another sparse matrix S (equivalent to S.tocoo())
- `coo_matrix((M, N), [dtype])`
 - to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.
- `coo_matrix((data, (i, j)), [shape=(M, N)])`

 to construct from three arrays:

 1. data[:]: the entries of the matrix, in any order
 2. i[:]: the row indices of the matrix entries
 3. j[:]: the column indices of the matrix entries

Where \(A[i[k], j[k]] = data[k] \). When shape is not specified, it is inferred from the index arrays

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.

Advantages of the COO format

- facilitates fast conversion among sparse formats
- permits duplicate entries (see example)
- very fast conversion to and from CSR/CSC formats

Disadvantages of the COO format
• does not directly support:
 – arithmetic operations
 – slicing

Intended Usage

• COO is a fast format for constructing sparse matrices

• Once a matrix has been constructed, convert to CSR or CSC format for fast arithmetic and matrix vector operations

• By default when converting to CSR or CSC format, duplicate (i,j) entries will be summed together. This facilitates efficient construction of finite element matrices and the like. (see example)

Examples

```python
>>> # Constructing an empty matrix
>>> from scipy.sparse import coo_matrix
>>> coo_matrix((3, 4), dtype=np.int8).toarray()
daarray([[0, 0, 0, 0],
          [0, 0, 0, 0],
          [0, 0, 0, 0]], dtype=int8)
```

```python
>>> # Constructing a matrix using ijv format
>>> row = np.array([0, 3, 1, 0])
>>> col = np.array([0, 3, 1, 2])
>>> data = np.array([4, 5, 7, 9])
>>> coo_matrix((data, (row, col)), shape=(4, 4)).toarray()
daarray([[4, 0, 9, 0],
          [0, 7, 0, 0],
          [0, 0, 0, 0],
          [0, 0, 0, 5]])
```

```python
>>> # Constructing a matrix with duplicate indices
>>> row = np.array([0, 0, 1, 3, 1, 0])
>>> col = np.array([0, 2, 1, 3, 1, 0])
>>> data = np.array([1, 1, 1, 1, 1, 1])
>>> coo = coo_matrix((data, (row, col)), shape=(4, 4))
>>> # Duplicate indices are maintained until implicitly or explicitly summed
>>> np.max(coo.data)
1
>>> coo.toarray()
daarray([[3, 0, 1, 0],
          [0, 2, 0, 0],
          [0, 0, 0, 0],
          [0, 0, 0, 1]])
```

Attributes

- `dtype` [dtype] Data type of the matrix
ndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.
data COO format data array of the matrix
row COO format row index array of the matrix
col COO format column index array of the matrix

Methods

__len__()

arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
argmax([axis, out]) Return indices of maximum elements along an axis.
argmin([axis, out]) Return indices of minimum elements along an axis.
asformat(format[, copy]) Return this matrix in the passed format.
asfptype() Upcast matrix to a floating point format (if necessary)
astype(dtype[, casting, copy]) Cast the matrix elements to a specified type.
ceil() Element-wise ceil.
conj([copy]) Element-wise complex conjugation.
conjugate([copy]) Element-wise complex conjugation.
copy() Returns a copy of this matrix.
count_nonzero() Number of non-zero entries, equivalent to
deg2rad() Element-wise deg2rad.
diagonal([k]) Returns the kth diagonal of the matrix.
dot(other) Ordinary dot product
eliminate_zeros() Remove zero entries from the matrix
expm1() Element-wise expm1.
floor() Element-wise floor.
getH() Return the Hermitian transpose of this matrix.
get_shape() Get shape of a matrix.
getcol(j) Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).
getformat() Format of a matrix representation as a string.
getmaxprint() Maximum number of elements to display when printed.
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).
log1p() Element-wise log1p.
max([axis, out]) Return the maximum of the matrix or maximum along an axis.
maximum(other) Element-wise maximum between this and another matrix.
mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis.
min([axis, out]) Return the minimum of the matrix or maximum along an axis.
minimum(other) Element-wise minimum between this and another matrix.
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiply(other)</td>
<td>Point-wise multiplication by another matrix</td>
</tr>
<tr>
<td>nonzero()</td>
<td>nonzero indices</td>
</tr>
<tr>
<td>power(n[, dtype])</td>
<td>This function performs element-wise power.</td>
</tr>
<tr>
<td>rad2deg()</td>
<td>Element-wise rad2deg.</td>
</tr>
<tr>
<td>reshape(self, shape[, order, copy])</td>
<td>Gives a new shape to a sparse matrix without changing its data.</td>
</tr>
<tr>
<td>resize(*shape)</td>
<td>Resize the matrix in-place to dimensions given by shape</td>
</tr>
<tr>
<td>rint()</td>
<td>Element-wise rint.</td>
</tr>
<tr>
<td>set_shape(shape)</td>
<td>See reshape.</td>
</tr>
<tr>
<td>setdiag(values[, k])</td>
<td>Set diagonal or off-diagonal elements of the array.</td>
</tr>
<tr>
<td>sign()</td>
<td>Element-wise sign.</td>
</tr>
<tr>
<td>sin()</td>
<td>Element-wise sin.</td>
</tr>
<tr>
<td>sinh()</td>
<td>Element-wise sinh.</td>
</tr>
<tr>
<td>sqrt()</td>
<td>Element-wise sqrt.</td>
</tr>
<tr>
<td>sum([axis, dtype, out])</td>
<td>Sum the matrix elements over a given axis.</td>
</tr>
<tr>
<td>sum_duplicates()</td>
<td>Eliminate duplicate matrix entries by adding them together</td>
</tr>
<tr>
<td>tan()</td>
<td>Element-wise tan.</td>
</tr>
<tr>
<td>tanh()</td>
<td>Element-wise tanh.</td>
</tr>
<tr>
<td>toarray([order, out])</td>
<td>See the docstring for spmatrix.toarray.</td>
</tr>
<tr>
<td>tobsr([blocksize, copy])</td>
<td>Convert this matrix to Block Sparse Row format.</td>
</tr>
<tr>
<td>tocoo([copy])</td>
<td>Convert this matrix to COOrdinate format.</td>
</tr>
<tr>
<td>tocsc([copy])</td>
<td>Convert this matrix to Compressed Sparse Column format</td>
</tr>
<tr>
<td>tocsr([copy])</td>
<td>Convert this matrix to Compressed Sparse Row format</td>
</tr>
<tr>
<td>todense([order, out])</td>
<td>Return a dense matrix representation of this matrix.</td>
</tr>
<tr>
<td>todia([copy])</td>
<td>Convert this matrix to sparse DIAgonal format.</td>
</tr>
<tr>
<td>todok([copy])</td>
<td>Convert this matrix to Dictionary Of Keys format.</td>
</tr>
<tr>
<td>tolil([copy])</td>
<td>Convert this matrix to List of Lists format.</td>
</tr>
<tr>
<td>trace([offset])</td>
<td>Returns the sum along diagonals of the sparse matrix.</td>
</tr>
<tr>
<td>transpose([axes, copy])</td>
<td>Reverses the dimensions of the sparse matrix.</td>
</tr>
<tr>
<td>trunc()</td>
<td>Element-wise trunc.</td>
</tr>
</tbody>
</table>

scipy.sparse.coo_matrix.__len__

`coo_matrix.__len__()`

scipy.sparse.coo_matrix.arcsin

`coo_matrix.arcsin()`

Element-wise arcsin.

See `numpy.arcsin` for more information.
scipy.sparse.coo_matrix.arcsinh

coo_matrix.arcsinh()
 Element-wise arcsinh.
 See numpy.arcsinh for more information.

scipy.sparse.coo_matrix.arctan

coo_matrix.arctan()
 Element-wise arctan.
 See numpy.arctan for more information.

scipy.sparse.coo_matrix.arctanh

coo_matrix.arctanh()
 Element-wise arctanh.
 See numpy.arctanh for more information.

scipy.sparse.coo_matrix.argmax

coo_matrix.argmax(axis=None, out=None)
 Return indices of maximum elements along an axis.
 Implicit zero elements are also taken into account. If there are several maximum values, the index of the first occurrence is returned.

 Parameters
 axis [{-2, -1, 0, 1, None}, optional] Axis along which the argmax is computed. If None (default), index of the maximum element in the flattened data is returned.
 out [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

 Returns
 ind [numpy.matrix or int] Indices of maximum elements. If matrix, its size along axis is 1.

scipy.sparse.coo_matrix.argmin

coo_matrix.argmin(axis=None, out=None)
 Return indices of minimum elements along an axis.
 Implicit zero elements are also taken into account. If there are several minimum values, the index of the first occurrence is returned.

 Parameters
 axis [{-2, -1, 0, 1, None}, optional] Axis along which the argmin is computed. If None (default), index of the minimum element in the flattened data is returned.
 out [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.
Returns

ind [numpy.matrix or int] Indices of minimum elements. If matrix, its size along axis is 1.

scipy.sparse.coo_matrix.asformat

coo_matrix.asformat (format, copy=False)
Return this matrix in the passed format.

Parameters

format [{str, None}] The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …) or None for no conversion.
copy [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

A [This matrix in the passed format.]

scipy.sparse.coo_matrix.asfptype

coo_matrix.asfptype()
Upcast matrix to a floating point format (if necessary)

scipy.sparse.coo_matrix.astype

coo_matrix.astype (dtype, casting='unsafe', copy=True)
Cast the matrix elements to a specified type.

Parameters

dtype [string or numpy.dtype] Typecode or data-type to which to cast the data.
casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’ means only casts which can preserve values are allowed. ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data conversions may be done.
copy [bool, optional] If copy is False, the result might share some memory with this matrix. If copy is True, it is guaranteed that the result and this matrix do not share any memory.

scipy.sparse.coo_matrix.ceil

coo_matrix.ceil()
Element-wise ceil.

See numpy.ceil for more information.
scipy.sparse.coo_matrix.conj

```python
coo_matrix.conj(copy=True)
```

Element-wise complex conjugation.

If the matrix is of non-complex data type and `copy` is False, this method does nothing and the data is not copied.

Parameters

- `copy` [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- `A` [The element-wise complex conjugate.]

scipy.sparse.coo_matrix.conjugate

```python
coo_matrix.conjugate(copy=True)
```

Element-wise complex conjugation.

If the matrix is of non-complex data type and `copy` is False, this method does nothing and the data is not copied.

Parameters

- `copy` [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- `A` [The element-wise complex conjugate.]

scipy.sparse.coo_matrix.copy

```python
coo_matrix.copy()
```

Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.

scipy.sparse.coo_matrix.count_nonzero

```python
coo_matrix.count_nonzero()
```

Number of non-zero entries, equivalent to `np.count_nonzero(a.toarray())`

Unlike `getnnz()` and the `nnz` property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data.
scipy.sparse.coo_matrix.deg2rad

coo_matrix.deg2rad()
Element-wise deg2rad.
See *numpy.deg2rad* for more information.

scipy.sparse.coo_matrix.diagonal

coo_matrix.diagonal(k=0)
Returns the kth diagonal of the matrix.

Parameters

- **k** [int, optional] Which diagonal to get, corresponding to elements a[i, i+k]. Default: 0 (the main diagonal).
 New in version 1.0.

See also:

- *numpy.diagonal*
 Equivalent numpy function.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])
```

scipy.sparse.coo_matrix.dot

coo_matrix.dot(other)
Ordinary dot product

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
```
scipy.sparse.coo_matrix.eliminate_zeros

```python
coo_matrix.eliminate_zeros()
```
Remove zero entries from the matrix
This is an in place operation

scipy.sparse.coo_matrix.expm1

```python
coo_matrix.expm1()
```
Element-wise expm1.
See `numpy.expm1` for more information.

scipy.sparse.coo_matrix.floor

```python
coo_matrix.floor()
```
Element-wise floor.
See `numpy.floor` for more information.

scipy.sparse.coo_matrix.getH

```python
coo_matrix.getH()
```
Return the Hermitian transpose of this matrix.
See also:

```python
numpy.matrix.getH
```
NumPy's implementation of `getH` for matrices

scipy.sparse.coo_matrix.get_shape

```python
coo_matrix.get_shape()
```
Get shape of a matrix.

scipy.sparse.coo_matrix.getcol

```python
coo_matrix.getcol(j)
```
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).
scipy.sparse.coo_matrix.getformat

coo_matrix.getformat()
 Format of a matrix representation as a string.

scipy.sparse.coo_matrix.getmaxprint

coo_matrix.getmaxprint()
 Maximum number of elements to display when printed.

scipy.sparse.coo_matrix.getnnz

coo_matrix.getnnz(axis=None)
 Number of stored values, including explicit zeros.

 Parameters
 axis [None, 0, or 1] Select between the number of values across the whole matrix, in each
 column, or in each row.

 See also:
 count_nonzero
 Number of non-zero entries

scipy.sparse.coo_matrix.getrow

coo_matrix.getrow(i)
 Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).

scipy.sparse.coo_matrix.log1p

coo_matrix.log1p()
 Element-wise log1p.

 See numpy.log1p for more information.

scipy.sparse.coo_matrix.max

coo_matrix.max(axis=None, out=None)
 Return the maximum of the matrix or maximum along an axis. This takes all elements into account, not just
 the non-zero ones.

 Parameters
 axis [-2, -1, 0, 1, None] optional] Axis along which the sum is computed. The default is to compute the maximum over all the matrix elements, returning a scalar (i.e., axis = None).
 out [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.
Returns

amax [coo_matrix or scalar] Maximum of \(a \). If \(axis \) is None, the result is a scalar value. If \(axis \) is given, the result is a sparse.coo_matrix of dimension \(a.n\text{dim} - 1 \).

See also:

\textit{min}

The minimum value of a sparse matrix along a given axis.

\texttt{numpy.matrix.max}

NumPy’s implementation of ‘max’ for matrices

\texttt{scipy.sparse.coo_matrix.maximum}

\texttt{coo_matrix.maximum(other)}

Element-wise maximum between this and another matrix.

\texttt{scipy.sparse.coo_matrix.mean}

\texttt{coo_matrix.mean(axis=None, dtype=None, out=None)}

Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken over all elements in the matrix by default, otherwise over the specified axis. \texttt{float64} intermediate and return values are used for integer inputs.

Parameters

axis \{[-2, -1, 0, 1, None] optional\} Axis along which the mean is computed. The default is to compute the mean of all elements in the matrix (i.e., \(axis = \text{None} \)).

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default is \texttt{float64}; for floating point inputs, it is the same as the input dtype.

New in version 0.18.0.

out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.

New in version 0.18.0.

Returns

\(m \) [np.matrix]

See also:

\texttt{numpy.matrix.mean}

NumPy’s implementation of ‘mean’ for matrices
scipy.sparse.coo_matrix.min

```python
coo_matrix.min(axis=None, out=None)
```

Return the minimum of the matrix or maximum along an axis. This takes all elements into account, not just the non-zero ones.

Parameters

- `axis` [{-2, -1, 0, 1, None] optional} Axis along which the sum is computed. The default is to compute the minimum over all the matrix elements, returning a scalar (i.e., `axis = None`).
- `out` [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns

- `amin` [coo_matrix or scalar] Minimum of `a`. If `axis` is None, the result is a scalar value. If `axis` is given, the result is a sparse.coo_matrix of dimension `a.ndim - 1`.

See also:

- `max`
 The maximum value of a sparse matrix along a given axis.

- `numpy.matrix.min`
 NumPy's implementation of 'min' for matrices

scipy.sparse.coo_matrix.minimum

```python
coo_matrix.minimum(other)
```

Element-wise minimum between this and another matrix.

scipy.sparse.coo_matrix.multiply

```python
coo_matrix.multiply(other)
```

Point-wise multiplication by another matrix

scipy.sparse.coo_matrix.nonzero

```python
coo_matrix.nonzero()
```

nonzero indices

Returns a tuple of arrays (row, col) containing the indices of the non-zero elements of the matrix.
Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
```

scipy.sparse.coo_matrix.power

`coo_matrix.power(n, dtype=None)`

This function performs element-wise power.

Parameters

- `n` [n is a scalar]
- `dtype` [If dtype is not specified, the current dtype will be preserved.]

scipy.sparse.coo_matrix.rad2deg

`coo_matrix.rad2deg()`

Element-wise rad2deg.

See `numpy.rad2deg` for more information.

scipy.sparse.coo_matrix.reshape

`coo_matrix.reshape(self, shape, order='C', copy=False)`

Gives a new shape to a sparse matrix without changing its data.

Parameters

- `shape` [length-2 tuple of ints] The new shape should be compatible with the original shape.
- `order` [{'C', 'F'}, optional] Read the elements using this index order. ‘C’ means to read and write the elements using C-like index order; e.g., read entire first row, then second row, etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g., read entire first column, then second column, etc.
- `copy` [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

- `reshaped_matrix` [sparse matrix] A sparse matrix with the given shape, not necessarily of the same format as the current object.

See also:

- `numpy.matrix.reshape`

NumPy’s implementation of ‘reshape’ for matrices
scipy.sparse.coo_matrix.resize

```python
coo_matrix.resize(*shape)
```

Resize the matrix in-place to dimensions given by `shape`

Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying outside the new shape are removed.

Parameters

- `shape`
 - [(int, int)] number of rows and columns in the new matrix

Notes

The semantics are not identical to `numpy.ndarray.resize` or `numpy.resize`. Here, the same data will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy, resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or replaced with new objects.

scipy.sparse.coo_matrix.rint

```python
coo_matrix.rint()
```

Element-wise `rint`.

See `numpy.rint` for more information.

scipy.sparse.coo_matrix.set_shape

```python
coo_matrix.set_shape(shape)
```

See `reshape`.

scipy.sparse.coo_matrix.setdiag

```python
coo_matrix.setdiag(values, k=0)
```

Set diagonal or off-diagonal elements of the array.

Parameters

- `values`
 - [array_like] New values of the diagonal elements.
 - Values may have any length. If the diagonal is longer than `values`, then the remaining diagonal entries will not be set. If `values` are longer than the diagonal, then the remaining values are ignored.
 - If a scalar value is given, all of the diagonal is set to it.

- `k`
 - [int, optional] Which off-diagonal to set, corresponding to elements `a[i,i+k]`. Default: 0 (the main diagonal).
scipy.sparse.coo_matrix.sign

`coo_matrix.sign()`
Element-wise sign.
See `numpy.sign` for more information.

scipy.sparse.coo_matrix.sin

`coo_matrix.sin()`
Element-wise sin.
See `numpy.sin` for more information.

scipy.sparse.coo_matrix.sinh

`coo_matrix.sinh()`
Element-wise sinh.
See `numpy.sinh` for more information.

scipy.sparse.coo_matrix.sqrt

`coo_matrix.sqrt()`
Element-wise sqrt.
See `numpy.sqrt` for more information.

scipy.sparse.coo_matrix.sum

`coo_matrix.sum(axis=None, dtype=None, out=None)`
Sum the matrix elements over a given axis.

Parameters

- `axis`
 [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e., `axis = None`).

- `dtype`
 [dtype, optional] The type of the returned matrix and of the accumulator in which the elements are summed. The dtype of `a` is used by default unless `a` has an integer dtype of less precision than the default platform integer. In that case, if `a` is signed then the platform integer is used while if `a` is unsigned then an unsigned integer of the same precision as the platform integer is used.
 New in version 0.18.0.

- `out`
 [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.
 New in version 0.18.0.

Returns

- `sum_along_axis`
 [np.matrix] A matrix with the same shape as `self`, with the specified axis removed.

See also:
numpy.matrix.sum

NumPy's implementation of 'sum' for matrices

scipy.sparse.coo_matrix.sum_duplicates

```python
coo_matrix.sum_duplicates()
```

Eliminate duplicate matrix entries by adding them together

This is an *in place* operation

scipy.sparse.coo_matrix.tan

```python
coo_matrix.tan()
```

Element-wise tan.

See `numpy.tan` for more information.

scipy.sparse.coo_matrix.tanh

```python
coo_matrix.tanh()
```

Element-wise tanh.

See `numpy.tanh` for more information.

scipy.sparse.coo_matrix.toarray

```python
coo_matrix.toarray(order=None, out=None)
```

See the docstring for `spmatrix.toarray`.

scipy.sparse.coo_matrix.tobsr

```python
coo_matrix.tobsr(blocksize=None, copy=False)
```

Convert this matrix to Block Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.

When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix.

scipy.sparse.coo_matrix.tocoo

```python
coo_matrix.tocoo(copy=False)
```

Convert this matrix to COOrdinate format.

With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.
scipy.sparse.coo_matrix.tocsc

`coo_matrix.tocsc(copy=False)`

Convert this matrix to Compressed Sparse Column format

Duplicate entries will be summed together.

Examples

```python
>>> from numpy import array
>>> from scipy.sparse import coo_matrix
>>> row = array([0, 0, 1, 3, 1, 0, 0])
>>> col = array([0, 2, 1, 3, 1, 0, 0])
>>> data = array([1, 1, 1, 1, 1, 1, 1])
>>> A = coo_matrix((data, (row, col)), shape=(4, 4)).tocsc()
>>> A.toarray()
array([[3, 0, 1, 0],
       [0, 2, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 1]])
```

scipy.sparse.coo_matrix.tocsr

`coo_matrix.tocsr(copy=False)`

Convert this matrix to Compressed Sparse Row format

Duplicate entries will be summed together.

Examples

```python
>>> from numpy import array
>>> from scipy.sparse import coo_matrix
>>> row = array([0, 0, 1, 3, 1, 0, 0])
>>> col = array([0, 2, 1, 3, 1, 0, 0])
>>> data = array([1, 1, 1, 1, 1, 1, 1])
>>> A = coo_matrix((data, (row, col)), shape=(4, 4)).tocsr()
>>> A.toarray()
array([[3, 0, 1, 0],
       [0, 2, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 1]])
```
scipy.sparse.coo_matrix.todense

```
coo_matrix.todense(order=None, out=None)
```

Return a dense matrix representation of this matrix.

Parameters

- `order` [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the `out` argument.

- `out` [ndarray, 2-D, optional] If specified, uses this array (or numpy.matrix) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

- `arr` [numpy.matrix, 2-D] A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If `out` was passed and was an array (rather than a numpy.matrix), it will be filled with the appropriate values and returned wrapped in a numpy.matrix object that shares the same memory.

scipy.sparse.coo_matrix.todia

```
coo_matrix.todia(copy=False)
```

Convert this matrix to sparse DIAgonal format.

With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.

scipy.sparse.coo_matrix.todok

```
coo_matrix.todok(copy=False)
```

Convert this matrix to Dictionary Of Keys format.

With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.coo_matrix.tolil

```
coo_matrix.tolil(copy=False)
```

Convert this matrix to List of Lists format.

With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.coo_matrix.trace

```
coo_matrix.trace(offset=0)
```

Returns the sum along diagonals of the sparse matrix.

Parameters

- `offset` [int, optional] Which diagonal to get, corresponding to elements a[i, i+offset]. Default: 0 (the main diagonal).
scipy.sparse.coo_matrix.transpose

```python
coo_matrix.transpose(axes=None, copy=False)
```

Reverses the dimensions of the sparse matrix.

Parameters

- **axes**

 [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value.

- **copy**

 [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

- **p**

 [self with the dimensions reversed.]

See also:

- **numpy.matrix.transpose**

 NumPy's implementation of 'transpose' for matrices

scipy.sparse.coo_matrix.trunc

```python
coo_matrix.trunc()
```

Element-wise trunc.

See `numpy.trunc` for more information.

__mul__

scipy.sparse.csc_matrix

```python
class scipy.sparse.csc_matrix(arg1, shape=None, dtype=None, copy=False)
```

Compressed Sparse Column matrix

This can be instantiated in several ways:

- **csc_matrix(D)**

 with a dense matrix or rank-2 ndarray D

- **csc_matrix(S)**

 with another sparse matrix S (equivalent to S.tocsc())

- **csc_matrix((M, N), [dtype])**

 to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.

- **csc_matrix((data, (row_ind, col_ind)), [shape=(M, N)])**

 where data, row_ind and col_ind satisfy the relationship a[row_ind[k], col_ind[k]] = data[k].

- **csc_matrix((data, indices, indptr), [shape=(M, N)])**

 is the standard CSC representation where the row indices for column i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.

Advantages of the CSC format

- efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
- efficient column slicing
- fast matrix vector products (CSR, BSR may be faster)

Disadvantages of the CSC format

- slow row slicing operations (consider CSR)
- changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csc_matrix
>>> csc_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 2, 2, 0, 1, 2])
>>> col = np.array([0, 0, 1, 2, 2, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 4],
       [0, 0, 5],
       [2, 3, 6]])

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 4],
       [0, 0, 5],
       [2, 3, 6]])
```

Attributes

dtype [dtype] Data type of the matrix
nndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.
data Data array of the matrix
indices CSC format index array
indptr CSC format index pointer array
has_sorted_indices
Determine whether the matrix has sorted indices

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>len()</td>
<td>Element-wise arccos.</td>
</tr>
<tr>
<td>arcsin()</td>
<td>Element-wise arcsin.</td>
</tr>
<tr>
<td>arcsinh()</td>
<td>Element-wise arccosh.</td>
</tr>
<tr>
<td>arctan()</td>
<td>Element-wise arctan.</td>
</tr>
<tr>
<td>arctanh()</td>
<td>Element-wise arctanh.</td>
</tr>
<tr>
<td>argmax([axis, out])</td>
<td>Return indices of maximum elements along an axis.</td>
</tr>
<tr>
<td>argmin([axis, out])</td>
<td>Return indices of minimum elements along an axis.</td>
</tr>
<tr>
<td>asformat(format[, copy])</td>
<td>Return this matrix in the passed format.</td>
</tr>
<tr>
<td>asfptype()</td>
<td>Upcast matrix to a floating point format (if necessary)</td>
</tr>
<tr>
<td>astype(dtype[, casting, copy])</td>
<td>Cast the matrix elements to a specified type.</td>
</tr>
<tr>
<td>ceil()</td>
<td>Element-wise ceil.</td>
</tr>
<tr>
<td>check_format([full_check])</td>
<td>Check whether the matrix format is valid.</td>
</tr>
<tr>
<td>conj([copy])</td>
<td>Element-wise complex conjugation.</td>
</tr>
<tr>
<td>conjugate([copy])</td>
<td>Element-wise complex conjugation.</td>
</tr>
<tr>
<td>copy()</td>
<td>Returns a copy of this matrix.</td>
</tr>
<tr>
<td>count_nonzero()</td>
<td>Number of non-zero entries, equivalent to</td>
</tr>
<tr>
<td>deg2rad()</td>
<td>Element-wise deg2rad.</td>
</tr>
<tr>
<td>diagonal([k])</td>
<td>Returns the kth diagonal of the matrix.</td>
</tr>
<tr>
<td>dot(other)</td>
<td>Ordinary dot product</td>
</tr>
<tr>
<td>eliminate_zeros()</td>
<td>Remove zero entries from the matrix</td>
</tr>
<tr>
<td>expm1()</td>
<td>Element-wise expm1.</td>
</tr>
<tr>
<td>floor()</td>
<td>Element-wise floor.</td>
</tr>
<tr>
<td>getH()</td>
<td>Return the Hermitian transpose of this matrix.</td>
</tr>
<tr>
<td>get_shape()</td>
<td>Get shape of a matrix.</td>
</tr>
<tr>
<td>getcol(i)</td>
<td>Returns a copy of column i of the matrix, as a (m x 1) CSC matrix (column vector).</td>
</tr>
<tr>
<td>getformat()</td>
<td>Format of a matrix representation as a string.</td>
</tr>
<tr>
<td>getmaxprint()</td>
<td>Maximum number of elements to display when printed.</td>
</tr>
<tr>
<td>getnnz([axis])</td>
<td>Number of stored values, including explicit zeros.</td>
</tr>
<tr>
<td>getrow(i)</td>
<td>Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).</td>
</tr>
<tr>
<td>log1p()</td>
<td>Element-wise log1p.</td>
</tr>
<tr>
<td>max([axis, out])</td>
<td>Return the maximum of the matrix or maximum along an axis.</td>
</tr>
<tr>
<td>maximum(other)</td>
<td>Element-wise maximum between this and another matrix.</td>
</tr>
<tr>
<td>mean([axis, dtype, out])</td>
<td>Compute the arithmetic mean along the specified axis.</td>
</tr>
<tr>
<td>min([axis, out])</td>
<td>Return the minimum of the matrix or maximum along an axis.</td>
</tr>
<tr>
<td>minimum(other)</td>
<td>Element-wise minimum between this and another matrix.</td>
</tr>
<tr>
<td>multiply(other)</td>
<td>Point-wise multiplication by another matrix, vector, or scalar.</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonzero()</td>
<td>nonzero indices</td>
</tr>
<tr>
<td>power(n[, dtype])</td>
<td>This function performs element-wise power.</td>
</tr>
<tr>
<td>prune()</td>
<td>Remove empty space after all non-zero elements.</td>
</tr>
<tr>
<td>rad2deg()</td>
<td>Element-wise rad2deg.</td>
</tr>
<tr>
<td>reshape(self, shape[, order, copy])</td>
<td>Gives a new shape to a sparse matrix without changing its data.</td>
</tr>
<tr>
<td>*resize(shape)</td>
<td>Resize the matrix in-place to dimensions given by shape</td>
</tr>
<tr>
<td>rint()</td>
<td>Element-wise rint.</td>
</tr>
<tr>
<td>set_shape(shape)</td>
<td>See reshape.</td>
</tr>
<tr>
<td>setdiag(values[, k])</td>
<td>Set diagonal or off-diagonal elements of the array.</td>
</tr>
<tr>
<td>sign()</td>
<td>Element-wise sign.</td>
</tr>
<tr>
<td>sin()</td>
<td>Element-wise sin.</td>
</tr>
<tr>
<td>sinh()</td>
<td>Element-wise sinh.</td>
</tr>
<tr>
<td>sort_indices()</td>
<td>Sort the indices of this matrix in place</td>
</tr>
<tr>
<td>sorted_indices()</td>
<td>Return a copy of this matrix with sorted indices</td>
</tr>
<tr>
<td>sqrt()</td>
<td>Element-wise sqrt.</td>
</tr>
<tr>
<td>sum([axis, dtype, out])</td>
<td>Sum the matrix elements over a given axis.</td>
</tr>
<tr>
<td>sum_duplicates()</td>
<td>Eliminate duplicate matrix entries by adding them together</td>
</tr>
<tr>
<td>tan()</td>
<td>Element-wise tan.</td>
</tr>
<tr>
<td>tanh()</td>
<td>Element-wise tanh.</td>
</tr>
<tr>
<td>toarray([order, out])</td>
<td>Return a dense ndarray representation of this matrix.</td>
</tr>
<tr>
<td>tobsr([blocksize, copy])</td>
<td>Convert this matrix to Block Sparse Row format.</td>
</tr>
<tr>
<td>tocoo([copy])</td>
<td>Convert this matrix to COOrdinate format.</td>
</tr>
<tr>
<td>tocsc([copy])</td>
<td>Convert this matrix to Compressed Sparse Column format.</td>
</tr>
<tr>
<td>tocsr([copy])</td>
<td>Convert this matrix to Compressed Sparse Row format.</td>
</tr>
<tr>
<td>todense([order, out])</td>
<td>Return a dense matrix representation of this matrix.</td>
</tr>
<tr>
<td>todia([copy])</td>
<td>Convert this matrix to sparse DIAgonal format.</td>
</tr>
<tr>
<td>todok([copy])</td>
<td>Convert this matrix to Dictionary Of Keys format.</td>
</tr>
<tr>
<td>tolil([copy])</td>
<td>Convert this matrix to List of Lists format.</td>
</tr>
<tr>
<td>trace([offset])</td>
<td>Returns the sum along diagonals of the sparse matrix.</td>
</tr>
<tr>
<td>transpose([axes, copy])</td>
<td>Reverses the dimensions of the sparse matrix.</td>
</tr>
<tr>
<td>trunc()</td>
<td>Element-wise trunc.</td>
</tr>
</tbody>
</table>

```
scipy.sparse.csc_matrix.__len__
```

csc_matrix.__len__()
scipy.sparse.csc_matrix.arcsin

csc_matrix.arcsin()
Element-wise arcsin.
See numpy.arcsin for more information.

scipy.sparse.csc_matrix.arcsinh

csc_matrix.arcsinh()
Element-wise arcsinh.
See numpy.arcsinh for more information.

scipy.sparse.csc_matrix.arctan

csc_matrix.arctan()
Element-wise arctan.
See numpy.arctan for more information.

scipy.sparse.csc_matrix.arctanh

csc_matrix.arctanh()
Element-wise arctanh.
See numpy.arctanh for more information.

scipy.sparse.csc_matrix.argmax

csc_matrix.argmax(axis=None, out=None)
Return indices of maximum elements along an axis.
Implicit zero elements are also taken into account. If there are several maximum values, the index of the first occurrence is returned.

Parameters
axis [[-2, -1, 0, 1, None], optional] Axis along which the argmax is computed. If None (default), index of the maximum element in the flatten data is returned.
out [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns
ind [numpy.matrix or int] Indices of maximum elements. If matrix, its size along axis is 1.
scipy.sparse.csc_matrix.argmin

```python
csc_matrix.argmin(axis=None, out=None)
```

Return indices of minimum elements along an axis.

Implicit zero elements are also taken into account. If there are several minimum values, the index of the first occurrence is returned.

Parameters

- **axis** ([{-2, -1, 0, 1, None}, optional]) Axis along which the argmin is computed. If None (default), index of the minimum element in the flattened data is returned.
- **out** [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns

- **ind** [numpy.matrix or int] Indices of minimum elements. If matrix, its size along axis is 1.

scipy.sparse.csc_matrix.asformat

```python
csc_matrix.asformat(format, copy=False)
```

Return this matrix in the passed format.

Parameters

- **format** [{str, None}] The desired matrix format ("csr", "csc", "lil", "dok", "array", ...) or None for no conversion.
- **copy** [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- **A** [This matrix in the passed format.]

scipy.sparse.csc_matrix.asfptype

```python
csc_matrix.asfptype()
```

Upcast matrix to a floating point format (if necessary)

scipy.sparse.csc_matrix.astype

```python
csc_matrix.astype(dtype, casting='unsafe', copy=True)
```

Cast the matrix elements to a specified type.

Parameters

- **dtype** [string or numpy dtype] Typecode or data-type to which to cast the data.
- **casting** [{'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional] Controls what kind of data casting may occur. Defaults to 'unsafe' for backwards compatibility. 'no' means the data types should not be cast at all, 'equiv' means only byte-order changes are allowed. 'safe' means only casts which can preserve values are allowed. 'same_kind' means only safe casts or casts within a kind, like float64 to float32, are allowed. 'unsafe' means any data conversions may be done.
- **copy** [bool, optional] If copy is False, the result might share some memory with this matrix. If copy is True, it is guaranteed that the result and this matrix do not share any memory.
scipy.sparse.csc_matrix.ceil

csc_matrix.ceil()
 Element-wise ceil.

 See numpy.ceil for more information.

scipy.sparse.csc_matrix.check_format

csc_matrix.check_format (full_check=True)
 check whether the matrix format is valid

 Parameters
 full_check [bool, optional] If True, rigorous check, O(N) operations. Otherwise basic check, O(1) operations (default True).

scipy.sparse.csc_matrix.conj

csc_matrix.conj (copy=True)
 Element-wise complex conjugation.

 If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not copied.

 Parameters
 copy [bool, optional] If True, the result is guaranteed to not share data with self.

 Returns
 A [The element-wise complex conjugate.]

scipy.sparse.csc_matrix.conjugate

csc_matrix.conjugate (copy=True)
 Element-wise complex conjugation.

 If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not copied.

 Parameters
 copy [bool, optional] If True, the result is guaranteed to not share data with self.

 Returns
 A [The element-wise complex conjugate.]
scipy.sparse.csc_matrix.copy

`csc_matrix.copy()`

Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.

scipy.sparse.csc_matrix.count_nonzero

`csc_matrix.count_nonzero()`

Number of non-zero entries, equivalent to

```python
np.count_nonzero(a.toarray())
```

Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.csc_matrix.deg2rad

`csc_matrix.deg2rad()`

Element-wise deg2rad.

See `numpy.deg2rad` for more information.

scipy.sparse.csc_matrix.diagonal

`csc_matrix.diagonal(k=0)`

Returns the kth diagonal of the matrix.

Parameters

- `k` [int, optional] Which diagonal to get, corresponding to elements `a[i, i+k]`. Default: 0 (the main diagonal).

New in version 1.0.

See also:

- `numpy.diagonal`

Equivalent numpy function.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])
```
scipy.sparse.csc_matrix.dot

csc_matrix.dot(other)
Ordinary dot product

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
```

scipy.sparse.csc_matrix.eliminate_zeros

csc_matrix.eliminate_zeros()
Remove zero entries from the matrix
This is an in place operation.

scipy.sparse.csc_matrix.expm1

csc_matrix.expm1()
Element-wise expm1.
See numpy.expm1 for more information.

scipy.sparse.csc_matrix.floor

csc_matrix.floor()
Element-wise floor.
See numpy.floor for more information.

scipy.sparse.csc_matrix.getH

csc_matrix.getH()
Return the Hermitian transpose of this matrix.
See also:

```
numpy.matrix.getH
```
NumPy's implementation of getH for matrices
scipy.sparse.csc_matrix.get_shape

csc_matrix.get_shape()

Get shape of a matrix.

scipy.sparse.csc_matrix.getcol

csc_matrix.getcol(i)

Returns a copy of column i of the matrix, as a (m x 1) CSC matrix (column vector).

scipy.sparse.csc_matrix.getformat

csc_matrix.getformat()

Format of a matrix representation as a string.

scipy.sparse.csc_matrix.getmaxprint

csc_matrix.getmaxprint()

Maximum number of elements to display when printed.

scipy.sparse.csc_matrix.getnnz

csc_matrix.getnnz(axis=None)

Number of stored values, including explicit zeros.

Parameters

axis [None, 0, or 1] Select between the number of values across the whole matrix, in each column, or in each row.

See also:

count_nonzero

Number of non-zero entries

scipy.sparse.csc_matrix.getrow

csc_matrix.getrow(i)

Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).
scipy.sparse.csc_matrix.log1p

csc_matrix.log1p()
Element-wise log1p.

See numpy.log1p for more information.

scipy.sparse.csc_matrix.max

csc_matrix.max(axis=None, out=None)
Return the maximum of the matrix or maximum along an axis. This takes all elements into account, not just the non-zero ones.

Parameters
axis [[-2, -1, 0, 1, None] optional] Axis along which the sum is computed. The default is to compute the maximum over all the matrix elements, returning a scalar (i.e., axis = None).
out [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns
amax [coo_matrix or scalar] Maximum of a. If axis is None, the result is a scalar value. If axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:
min

The minimum value of a sparse matrix along a given axis.

numpy.matrix.max
NumPy's implementation of 'max' for matrices

scipy.sparse.csc_matrix.maximum

csc_matrix.maximum(other)
Element-wise maximum between this and another matrix.

scipy.sparse.csc_matrix.mean

csc_matrix.mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken over all elements in the matrix by default, otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters
axis [[-2, -1, 0, 1, None] optional] Axis along which the mean is computed. The default is to compute the mean of all elements in the matrix (i.e., axis = None).
dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype. New in version 0.18.0.
scipy.sparse.csc_matrix.min

scipy.sparse.csc_matrix.min *(axis=None, out=None)*

Return the minimum of the matrix or maximum along an axis. This takes all elements into account, not just the non-zero ones.

Parameters

- **axis** *(optional)*
 - [-2, -1, 0, 1, None] Axis along which the sum is computed. The default is to compute the minimum over all the matrix elements, returning a scalar (i.e., axis = None).

- **out** *(optional)*
 - [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns

- **amin** *(coo_matrix or scalar)* Minimum of a. If axis is None, the result is a scalar value. If axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

- **max**
 - The maximum value of a sparse matrix along a given axis.

- **numpy.matrix.min**
 - NumPy's implementation of `min` for matrices

scipy.sparse.csc_matrix.minimum

csc_matrix.minimum *(other)*

Element-wise minimum between this and another matrix.
scipy.sparse.csc_matrix.multiply

csc_matrix.multiply(other)
 Point-wise multiplication by another matrix, vector, or scalar.

scipy.sparse.csc_matrix.nonzero

csc_matrix.nonzero()
 nonzero indices
 Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
```

scipy.sparse.csc_matrix.power

csc_matrix.power(n, dtype=None)
 This function performs element-wise power.

 Parameters

 n : [n is a scalar]
 dtype : [If dtype is not specified, the current dtype will be preserved.]

scipy.sparse.csc_matrix.prune

csc_matrix.prune()
 Remove empty space after all non-zero elements.

scipy.sparse.csc_matrix.rad2deg

csc_matrix.rad2deg()
 Element-wise rad2deg.

 See numpy.rad2deg for more information.
scipy.sparse.csc_matrix.reshape

csc_matrix . reshape (self, shape, order='C', copy=False)
 Gives a new shape to a sparse matrix without changing its data.

 Parameters
 shape [length-2 tuple of ints] The new shape should be compatible with the original shape.
 order [{’C’, ’F’}, optional] Read the elements using this index order. ’C’ means to read and
 write the elements using C-like index order; e.g., read entire first row, then second row,
 etc. ’F’ means to read and write the elements using Fortran-like index order; e.g., read
 entire first column, then second column, etc.
 copy [bool, optional] Indicates whether or not attributes of self should be copied whenever
 possible. The degree to which attributes are copied varies depending on the type of
 sparse matrix being used.

 Returns
 reshaped_matrix [sparse matrix] A sparse matrix with the given shape, not necessarily of the same
 format as the current object.

 See also:
 numpy.matrix.reshape
 NumPy’s implementation of ‘reshape’ for matrices

scipy.sparse.csc_matrix.resize

csc_matrix . resize (*shape)
 Resize the matrix in-place to dimensions given by shape

 Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying
 outside the new shape are removed.

 Parameters
 shape [(int, int)] number of rows and columns in the new matrix

 Notes
 The semantics are not identical to numpy.ndarray.resize or numpy.resize. Here, the same data
 will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy,
 resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a
 flattened representation.

 We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or
 replaced with new objects.

3.3. API definition 1871
scipy.sparse.csc_matrix.rint

csc_matrix.rint()
Element-wise rint.

See numpy.rint for more information.

scipy.sparse.csc_matrix.set_shape

csc_matrix.set_shape(shape)
See reshape.

scipy.sparse.csc_matrix.setdiag

csc_matrix.setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters
values [array_like] New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values, then the remaining diagonal entries will not be set. If values are longer than the diagonal, then the remaining values are ignored.
If a scalar value is given, all of the diagonal is set to it.
k [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0 (the main diagonal).

scipy.sparse.csc_matrix.sign

csc_matrix.sign()
Element-wise sign.

See numpy.sign for more information.

scipy.sparse.csc_matrix.sin

csc_matrix.sin()
Element-wise sin.

See numpy.sin for more information.

scipy.sparse.csc_matrix.sinh

csc_matrix.sinh()
Element-wise sinh.

See numpy.sinh for more information.
scipy.sparse.csc_matrix.sort_indices

```python
csc_matrix.sort_indices()
```

Sort the indices of this matrix \textit{in place}.

scipy.sparse.csc_matrix.sorted_indices

```python
csc_matrix.sorted_indices()
```

Return a copy of this matrix with sorted indices.

scipy.sparse.csc_matrix.sqrt

```python
csc_matrix.sqrt()
```

Element-wise sqrt.

See \texttt{numpy.sqrt} for more information.

scipy.sparse.csc_matrix.sum

```python
csc_matrix.sum(axis=None, dtype=None, out=None)
```

Sum the matrix elements over a given axis.

Parameters

- **axis**
 [-2, -1, 0, 1, None] optional. Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e., \textit{axis = None}).

- **dtype**
 [dtype, optional] The type of the returned matrix and of the accumulator in which the elements are summed. The dttype of \texttt{a} is used by default unless \texttt{a} has an integer dttype of less precision than the default platform integer. In that case, if \texttt{a} is signed then the platform integer is used while if \texttt{a} is unsigned then an unsigned integer of the same precision as the platform integer is used. New in version 0.18.0.

- **out**
 [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. New in version 0.18.0.

Returns

- **sum_along_axis**
 [np.matrix] A matrix with the same shape as \texttt{self}, with the specified axis removed.

See also:

- \texttt{numpy.matrix.sum}

 NumPy's implementation of 'sum' for matrices
scipy.sparse.csc_matrix.sum_duplicates

csc_matrix.sum_duplicates()
 Eliminate duplicate matrix entries by adding them together
 This is an in place operation.

scipy.sparse.csc_matrix.tan

csc_matrix.tan()
 Element-wise tan.
 See numpy.tan for more information.

scipy.sparse.csc_matrix.tanh

csc_matrix.tanh()
 Element-wise tanh.
 See numpy.tanh for more information.

scipy.sparse.csc_matrix.toarray

csc_matrix.toarray(order=None, out=None)
 Return a dense ndarray representation of this matrix.

 Parameters

 - **order** [{‘C’, ‘F’}, optional] Whether to store multidimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the `out` argument.

 - **out** [ndarray, 2-D, optional] If specified, uses this array as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. For most sparse types, `out` is required to be memory contiguous (either C or Fortran ordered).

 Returns

 - **arr** [ndarray, 2-D] An array with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If `out` was passed, the same object is returned after being modified in-place to contain the appropriate values.

scipy.sparse.csc_matrix.tobsr

csc_matrix.tobsr(blocksize=None, copy=False)
 Convert this matrix to Block Sparse Row format.

 With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.

 When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix.
scipy.sparse.csc_matrix.tocoo

csc_matrix.tocoo(copy=True)
 Convert this matrix to COOrdinate format.
 With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

scipy.sparse.csc_matrix.tocsc

csc_matrix.tocsc(copy=False)
 Convert this matrix to Compressed Sparse Column format.
 With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

scipy.sparse.csc_matrix.tocsr

csc_matrix.tocsr(copy=False)
 Convert this matrix to Compressed Sparse Row format.
 With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.csc_matrix.todense

csc_matrix.todense(order=None, out=None)
 Return a dense matrix representation of this matrix.

 Parameters
 order [{'C', 'F'}, optional] Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is 'None', which provides no ordering guarantees. Cannot be specified in conjunction with the out argument.
 out [ndarray, 2-D, optional] If specified, uses this array (or numpy.matrix) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method.

 Returns
 arr [numpy.matrix, 2-D] A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If out was passed and was an array (rather than a numpy.matrix), it will be filled with the appropriate values and returned wrapped in a numpy.matrix object that shares the same memory.

scipy.sparse.csc_matrix.todia

csc_matrix.todia(copy=False)
 Convert this matrix to sparse DIAgonal format.
 With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.
scipy.sparse.csc_matrix.todok

csc_matrix.todok(copy=False)
Convert this matrix to Dictionary Of Keys format.
With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.csc_matrix.tolil

csc_matrix.tolil(copy=False)
Convert this matrix to List of Lists format.
With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.csc_matrix.trace

csc_matrix.trace(offset=0)
Returns the sum along diagonals of the sparse matrix.

Parameters
offset [int, optional] Which diagonal to get, corresponding to elements a[i, i+offset]. Default: 0 (the main diagonal).

scipy.sparse.csc_matrix.transpose

csc_matrix.transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

Parameters
axes [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value.
copy [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns
p [self with the dimensions reversed.]

See also:
numpy.matrix.transpose
NumPy’s implementation of ‘transpose’ for matrices
scipy.sparse.csc_matrix.trunc

```
csc_matrix.trunc()

Element-wise trunc.

See numpy.trunc for more information.
```

scipy.sparse.csr_matrix

```
class scipy.sparse.csr_matrix(arg1, shape=None, dtype=None, copy=False)

Compressed Sparse Row matrix

This can be instantiated in several ways:

- csr_matrix(D)
  with a dense matrix or rank-2 ndarray D

- csr_matrix(S)
  with another sparse matrix S (equivalent to S.tocsr())

- csr_matrix((M, N), [dtype])
  to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.

- csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
  where data, row_ind and col_ind satisfy the relationship a[row_ind[k], col_ind[k]] = data[k].

- csr_matrix((data, indices, indptr), [shape=(M, N)])
  is the standard CSR representation where the column indices for row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.

Advantages of the CSR format

- efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
- efficient row slicing
- fast matrix vector products

Disadvantages of the CSR format

- slow column slicing operations (consider CSC)
- changes to the sparsity structure are expensive (consider LIL or DOK)
Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> csr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 0, 0]], dtype=int8)

>>> row = np.array([0, 0, 0, 0, 0, 0])
>>> col = np.array([0, 0, 0, 0, 0, 0])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
 [0, 0, 3],
 [4, 5, 6]])

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
 [0, 0, 3],
 [4, 5, 6]])

Duplicate entries are summed together:

```python
>>> row = np.array([0, 1, 2, 0])
>>> col = np.array([0, 1, 0, 0])
>>> data = np.array([1, 2, 4, 8])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 0],
       [0, 1, 1],
       [0, 4, 0]])
```

As an example of how to construct a CSR matrix incrementally, the following snippet builds a term-document matrix from texts:

```python
>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
...     for term in d:
...         index = vocabulary.setdefault(term, len(vocabulary))
...         indices.append(index)
...         data.append(1)
...     indptr.append(len(indices))

>>> csr_matrix((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
       [0, 1, 1, 1]])
```
Attributes

dtype [dtype] Data type of the matrix
ndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.
data CSR format data array of the matrix
indices CSR format index array of the matrix
indptr CSR format index pointer array of the matrix
has_sorted_indices
 Determine whether the matrix has sorted indices

Methods

__len__() Element-wise arcsin.

arcsinh() Element-wise arcsinh.

arctan() Element-wise arctan.

arctanh() Element-wise arctanh.

argmax(axis, out) Return indices of maximum elements along an axis.

argmin(axis, out) Return indices of minimum elements along an axis.

asformat(format[, copy]) Return this matrix in the passed format.

asfptype() Upcast matrix to a floating point format (if necessary)

astype(dtype[, casting, copy]) Cast the matrix elements to a specified type.

call() Element-wise ceil.

call_check_format([full_check]) check whether the matrix format is valid

conj([copy]) Element-wise complex conjugation.

conjugate([copy]) Element-wise complex conjugation.

copy() Returns a copy of this matrix.

count_nonzero() Number of non-zero entries, equivalent to
deg2rad() Element-wise deg2rad.

diagonal([k]) Returns the kth diagonal of the matrix.

dot(other) Ordinary dot product

elementwise_zeros() Remove zero entries from the matrix

elemwise_exp() Element-wise exp.

floor() Element-wise floor.

getH() Return the Hermitian transpose of this matrix.

get_shape() Get shape of a matrix.

col(i) Returns a copy of column i of the matrix, as a (m x 1) CSR matrix (column vector).

getformat() Format of a matrix representation as a string.

get_shape() Maximum number of elements to display when printed.

getnnz([axis]) Number of stored values, including explicit zeros.

getrow(i) Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).

log1p() Element-wise log1p.

max(axis, out) Return the maximum of the matrix or maximum along an axis.

continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>maximum(other)</code></td>
<td>Element-wise maximum between this and another matrix.</td>
</tr>
<tr>
<td><code>mean([axis, dtype, out])</code></td>
<td>Compute the arithmetic mean along the specified axis.</td>
</tr>
<tr>
<td><code>min([axis, out])</code></td>
<td>Return the minimum of the matrix or maximum along an axis.</td>
</tr>
<tr>
<td><code>minimum(other)</code></td>
<td>Element-wise minimum between this and another matrix.</td>
</tr>
<tr>
<td><code>multiply(other)</code></td>
<td>Point-wise multiplication by another matrix, vector, or scalar.</td>
</tr>
<tr>
<td><code>nonzero()</code></td>
<td>non-zero indices</td>
</tr>
<tr>
<td><code>power(n[, dtype])</code></td>
<td>This function performs element-wise power.</td>
</tr>
<tr>
<td><code>prune()</code></td>
<td>Remove empty space after all non-zero elements.</td>
</tr>
<tr>
<td><code>rad2deg()</code></td>
<td>Element-wise rad2deg.</td>
</tr>
<tr>
<td><code>reshape(self, shape[, order, copy])</code></td>
<td>Gives a new shape to a sparse matrix without changing its data.</td>
</tr>
<tr>
<td><code>resize(*shape)</code></td>
<td>Resize the matrix in-place to dimensions given by shape</td>
</tr>
<tr>
<td><code>rint()</code></td>
<td>Element-wise rint.</td>
</tr>
<tr>
<td><code>set_shape(shape)</code></td>
<td>See reshape.</td>
</tr>
<tr>
<td><code>setdiag(values[, k])</code></td>
<td>Set diagonal or off-diagonal elements of the array.</td>
</tr>
<tr>
<td><code>sign()</code></td>
<td>Element-wise sign.</td>
</tr>
<tr>
<td><code>sin()</code></td>
<td>Element-wise sin.</td>
</tr>
<tr>
<td><code>sinh()</code></td>
<td>Element-wise sinh.</td>
</tr>
<tr>
<td><code>sort_indices()</code></td>
<td>Sort the indices of this matrix in place</td>
</tr>
<tr>
<td><code>sorted_indices()</code></td>
<td>Return a copy of this matrix with sorted indices</td>
</tr>
<tr>
<td><code>sqrt()</code></td>
<td>Element-wise sqrt.</td>
</tr>
<tr>
<td><code>sum([axis, dtype, out])</code></td>
<td>Sum the matrix elements over a given axis.</td>
</tr>
<tr>
<td><code>sum_duplicates()</code></td>
<td>Eliminate duplicate matrix entries by adding them together</td>
</tr>
<tr>
<td><code>tan()</code></td>
<td>Element-wise tan.</td>
</tr>
<tr>
<td><code>tanh()</code></td>
<td>Element-wise tanh.</td>
</tr>
<tr>
<td><code>toarray([order, out])</code></td>
<td>Return a dense ndarray representation of this matrix.</td>
</tr>
<tr>
<td><code>tobsr([blocksize, copy])</code></td>
<td>Convert this matrix to Block Sparse Row format.</td>
</tr>
<tr>
<td><code>tocoo([copy])</code></td>
<td>Convert this matrix to COOrdinate format.</td>
</tr>
<tr>
<td><code>tocsc([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Column format.</td>
</tr>
<tr>
<td><code>tocsr([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Row format.</td>
</tr>
<tr>
<td><code>todense([order, out])</code></td>
<td>Return a dense matrix representation of this matrix.</td>
</tr>
<tr>
<td><code>todia([copy])</code></td>
<td>Convert this matrix to sparse DIAgonal format.</td>
</tr>
<tr>
<td><code>todok([copy])</code></td>
<td>Convert this matrix to Dictionary Of Keys format.</td>
</tr>
<tr>
<td><code>tolil([copy])</code></td>
<td>Convert this matrix to List of Lists format.</td>
</tr>
<tr>
<td><code>transpose([axes, copy])</code></td>
<td>Reverses the dimensions of the sparse matrix.</td>
</tr>
<tr>
<td><code>trunc()</code></td>
<td>Element-wise trunc.</td>
</tr>
</tbody>
</table>
scipy.sparse.csr_matrix.__len__

csr_matrix.__len__()

scipy.sparse.csr_matrix.arcsin

csr_matrix.arcsin()
 Element-wise arcsin.
 See numpy.arcsin for more information.

scipy.sparse.csr_matrix.arcsinh

csr_matrix.arcsinh()
 Element-wise arcsinh.
 See numpy.arcsinh for more information.

scipy.sparse.csr_matrix.arctan

csr_matrix.arctan()
 Element-wise arctan.
 See numpy.arctan for more information.

scipy.sparse.csr_matrix.arctanh

csr_matrix.arctanh()
 Element-wise arctanh.
 See numpy.arctanh for more information.

scipy.sparse.csr_matrix.argmax

csr_matrix.argmax(axis=None, out=None)
 Return indices of maximum elements along an axis.
 Implicit zero elements are also taken into account. If there are several maximum values, the index of the first occurrence is returned.

 Parameters
 axis [[-2, -1, 0, 1, None], optional] Axis along which the argmax is computed. If None (default), index of the maximum element in the flatten data is returned.
 out [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

 Returns
 ind [numpy.matrix or int] Indices of maximum elements. If matrix, its size along axis is 1.
scipy.sparse.csr_matrix.argmin

csr_matrix.argmin(axis=None, out=None)

Return indices of minimum elements along an axis.
Implicit zero elements are also taken into account. If there are several minimum values, the index of the first occurrence is returned.

Parameters

axis [{-2, -1, 0, 1, None}, optional] Axis along which the argmin is computed. If None (default), index of the minimum element in the flattened data is returned.

out [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns

ind [numpy.matrix or int] Indices of minimum elements. If matrix, its size along axis is 1.

scipy.sparse.csr_matrix.asformat

csr_matrix.asformat(format, copy=False)

Return this matrix in the passed format.

Parameters

format [{str, None}] The desired matrix format ("csr", "csc", "lil", "dok", "array", ...) or None for no conversion.

copy [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

A [This matrix in the passed format.]

scipy.sparse.csr_matrix.asfptype

csr_matrix.asfptype()

Upcast matrix to a floating point format (if necessary)

scipy.sparse.csr_matrix.astype

csr_matrix.astype(dtype, casting='unsafe', copy=True)

Cast the matrix elements to a specified type.

Parameters

dtype [string or numpy dtype] Typecode or data-type to which to cast the data.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’ means only casts which can preserve values are allowed. ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data conversions may be done.

copy [bool, optional] If copy is False, the result might share some memory with this matrix. If copy is True, it is guaranteed that the result and this matrix do not share any memory.
```python
scipy.sparse.csr_matrix.ceil

csr_matrix.ceil()

Element-wise ceil.

See numpy.ceil for more information.

scipy.sparse.csr_matrix.check_format

csr_matrix.check_format(full_check=True)

check whether the matrix format is valid

Parameters

full_check [bool, optional] If True, rigorous check, O(N) operations. Otherwise basic check, O(1) operations (default True).

scipy.sparse.csr_matrix.conj

csr_matrix.conj(copy=True)

Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

A [The element-wise complex conjugate.]

scipy.sparse.csr_matrix.conjugate

csr_matrix.conjugate(copy=True)

Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not copied.

Parameters

copy [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

A [The element-wise complex conjugate.]
```
scipy.sparse.csr_matrix.copy

csr_matrix.copy()

Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.

scipy.sparse.csr_matrix.count_nonzero

csr_matrix.count_nonzero()

Number of non-zero entries, equivalent to

np.count_nonzero(a.toarray())

Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.csr_matrix.deg2rad

csr_matrix.deg2rad()

Element-wise deg2rad.

See :func:`numpy.deg2rad` for more information.

scipy.sparse.csr_matrix.diagonal

csr_matrix.diagonal(k=0)

Returns the kth diagonal of the matrix.

Parameters

k : int, optional
 Which diagonal to get, corresponding to elements a[i, i+k]. Default: 0 (the main diagonal).

New in version 1.0.

See also:

:func:`numpy.diagonal`

Equivalent numpy function.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])
```
scipy.sparse.csr_matrix.dot

csr_matrix.dot(other)
 Ordinary dot product

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
```

scipy.sparse.csr_matrix.eliminate_zeros

csr_matrix.eliminate_zeros()
 Remove zero entries from the matrix
 This is an in place operation.

scipy.sparse.csr_matrix.expm1

csr_matrix.expm1()
 Element-wise expm1.
 See numpy.expm1 for more information.

scipy.sparse.csr_matrix.floor

csr_matrix.floor()
 Element-wise floor.
 See numpy.floor for more information.

scipy.sparse.csr_matrix.getH

csr_matrix.getH()
 Return the Hermitian transpose of this matrix.
 See also:

 numpy.matrix.getH
 NumPy’s implementation of getH for matrices
scipy.sparse.csr_matrix.get_shape

csr_matrix.get_shape()
Get shape of a matrix.

scipy.sparse.csr_matrix.getcol

csr_matrix.getcol(i)
Returns a copy of column i of the matrix, as a (m x 1) CSR matrix (column vector).

scipy.sparse.csr_matrix.getformat

csr_matrix.getformat()
Format of a matrix representation as a string.

scipy.sparse.csr_matrix.getmaxprint

csr_matrix.getmaxprint()
Maximum number of elements to display when printed.

scipy.sparse.csr_matrix.getnnz

csr_matrix.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters

axis [None, 0, or 1] Select between the number of values across the whole matrix, in each column, or in each row.

See also:

count_nonzero
Number of non-zero entries

scipy.sparse.csr_matrix.getrow

csr_matrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).
scipy.sparse.csr_matrix.log1p

csr_matrix.log1p()

Element-wise log1p.

See `numpy.log1p` for more information.

scipy.sparse.csr_matrix.max

csr_matrix.max(axis=None, out=None)

Return the maximum of the matrix or maximum along an axis. This takes all elements into account, not just
the non-zero ones.

Parameters

axis

[-2, -1, 0, 1, None] optional] Axis along which the sum is computed. The default is
to compute the maximum over all the matrix elements, returning a scalar (i.e., axis =
None).

out

[None, optional] This argument is in the signature solely for NumPy compatibility rea-
sons. Do not pass in anything except for the default value, as this argument is not used.

Returns

amax

[coo_matrix or scalar] Maximum of a. If axis is None, the result is a scalar value. If
axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

min

The minimum value of a sparse matrix along a given axis.

scipy.sparse.csr_matrix.maximum

csr_matrix.maximum(other)

Element-wise maximum between this and another matrix.

scipy.sparse.csr_matrix.mean

csr_matrix.mean(axis=None, dtype=None, out=None)

Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken over all elements in the matrix by default,
otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters

axis

[-2, -1, 0, 1, None] optional] Axis along which the mean is computed. The default is
to compute the mean of all elements in the matrix (i.e., axis = None).

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default is
float64; for floating point inputs, it is the same as the input dtype.

New in version 0.18.0.
out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.

New in version 0.18.0.

Returns

- **m** [np.matrix]

See also:

- `numpy.matrix.mean`
 - NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.csr_matrix.min

csr_matrix.min(axis=None, out=None)

Return the minimum of the matrix or maximum along an axis. This takes all elements into account, not just the non-zero ones.

Parameters

- **axis** [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to compute the minimum over all the matrix elements, returning a scalar (i.e., axis = None).
- **out** [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns

- **amin** [coo_matrix or scalar] Minimum of a. If axis is None, the result is a scalar value. If axis is given, the result is a sparse.coo_matrix of dimension a.ndim - 1.

See also:

- `max`
 - The maximum value of a sparse matrix along a given axis.

- `numpy.matrix.min`
 - NumPy’s implementation of ‘min’ for matrices

scipy.sparse.csr_matrix.minimum

csr_matrix.minimum(other)

Element-wise minimum between this and another matrix.
scipy.sparse.csr_matrix.multiply

csr_matrix.multiply(other)
Point-wise multiplication by another matrix, vector, or scalar.

scipy.sparse.csr_matrix.nonzero

csr_matrix.nonzero()
nonzero indices
Returns a tuple of arrays (row, col) containing the indices of the non-zero elements of the matrix.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
```

scipy.sparse.csr_matrix.power

csr_matrix.power(n, dtype=None)
This function performs element-wise power.

Parameters

- n [n is a scalar]
- dtype [If dtype is not specified, the current dtype will be preserved.]

scipy.sparse.csr_matrix.prune

csr_matrix.prune()
Remove empty space after all non-zero elements.

scipy.sparse.csr_matrix.rad2deg

csr_matrix.rad2deg()
Element-wise rad2deg.
See numpy.rad2deg for more information.
scipy.sparse.csr_matrix.reshape

csr_matrix.reshape *(self, shape, order='C', copy=False)*

Gives a new shape to a sparse matrix without changing its data.

Parameters

- **shape** *(length-2 tuple of ints)* The new shape should be compatible with the original shape.
- **order** *['C', 'F'], optional* Read the elements using this index order. ‘C’ means to read and write the elements using C-like index order; e.g., read entire first row, then second row, etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g., read entire first column, then second column, etc.
- **copy** *[bool, optional]* Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

- **reshaped_matrix** *[sparse matrix]* A sparse matrix with the given shape, not necessarily of the same format as the current object.

See also:

- **numpy.matrix.reshape**

 NumPy's implementation of 'reshape' for matrices

scipy.sparse.csr_matrix.resize

csr_matrix.resize *(shape)*

Resize the matrix in-place to dimensions given by shape.

Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying outside the new shape are removed.

Parameters

- **shape** *[(int, int)]* number of rows and columns in the new matrix

Notes

The semantics are not identical to **numpy.ndarray.resize** or **numpy.resize**. Here, the same data will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy, resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or replaced with new objects.
scipy.sparse.csr_matrix.rint

```python
csr_matrix.rint()
```
Element-wise rint.

See `numpy.rint` for more information.

scipy.sparse.csr_matrix.set_shape

```python
csr_matrix.set_shape(shape)
```

See `reshape`.

scipy.sparse.csr_matrix.setdiag

```python
csr_matrix.setdiag(values, k=0)
```
Set diagonal or off-diagonal elements of the array.

Parameters

- `values` ([array_like]) New values of the diagonal elements.
 Values may have any length. If the diagonal is longer than values, then the remaining
diagonal entries will not be set. If values are longer than the diagonal, then the remaining
values are ignored.
 If a scalar value is given, all of the diagonal is set to it.
- `k` ([int, optional]) Which off-diagonal to set, corresponding to elements `a[i,i+k]`. Default: 0
 (the main diagonal).

scipy.sparse.csr_matrix.sign

```python
csr_matrix.sign()
```
Element-wise sign.

See `numpy.sign` for more information.

scipy.sparse.csr_matrix.sin

```python
csr_matrix.sin()
```
Element-wise sin.

See `numpy.sin` for more information.

scipy.sparse.csr_matrix.sinh

```python
csr_matrix.sinh()
```
Element-wise sinh.

See `numpy.sinh` for more information.
scipy.sparse.csr_matrix.sort_indices

csr_matrix.sort_indices()
Sort the indices of this matrix in place

scipy.sparse.csr_matrix.sorted_indices

csr_matrix.sorted_indices()
Return a copy of this matrix with sorted indices

scipy.sparse.csr_matrix.sqrt

csr_matrix.sqrt()
Element-wise sqrt.
See numpy.sqrt for more information.

scipy.sparse.csr_matrix.sum

csr_matrix.sum(axis=None, dtype=None, out=None)
Sum the matrix elements over a given axis.

Parameters
axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e., axis = None).
dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the elements are summed. The dtype of a is used by default unless a has an integer dtype of less precision than the default platform integer. In that case, if a is signed then the platform integer is used while if a is unsigned then an unsigned integer of the same precision as the platform integer is used.
New in version 0.18.0.
out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.
New in version 0.18.0.

Returns
sum_along_axis [np.matrix] A matrix with the same shape as self, with the specified axis removed.

See also:
numpy.matrix.sum
NumPy's implementation of 'sum' for matrices
scipy.sparse.csr_matrix.sum_duplicates

csr_matrix.sum_duplicates()
 Eliminate duplicate matrix entries by adding them together
 This is an in place operation.

scipy.sparse.csr_matrix.tan

csr_matrix.tan()
 Element-wise tan.
 See numpy.tan for more information.

scipy.sparse.csr_matrix.tanh

csr_matrix.tanh()
 Element-wise tanh.
 See numpy.tanh for more information.

scipy.sparse.csr_matrix.toarray

csr_matrix.toarray(order=None, out=None)
 Return a dense ndarray representation of this matrix.

 Parameters
 order [{‘C’, ‘F’}, optional] Whether to store multidimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the out argument.
 out [ndarray, 2-D, optional] If specified, uses this array as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. For most sparse types, out is required to be memory contiguous (either C or Fortran ordered).

 Returns
 arr [ndarray, 2-D] An array with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If out was passed, the same object is returned after being modified in-place to contain the appropriate values.

scipy.sparse.csr_matrix.tobsr

csr_matrix.tobsr(blocksize=None, copy=True)
 Convert this matrix to Block Sparse Row format.

 With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.

 When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix.
scipy.sparse.csr_matrix.tocoo

csr_matrix.tocoo(copy=True)
Convert this matrix to COOrdinate format.

With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

scipy.sparse.csr_matrix.tocsc

csr_matrix.tocsc(copy=False)
Convert this matrix to Compressed Sparse Column format.

With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

scipy.sparse.csr_matrix.tocsr

csr_matrix.tocsr(copy=False)
Convert this matrix to Compressed Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.csr_matrix.todense

csr_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters

order [{'C', 'F'}, optional] Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is 'None', which provides no ordering guarantees. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-D, optional] If specified, uses this array (or numpy.matrix) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

arr [numpy.matrix, 2-D] A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If out was passed and was an array (rather than a numpy.matrix), it will be filled with the appropriate values and returned wrapped in a numpy.matrix object that shares the same memory.

scipy.sparse.csr_matrix.todia

csr_matrix.todia(copy=False)
Convert this matrix to sparse DIAgonal format.

With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.
scipy.sparse.csr_matrix.todok

csr_matrix.todok(copy=False)
 Convert this matrix to Dictionary Of Keys format.
 With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.csr_matrix.tolil

csr_matrix.tolil(copy=False)
 Convert this matrix to List of Lists format.
 With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.csr_matrix.trace

csr_matrix.trace(offset=0)
 Returns the sum along diagonals of the sparse matrix.
 Parameters
 offset [int, optional] Which diagonal to get, corresponding to elements a[i, i+offset]. Default: 0 (the main diagonal).

scipy.sparse.csr_matrix.transpose

csr_matrix.transpose(axes=None, copy=False)
 Reverses the dimensions of the sparse matrix.
 Parameters
 axes [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value.
 copy [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.
 Returns
 p [self with the dimensions reversed.]
 See also:
 numpy.matrix.transpose
 NumPy's implementation of 'transpose' for matrices
scipy.sparse.csr_matrix.trunc

csr_matrix.trunc()
 Element-wise trunc.
 See numpy.trunc for more information.

scipy.sparse.dia_matrix

class scipy.sparse.dia_matrix(arg1, shape=None, dtype=None, copy=False)
 Sparse matrix with DIAGONal storage

 This can be instantiated in several ways:

 - dia_matrix(D)
 with a dense matrix
 - dia_matrix(S)
 with another sparse matrix S (equivalent to S.todia())
 - dia_matrix((M, N), [dtype])
 to construct an empty matrix with shape (M, N), dtype is optional, defaulting to dtype='d'.
 - dia_matrix((data, offsets), shape=(M, N))
 where the data[k,:] stores the diagonal entries for diagonal offsets[k] (See example below)

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import dia_matrix
>>> dia_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)

>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0)
>>> offsets = np.array([0, -1, 2])
>>> dia_matrix((data, offsets), shape=(4, 4)).toarray()
array([[1, 0, 3, 0],
       [1, 2, 0, 4],
       [1, 2, 0, 4],
       [1, 2, 0, 4]], dtype=int8)
```

(continues on next page)
from scipy.sparse import dia_matrix

n = 10
ex = np.ones(n)
data = np.array([ex, 2 * ex, ex])
offsets = np.array([-1, 0, 1])
dia_matrix((data, offsets), shape=(n, n)).toarray()

array([[2., 1., 0., ..., 0., 0., 0.],
 [1., 2., 1., ..., 0., 0., 0.],
 [0., 1., 2., ..., 0., 0., 0.],
 ...,
 [0., 0., 0., ..., 2., 1., 0.],
 [0., 0., 0., ..., 1., 2., 1.],
 [0., 0., 0., ..., 0., 1., 2.]])

Attributes

dtype [dtype] Data type of the matrix
ndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.
data DIA format data array of the matrix
offsets DIA format offset array of the matrix

Methods

__len__()

arcsin() Element-wise arcsin.
arcsinh() Element-wise arcsinh.
arctan() Element-wise arctan.
arctanh() Element-wise arctanh.
asformat(format[, copy]) Return this matrix in the passed format.
asfptype() Upcast matrix to a floating point format (if necessary)
astype(dtype[, casting, copy]) Cast the matrix elements to a specified type.
ceil() Element-wise ceil.
conj([copy]) Element-wise complex conjugation.
conjugate([copy]) Element-wise complex conjugation.
copy() Returns a copy of this matrix.
count_nonzero() Number of non-zero entries, equivalent to
deg2rad() Element-wise deg2rad.
diagonal([k]) Returns the kth diagonal of the matrix.
dot(other) Ordinary dot product
expm1() Element-wise expm1.
floor() Element-wise floor.
getH() Return the Hermitian transpose of this matrix.
get_shape() Get shape of a matrix.
Table 187 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>getcol(j)</code></td>
<td>Returns a copy of column (j) of the matrix, as an ((m \times 1)) sparse matrix (column vector).</td>
</tr>
<tr>
<td><code>getformat()</code></td>
<td>Format of a matrix representation as a string.</td>
</tr>
<tr>
<td><code>getmaxprint()</code></td>
<td>Maximum number of elements to display when printed.</td>
</tr>
<tr>
<td><code>getnnz([axis])</code></td>
<td>Number of stored values, including explicit zeros.</td>
</tr>
<tr>
<td><code>getrow(i)</code></td>
<td>Returns a copy of row (i) of the matrix, as a ((1 \times n)) sparse matrix (row vector).</td>
</tr>
<tr>
<td><code>log1p()</code></td>
<td>Element-wise (\log(1 + x)).</td>
</tr>
<tr>
<td><code>maximum(other)</code></td>
<td>Element-wise maximum between this and another matrix.</td>
</tr>
<tr>
<td><code>mean([axis, dtype, out])</code></td>
<td>Compute the arithmetic mean along the specified axis.</td>
</tr>
<tr>
<td><code>minimum(other)</code></td>
<td>Element-wise minimum between this and another matrix.</td>
</tr>
<tr>
<td><code>multiply(other)</code></td>
<td>Point-wise multiplication by another matrix</td>
</tr>
<tr>
<td><code>nonzero()</code></td>
<td>nonzero indices</td>
</tr>
<tr>
<td><code>power(n[, dtype])</code></td>
<td>This function performs element-wise power.</td>
</tr>
<tr>
<td><code>rad2deg()</code></td>
<td>Element-wise (\text{rad2deg}).</td>
</tr>
<tr>
<td><code>reshape(self, shape[, order, copy])</code></td>
<td>Gives a new shape to a sparse matrix without changing its data.</td>
</tr>
<tr>
<td><code>rint()</code></td>
<td>Element-wise (\text{rint}).</td>
</tr>
<tr>
<td><code>set_shape(shape)</code></td>
<td>See (\text{reshape}).</td>
</tr>
<tr>
<td><code>setdiag(values[, k])</code></td>
<td>Set diagonal or off-diagonal elements of the array.</td>
</tr>
<tr>
<td><code>sign()</code></td>
<td>Element-wise sign.</td>
</tr>
<tr>
<td><code>sin()</code></td>
<td>Element-wise (\sin).</td>
</tr>
<tr>
<td><code>sinh()</code></td>
<td>Element-wise (\sinh).</td>
</tr>
<tr>
<td><code>sqrt()</code></td>
<td>Element-wise (\sqrt).</td>
</tr>
<tr>
<td><code>sum([axis, dtype, out])</code></td>
<td>Sum the matrix elements over a given axis.</td>
</tr>
<tr>
<td><code>tan()</code></td>
<td>Element-wise (\tan).</td>
</tr>
<tr>
<td><code>tanh()</code></td>
<td>Element-wise (\tanh).</td>
</tr>
<tr>
<td><code>toarray([order, out])</code></td>
<td>Return a dense ndarray representation of this matrix.</td>
</tr>
<tr>
<td><code>tobsr([blocksize, copy])</code></td>
<td>Convert this matrix to Block Sparse Row format.</td>
</tr>
<tr>
<td><code>tocoo([copy])</code></td>
<td>Convert this matrix to COOrdinate format.</td>
</tr>
<tr>
<td><code>tocsc([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Column format.</td>
</tr>
<tr>
<td><code>tocsr([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Row format.</td>
</tr>
<tr>
<td><code>todense([order, out])</code></td>
<td>Return a dense matrix representation of this matrix.</td>
</tr>
<tr>
<td><code>todok([copy])</code></td>
<td>Convert this matrix to Dictionary Of Keys format.</td>
</tr>
<tr>
<td><code>tolil([copy])</code></td>
<td>Convert this matrix to List of Lists format.</td>
</tr>
<tr>
<td><code>trace([offset])</code></td>
<td>Returns the sum along diagonals of the sparse matrix.</td>
</tr>
<tr>
<td><code>transpose([axes, copy])</code></td>
<td>Reverses the dimensions of the sparse matrix.</td>
</tr>
<tr>
<td><code>trunc()</code></td>
<td>Element-wise (\text{trunc}).</td>
</tr>
</tbody>
</table>
scipy.sparse.dia_matrix.__len__

dia_matrix.__len__()

scipy.sparse.dia_matrix.arcsin

dia_matrix.arcsin()
Element-wise arcsin.
 See numpy.arcsin for more information.

scipy.sparse.dia_matrix.arcsinh

dia_matrix.arcsinh()
Element-wise arcsinh.
 See numpy.arcsinh for more information.

scipy.sparse.dia_matrix.arctan

dia_matrix.arctan()
Element-wise arctan.
 See numpy.arctan for more information.

scipy.sparse.dia_matrix.arctanh

dia_matrix.arctanh()
Element-wise arctanh.
 See numpy.arctanh for more information.

scipy.sparse.dia_matrix.asformat

dia_matrix.asformat(format, copy=False)
Return this matrix in the passed format.

Parameters

 format [[str, None]] The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …) or None
 for no conversion.
 copy [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

 A [This matrix in the passed format.]
scipy.sparse.dia_matrix.asfptype

`dia_matrix.asfptype()`

Upcast matrix to a floating point format (if necessary)

scipy.sparse.dia_matrix.astype

`dia_matrix.astype(dtype, casting='unsafe', copy=True)`

Cast the matrix elements to a specified type.

Parameters

- **dtype** [string or numpy dtype] Typecode or data-type to which to cast the data.
- **casting** [{'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional] Controls what kind of data casting may occur. ‘no’ means the data types should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’ means only casts which can preserve values are allowed. ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data conversions may be done.
- **copy** [bool, optional] If `copy` is False, the result might share some memory with this matrix. If `copy` is True, it is guaranteed that the result and this matrix do not share any memory.

scipy.sparse.dia_matrix.ceil

`dia_matrix.ceil()`

Element-wise `cei`l.

See `numpy.ceil` for more information.

scipy.sparse.dia_matrix.conj

`dia_matrix.conj(copy=True)`

Element-wise complex conjugation.

If the matrix is of non-complex data type and `copy` is False, this method does nothing and the data is not copied.

Parameters

- **copy** [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- **A** [The element-wise complex conjugate.]
scipy.sparse.dia_matrix.conjugate

dia_matrix.conjugate(copy=True)
Element-wise complex conjugation.
If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not copied.

Parameters
 copy [bool, optional] If True, the result is guaranteed to not share data with self.

Returns
 A [The element-wise complex conjugate.]

scipy.sparse.dia_matrix.copy

dia_matrix.copy()
Returns a copy of this matrix.
No data/indices will be shared between the returned value and current matrix.

scipy.sparse.dia_matrix.count_nonzero

dia_matrix.count_nonzero()
Number of non-zero entries, equivalent to
np.count_nonzero(a.toarray())
Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.dia_matrix.deg2rad

dia_matrix.deg2rad()
Element-wise deg2rad.
See numpy.deg2rad for more information.

scipy.sparse.dia_matrix.diagonal

dia_matrix.diagonal(k=0)
Returns the kth diagonal of the matrix.

Parameters
 k [int, optional] Which diagonal to get, corresponding to elements a[i, i+k]. Default: 0 (the main diagonal).
 New in version 1.0.

See also:

numpy.diagonal
Equivalent numpy function.
Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])
```

scipy.sparse.dia_matrix.dot

dia_matrix.dot(other)

Ordinary dot product

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
```

scipy.sparse.dia_matrix.expm1

dia_matrix.expm1()

Element-wise `expm1`.

See `numpy.expm1` for more information.

scipy.sparse.dia_matrix.floor

dia_matrix.floor()

Element-wise floor.

See `numpy.floor` for more information.

scipy.sparse.dia_matrix.getH

dia_matrix.getH()

Return the Hermitian transpose of this matrix.

See also:

`numpy.matrix.getH`

NumPy's implementation of `getH` for matrices
scipy.sparse.dia_matrix.get_shape

dia_matrix.get_shape()
Get shape of a matrix.

scipy.sparse.dia_matrix.getcol

dia_matrix.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

scipy.sparse.dia_matrix.getformat

dia_matrix.getformat()
Format of a matrix representation as a string.

scipy.sparse.dia_matrix.getmaxprint

dia_matrix.getmaxprint()
Maximum number of elements to display when printed.

scipy.sparse.dia_matrix.getnnz

dia_matrix.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters
axis [None, 0, or 1] Select between the number of values across the whole matrix, in each column, or in each row.

See also:
count_nonzero
Number of non-zero entries

scipy.sparse.dia_matrix.getrow

dia_matrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).
scipy.sparse.dia_matrix.log1p

dia_matrix.log1p()

Element-wise log1p.

See numpy.log1p for more information.

scipy.sparse.dia_matrix.maximum

dia_matrix.maximum(other)

Element-wise maximum between this and another matrix.

scipy.sparse.dia_matrix.mean

dia_matrix.mean(axis=None, dtype=None, out=None)

Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken over all elements in the matrix by default, otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters

axis

[-2, -1, 0, 1, None] optional] Axis along which the mean is computed. The default is to compute the mean of all elements in the matrix (i.e., axis = None).

dtype

[data-type, optional] Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype.

New in version 0.18.0.

out

[np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.

New in version 0.18.0.

Returns

m

[np.matrix]

See also:

numpy.matrix.mean

NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.dia_matrix.minimum

dia_matrix.minimum(other)

Element-wise minimum between this and another matrix.

scipy.sparse.dia_matrix.multiply

dia_matrix.multiply(other)
Point-wise multiplication by another matrix

scipy.sparse.dia_matrix.nonzero

dia_matrix.nonzero()
nonzero indices
Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
```

scipy.sparse.dia_matrix.power

dia_matrix.power(n, dtype=None)
This function performs element-wise power.

Parameters

- `n` [n is a scalar]
- `dtype` [If dtype is not specified, the current dtype will be preserved.]

scipy.sparse.dia_matrix.rad2deg

dia_matrix.rad2deg()
Element-wise rad2deg.
See numpy.rad2deg for more information.

scipy.sparse.dia_matrix.reshape

dia_matrix.reshape(self, shape, order='C', copy=False)
Gives a new shape to a sparse matrix without changing its data.

Parameters

- `shape` [length-2 tuple of ints] The new shape should be compatible with the original shape. [[‘C’, ‘F’], optional] Read the elements using this index order. ‘C’ means to read and write the elements using C-like index order; e.g., read entire first row, then second row, etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g., read entire first column, then second column, etc.
- `copy` [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.
Returns

resized_matrix

[sparse matrix] A sparse matrix with the given shape, not necessarily of the same format as the current object.

See also:

dia_matrix.resize

NumPy's implementation of 'reshape' for matrices

scipy.sparse.dia_matrix.resize

dia_matrix.resize(*shape)

Resize the matrix in-place to dimensions given by shape

Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying outside the new shape are removed.

Parameters

shape [(int, int)] number of rows and columns in the new matrix

Notes

The semantics are not identical to numpy.ndarray.resize or numpy.resize. Here, the same data will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy, resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or replaced with new objects.

scipy.sparse.dia_matrix.rint

dia_matrix.rint()

Element-wise rint.

See numpy.rint for more information.

scipy.sparse.dia_matrix.set_shape

dia_matrix.set_shape(shape)

See reshape.
scipy.sparse.dia_matrix.setdiag

```python
dia_matrix.setdiag(values, k=0)
```

Set diagonal or off-diagonal elements of the array.

Parameters

- `values` : [array_like] New values of the diagonal elements.
- `k` : [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0 (the main diagonal).

scipy.sparse.dia_matrix.sign

```python
dia_matrix.sign()
```

Element-wise sign.

See `numpy.sign` for more information.

scipy.sparse.dia_matrix.sin

```python
dia_matrix.sin()
```

Element-wise sin.

See `numpy.sin` for more information.

scipy.sparse.dia_matrix.sinh

```python
dia_matrix.sinh()
```

Element-wise sinh.

See `numpy.sinh` for more information.

scipy.sparse.dia_matrix.sqrt

```python
dia_matrix.sqrt()
```

Element-wise sqrt.

See `numpy.sqrt` for more information.
scipy.sparse.dia_matrix.sum

dia_matrix.sum(axis=None, dtype=None, out=None)
 Sum the matrix elements over a given axis.

Parameters

 axis [{-2, -1, 0, 1, None} optional] Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e., axis = None).

 dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the elements are summed. The dtype of a is used by default unless a has an integer dtype of less precision than the default platform integer. In that case, if a is signed then the platform integer is used while if a is unsigned then an unsigned integer of the same precision as the platform integer is used.
 New in version 0.18.0.

 out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.
 New in version 0.18.0.

Returns

 sum_along_axis [np.matrix] A matrix with the same shape as self, with the specified axis removed.

See also:

 numpy.matrix.sum
 NumPy's implementation of 'sum' for matrices

scipy.sparse.dia_matrix.tan

dia_matrix.tan()
 Element-wise tan.

 See numpy.tan for more information.

scipy.sparse.dia_matrix.tanh

dia_matrix.tanh()
 Element-wise tanh.

 See numpy.tanh for more information.
scipy.sparse.dia_matrix.toarray

`dia_matrix.toarray(order=None, out=None)`
Return a dense ndarray representation of this matrix.

Parameters

- `order`
 {{{'C', 'F'}, optional}} Whether to store multidimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the `out` argument.

- `out`
 [ndarray, 2-D, optional] If specified, uses this array as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. For most sparse types, `out` is required to be memory contiguous (either C or Fortran ordered).

Returns

- `arr`
 [ndarray, 2-D] An array with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If `out` was passed, the same object is returned after being modified in-place to contain the appropriate values.

scipy.sparse.dia_matrix.tobsr

`dia_matrix.tobsr(blocksize=None, copy=False)`
Convert this matrix to Block Sparse Row format.

With `copy=False`, the data/indices may be shared between this matrix and the resultant `bsr_matrix`.

When `blocksize=(R, C)` is provided, it will be used for construction of the `bsr_matrix`.

scipy.sparse.dia_matrix.tocoo

`dia_matrix.tocoo(copy=False)`
Convert this matrix to COOrdinate format.

With `copy=False`, the data/indices may be shared between this matrix and the resultant `coo_matrix`.

scipy.sparse.dia_matrix.tocsc

`dia_matrix.tocsc(copy=False)`
Convert this matrix to Compressed Sparse Column format.

With `copy=False`, the data/indices may be shared between this matrix and the resultant `csc_matrix`.

3.3. API definition 1909
scipy.sparse.dia_matrix.tocsr

dia_matrix.tocsr (copy=False)
Convert this matrix to Compressed Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.dia_matrix.todense

dia_matrix.todense (order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters

order [‘C’, ‘F’], optional Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-D, optional] If specified, uses this array (or numpy.matrix) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

arr [numpy.matrix, 2-D] A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If out was passed and was an array (rather than a numpy.matrix), it will be filled with the appropriate values and returned wrapped in a numpy.matrix object that shares the same memory.

scipy.sparse.dia_matrix.todia

dia_matrix.todia (copy=False)
Convert this matrix to sparse DIAgonal format.

With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.

scipy.sparse.dia_matrix.todok

dia_matrix.todok (copy=False)
Convert this matrix to Dictionary Of Keys format.

With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.dia_matrix.tolil

dia_matrix.tolil (copy=False)
Convert this matrix to List of Lists format.

With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.
scipy.sparse.dia_matrix.trace

dia_matrix.trace(offset=0)
Returns the sum along diagonals of the sparse matrix.

Parameters
offset [int, optional] Which diagonal to get, corresponding to elements a[i, i+offset]. Default: 0 (the main diagonal).

scipy.sparse.dia_matrix.transpose

dia_matrix.transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

Parameters
axes [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value.
copy [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns
p [self with the dimensions reversed.]

See also:
numpy.matrix.transpose
NumPy's implementation of 'transpose' for matrices

scipy.sparse.dia_matrix.trunc

dia_matrix.trunc()
Element-wise trunc.

See numpy.trunc for more information.

__mul__

scipy.sparse.dok_matrix

class scipy.sparse.dok_matrix(arg1, shape=None, dtype=None, copy=False)
Dictionary Of Keys based sparse matrix.

This is an efficient structure for constructing sparse matrices incrementally.

This can be instantiated in several ways:

dok_matrix(D)
with a dense matrix, D

3.3. API definition
dok_matrix(S)

with a sparse matrix, S

dok_matrix((M,N), [dtype])

create the matrix with initial shape (M,N) dtype is optional, defaulting to dtype='d'

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.

Allows for efficient O(1) access of individual elements. Duplicates are not allowed. Can be efficiently converted to a coo_matrix once constructed.

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import dok_matrix
>>> S = dok_matrix((5, 5), dtype=np.float32)
>>> for i in range(5):
...     for j in range(5):
...         S[i, j] = i + j  # Update element
```

Attributes

- **dtype** [dtype] Data type of the matrix
- **ndim** [int] Number of dimensions (this is always 2)
- **nnz** Number of stored values, including explicit zeros.

Methods

- **__len__()** Return len(self).
- **asformat(format[, copy])** Return this matrix in the passed format.
- **asfptype()** Upcast matrix to a floating point format (if necessary)
- **astype(dtype[, casting, copy])** Cast the matrix elements to a specified type.
- **clear()**
- **conj([copy])** Element-wise complex conjugation.
- **conjtransp()** Return the conjugate transpose.
- **conjugate([copy])** Element-wise complex conjugation.
- **copy()** Returns a copy of this matrix.
- **count_nonzero()** Number of non-zero entries, equivalent to
- **diagonal([k])** Returns the kth diagonal of the matrix.
- **dot(other)** Ordinary dot product
- **fromkeys(iterable[, value])** Create a new dictionary with keys from iterable and values set to value.
- **get(key[, default])** This overrides the dict.get method, providing type checking but otherwise equivalent functionality.
Table 188 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>getH()</code></td>
<td>Return the Hermitian transpose of this matrix.</td>
</tr>
<tr>
<td><code>get_shape()</code></td>
<td>Get shape of a matrix.</td>
</tr>
<tr>
<td><code>getcol(j)</code></td>
<td>Returns a copy of column <code>j</code> of the matrix, as an <code>(m x 1)</code> sparse matrix (column vector).</td>
</tr>
<tr>
<td><code>getformat()</code></td>
<td>Format of a matrix representation as a string.</td>
</tr>
<tr>
<td><code>getmaxprint()</code></td>
<td>Maximum number of elements to display when printed.</td>
</tr>
<tr>
<td><code>getnnz([axis])</code></td>
<td>Number of stored values, including explicit zeros.</td>
</tr>
<tr>
<td><code>getrow(i)</code></td>
<td>Returns a copy of row <code>i</code> of the matrix, as a <code>(1 x n)</code> sparse matrix (row vector).</td>
</tr>
<tr>
<td><code>items()</code></td>
<td></td>
</tr>
<tr>
<td><code>keys()</code></td>
<td></td>
</tr>
<tr>
<td><code>maximum(other)</code></td>
<td>Element-wise maximum between this and another matrix.</td>
</tr>
<tr>
<td><code>mean([axis, dtype, out])</code></td>
<td>Compute the arithmetic mean along the specified axis.</td>
</tr>
<tr>
<td><code>minimum(other)</code></td>
<td>Element-wise minimum between this and another matrix.</td>
</tr>
<tr>
<td><code>multiply(other)</code></td>
<td>Point-wise multiplication by another matrix.</td>
</tr>
<tr>
<td><code>nonzero()</code></td>
<td>Nonzero indices.</td>
</tr>
<tr>
<td><code>pop(key[, default])</code></td>
<td>If the key is not found, return the default if given; otherwise, raise a KeyError.</td>
</tr>
<tr>
<td><code>popitem()</code></td>
<td>Remove and return a (key, value) pair as a 2-tuple.</td>
</tr>
<tr>
<td><code>power(n[, dtype])</code></td>
<td>Element-wise power.</td>
</tr>
<tr>
<td><code>reshape(self, shape[, order, copy])</code></td>
<td>Gives a new shape to a sparse matrix without changing its data.</td>
</tr>
<tr>
<td><code>resize(*shape)</code></td>
<td>Resize the matrix in-place to dimensions given by shape.</td>
</tr>
<tr>
<td><code>set_shape(shape)</code></td>
<td>See reshape.</td>
</tr>
<tr>
<td><code>setdefault(key[, default])</code></td>
<td>Insert key with a value of default if key is not in the dictionary.</td>
</tr>
<tr>
<td><code>setdiag(values[, k])</code></td>
<td>Set diagonal or off-diagonal elements of the array.</td>
</tr>
<tr>
<td><code>sum([axis, dtype, out])</code></td>
<td>Sum the matrix elements over a given axis.</td>
</tr>
<tr>
<td><code>tobCSR([blocksize, copy])</code></td>
<td>Convert this matrix to Block Sparse Row format.</td>
</tr>
<tr>
<td><code>toCOO([copy])</code></td>
<td>Convert this matrix to COOrdinate format.</td>
</tr>
<tr>
<td><code>tocSC([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Column format.</td>
</tr>
<tr>
<td><code>tocSR([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Row format.</td>
</tr>
<tr>
<td><code>todense([order, out])</code></td>
<td>Return a dense matrix representation of this matrix.</td>
</tr>
<tr>
<td><code>todia([copy])</code></td>
<td>Convert this matrix to sparse DIAgonal format.</td>
</tr>
<tr>
<td><code>todok([copy])</code></td>
<td>Convert this matrix to Dictionary Of Keys format.</td>
</tr>
<tr>
<td><code>tolil([copy])</code></td>
<td>Convert this matrix to List of Lists format.</td>
</tr>
<tr>
<td><code>transpose([axes, copy])</code></td>
<td>Reverses the dimensions of the sparse matrix.</td>
</tr>
<tr>
<td><code>update([E,]**F)</code></td>
<td>If <code>E</code> is present and has a <code>.keys()</code> method, then does: for <code>k</code> in <code>E</code>: <code>D[k] = E[k]</code> If <code>E</code> is present and lacks a <code>.keys()</code> method, then does: for <code>k</code>, <code>v</code> in <code>E</code>: <code>D[k] = v</code> In either case, this is followed by: for <code>k</code> in <code>F</code>: <code>D[k] = F[k]</code></td>
</tr>
</tbody>
</table>

3.3. API definition

1913
Table 188 – continued from previous page

values()

scipy.sparse.dok_matrix.__len__

dok_matrix.__len__()
 Return len(self).

scipy.sparse.dok_matrix.asformat

dok_matrix.asformat(format, copy=False)
 Return this matrix in the passed format.

 Parameters

 format [{str, None}] The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …) or None for no conversion.
 copy [bool, optional] If True, the result is guaranteed to not share data with self.

 Returns

 A [This matrix in the passed format.]

scipy.sparse.dok_matrix.asfptype

dok_matrix.asfptype()
 Upcast matrix to a floating point format (if necessary)

scipy.sparse.dok_matrix.astype

dok_matrix.astype(dtype, casting='unsafe', copy=True)
 Cast the matrix elements to a specified type.

 Parameters

 dtype [string or numpy dtype] Typecode or data-type to which to cast the data.
 casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may occur. ‘no’ means the data types should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’ means only casts which can preserve values are allowed. ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data conversions may be done.
 copy [bool, optional] If copy is False, the result might share some memory with this matrix. If copy is True, it is guaranteed that the result and this matrix do not share any memory.
scipy.sparse.dok_matrix.clear

```python
dok_matrix.clear() → None. Remove all items from D.
```

scipy.sparse.dok_matrix.conj

```python
dok_matrix.conj(copy=True)
Element-wise complex conjugation.

If the matrix is of non-complex data type and `copy` is False, this method does nothing and the data is not copied.

Parameters

- `copy` [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- `A` [The element-wise complex conjugate.]
```

scipy.sparse.dok_matrix.conjtransp

```python
dok_matrix.conjtransp()
Return the conjugate transpose.
```

scipy.sparse.dok_matrix.conjugate

```python
dok_matrix.conjugate(copy=True)
Element-wise complex conjugation.

If the matrix is of non-complex data type and `copy` is False, this method does nothing and the data is not copied.

Parameters

- `copy` [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- `A` [The element-wise complex conjugate.]
```

scipy.sparse.dok_matrix.copy

```python
dok_matrix.copy()
Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.
```
scipy.sparse.dok_matrix.count_nonzero

dok_matrix.count_nonzero()

Number of non-zero entries, equivalent to

np.count_nonzero(a.toarray())

Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data.

scipy.sparse.dok_matrix.diagonal

dok_matrix.diagonal(k=0)

Returns the kth diagonal of the matrix.

Parameters

- **k** [int, optional] Which diagonal to get, corresponding to elements a[i, i+k]. Default: 0 (the main diagonal).

New in version 1.0.

See also:

- **numpy.diagonal**

 Equivalent numpy function.

Examples

```python
>>> import scipy.sparse as sp
>>> A = sp.csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])
```

scipy.sparse.dok_matrix.dot

dok_matrix.dot(other)

Ordinary dot product

Examples

```python
>>> import numpy as np
>>> A = sp.csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
```
scipy.sparse.dok_matrix.fromkeys

dok_matrix.fromkeys(iterable, value=None)
Create a new dictionary with keys from iterable and values set to value.

scipy.sparse.dok_matrix.get

dok_matrix.get(key, default=0.0)
This overrides the dict.get method, providing type checking but otherwise equivalent functionality.

scipy.sparse.dok_matrix.getH

dok_matrix.getH()
Return the Hermitian transpose of this matrix.

See also:

numpy.matrix.getH
NumPy's implementation of getH for matrices

scipy.sparse.dok_matrix.get_shape

dok_matrix.get_shape()
Get shape of a matrix.

scipy.sparse.dok_matrix.getcol

dok_matrix.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

scipy.sparse.dok_matrix.getformat

dok_matrix.getformat()
Format of a matrix representation as a string.

scipy.sparse.dok_matrix.getmaxprint

dok_matrix.getmaxprint()
Maximum number of elements to display when printed.
scipy.sparse.dok_matrix.getnnz

dok_matrix.getnnz(axis=None)
 Number of stored values, including explicit zeros.

 Parameters
 axis [None, 0, or 1] Select between the number of values across the whole matrix, in each column, or in each row.

 See also:

count_nonzero
 Number of non-zero entries

scipy.sparse.dok_matrix.getrow

dok_matrix.getrow(i)
 Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).

scipy.sparse.dok_matrix.items

dok_matrix.items() → a set-like object providing a view on D's items

scipy.sparse.dok_matrix.keys

dok_matrix.keys() → a set-like object providing a view on D's keys

scipy.sparse.dok_matrix.maximum

dok_matrix.maximum(other)
 Element-wise maximum between this and another matrix.

scipy.sparse.dok_matrix.mean

dok_matrix.mean(axis=None, dtype=None, out=None)
 Compute the arithmetic mean along the specified axis.
 Returns the average of the matrix elements. The average is taken over all elements in the matrix by default, otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

 Parameters
 axis [-2, -1, 0, 1, None] optional] Axis along which the mean is computed. The default is to compute the mean of all elements in the matrix (i.e., axis = None).
 dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype. New in version 0.18.0.
out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. New in version 0.18.0.

Returns

m [np.matrix]

See also:

numpy.matrix.mean

NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.dok_matrix.minimum

dok_matrix.minimum(other)

Element-wise minimum between this and another matrix.

scipy.sparse.dok_matrix.multiply

dok_matrix.multiply(other)

Point-wise multiplication by another matrix

scipy.sparse.dok_matrix.nonzero

dok_matrix.nonzero()

nonzero indices

Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
```

scipy.sparse.dok_matrix.pop

dok_matrix.pop(key, default=unrepresentable, /)

If the key is not found, return the default if given; otherwise, raise a KeyError.
scipy.sparse.dok_matrix.popitem

dok_matrix.

popitem (/)

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

scipy.sparse.dok_matrix.power

dok_matrix.

power (n, dtype=None)

Element-wise power.

scipy.sparse.dok_matrix.reshape

dok_matrix.

reshape (self, shape, order=’C’, copy=False)

Gives a new shape to a sparse matrix without changing its data.

Parameters

shape [length-2 tuple of ints] The new shape should be compatible with the original shape.

order [{‘C’, ‘F’}, optional] Read the elements using this index order. ‘C’ means to read and write the elements using C-like index order; e.g., read entire first row, then second row, etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g., read entire first column, then second column, etc.

copy [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

reshaped_matrix [sparse matrix] A sparse matrix with the given shape, not necessarily of the same format as the current object.

See also:

numpy.matrix.reshape

NumPy’s implementation of ‘reshape’ for matrices

scipy.sparse.dok_matrix.resize

dok_matrix.

resize (*shape)

Resize the matrix in-place to dimensions given by shape.

Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying outside the new shape are removed.

Parameters

shape [(int, int)] number of rows and columns in the new matrix
Notes

The semantics are not identical to `numpy.ndarray.resize` or `numpy.resize`. Here, the same data will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy, resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or replaced with new objects.

`scipy.sparse.dok_matrix.set_shape`

dok_matrix.set_shape(shape)

See reshape.

`scipy.sparse.dok_matrix.setdefault`

dok_matrix.setdefault(key, default=None, /)

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

`scipy.sparse.dok_matrix.setdiag`

dok_matrix.setdiag(values, k=0)

Set diagonal or off-diagonal elements of the array.

Parameters

values [array_like] New values of the diagonal elements. Values may have any length. If the diagonal is longer than values, then the remaining diagonal entries will not be set. If values are longer than the diagonal, then the remaining values are ignored. If a scalar value is given, all of the diagonal is set to it.

k [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0 (the main diagonal).

`scipy.sparse.dok_matrix.sum`

dok_matrix.sum(axis=None, dtype=None, out=None)

Sum the matrix elements over a given axis.

Parameters

axis [-2, -1, 0, 1, None] optional] Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e., axis = None).

dtype [dtype, optional] The type of the returned matrix and of the accumulator in which the elements are summed. The dtype of a is used by default unless a has an integer dtype of less precision than the default platform integer. In that case, if a is signed then the platform integer is used while if a is unsigned then an unsigned integer of the same precision as the platform integer is used. New in version 0.18.0.
out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.

New in version 0.18.0.

Returns

sum_along_axis

[np.matrix] A matrix with the same shape as `self`, with the specified axis removed.

See also:

`numpy.matrix.sum`

NumPy’s implementation of ‘sum’ for matrices

scipy.sparse.dok_matrix.toarray

dok_matrix.toarray(order=None, out=None)

Return a dense ndarray representation of this matrix.

Parameters

order [{'C', 'F'}, optional] Whether to store multidimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the `out` argument.

out [ndarray, 2-D, optional] If specified, uses this array as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. For most sparse types, `out` is required to be memory contiguous (either C or Fortran ordered).

Returns

arr [ndarray, 2-D] An array with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If `out` was passed, the same object is returned after being modified in-place to contain the appropriate values.

scipy.sparse.dok_matrix.tobsr

dok_matrix.tobsr(blocksize=None, copy=False)

Convert this matrix to Block Sparse Row format.

With `copy=False`, the data/indices may be shared between this matrix and the resultant bsr_matrix.

When `blocksize=(R, C)` is provided, it will be used for construction of the bsr_matrix.

scipy.sparse.dok_matrix.tocoo

dok_matrix.tocoo(copy=False)

Convert this matrix to COOrdinate format.

With `copy=False`, the data/indices may be shared between this matrix and the resultant coo_matrix.
scipy.sparse.dok_matrix.tocsc

dok_matrix.tocsc(copy=False)
 Convert this matrix to Compressed Sparse Column format.
 With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

scipy.sparse.dok_matrix.tocsr

dok_matrix.tocsr(copy=False)
 Convert this matrix to Compressed Sparse Row format.
 With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.dok_matrix.todense

dok_matrix.todense(order=None, out=None)
 Return a dense matrix representation of this matrix.

 Parameters
 order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the out argument.

 out [ndarray, 2-D, optional] If specified, uses this array (or numpy.matrix) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method.

 Returns
 arr [numpy.matrix, 2-D] A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If out was passed and was an array (rather than a numpy.matrix), it will be filled with the appropriate values and returned wrapped in a numpy.matrix object that shares the same memory.

scipy.sparse.dok_matrix.todia

dok_matrix.todia(copy=False)
 Convert this matrix to sparse DIAgonal format.
 With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.

scipy.sparse.dok_matrix.todok

dok_matrix.todok(copy=False)
 Convert this matrix to Dictionary Of Keys format.
 With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.
scipy.sparse.dok_matrix.tolil

dok_matrix.tolil(copy=False)
Convert this matrix to List of Lists format.

With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.dok_matrix.trace

dok_matrix.trace(offset=0)
Returns the sum along diagonals of the sparse matrix.

Parameters
offset [int, optional] Which diagonal to get, corresponding to elements a[i, i+offset]. Default: 0 (the main diagonal).

scipy.sparse.dok_matrix.transpose

dok_matrix.transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

Parameters
axes [None, optional] This argument is in the signature *solely* for NumPy compatibility reasons. Do not pass in anything except for the default value.
copy [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns
p [self with the dimensions reversed.]

See also:

numpy.matrix.transpose
NumPy’s implementation of ‘transpose’ for matrices

scipy.sparse.dok_matrix.update

dok_matrix.update([E], **F) → None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
scipy.sparse.dok_matrix.values

dok_matrix.values() → an object providing a view on D's values

scipy.sparse.lil_matrix

class scipy.sparse.lil_matrix(arg1, shape=None, dtype=None, copy=False)
Row-based list of list sparse matrix

This is a structure for constructing sparse matrices incrementally. Note that inserting a single item can take linear
time in the worst case; to construct a matrix efficiently, make sure the items are pre-sorted by index, per row.

This can be instantiated in several ways:

lil_matrix(D)
 with a dense matrix or rank-2 ndarray D

lil_matrix(S)
 with another sparse matrix S (equivalent to S.tolil())

lil_matrix((M, N), [dtype])
 to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division,
and matrix power.

Advantages of the LIL format

• supports flexible slicing
• changes to the matrix sparsity structure are efficient

Disadvantages of the LIL format

• arithmetic operations LIL + LIL are slow (consider CSR or CSC)
• slow column slicing (consider CSC)
• slow matrix vector products (consider CSR or CSC)

Intended Usage

• LIL is a convenient format for constructing sparse matrices
• once a matrix has been constructed, convert to CSR or CSC format for fast arithmetic and matrix vector
 operations
• consider using the COO format when constructing large matrices

Data Structure
• An array (self.rows) of rows, each of which is a sorted list of column indices of non-zero elements.
• The corresponding nonzero values are stored in similar fashion in self.data.

Attributes

dtype [dtype] Data type of the matrix
ndim [int] Number of dimensions (this is always 2)
nnz Number of stored values, including explicit zeros.
data LIL format data array of the matrix
rows LIL format row index array of the matrix

Methods

__len__()

asformat(format[, copy]) Return this matrix in the passed format.
astype() Upcast matrix to a floating point format (if necessary)
astype(dtype[, casting, copy]) Cast the matrix elements to a specified type.
conj([copy]) Element-wise complex conjugation.
conjugate([copy]) Element-wise complex conjugation.
copy() Returns a copy of this matrix.
count_nonzero() Number of non-zero entries, equivalent to
diagonal([k]) Returns the kth diagonal of the matrix.
dot(other) Ordinary dot product
getH() Return the Hermitian transpose of this matrix.
get_shape() Get shape of a matrix.
getcol(j) Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).
getformat() Format of a matrix representation as a string.
getmaxprint() Maximum number of elements to display when printed.
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of the i’th row.
getrowview(i) Returns a view of the i’th row (without copying).
maximum(other) Element-wise maximum between this and another matrix.
mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis.
minimum(other) Element-wise minimum between this and another matrix.
multiply(other) Point-wise multiplication by another matrix
nonzero() nonzero indices
power(n[, dtype]) Element-wise power.
reshape(self, shape[, order, copy]) Gives a new shape to a sparse matrix without changing its data.
resize(*shape) Resize the matrix in-place to dimensions given by shape
set_shape(shape) See reshape.
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sum([axis, dtype, out]) Sum the matrix elements over a given axis.
Table 189 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>toarray(order, out)</code></td>
<td>Return a dense ndarray representation of this matrix.</td>
</tr>
<tr>
<td><code>tobsr([Blocksize, copy])</code></td>
<td>Convert this matrix to Block Sparse Row format.</td>
</tr>
<tr>
<td><code>tocoo([copy])</code></td>
<td>Convert this matrix to COOrdinate format.</td>
</tr>
<tr>
<td><code>tocsc([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Column format.</td>
</tr>
<tr>
<td><code>tocsr([copy])</code></td>
<td>Convert this matrix to Compressed Sparse Row format.</td>
</tr>
<tr>
<td><code>todense(order, out)</code></td>
<td>Return a dense matrix representation of this matrix.</td>
</tr>
<tr>
<td><code>todia([copy])</code></td>
<td>Convert this matrix to sparse DIAgonal format.</td>
</tr>
<tr>
<td><code>todok([copy])</code></td>
<td>Convert this matrix to Dictionary Of Keys format.</td>
</tr>
<tr>
<td><code>tolil([copy])</code></td>
<td>Convert this matrix to List of Lists format.</td>
</tr>
<tr>
<td><code>trace(offset)</code></td>
<td>Returns the sum along diagonals of the sparse matrix.</td>
</tr>
<tr>
<td><code>transpose([axes, copy])</code></td>
<td>Reverses the dimensions of the sparse matrix.</td>
</tr>
</tbody>
</table>

```python
scipy.sparse.lil_matrix.__len__

lil_matrix.__len__()
```

```python
scipy.sparse.lil_matrix.asformat

lil_matrix.asformat(format, copy=False)
```

Return this matrix in the passed format.

Parameters

- **format**: [{str, None}] The desired matrix format ("csr", "csc", "lil", "dok", "array", ...) or None for no conversion.
- **copy**: [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- **A**: [This matrix in the passed format.]

```python
scipy.sparse.lil_matrix.asfptype

lil_matrix.asfptype()
```

Upcast matrix to a floating point format (if necessary)

```python
scipy.sparse.lil_matrix.astype

lil_matrix.astype(dtype, casting='unsafe', copy=True)
```

Cast the matrix elements to a specified type.

Parameters

- **dtype**: [string or numpy dtype] Typecode or data-type to which to cast the data.
- **casting**: [{'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional] Controls what kind of data casting may occur. Defaults to 'unsafe' for backwards compatibility. 'no' means the data types should not be cast at all. 'equiv' means only byte-order changes are allowed. 'safe' means only casts which can preserve values are allowed. 'same_kind' means only safe
casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data conversions may be done.

copy

[bool, optional] If `copy` is False, the result might share some memory with this matrix. If `copy` is True, it is guaranteed that the result and this matrix do not share any memory.

`scipy.sparse.lil_matrix.conj`

```python
lil_matrix.conj(copy=True)
```

Element-wise complex conjugation.

If the matrix is of non-complex data type and `copy` is False, this method does nothing and the data is not copied.

Parameters

- **copy**

 [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- **A**

 [The element-wise complex conjugate.]

`scipy.sparse.lil_matrix.conjugate`

```python
lil_matrix.conjugate(copy=True)
```

Element-wise complex conjugation.

If the matrix is of non-complex data type and `copy` is False, this method does nothing and the data is not copied.

Parameters

- **copy**

 [bool, optional] If True, the result is guaranteed to not share data with self.

Returns

- **A**

 [The element-wise complex conjugate.]

`scipy.sparse.lil_matrix.copy`

```python
lil_matrix.copy()
```

Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.

`scipy.sparse.lil_matrix.count_nonzero`

```python
lil_matrix.count_nonzero()
```

Number of non-zero entries, equivalent to `np.count_nonzero(a.toarray())`

Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data.
scipy.sparse.lil_matrix.diagonal

lil_matrix.diagonal(k=0)

Returns the kth diagonal of the matrix.

Parameters

- **k**
 [int, optional] Which diagonal to get, corresponding to elements $a[i, i+k]$. Default: 0 (the main diagonal).
 New in version 1.0.

See also:

numpy.diagonal

Equivalent numpy function.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])
```

scipy.sparse.lil_matrix.dot

lil_matrix.dot(other)

Ordinary dot product

Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
```

scipy.sparse.lil_matrix.getH

lil_matrix.getH()

Return the Hermitian transpose of this matrix.

See also:

numpy.matrix.getH

NumPy's implementation of getH for matrices
scipy.sparse.lil_matrix.get_shape

```python
lil_matrix.get_shape()
Get shape of a matrix.
```

scipy.sparse.lil_matrix.getcol

```python
lil_matrix.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).
```

scipy.sparse.lil_matrix.getformat

```python
lil_matrix.getformat()
Format of a matrix representation as a string.
```

scipy.sparse.lil_matrix.getmaxprint

```python
lil_matrix.getmaxprint()
Maximum number of elements to display when printed.
```

scipy.sparse.lil_matrix.getnnz

```python
lil_matrix.getnnz(axis=None)
Number of stored values, including explicit zeros.
```

Parameters

- **axis** [None, 0, or 1] Select between the number of values across the whole matrix, in each column, or in each row.

See also:

- **count_nonzero**
 Number of non-zero entries

scipy.sparse.lil_matrix.getrow

```python
lil_matrix.getrow(i)
Returns a copy of the ‘i’th row.
```
scipy.sparse.lil_matrix.getrowview

lil_matrix.getrowview(i)

Returns a view of the ‘i’th row (without copying).

scipy.sparse.lil_matrix.maximum

lil_matrix.maximum(other)

Element-wise maximum between this and another matrix.

scipy.sparse.lil_matrix.mean

lil_matrix.mean(axis=None, dtype=None, out=None)

Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken over all elements in the matrix by default, otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters

axis [{-2, -1, 0, 1, None} optional] Axis along which the mean is computed. The default is to compute the mean of all elements in the matrix (i.e., axis = None).
dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype.
out [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.

Returns

m [np.matrix]

See also:

numpy.matrix.mean

NumPy’s implementation of ‘mean’ for matrices

scipy.sparse.lil_matrix.minimum

lil_matrix.minimum(other)

Element-wise minimum between this and another matrix.
scipy.sparse.lil_matrix.multiply

lil_matrix.multiply(other)
Point-wise multiplication by another matrix

scipy.sparse.lil_matrix.nonzero

lil_matrix.nonzero()
nonzero indices
Returns a tuple of arrays (row, col) containing the indices of the non-zero elements of the matrix.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
```

scipy.sparse.lil_matrix.power

lil_matrix.power(n, dtype=None)
Element-wise power.

scipy.sparse.lil_matrix.reshape

lil_matrix.reshape(self, shape, order='C', copy=False)
Gives a new shape to a sparse matrix without changing its data.

Parameters

- shape [length-2 tuple of ints] The new shape should be compatible with the original shape.
- order [{'C', 'F'}, optional] Read the elements using this index order. ‘C’ means to read and write the elements using C-like index order; e.g., read entire first row, then second row, etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g., read entire first column, then second column, etc.
- copy [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

reshaped_matrix [sparse matrix] A sparse matrix with the given shape, not necessarily of the same format as the current object.

See also:

- numpy.matrix.reshape
 NumPy's implementation of 'reshape' for matrices
```python
scipy.sparse.lil_matrix.resize

lil_matrix.resize(*shape)

Resize the matrix in-place to dimensions given by shape

Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying outside the new shape are removed.

Parameters

shape [(int, int)] number of rows and columns in the new matrix

Notes

The semantics are not identical to numpy.ndarray.resize or numpy.resize. Here, the same data will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy, resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or replaced with new objects.

scipy.sparse.lil_matrix.set_shape

lil_matrix.set_shape(shape)

See reshape.

scipy.sparse.lil_matrix.setdiag

lil_matrix.setdiag(values, k=0)

Set diagonal or off-diagonal elements of the array.

Parameters

values [array_like] New values of the diagonal elements.
Values may have any length. If the diagonal is longer than values, then the remaining diagonal entries will not be set. If values are longer than the diagonal, then the remaining values are ignored.
If a scalar value is given, all of the diagonal is set to it.

k [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0 (the main diagonal).

scipy.sparse.lil_matrix.sum

lil_matrix.sum(axis=None, dtype=None, out=None)

Sum the matrix elements over a given axis.

Parameters

axis [{-2, -1, 0, 1} optional] Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e., axis = None).
```
```
**dtype**

[dtype, optional] The type of the returned matrix and of the accumulator in which the elements are summed. The dtype of a is used by default unless a has an integer dtype of less precision than the default platform integer. In that case, if a is signed then the platform integer is used while if a is unsigned then an unsigned integer of the same precision as the platform integer is used.

New in version 0.18.0.

**out**

[np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.

New in version 0.18.0.

**Returns**

`sum_along_axis`

[np.matrix] A matrix with the same shape as `self`, with the specified axis removed.

See also:

- `numpy.matrix.sum`
  - NumPy's implementation of 'sum' for matrices

**scipy.sparse.lil_matrix.toarray**

`lil_matrix.toarray(order=None, out=None)`

Return a dense ndarray representation of this matrix.

**Parameters**

- **order** ![comment]
  
  [\{'C', 'F'\}, optional] Whether to store multidimensional data in C (row-major) or Fortran (column-major) order in memory. The default is 'None', which provides no ordering guarantees. Cannot be specified in conjunction with the `out` argument.

- **out** ![comment]
  
  [ndarray, 2-D, optional] If specified, uses this array as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. For most sparse types, `out` is required to be memory contiguous (either C or Fortran ordered).

**Returns**

- **arr** ![comment]
  
  [ndarray, 2-D] An array with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If `out` was passed, the same object is returned after being modified in-place to contain the appropriate values.

**scipy.sparse.lil_matrix.tobsr**

`lil_matrix.tobsr(blocksize=None, copy=False)`

Convert this matrix to Block Sparse Row format.

With `copy=False`, the data/indices may be shared between this matrix and the resultant bsr_matrix.

When `blocksize=(R, C)` is provided, it will be used for construction of the bsr_matrix.
scipy.sparse.lil_matrix.tocoo

lil_matrix.tocoo(copy=False)
Convert this matrix to COOrdinate format.

With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

scipy.sparse.lil_matrix.tocsc

lil_matrix.tocsc(copy=False)
Convert this matrix to Compressed Sparse Column format.

With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

scipy.sparse.lil_matrix.tocsr

lil_matrix.tocsr(copy=False)
Convert this matrix to Compressed Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

scipy.sparse.lil_matrix.todense

lil_matrix.todense(order=None, out=None)
Return a dense matrix representation of this matrix.

Parameters

order [{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is ‘None’, which provides no ordering guarantees. Cannot be specified in conjunction with the out argument.

out [ndarray, 2-D, optional] If specified, uses this array (or numpy.matrix) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method.

Returns

arr [numpy.matrix, 2-D] A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If out was passed and was an array (rather than a numpy.matrix), it will be filled with the appropriate values and returned wrapped in a numpy.matrix object that shares the same memory.

scipy.sparse.lil_matrix.todia

lil_matrix.todia(copy=False)
Convert this matrix to sparse DIAgonal format.

With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.
**scipy.sparse.lil_matrix.todok**

```python
lil_matrix.todok(copy=False)
```
Convert this matrix to Dictionary Of Keys format.

With `copy=False`, the data/indices may be shared between this matrix and the resultant `dok_matrix`.

**scipy.sparse.lil_matrix.tolil**

```python
lil_matrix.tolil(copy=False)
```
Convert this matrix to List of Lists format.

With `copy=False`, the data/indices may be shared between this matrix and the resultant `lil_matrix`.

**scipy.sparse.lil_matrix.trace**

```python
lil_matrix.trace(offset=0)
```
Returns the sum along diagonals of the sparse matrix.

**Parameters**

- `offset` [int, optional] Which diagonal to get, corresponding to elements `a[i, i+offset]`. Default: 0 (the main diagonal).

**scipy.sparse.lil_matrix.transpose**

```python
lil_matrix.transpose(axes=None, copy=False)
```
Reverses the dimensions of the sparse matrix.

**Parameters**

- `axes` [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value.
- `copy` [bool, optional] Indicates whether or not attributes of `self` should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

**Returns**

- `p` [self with the dimensions reversed.]

**See also:**

- `numpy.matrix.transpose`

NumPy's implementation of 'transpose' for matrices

<table>
<thead>
<tr>
<th><strong>getitem</strong></th>
<th><strong>mul</strong></th>
</tr>
</thead>
</table>

---

1936 Chapter 3. SciPy API
scipy.sparse.spmatrix

**class scipy.sparse.spmatrix**(maxprint=50)

This class provides a base class for all sparse matrices. It cannot be instantiated. Most of the work is provided by subclasses.

**Attributes**

- **nnz**: Number of stored values, including explicit zeros.
- **shape**: Get shape of a matrix.

**Methods**

- **__len__()**: 
- **asformat**(format[, copy]) : Return this matrix in the passed format.
- **asfptype()** : Upcast matrix to a floating point format (if necessary).
- **astype**(dtype[, casting, copy]) : Cast the matrix elements to a specified type.
- **conj([copy])** : Element-wise complex conjugation.
- **conjugate([copy])** : Element-wise complex conjugation.
- **copy()** : Returns a copy of this matrix.
- **count_nonzero()** : Number of non-zero entries, equivalent to
- **diagonal([k])** : Returns the kth diagonal of the matrix.
- **dot(other)** : Ordinary dot product
- **getH()** : Return the Hermitian transpose of this matrix.
- **get_shape()** : Get shape of a matrix.
- **getcol(j)** : Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).
- **getformat()** : Format of a matrix representation as a string.
- **getmaxprint()** : Maximum number of elements to display when printed.
- **getnnz([axis])** : Number of stored values, including explicit zeros.
- **getrow(i)** : Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).
- **maximum(other)** : Element-wise maximum between this and another matrix.
- **mean([axis, dtype, out])** : Compute the arithmetic mean along the specified axis.
- **minimum(other)** : Element-wise minimum between this and another matrix.
- **multiply(other)** : Point-wise multiplication by another matrix
- **nonzero()** : nonzero indices
- **power(n[, dtype])** : Element-wise power.
- **reshape(self, shape[, order, copy])** : Gives a new shape to a sparse matrix without changing its data.
- **resize(shape)** : Resize the matrix in-place to dimensions given by shape
- **set_shape(shape)** : See reshape.
- **setdiag(values[, k])** : Set diagonal or off-diagonal elements of the array.
- **sum([axis, dtype, out])** : Sum the matrix elements over a given axis.
- **toarray([order, out])** : Return a dense ndarray representation of this matrix.
- **tobsr([blocksize, copy])** : Convert this matrix to Block Sparse Row format.

3.3. API definition
### Table 190 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tocoo(copy)</code></td>
<td>Convert this matrix to COOrdinate format.</td>
</tr>
<tr>
<td><code>tocsc(copy)</code></td>
<td>Convert this matrix to Compressed Sparse Column format.</td>
</tr>
<tr>
<td><code>tocsr(copy)</code></td>
<td>Convert this matrix to Compressed Sparse Row format.</td>
</tr>
<tr>
<td><code>todense(order, out)</code></td>
<td>Return a dense matrix representation of this matrix.</td>
</tr>
<tr>
<td><code>todia(copy)</code></td>
<td>Convert this matrix to Compressed Sparse Row format.</td>
</tr>
<tr>
<td><code>todok(copy)</code></td>
<td>Convert this matrix to Dictionary Of Keys format.</td>
</tr>
<tr>
<td><code>tolil(copy)</code></td>
<td>Convert this matrix to Dictionary Of Keys format.</td>
</tr>
<tr>
<td><code>trace(offset)</code></td>
<td>Return the sum along diagonals of the sparse matrix.</td>
</tr>
<tr>
<td><code>transpose(axes, copy)</code></td>
<td>Reverses the dimensions of the sparse matrix.</td>
</tr>
</tbody>
</table>

#### scipy.sparse.spmatrix.__len__

```python
spmatrix.__len__()
```

#### scipy.sparse.spmatrix.asformat

```python
spmatrix.asformat(format, copy=False)
```

Return this matrix in the passed format.

**Parameters**

- `format` ([str, None]) The desired matrix format (“csr”, “csc”, “lil”, “dok”, “array”, …) or None for no conversion.
- `copy` [bool, optional] If True, the result is guaranteed to not share data with self.

**Returns**

- `A` [This matrix in the passed format.]

#### scipy.sparse.spmatrix.asfptype

```python
spmatrix.asfptype()
```

Upcast matrix to a floating point format (if necessary)

#### scipy.sparse.spmatrix.astype

```python
spmatrix.astype(dtype, casting='unsafe', copy=True)
```

Cast the matrix elements to a specified type.

**Parameters**

- `dtype` [string or numpy dtype] Typecode or data-type to which to cast the data.
- `casting` ([‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’], optional] Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards compatibility. ‘no’ means the data types should not be cast at all. ‘equiv’ means only byte-order changes are allowed. ‘safe’ means only casts which can preserve values are allowed. ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed. ‘unsafe’ means any data conversions may be done.
copy [bool, optional] If copy is False, the result might share some memory with this matrix. If copy is True, it is guaranteed that the result and this matrix do not share any memory.

\textbf{scipy.sparse.spmatrix.conj}

\texttt{spmatrix.conj(copy=True)}

Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not copied.

\textbf{Parameters}

- \textit{copy} [bool, optional] If True, the result is guaranteed to not share data with self.

\textbf{Returns}

- \texttt{A} [The element-wise complex conjugate.]

\textbf{scipy.sparse.spmatrix.conjugate}

\texttt{spmatrix.conjugate(copy=True)}

Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not copied.

\textbf{Parameters}

- \textit{copy} [bool, optional] If True, the result is guaranteed to not share data with self.

\textbf{Returns}

- \texttt{A} [The element-wise complex conjugate.]

\textbf{scipy.sparse.spmatrix.copy}

\texttt{spmatrix.copy()}

Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.

\textbf{scipy.sparse.spmatrix.count_nonzero}

\texttt{spmatrix.count_nonzero()}

Number of non-zero entries, equivalent to

\texttt{np.count_nonzero(a.toarray())}

Unlike \texttt{getnnz()} and the \texttt{nnz} property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data.
scipy.sparse.spmatrix.diagonal

spmatrix \texttt{.diagonal}(k=0)

Returns the \(k\)th diagonal of the matrix.

**Parameters**

- \(k\) [int, optional] Which diagonal to get, corresponding to elements \(a[i, i+k]\). Default: 0 (the main diagonal). New in version 1.0.

**See also:**

- \texttt{numpy.diagonal}

Equivalent numpy function.

**Examples**

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> A.diagonal()
array([1, 0, 5])
>>> A.diagonal(k=1)
array([2, 3])
```

scipy.sparse.spmatrix.dot

spmatrix \texttt{.dot}(other)

Ordinary dot product

**Examples**

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([1, -3, -1], dtype=int64)
```

scipy.sparse.spmatrix.getH

spmatrix \texttt{.getH}()

Return the Hermitian transpose of this matrix.

**See also:**

- \texttt{numpy.matrix.getH}

NumPy's implementation of \texttt{getH} for matrices
scipy.sparse.spmatrix.get_shape

spmatrix.get_shape()
Get shape of a matrix.

scipy.sparse.spmatrix.getcol

spmatrix.getcol(j)
Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

scipy.sparse.spmatrix.getformat

spmatrix.getformat()
Format of a matrix representation as a string.

scipy.sparse.spmatrix.getmaxprint

spmatrix.getmaxprint()
Maximum number of elements to display when printed.

scipy.sparse.spmatrix.getnnz

spmatrix.getnnz(axis=None)
Number of stored values, including explicit zeros.

Parameters

axis [None, 0, or 1] Select between the number of values across the whole matrix, in each column, or in each row.

See also:

count_nonzero
Number of non-zero entries

scipy.sparse.spmatrix.getrow

spmatrix.getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).
**scipy.sparse.spmatrix.maximum**

`spmatrix.maximum(other)`  
Element-wise maximum between this and another matrix.

**scipy.sparse.spmatrix.mean**

`spmatrix.mean(axis=None, dtype=None, out=None)`  
Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken over all elements in the matrix by default, otherwise over the specified axis. `float64` intermediate and return values are used for integer inputs.

**Parameters**

- `axis`  
  [{-2, -1, 0, 1, None} optional] Axis along which the mean is computed. The default is to compute the mean of all elements in the matrix (i.e., `axis = None`).

- `dtype`  
  [data-type, optional] Type to use in computing the mean. For integer inputs, the default is `float64`; for floating point inputs, it is the same as the input dtype. New in version 0.18.0.

- `out`  
  [np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. New in version 0.18.0.

**Returns**

- `m`  
  [np.matrix]

See also:

- `numpy.matrix.mean`  
  NumPy's implementation of `mean` for matrices

**scipy.sparse.spmatrix.minimum**

`spmatrix.minimum(other)`  
Element-wise minimum between this and another matrix.

**scipy.sparse.spmatrix.multiply**

`spmatrix.multiply(other)`  
Point-wise multiplication by another matrix
scipy.sparse.spmatrix.nonzero

spmatrix.nonzero()
nonzero indices

Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
>>> A.nonzero()
(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))
```

scipy.sparse.spmatrix.power

spmatrix.power(n, dtype=None)
Element-wise power.

scipy.sparse.spmatrix.reshape

spmatrix.reshape(self, shape, order='C', copy=False)
Gives a new shape to a sparse matrix without changing its data.

Parameters

- **shape** [length-2 tuple of ints] The new shape should be compatible with the original shape.
- **order** [{'C', 'F'}, optional] Read the elements using this index order. ‘C’ means to read and write the elements using C-like index order; e.g., read entire first row, then second row, etc. ‘F’ means to read and write the elements using Fortran-like index order; e.g., read entire first column, then second column, etc.
- **copy** [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

reshaped_matrix
[sparse matrix] A sparse matrix with the given shape, not necessarily of the same format as the current object.

See also:

- **numpy.matrix.reshape**

    NumPy's implementation of 'reshape' for matrices
scipy.sparse.spmatrix.resize

```
spmatrix.resize(shape)
```
Resize the matrix in-place to dimensions given by shape

Any elements that lie within the new shape will remain at the same indices, while non-zero elements lying outside the new shape are removed.

**Parameters**

- **shape**
  [(int, int)] number of rows and columns in the new matrix

**Notes**

The semantics are not identical to `numpy.ndarray.resize` or `numpy.resize`. Here, the same data will be maintained at each index before and after reshape, if that index is within the new bounds. In numpy, resizing maintains contiguity of the array, moving elements around in the logical matrix but not within a flattened representation.

We give no guarantees about whether the underlying data attributes (arrays, etc.) will be modified in place or replaced with new objects.

scipy.sparse.spmatrix.set_shape

```
spmatrix.set_shape(shape)
```
See resize.

scipy.sparse.spmatrix.setdiag

```
spmatrix.setdiag(values, k=0)
```
Set diagonal or off-diagonal elements of the array.

**Parameters**

- **values**
  [array_like] New values of the diagonal elements.
  Values may have any length. If the diagonal is longer than values, then the remaining diagonal entries will not be set. If values are longer than the diagonal, then the remaining values are ignored.
  If a scalar value is given, all of the diagonal is set to it.
- **k**
  [int, optional] Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0 (the main diagonal).

scipy.sparse.spmatrix.sum

```
spmatrix.sum(axis=None, dtype=None, out=None)
```
Sum the matrix elements over a given axis.

**Parameters**

- **axis**
  [-2, -1, 0, 1, None] optional] Axis along which the sum is computed. The default is to compute the sum of all the matrix elements, returning a scalar (i.e., `axis = None`).
**dtype**

[**dtype**, optional] The type of the returned matrix and of the accumulator in which the elements are summed. The dtype of **a** is used by default unless **a** has an integer dtype of less precision than the default platform integer. In that case, if **a** is signed then the platform integer is used while if **a** is unsigned then an unsigned integer of the same precision as the platform integer is used.

New in version 0.18.0.

**out**

[np.matrix, optional] Alternative output matrix in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary.

New in version 0.18.0.

**Returns**

**sum_along_axis**

[np.matrix] A matrix with the same shape as **self**, with the specified axis removed.

**See also:**

`numpy.matrix.sum`

NumPy’s implementation of ‘sum’ for matrices

### scipy.sparse.spmatrix.toarray

**spmatrix.toarray**(order=None, out=None)

Return a dense ndarray representation of this matrix.

**Parameters**

**order**

[{'C', 'F'}, optional] Whether to store multidimensional data in C (row-major) or Fortran (column-major) order in memory. The default is 'None', which provides no ordering guarantees. Cannot be specified in conjunction with the **out** argument.

**out**

[ndarray, 2-D, optional] If specified, uses this array as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. For most sparse types, **out** is required to be memory contiguous (either C or Fortran ordered).

**Returns**

**arr**

[ndarray, 2-D] An array with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If **out** was passed, the same object is returned after being modified in-place to contain the appropriate values.

### scipy.sparse.spmatrix.tobsr

**spmatrix.tobsr**(blocksize=None, copy=False)

Convert this matrix to Block Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.

When blocksize=(R, C) is provided, it will be used for construction of the bsr_matrix.
\texttt{scipy.sparse.spmatrix.tocoo}

\texttt{spmatrix.tocoo(copy=False)}

Convert this matrix to COOrdinate format.

With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

\texttt{scipy.sparse.spmatrix.tocsc}

\texttt{spmatrix.tocsc(copy=False)}

Convert this matrix to Compressed Sparse Column format.

With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

\texttt{scipy.sparse.spmatrix.tocsr}

\texttt{spmatrix.tocsr(copy=False)}

Convert this matrix to Compressed Sparse Row format.

With copy=False, the data/indices may be shared between this matrix and the resultant csr_matrix.

\texttt{scipy.sparse.spmatrix.todense}

\texttt{spmatrix.todense(order=None, out=None)}

Return a dense matrix representation of this matrix.

Parameters

\begin{itemize}
\item \texttt{order} \([\{\texttt{C}, \texttt{F}\}, \text{optional}]\) Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is \texttt{None}, which provides no ordering guarantees. Cannot be specified in conjunction with the \texttt{out} argument.
\item \texttt{out} \([\texttt{ndarray}, \texttt{2-D}, \text{optional}]\) If specified, uses this array (or \texttt{numpy.matrix}) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method.
\end{itemize}

Returns

\begin{itemize}
\item \texttt{arr} \([\texttt{numpy.matrix}, \texttt{2-D}]\) A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If \texttt{out} was passed and was an array (rather than a \texttt{numpy.matrix}), it will be filled with the appropriate values and returned wrapped in a \texttt{numpy.matrix} object that shares the same memory.
\end{itemize}

\texttt{scipy.sparse.spmatrix.todia}

\texttt{spmatrix.todia(copy=False)}

Convert this matrix to sparse DIAGonal format.

With copy=False, the data/indices may be shared between this matrix and the resultant dia_matrix.
scipy.sparse.spmatrix.todok

spmatrix.todok(copy=False)
Convert this matrix to Dictionary Of Keys format.

With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

scipy.sparse.spmatrix.tolil

spmatrix.tolil(copy=False)
Convert this matrix to List of Lists format.

With copy=False, the data/indices may be shared between this matrix and the resultant lil_matrix.

scipy.sparse.spmatrix.trace

spmatrix.trace(offset=0)
Returns the sum along diagonals of the sparse matrix.

Parameters

offset [int, optional] Which diagonal to get, corresponding to elements a[i, i+offset]. Default: 0 (the main diagonal).

scipy.sparse.spmatrix.transpose

spmatrix.transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

Parameters

axes [None, optional] This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value.
copy [bool, optional] Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns

p [self with the dimensions reversed.]

See also:

numpy.matrix.transpose
NumPy’s implementation of ‘transpose’ for matrices

mul
Functions

Building sparse matrices:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>eye(m[, n, k, dtype, format])</code></td>
<td>Sparse matrix with ones on diagonal</td>
</tr>
<tr>
<td><code>identity(n[, dtype, format])</code></td>
<td>Identity matrix in sparse format</td>
</tr>
<tr>
<td><code>kron(A, B[, format])</code></td>
<td>Kronecker product of sparse matrices A and B</td>
</tr>
<tr>
<td><code>kronsum(A, B[, format])</code></td>
<td>Kronecker sum of sparse matrices A and B</td>
</tr>
<tr>
<td><code>diags(diagonals[, offsets, shape, format, dtype])</code></td>
<td>Construct a sparse matrix from diagonals.</td>
</tr>
<tr>
<td><code>spdiags(data, diags, m[, n, format])</code></td>
<td>Return a sparse matrix from diagonals.</td>
</tr>
<tr>
<td><code>block_diag(mats[, format])</code></td>
<td>Build a block diagonal sparse matrix from provided matrices.</td>
</tr>
<tr>
<td><code>tril(A[, k, format])</code></td>
<td>Return the lower triangular portion of a matrix in sparse format</td>
</tr>
<tr>
<td><code>triu(A[, k, format])</code></td>
<td>Return the upper triangular portion of a matrix in sparse format</td>
</tr>
<tr>
<td><code>bmat(blocks[, format, dtype])</code></td>
<td>Build a sparse matrix from sparse sub-blocks</td>
</tr>
<tr>
<td><code>hstack(blocks[, format, dtype])</code></td>
<td>Stack sparse matrices horizontally (column wise)</td>
</tr>
<tr>
<td><code>vstack(blocks[, format, dtype])</code></td>
<td>Stack sparse matrices vertically (row wise)</td>
</tr>
<tr>
<td><code>rand(m, n[, density, format, dtype, ...])</code></td>
<td>Generate a sparse matrix of the given shape and density with uniformly distributed values.</td>
</tr>
<tr>
<td><code>random(m, n[, density, format, dtype, ...])</code></td>
<td>Generate a sparse matrix of the given shape and density with randomly distributed values.</td>
</tr>
</tbody>
</table>

**scipy.sparse.eye**

`scipy.sparse.eye(m, n=\text{None}, k=0, dtype=\text{<class 'float'>}, format=\text{None})`

Sparse matrix with ones on diagonal

Returns a sparse (m x n) matrix where the kth diagonal is all ones and everything else is zeros.

**Parameters**

- `m` [int] Number of rows in the matrix.
- `n` [int, optional] Number of columns. Default: `m`.
- `k` [int, optional] Diagonal to place ones on. Default: 0 (main diagonal).
- `dtype` [dtype, optional] Data type of the matrix.
- `format` [str, optional] Sparse format of the result, e.g., `format=\text{"csr"}`, etc.

**Examples**

```python
>>> from scipy import sparse
>>> sparse.eye(3).toarray()
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
>>> sparse.eye(3, dtype=np.int8)
<3x3 sparse matrix of type '\text{<class 'numpy.int8'>}'
with 3 stored elements (1 diagonals) in \text{DIAgonal format}>
```
scipy.sparse.identity

**scipy.sparse.identity** *(n, dtype='d', format=None)*

Identity matrix in sparse format

Returns an identity matrix with shape (n,n) using a given sparse format and dtype.

**Parameters**

- **n** [int] Shape of the identity matrix.
- **dtype** [dtype, optional] Data type of the matrix
- **format** [str, optional] Sparse format of the result, e.g., format="csr", etc.

**Examples**

```python
>>> from scipy.sparse import identity
d>>> identity(3).toarray()
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
```

```python
>>> identity(3, dtype='int8', format='dia')
<3x3 sparse matrix of type '<class 'numpy.int8'>'
 with 3 stored elements (1 diagonals) in DIAgonal format>
```

scipy.sparse.kron

**scipy.sparse.kron** *(A, B, format=None)*

Kronecker product of sparse matrices A and B

**Parameters**

- **A** [sparse or dense matrix] first matrix of the product
- **B** [sparse or dense matrix] second matrix of the product
- **format** [str, optional] format of the result (e.g. “csr”)

**Returns**

Kronecker product in a sparse matrix format

**Examples**

```python
>>> from scipy import sparse
d>>> A = sparse.csr_matrix(np.array([[0, 2], [5, 0]]))
>>> B = sparse.csr_matrix(np.array([[1, 2], [3, 4]]))
>>> sparse.kron(A, B).toarray()
array([[0, 10, 20, 0],
 [0, 15, 20, 0],
 [0, 20, 24, 0],
 [0, 24, 10, 0],
 [0, 24, 10, 0],
 [0, 24, 20, 0],
 [0, 24, 10, 0],
 [0, 24, 20, 0]])
```
>>> sparse.kron(A, [[1, 2], [3, 4]]).toarray()
array([[ 0,  0,  2,  4],
       [ 0,  0,  6,  8],
       [ 5, 10,  0,  0],
       [15, 20,  0,  0]])

scipy.sparse.kronsum

scipy.sparse.kronsum(A, B, format=None)
  kron sum of sparse matrices A and B

Kronecker sum of two sparse matrices is a sum of two Kronecker products
kron(I_n,A) + kron(B,I_m) where A has shape (m,m) and B has shape (n,n) and I_m and I_n are identity matrices of shape (m,m) and (n,n), respectively.

Parameters
- A : square matrix
- B : square matrix
- format : [str] format of the result (e.g. "csr")

Returns
  kronecker sum in a sparse matrix format

scipy.sparse.diags

scipy.sparse.diags(diagonals, offsets=0, shape=None, format=None, dtype=None)
  Construct a sparse matrix from diagonals.

Parameters
- diagonals : [sequence of array_like] Sequence of arrays containing the matrix diagonals, corresponding to offsets.
- offsets : [sequence of int or an int, optional] Diagonals to set:
  • k = 0 the main diagonal (default)
  • k > 0 the kth upper diagonal
  • k < 0 the kth lower diagonal
- shape : [tuple of int, optional] Shape of the result. If omitted, a square matrix large enough to contain the diagonals is returned.
- format : [{“dia”, “csr”, “csc”, “lil”, …}, optional] Matrix format of the result. By default (format=None) an appropriate sparse matrix format is returned. This choice is subject to change.
- dtype : [dtype, optional] Data type of the matrix.

See also:
- spdiags
  construct matrix from diagonals
Notes

This function differs from \texttt{spdiags} in the way it handles off-diagonals.

The result from \texttt{diags} is the sparse equivalent of:

\begin{verbatim}
np.diag(diagonals[0], offsets[0])
+ ...
+ np.diag(diagonals[k], offsets[k])
\end{verbatim}

Repeated diagonal offsets are disallowed.

New in version 0.11.

Examples

\begin{verbatim}
>>> from scipy.sparse import diags
>>> diagonals = [[1, 2, 3, 4], [1, 2, 3], [1, 2]]
>>> diags(diagonals, [0, -1, 2]).toarray()
array([[1, 0, 1, 0],
       [1, 2, 0, 2],
       [0, 2, 3, 0],
       [0, 0, 3, 4]])
\end{verbatim}

Broadcasting of scalars is supported (but shape needs to be specified):

\begin{verbatim}
>>> diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)).toarray()
array([[ 1., -2., 1., 0.],
       [ 1., -2., 1., 0.],
       [ 0., 1., -2., 1.],
       [ 0., 0., 1., -2.]])
\end{verbatim}

If only one diagonal is wanted (as in \texttt{numpy.diag}), the following works as well:

\begin{verbatim}
>>> diags([1, 2, 3], 1).toarray()
array([[ 0., 1., 0., 0.],
       [ 0., 0., 2., 0.],
       [ 0., 0., 0., 3.],
       [ 0., 0., 0., 0.]])
\end{verbatim}

\texttt{scipy.sparse.spdiags}

\texttt{scipy.sparse.spdiags} \texttt{(data, diags, m, n, format=None)}

Return a sparse matrix from diagonals.

\textbf{Parameters}

- \texttt{data} [array_like] Matrix diagonals stored row-wise
- \texttt{diags} [sequence of int or an int] Diagonals to set:
  - \texttt{k = 0} the main diagonal
  - \texttt{k > 0} the \texttt{kth} upper diagonal
  - \texttt{k < 0} the \texttt{kth} lower diagonal
- \texttt{m, n} [int] Shape of the result

3.3. API definition
format [str, optional] Format of the result. By default (format=None) an appropriate sparse matrix format is returned. This choice is subject to change.

See also:

diags
  more convenient form of this function
dia_matrix
  the sparse DIAgonal format.

Examples

```python
>>> from scipy.sparse import spdiags
>>> data = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
>>> diags = np.array([0, -1, 2])
>>> spdiags(data, diags, 4, 4).toarray()
array([[1, 0, 3, 0],
 [1, 2, 0, 4],
 [0, 2, 3, 0],
 [0, 0, 3, 4]])
```

scipy.sparse.block_diag

scipy.sparse.block_diag(mats, format=None, dtype=None)

Build a block diagonal sparse matrix from provided matrices.

Parameters

- mats [sequence of matrices] Input matrices.
- format [str, optional] The sparse format of the result (e.g., “csr”). If not given, the matrix is returned in “coo” format.
- dtype [dtype specifier, optional] The data-type of the output matrix. If not given, the dtype is determined from that of blocks.

Returns

- res [sparse matrix]

See also:

bmat, diags

Notes

New in version 0.11.0.
Examples

```python
>>> from scipy.sparse import coo_matrix, block_diag
>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5], [6]])
>>> C = coo_matrix([[7]])
>>> block_diag((A, B, C)).toarray()
array([[1, 2, 0, 0],
 [3, 4, 0, 0],
 [0, 0, 5, 0],
 [0, 0, 6, 0],
 [0, 0, 0, 7]])
```

scipy.sparse.tril

scipy.sparse.tril(A, k=0, format=None)

Return the lower triangular portion of a matrix in sparse format

Returns the elements on or below the k-th diagonal of the matrix A.

- k = 0 corresponds to the main diagonal
- k > 0 is above the main diagonal
- k < 0 is below the main diagonal

Parameters

- A [dense or sparse matrix] Matrix whose lower triangular portion is desired.
- k [integer] The top-most diagonal of the lower triangle.
- format [string] Sparse format of the result, e.g. format=”csr”, etc.

Returns

- L [sparse matrix] Lower triangular portion of A in sparse format.

See also:

triu

upper triangle in sparse format

Examples

```python
>>> from scipy.sparse import csr_matrix, tril
>>> A = csr_matrix([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
 dtype='int32')
>>> A.toarray()
array([[1, 2, 0, 0, 3],
 [4, 5, 0, 6, 7],
 [0, 0, 8, 9, 0]])
>>> tril(A).toarray()
array([[1, 0, 0, 0, 0],
 [4, 5, 0, 0, 0],
 [0, 0, 8, 9, 0]])
```
```python
>>> tril(A).nnz
4
>>> tril(A, k=1).toarray()
array([[1, 2, 0, 0, 0],
 [4, 5, 0, 0, 0],
 [0, 0, 8, 9, 0]])
>>> tril(A, k=-1).toarray()
array([[0, 0, 0, 0, 0],
 [4, 0, 0, 0, 0],
 [0, 0, 0, 0, 0]])
>>> tril(A, format='csc')
<3x5 sparse matrix of type '<class 'numpy.int32'>'
 with 4 stored elements in Compressed Sparse Column format>
```

**scipy.sparse.triu**

scipy.sparse.triu(A, k=0, format=None)

Return the upper triangular portion of a matrix in sparse format

*Returns the elements on or above the k-th diagonal of the matrix A.*

- k = 0 corresponds to the main diagonal
- k > 0 is above the main diagonal
- k < 0 is below the main diagonal

**Parameters**

- A [dense or sparse matrix] Matrix whose upper triangular portion is desired.
- k [integer] The bottom-most diagonal of the upper triangle.
- format [string] Sparse format of the result, e.g. format="csr", etc.

**Returns**

- L [sparse matrix] Upper triangular portion of A in sparse format.

**See also:**

- tril lower triangle in sparse format
Examples

```python
>>> from scipy.sparse import csr_matrix, triu
>>> A = csr_matrix([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
 dtype='int32')
>>> A.toarray()
array([[1, 2, 0, 0, 3],
 [4, 5, 0, 6, 7],
 [0, 0, 8, 9, 0]])
>>> triu(A).toarray()
array([[1, 2, 0, 0, 3],
 [0, 5, 0, 6, 7],
 [0, 0, 8, 9, 0]])
>>> triu(A).nnz
8
>>> triu(A, k=1).toarray()
array([[0, 2, 0, 0, 3],
 [0, 0, 0, 6, 7],
 [0, 0, 0, 9, 0]])
>>> triu(A, k=-1).toarray()
array([[1, 2, 0, 0, 3],
 [4, 5, 0, 6, 7],
 [0, 0, 8, 9, 0]])
>>> triu(A, format='csc')
<3x5 sparse matrix of type '<class 'numpy.int32'>'
 with 8 stored elements in Compressed Sparse Column format>
```

scipy.sparse.bmat

**scipy.sparse.bmat** *(blocks, format=None, dtype=None)*  
Build a sparse matrix from sparse sub-blocks

**Parameters**
- **blocks** [array_like] Grid of sparse matrices with compatible shapes. An entry of None implies an all-zero matrix.
- **format** [{'bsr', 'coo', 'csc', 'csr', 'dia', 'dok', 'lil'}, optional] The sparse format of the result (e.g. “csr”).
  By default an appropriate sparse matrix format is returned. This choice is subject to change.
- **dtype** [dtype, optional] The data-type of the output matrix. If not given, the dtype is determined from that of *blocks*.

**Returns**
- **bmat** [sparse matrix]

See also:
- block_diag, diags

3.3. API definition
Examples

```python
>>> from scipy.sparse import coo_matrix, bmat
>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5], [6]])
>>> C = coo_matrix([[7]])
>>> bmat([[A, B], [None, C]]).toarray()
array([[1, 2, 5],
 [3, 4, 6],
 [0, 0, 7]])
```

```python
>>> bmat([[A, None], [None, C]]).toarray()
array([[1, 2, 0],
 [3, 4, 0],
 [0, 0, 7]])
```

scipy.sparse.hstack

`scipy.sparse.hstack` (`blocks, format=None, dtype=None`)
Stack sparse matrices horizontally (column wise)

**Parameters**
- `blocks`: sequence of sparse matrices with compatible shapes
- `format`: [str] sparse format of the result (e.g., “csr”) by default an appropriate sparse matrix format is returned. This choice is subject to change.
- `dtype`: [dtype, optional] The data-type of the output matrix. If not given, the dtype is determined from that of `blocks`.

**See also:**

vstack

stack sparse matrices vertically (row wise)

Examples

```python
>>> from scipy.sparse import coo_matrix, hstack
>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5], [6]])
>>> hstack([A, B]).toarray()
array([[1, 2, 5],
 [3, 4, 6]])
```
scipy.sparse.vstack

scipy.sparse.vstack(blocks, format=None, dtype=None)
Stack sparse matrices vertically (row wise)

Parameters
blocks sequence of sparse matrices with compatible shapes
format [str, optional] sparse format of the result (e.g., “csr”) by default an appropriate sparse matrix format is returned. This choice is subject to change.
dtype [dtype, optional] The data-type of the output matrix. If not given, the dtype is determined from that of blocks.

See also:
hstack
stack sparse matrices horizontally (column wise)

Examples

```python
>>> from scipy.sparse import coo_matrix, vstack
>>> A = coo_matrix([[1, 2], [3, 4]])
>>> B = coo_matrix([[5, 6]])
>>> vstack([A, B]).toarray()
array([[1, 2],
 [3, 4],
 [5, 6]])
```

scipy.sparse.rand

scipy.sparse.rand(m, n, density=0.01, format='coo', dtype=None, random_state=None)
Generate a sparse matrix of the given shape and density with uniformly distributed values.

Parameters
m, n [int] shape of the matrix
density [real, optional] density of the generated matrix: density equal to one means a full matrix, density of 0 means a matrix with no non-zero items.
format [str, optional] sparse matrix format.
dtype [dtype, optional] type of the returned matrix values.
random_state [[None, int, numpy.random.Generator],
numpy.random.RandomState], optional
If seed is None (or np.random), the numpy.random.RandomState singleton is used. If seed is an int, a new RandomState instance is used, seeded with seed. If seed is already a Generator or RandomState instance then that instance is used.

Returns
res [sparse matrix]

See also:
scipy.sparse.random

Similar function that allows a user-specified random data source.

Notes

Only float types are supported for now.

Examples

```python
>>> from scipy.sparse import rand
>>> matrix = rand(3, 4, density=0.25, format="csr", random_state=42)
>>> matrix
<3x4 sparse matrix of type '<class 'numpy.float64'>'
 with 3 stored elements in Compressed Sparse Row format>
>>> matrix.toarray()
array([[0.05641158, 0. , 0. , 0.65088847],
 [0. , 0. , 0. , 0.14286682],
 [0. , 0. , 0. , 0.]])
```

scipy.sparse.random

scipy.sparse.random(m, n, density=0.01, format='coo', dtype=None, random_state=None, data_rvs=None)

Generate a sparse matrix of the given shape and density with randomly distributed values.

Parameters

- **m, n** [int] shape of the matrix
- **density** [real, optional] density of the generated matrix: density equal to one means a full matrix, density of 0 means a matrix with no non-zero items.
- **format** [str, optional] sparse matrix format.
- **dtype** [dtype, optional] type of the returned matrix values.
- **random_state** [None, int, numpy.random.Generator, numpy.random.RandomState], optional
  - If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used.
  - If `seed` is an int, a new `RandomState` instance is used, seeded with `seed`. If `seed` is already a `Generator` or `RandomState` instance then that instance is used. This random state will be used for sampling the sparsity structure, but not necessarily for sampling the values of the structurally nonzero entries of the matrix.
- **data_rvs** [callable, optional] Samples a requested number of random values. This function should take a single argument specifying the length of the ndarray that it will return. The structurally nonzero entries of the sparse random matrix will be taken from the array sampled by this function. By default, uniform [0, 1) random values will be sampled using the same random state as is used for sampling the sparsity structure.

Returns

- **res** [sparse matrix]
Notes

Only float types are supported for now.

Examples

```python
>>> from scipy.sparse import random
>>> from scipy import stats
>>> from numpy.random import default_rng
>>> rng = default_rng()
>>> rvs = stats.poisson(25, loc=10).rvs
>>> S = random(3, 4, density=0.25, random_state=rng, data_rvs=rvs)
>>> S.A
array([[36., 0., 33., 0.],
 [0., 0., 0., 0.],
 [0., 0., 36., 0.]]

>>> from scipy.sparse import random
>>> from scipy.stats import rv_continuous
>>> class CustomDistribution(rv_continuous):
... ... def _rvs(self, size=None, random_state=None):
... ... return random_state.standard_normal(size)
>>> X = CustomDistribution(seed=rng)
>>> Y = X() # get a frozen version of the distribution
>>> S = random(3, 4, density=0.25, random_state=rng, data_rvs=Y.rvs)
>>> S.A
array([[0. , 0. , 0. , 0.],
 [0.13569738, 1.9467163 , -0.81205367, 0.],
 [0. , 0. , 0. , 0.]])
```

Save and load sparse matrices:

```
save_npz(file, matrix[, compressed])

Save a sparse matrix to a file using .npz format.

load_npz(file)

Load a sparse matrix from a file using .npz format.
```

```
save_npz(file, matrix[, compressed])

Save a sparse matrix to a file using .npz format.

Parameters

file [str or file-like object] Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the .npz extension will be appended to the file name if it is not already there.

matrix: spmatrix (format: `csc`, `csr`, `bsr`, `dia` or `coo`)
The sparse matrix to save.

compressed [bool, optional] Allow compressing the file. Default: True

See also:

3.3. API definition 1959
scipy.sparse.load_npz

Load a sparse matrix from a file using .npz format.

numpy.savez

Save several arrays into a .npz archive.

numpy.savez_compressed

Save several arrays into a compressed .npz archive.

Examples

Store sparse matrix to disk, and load it again:

```python
>>> import scipy.sparse
>>> sparse_matrix = scipy.sparse.csc_matrix(np.array([[0, 0, 3], [4, 0, 0]]))
>>> sparse_matrix
<2x3 sparse matrix of type '<class 'numpy.int64'>'
with 2 stored elements in Compressed Sparse Column format>
>>> sparse_matrix.toarray()
array([[0, 0, 3],
       [4, 0, 0]], dtype=int64)
```

```python
>>> scipy.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
>>> sparse_matrix = scipy.sparse.load_npz('/tmp/sparse_matrix.npz')
```

```
>>> sparse_matrix
<2x3 sparse matrix of type '<class 'numpy.int64'>'
with 2 stored elements in Compressed Sparse Column format>
>>> sparse_matrix.toarray()
array([[0, 0, 3],
       [4, 0, 0]], dtype=int64)
```

scipy.sparse.load_npz

scipy.sparse.load_npz(file)

Load a sparse matrix from a file using .npz format.

Parameters

- **file** [str or file-like object] Either the file name (string) or an open file (file-like object) where the data will be loaded.

Returns

- **result** [csc_matrix, csr_matrix, bsr_matrix, dia_matrix or coo_matrix] A sparse matrix containing the loaded data.

Raises

- **OSError** If the input file does not exist or cannot be read.

See also:
scipy.sparse.save_npz

Save a sparse matrix to a file using .npz format.

numpy.load

Load several arrays from a .npz archive.

Examples

Store sparse matrix to disk, and load it again:

```python
>>> import scipy.sparse

>>> sparse_matrix = scipy.sparse.csc_matrix(np.array([[0, 0, 3], [4, 0, 0]])
>>> sparse_matrix
<2x3 sparse matrix of type '<class 'numpy.int64'>'
 with 2 stored elements in Compressed Sparse Column format>

>>> sparse_matrix.toarray()
array([[0, 0, 3],
       [4, 0, 0]], dtype=int64)

>>> scipy.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)

>>> sparse_matrix = scipy.sparse.load_npz('/tmp/sparse_matrix.npz')

>>> sparse_matrix
<2x3 sparse matrix of type '<class 'numpy.int64'>'
 with 2 stored elements in Compressed Sparse Column format>

>>> sparse_matrix.toarray()
array([[0, 0, 3],
       [4, 0, 0]], dtype=int64)
```

Sparse matrix tools:

find(A)
Return the indices and values of the nonzero elements of a matrix

scipy.sparse.find

scipy.sparse.find(A)

Return the indices and values of the nonzero elements of a matrix

Parameters

A [dense or sparse matrix] Matrix whose nonzero elements are desired.

Returns

(I, J, V) [tuple of arrays] I, J, and V contain the row indices, column indices, and values of the nonzero matrix entries.
Examples

```python
>>> from scipy.sparse import csr_matrix, find
>>> A = csr_matrix([[7.0, 8.0, 0], [0, 0, 9.0]])
>>> find(A)
(array([0, 0, 1], dtype=int32), array([0, 1, 2], dtype=int32), array([ 7., 8., 9.]))
```

Identifying sparse matrices:

<table>
<thead>
<tr>
<th>issparse(x)</th>
<th>Is x of a sparse matrix type?</th>
</tr>
</thead>
<tbody>
<tr>
<td>isspmatrix(x)</td>
<td>Is x of a sparse matrix type?</td>
</tr>
<tr>
<td>isspmatrix_csc(x)</td>
<td>Is x of csc_matrix type?</td>
</tr>
<tr>
<td>isspmatrix_csr(x)</td>
<td>Is x of csr_matrix type?</td>
</tr>
<tr>
<td>isspmatrix_bsr(x)</td>
<td>Is x of bsr_matrix type?</td>
</tr>
<tr>
<td>isspmatrix_lil(x)</td>
<td>Is x of lil_matrix type?</td>
</tr>
<tr>
<td>isspmatrix_dok(x)</td>
<td>Is x of dok_matrix type?</td>
</tr>
<tr>
<td>isspmatrix_coo(x)</td>
<td>Is x of coo_matrix type?</td>
</tr>
<tr>
<td>isspmatrix_dia(x)</td>
<td>Is x of dia_matrix type?</td>
</tr>
</tbody>
</table>

`scipy.sparse.issparse`

`scipy.sparse.issparse(x)`

Is x of a sparse matrix type?

Parameters

- **x**
 object to check for being a sparse matrix

Returns

- **bool**
 True if x is a sparse matrix, False otherwise

Notes

issparse and isspmatrix are aliases for the same function.

Examples

```python
>>> from scipy.sparse import csr_matrix, isspmatrix
>>> isspmatrix(csr_matrix([[5]]))
True
```

```python
>>> from scipy.sparse import isspmatrix
>>> isspmatrix(5)
False
```
scipy.sparse.isspmatrix

scipy.sparse.isspmatrix(x)
Is x of a sparse matrix type?

Parameters

x object to check for being a sparse matrix

Returns

bool True if x is a sparse matrix, False otherwise

Notes

issparse and isspmatrix are aliases for the same function.

Examples

```python
>>> from scipy.sparse import csr_matrix, isspmatrix
>>> isspmatrix(csr_matrix([[5]]))
True

>>> from scipy.sparse import isspmatrix
>>> isspmatrix(5)
False
```

scipy.sparse.isspmatrix_csc

scipy.sparse.isspmatrix_csc(x)
Is x of csc_matrix type?

Parameters

x object to check for being a csc matrix

Returns

bool True if x is a csc matrix, False otherwise

Examples

```python
>>> from scipy.sparse import csc_matrix, isspmatrix_csc
>>> isspmatrix_csc(csc_matrix([[5]]))
True

>>> from scipy.sparse import csc_matrix, csr_matrix, isspmatrix_csc
>>> isspmatrix_csc(csr_matrix([[5]]))
False
```
scipy.sparse.isspmatrix_csr

scipy.sparse.isspmatrix_csr(x)
Is x of csr_matrix type?

Parameters
x object to check for being a csr matrix

Returns
bool True if x is a csr matrix, False otherwise

Examples

```python
>>> from scipy.sparse import csr_matrix, isspmatrix_csr
>>> isspmatrix_csr(csr_matrix([[5]]))
True
```

```python
>>> from scipy.sparse import csc_matrix, csr_matrix, isspmatrix_csc
>>> isspmatrix_csr(csc_matrix([[5]]))
False
```

scipy.sparse.isspmatrix_bsr

scipy.sparse.isspmatrix_bsr(x)
Is x of a bsr_matrix type?

Parameters
x object to check for being a bsr matrix

Returns
bool True if x is a bsr matrix, False otherwise

Examples

```python
>>> from scipy.sparse import bsr_matrix, isspmatrix_bsr
>>> isspmatrix_bsr(bsr_matrix([[5]]))
True
```

```python
>>> from scipy.sparse import bsr_matrix, csr_matrix, isspmatrix_bsr
>>> isspmatrix_bsr(csr_matrix([[5]]))
False
```
scipy.sparse.isspmatrix_lil

scipy.sparse.isspmatrix_lil(x)
Is x of lil_matrix type?

Parameters
x object to check for being a lil matrix

Returns
bool True if x is a lil matrix, False otherwise

Examples

```python
>>> from scipy.sparse import lil_matrix, isspmatrix_lil
>>> isspmatrix_lil(lil_matrix([[5]]))
True

>>> from scipy.sparse import lil_matrix, csr_matrix, isspmatrix_lil
>>> isspmatrix_lil(csr_matrix([[5]]))
False
```

scipy.sparse.isspmatrix_dok

scipy.sparse.isspmatrix_dok(x)
Is x of dok_matrix type?

Parameters
x object to check for being a dok matrix

Returns
bool True if x is a dok matrix, False otherwise

Examples

```python
>>> from scipy.sparse import dok_matrix, isspmatrix_dok
>>> isspmatrix_dok(dok_matrix([[5]]))
True

>>> from scipy.sparse import dok_matrix, csr_matrix, isspmatrix_dok
>>> isspmatrix_dok(csr_matrix([[5]]))
False
```
scipy.sparse.isspmatrix_coo

scipy.sparse.\texttt{isspmatrix_coo}(x)

Is \(x\) of coo_matrix type?

\textbf{Parameters}

\textbf{x} \quad \text{object to check for being a coo matrix}

\textbf{Returns}

\textbf{bool} \quad \text{True if \(x\) is a coo matrix, False otherwise}

\textbf{Examples}

```python
>>> from scipy.sparse import coo_matrix, isspmatrix_coo
>>> isspmatrix_coo(coo_matrix([[5]]))
True

>>> from scipy.sparse import coo_matrix, csr_matrix, isspmatrix_coo
>>> isspmatrix_coo(csr_matrix([[5]]))
False
```

scipy.sparse.isspmatrix_dia

scipy.sparse.\texttt{isspmatrix_dia}(x)

Is \(x\) of dia_matrix type?

\textbf{Parameters}

\textbf{x} \quad \text{object to check for being a dia matrix}

\textbf{Returns}

\textbf{bool} \quad \text{True if \(x\) is a dia matrix, False otherwise}

\textbf{Examples}

```python
>>> from scipy.sparse import dia_matrix, isspmatrix_dia
>>> isspmatrix_dia(dia_matrix([[5]]))
True

>>> from scipy.sparse import dia_matrix, csr_matrix, isspmatrix_dia
>>> isspmatrix_dia(csr_matrix([[5]]))
False
```
Submodules

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>csgraph</td>
<td>Compressed sparse graph routines (scipy.sparse.csgraph)</td>
</tr>
<tr>
<td>linalg</td>
<td>Sparse linear algebra (scipy.sparse.linalg)</td>
</tr>
</tbody>
</table>

Exceptions

`SparseEfficiencyWarning`

`SparseWarning`

```python
scipy.sparse.SparseEfficiencyWarning
def exception scipy.sparse.SparseEfficiencyWarning
    with_traceback():
        Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

`scipy.sparse.SparseWarning`

```python
scipy.sparse.SparseWarning
def exception scipy.sparse.SparseWarning
    with_traceback():
        Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

Usage information

There are seven available sparse matrix types:

1. `csc_matrix`: Compressed Sparse Column format
2. `csr_matrix`: Compressed Sparse Row format
3. `bsr_matrix`: Block Sparse Row format
4. `lil_matrix`: List of Lists format
5. `dok_matrix`: Dictionary of Keys format
6. `coo_matrix`: COOrdinate format (aka IJV, triplet format)
7. `dia_matrix`: DIAgonal format

To construct a matrix efficiently, use either `dok_matrix` or `lil_matrix`. The `lil_matrix` class supports basic slicing and fancy indexing with a similar syntax to NumPy arrays. As illustrated below, the COO format may also be used to efficiently construct matrices. Despite their similarity to NumPy arrays, it is strongly discouraged to use NumPy functions directly on these matrices because NumPy may not properly convert them for computations, leading to unexpected (and incorrect) results. If you do want to apply a NumPy function to these matrices, first check if SciPy has its own implementation for the given sparse matrix class, or convert the sparse matrix to a NumPy array (e.g., using the `toarray()` method of the class) first before applying the method.

To perform manipulations such as multiplication or inversion, first convert the matrix to either CSC or CSR format. The `lil_matrix` format is row-based, so conversion to CSR is efficient, whereas conversion to CSC is less so.

All conversions among the CSR, CSC, and COO formats are efficient, linear-time operations.
Matrix vector product

To do a vector product between a sparse matrix and a vector simply use the matrix \texttt{dot} method, as described in its docstring:

```python
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A.dot(v)
array([ 1, -3, -1], dtype=int64)
```

Warning: As of NumPy 1.7, \texttt{np.dot} is not aware of sparse matrices, therefore using it will result on unexpected results or errors. The corresponding dense array should be obtained first instead:

```python
>>> np.dot(A.toarray(), v)
array([ 1, -3, -1], dtype=int64)
```

but then all the performance advantages would be lost.

The CSR format is specially suitable for fast matrix vector products.

Example 1

Construct a 1000x1000 \texttt{lil_matrix} and add some values to it:

```python
>>> from scipy.sparse import lil_matrix
>>> from scipy.sparse.linalg import spsolve
>>> from numpy.linalg import solve, norm
>>> from numpy.random import rand

>>> A = lil_matrix((1000, 1000))
>>> A[0, :100] = rand(100)
>>> A[1, 100:200] = A[0, :100]
>>> A.setdiag(rand(1000))
```

Now convert it to CSR format and solve \(A \times b = x \) for \(x \):

```python
>>> A = A.tocsr()
>>> b = rand(1000)
>>> x = spsolve(A, b)
```

Convert it to a dense matrix and solve, and check that the result is the same:

```python
>>> x_ = solve(A.toarray(), b)
```

Now we can compute norm of the error with:

```python
>>> err = norm(x-x_)
>>> err < 1e-10
True
```

It should be small :)
Example 2

Construct a matrix in COO format:

```python
>>> from scipy import sparse
>>> from numpy import array

>>> I = array([0,3,1,0])
>>> J = array([0,3,1,2])
>>> V = array([4,5,7,9])
>>> A = sparse.coo_matrix((V,(I,J)),shape=(4,4))
```

Notice that the indices do not need to be sorted.

Duplicate (i,j) entries are summed when converting to CSR or CSC.

```python
>>> I = array([0,0,1,3,1,0])
>>> J = array([0,2,1,3,1,0])
>>> V = array([1,1,1,1,1,1])
>>> B = sparse.coo_matrix((V,(I,J)),shape=(4,4)).tocsr()
```

This is useful for constructing finite-element stiffness and mass matrices.

Further details

CSR column indices are not necessarily sorted. Likewise for CSC row indices. Use the .sorted_indices() and .sort_indices() methods when sorted indices are required (e.g., when passing data to other libraries).

3.3.23 Sparse linear algebra (scipy.sparse.linalg)

Abstract linear operators

```python
LinearOperator(*args, **kwargs)  Common interface for performing matrix vector products
```

```python
aslinearoperator(A)  Return A as a LinearOperator.
```

Scipy.sparse.linalg.LinearOperator

```python
class scipy.sparse.linalg.LinearOperator(*args, **kwargs)

Common interface for performing matrix vector products
```

Many iterative methods (e.g. cg, gmres) do not need to know the individual entries of a matrix to solve a linear system A*x=b. Such solvers only require the computation of matrix vector products, A*v where v is a dense vector. This class serves as an abstract interface between iterative solvers and matrix-like objects.

To construct a concrete LinearOperator, either pass appropriate callable objects to the constructor of this class, or subclass it.

A subclass must implement either one of the methods _matvec and _matmat, and the attributes/properties shape (pair of integers) and dtype (may be None). It may call the __init__ on this class to have these attributes validated. Implementing _matvec automatically implements _matmat (using a naive algorithm) and vice-versa.

Optionally, a subclass may implement _rmatvec or _adjoint to implement the Hermitian adjoint (conjugate transpose). As with _matvec and _matmat, implementing either _rmatvec or _adjoint implements the other automatically. Implementing _adjoint is preferable; _rmatvec is mostly there for backwards compatibility.

Parameters
shape [tuple] Matrix dimensions (M, N).
matvec [callable f(v)] Returns returns A * v.
rmatvec [callable f(v)] Returns A^H * v, where A^H is the conjugate transpose of A.
matmat [callable f(V)] Returns A * V, where V is a dense matrix with dimensions (N, K).
dtype [dtype] Data type of the matrix.
rmatmat [callable f(V)] Returns A^H * V, where V is a dense matrix with dimensions (M, K).

See also:

aslinearoperator

Construct LinearOperators

Notes

The user-defined matvec() function must properly handle the case where v has shape (N,) as well as the (N,1) case. The shape of the return type is handled internally by LinearOperator.

LinearOperator instances can also be multiplied, added with each other and exponentiated, all lazily: the result of these operations is always a new, composite LinearOperator, that defers linear operations to the original operators and combines the results.

More details regarding how to subclass a LinearOperator and several examples of concrete LinearOperator instances can be found in the external project PyLops.

Examples

```python
>>> import numpy as np
>>> from scipy.sparse.linalg import LinearOperator
>>> def mv(v):
...     return np.array([2*v[0], 3*v[1]])
...
>>> A = LinearOperator((2,2), matvec=mv)
>>> A
<2x2 _CustomLinearOperator with dtype=float64>
>>> A.matvec(np.ones(2))
array([2., 3.])
>>> A * np.ones(2)
array([2., 3.])
```

Attributes

args [tuple] For linear operators describing products etc. of other linear operators, the operands of the binary operation.
ndim [int] Number of dimensions (this is always 2)
Methods

```python
__call__(x) Call self as a function.
adjoint() Hermitian adjoint.
dot(x) Matrix-matrix or matrix-vector multiplication.
matmat(X) Matrix-matrix multiplication.
matvec(x) Matrix-vector multiplication.
rmatmat(X) Adjoint matrix-matrix multiplication.
rmatvec(x) Adjoint matrix-vector multiplication.
transpose() Transpose this linear operator.
```

```python
scipy.sparse.linalg.LinearOperator.__call__

LinearOperator.__call__(x)
Call self as a function.
```

```python
scipy.sparse.linalg.LinearOperator.adjoint

LinearOperator.adjoint()
Hermitian adjoint.

Returns the Hermitian adjoint of self, aka the Hermitian conjugate or Hermitian transpose. For a complex
matrix, the Hermitian adjoint is equal to the conjugate transpose.

Can be abbreviated self.H instead of self.adjoint().

Returns

```

```python
scipy.sparse.linalg.LinearOperator.dot

LinearOperator.dot(x)
Matrix-matrix or matrix-vector multiplication.

Parameters

x [array_like] 1-d or 2-d array, representing a vector or matrix.

Returns

Ax [array] 1-d or 2-d array (depending on the shape of x) that represents the result of applying
this linear operator on x.
```
scipy.sparse.linalg.LinearOperator.matmat

LinearOperator.matmat(X)
Matrix-matrix multiplication.

Performs the operation y = A * X where A is an MxN linear operator and X dense N*K matrix or ndarray.

Parameters

X
[[matrix, ndarray]] An array with shape (N,K).

Returns

Y
[[matrix, ndarray]] A matrix or ndarray with shape (M,K) depending on the type of the X argument.

Notes

This matmat wraps any user-specified matmat routine or overridden _matmat method to ensure that y has the correct type.

scipy.sparse.linalg.LinearOperator.matvec

LinearOperator.matvec(x)
Matrix-vector multiplication.

Performs the operation y = A * x where A is an MxN linear operator and x is a column vector or 1-d array.

Parameters

x
[[matrix, ndarray]] An array with shape (N,) or (N,1).

Returns

y
[[matrix, ndarray]] A matrix or ndarray with shape (M,) or (M,1) depending on the type and shape of the x argument.

Notes

This matvec wraps the user-specified matvec routine or overridden _matvec method to ensure that y has the correct shape and type.

scipy.sparse.linalg.LinearOperator.rmatmat

LinearOperator.rmatmat(X)
Adjoint matrix-matrix multiplication.

Performs the operation y = A^H * x where A is an MxN linear operator and x is a column vector or 1-d array, or 2-d array. The default implementation defers to the adjoint.

Parameters

X
[[matrix, ndarray]] A matrix or 2D array.

Returns

Y
[[matrix, ndarray]] A matrix or 2D array depending on the type of the input.
Notes

This rmatmat wraps the user-specified rmatmat routine.

scipy.sparse.linalg.LinearOperator.rmatvec

`LinearOperator.rmatvec(x)`

Adjoint matrix-vector multiplication.

Performs the operation $y = A^H \times x$ where A is an $M \times N$ linear operator and x is a column vector or 1-d array.

Parameters

- `x`
 [array_like] An array with shape `(M,)` or `(M,1)`.

Returns

- `y`
 [array_like] A matrix or ndarray with shape `(N,)` or `(N,1)` depending on the type and shape of the `x` argument.

Notes

This rmatvec wraps the user-specified rmatvec routine or overridden _rmatvec method to ensure that y has the correct shape and type.

scipy.sparse.linalg.LinearOperator.transpose

`LinearOperator.transpose()`

Transpose this linear operator.

Returns a `LinearOperator` that represents the transpose of this one. Can be abbreviated `self.T` instead of `self.transpose()`.

scipy.sparse.linalg.aslinearoperator

`scipy.sparse.linalg.aslinearoperator(A)`

Return A as a `LinearOperator`.

‘A may be any of the following types:

- ndarray
- matrix
- sparse matrix (e.g. csr_matrix, lil_matrix, etc.)
- LinearOperator
- An object with .shape and .matvec attributes

See the `LinearOperator` documentation for additional information.
Notes

If `A` has no `.dtype` attribute, the data type is determined by calling `LinearOperator.matvec` - set the `.dtype` attribute to prevent this call upon the linear operator creation.

Examples

```python
>>> from scipy.sparse.linalg import aslinearoperator
>>> M = np.array([[1, 2], [4, 5]], dtype=np.int32)
>>> aslinearoperator(M)
<2x3 MatrixLinearOperator with dtype=int32>
```

Matrix Operations

<table>
<thead>
<tr>
<th>inv(A)</th>
<th>Compute the inverse of a sparse matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>expm(A)</td>
<td>Compute the matrix exponential using Pade approximation</td>
</tr>
<tr>
<td>expm_multiply(A, B[, start, stop, num, endpoint])</td>
<td>Compute the action of the matrix exponential of A on B</td>
</tr>
</tbody>
</table>

scipy.sparse.linalg.inv

`scipy.sparse.linalg.inv(A)`
Compute the inverse of a sparse matrix

Parameters

- `A` [(M, M) sparse matrix] square matrix to be inverted

Returns

- `Ainv` [(M, M) sparse matrix] inverse of `A`

Notes

This computes the sparse inverse of `A`. If the inverse of `A` is expected to be non-sparse, it will likely be faster to convert `A` to dense and use `scipy.linalg.inv`.

Examples

```python
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import inv
>>> A = csc_matrix([[1., 0.], [1., 2.]])
>>> Ainv = inv(A)
>>> Ainv
<2x2 sparse matrix of type '<class 'numpy.float64'>'
    with 3 stored elements in Compressed Sparse Column format>
>>> A.dot(Ainv)
<2x2 sparse matrix of type '<class 'numpy.float64'>'
    with 2 stored elements in Compressed Sparse Column format>
>>> A.dot(Ainv).toarray()
```
(continues on next page)
array([[1., 0.],
 [0., 1.]])

New in version 0.12.0.

scipy.sparse.linalg.expm

`scipy.sparse.linalg.expm(A)`

Compute the matrix exponential using Pade approximation.

Parameters

- A
 [(M,M) array_like or sparse matrix] 2D Array or Matrix (sparse or dense) to be exponentiated

Returns

- expA
 [(M,M) ndarray] Matrix exponential of A

Notes

This is algorithm (6.1) which is a simplification of algorithm (5.1).

New in version 0.12.0.

References

[1]

Examples

```python
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import expm
>>> A = csc_matrix([[1, 0, 0],
                 [0, 2, 0],
                 [0, 0, 3]])
>>> A.todense()
array([[ 1.,  0.,  0.],
       [ 0.,  2.,  0.],
       [ 0.,  0.,  3.]], dtype=int64)
>>> Aexpm = expm(A)
>>> Aexpm
<3x3 sparse matrix of type '<class 'numpy.float64'>'
 with 3 stored elements in Compressed Sparse Column format>
>>> Aexpm.todense()
array([[ 2.71828183,  0.,         ,  0.        ],
       [ 0.        ,  7.3890561 ,  0.        ],
       [ 0.        ,  0.        , 20.08553692]])
```
scipy.sparse.linalg.expm_multiply

scipy.sparse.linalg.expm_multiply(A, B, start=None, stop=None, num=None, endpoint=None)

Compute the action of the matrix exponential of A on B.

Parameters

- **A** [transposable linear operator] The operator whose exponential is of interest.
- **B** [ndarray] The matrix or vector to be multiplied by the matrix exponential of A.
- **start** [scalar, optional] The starting time point of the sequence.
- **stop** [scalar, optional] The end time point of the sequence, unless endpoint is set to False. In that case, the sequence consists of all but the last of num + 1 evenly spaced time points, so that stop is excluded. Note that the step size changes when endpoint is False.
- **num** [int, optional] Number of time points to use.
- **endpoint** [bool, optional] If True, stop is the last time point. Otherwise, it is not included.

Returns

- **expm_A_B** [ndarray] The result of the action \(e^{t_i} A B\).

Notes

The optional arguments defining the sequence of evenly spaced time points are compatible with the arguments of numpy.linspace.

The output ndarray shape is somewhat complicated so I explain it here. The ndim of the output could be either 1, 2, or 3. It would be 1 if you are computing the expm action on a single vector at a single time point. It would be 2 if you are computing the expm action on a vector at multiple time points, or if you are computing the expm action on a matrix at a single time point. It would be 3 if you want the action on a matrix with multiple columns at multiple time points. If multiple time points are requested, expm_A_B[0] will always be the action of the expm at the first time point, regardless of whether the action is on a vector or a matrix.

References

[1], [2]

Examples

```python
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import expm, expm_multiply

>>> A = csc_matrix([[1, 0], [0, 1]])
>>> A.toarray()
array([[1, 0],
       [0, 1]], dtype=int64)

>>> B = np.array([np.exp(-1.), np.exp(-2.)])

>>> expm_multiply(A, B, start=1, stop=2, num=3, endpoint=True)
array([[ 1. , 0.36787944],
       [ 1.64872127, 0.60653066],
       [ 2.71828183, 1. ]])

>>> expm(A).dot(B)  # Verify 1st timestep
```

(continues on next page)
Matrix norms

$$\text{norm}(x[, \text{ord}, \text{axis}])$$ Norm of a sparse matrix

$$\text{onenormest}(A[, t, \text{itmax}, \text{compute}_v, \text{compute}_w])$$ Compute a lower bound of the 1-norm of a sparse matrix.

scipy.sparse.linalg.norm

```python
scipy.sparse.linalg.norm (x, ord=None, axis=None)
```
Norm of a sparse matrix

This function is able to return one of seven different matrix norms, depending on the value of the `ord` parameter.

Parameters

- `x`
 [a sparse matrix] Input sparse matrix.

- `ord`
 [{non-zero int, inf, -inf, 'fro'}, optional] Order of the norm (see table under Notes). `inf` means numpy's `inf` object.

- `axis`
 [{int, 2-tuple of ints, None}, optional] If `axis` is an integer, it specifies the axis of `x` along which to compute the vector norms. If `axis` is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If `axis` is None then either a vector norm (when `x` is 1-D) or a matrix norm (when `x` is 2-D) is returned.

Returns

- `n`
 [float or ndarray]

Notes

Some of the `ord` are not implemented because some associated functions like, `_multi_svd_norm`, are not yet available for sparse matrix.

This docstring is modified based on numpy.linalg.norm. https://github.com/numpy/numpy/blob/master/numpy/linalg/linalg.py

The following norms can be calculated:

<table>
<thead>
<tr>
<th>ord</th>
<th>norm for sparse matrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Frobenius norm</td>
</tr>
<tr>
<td>'fro'</td>
<td>Frobenius norm</td>
</tr>
<tr>
<td>inf</td>
<td>max(sum(abs(x), axis=1))</td>
</tr>
<tr>
<td>-inf</td>
<td>min(sum(abs(x), axis=1))</td>
</tr>
<tr>
<td>0</td>
<td>abs(x).sum(axis=axis)</td>
</tr>
<tr>
<td>1</td>
<td>max(sum(abs(x), axis=0))</td>
</tr>
<tr>
<td>-1</td>
<td>min(sum(abs(x), axis=0))</td>
</tr>
<tr>
<td>-2</td>
<td>Not implemented</td>
</tr>
<tr>
<td>other</td>
<td>Not implemented</td>
</tr>
</tbody>
</table>
The Frobenius norm is given by [1]:

$$\|A\|_F = \left(\sum_{i,j} |a_{i,j}|^2\right)^{1/2}$$

References

[1]

Examples

```python
>>> from scipy.sparse import *
>>> import numpy as np
>>> from scipy.sparse.linalg import norm
>>> a = np.arange(9) - 4
>>> a
array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
>>> b = a.reshape((3, 3))
>>> b
array([[-4, -3, -2],
       [-1, 0, 1],
       [ 2, 3, 4]])
```

```python
>>> b = csr_matrix(b)
>>> norm(b)
7.745966692414834
>>> norm(b, 'fro')
7.745966692414834
>>> norm(b, np.inf)
9
>>> norm(b, -np.inf)
2
>>> norm(b, 1)
7
>>> norm(b, -1)
6
```

scipy.sparse.linalg.onenormest

scipy.sparse.linalg.onenormest(A, t=2, itmax=5, compute_v=False, compute_w=False)
Compute a lower bound of the 1-norm of a sparse matrix.

Parameters

- A: [ndarray or other linear operator] A linear operator that can be transposed and that can produce matrix products.
- t: [int, optional] A positive parameter controlling the tradeoff between accuracy versus time and memory usage. Larger values take longer and use more memory but give more accurate output.
- itmax: [int, optional] Use at most this many iterations.
- compute_v: [bool, optional] Request a norm-maximizing linear operator input vector if True.
- compute_w: [bool, optional] Request a norm-maximizing linear operator output vector if True.
Returns

- **est** [float] An underestimate of the 1-norm of the sparse matrix.
- **v** [ndarray, optional] The vector such that \|Av\|_1 == est*\|v\|_1. It can be thought of as an input to the linear operator that gives an output with particularly large norm.
- **w** [ndarray, optional] The vector Av which has relatively large 1-norm. It can be thought of as an output of the linear operator that is relatively large in norm compared to the input.

Notes

This is algorithm 2.4 of [1].

In [2] it is described as follows. “This algorithm typically requires the evaluation of about 4t matrix-vector products and almost invariably produces a norm estimate (which is, in fact, a lower bound on the norm) correct to within a factor 3.”

New in version 0.13.0.

References

[1], [2]

Examples

```python
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import onenormest
>>> A = csc_matrix([[1., 0., 0.], [5., 8., 2.], [0., -1., 0.]],
                   dtype=float)
>>> A.toarray()
array([[ 1., 0., 0.],
       [ 5., 8., 2.],
       [ 0., -1., 0.]])
>>> onenormest(A)
9.0
>>> np.linalg.norm(A.toarray(), ord=1)
9.0
```

Solving linear problems

Direct methods for linear equation systems:

- **spsolve(A, b[, permc_spec, use_umfpack])** Solve the sparse linear system Ax=b, where b may be a vector or a matrix.
- **spsolve_triangular(A, b[, lower,...])** Solve the equation \(A x = b \) for \(x \), assuming \(A \) is a triangular matrix.
- **factorized(A)** Return a function for solving a sparse linear system, with A pre-factorized.
- **MatrixRankWarning**
- **use_solver(**k**wargs)** Select default sparse direct solver to be used.
scipy.sparse.linalg.spsolve

scipy.sparse.linalg.spsolve(A, b, permc_spec=None, use_umfpack=True)

Solve the sparse linear system $Ax=b$, where b may be a vector or a matrix.

Parameters

- **A** [ndarray or sparse matrix] The square matrix A will be converted into CSC or CSR form
- **b** [ndarray or sparse matrix] The matrix or vector representing the right hand side of the equation. If a vector, b.shape must be (n,) or (n, 1).
- **permc_spec** [str, optional] How to permute the columns of the matrix for sparsity preservation. (default: 'COLAMD')
 - NATURAL: natural ordering.
 - MMD_ATA: minimum degree ordering on the structure of $A^T A$.
 - MMD_AT_PLUS_A: minimum degree ordering on the structure of A^T+A.
 - COLAMD: approximate minimum degree column ordering
- **use_umfpack** [bool, optional] if True (default) then use umfpack for the solution. This is only referenced if b is a vector and scikit-umfpack is installed.

Returns

- **x** [ndarray or sparse matrix] the solution of the sparse linear equation. If b is a vector, then x is a vector of size A.shape[1] If b is a matrix, then x is a matrix of size $(A$.shape[1], b.shape[1])

Notes

For solving the matrix expression $AX = B$, this solver assumes the resulting matrix X is sparse, as is often the case for very sparse inputs. If the resulting X is dense, the construction of this sparse result will be relatively expensive. In that case, consider converting A to a dense matrix and using scipy.linalg.solve or its variants.

Examples

```python
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import spsolve
>>> A = csc_matrix(([3, 2, 0], [1, -1, 0], [0, 5, 1]), dtype=float)
>>> B = csc_matrix(([2, 0], [-1, 0], [2, 0]), dtype=float)
>>> x = spsolve(A, B)
>>> np.allclose(A.dot(x).toarray(), B.toarray())
True
```

scipy.sparse.linalg.spsolve_triangular

scipy.sparse.linalg.spsolve_triangular(A, b, lower=True, overwrite_A=False, overwrite_b=False, unit_diagonal=False)

Solve the equation $A x = b$ for x, assuming A is a triangular matrix.

Parameters

- **A** [(M, M) sparse matrix] A sparse square triangular matrix. Should be in CSR format.
- **b** [(M,) or (M, N) array_like] Right-hand side matrix in $A x = b$
- **lower** [bool, optional] Whether A is a lower or upper triangular matrix. Default is lower triangular matrix.
overwrite_A
[bool, optional] Allow changing A. The indices of A are going to be sorted and zero entries are going to be removed. Enabling gives a performance gain. Default is False.

overwrite_b
[bool, optional] Allow overwriting data in b. Enabling gives a performance gain. Default is False. If overwrite_b is True, it should be ensured that b has an appropriate dtype to be able to store the result.

unit_diagonal
[bool, optional] If True, diagonal elements of a are assumed to be 1 and will not be referenced. New in version 1.4.0.

Returns
x [(M,) or (M, N) ndarray] Solution to the system A x = b. Shape of return matches shape of b.

Raises
LinAlgError
If A is singular or not triangular.

ValueError
If shape of A or shape of b do not match the requirements.

Notes
New in version 0.19.0.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.linalg import spsolve_triangular
>>> A = csr_matrix([[3, 0, 0], [1, -1, 0], [2, 0, 1]], dtype=float)
>>> B = np.array([[2, 0], [-1, 0], [2, 0]], dtype=float)
>>> x = spsolve_triangular(A, B)
>>> np.allclose(A.dot(x), B)
True
```

scipy.sparse.linalg.factorized

scipy.sparse.linalg.factorized(A)
Return a function for solving a sparse linear system, with A pre-factorized.

Parameters
A [(N, N) array_like] Input.

Returns
solve [callable] To solve the linear system of equations given in A, the solve callable should be passed an ndarray of shape (N,).
Examples

```python
>>> from scipy.sparse.linalg import factorized
>>> A = np.array([[3., 2., -1.],
                ...                [2., -2., 4.],
                ...                [-1., 0.5, -1.]]
>>> solve = factorized(A)  # Makes LU decomposition.
>>> rhs1 = np.array([1, -2, 0])
>>> solve(rhs1)  # Uses the LU factors.
array([ 1., -2., -2.])
```

`scipy.sparse.linalg.MatrixRankWarning` exception

```python
scipy.sparse.linalg.MatrixRankWarning

with_traceback()
```

`scipy.sparse.linalg.use_solver` function

```python
scipy.sparse.linalg.use_solver(**kwargs)
```
Select default sparse direct solver to be used.

Parameters

- **useUmfpack**
 - [bool, optional] Use UMFPACK over SuperLU. Has effect only if scikits.umfpack is installed. Default: True
- **assumeSortedIndices**
 - [bool, optional] Allow UMFPACK to skip the step of sorting indices for a CSR/CSC matrix. Has effect only if useUmfpack is True and scikits.umfpack is installed. Default: False

Notes

The default sparse solver is umfpack when available (scikits.umfpack is installed). This can be changed by passing useUmfpack = False, which then causes the always present SuperLU based solver to be used.

Umfpack requires a CSR/CSC matrix to have sorted column/row indices. If sure that the matrix fulfills this, pass assumeSortedIndices=True to gain some speed.

Iterative methods for linear equation systems:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bicg(A, b[, x0, tol, maxiter, M, callback, atol])</td>
<td>Use BIConjugate Gradient iteration to solve $Ax = b$.</td>
</tr>
<tr>
<td>bicgstab(A, b[, x0, tol, maxiter, M, ...])</td>
<td>Use BIConjugate Gradient STABilized iteration to solve $Ax = b$.</td>
</tr>
<tr>
<td>cg(A, b[, x0, tol, maxiter, M, callback, atol])</td>
<td>Use Conjugate Gradient iteration to solve $Ax = b$.</td>
</tr>
<tr>
<td>cgs(A, b[, x0, tol, maxiter, M, callback, atol])</td>
<td>Use Conjugate Gradient Squared iteration to solve $Ax = b$.</td>
</tr>
<tr>
<td>gmres(A, b[, x0, tol, restart, maxiter, M, ...])</td>
<td>Use Generalized Minimal RESidual iteration to solve $Ax = b$.</td>
</tr>
<tr>
<td>lgmres(A, b[, x0, tol, maxiter, M, ...])</td>
<td>Solve a matrix equation using the LGMRES algorithm.</td>
</tr>
<tr>
<td>minres(A, b[, x0, shift, tol, maxiter, M, ...])</td>
<td>Use MINimum RESidual iteration to solve $Ax=b$</td>
</tr>
<tr>
<td>qmr(A, b[, x0, tol, maxiter, M1, M2, ...])</td>
<td>Use Quasi-Minimal Residual iteration to solve $Ax = b$.</td>
</tr>
<tr>
<td>gcrotmk(A, b[, x0, tol, maxiter, M, ...])</td>
<td>Solve a matrix equation using flexible GCROT(m,k) algorithm.</td>
</tr>
</tbody>
</table>

continues on next page
scipy.sparse.linalg.bicg

scipy.sparse.linalg.bicg *(A, b[, x0=None, tol=1e-05, maxiter=None, M=None, callback=None, atol=None])*

Use BiConjugate Gradient iteration to solve $Ax = b$.

Parameters

- **A**
 - [{sparse matrix, ndarray, LinearOperator}]
 - The real or complex N-by-N matrix of the linear system. Alternatively, A can be a linear operator which can produce Ax and $A^T x$ using, e.g., `scipy.sparse.linalg.LinearOperator`.

- **b**
 - [ndarray]
 - Right hand side of the linear system. Has shape (N,) or (N,1).

Returns

- **x**
 - [ndarray]
 - The converged solution.

- **info**
 - [integer]
 - Provides convergence information:
 - 0 : successful exit
 - >0 : convergence to tolerance not achieved, number of iterations
 - <0 : illegal input or breakdown

Other Parameters

- **x0**
 - [ndarray]
 - Starting guess for the solution.

- **tol, atol**
 - [float, optional]
 - Tolerances for convergence, $\text{norm(residual)} \leq \max(\text{tol*norm(b)}, \text{atol})$. The default for atol is 'legacy', which emulates a different legacy behavior.

Warning

The default value for atol will be changed in a future release. For future compatibility, specify atol explicitly.

- **maxiter**
 - [integer]
 - Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.

- **M**
 - [{sparse matrix, ndarray, LinearOperator}]
 - Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.

- **callback**
 - [function]
 - User-supplied function to call after each iteration. It is called as `callback(xk)`, where `xk` is the current solution vector.

Examples

```python
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import bicg
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
>>> b = np.array([2, 4, -1], dtype=float)
>>> x, exitCode = bicg(A, b)
>>> print(exitCode)  # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True
```
scipy.sparse.linalg.bicgstab

Use BiConjugate Gradient STABilized iteration to solve $Ax = b$.

Parameters

- **A**
 - [sparse matrix, ndarray, LinearOperator] The real or complex N-by-N matrix of the linear system. Alternatively, A can be a linear operator which can produce Ax using, e.g., `scipy.sparse.linalg.LinearOperator`.
- **b**
 - [ndarray] Right hand side of the linear system. Has shape (N,) or (N,1).

Returns

- **x**
 - [ndarray] The converged solution.
- **info**
 - [integer]

Provides convergence information:

0 : successful exit
>0 : convergence to tolerance not achieved, number of iterations
<0 : illegal input or breakdown

Other Parameters

- **x0**
 - [ndarray] Starting guess for the solution.
- **tol, atol**
 - [float, optional] Tolerances for convergence, $\text{norm(residual)} \leq \max(\text{tol} \times \text{norm}(b), \text{atol})$. The default for atol is 'legacy', which emulates a different legacy behavior.

Warning: The default value for atol will be changed in a future release. For future compatibility, specify atol explicitly.

- **maxiter**
 - [integer] Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
- **M**
 - [sparse matrix, ndarray, LinearOperator] Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
- **callback**
 - [function] User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.

scipy.sparse.linalg.cg

Use Conjugate Gradient iteration to solve $Ax = b$.

Parameters

- **A**
 - [sparse matrix, ndarray, LinearOperator] The real or complex N-by-N matrix of the linear system. A must represent a hermitian, positive definite matrix. Alternatively, A can be a linear operator which can produce Ax using, e.g., `scipy.sparse.linalg.LinearOperator`.
- **b**
 - [ndarray] Right hand side of the linear system. Has shape (N,) or (N,1).

Returns

- **x**
 - [ndarray] The converged solution.
- **info**
 - [integer]

Provides convergence information:

0 : successful exit
>0 : convergence to tolerance not achieved, number of iterations
<0 : illegal input or breakdown
SciPy Reference Guide, Release 1.8.0

Other Parameters

- **x0** ([ndarray]) Starting guess for the solution.
- **tol, atol** ([float, optional]) Tolerances for convergence, \(\text{norm(residual)} \leq \max(\text{tol} \cdot \text{norm}(b), \text{atol}) \). The default for atol is 'legacy', which emulates a different legacy behavior.

Warning: The default value for atol will be changed in a future release. For future compatibility, specify atol explicitly.

- **maxiter** [integer] Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
- **M** ([sparse matrix, ndarray, LinearOperator]) Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
- **callback** [function] User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.

scipy.sparse.linalg.cgs

scipy.sparse.linalg.cgs

(A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None, atol=None)

Use Conjugate Gradient Squared iteration to solve \(Ax = b \).

Parameters

- **A** ([sparse matrix, ndarray, LinearOperator]) The real-valued N-by-N matrix of the linear system. Alternatively, A can be a linear operator which can produce \(Ax \) using, e.g., scipy.sparse.linalg.LinearOperator.
- **b** [ndarray] Right hand side of the linear system. Has shape (N,) or (N,1).

Returns

- **x** [ndarray] The converged solution.
- **info** [integer]

Provides convergence information:

- 0 : successful exit
- >0 : convergence to tolerance not achieved, number of iterations
- <0 : illegal input or breakdown

Other Parameters

- **x0** ([ndarray]) Starting guess for the solution.
- **tol, atol** ([float, optional]) Tolerances for convergence, \(\text{norm(residual)} \leq \max(\text{tol} \cdot \text{norm}(b), \text{atol}) \). The default for atol is 'legacy', which emulates a different legacy behavior.

Warning: The default value for atol will be changed in a future release. For future compatibility, specify atol explicitly.

- **maxiter** [integer] Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
- **M** ([sparse matrix, ndarray, LinearOperator]) Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
- **callback** [function] User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.

3.3. API definition 1985
scipy.sparse.linalg.gmres

Use Generalized Minimal RESidual iteration to solve $Ax = b$.

Parameters

- **A**
 - \{sparse matrix, ndarray, LinearOperator\}
 - The real or complex N-by-N matrix of the linear system. Alternatively, A can be a linear operator which can produce Ax using, e.g., `scipy.sparse.linalg.LinearOperator`.

- **b**
 - [ndarray]
 - Right hand side of the linear system. Has shape (N,) or (N,1).

Returns

- **x**
 - [ndarray]
 - The converged solution.

- **info**
 - [int]
 - Provides convergence information:
 - 0: successful exit
 - >0: convergence to tolerance not achieved, number of iterations
 - <0: illegal input or breakdown

Other Parameters

- **x0**
 - [ndarray] Starting guess for the solution (a vector of zeros by default).

- **tol, atol**
 - [float, optional]
 - Tolerances for convergence, $\text{norm(residual)} \leq \max(\text{tol} \times \text{norm(b)}, \text{atol})$. The default for atol is 'legacy', which emulates a different legacy behavior.

 Warning: The default value for atol will be changed in a future release. For future compatibility, specify atol explicitly.

- **restart**
 - [int, optional]
 - Number of iterations between restarts. Larger values increase iteration cost, but may be necessary for convergence. Default is 20.

- **maxiter**
 - [int, optional]
 - Maximum number of iterations (restart cycles). Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.

- **M**
 - \{sparse matrix, ndarray, LinearOperator\]
 - Inverse of the preconditioner of A. M should approximate the inverse of A and be easy to solve for (see Notes). Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance. By default, no preconditioner is used.

- **callback**
 - [function]
 - User-supplied function to call after each iteration. It is called as `callback(args)`, where `args` are selected by `callback_type`.

- **callback_type**
 - [\{'x', 'pr_norm', 'legacy'\}, optional]
 - Callback function argument requested:
 - `x`: current iterate (ndarray), called on every restart
 - `pr_norm`: relative (preconditioned) residual norm (float), called on every inner iteration
 - `legacy` (default): same as `pr_norm`, but also changes the meaning of 'maxiter' to count inner iterations instead of restart cycles.

- **restr**
 - [int, optional]
 - DEPRECATED - use restart instead.

See also:

- `LinearOperator`
Notes

A preconditioner, \(P\), is chosen such that \(P\) is close to \(A\) but easy to solve for. The preconditioner parameter required by this routine is \(M = P^{-1}\). The inverse should preferably not be calculated explicitly. Rather, use the following template to produce \(M\):

```python
# Construct a linear operator that computes \(P^{-1} @ x\).
import scipy.sparse.linalg as spla
M_x = lambda x: spla.spsolve(P, x)
M = spla.LinearOperator((n, n), M_x)
```

Examples

```python
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import gmres
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
>>> b = np.array([2, 4, -1], dtype=float)
>>> x, exitCode = gmres(A, b)
>>> print(exitCode)  # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True
```

scipy.sparse.linalg.lgmres

The LGMRES algorithm \([1] [2]\) is designed to avoid some problems in the convergence in restarted GMRES, and often converges in fewer iterations.

Parameters

- **A** ([sparse matrix, ndarray, LinearOperator]) The real or complex N-by-N matrix of the linear system. Alternatively, \(A\) can be a linear operator which can produce \(Ax\) using, e.g., `scipy.sparse.linalg.LinearOperator`.
- **b** ([ndarray]) Right hand side of the linear system. Has shape \((N,)\) or \((N,1)\).
- **x0** ([ndarray]) Starting guess for the solution.
- **tol, atol** ([float, optional]) Tolerances for convergence, \(\|\text{residual}\| \leq \text{max}(\text{tol} \times \|b\|, \text{atol})\). The default for atol is tol.
- **maxiter** ([int, optional]) Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
- **M** ([sparse matrix, ndarray, LinearOperator], optional) Preconditioner for \(A\). The preconditioner should approximate the inverse of \(A\). Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
- **callback** ([function, optional]) User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.

Warning: The default value for atol will be changed in a future release. For future compatibility, specify atol explicitly.
inner_m [int, optional] Number of inner GMRES iterations per each outer iteration.
outer_k [int, optional] Number of vectors to carry between inner GMRES iterations. According to [1], good values are in the range of 1…3. However, note that if you want to use the additional vectors to accelerate solving multiple similar problems, larger values may be beneficial.
outer_v [list of tuples, optional] List containing tuples (v, A*v) of vectors and corresponding matrix-vector products, used to augment the Krylov subspace, and carried between inner GMRES iterations. The element A*v can be None if the matrix-vector product should be re-evaluated. This parameter is modified in-place by lgmres, and can be used to pass “guess” vectors in and out of the algorithm when solving similar problems.
store_outer_Av [bool, optional] Whether LGMRES should store also A*v in addition to vectors v in the outer_v list. Default is True.

Returns

- x [ndarray] The converged solution.
- info [int] Provides convergence information:
 - 0: successful exit
 - >0: convergence to tolerance not achieved, number of iterations
 - <0: illegal input or breakdown

Notes

The LGMRES algorithm [1] [2] is designed to avoid the slowing of convergence in restarted GMRES, due to alternating residual vectors. Typically, it often outperforms GMRES(m) of comparable memory requirements by some measure, or at least is not much worse.

Another advantage in this algorithm is that you can supply it with ‘guess’ vectors in the outer_v argument that augment the Krylov subspace. If the solution lies close to the span of these vectors, the algorithm converges faster. This can be useful if several very similar matrices need to be inverted one after another, such as in Newton-Krylov iteration where the Jacobian matrix often changes little in the nonlinear steps.

References

[1], [2]

Examples

```python
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import lgmres
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
>>> b = np.array([2, 4, -1], dtype=float)
>>> x, exitCode = lgmres(A, b)
>>> print(exitCode)  # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True
```
scipy.sparse.linalg.minres

scipy.sparse.linalg.minres *(A, b, x0=None, shift=0.0, tol=1e-05, maxiter=None, M=None, callback=None, show=False, check=False)*

Use MINimum RESidual iteration to solve Ax=b

MINRES minimizes norm(Ax - b) for a real symmetric matrix A. Unlike the Conjugate Gradient method, A can be indefinite or singular.

If shift != 0 then the method solves (A - shift*I)x = b

Parameters

- **A** ([sparse matrix, ndarray, LinearOperator]) The real symmetric N-by-N matrix of the linear system. Alternatively, A can be a linear operator which can produce Ax using, e.g., `scipy.sparse.linalg.LinearOperator`.
- **b** ([ndarray]) Right hand side of the linear system. Has shape (N,) or (N,1).

Returns

- **x** ([ndarray]) The converged solution.
- **info** ([integer]) Provides convergence information:
 - 0 : successful exit
 - >0 : convergence to tolerance not achieved, number of iterations
 - <0 : illegal input or breakdown

Other Parameters

- **x0** ([ndarray]) Starting guess for the solution.
- **shift** ([float]) Value to apply to the system (A - shift * I)x = b. Default is 0.
- **tol** ([float]) Tolerance to achieve. The algorithm terminates when the relative residual is below tol.
- **maxiter** ([integer]) Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
- **M** ([sparse matrix, ndarray, LinearOperator]) Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
- **callback** ([function]) User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.
- **show** ([bool]) If True, print out a summary and metrics related to the solution during iterations. Default is False.
- **check** ([bool]) If True, run additional input validation to check that A and M (if specified) are symmetric. Default is False.

References

Solution of sparse indefinite systems of linear equations,
https://web.stanford.edu/group/SOL/software/minres/

This file is a translation of the following MATLAB implementation:
https://web.stanford.edu/group/SOL/software/minres/minres-matlab.zip
Examples

```python
>>> import numpy as np
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import minres

>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
>>> A = A + A.T
>>> b = np.array([2, 4, -1], dtype=float)
>>> x, exitCode = minres(A, b)

>>> print(exitCode)  # 0 indicates successful convergence
0

>>> np.allclose(A.dot(x), b)
True
```

scipy.sparse.linalg.qmr

scipy.sparse.linalg.qmr(A, b, x0=None, tol=1e-05, maxiter=None, M1=None, M2=None, callback=None, atol=None)

Use Quasi-Minimal Residual iteration to solve $Ax = b$.

Parameters

- **A**
 [{sparse matrix, ndarray, LinearOperator}] The real-valued N-by-N matrix of the linear system. Alternatively, A can be a linear operator which can produce Ax and $A^T x$ using, e.g. `scipy.sparse.linalg.LinearOperator`.

- **b**
 [ndarray] Right hand side of the linear system. Has shape (N,) or (N,1).

Returns

- **x**
 [ndarray] The converged solution.

- **info**
 [integer] Provides convergence information:

 - 0: successful exit
 - >0: convergence to tolerance not achieved, number of iterations
 - <0: illegal input or breakdown

Other Parameters

- **x0**
 [ndarray] Starting guess for the solution.

- **tol, atol**
 [float, optional] Tolerances for convergence, $\text{norm(residual)} \leq \max(\text{tol} \cdot \text{norm(b)}, \text{atol})$. The default for atol is 'legacy', which emulates a different legacy behavior.

Warning: The default value for atol will be changed in a future release. For future compatibility, specify atol explicitly.

- **maxiter**
 [integer] Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.

- **M1, M2**
 [{sparse matrix, ndarray, LinearOperator}] Left preconditioner for A.

- **callback**
 [function] User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.

See also:

LinearOperator
Examples

```python
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import qmr
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
>>> b = np.array([2, 4, -1], dtype=float)
>>> x, exitCode = qmr(A, b)
>>> print(exitCode)  # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True
```

scipy.sparse.linalg.gcrqtm

Solve a matrix equation using flexible GCROT(m,k) algorithm.

Parameters

- **A** [{sparse matrix, ndarray, LinearOperator}] The real or complex N-by-N matrix of the linear system. Alternatively, A can be a linear operator which can produce A x using, e.g., scipy.sparse.linalg.LinearOperator.
- **b** [ndarray] Right hand side of the linear system. Has shape (N,) or (N,1).
- **x0** [ndarray] Starting guess for the solution.
- **tol, atol** [float, optional] Tolerances for convergence, norm(residual) <= max(tol*norm(b), atol). The default for atol is tol.

Warning: The default value for atol will be changed in a future release. For future compatibility, specify atol explicitly.

- **maxiter** [int, optional] Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
- **M** [{sparse matrix, ndarray, LinearOperator}, optional] Preconditioner for A. The preconditioner should approximate the inverse of A. gcrqtm is a ‘flexible’ algorithm and the preconditioner can vary from iteration to iteration. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
- **callback** [function, optional] User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.
- **m** [int, optional] Number of inner FGMRES iterations per each outer iteration. Default: 20
- **k** [int, optional] Number of vectors to carry between inner FGMRES iterations. According to [2], good values are around m. Default: m
- **CU** [list of tuples, optional] List of tuples (c, u) which contain the columns of the matrices C and U in the GCROT(m,k) algorithm. For details, see [2]. The list given and vectors contained in it are modified in-place. If not given, start from empty matrices. The c elements in the tuples can be None, in which case the vectors are recomputed via c = A u on start and orthogonalized as described in [3].
- **discard_C** [bool, optional] Discard the C-vectors at the end. Useful if recycling Krylov subspaces for different linear systems.

Returns
x [ndarray] The solution found.
info [int] Provides convergence information:
 • 0: successful exit
 • >0: convergence to tolerance not achieved, number of iterations

References

[1], [2], [3]

scipy.sparse.linalg.tfqmr

scipy.sparse.linalg.tfqmr(A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None, atol=None, show=False)

Use Transpose-Free Quasi-Minimal Residual iteration to solve \(Ax = b \).

Parameters

A [[sparse matrix, ndarray, LinearOperator]] The real or complex N-by-N matrix of the linear system. Alternatively, \(A \) can be a linear operator which can produce \(Ax \) using, e.g., scipy.sparse.linalg.LinearOperator.
b [[ndarray]] Right hand side of the linear system. Has shape \((N,)\) or \((N,1)\).
x0 [[ndarray]] Starting guess for the solution.
tol, atol [float, optional] Tolerances for convergence, \(\| Ax - b \| \leq \max(\text{tol} \times \| b \|, \text{atol}) \). The default for \(\text{tol} \) is 1.0e-5. The default for \(\text{atol} \) is \(10^{-6} \times \| b \| \). Warning: The default value for \(\text{atol} \) will be changed in a future release. For future compatibility, specify \(\text{atol} \) explicitly.
maxiter [int, optional] Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved. Default is \(\min(10000, \text{ndofs} \times 10) \), where \text{ndofs} = \(A \).shape[0].
M [[sparse matrix, ndarray, LinearOperator]] Inverse of the preconditioner of \(A \). \(M \) should approximate the inverse of \(A \) and be easy to solve for (see Notes). Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance. By default, no preconditioner is used.
callback [function, optional] User-supplied function to call after each iteration. It is called as \(\text{callback}(xk) \), where \(xk \) is the current solution vector.
show [bool, optional] Specify \(\text{show} = \text{True} \) to show the convergence, \(\text{show} = \text{False} \) to close the output of the convergence. Default is \(\text{False} \).

Returns

x [ndarray] The converged solution.
info [int] Provides convergence information:
 • 0 : successful exit
 • >0 : convergence to tolerance not achieved, number of iterations
 • <0 : illegal input or breakdown
Notes

The Transpose-Free QMR algorithm is derived from the CGS algorithm. However, unlike CGS, the convergence curves for the TFQMR method is smoothed by computing a quasi minimization of the residual norm. The implementation supports left preconditioner, and the “residual norm” to compute in convergence criterion is actually an upper bound on the actual residual norm $||b - Ax_k||$.

References

[1], [2], [3]

Examples

```python
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import tfqmr
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
>>> b = np.array([2, 4, -1], dtype=float)
>>> x, exitCode = tfqmr(A, b)
>>> print(exitCode)  # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True
```

Iterative methods for least-squares problems:

```python
scipy.sparse.linalg.lsmr
```

The functions solves $Ax = b$ or $\min ||Ax - b||^2$ or $\min ||Ax - b||^2 + d^2 ||x - x_0||^2$.

Parameters

- A [{sparse matrix, ndarray, LinearOperator}] Representation of an m-by-n matrix. Alternatively, A can be a linear operator which can produce Ax and $A^T x$ using, e.g., `scipy.sparse.linalg.LinearOperator`.

3.3. API definition 1993

b [array_like, shape (m,)] Right-hand side vector b.
damp [float] Damping coefficient. Default is 0.
atol, btol [float, optional] Stopping tolerances. \(\text{lsqr} \) continues iterations until a certain backward error estimate is smaller than some quantity depending on atol and btol. Let \(r = b - Ax \) be the residual vector for the current approximate solution \(x \). If \(Ax = b \) seems to be consistent, \(\text{lsqr} \) terminates when \(\text{norm}(r) <\) atol * norm(A) * norm(x) + btol * norm(b). Otherwise, \(\text{lsqr} \) terminates when \(\text{norm}(A^H r) <\) atol * norm(A) * norm(r). If both tolerances are 1.0e-6 (default), the final \(\text{norm}(r) \) should be accurate to about 6 digits. (The final \(x \) will usually have fewer correct digits, depending on \text{cond}(A) \) and the size of LAMBDA.) If \(\text{atol or btol} \) is None, a default value of 1.0e-6 will be used. Ideally, they should be estimates of the relative error in the entries of \(A \) and \(b \) respectively. For example, if the entries of \(A \) have 7 correct digits, set \(\text{atol} = 1e-7 \). This prevents the algorithm from doing unnecessary work beyond the uncertainty of the input data.

conlim [float, optional] Another stopping tolerance. \(\text{lsqr} \) terminates if an estimate of \(\text{cond}(A) \) exceeds conlim. For compatible systems \(Ax = b \), conlim could be as large as 1.0e+12 (say). For least-squares problems, conlim should be less than 1.0e+8. Maximum precision can be obtained by setting \(\text{atol = btol = conlim = zero} \). For least-squares problems, conlim should be less than 1.0e+8. Maximumprecision can be obtained by setting \(\text{atol = btol = conlim = zero} \), but the number of iterations may then be excessive. Default is 1e8.

iter_lim [int, optional] Explicit limitation on number of iterations (for safety).
show [bool, optional] Display an iteration log. Default is False.
calc_var [bool, optional] Whether to estimate diagonals of \((A'A + \text{damp}^2I)^{-1}\). x0 [array_like, shape (n,), optional] Initial guess of \(x \), if None zeros are used. Default is None. New in version 1.0.0.

Returns

- \(x \) [ndarray of float] The final solution.
- istop [int] Gives the reason for termination. 1 means \(x \) is an approximate solution to \(Ax = b \). 2 means \(x \) approximately solves the least-squares problem.
- itn [int] Iteration number upon termination.
- r1norm [float] \(\text{norm}(r) \), where \(r = b - Ax \).
- r2norm [float] \(\sqrt{\text{norm}(r)^2 + \text{damp}^2 \text{norm}(x - x0)^2} \). Equal to \(r1norm \) if damp == 0.
- anorm [float] Estimate of Frobenius norm of \(Abar = [[A]; [\text{damp}^2I]] \).
- acond [float] Estimate of \(\text{cond}(Abar) \).
- arnorm [float] Estimate of \(\text{norm}(A'^H r - \text{damp}^2(x - x0))^2 \).
- xnorm [float] \(\text{norm}(x) \).
- var [ndarray of float] If \(\text{calc_var} \) is True, estimates all diagonals of \((A'A)^{-1}\) (if damp == 0) or more generally \((A'A + \text{damp}^2I)^{-1}\). This is well defined if \(A \) has full column rank or damp > 0. (Not sure what var means if rank(A) < n and damp = 0.)

Notes

\(\text{LSQR} \) uses an iterative method to approximate the solution. The number of iterations required to reach a certain accuracy depends strongly on the scaling of the problem. Poor scaling of the rows or columns of \(A \) should therefore be avoided where possible.

For example, in problem 1 the solution is unaltered by row-scaling. If a row of \(A \) is very small or large compared to the other rows of \(A \), the corresponding row of \((A b)\) should be scaled up or down.

In problems 1 and 2, the solution \(x \) is easily recovered following column-scaling. Unless better information is known, the nonzero columns of \(A \) should be scaled so that they all have the same Euclidean norm (e.g., 1.0).
In problem 3, there is no freedom to re-scale if damp is nonzero. However, the value of damp should be assigned only after attention has been paid to the scaling of A.

The parameter damp is intended to help regularize ill-conditioned systems, by preventing the true solution from being very large. Another aid to regularization is provided by the parameter acond, which may be used to terminate iterations before the computed solution becomes very large.

If some initial estimate \(x_0 \) is known and if \(\text{damp} = 0 \), one could proceed as follows:

1. Compute a residual vector \(r_0 = b - A@x_0 \).
2. Use LSQR to solve the system \(A@dx = r_0 \).
3. Add the correction \(dx \) to obtain a final solution \(x = x_0 + dx \).

This requires that \(x_0 \) be available before and after the call to LSQR. To judge the benefits, suppose LSQR takes \(k_1 \) iterations to solve \(A@x = b \) and \(k_2 \) iterations to solve \(A@dx = r_0 \). If \(x_0 \) is “good”, \(\text{norm}(r_0) \) will be smaller than \(\text{norm}(b) \). If the same stopping tolerances atol and btol are used for each system, \(k_1 \) and \(k_2 \) will be similar, but the final solution \(x_0 + dx \) should be more accurate. The only way to reduce the total work is to use a larger stopping tolerance for the second system. If some value btol is suitable for \(A@x = b \), the larger value \(\text{btol} \times \text{norm}(b)/\text{norm}(r_0) \) should be suitable for \(A@dx = r_0 \).

Preconditioning is another way to reduce the number of iterations. If it is possible to solve a related system \(M@x = b \) efficiently, where \(M \) approximates \(A \) in some helpful way (e.g. \(M - A \) has low rank or its elements are small relative to those of \(A \)), LSQR may converge more rapidly on the system \(A@M(\text{inverse})@z = b \), after which \(x \) can be recovered by solving \(M@x = z \).

If \(A \) is symmetric, LSQR should not be used!

Alternatives are the symmetric conjugate-gradient method (cg) and/or SYMMLQ. SYMMLQ is an implementation of symmetric cg that applies to any symmetric \(A \) and will converge more rapidly than LSQR. If \(A \) is positive definite, there are other implementations of symmetric cg that require slightly less work per iteration than SYMMLQ (but will take the same number of iterations).

References

[1], [2], [3]

Examples

```python
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import lsqr
>>> A = csc_matrix([[1., 0.], [1., 1.], [0., 1.]], dtype=float)
```

The first example has the trivial solution \([0, 0] \)

```python
>>> b = np.array([0., 0., 0.], dtype=float)
>>> x, istop, itn, normr = lsqr(A, b)[:4]
>>> istop
0
>>> x
array([ 0.,  0.])
```

The stopping code \(\text{istop}=0 \) returned indicates that a vector of zeros was found as a solution. The returned solution \(x \) indeed contains \([0, 0] \). The next example has a non-trivial solution:
As indicated by \(istop=1 \), \(lsmr \) found a solution obeying the tolerance limits. The given solution \([1., -1.]\) obviously solves the equation. The remaining return values include information about the number of iterations (\(itn=1 \)) and the remaining difference of left and right side of the solved equation. The final example demonstrates the behavior in the case where there is no solution for the equation:

```python
>>> b = np.array([1., 0.01, -1.], dtype=float)
>>> x, istop, itn, r1norm = lsmr(A, b)[:4]
>>> istop
2
>>> x
array([ 1.00333333, -0.99666667])
>>> A.dot(x) - b
array([ 0.00333333, -0.00333333, 0.00333333])
>>> r1norm
0.005773502691896255
```

\(istop \) indicates that the system is inconsistent and thus \(x \) is rather an approximate solution to the corresponding least-squares problem. \(r1norm \) contains the norm of the minimal residual that was found.

scipy.sparse.linalg.lsmr

scipy.sparse.linalg.lsmr (\(A, b, damp=0.0, atol=1e-06, btol=1e-06, conlim=100000000.0, maxiter=None, show=False, x0=None \))

Iterative solver for least-squares problems.

\(lsmr \) solves the system of linear equations \(Ax = b \). If the system is inconsistent, it solves the least-squares problem \[\min ||b - Ax||_2 \] \(A \) is a rectangular matrix of dimension \(m \)-by-\(n \), where all cases are allowed: \(m=n \), \(m>n \), or \(m<n \). \(b \) is a vector of length \(m \). The matrix \(A \) may be dense or sparse (usually sparse).

Parameters

- \(A \) : [[sparse matrix, ndarray, LinearOperator]] Matrix \(A \) in the linear system. Alternatively, \(A \) can be a linear operator which can produce \(Ax \) and \(A^H x \) using, e.g., scipy.sparse.linalg.LinearOperator.
- \(b \) : [array_like, shape (m,)] Vector \(b \) in the linear system.
- \(damp \) : [float] Damping factor for regularized least-squares. \(lsmr \) solves the regularized least-squares problem:

\[
\min ||(b) - (A)x||_2
\]

\[||(0) - (damp*I)x||_2 \]

where \(damp \) is a scalar. If \(damp \) is None or 0, the system is solved without regularization. Default is 0.

- \(atol, btol \) : [float, optional] Stopping tolerances. \(lsmr \) continues iterations until a certain backward error estimate is smaller than some quantity depending on \(atol \) and \(btol \). Let \(r = b - Ax \) be the residual of the current approximate solution \(x \):
Ax be the residual vector for the current approximate solution x. If \(Ax = b \) seems to be consistent, \texttt{lsmr} terminates when
\[
\text{norm}(r) \leq \text{atol} \times \text{norm}(A) \times \text{norm}(x) + \text{btol} \times \text{norm}(b).
\]
Otherwise, \texttt{lsmr} terminates when
\[
\text{norm}(A^H r) \leq \text{atol} \times \text{norm}(A) \times \text{norm}(r).
\]
If both tolerances are 1.0e-6 (default), the final \(\text{norm}(r) \) should be accurate to about 6 digits. (The final x will usually have fewer correct digits, depending on \(\text{cond}(A) \) and the size of LAMBDA.) If \(\text{atol} \) or \(\text{btol} \) is None, a default value of 1.0e-6 will be used. Ideally, they should be estimates of the relative error in the entries of A and b respectively. For example, if the entries of A have 7 correct digits, set \(\text{atol} = 1 \times 10^{-7} \). This prevents the algorithm from doing unnecessary work beyond the uncertainty of the input data.

\begin{itemize}
 \item \texttt{conlim} \[\text{float, optional} \] \texttt{lsmr} terminates if an estimate of \(\text{cond}(A) \) exceeds \texttt{conlim}. For compatible systems \(Ax = b \), \texttt{conlim} could be as large as 1.0e+12 (say). For least-squares problems, \texttt{conlim} should be less than 1.0e+8. If \texttt{conlim} is None, the default value is 1e+8. Maximum precision can be obtained by setting \(\text{atol} = \text{btol} = \text{conlim} = 0 \), but the number of iterations may then be excessive. Default is 1e8.
 \item \texttt{maxiter} \[\text{int, optional} \] \texttt{lsmr} terminates if the number of iterations reaches \texttt{maxiter}. The default is \(\text{maxiter} = \min(m, n) \). For ill-conditioned systems, a larger value of \texttt{maxiter} may be needed. Default is False.
 \item \texttt{show} \[\text{bool, optional} \] Print iterations logs if \texttt{show=\text{True}}. Default is False.
 \item \texttt{x0} \[\text{array_like, shape (n,), optional} \] Initial guess of \(x \), if None zeros are used. Default is None. New in version 1.0.0.
\end{itemize}

\textbf{Returns}

\begin{itemize}
 \item \texttt{x} \[\text{ndarray of float} \] Least-square solution returned.
 \item \texttt{istop} \[\text{int} \] istop gives the reason for stopping:
 \begin{verbatim}
 istop = 0 means x=0 is a solution. If x0 was given, then x=x0 is a solution.
 = 1 means x is an approximate solution to A@x = B, according to atol and btol.
 = 2 means x approximately solves the least-squares problem according to atol.
 = 3 means COND(A) seems to be greater than CONLIM.
 = 4 is the same as 1 with atol = btol = eps_ (machine precision)
 = 5 is the same as 2 with atol = eps.
 = 6 is the same as 3 with CONLIM = 1/eps.
 = 7 means ITN reached maxiter before the other stopping conditions were satisfied.
 \end{verbatim}
 \item \texttt{itn} \[\text{int} \] Number of iterations used.
 \item \texttt{normr} \[\text{float} \] \(\text{norm}(b-Ax) \)
 \item \texttt{normar} \[\text{float} \] \(\text{norm}(A^H (b - Ax)) \)
 \item \texttt{norma} \[\text{float} \] \(\text{norm}(A) \)
 \item \texttt{conda} \[\text{float} \] Condition number of A.
 \item \texttt{normx} \[\text{float} \] \(\text{norm}(x) \)
\end{itemize}

3.3. API definition 1997
Notes

New in version 0.11.0.

References

[1],[2]

Examples

```python
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import lsmr
>>> A = csc_matrix([[1., 0.], [1., 1.], [0., 1.]], dtype=float)
```

The first example has the trivial solution \([0, 0]\)

```python
>>> b = np.array([0., 0., 0.], dtype=float)
>>> x, istop, itn, normr = lsmr(A, b)[:4]
>>> istop
0
>>> x
array([0., 0.])
```

The stopping code \texttt{istop}=0 returned indicates that a vector of zeros was found as a solution. The returned solution \texttt{x} indeed contains \([0, 0]\). The next example has a non-trivial solution:

```python
>>> b = np.array([1., 0., -1.], dtype=float)
>>> x, istop, itn, normr = lsmr(A, b)[:4]
>>> istop
1
>>> x
array([ 1., -1.])
>>> itn
1
>>> normr
4.440892098500627e-16
```

As indicated by \texttt{istop}=1, \texttt{lsmr} found a solution obeying the tolerance limits. The given solution \([1., -1.]\) obviously solves the equation. The remaining return values include information about the number of iterations (\texttt{itn}=1) and the remaining difference of left and right side of the solved equation. The final example demonstrates the behavior in the case where there is no solution for the equation:

```python
>>> b = np.array([1., 0.01, -1.], dtype=float)
>>> x, istop, itn, normr = lsmr(A, b)[:4]
>>> istop
2
>>> x
array([ 1.00333333, -0.99666667])
>>> A.dot(x) - b
array([-0.00333333, -0.00333333, -0.00333333])
>>> normr
0.005773502691896255
```
Matrix factorizations

Eigenvalue problems:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>eigs(A[, k, M, sigma, which, v0, ncv, ...])</code></td>
<td>Find <code>k</code> eigenvalues and eigenvectors of the square matrix <code>A</code>.</td>
</tr>
<tr>
<td><code>eigsh(A[, k, M, sigma, which, v0, ncv, ...])</code></td>
<td>Find <code>k</code> eigenvalues and eigenvectors of the real symmetric square matrix or complex Hermitian matrix <code>A</code>.</td>
</tr>
<tr>
<td><code>lobpcg(A, X[, B, M, Y, tol, maxiter, ...])</code></td>
<td>Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)</td>
</tr>
</tbody>
</table>

scipy.sparse.linalg.eigs

```
scipy.sparse.linalg.eigs (A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None, OPpart=None)
```

Find `k` eigenvalues and eigenvectors of the square matrix `A`.

Solves `A @ x[i] = w[i] * x[i]`, the standard eigenvalue problem for `w[i]` eigenvalues with corresponding eigenvectors `x[i]`.

If `M` is specified, solves `A @ x[i] = w[i] * M @ x[i]`, the generalized eigenvalue problem for `w[i]` eigenvalues with corresponding eigenvectors `x[i]`.

Parameters

- `A` ([ndarray, sparse matrix or LinearOperator]) An array, sparse matrix, or LinearOperator representing the operation `A @ x`, where `A` is a real or complex square matrix.
- `k` ([int, optional]) The number of eigenvalues and eigenvectors desired. `k` must be smaller than `N-1`. It is not possible to compute all eigenvectors of a matrix.
- `M` ([ndarray, sparse matrix or LinearOperator, optional]) An array, sparse matrix, or LinearOperator representing the operation `M @ x` for the generalized eigenvalue problem `A @ x = w * M @ x`.

`M` must represent a real symmetric matrix if `A` is real, and must represent a complex Hermitian matrix if `A` is complex. For best results, the data type of `M` should be the same as that of `A`. Additionally:

- If `sigma` is None, `M` is positive definite
- If `sigma` is specified, `M` is positive semi-definite

If `sigma` is None, `eigs` requires an operator to compute the solution of the linear equation `M @ x = b`. This is done internally via a (sparse) LU decomposition for an explicit matrix `M`, or via an iterative solver for a general linear operator. Alternatively, the user can supply the matrix or operator `Minv`, which gives `x = Minv @ b = M^{-1} @ b`.

- `sigma` ([real or complex, optional]) Find eigenvalues near `sigma` using shift-invert mode. This requires an operator to compute the solution of the linear system `[A - sigma * M] @ x = b`, where `M` is the identity matrix if unspecified. This is computed internally via a (sparse) LU decomposition for explicit matrices `A` & `M`, or via an iterative solver if either `A` or `M` is a general linear operator. Alternatively, the user can supply the matrix or operator `OPinv`, which gives `x = OPinv @ b = [A - sigma * M]^{-1} @ b`. For a real matrix `A`, shift-invert can either be done in imaginary mode or real mode, specified by the parameter `OPpart` (`'r'` or `'i'`). Note that when `sigma` is specified, the keyword `'which'` (below) refers to the shifted eigenvalues `w' [i]` where:
If A is real and OPpart == 'r' (default),

\[w'[i] = \frac{1}{2} \left(\frac{1}{w[i]-\sigma} + \frac{1}{w[i]-\overline{\sigma}} \right) \]

If A is real and OPpart == 'i',

\[w'[i] = \frac{1}{2i} \left(\frac{1}{w[i]-\sigma} - \frac{1}{w[i]-\overline{\sigma}} \right) \]

If A is complex, \(w'[i] = \frac{1}{w[i]-\sigma} \).

v0 [ndarray, optional] Starting vector for iteration. Default: random
ncv [int, optional] The number of Lanczos vectors generated ncv must be greater than k; it is recommended that ncv > 2*k. Default: \min(n, \max(2k + 1, 20))
which [str, ['LM'|'SM'|'LR'|'SR'|'LI'|'SI'], optional] Which k eigenvectors and eigenvalues to find:
 ‘LM’: largest magnitude
 ‘SM’: smallest magnitude
 ‘LR’: largest real part
 ‘SR’: smallest real part
 ‘LI’: largest imaginary part
 ‘SI’: smallest imaginary part
When sigma != None, ‘which’ refers to the shifted eigenvalues w'[i] (see discussion in ‘sigma’, above). ARPACK is generally better at finding large values than small values. If small eigenvalues are desired, consider using shift-invert mode for better performance.
maxiter [int, optional] Maximum number of Arnoldi update iterations allowed. Default: n*10
tol [float, optional] Relative accuracy for eigenvalues (stopping criterion) The default value of 0 implies machine precision.
return_eigenvectors [bool, optional] Return eigenvectors (True) in addition to eigenvalues
Minv [ndarray, sparse matrix or LinearOperator, optional] See notes in M, above.
OPinv [ndarray, sparse matrix or LinearOperator, optional] See notes in sigma, above.
OPpart [{‘r’ or ‘i’}, optional] See notes in sigma, above

Returns

w [ndarray] Array of k eigenvalues.
v [ndarray] An array of k eigenvectors. v[:, i] is the eigenvector corresponding to the eigenvalue w[i].

Raises

ArpackNoConvergence
When the requested convergence is not obtained. The currently converged eigenvalues and eigenvectors can be found as eigenvalues and eigenvectors attributes of the exception object.

See also:

\texttt{eigsh}

eigenvalues and eigenvectors for symmetric matrix A

\texttt{svds}
singular value decomposition for a matrix A
Notes

This function is a wrapper to the ARPACK [1] SNEUPD, DNEUPD, CNEUPD, ZNEUPD, functions which use the Implicitly Restarted Arnoldi Method to find the eigenvalues and eigenvectors [2].

References

[1], [2]

Examples

Find 6 eigenvectors of the identity matrix:

```python
>>> from scipy.sparse.linalg import eigs
>>> id = np.eye(13)
>>> vals, vecs = eigs(id, k=6)
>>> vals
array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])
>>> vecs.shape
(13, 6)
```

scipy.sparse.linalg.eigsh

`scipy.sparse.linalg.eigsh(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None, mode='normal')`

Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex Hermitian matrix A.

Solves $A @ x[i] = w[i] * x[i]$, the standard eigenvalue problem for $w[i]$ eigenvalues with corresponding eigenvectors $x[i]$.

If M is specified, solves $A @ x[i] = w[i] * M @ x[i]$, the generalized eigenvalue problem for $w[i]$ eigenvalues with corresponding eigenvectors $x[i]$.

Note that there is no specialized routine for the case when A is a complex Hermitian matrix. In this case, `eigsh()` will call `eigs()` and return the real parts of the eigenvalues thus obtained.

Parameters

- **A** [ndarray, sparse matrix or LinearOperator] A square operator representing the operation $A @ x$, where A is real symmetric or complex Hermitian. For buckling mode (see below) A must additionally be positive-definite.
- **k** [int, optional] The number of eigenvalues and eigenvectors desired. k must be smaller than N. It is not possible to compute all eigenvectors of a matrix.
- **M** [An N x N matrix, array, sparse matrix, or linear operator representing] the operation $M @ x$ for the generalized eigenvalue problem $A @ x = w * M @ x$.

Returns

- **w** [array] Array of k eigenvalues.
- **v** [array] An array representing the k eigenvectors. The column $v[:, i]$ is the eigenvector corresponding to the eigenvalue $w[i]$.

Other Parameters

- **sigma** [Optional] Shift used to transform the problem to a generalized eigenvalue problem. For `which='LM'` this must be a complex number.
- **which** [str] How the selected eigenvalues are chosen from the spectrum. 'LM' means the eigenvalues with the largest magnitude (or, if complex, magnitude); 'SM' the eigenvalues with the smallest magnitude; 'LR' the eigenvalues with largest real part, 'SR' with smallest (
- **v0** [Optional, ndarray] Starting vector for the Arnoldi iteration.
- **ncv** [Optional, int] Dimension of the working space used. Must be greater than or equal to $2 * k$. Larger values can improve the speed of the computation.
- **maxiter** [Optional, int] Maximum number of Arnoldi update iterations allowed.
- **tol** [Optional, float] Relative accuracy for eigenvalues (stopping criterion). The default value is 0.
- **return_eigenvectors** [Optional, bool] Whether to return the set of eigenvectors corresponding to the eigenvalues (True or False).
- **Minv** [Optional, LinearOperator] Inverse of M.
- **OPinv** [Optional, LinearOperator] Inverse of $M @ x$.
M must represent a real symmetric matrix if A is real, and must represent a complex Hermitian matrix if A is complex. For best results, the data type of M should be the same as that of A. Additionally:

If sigma is None, M is symmetric positive definite.
If sigma is specified, M is symmetric positive semi-definite.

In buckling mode, M is symmetric indefinite.
If sigma is None, eigsh requires an operator to compute the solution of the linear equation \(M \mathbf{x} = \mathbf{b} \). This is done internally via a (sparse) LU decomposition for an explicit matrix M, or via an iterative solver for a general linear operator. Alternatively, the user can supply the matrix or operator Minv, which gives \(\mathbf{x} = \text{Minv} \mathbf{b} = M^{-1} \mathbf{b} \).

sigma: [real] Find eigenvalues near sigma using shift-invert mode. This requires an operator to compute the solution of the linear system \([A - \sigma \times M] \mathbf{x} = \mathbf{b} \), where M is the identity matrix if unspecified. This is computed internally via a (sparse) LU decomposition for explicit matrices A & M, or via an iterative solver if either A or M is a general linear operator. Alternatively, the user can supply the matrix or operator OPinv, which gives \(\mathbf{x} = \text{OPinv} \mathbf{b} = [A - \sigma \times M]^{-1} \mathbf{b} \). Note that when sigma is specified, the keyword 'which' refers to the shifted eigenvalues \(w'[i] \) where:

- if mode == 'normal', \(w'[i] = 1 / (w[i] - \sigma) \).
- if mode == 'cayley', \(w'[i] = (w[i] + \sigma) / (w[i] - \sigma) \).
- if mode == 'buckling', \(w'[i] = w[i] / (w[i] - \sigma) \).

(see further discussion in 'mode' below)

v0: [ndarray, optional] Starting vector for iteration. Default: random
ncv: [int, optional] The number of Lanczos vectors generated ncv must be greater than k and smaller than n; it is recommended that \(ncv > 2k \). Default: \(\min(n, \max(2k + 1, 20)) \)
which: [str ['LM', 'SM', 'LA', 'SA', 'BE']] If A is a complex Hermitian matrix, 'BE' is invalid. Which k eigenvectors and eigenvalues to find:
- 'LM': Largest (in magnitude) eigenvalues.
- 'SM': Smallest (in magnitude) eigenvalues.
- 'LA': Largest (algebraic) eigenvalues.
- 'SA': Smallest (algebraic) eigenvalues.
- 'BE': Half \((k/2)\) from each end of the spectrum.
When k is odd, return one more \((k/2+1)\) from the high end. When sigma != None, 'which' refers to the shifted eigenvalues \(w'[i] \) (see discussion in 'sigma', above). ARPACK is generally better at finding large values than small values. If small eigenvalues are desired, consider using shift-invert mode for better performance.

maxiter: [int, optional] Maximum number of Arnoldi update iterations allowed. Default: \(n \times 10 \)
tol: [float] Relative accuracy for eigenvalues (stopping criterion). The default value of 0 implies machine precision.

Minv: [N x N matrix, array, sparse matrix, or LinearOperator] See notes in M, above.
OPinv: [N x N matrix, array, sparse matrix, or LinearOperator] See notes in sigma, above.
return_eigenvectors: [bool] Return eigenvectors (True) in addition to eigenvalues. This value determines the order in which eigenvalues are sorted. The sort order is also dependent on the which variable.

For which = 'LM' or 'SA':
- If return_eigenvectors is True, eigenvalues are sorted by algebraic value.
- If return_eigenvectors is False, eigenvalues are sorted by absolute value.

For which = 'BE' or 'LA':
- eigenvalues are always sorted by algebraic value.

For which = 'SM':
- If return_eigenvectors is True, eigenvalues are sorted by algebraic value.
- If return_eigenvectors is False, eigenvalues are sorted by decreasing absolute value.
mode [string ['normal' | 'buckling' | 'cayley']] Specify strategy to use for shift-invert mode. This argument applies only for real-valued A and sigma != None. For shift-invert mode, ARPACK internally solves the eigenvalue problem \(OP \circ x'[i] = w'[i] * B \circ x'[i] \) and transforms the resulting Ritz vectors \(x'[i] \) and Ritz values \(w'[i] \) into the desired eigenvectors and eigenvalues of the problem \(A \circ x[i] = w[i] * M \circ x[i] \). The modes are as follows:

- **'normal'**: \(OP = (A - \sigma M)^{-1} \circ M, B = M, w'[i] = 1 / (w[i] - \sigma) \)
- **'buckling'**: \(OP = (A - \sigma M)^{-1} \circ A, B = A, w'[i] = w[i] / (w[i] - \sigma) \)
- **'cayley'**: \(OP = (A - \sigma M)^{-1} \circ (A + \sigma M), B = M, w'[i] = (w[i] + \sigma) / (w[i] - \sigma) \)

The choice of mode will affect which eigenvalues are selected by the keyword 'which', and can also impact the stability of convergence (see [2] for a discussion).

Raises

ArpackNoConvergence

When the requested convergence is not obtained. The currently converged eigenvalues and eigenvectors can be found as `eigenvalues` and `eigenvectors` attributes of the exception object.

See also:

- **eigs**

eigenvalues and eigenvectors for a general (nonsymmetric) matrix A

- **svds**

singular value decomposition for a matrix A

Notes

This function is a wrapper to the ARPACK [1] SSEUPD and DSEUPD functions which use the Implicitly Restarted Lanczos Method to find the eigenvalues and eigenvectors [2].

References

[1], [2]

Examples

```python
>>> from scipy.sparse.linalg import eigsh
>>> identity = np.eye(13)
>>> eigenvalues, eigenvectors = eigsh(identity, k=6)
>>> eigenvalues
array([1., 1., 1., 1., 1., 1.])
>>> eigenvectors.shape
(13, 6)
```
Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)

LOBPCG is a preconditioned eigensolver for large symmetric positive definite (SPD) generalized eigenproblems.

Parameters

- **A** ([sparse matrix, dense matrix, LinearOperator]) The symmetric linear operator of the problem, usually a sparse matrix. Often called the “stiffness matrix”.
- **X** ([ndarray, float32 or float64]) Initial approximation to the k eigenvectors (non-sparse). If A has shape=(n,n) then X should have shape shape=(n,k).
- **B** ([dense matrix, sparse matrix, LinearOperator], optional) The right hand side operator in a generalized eigenproblem. By default, $B = Identity$. Often called the “mass matrix”.
- **M** ([dense matrix, sparse matrix, LinearOperator], optional) Preconditioner to A; by default $M = Identity$. M should approximate the inverse of A.
- **Y** ([ndarray, float32 or float64, optional]) n-by-sizeY matrix of constraints (non-sparse), sizeY $< n$. The iterations will be performed in the B-orthogonal complement of the column-space of Y. Y must be full rank.
- **tol** ([scalar, optional]) Solver tolerance (stopping criterion). The default is tol=n*sqrt(eps).
- **maxiter** ([int, optional]) Maximum number of iterations. The default is maxiter = 20.
- **largest** ([bool, optional]) When True, solve for the largest eigenvalues, otherwise the smallest.
- **verbosityLevel** ([int, optional]) Controls solver output. The default is verbosityLevel=0.
- **retLambdaHistory** ([bool, optional]) Whether to return eigenvalue history. Default is False.
- **retResidualNormsHistory** ([bool, optional]) Whether to return history of residual norms. Default is False.

Returns

- **w** ([ndarray]) Array of k eigenvalues
- **v** ([ndarray]) An array of k eigenvectors. v has the same shape as X.
- **lambdas** ([list of ndarray, optional]) The eigenvalue history, if retLambdaHistory is True.
- **rnorms** ([list of ndarray, optional]) The history of residual norms, if retResidualNormsHistory is True.

Notes

If both retLambdaHistory and retResidualNormsHistory are True, the return tuple has the following format (lambda, V, lambda history, residual norms history).

In the following n denotes the matrix size and m the number of required eigenvalues (smallest or largest).

The LOBPCG code internally solves eigenproblems of the size $3m$ on every iteration by calling the “standard” dense eigensolver, so if m is not small enough compared to n, it does not make sense to call the LOBPCG code, but rather one should use the “standard” eigensolver, e.g. numpy or scipy function in this case. If one calls the LOBPCG algorithm for $5m > n$, it will most likely break internally, so the code tries to call the standard function instead.

It is not that n should be large for the LOBPCG to work, but rather the ratio n / m should be large. It you call LOBPCG with $m=1$ and $n=10$, it works though n is small. The method is intended for extremely large n / m.

The convergence speed depends basically on two factors:

1. How well relatively separated the seeking eigenvalues are from the rest of the eigenvalues. One can try to vary m to make this better.
2. How well conditioned the problem is. This can be changed by using proper preconditioning. For example, a rod vibration test problem (under tests directory) is ill-conditioned for large n, so convergence will be slow, unless efficient preconditioning is used. For this specific problem, a good simple preconditioner function would be a linear solve for A, which is easy to code since A is tridiagonal.

References

[1], [2], [3]

Examples

Solve \(A \ x = \lambda \ x \) with constraints and preconditioning.

```python
>>> import numpy as np
>>> from scipy.sparse import spdiags, issparse
>>> from scipy.sparse.linalg import lobpcg, LinearOperator
>>> n = 100
>>> vals = np.arange(1, n + 1)
>>> A = spdiags(vals, 0, n, n)
>>> A.toarray()
array([[ 1., 0., 0., ..., 0., 0., 0.],
[ 0., 2., 0., ..., 0., 0., 0.],
[ 0., 0., 3., ..., 0., 0., 0.],
..., 
[ 0., 0., 0., ..., 98., 0., 0.],
[ 0., 0., 0., ..., 0., 99., 0.],
[ 0., 0., 0., ..., 0., 0., 100.]])
```

Constraints:

```python
>>> Y = np.eye(n, 3)
```

Initial guess for eigenvectors, should have linearly independent columns. Column dimension = number of requested eigenvalues.

```python
>>> rng = np.random.default_rng()
>>> X = rng.random((n, 3))
```

Preconditioner in the inverse of A in this example:

```python
>>> invA = spdiags([1./vals], 0, n, n)
```

The preconditioner must be defined by a function:

```python
>>> def precond( x ):
...    return invA @ x
```

The argument x of the preconditioner function is a matrix inside lobpcg, thus the use of matrix-matrix product @.

The preconditioner function is passed to lobpcg as a LinearOperator:

```python
>>> M = LinearOperator(matvec=precond, matmat=precond,
...    shape=(n, n), dtype=np.float64)
```
Let us now solve the eigenvalue problem for the matrix A:

```python
>>> eigenvalues, _ = lobpcg(A, X, Y=Y, M=M, largest=False)
>>> eigenvalues
array([4., 5., 6.])
```

Note that the vectors passed in Y are the eigenvectors of the 3 smallest eigenvalues. The results returned are orthogonal to those.

Singular values problems:

```python
scipy.sparse.linalg.svds(scipy.sparse.linalg.svds(A[, k, ncv, tol, which, v0, maxiter,...]))
```

Partial singular value decomposition of a sparse matrix.

Parameters

- **A** [sparse matrix or LinearOperator] Matrix to decompose.
- **k** [int, default: 6] Number of singular values and singular vectors to compute. Must satisfy $1 \leq k \leq \text{min}(M, N)$ for solver='propack' and $k = \text{min}(M, N) - 1$ otherwise.
- **ncv** [int, optional] When solver='arpack', this is the number of Lanczos vectors generated. See 'arpack' for details. When solver='lobpcg' or solver='propack', this parameter is ignored.
- **which** ['LM', 'SM'] Which k singular values to find: either the largest magnitude ('LM') or smallest magnitude ('SM') singular values.
- **v0** [ndarray, optional] The starting vector for iteration; see method-specific documentation (’arpack’, ’lobpcg’), or ’propack’ for details.
- **maxiter** [int, optional] Maximum number of iterations; see method-specific documentation (’arpack’, ’lobpcg’), or ’propack’ for details.
- **return_singular_vectors** [{True, False, “u”, “vh”}] Singular values are always computed and returned; this parameter controls the computation and return of singular vectors.
 * True: return singular vectors.
 * False: do not return singular vectors.
 * "u": if $M \leq N$, compute only the left singular vectors and return None for the right singular vectors. Otherwise, compute all singular vectors.
 * "vh": if $M > N$, compute only the right singular vectors and return None for the left singular vectors. Otherwise, compute all singular vectors.
- **random_state** [{None, int, numpy.random.Generator, numpy.random.RandomState}, optional]
Pseudorandom number generator state used to generate resamples. If `random_state` is `None` (or `np.random`), the `numpy.random.RandomState` singleton is used. If `random_state` is an int, a new `RandomState` instance is used, seeded with `random_state`. If `random_state` is already a `Generator` or `RandomState` instance then that instance is used.

options
[dict, optional] A dictionary of solver-specific options. No solver-specific options are currently supported; this parameter is reserved for future use.

Returns
- `u`
 [ndarray, shape=(M, k)] Unitary matrix having left singular vectors as columns.
- `s`
 [ndarray, shape=(k,)] The singular values.
- `vh`
 [ndarray, shape=(k, N)] Unitary matrix having right singular vectors as rows.

Notes
This is a naive implementation using ARPACK or LOBPCG as an eigensolver on \(A^\top A \) or \(A A^\top \), depending on which one is more efficient.

Examples
Construct a matrix \(A \) from singular values and vectors.

```python
>>> from scipy.stats import ortho_group
>>> from scipy.sparse import csc_matrix, diags
>>> from scipy.sparse.linalg import svds
>>> rng = np.random.default_rng()
>>> orthogonal = csc_matrix(ortho_group.rvs(10, random_state=rng))
>>> s = [0.0001, 0.001, 3, 4, 5]  # singular values
>>> u = orthogonal[:, :5]  # left singular vectors
>>> vT = orthogonal[:, 5:].T  # right singular vectors
>>> A = u @ diags(s) @ vT
```

With only three singular values/vectors, the SVD approximates the original matrix.

```python
>>> u2, s2, vT2 = svds(A, k=3)
>>> A2 = u2 @ np.diag(s2) @ vT2
>>> np.allclose(A2, A.toarray(), atol=1e-3)
True
```

With all five singular values/vectors, we can reproduce the original matrix.

```python
>>> u3, s3, vT3 = svds(A, k=5)
>>> A3 = u3 @ np.diag(s3) @ vT3
>>> np.allclose(A3, A.toarray())
True
```

The singular values match the expected singular values, and the singular vectors are as expected up to a difference in sign.

```python
>>> (np.allclose(s3, s) and...
... np.allclose(np.abs(u3), np.abs(u.toarray())) and...
... np.allclose(np.abs(vT3), np.abs(vT.toarray())))
True
```
The singular vectors are also orthogonal. >>> (np.allclose(u3.T @ u3, np.eye(5)) and ... np.allclose(vT3 @ vT3.T, np.eye(5))) True

The \texttt{svds} function supports the following solvers:

\texttt{svds(solver=’arpack’)}

\begin{verbatim}
scipy.sparse.linalg.svds (A, k=6, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack', random_state=None, options={})
\end{verbatim}

Partial singular value decomposition of a sparse matrix using ARPACK.

Compute the largest or smallest \(k \) singular values and corresponding singular vectors of a sparse matrix \(A \). The order in which the singular values are returned is not guaranteed.

In the descriptions below, let \(M, N = A.shape \).

Parameters

- **A** [sparse matrix or LinearOperator] Matrix to decompose.
- **k** [int, optional] Number of singular values and singular vectors to compute. Must satisfy \(1 \leq k \leq \min(M, N) - 1 \). Default is 6.
- **ncv** [int, optional] The number of Lanczos vectors generated. The default is \(\min(n, \max(2*k + 1, 20)) \). If specified, must satisfy \(k + 1 < ncv < \min(M, N); ncv > 2*k \) is recommended.
- **which** [\{'LM', 'SM'\}] Which \(k \) singular values to find: either the largest magnitude ('LM') or smallest magnitude ('SM') singular values.
- **v0** [ndarray, optional] The starting vector for iteration: an (approximate) left singular vector if \(N > M \) and a right singular vector otherwise. Must be of length \(\min(M, N) \). Default: random
- **maxiter** [int, optional] Maximum number of Arnoldi update iterations allowed; default is \(\min(M, N) * 10 \).
- **return_singular_vectors** [\{True, False, “u”, “vh”\}] Singular values are always computed and returned; this parameter controls the computation and return of singular vectors.
 - True: return singular vectors.
 - False: do not return singular vectors.
 - "u": if \(M \leq N \), compute only the left singular vectors and return None for the right singular vectors. Otherwise, compute all singular vectors.
 - "vh": if \(M > N \), compute only the right singular vectors and return None for the left singular vectors. Otherwise, compute all singular vectors.
- **solver** [\{'arpack', 'propack', 'lobpcg'\}, optional] This is the solver-specific documentation for solver='arpack', 'lobpcg' and 'propack' are also supported.
- **random_state** [\{None, int, numpy.random.Generator,\]
 - numpy.random.RandomState\}], optional
 Pseudorandom number generator state used to generate resamples.
 If random_state is None (or np.random), the numpy.random.RandomState singleton is used. If random_state is an int, a new RandomState instance is used, seeded with random_state. If random_state is already a Generator or RandomState instance then that instance is used.
- **options** [dict, optional] A dictionary of solver-specific options. No solver-specific options are currently supported; this parameter is reserved for future use.

Returns

- **u** [ndarray, shape=\((M, k)\)] Unitary matrix having left singular vectors as columns.
- **s** [ndarray, shape=\((k, k)\)] The singular values.
vh [ndarray, shape=(k, N)] Unitary matrix having right singular vectors as rows.

Notes

This is a naive implementation using ARPACK as an eigensolver on $A \cdot \text{conj}(.)^T \circ A$ or $A \circ A \cdot \text{conj}(.)^T$, depending on which one is more efficient.

Examples

Construct a matrix A from singular values and vectors.

```python
>>> from scipy.stats import ortho_group
>>> from scipy.sparse import csc_matrix, diags
>>> from scipy.sparse.linalg import svds
>>> rng = np.random.default_rng()
>>> orthogonal = csc_matrix(ortho_group.rvs(10, random_state=rng))
>>> s = [0.0001, 0.001, 3, 4, 5]  # singular values
>>> u = orthogonal[:, :, 5]  # left singular vectors
>>> vT = orthogonal[:, 5:].T  # right singular vectors
>>> A = u @ np.diag(s) @ vT

With only three singular values/vectors, the SVD approximates the original matrix.

```python
>>> u2, s2, vT2 = svds(A, k=3, solver='arpack')
>>> A2 = u2 @ np.diag(s2) @ vT2
>>> np.allclose(A2, A.toarray(), atol=1e-3)
True
```)

With all five singular values/vectors, we can reproduce the original matrix.

```python
>>> u3, s3, vT3 = svds(A, k=5, solver='arpack')
>>> A3 = u3 @ np.diag(s3) @ vT3
>>> np.allclose(A3, A.toarray())
True
```)

The singular values match the expected singular values, and the singular vectors are as expected up to a difference in sign.

```python
>>> (np.allclose(s3, s) and ...
... np.allclose(np.abs(u3), np.abs(u.toarray())) and ...
... np.allclose(np.abs(vT3), np.abs(vT.toarray())))
True
```)

The singular vectors are also orthogonal.

```python
>>> (np.allclose(u3.T @ u3, np.eye(5)) and ...
... np.allclose(vT3 @ vT3.T, np.eye(5)))
True
```
svds(solver='lobpcg')

scipy.sparse.linalg.svds (A, k=6, ncv=None, tol=0, which='LM', v0=None, maxiter=None,
return_singular_vectors=True, solver='arpack', random_state=None, options={})

Partial singular value decomposition of a sparse matrix using LOBPCG.

Compute the largest or smallest $k$ singular values and corresponding singular vectors of a sparse matrix $A$. The order in which the singular values are returned is not guaranteed.

In the descriptions below, let $M, N = A.shape$.

**Parameters**

- **A** [sparse matrix or LinearOperator] Matrix to decompose.
- **k** [int, default: 6] Number of singular values and singular vectors to compute. Must satisfy $1 <= k <= \min(M, N) - 1$.
- **ncv** [int, optional] Ignored.
- **which** [‘LM’, ‘SM’] Which $k$ singular values to find: either the largest magnitude (‘LM’) or smallest magnitude (‘SM’) singular values.
- **v0** [ndarray, optional] If $k$ is 1, the starting vector for iteration: an (approximate) left singular vector if $N > M$ and a right singular vector otherwise. Must be of length $\min(M, N)$. Ignored otherwise. Default: random
- **maxiter** [int, default: 20] Maximum number of iterations.
- **return_singular_vectors** [True, False, “u”, “vh”] Singular values are always computed and returned; this parameter controls the computation and return of singular vectors.
  - True: return singular vectors.
  - False: do not return singular vectors.
  - “u”: if $M <= N$, compute only the left singular vectors and return None for the right singular vectors. Otherwise, compute all singular vectors.
  - “vh”: if $M > N$, compute only the right singular vectors and return None for the left singular vectors. Otherwise, compute all singular vectors.
- **solver** [‘arpack’, ‘propack’, ‘lobpcg’], optional This is the solver-specific documentation for solver='lobpcg’. ‘arpack’ and ‘propack’ are also supported.
- **random_state** [None, int, numpy.random.Generator, numpy.random.RandomState], optional Pseudorandom number generator state used to generate resamples. If random_state is None (or np.random), the numpy.random.RandomState singleton is used. If random_state is an int, a new RandomState instance is used, seeded with random_state. If random_state is already a Generator or RandomState instance then that instance is used.
- **options** [dict, optional] A dictionary of solver-specific options. No solver-specific options are currently supported; this parameter is reserved for future use.

**Returns**

- **u** [ndarray, shape=(M, k)] Unitary matrix having left singular vectors as columns.
- **s** [ndarray, shape=(k,)] The singular values.
- **vh** [ndarray, shape=(k, N)] Unitary matrix having right singular vectors as rows.
Notes

This is a naive implementation using LOBPCG as an eigensolver on $A \cdot \text{conj()} \cdot ^T \otimes A$ or $A \otimes A \cdot \text{conj()} \cdot ^T$, depending on which one is more efficient.

Examples

Construct a matrix $A$ from singular values and vectors.

```python
>>> from scipy.stats import ortho_group
>>> from scipy.sparse import csc_matrix, diags
>>> from scipy.sparse.linalg import svds
>>> rng = np.random.default_rng()
>>> orthogonal = csc_matrix(ortho_group.rvs(10, random_state=rng))
>>> s = [0.0001, 0.001, 3, 4, 5] # singular values
>>> u = orthogonal[:, :5] # left singular vectors
>>> vT = orthogonal[:, 5:].T # right singular vectors
>>> A = u @ diags(s) @ vT
```

With only three singular values/vectors, the SVD approximates the original matrix.

```python
>>> u2, s2, vT2 = svds(A, k=3, solver='lobpcg')
>>> A2 = u2 @ np.diag(s2) @ vT2
>>> np.allclose(A2, A.toarray(), atol=1e-3)
True
```

With all five singular values/vectors, we can reproduce the original matrix.

```python
>>> u3, s3, vT3 = svds(A, k=5, solver='lobpcg')
>>> A3 = u3 @ np.diag(s3) @ vT3
>>> np.allclose(A3, A.toarray())
True
```

The singular values match the expected singular values, and the singular vectors are as expected up to a difference in sign.

```python
>>> (np.allclose(s3, s) and ...
... np.allclose(np.abs(u3), np.abs(u.todense())) and ...
... np.allclose(np.abs(vT3), np.abs(vT.todense()))))
True
```

The singular vectors are also orthogonal. >>> (np.allclose(u3.T @ u3, np.eye(5)) and ... np.allclose(vT3 @ vT3.T, np.eye(5))) True

svds(solver='propack')

scipy.sparse.linalg.svds(A, k=6, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack', random_state=None, options={})

Partial singular value decomposition of a sparse matrix using PROPACK.

Compute the largest or smallest $k$ singular values and corresponding singular vectors of a sparse matrix $A$. The order in which the singular values are returned is not guaranteed.

In the descriptions below, let $M$, $N = A.shape.
A [sparse matrix or LinearOperator] Matrix to decompose. If A is a LinearOperator object, it must define both matvec and rmatvec methods.

k [int, default: 6] Number of singular values and singular vectors to compute. Must satisfy 1 <= k <= min(M, N).

ncv [int, optional] Ignored.


which [{‘LM’, ‘SM’}] Which k singular values to find: either the largest magnitude (‘LM’) or smallest magnitude (‘SM’) singular values. Note that choosing which='SM' will force the irl option to be set True.

v0 [ndarray, optional] Starting vector for iterations: must be of length A.shape[0]. If not specified, PROPACK will generate a starting vector.

maxiter [int, optional] Maximum number of iterations / maximal dimension of the Krylov subspace. Default is 10 * k.

return_singular_vectors [{True, False, “u”, “vh”}] Singular values are always computed and returned; this parameter controls the computation and return of singular vectors.

• True: return singular vectors.
• False: do not return singular vectors.
• "u": compute only the left singular vectors; return None for the right singular vectors.
• "vh": compute only the right singular vectors; return None for the left singular vectors.

solver [{‘arpack’, ‘propack’, ‘lobpcg’}, optional] This is the solver-specific documentation for solver='propack'. ‘arpack’ and ‘lobpcg’ are also supported.

random_state [{None, int, numpy.random.Generator.], numpy.random.RandomState}, optional] Pseudorandom number generator state used to generate resamples.

If random_state is None (or np.random), the numpy.random.RandomState singleton is used. If random_state is an int, a new RandomState instance is used, seeded with random_state. If random_state is already a Generator or RandomState instance then that instance is used.

options [dict, optional] A dictionary of solver-specific options. No solver-specific options are currently supported; this parameter is reserved for future use.

Returns

u [ndarray, shape=(M, k)] Unitary matrix having left singular vectors as columns.

s [ndarray, shape=(k,)] The singular values.

vh [ndarray, shape=(k, N)] Unitary matrix having right singular vectors as rows.

Notes

This is an interface to the Fortran library PROPACK [1]. The current default is to run with IRL mode disabled unless seeking the smallest singular values/vectors (which='SM').
Examples

Construct a matrix $A$ from singular values and vectors.

```python
>>> from scipy.stats import ortho_group
>>> from scipy.sparse import csc_matrix, diags
>>> from scipy.sparse.linalg import svds
>>> rng = np.random.default_rng()
>>> orthogonal = csc_matrix(ortho_group.rvs(10, random_state=rng))
>>> s = [0.0001, 0.001, 3, 4, 5] # singular values
>>> u = orthogonal[:, :5] # left singular vectors
>>> vT = orthogonal[:, 5:].T # right singular vectors
>>> A = u @ diags(s) @ vT
```

With only three singular values/vectors, the SVD approximates the original matrix.

```python
>>> u2, s2, vT2 = svds(A, k=3, solver='propack')
>>> A2 = u2 @ np.diag(s2) @ vT2
>>> np.allclose(A2, A.todense(), atol=1e-3)
True
```

With all five singular values/vectors, we can reproduce the original matrix.

```python
>>> u3, s3, vT3 = svds(A, k=5, solver='propack')
>>> A3 = u3 @ np.diag(s3) @ vT3
>>> np.allclose(A3, A.todense())
True
```

The singular values match the expected singular values, and the singular vectors are as expected up to a difference in sign.

```python
>>> (np.allclose(s3, s) and ...
... np.allclose(np.abs(u3), np.abs(u.toarray())) and ...
... np.allclose(np.abs(vT3), np.abs(vT.toarray())))
True
```

The singular vectors are also orthogonal.

```python
>>> (np.allclose(u3.T @ u3, np.eye(5)) and ... np.allclose(vT3 @ vT3.T, np.eye(5)))
True
```

Complete or incomplete LU factorizations

- `splu(A[, permc_spec, diag_pivot_thresh, ...])` Compute the LU decomposition of a sparse, square matrix.
- `spilsu(A[, drop_tol, fill_factor, drop_rule, ...])` Compute an incomplete LU decomposition for a sparse, square matrix.
- `SuperLU()` LU factorization of a sparse matrix.
scipy.sparse.linalg.spilu

scipy.sparse.linalg.spilu(A, perm_spec=None, diag_pivot_thresh=None, relax=None, panel_size=None, options={} )

Compute the LU decomposition of a sparse, square matrix.

Parameters

- `A` [sparse matrix] Sparse matrix to factorize. Should be in CSR or CSC format.
- `perm_spec` [str, optional] How to permute the columns of the matrix for sparsity preservation. (default: 'COLAMD')
  - NATURAL: natural ordering.
  - MMD_ATA: minimum degree ordering on the structure of $A^T A$.
  - MMD_AT_PLUS_A: minimum degree ordering on the structure of $A^T + A$.
  - COLAMD: approximate minimum degree column ordering
- `diag_pivot_thresh` [float, optional] Threshold used for a diagonal entry to be an acceptable pivot. See SuperLU user's guide for details.
- `relax` [int, optional] Expert option for customizing the degree of relaxing supernodes. See SuperLU user's guide for details.
- `panel_size` [int, optional] Expert option for customizing the panel size. See SuperLU user's guide for details.
- `options` [dict, optional] Dictionary containing additional expert options to SuperLU. See SuperLU user guide (section 2.4 on the 'Options' argument) for more details. For example, you can specify `options=dict(Equil=False, IterRefine='SINGLE'))` to turn equilibration off and perform a single iterative refinement.

Returns


See also:

- `spilu`
  - incomplete LU decomposition

Notes

This function uses the SuperLU library.

References

[1]
Examples

```python
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import spilu
>>> A = csc_matrix([[1., 0., 0.], [5., 0., 2.], [0., -1., 0.]],
 dtype=float)
>>> B = spilu(A)
>>> x = np.array([1., 2., 3.], dtype=float)
>>> B.solve(x)
array([1., -3., -1.5])
>>> A.dot(B.solve(x))
array([1., 2., 3.])
>>> B.solve(A.dot(x))
array([1., 2., 3.])
```

```
scipy.sparse.linalg.spilu

scipy.sparse.linalg.spilu(A, drop_tol=None, fill_factor=None, drop_rule=None, permc_spec=None, diag_pivot_thresh=None, relax=None, panel_size=None, options=None)

Compute an incomplete LU decomposition for a sparse, square matrix.

The resulting object is an approximation to the inverse of A.

Parameters

- **A** [(N, N) array_like] Sparse matrix to factorize
- **drop_tol** [float, optional] Drop tolerance (0 <= tol <= 1) for an incomplete LU decomposition. (default: 1e-4)
- **fill_factor** [float, optional] Specifies the fill ratio upper bound (>= 1.0) for ILU. (default: 10)
- **drop_rule** [str, optional] Comma-separated string of drop rules to use. Available rules: basic, prows, column, area, secondary, dynamic, interp. (Default: basic, area)

 See SuperLU documentation for details.

Remaining other options

- Same as for `spilu`

Returns

- **invA_approx** [scipy.sparse.linalg.SuperLU] Object, which has a `solve` method.

See also:

- `spilu`

 complete LU decomposition

Notes

To improve the better approximation to the inverse, you may need to increase `fill_factor` AND decrease `drop_tol`.

This function uses the SuperLU library.
Examples

```python
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import spilu

A = csc_matrix([[1., 0., 0.], [5., 0., 2.], [0., -1., 0.]],
               dtype=float)
>>> B = spilu(A)
>>> x = np.array([1., 2., 3.], dtype=float)
>>> B.solve(x)
array([ 1. , -3. , -1.5])
```

`scipy.sparse.linalg.SuperLU`

class `scipy.sparse.linalg.SuperLU`
LU factorization of a sparse matrix.

Factorization is represented as:

\[P @ A @ P_c = L @ U \]

To construct these `SuperLU` objects, call the `spilu` and `spilu` functions.

Notes

New in version 0.14.0.

Examples

The LU decomposition can be used to solve matrix equations. Consider:

```python
>>> import numpy as np
>>> from scipy.sparse import csc_matrix, linalg as sla
>>> A = csc_matrix([[1,2,0,4],[1,0,0,1],[1,0,2,1],[2,2,1,0]])
```

This can be solved for a given right-hand side:

```python
>>> lu = sla.spilu(A)
>>> b = np.array([1, 2, 3, 4])
>>> x = lu.solve(b)
>>> A.dot(x)
array([ 1.,  2.,  3.,  4.])
```

The `lu` object also contains an explicit representation of the decomposition. The permutations are represented as mappings of indices:

```python
>>> lu.perm_r
array([0, 2, 1, 3], dtype=int32)
>>> lu.perm_c
array([2, 0, 1, 3], dtype=int32)
```
The L and U factors are sparse matrices in CSC format:

```python
>>> lu.L.A
array([[ 1. , 0. , 0. , 0. ],
    [ 0. , 1. , 0. , 0. ],
    [ 0. , 0. , 1. , 0. ],
    [ 1. , 0.5, 0.5, 1. ]])
```
```
>>> lu.U.A
array([[ 2. , 0. , 1. , 4. ],
    [ 0. , 2. , 1. , 1. ],
    [ 0. , 0. , 1. , 1. ],
    [ 0. , 0. , 0., -5. ]])
```

The permutation matrices can be constructed:

```python
>>> Pr = csc_matrix((np.ones(4), (lu.perm_r, np.arange(4))))
>>> Pc = csc_matrix((np.ones(4), (np.arange(4), lu.perm_c)))
```

We can reassemble the original matrix:

```python
>>> (Pr.T @ (lu.L @ lu.U) @ Pc.T).A
array([[ 1., 2., 0., 4.],
    [ 1., 0., 0., 1.],
    [ 1., 0., 2., 1.],
    [ 2., 2., 1., 0.]])
```

Attributes

- **shape**
 Shape of the original matrix as a tuple of ints.
- **nnz**
 Number of nonzero elements in the matrix.
- **perm_c**
 Permutation Pc represented as an array of indices.
- **perm_r**
 Permutation Pr represented as an array of indices.
- **L**
 Lower triangular factor with unit diagonal as a `scipy.sparse.csc_matrix`
- **U**
 Upper triangular factor as a `scipy.sparse.csc_matrix`

Methods

- `solve(rhs[, trans])`
 Solves linear system of equations with one or several right-hand sides.

scipy.sparse.linalg.SuperLU.solve

`SuperLU.solve(rhs[, trans])`

Solves linear system of equations with one or several right-hand sides.

Parameters

- **rhs**
 [ndarray, shape (n,) or (n, k)] Right hand side(s) of equation
- **trans**
 [{‘N’, ‘T’, ‘H’}, optional] Type of system to solve:
'N': A @ x == rhs (default)
'T': A^T @ x == rhs
'H': A^H @ x == rhs

i.e., normal, transposed, and hermitian conjugate.

Returns

x [ndarray, shape rhs.shape] Solution vector(s)

Exceptions

<table>
<thead>
<tr>
<th>ArpackNoConvergence(msg, eigenvalues, ...)</th>
<th>ARPACK iteration did not converge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArpackError(info[, infodict])</td>
<td>ARPACK error</td>
</tr>
</tbody>
</table>

scipy.sparse.linalg.ArpackNoConvergence

exception scipy.sparse.linalg.ArpackNoConvergence(msg, eigenvalues, eigenvectors)

ARPACK iteration did not converge

Attributes

eigenvalues [ndarray] Partial result. Converged eigenvalues.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
scipy.sparse.linalg.ArpackError

exception scipy.sparse.linalg.ArpackError (info, infodict={'c': {-9999: 'Could not build an Arnoldi factorization. IPARAM(5) returns the size of the current Arnoldi factorization. The user is advised to check that enough workspace and array storage has been allocated.', -13: 'NEV and WHICH = 'BE' are incompatible.', -12: 'IPARAM(1) must be equal to 0 or 1.', -11: 'IPARAM(7) = 1 and BMAT = 'G' are incompatible.', -10: 'IPARAM(7) must be 1,2,3.', -9: 'Starting vector is zero.', -8: 'Error return from LAPACK eigenvalue calculation;', -7: 'Length of private work array WORKL is not sufficient.', -6: 'BMAT must be one of 'I' or 'G'.', -5: 'WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'.', -4: 'The maximum number of Arnoldi update iterations allowed must be greater than zero.', -3: 'NCV-NEV >= 2 and less than or equal to N.', -2: 'NEV must be positive.', -1: 'N must be positive.', 0: 'Normal exit.', 1: 'Maximum number of iterations taken. All possible eigenvalues of OP has been found. IPARAM(5) returns the number of wanted converged Ritz values.', 2: 'No longer an informational error. Deprecated starting with release 2 of ARPACK.', 3: 'No shifts could be applied during a cycle of the Implicitly restarted Arnoldi iteration. One possibility is to increase the size of NCV relative to NEV.', 'j', 'd': {-9999: 'Could not build an Arnoldi factorization. IPARAM(5) returns the size of the current Arnoldi factorization. The user is advised to check that enough workspace and array storage has been allocated.', -13: 'NEV and WHICH = 'BE' are incompatible.', -12: 'IPARAM(1) must be equal to 0 or 1.', -11: 'IPARAM(7) = 1 and BMAT = 'G' are incompatible.', -10: 'IPARAM(7) must be 1,2,3,4.', -9: 'Starting vector is zero.', -8: 'Error return from LAPACK eigenvalue calculation;', -7: 'Length of private work array WORKL is not sufficient.', -6: 'BMAT must be one of 'I' or 'G'.', -5: 'WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'.', -4: 'The maximum number of Arnoldi update iterations allowed must be greater than zero.', -3: 'NCV-NEV >= 2 and less than or equal to N.', -2: 'NEV must be positive.', -1: 'N must be positive.', 0: 'Normal exit.', 1: 'Maximum number of iterations taken. All possible eigenvalues of OP has been found. IPARAM(5) returns the number of wanted converged Ritz values.', 2: 'No longer an informational error. Deprecated starting with release 2 of ARPACK.', 3: 'No shifts could be applied during a cycle of the Implicitly restarted Arnoldi iteration. One possibility is to increase the size of NCV relative to NEV.', 'i', 'f': {-9999: 'Could not build an Arnoldi factorization. IPARAM(5) returns the size of NCV relative to NEV. '}, 'z': {-9999: 'Could not build an Arnoldi factorization. IPARAM(5) returns the size of NCV relative to NEV. '}, 's': {-9999: 'Could not build an Arnoldi factorization. IPARAM(5) returns the size of NCV relative to NEV. '}, 'd': {-9999: 'Could not build an Arnoldi factorization. IPARAM(5) returns the size of NCV relative to NEV. '}, 'i': {-9999: 'Could not build an Arnoldi factorization. IPARAM(5) returns the size of NCV relative to NEV. '}})
3.3.24 Compressed sparse graph routines *(scipy.sparse.csgraph)*

Fast graph algorithms based on sparse matrix representations.

Contents

- `connected_components(csgraph[, directed,...])` Analyze the connected components of a sparse graph
- `laplacian(csgraph[, normed, return_diag,...])` Return the Laplacian matrix of a directed graph.
- `shortest_path(csgraph[, method, directed,...])` Perform a shortest-path graph search on a directed or undirected graph.
- `dijkstra(csgraph[, directed, indices,...])` Dijkstra algorithm using Fibonacci Heaps
- `floyd_warshall(csgraph[, directed,...])` Compute the shortest path lengths using the Floyd-Warshall algorithm
- `bellman_ford(csgraph[, directed, indices,...])` Compute the shortest path lengths using the Bellman-Ford algorithm.
- `johnson(csgraph[, directed, indices,...])` Compute the shortest path lengths using Johnson's algorithm.
- `breadth_first_order(csgraph,i_start[,,...])` Return a breadth-first ordering starting with specified node.
- `depth_first_order(csgraph,i_start[,,...])` Return a depth-first ordering starting with specified node.
- `breadth_first_tree(csgraph,i_start[, directed])` Return the tree generated by a breadth-first search
- `depth_first_tree(csgraph,i_start[, directed])` Return a tree generated by a depth-first search.
- `minimum_spanning_tree(csgraph[, overwrite])` Return a minimum spanning tree of an undirected graph
- `reverse_cuthill_mckee(graph[, symmetric_mode])` Returns the permutation array that orders a sparse CSR or CSC matrix in Reverse-Cuthill-McKee ordering.
- `maximum_flow(csgraph,source,sink)` Maximize the flow between two vertices in a graph.
- `maximum_bipartite_matching(graph[, perm_type])` Returns a matching of a bipartite graph whose cardinality is as least that of any given matching of the graph.
- `min_weight_full_bipartite_matching(...[,...])` Returns the minimum weight full matching of a bipartite graph.
- `structural_rank(graph)` Compute the structural rank of a graph (matrix) with a given sparsity pattern.

```
with_traceback()  
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

scipy.sparse.csgraph.connected_components

scipy.sparse.csgraph.connected_components *(csgraph, directed=True, connection='weak', return_labels=True)*

Analyze the connected components of a sparse graph

New in version 0.11.0.

Parameters

- **csgraph** [array_like or sparse matrix] The N x N matrix representing the compressed sparse graph. The input csgraph will be converted to csr format for the calculation.
- **directed** [bool, optional] If True (default), then operate on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i].
connection

[str, optional] ['weak'|'strong']. For directed graphs, the type of connection to use. Nodes i and j are strongly connected if a path exists both from i to j and from j to i. A directed graph is weakly connected if replacing all of its directed edges with undirected edges produces a connected (undirected) graph. If directed == False, this keyword is not referenced.

return_labels

[bool, optional] If True (default), then return the labels for each of the connected components.

Returns

n_components: int
The number of connected components.

labels: ndarray
The length-N array of labels of the connected components.

References

[1]

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import connected_components

>>> graph = [
... [0, 1, 1, 0, 0],
... [0, 0, 1, 0, 0],
... [0, 0, 0, 0, 0],
... [0, 0, 0, 0, 1],
... [0, 0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)
(0, 1) 1
(0, 2) 1
(1, 2) 1
(3, 4) 1

>>> n_components, labels = connected_components(csgraph=graph,
... directed=False, return_labels=True)
>>> n_components
2
>>> labels
array([0, 0, 0, 1, 1], dtype=int32)
```
scipy.sparse.csgraph.laplacian

scipy.sparse.csgraph.laplacian(csgraph, normed=False, return_diag=False, use_out_degree=False)

Return the Laplacian matrix of a directed graph.

Parameters

- **csgraph** [array_like or sparse matrix, 2 dimensions] compressed-sparse graph, with shape (N, N).
- **normed** [bool, optional] If True, then compute symmetric normalized Laplacian.
- **return_diag** [bool, optional] If True, then also return an array related to vertex degrees.
- **use_out_degree** [bool, optional] If True, then use out-degree instead of in-degree. This distinction matters only if the graph is asymmetric. Default: False.

Returns

- **lap** [ndarray or sparse matrix] The N x N laplacian matrix of csgraph. It will be a NumPy array (dense) if the input was dense, or a sparse matrix otherwise.
- **diag** [ndarray, optional] The length-N diagonal of the Laplacian matrix. For the normalized Laplacian, this is the array of square roots of vertex degrees or 1 if the degree is zero.

Notes

The Laplacian matrix of a graph is sometimes referred to as the “Kirchoff matrix” or the “admittance matrix”, and is useful in many parts of spectral graph theory. In particular, the eigen-decomposition of the laplacian matrix can give insight into many properties of the graph.

Examples

```python
>>> from scipy.sparse import csgraph
>>> G = np.arange(5) * np.arange(5)[np.newaxis]
>>> G
array([[ 0,  0,  0,  0,  0],
       [ 0,  1,  2,  3,  4],
       [ 0,  2,  4,  6,  8],
       [ 0,  3,  6,  9, 12],
       [ 0,  4,  8, 12, 16]])
>>> csgraph.laplacian(G, normed=False)
array([[ 0,  0,  0,  0,  0],
       [ 0,  9, -2, -3, -4],
       [ 0, -2, 16, -6, -8],
       [ 0, -3, -6, 21, -12],
       [ 0, -4, -8, -12, 24]])
```
scipy.sparse.csgraph.shortest_path

scipy.sparse.csgraph.shortest_path(csgraph, method='auto', directed=True, return_predecessors=False, unweighted=False, overwrite=False, indices=None)

Perform a shortest-path graph search on a positive directed or undirected graph.

New in version 0.11.0.

Parameters

- **csgraph** [array, matrix, or sparse matrix, 2 dimensions] The N x N array of distances representing the input graph.
- **method** [string ['auto'|'FW'|'D'], optional] Algorithm to use for shortest paths. Options are:
 - **auto** – (default) select the best among ‘FW’, ‘D’, ‘BF’, or ‘J’ based on the input data.
 - **FW** – Floyd-Warshall algorithm. Computational cost is \(O[N^3]\). The input csgraph will be converted to a dense representation.
 - **D** – Dijkstra’s algorithm with Fibonacci heaps. Computational cost is approximately \(O[N(N*k + N*log(N))]\), where \(k\) is the average number of connected edges per node. The input csgraph will be converted to a csr representation.
 - **BF** – Bellman-Ford algorithm. This algorithm can be used when weights are negative. If a negative cycle is encountered, an error will be raised. Computational cost is approximately \(O[N(N^2 + N)*k]\), where \(k\) is the average number of connected edges per node. The input csgraph will be converted to a csr representation.
 - **J** – Johnson’s algorithm. Like the Bellman-Ford algorithm, Johnson’s algorithm is designed for use when the weights are negative. It combines the Bellman-Ford algorithm with Dijkstra’s algorithm for faster computation.
- **directed** [bool, optional] If True (default), then find the shortest path on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i]
- **return_predecessors** [bool, optional] If True, return the size (N, N) predecessor matrix
- **unweighted** [bool, optional] If True, then find unweighted distances. That is, rather than finding the path between each point such that the sum of weights is minimized, find the path such that the number of edges is minimized.
- **overwrite** [bool, optional] If True, overwrite csgraph with the result. This applies only if method == ‘FW’ and csgraph is a dense, c-ordered array with dtype=float64.
- **indices** [array_like or int, optional] If specified, only compute the paths from the points at the given indices. Incompatible with method == ‘FW’.

Returns

- **dist_matrix** [ndarray] The N x N matrix of distances between graph nodes. dist_matrix[i, j] gives the shortest distance from point i to point j along the graph.
- **predecessors** [ndarray] Returned only if return_predecessors == True. The N x N matrix of predecessors, which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point i: each entry predecessors[i, j] gives the index
of the previous node in the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999

Raises

NegativeCycleError:
if there are negative cycles in the graph

Notes

As currently implemented, Dijkstra’s algorithm and Johnson’s algorithm do not work for graphs with direction-dependent distances when directed == False. i.e., if csgraph[i,j] and csgraph[j,i] are non-equal edges, method='D' may yield an incorrect result.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import shortest_path

>>> graph = [
... [0, 1, 2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)
(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3

>>> dist_matrix, predecessors = shortest_path(csgraph=graph, 
... directed=False, indices=0, return_predecessors=True)
>>> dist_matrix
array([0. , 1. , 2. , 2. ])
>>> predecessors
array([-9999, 0, 0, 1], dtype=int32)
```

scipy.sparse.csgraph.dijkstra

Dijkstra algorithm using Fibonacci Heaps

New in version 0.11.0.

Parameters

csgraph [array, matrix, or sparse matrix, 2 dimensions] The N x N array of non-negative distances representing the input graph.
directed [bool, optional] If True (default), then find the shortest path on a directed graph: only move from point i to point j along paths csgraph[i, j] and from point j to i along paths csgraph[j, i]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j or j to i along either csgraph[i, j] or csgraph[j, i].

indices [array_like or int, optional] If specified, only compute the paths from the points at the given indices.

return_predecessors [bool, optional] If True, return the size (N, N) predecessor matrix

unweighted [bool, optional] If True, then find unweighted distances. That is, rather than finding the path between each point such that the sum of weights is minimized, find the path such that the number of edges is minimized.

limit [float, optional] The maximum distance to calculate, must be >= 0. Using a smaller limit will decrease computation time by aborting calculations between pairs that are separated by a distance > limit. For such pairs, the distance will be equal to np.inf (i.e., not connected). New in version 0.14.0.

min_only [bool, optional] If False (default), for every node in the graph, find the shortest path from every node in indices. If True, for every node in the graph, find the shortest path from any of the nodes in indices (which can be substantially faster). New in version 1.3.0.

Returns

dist_matrix [ndarray, shape ([n_indices, n_nodes,])] The matrix of distances between graph nodes. If min_only=False, dist_matrix has shape (n_indices, n_nodes) and dist_matrix[i, j] gives the shortest distance from point i to point j along the graph. If min_only=True, dist_matrix has shape (n_nodes, n_nodes) and contains for a given node the shortest path to that node from any of the nodes in indices.

predecessors [ndarray, shape ([n_indices, n_nodes,])] If min_only=False, this has shape (n_indices, n_nodes), otherwise it has shape (n_nodes, n_nodes). Returned only if return_predecessors == True. The matrix of predecessors, which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point i: each entry predecessors[i, j] gives the index of the previous node in the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999

sources [ndarray, shape (n_nodes,)] Returned only if min_only=True and return_predecessors=True. Contains the index of the source which had the shortest path to each target. If no path exists within the limit, this will contain -9999. The value at the indices passed will be equal to that index (i.e. the fastest way to reach node i, is to start on node i).

Notes

As currently implemented, Dijkstra’s algorithm does not work for graphs with direction-dependent distances when directed == False. i.e., if csgraph[i,j] and csgraph[j,i] are not equal and both are nonzero, setting directed=False will not yield the correct result.

Also, this routine does not work for graphs with negative distances. Negative distances can lead to infinite cycles that must be handled by specialized algorithms such as Bellman-Ford’s algorithm or Johnson’s algorithm.
Examples

```python
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import dijkstra

>>> graph = [
    ... [0, 1, 2, 0],
    ... [0, 0, 0, 1],
    ... [0, 0, 3, 0],
    ... [0, 0, 0, 0]
    ...
]
>>> graph = csr_matrix(graph)
>>> print(graph)

type: (0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 3) 3

>>> dist_matrix, predecessors = dijkstra(csgraph=graph, directed=False,
                                        indices=0, return_predecessors=True)
>>> dist_matrix
array([0., 1., 2., 2.])
>>> predecessors
array([-9999, 0, 0, 1], dtype=int32)
```

`scipy.sparse.csgraph.floyd_warshall`

`scipy.sparse.csgraph.floyd_warshall` *(csgraph, directed=True, return_predecessors=False, unweighted=False, overwrite=False)*

Compute the shortest path lengths using the Floyd-Warshall algorithm

New in version 0.11.0.

Parameters

- `csgraph` ([array, matrix, or sparse matrix, 2 dimensions]) The N x N array of distances representing the input graph.
- `directed` ([bool, optional]) If True (default), then find the shortest path on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i].
- `return_predecessors` ([bool, optional]) If True, return the size (N, N) predecessor matrix.
- `unweighted` ([bool, optional]) If True, then find unweighted distances. That is, rather than finding the path between each point such that the sum of weights is minimized, find the path such that the number of edges is minimized.
- `overwrite` ([bool, optional]) If True, overwrite csgraph with the result. This applies only if csgraph is a dense, c-ordered array with dtype=float64.

Returns

- `dist_matrix` ([ndarray]) The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives the shortest distance from point i to point j along the graph.
predecessors

[ndarray] Returned only if return_predecessors == True. The N x N matrix of predecessors, which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point i: each entry predecessors[i, j] gives the index of the previous node in the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999

Raises

NegativeCycleError:

if there are negative cycles in the graph

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import floyd_warshall

>>> graph = [
... [0, 1, 2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)
(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3

>>> dist_matrix, predecessors = floyd_warshall(csgraph=graph,
... directed=False, return_predecessors=True)
```

```python
>>> dist_matrix
dtype=int32)
```

```python
array([[0., 1., 2., 2.],
[1., 0., 3., 1.],
[2., 3., 0., 3.],
[2., 1., 3., 1.]],
(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3)
```

```python
array([[-9999, 0, 0, 1],
[1, -9999, 0, 1],
[2, 0, -9999, 2],
[1, 3, 3, -9999]],
```
scipy.sparse.csgraph.bellman_ford

scipy.sparse.csgraph.bellman_ford(csgraph, directed=True, indices=None, return_predecessors=False, unweighted=False)

Compute the shortest path lengths using the Bellman-Ford algorithm.

The Bellman-Ford algorithm can robustly deal with graphs with negative weights. If a negative cycle is detected, an error is raised. For graphs without negative edge weights, Dijkstra's algorithm may be faster.

New in version 0.11.0.

Parameters

- **csgraph**: [array, matrix, or sparse matrix, 2 dimensions] The N x N array of distances representing the input graph.
- **directed**: [bool, optional] If True (default), then find the shortest path on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i]
- **indices**: [array_like or int, optional] if specified, only compute the paths from the points at the given indices.
- **return_predecessors**: [bool, optional] If True, return the size (N, N) predecessor matrix
- **unweighted**: [bool, optional] If True, then find unweighted distances. That is, rather than finding the path between each point such that the sum of weights is minimized, find the path such that the number of edges is minimized.

Returns

- **dist_matrix**: [ndarray] The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives the shortest distance from point i to point j along the graph.
- **predecessors**: [ndarray] Returned only if return_predecessors == True. The N x N matrix of predecessors, which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point i: each entry predecessors[i, j] gives the index of the previous node in the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999

Raises

- **NegativeCycleError**: if there are negative cycles in the graph

Notes

This routine is specially designed for graphs with negative edge weights. If all edge weights are positive, then Dijkstra's algorithm is a better choice.
Examples

```python
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import bellman_ford

>>> graph = [
... [0, 1, 2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)
  (0, 1) 1
  (0, 2) 2
  (1, 3) 1
  (2, 0) 2
  (2, 3) 3

>>> dist_matrix, predecessors = bellman_ford(csgraph=graph,
... directed=False, indices=0, return_predecessors=True)
>>> dist_matrix
array([0., 1., 2., 2.])
>>> predecessors
array([-9999, 0, 0, 1], dtype=int32)
```

scipy.sparse.csgraph.johnson

`scipy.sparse.csgraph.johnson(csgraph, directed=True, indices=None, return_predecessors=False, unweighted=False)`

Compute the shortest path lengths using Johnson’s algorithm.

Johnson’s algorithm combines the Bellman-Ford algorithm and Dijkstra’s algorithm to quickly find shortest paths in a way that is robust to the presence of negative cycles. If a negative cycle is detected, an error is raised. For graphs without negative edge weights, dijkstra may be faster.

New in version 0.11.0.

Parameters

- `csgraph` [array, matrix, or sparse matrix, 2 dimensions] The N x N array of distances representing the input graph.
- `directed` [bool, optional] If True (default), then find the shortest path on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i]
- `indices` [array_like or int, optional] If specified, only compute the paths from the points at the given indices.
- `return_predecessors` [bool, optional] If True, return the size (N, N) predecessor matrix
- `unweighted` [bool, optional] If True, then find unweighted distances. That is, rather than finding the path between each point such that the sum of weights is minimized, find the path such that the number of edges is minimized.

Returns
dist_matrix

[array] The N x N matrix of distances between graph nodes. dist_matrix[i,j] gives the shortest distance from point i to point j along the graph.

predecessors

[array] Returned only if return_predecessors == True. The N x N matrix of predecessors, which can be used to reconstruct the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point i: each entry predecessors[i, j] gives the index of the previous node in the path from point i to point j. If no path exists between point i and j, then predecessors[i, j] = -9999

Raises

NegativeCycleError:

if there are negative cycles in the graph

Notes

This routine is specially designed for graphs with negative edge weights. If all edge weights are positive, then Dijkstra’s algorithm is a better choice.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import johnson

>>> graph = [
... [0, 1, 2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]
>>> graph = csr_matrix(graph)
>>> print(graph)
(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3

>>> dist_matrix, predecessors = johnson(csgraph=graph, directed=False,
... indices=0, return_predecessors=True)
>>> dist_matrix
array([0., 1., 2., 2.])
>>> predecessors
array([-9999, 0, 0, 1], dtype=int32)
```
scipy.sparse.csgraph.breadth_first_order

scipy.sparse.csgraph.breadth_first_order(csgraph, i_start, directed=True, return_predecessors=True)

Return a breadth-first ordering starting with specified node.

Note that a breadth-first order is not unique, but the tree which it generates is unique.

New in version 0.11.0.

Parameters

- csgraph [array_like or sparse matrix] The N x N compressed sparse graph. The input csgraph will be converted to csr format for the calculation.
- i_start [int] The index of starting node.
- directed [bool, optional] If True (default), then operate on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i].
- return_predecessors [bool, optional] If True (default), then return the predecessor array (see below).

Returns

- node_array [ndarray, one dimension] The breadth-first list of nodes, starting with specified node. The length of node_array is the number of nodes reachable from the specified node.
- predecessors [ndarray, one dimension] Returned only if return_predecessors is True. The length-N list of predecessors of each node in a breadth-first tree. If node i is in the tree, then its parent is given by predecessors[i]. If node i is not in the tree (and for the parent node) then predecessors[i] = -9999.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import breadth_first_order

>>> graph = [
...   [0, 1, 2, 0],
...   [0, 0, 0, 1],
...   [2, 0, 0, 3],
...   [0, 0, 0, 0]
... ]

>>> graph = csr_matrix(graph)

>>> print(graph)
(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3

>>> breadth_first_order(graph, 0)
(array([0, 1, 2, 3], dtype=int32), array([-9999, 0, 0, 1], dtype=int32))
```
scipy.sparse.csgraph.depth_first_order

`scipy.sparse.csgraph.depth_first_order(csgraph, i_start, directed=True, return_predecessors=True)`

Return a depth-first ordering starting with specified node.

Note that a depth-first order is not unique. Furthermore, for graphs with cycles, the tree generated by a depth-first search is not unique either.

New in version 0.11.0.

Parameters

- `csgraph` [array_like or sparse matrix] The N x N compressed sparse graph. The input csgraph will be converted to csr format for the calculation.
- `i_start` [int] The index of starting node.
- `directed` [bool, optional] If True (default), then operate on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i].
- `return_predecessors` [bool, optional] If True (default), then return the predecessor array (see below).

Returns

- `node_array` [ndarray, one dimension] The depth-first list of nodes, starting with specified node. The length of node_array is the number of nodes reachable from the specified node.
- `predecessors` [ndarray, one dimension] Returned only if return_predecessors is True. The length-N list of predecessors of each node in a depth-first tree. If node i is in the tree, then its parent is given by predecessors[i]. If node i is not in the tree (and for the parent node) then predecessors[i] = -9999.

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import depth_first_order

>>> graph = [
... [0, 1, 2, 0],
... [0, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 0, 0, 0]
... ]

>>> graph = csr_matrix(graph)

>>> print(graph)
(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3

>>> depth_first_order(graph, 0)
(array([0, 1, 3, 2], dtype=int32), array([-9999, 0, 0, 1],
   dtype=int32))
```
scipy.sparse.csgraph.breadth_first_tree

`scipy.sparse.csgraph.breadth_first_tree(csgraph, i_start, directed=True)`

Return the tree generated by a breadth-first search

Note that a breadth-first tree from a specified node is unique.

New in version 0.11.0.

Parameters

- `csgraph` [array_like or sparse matrix] The N x N matrix representing the compressed sparse graph. The input csgraph will be converted to csr format for the calculation.
- `i_start` [int] The index of starting node.
- `directed` [bool, optional] If True (default), then operate on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i].

Returns

- `cstree` [csr matrix] The N x N directed compressed-sparse representation of the breadth-first tree drawn from csgraph, starting at the specified node.

Examples

The following example shows the computation of a depth-first tree over a simple four-component graph, starting at node 0:

```
input graph          breadth first tree  from (0)

(0)                 (0)
/ \                  / \ 
3  8                 3  8
/ \                  / \ 
(3)---5---(1)      (3)  (1)
 \ /                  / 
 6  2                 2
 \ /                  / 
(2)                  (2)
```

In compressed sparse representation, the solution looks like this:

```
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import breadth_first_tree
>>> X = csr_matrix([[0, 8, 0, 3],
...                  [0, 0, 2, 5],
...                  [0, 0, 0, 6],
...                  [0, 0, 0, 0]])
>>> Tcsr = breadth_first_tree(X, 0, directed=False)
>>> Tcsr.toarray().astype(int)
array([[0, 8, 0, 3],
       [0, 0, 2, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]])
```

Note that the resulting graph is a Directed Acyclic Graph which spans the graph. A breadth-first tree from a given node is unique.
scipy.sparse.csgraph.depth_first_tree

scipy.sparse.csgraph.depth_first_tree(csgraph, i_start, directed=True)

Return a tree generated by a depth-first search.

Note that a tree generated by a depth-first search is not unique: it depends on the order that the children of each
node are searched.

New in version 0.11.0.

Parameters

csgraph [array_like or sparse matrix] The N x N matrix representing the compressed sparse graph.
The input csgraph will be converted to csr format for the calculation.
i_start [int] The index of starting node.
directed [bool, optional] If True (default), then operate on a directed graph: only move from point
i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected
graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i].

Returns
cstree [csr matrix] The N x N directed compressed-sparse representation of the depth-first tree
drawn from csgraph, starting at the specified node.

Examples

The following example shows the computation of a depth-first tree over a simple four-component graph, starting
at node 0:

```
input graph   depth first tree from (0)
  (0)           (0)
  / \          / \  
  3  8         8
  / \                / \  
(3)---5---(1) (3) (1)  
  \ /          \ /    
  6  2         6  2
  \ /            \ /    
(2) (2)
```

In compressed sparse representation, the solution looks like this:

```
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import depth_first_tree
>>> X = csr_matrix([[0, 8, 0, 3],
...                  [0, 0, 5, 0],
...                  [0, 0, 6, 0],
...                  [0, 0, 0, 0]])
>>> Tcsr = depth_first_tree(X, 0, directed=False)
>>> Tcsr.toarray().astype(int)
array([[0, 8, 0, 0],
       [0, 0, 2, 0],
       [0, 0, 0, 6],
       [0, 0, 0, 0]])
```
Note that the resulting graph is a Directed Acyclic Graph which spans the graph. Unlike a breadth-first tree, a depth-first tree of a given graph is not unique if the graph contains cycles. If the above solution had begun with the edge connecting nodes 0 and 3, the result would have been different.

scipy.sparse.csgraph.minimum_spanning_tree

`scipy.sparse.csgraph.minimum_spanning_tree(csgraph, overwrite=False)`

Return a minimum spanning tree of an undirected graph

A minimum spanning tree is a graph consisting of the subset of edges which together connect all connected nodes, while minimizing the total sum of weights on the edges. This is computed using the Kruskal algorithm.

New in version 0.11.0.

Parameters

- `csgraph` [array_like or sparse matrix, 2 dimensions] The N x N matrix representing an undirected graph over N nodes (see notes below).
- `overwrite` [bool, optional] If true, then parts of the input graph will be overwritten for efficiency. Default is False.

Returns

- `span_tree` [csr matrix] The N x N compressed-sparse representation of the undirected minimum spanning tree over the input (see notes below).

Notes

This routine uses undirected graphs as input and output. That is, if graph[i, j] and graph[j, i] are both zero, then nodes i and j do not have an edge connecting them. If either is nonzero, then the two are connected by the minimum nonzero value of the two.

This routine loses precision when users input a dense matrix. Small elements < 1E-8 of the dense matrix are rounded to zero. All users should input sparse matrices if possible to avoid it.

Examples

The following example shows the computation of a minimum spanning tree over a simple four-component graph:

```
input graph               minimum spanning tree
  (0)                     (0)
    /                     /
  3  8                   3
    /                     /
(3)---5---(1)           (3)---5---(1)
   \                     /                     /
  6  2                   2                     /
    \                   /                      /
(2)                     (2)
```

It is easy to see from inspection that the minimum spanning tree involves removing the edges with weights 8 and 6. In compressed sparse representation, the solution looks like this:
```python
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import minimum_spanning_tree
>>> X = csr_matrix([[0, 8, 0, 3],
                  ...                 [0, 0, 2, 5],
                  ...                 [0, 0, 0, 6],
                  ...                 [0, 0, 0, 0]])
>>> Tcsr = minimum_spanning_tree(X)
>>> Tcsr.toarray().astype(int)
array([[0, 0, 0, 3],
       [0, 0, 2, 5],
       [0, 0, 0, 0],
       [0, 0, 0, 0]])
```

scipy.sparse.csgraph.reverse_cuthill_mckee

`scipy.sparse.csgraph.reverse_cuthill_mckee(graph, symmetric_mode=False)`
Returns the permutation array that orders a sparse CSR or CSC matrix in Reverse-Cuthill McKee ordering.

It is assumed by default, `symmetric_mode=False`, that the input matrix is not symmetric and works on the matrix `A + A.T`. If you are guaranteed that the matrix is symmetric in structure (values of matrix elements do not matter) then set `symmetric_mode=True`.

Parameters

- `graph` [sparse matrix] Input sparse in CSC or CSR sparse matrix format.
- `symmetric_mode` [bool, optional] Is input matrix guaranteed to be symmetric.

Returns

- `perm` [ndarray] Array of permuted row and column indices.

Notes

New in version 0.15.0.

References

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import reverse_cuthill_mckee

>>> graph = [
            ... [0, 1, 2, 0],
            ... [0, 0, 0, 1],
            ... [2, 0, 0, 3],
            ... [0, 0, 0, 0]]
```
```python
>>> graph = csr_matrix(graph)
>>> print(graph)
(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 0) 2
(2, 3) 3

>>> reverse_cuthill_mckee(graph)
array([3, 2, 1, 0], dtype=int32)
```

scipy.sparse.csgraph.maximum_flow

`scipy.sparse.csgraph.maximum_flow(csgraph, source, sink)`

Maximize the flow between two vertices in a graph.

New in version 1.4.0.

Parameters

- `csgraph` [csr_matrix] The square matrix representing a directed graph whose (i, j)’th entry is an integer representing the capacity of the edge between vertices i and j.
- `source` [int] The source vertex from which the flow flows.
- `sink` [int] The sink vertex to which the flow flows.
- `method`: {'edmonds_karp', 'dinic'}, optional

The method/algorith to be used for computing the maximum flow. Following methods are supported,
- ‘edmonds_karp’: Edmonds Karp algorithm in [1].
- ‘dinic’: Dinic’s algorithm in [4].

Default is ‘dinic’.

New in version 1.8.0.

Returns

- `res` [MaximumFlowResult] A maximum flow represented by a MaximumFlowResult which includes the value of the flow in `flow_value`, and the residual graph in `residual`.

Raises

- `TypeError`: if the input graph is not in CSR format.
- `ValueError`: if the capacity values are not integers, or the source or sink are out of bounds.

Notes

This solves the maximum flow problem on a given directed weighted graph: A flow associates to every edge a value, also called a flow, less than the capacity of the edge, so that for every vertex (apart from the source and the sink vertices), the total incoming flow is equal to the total outgoing flow. The value of a flow is the sum of the flow of all edges leaving the source vertex, and the maximum flow problem consists of finding a flow whose value is maximal.

By the max-flow min-cut theorem, the maximal value of the flow is also the total weight of the edges in a minimum cut.

To solve the problem, we provide Edmonds–Karp [1] and Dinic’s algorithm [4]. The implementation of both algorithms strive to exploit sparsity. The time complexity of the former $O(|V| |E|^2)$ and its space complexity is

3.3. API definition
\(O(|E|)\). The latter achieves its performance by building level graphs and finding blocking flows in them. Its time complexity is \(O(|V|^2 |E|)\) and its space complexity is \(O(|E|)\).

The maximum flow problem is usually defined with real valued capacities, but we require that all capacities are integral to ensure convergence. When dealing with rational capacities, or capacities belonging to \(\mathbb{Q}\) for some fixed \(x \in \mathbb{R}\), it is possible to reduce the problem to the integral case by scaling all capacities accordingly.

Solving a maximum-flow problem can be used for example for graph cuts optimization in computer vision [3].

References

[1], [2], [3], [4]

Examples

Perhaps the simplest flow problem is that of a graph of only two vertices with an edge from source (0) to sink (1):

\[
(0) \rightarrow 5 \rightarrow (1)
\]

Here, the maximum flow is simply the capacity of the edge:

```python
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import maximum_flow
>>> graph = csr_matrix([[0, 5], [0, 0]])
>>> maximum_flow(graph, 0, 1).flow_value
5
>>> maximum_flow(graph, 0, 1, method='edmonds_karp').flow_value
5
```

If, on the other hand, there is a bottleneck between source and sink, that can reduce the maximum flow:

\[
(0) --5--> (1) --3--> (2)
\]

```python
>>> graph = csr_matrix([[0, 5, 0], [0, 0, 3], [0, 0, 0]])
>>> maximum_flow(graph, 0, 2).flow_value
3
```

A less trivial example is given in [2], Chapter 26.1:

```python
>>> graph = csr_matrix([[0, 16, 13, 0, 0, 0],
... [0, 0, 10, 12, 0, 0],
... [0, 4, 0, 0, 14, 0],
... [0, 0, 9, 0, 0, 20],
... [0, 0, 0, 7, 0, 4],
... [0, 0, 0, 0, 0, 0]])
>>> maximum_flow(graph, 0, 5).flow_value
23
```

It is possible to reduce the problem of finding a maximum matching in a bipartite graph to a maximum flow problem: Let \(G = ((U, V), E)\) be a bipartite graph. Then, add to the graph a source vertex with edges to every vertex in \(U\) and a sink vertex with edges from every vertex in \(V\). Finally, give every edge in the resulting graph a capacity of 1. Then, a maximum flow in the new graph gives a maximum matching in the original graph consisting of the edges in \(E\) whose flow is positive.
Assume that the edges are represented by a $|U| \times |V|$ matrix in CSR format whose (i,j)th entry is 1 if there is an edge from $i \in U$ to $j \in V$ and 0 otherwise; that is, the input is of the form required by \texttt{maximum_bipartite_matching}. Then the CSR representation of the graph constructed above contains this matrix as a block. Here’s an example:

```python
>>> graph = csr_matrix([[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 1, 0]])
>>> print(graph.toarray())
[[0 1 0 1]
 [1 0 1 0]
 [0 1 1 0]]
>>> i, j = graph.shape
>>> n = graph.nnz
>>> indptr = np.concatenate([0,
...                           graph.indptr + i,
...                           np.arange(n + i + 1, n + i + j + 1),
...                           [n + i + j]])
>>> indices = np.concatenate([np.arange(i, i + 1),
...                            graph.indices + i + 1,
...                            np.repeat(i + j + 1, j)])
>>> data = np.ones(n + i + j, dtype=int)
>>> graph_flow = csr_matrix((data, indices, indptr))
>>> print(graph_flow.toarray())
[[0 1 1 1 0 0 0 0 0]
 [0 0 0 0 1 0 1 0 0]
 [0 0 0 1 0 1 0 0 0]
 [0 0 0 0 1 1 0 0 0]
 [0 0 0 0 0 0 0 1]
 [0 0 0 0 0 0 0 1]
 [0 0 0 0 0 0 0 1]
 [0 0 0 0 0 0 0 1]
 [0 0 0 0 0 0 0 0]]
```

At this point, we can find the maximum flow between the added sink and the added source and the desired matching can be obtained by restricting the residual graph to the block corresponding to the original graph:

```python
>>> flow = maximum_flow(graph_flow, 0, i+j+1, method='dinic')
>>> matching = flow.residual[1:i+1, i+1:i+j+1]
>>> print(matching.toarray())
[[0 1 0 0]
 [1 0 0 0]
 [0 0 1 0]]
```

This tells us that the first, second, and third vertex in U are matched with the second, first, and third vertex in V respectively.

While this solves the maximum bipartite matching problem in general, note that algorithms specialized to that problem, such as \texttt{maximum_bipartite_matching}, will generally perform better.

This approach can also be used to solve various common generalizations of the maximum bipartite matching problem. If, for instance, some vertices can be matched with more than one other vertex, this may be handled by modifying the capacities of the new graph appropriately.
scipy.sparse.csgraph.maximum_bipartite_matching

scipy.sparse.csgraph.maximum_bipartite_matching(graph, perm_type='row')

Returns a matching of a bipartite graph whose cardinality is as least that of any given matching of the graph.

Parameters

- **graph** [sparse matrix] Input sparse in CSR format whose rows represent one partition of the graph and whose columns represent the other partition. An edge between two vertices is indicated by the corresponding entry in the matrix existing in its sparse representation.

- **perm_type** [str, {'row', 'column'}] Which partition to return the matching in terms of: If 'row', the function produces an array whose length is the number of columns in the input, and whose \(j \)'th element is the row matched to the \(j \)'th column. Conversely, if \(\text{perm}_\text{type} \) is 'column', this returns the columns matched to each row.

Returns

- **perm** [ndarray] A matching of the vertices in one of the two partitions. Unmatched vertices are represented by a \(-1\) in the result.

Notes

This function implements the Hopcroft–Karp algorithm \[1\]. Its time complexity is \(O(|E|\sqrt{|V|}) \), and its space complexity is linear in the number of rows. In practice, this asymmetry between rows and columns means that it can be more efficient to transpose the input if it contains more columns than rows.

By Konig’s theorem, the cardinality of the matching is also the number of vertices appearing in a minimum vertex cover of the graph.

Note that if the sparse representation contains explicit zeros, these are still counted as edges.

The implementation was changed in SciPy 1.4.0 to allow matching of general bipartite graphs, where previous versions would assume that a perfect matching existed. As such, code written against 1.4.0 will not necessarily work on older versions.

References

[1]

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import maximum_bipartite_matching
```

As a simple example, consider a bipartite graph in which the partitions contain 2 and 3 elements respectively. Suppose that one partition contains vertices labelled 0 and 1, and that the other partition contains vertices labelled A, B, and C. Suppose that there are edges connecting 0 and C, 1 and A, and 1 and B. This graph would then be represented by the following sparse matrix:

```python
>>> graph = csr_matrix([[0, 0, 1], [1, 1, 0]])
```

Here, the 1s could be anything, as long as they end up being stored as elements in the sparse matrix. We can now calculate maximum matchings as follows:
```python
>>> print(maximum_bipartite_matching(graph, perm_type='column'))
[2 0]
>>> print(maximum_bipartite_matching(graph, perm_type='row'))
[ 1 -1 0]
```

The first output tells us that 1 and 2 are matched with C and A respectively, and the second output tells us that A, B, and C are matched with 1, nothing, and 0 respectively.

Note that explicit zeros are still converted to edges. This means that a different way to represent the above graph is by using the CSR structure directly as follows:

```python
>>> data = [0, 0, 0]
>>> indices = [2, 0, 1]
>>> indptr = [0, 1, 3]
>>> graph = csr_matrix((data, indices, indptr))
>>> print(maximum_bipartite_matching(graph, perm_type='column'))
[2 0]
>>> print(maximum_bipartite_matching(graph, perm_type='row'))
[ 1 -1 0]
```

When one or both of the partitions are empty, the matching is empty as well:

```python
>>> graph = csr_matrix((2, 0))
>>> print(maximum_bipartite_matching(graph, perm_type='column'))
[-1 -1]
>>> print(maximum_bipartite_matching(graph, perm_type='row'))
[]
```

When the input matrix is square, and the graph is known to admit a perfect matching, i.e. a matching with the property that every vertex in the graph belongs to some edge in the matching, then one can view the output as the permutation of rows (or columns) turning the input matrix into one with the property that all diagonal elements are non-empty:

```python
>>> a = [[0, 1, 2, 0], [1, 0, 0, 1], [2, 0, 0, 3], [0, 1, 3, 0]]
>>> graph = csr_matrix(a)
>>> perm = maximum_bipartite_matching(graph, perm_type='row')
>>> print(graph[perm].toarray())
[[1 0 0 1]
 [0 1 2 0]
 [0 1 3 0]
 [2 0 0 3]]
```

scipy.sparse.csgraph.min_weight_full_bipartite_matching

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>scipy.sparse.csgraph.min_weight_full_bipartite_matching</code></td>
<td>Returns the minimum weight full matching of a bipartite graph.</td>
<td><code>biadjacency_matrix</code>, <code>maximize=False</code></td>
</tr>
</tbody>
</table>

New in version 1.6.0.

Parameters

- **biadjacency_matrix**
 - [sparse matrix] Biadjacency matrix of the bipartite graph: A sparse matrix in CSR, CSC, or COO format whose rows represent one partition of the graph and whose columns represent the other partition. An edge between two vertices is indicated by the corresponding entry in

3.3. API definition

2041
the matrix, and the weight of the edge is given by the value of that entry. This should not be confused with the full adjacency matrix of the graph, as we only need the submatrix defining the bipartite structure.

maximize [bool (default: False)] Calculates a maximum weight matching if true.

Returns

row_ind, col_ind

[array] An array of row indices and one of corresponding column indices giving the optimal matching. The total weight of the matching can be computed as `graph[row_ind, col_ind].sum()`. The row indices will be sorted; in the case of a square matrix they will be equal to `numpy.arange(graph.shape[0])`.

Notes

Let $G = ((U, V), E)$ be a weighted bipartite graph with non-zero weights $w : E \to \mathbb{R} \setminus \{0\}$. This function then produces a matching $M \subseteq E$ with cardinality

$$|M| = \min(|U|, |V|),$$

which minimizes the sum of the weights of the edges included in the matching, $\sum_{e \in M} w(e)$, or raises an error if no such matching exists.

When $|U| = |V|$, this is commonly referred to as a perfect matching; here, since we allow $|U|$ and $|V|$ to differ, we follow Karp [1] and refer to the matching as full.

This function implements the LAPJVsp algorithm [2], short for “Linear assignment problem, Jonker–Volgenant, sparse”.

The problem it solves is equivalent to the rectangular linear assignment problem. [3] As such, this function can be used to solve the same problems as `scipy.optimize.linear_sum_assignment`. That function may perform better when the input is dense, or for certain particular types of inputs, such as those for which the (i, j)’th entry is the distance between two points in Euclidean space.

If no full matching exists, this function raises a `ValueError`. For determining the size of the largest matching in the graph, see `maximum_bipartite_matching`.

We require that weights are non-zero only to avoid issues with the handling of explicit zeros when converting between different sparse representations. Zero weights can be handled by adding a constant to all weights, so that the resulting matrix contains no zeros.

References

[1], [2], [3]

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import min_weight_full_bipartite_matching
```

Let us first consider an example in which all weights are equal:

```python
>>> biadjacency_matrix = csr_matrix([[1, 1, 1], [1, 0, 0], [0, 1, 0]])
```

Here, all we get is a perfect matching of the graph:
That is, the first, second, and third rows are matched with the third, first, and second column respectively. Note that in this example, the 0 in the input matrix does not correspond to an edge with weight 0, but rather a pair of vertices not paired by an edge.

Note also that in this case, the output matches the result of applying `maximum_bipartite_matching`:

```
>>> from scipy.sparse.csgraph import maximum_bipartite_matching
>>> biadjacency = csr_matrix([[1, 1, 1], [0, 0, 1], [0, 1, 0]])
>>> print(maximum_bipartite_matching(biadjacency, perm_type='column'))
[2 0 1]
```

When multiple edges are available, the ones with lowest weights are preferred:

```
>>> biadjacency = csr_matrix([[3, 3, 6], [4, 3, 5], [10, 1, 8]])
>>> row_ind, col_ind = min_weight_full_bipartite_matching(biadjacency)
>>> print(col_ind)
[0 2 1]
```

The total weight in this case is $3 + 5 + 1 = 9$:

```
>>> print(biadjacency[row_ind, col_ind].sum())
9
```

When the matrix is not square, i.e. when the two partitions have different cardinalities, the matching is as large as the smaller of the two partitions:

```
>>> biadjacency = csr_matrix([[0, 1, 1], [0, 2, 3]])
>>> row_ind, col_ind = min_weight_full_bipartite_matching(biadjacency)
>>> print(row_ind, col_ind)
[0 1] [2 1]
```

```
>>> biadjacency = csr_matrix([[0, 1], [3, 1], [1, 4]])
>>> row_ind, col_ind = min_weight_full_bipartite_matching(biadjacency)
>>> print(row_ind, col_ind)
[0 2] [1 0]
```

When one or both of the partitions are empty, the matching is empty as well:

```
>>> biadjacency = csr_matrix((2, 0))
>>> row_ind, col_ind = min_weight_full_bipartite_matching(biadjacency)
>>> print(row_ind, col_ind)
[] []
```

In general, we will always reach the same sum of weights as if we had used `scipy.optimize.linear_sum_assignment` but note that for that one, missing edges are represented by a matrix entry of `float('inf')`. Let us generate a random sparse matrix with integer entries between 1 and 10:

```
>>> import numpy as np
>>> from scipy.sparse import random
>>> from scipy.optimize import linear_sum_assignment
>>> sparse = random(10, 10, random_state=42, density=.5, format='coo') *...
    ~10
```
>>> sparse.data = np.ceil(sparse.data)
>>> dense = sparse.toarray()
>>> dense = np.full(sparse.shape, np.inf)
>>> dense[sparse.row, sparse.col] = sparse.data
>>> sparse = sparse.tocsr()
>>> row_ind, col_ind = linear_sum_assignment(dense)
>>> print(dense[row_ind, col_ind].sum())
28.0
>>> row_ind, col_ind = min_weight_full_bipartite_matching(sparse)
>>> print(sparse[row_ind, col_ind].sum())
28.0

scipy.sparse.csgraph.structural_rank

scipy.sparse.csgraph.structural_rank(graph)

Compute the structural rank of a graph (matrix) with a given sparsity pattern.

The structural rank of a matrix is the number of entries in the maximum transversal of the corresponding bipartite graph, and is an upper bound on the numerical rank of the matrix. A graph has full structural rank if it is possible to permute the elements to make the diagonal zero-free.

New in version 0.19.0.

Parameters

- graph [sparse matrix] Input sparse matrix.

Returns

- rank [int] The structural rank of the sparse graph.

References

[1],[2]

Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import structural_rank

>>> graph = [
... [0, 1, 2, 0],
... [1, 0, 0, 1],
... [2, 0, 0, 3],
... [0, 1, 3, 0]
...]
>>> graph = csr_matrix(graph)
>>> print(graph)
(0, 1) 1
(0, 2) 2
(1, 0) 1
(1, 3) 1
(2, 0) 2
>>> structural_rank(graph)
4

scipy.sparse.csgraph.NegativeCycleError

`exception scipy.sparse.csgraph.NegativeCycleError (message='')
with_traceback(self)`

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>construct_dist_matrix</code></td>
<td>Construct distance matrix from a predecessor matrix</td>
</tr>
<tr>
<td><code>csgraph_from_dense</code></td>
<td>Construct a CSR-format sparse graph from a dense matrix.</td>
</tr>
<tr>
<td><code>csgraph_from_masked</code></td>
<td>Construct a CSR-format graph from a masked array.</td>
</tr>
<tr>
<td><code>csgraph_masked_from_dense</code></td>
<td>Construct a masked array graph representation from a dense matrix.</td>
</tr>
<tr>
<td><code>csgraph_to_dense</code></td>
<td>Convert a sparse graph representation to a dense representation</td>
</tr>
<tr>
<td><code>csgraph_to_masked</code></td>
<td>Convert a sparse graph representation to a masked array representation</td>
</tr>
<tr>
<td><code>reconstruct_path</code></td>
<td>Construct a tree from a graph and a predecessor list.</td>
</tr>
</tbody>
</table>

scipy.sparse.csgraph.construct_dist_matrix

`scipy.sparse.csgraph.construct_dist_matrix (graph, predecessors[, directed=True, null_value=np.inf])`

Construct distance matrix from a predecessor matrix

New in version 0.11.0.

Parameters

- **graph** `[array_like or sparse]` The N x N matrix representation of a directed or undirected graph. If dense, then non-edges are indicated by zeros or infinities.
- **predecessors** `[array_like]` The N x N matrix of predecessors of each node (see Notes below).
- **directed** `[bool, optional]` If True (default), then operate on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then operate on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i].
- **null_value** `[bool, optional]` value to use for distances between unconnected nodes. Default is np.inf

Returns

- **dist_matrix** `[ndarray]` The N x N matrix of distances between nodes along the path specified by the predecessor matrix. If no path exists, the distance is zero.
Notes

The predecessor matrix is of the form returned by `shortest_path`. Row \(i \) of the predecessor matrix contains information on the shortest paths from point \(i \): each entry \(\text{predecessors}[i, j] \) gives the index of the previous node in the path from point \(i \) to point \(j \). If no path exists between point \(i \) and \(j \), then \(\text{predecessors}[i, j] = -9999 \).

Examples

```python
>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import construct_dist_matrix

>>> graph = [
... [0, 1, 2, 0],
... [0, 0, 1],
... [0, 0, 3],
... [0, 0, 0]
... ]

>>> graph = csr_matrix(graph)

>>> print(graph)
(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 3) 3

>>> pred = np.array([[-9999, 0, 0, 2],
... [1, -9999, 0, 1],
... [2, 0, -9999, 2],
... [1, 3, 3, -9999]], dtype=np.int32)

>>> construct_dist_matrix(graph=graph, predecessors=pred, directed=False)
array([[0., 1., 2., 5.],
       [1., 0., 3., 1.],
       [2., 3., 0., 3.],
       [2., 1., 3., 0.]]))
```

`scipy.sparse.csgraph.csgraph_from_dense`

`scipy.sparse.csgraph.csgraph_from_dense(graph, null_value=0, nan_null=True, infinity_null=True)`

Construct a CSR-format sparse graph from a dense matrix.

New in version 0.11.0.

Parameters

- `graph` : [array_like] Input graph. Shape should be (n_nodes, n_nodes).
- `null_value` : [float or None (optional)] Value that denotes non-edges in the graph. Default is zero.
- `infinity_null` : [bool] If True (default), then infinite entries (both positive and negative) are treated as null edges.
- `nan_null` : [bool] If True (default), then NaN entries are treated as non-edges

Returns

- `csgraph` : [csr_matrix] Compressed sparse representation of graph,
Examples

```python
>>> from scipy.sparse.csgraph import csgraph_from_dense

>>> graph = [
... [0, 1, 2, 0],
... [0, 0, 0, 1],
... [0, 0, 0, 3],
... [0, 0, 0, 0]
... ]

>>> csgraph_from_dense(graph)
<4x4 sparse matrix of type '<class 'numpy.float64'>'
with 4 stored elements in Compressed Sparse Row format>
```

\textbf{scipy.sparse.csgraph.csgraph\(_{\text{from_masked}}\)}

\texttt{scipy.sparse.csgraph.csgraph\(_{\text{from_masked}}\)(graph)}

Construct a CSR-format graph from a masked array.

New in version 0.11.0.

Parameters

- \texttt{graph}
 [MaskedArray] Input graph. Shape should be (n_nodes, n_nodes).

Returns

- \texttt{csgraph}
 [csr_matrix] Compressed sparse representation of graph.

Examples

```python
>>> import numpy as np
>>> from scipy.sparse.csgraph import csgraph_from_masked

>>> graph_masked = np.ma.masked_array(data =[
... [0, 1, 2, 0],
... [0, 0, 0, 1],
... [0, 0, 0, 3],
... [0, 0, 0, 0]
... ],
... mask=[[ True, False, False, True],
... [ True, True, True, False],
... [ True, True, True, False],
... [ True, True, True, True]],
... fill_value = 0)

>>> csgraph_from_masked(graph_masked)
<4x4 sparse matrix of type '<class 'numpy.float64'>'
with 4 stored elements in Compressed Sparse Row format>
```
scipy.sparse.csgraph.csgraph_masked_from_dense

`scipy.sparse.csgraph.csgraph_masked_from_dense(graph, null_value=0, nan_null=True, infinity_null=True, copy=True)`

Construct a masked array graph representation from a dense matrix.

New in version 0.11.0.

Parameters

- **graph** *(array_like)* Input graph. Shape should be (n_nodes, n_nodes).
- **null_value** *(float or None (optional))* Value that denotes non-edges in the graph. Default is zero.
- **infinity_null** *(bool)* If True (default), then infinite entries (both positive and negative) are treated as null edges.
- **nan_null** *(bool)* If True (default), then NaN entries are treated as non-edges.

Returns

- **csgraph** *[MaskedArray]* masked array representation of graph

Examples

```python
>>> from scipy.sparse.csgraph import csgraph_masked_from_dense

>>> graph = [
... [0, 1, 2, 0],
... [0, 0, 0, 1],
... [0, 0, 0, 3],
... [0, 0, 0, 0]
... ]

>>> csgraph_masked_from_dense(graph)
masked_array(
    data=[[--, 1, 2, --],
          [--, --, --, 1],
          [--, --, --, 3],
          [--, --, --, --]],
    mask=[[ True, False, False, True],
           [ True, True, True, False],
           [ True, True, True, False],
           [ True, True, True, True]],
    fill_value=0)
```

scipy.sparse.csgraph.csgraph_to_dense

`scipy.sparse.csgraph.csgraph_to_dense(csgraph, null_value=0)`

Convert a sparse graph representation to a dense representation.

New in version 0.11.0.

Parameters

- **csgraph** *[csr_matrix, csc_matrix, or lil_matrix]* Sparse representation of a graph.
- **null_value** *[float, optional]* The value used to indicate null edges in the dense representation. Default is 0.
Returns

graph [ndarray] The dense representation of the sparse graph.

Notes

For normal sparse graph representations, calling `csgraph_to_dense` with `null_value=0` produces an equivalent result to using dense format conversions in the main sparse package. When the sparse representations have repeated values, however, the results will differ. The tools in `scipy.sparse` will add repeating values to obtain a final value. This function will select the minimum among repeating values to obtain a final value. For example, here we'll create a two-node directed sparse graph with multiple edges from node 0 to node 1, of weights 2 and 3. This illustrates the difference in behavior:

```python
>>> from scipy.sparse import csr_matrix, csgraph
>>> data = np.array([2, 3])
>>> indices = np.array([1, 1])
>>> indptr = np.array([0, 2, 2])
>>> M = csr_matrix((data, indices, indptr), shape=(2, 2))
>>> M.toarray()
array([[0, 5],
       [0, 0]])
>>> csgraph.csgraph_to_dense(M)
array([[0., 2.],
       [0., 0.]])
```

The reason for this difference is to allow a compressed sparse graph to represent multiple edges between any two nodes. As most sparse graph algorithms are concerned with the single lowest-cost edge between any two nodes, the default `scipy.sparse` behavior of summing multiple weights does not make sense in this context.

The other reason for using this routine is to allow for graphs with zero-weight edges. Let's look at the example of a two-node directed graph, connected by an edge of weight zero:

```python
>>> from scipy.sparse import csr_matrix, csgraph
>>> data = np.array([0.0])
>>> indices = np.array([1])
>>> indptr = np.array([0, 1, 1])
>>> M = csr_matrix((data, indices, indptr), shape=(2, 2))
>>> M.toarray()
array([[0, 0],
       [0, 0]])
>>> csgraph.csgraph_to_dense(M, np.inf)
array([[inf, 0.],
       [inf, inf]])
```

In the first case, the zero-weight edge gets lost in the dense representation. In the second case, we can choose a different null value and see the true form of the graph.
Examples

```python
>>> from scipy.sparse import csr_matrix
csr_matrix
```

```python
>>> from scipy.sparse.csgraph import csgraph_to_dense
csgraph_to_dense
```

```python
graph = csr_matrix( [
... [0, 1, 2, 0],
... [0, 0, 0, 1],
... [0, 0, 0, 3],
... [0, 0, 0, 0]
... ]
)
graph
<4x4 sparse matrix of type '<class 'numpy.int64'>'
    with 4 stored elements in Compressed Sparse Row format>
```

```python
csgraph_to_dense(graph)
array([[0., 1., 2., 0.],
   [0., 0., 0., 1.],
   [0., 0., 0., 3.],
   [0., 0., 0., 0.]]))
```

scipy.sparse.csgraph.csgraph_to_masked

Convert a sparse graph representation to a masked array representation

New in version 0.11.0.

Parameters

csgraph: [csr_matrix, csc_matrix, or lil_matrix] Sparse representation of a graph.

Returns

graph: [MaskedArray] The masked dense representation of the sparse graph.
data=[[--, 1.0, 2.0, --],
 [--, --, --, 1.0],
 [--, --, --, 3.0],
 [--, --, --, --]],
mask=[[True, False, False, True],
 [True, True, True, False],
 [True, True, True, False],
 [True, True, True, True]],
fill_value=1e+20)

scipy.sparse.csgraph.reconstruct_path

scipy.sparse.csgraph.reconstruct_path(csgraph, predecessors, directed=True)

Construct a tree from a graph and a predecessor list.
New in version 0.11.0.

Parameters

- csgraph [array_like or sparse matrix] The N x N matrix representing the directed or undirected graph from which the predecessors are drawn.
- predecessors [array_like, one dimension] The length-N array of indices of predecessors for the tree. The index of the parent of node i is given by predecessors[i].
- directed [bool, optional] If True (default), then operate on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then operate on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i].

Returns
cstree [csr matrix] The N x N directed compressed-sparse representation of the tree drawn from csgraph which is encoded by the predecessor list.

Examples

>>> from scipy.sparse import csr_matrix
>>> from scipy.sparse.csgraph import reconstruct_path

>>> graph = [
... [0, 1, 2, 0],
... [0, 0, 0, 1],
... [0, 0, 0, 3],
... [0, 0, 0, 0]
...]
>>> graph = csr_matrix(graph)
>>> print(graph)
(0, 1) 1
(0, 2) 2
(1, 3) 1
(2, 3) 3

>>> pred = np.array([-9999, 0, 0, 1], dtype=np.int32)
```python
>>> cstree = reconstruct_path(csgraph=graph, predecessors=pred, _
directed=False)
>>> cstree.todense()
```

```matlab
matrix([[0., 1., 2., 0.],
        [0., 0., 0., 1.],
        [0., 0., 0., 0.],
        [0., 0., 0., 0.]])
```

Graph Representations

This module uses graphs which are stored in a matrix format. A graph with \(N \) nodes can be represented by an \((N \times N) \) adjacency matrix \(G \). If there is a connection from node \(i \) to node \(j \), then \(G[i, j] = w \), where \(w \) is the weight of the connection. For nodes \(i \) and \(j \) which are not connected, the value depends on the representation:

- for dense array representations, non-edges are represented by \(G[i, j] = 0 \), infinity, or NaN.
- for dense masked representations (of type np.ma.MaskedArray), non-edges are represented by masked values. This can be useful when graphs with zero-weight edges are desired.
- for sparse array representations, non-edges are represented by non-entries in the matrix. This sort of sparse representation also allows for edges with zero weights.

As a concrete example, imagine that you would like to represent the following undirected graph:

![Graph](image)

This graph has three nodes, where node 0 and 1 are connected by an edge of weight 2, and nodes 0 and 2 are connected by an edge of weight 1. We can construct the dense, masked, and sparse representations as follows, keeping in mind that an undirected graph is represented by a symmetric matrix:

```python
>>> G_dense = np.array([[0, 2, 1],
                      ...                     [2, 0, 0],
                      ...                     [1, 0, 0]])
>>> G_masked = np.ma.masked_values(G_dense, 0)
>>> from scipy.sparse import csr_matrix
>>> G_sparse = csr_matrix(G_dense)
```

This becomes more difficult when zero edges are significant. For example, consider the situation when we slightly modify the above graph:

![Graph](image)
This is identical to the previous graph, except nodes 0 and 2 are connected by an edge of zero weight. In this case, the dense representation above leads to ambiguities: how can non-edges be represented if zero is a meaningful value? In this case, either a masked or sparse representation must be used to eliminate the ambiguity:

```python
>>> G2_data = np.array([[np.inf, 2, 0],
                      [2, np.inf, np.inf],
                      [0, np.inf, np.inf]])
>>> G2_masked = np.ma.masked_invalid(G2_data)
>>> from scipy.sparse.csgraph import csgraph_from_dense
>>> # G2_sparse = csr_matrix(G2_data) would give the wrong result
>>> G2_sparse = csgraph_from_dense(G2_data, null_value=np.inf)
>>> G2_sparse.data
array([ 2., 0., 2., 0.])
```

Here we have used a utility routine from the csgraph submodule in order to convert the dense representation to a sparse representation which can be understood by the algorithms in submodule. By viewing the data array, we can see that the zero values are explicitly encoded in the graph.

Directed vs. undirected

Matrices may represent either directed or undirected graphs. This is specified throughout the csgraph module by a boolean keyword. Graphs are assumed to be directed by default. In a directed graph, traversal from node i to node j can be accomplished over the edge G[i, j], but not the edge G[j, i]. Consider the following dense graph:

```python
>>> G_dense = np.array([[0, 1, 0],
                      [2, 0, 3],
                      [0, 4, 0]])
```

When `directed=True` we get the graph:

```
---1--> ---3-->  
(0)      (1)      (2)
<--2--- <--4---
```

In a non-directed graph, traversal from node i to node j can be accomplished over either G[i, j] or G[j, i]. If both edges are not null, and the two have unequal weights, then the smaller of the two is used.

So for the same graph, when `directed=False` we get the graph:

```
(0)--1--(1)--3--(2)
```

Note that a symmetric matrix will represent an undirected graph, regardless of whether the 'directed' keyword is set to True or False. In this case, using `directed=True` generally leads to more efficient computation.

The routines in this module accept as input either scipy.sparse representations (csr, csc, or lil format), masked representations, or dense representations with non-edges indicated by zeros, infinities, and NaN entries.
3.3.25 Spatial algorithms and data structures (*scipy.spatial*)

Spatial transformations

These are contained in the `scipy.spatial.transform` submodule.

Nearest-neighbor queries

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>scipy.spatial.KDTree</code></td>
<td>kd-tree for quick nearest-neighbor lookup.</td>
</tr>
<tr>
<td><code>scipy.spatial.cKDTree</code></td>
<td>kd-tree for quick nearest-neighbor lookup</td>
</tr>
<tr>
<td><code>Rectangle</code></td>
<td>Hyperrectangle class.</td>
</tr>
</tbody>
</table>

scipy.spatial.KDTree

```python
class scipy.spatial.KDTree(data, leafsize=10, compact_nodes=True, copy_data=False, balanced_tree=True, boxsize=None)
```

kd-tree for quick nearest-neighbor lookup.

This class provides an index into a set of k-dimensional points which can be used to rapidly look up the nearest neighbors of any point.

Parameters

- **data** [array_like, shape (n,m)] The n data points of dimension m to be indexed. This array is not copied unless this is necessary to produce a contiguous array of doubles, and so modifying this data will result in bogus results. The data are also copied if the kd-tree is built with copy_data=True.
- **leafsize** [positive int, optional] The number of points at which the algorithm switches over to brute-force. Default: 10.
- **compact_nodes** [bool, optional] If True, the kd-tree is built to shrink the hyperrectangles to the actual data range. This usually gives a more compact tree that is robust against degenerated input data and gives faster queries at the expense of longer build time. Default: True.
- **copy_data** [bool, optional] If True the data is always copied to protect the kd-tree against data corruption. Default: False.
- **balanced_tree** [bool, optional] If True, the median is used to split the hyperrectangles instead of the midpoint. This usually gives a more compact tree and faster queries at the expense of longer build time. Default: True.
- **boxsize** [array_like or scalar, optional] Apply a m-d toroidal topology to the KDTree. The topology is generated by \(x_i + n_i L_i \) where \(n_i \) are integers and \(L_i \) is the boxsize along i-th dimension. The input data shall be wrapped into \([0, L_i)\). A ValueError is raised if any of the data is outside of this bound.
Notes

The algorithm used is described in Maneewongvatana and Mount 1999. The general idea is that the kd-tree is a binary tree, each of whose nodes represents an axis-aligned hyperrectangle. Each node specifies an axis and splits the set of points based on whether their coordinate along that axis is greater than or less than a particular value. During construction, the axis and splitting point are chosen by the “sliding midpoint” rule, which ensures that the cells do not all become long and thin.

The tree can be queried for the r closest neighbors of any given point (optionally returning only those within some maximum distance of the point). It can also be queried, with a substantial gain in efficiency, for the r approximate closest neighbors.

For large dimensions (20 is already large) do not expect this to run significantly faster than brute force. High-dimensional nearest-neighbor queries are a substantial open problem in computer science.

Attributes

- **data**
 [ndarray, shape (n,m)] The n data points of dimension m to be indexed. This array is not copied unless this is necessary to produce a contiguous array of doubles. The data are also copied if the kd-tree is built with `copy_data=True`.

- **leafsize**
 [positive int] The number of points at which the algorithm switches over to brute-force.

- **m**
 [int] The dimension of a single data-point.

- **n**
 [int] The number of data points.

- **maxes**
 [ndarray, shape (m,)] The maximum value in each dimension of the n data points.

- **mins**
 [ndarray, shape (m,)] The minimum value in each dimension of the n data points.

- **size**
 [int] The number of nodes in the tree.

Methods

- **count_neighbors**(other, r[, p, weights,...])
 Count how many nearby pairs can be formed.

- **query**(x[, k, eps, p, distance_upper_bound,...])
 Query the kd-tree for nearest neighbors.

- **query_ball_point**(x, r[, p, eps, workers,...])
 Find all points within distance r of point(s) x.

- **query_ball_tree**(other, r[, p, eps])
 Find all pairs of points between self and other whose distance is at most r.

- **query_pairs**(r[, p, eps, output_type])
 Find all pairs of points in self whose distance is at most r.

- **sparse_distance_matrix**(other, max_distance)
 Compute a sparse distance matrix.

```
scipy.spatial.KDTree.count_neighbors

KDTree.count_neighbors (other, r=2.0, weights=None, cumulative=True)

Count how many nearby pairs can be formed.

Count the number of pairs (x1, x2) can be formed, with x1 drawn from self and x2 drawn from other, and where distance(x1, x2, p) <= r.

Data points on self and other are optionally weighted by the weights argument. (See below)

This is adapted from the “two-point correlation” algorithm described by Gray and Moore [1]. See notes for further discussion.

Parameters

- **other**  
  [KDTree] The other tree to draw points from, can be the same tree as self.
```

r [float or one-dimensional array of floats] The radius to produce a count for. Multiple radii are searched with a single tree traversal. If the count is non-cumulative (`cumulative=False`), `r` defines the edges of the bins, and must be non-decreasing.

p [float, optional] $1 \leq p \leq \infty$. Which Minkowski p-norm to use. Default 2.0. A finite large p may cause a ValueError if overflow can occur.

weights [tuple, array_like, or None, optional] If None, the pair-counting is unweighted. If given as a tuple, `weights[0]` is the weights of points in `self`, and `weights[1]` is the weights of points in `other`; either can be `None` to indicate the points are unweighted. If given as an array_like, `weights` is the weights of points in `self` and `other`. For this to make sense, `self` and `other` must be the same tree. If `self` and `other` are two different trees, a ValueError is raised. Default: None

cumulative [bool, optional] Whether the returned counts are cumulative. When `cumulative` is set to `False` the algorithm is optimized to work with a large number of bins (>10) specified by `r`. When `cumulative` is set to `True`, the algorithm is optimized to work with a small number of `r`. Default: `True`

New in version 1.6.0.

Returns

result [scalar or 1-D array] The number of pairs. For unweighted counts, the result is integer. For weighted counts, the result is float. If `cumulative` is `False`, `result[i]` contains the counts with $(-\infty \text{ if } i == 0 \text{ else } r[i-1]) < R \leq r[i]$

Notes

Pair-counting is the basic operation used to calculate the two point correlation functions from a data set composed of position of objects.

Two point correlation function measures the clustering of objects and is widely used in cosmology to quantify the large scale structure in our Universe, but it may be useful for data analysis in other fields where self-similar assembly of objects also occur.

The Landy-Szalay estimator for the two point correlation function of D measures the clustering signal in D. [2]

For example, given the position of two sets of objects,

- objects D (data) contains the clustering signal, and
- objects R (random) that contains no signal,

\[
\xi(r) = \frac{\langle D, D \rangle - 2f \langle D, R \rangle + f^2 \langle R, R \rangle}{f^2 \langle R, R \rangle},
\]

where the brackets represents counting pairs between two data sets in a finite bin around r (distance), corresponding to setting `cumulative=False`, and $f = \frac{\text{float(len(D))}}{\text{float(len(R))}}$ is the ratio between number of objects from data and random.

The algorithm implemented here is loosely based on the dual-tree algorithm described in [1]. We switch between two different pair-accumulation scheme depending on the setting of `cumulative`. The computing time of the method we use when for `cumulative == False` does not scale with the total number of bins. The algorithm for `cumulative == True` scales linearly with the number of bins, though it is slightly faster when only 1 or 2 bins are used. [5].
As an extension to the naive pair-counting, weighted pair-counting counts the product of weights instead of number of pairs. Weighted pair-counting is used to estimate marked correlation functions ([3], section 2.2), or to properly calculate the average of data per distance bin (e.g. [4], section 2.1 on redshift).

Examples

You can count neighbors number between two kd-trees within a distance:

```python
>>> import numpy as np
>>> from scipy.spatial import KDTree
>>> rng = np.random.default_rng()
>>> points1 = rng.random((5, 2))
>>> points2 = rng.random((5, 2))
>>> kd_tree1 = KDTree(points1)
>>> kd_tree2 = KDTree(points2)
>>> kd_tree1.count_neighbors(kd_tree2, 0.2)
1
```

This number is same as the total pair number calculated by `query_ball_tree`:

```python
>>> indexes = kd_tree1.query_ball_tree(kd_tree2, r=0.2)
>>> sum([len(i) for i in indexes])
1
```

scipy.spatial.KDTree.query

KDTree.query(x, k=1, eps=0, p=2, distance_upper_bound=inf, workers=1)

Query the kd-tree for nearest neighbors.

Parameters

- `x` [array_like, last dimension self.m] An array of points to query.
- `k` [int or Sequence[int], optional] Either the number of nearest neighbors to return, or a list of the k-th nearest neighbors to return, starting from 1.
- `eps` [nonnegative float, optional] Return approximate nearest neighbors; the kth returned value is guaranteed to be no further than (1+eps) times the distance to the real kth nearest neighbor.
- `p` [float, 1<=p<=infinity, optional] Which Minkowski p-norm to use. 1 is the sum-of-absolute-values distance (“Manhattan” distance). 2 is the usual Euclidean distance. infinity is the maximum-coordinate-difference distance. A large, finite p may cause a ValueError if overflow can occur.
- `distance_upper_bound` [nonnegative float, optional] Return only neighbors within this distance. This is used to prune tree searches, so if you are doing a series of nearest-neighbor queries, it may help to supply the distance to the nearest neighbor of the most recent point.
- `workers` [int, optional] Number of workers to use for parallel processing. If -1 is given all CPU threads are used. Default: 1. New in version 1.6.0.

Returns

- `d` [float or array of floats] The distances to the nearest neighbors. If `x` has shape `tuple+(self.m,)`, then `d` has shape `tuple+(k,)`. When `k == 1`, the last dimen-
sion of the output is squeezed. Missing neighbors are indicated with infinite distances. Hits are sorted by distance (nearest first).

Deprecated since version 1.6.0: If k=None, then d is an object array of shape tuple, containing lists of distances. This behavior is deprecated and will be removed in SciPy 1.8.0, use query_ball_point instead.

Examples

```python
>>> import numpy as np
>>> from scipy.spatial import KDTree
>>> x, y = np.mgrid[0:5, 2:8]
>>> tree = KDTree(np.c_[x.ravel(), y.ravel()])

To query the nearest neighbours and return squeezed result, use

```python
>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=1)
>>> print(dd, ii, sep='\n')
[2.0 0.2236068]
[0 13]
```

To query the nearest neighbours and return unsqueezed result, use

```python
>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=[1])
>>> print(dd, ii, sep='\n')
[[2.0 0.2236068]]
[[0 13]]
```

To query the second nearest neighbours and return unsqueezed result, use

```python
>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=[2])
>>> print(dd, ii, sep='\n')
[[2.23606798 0.80622577]]
[[6 19]]
```

To query the first and second nearest neighbours, use

```python
>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=2)
>>> print(dd, ii, sep='\n')
[[2.23606798 0.80622577]]
[[0 6]
 [13 19]]
```

or, be more specific

```python
>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=[1, 2])
>>> print(dd, ii, sep='\n')
```

(continues on next page)

(continued from previous page)

[[2.0  2.32606798]
 [0.2236068 0.80622577]
 [[ 0  6]
 [ 13  19]]

scipy.spatial.KDTree.query_ball_point

KDTree.query_ball_point (x, r, p=2.0, eps=0, workers=1, return_sorted=None, return_length=False)

Find all points within distance r of point(s) x.

Parameters

x [array_like, shape tuple + (self.m,)] The point or points to search for neighbors of.
r [array_like, float] The radius of points to return, must broadcast to the length of x.
p [float, optional] Which Minkowski p-norm to use. Should be in the range [1, inf]. A finite large p may cause a ValueError if overflow can occur.
eps [nonnegative float, optional] Approximate search. Branches of the tree are not explored if their nearest points are further than r / (1 + eps), and branches are added in bulk if their furthest points are nearer than r * (1 + eps).
workers [int, optional] Number of jobs to schedule for parallel processing. If -1 is given all processors are used. Default: 1.
New in version 1.6.0.
return_sorted [bool, optional] Sorts returned indicies if True and does not sort them if False. If None, does not sort single point queries, but does sort multi-point queries which was the behavior before this option was added.
New in version 1.6.0.
return_length: bool, optional
Return the number of points inside the radius instead of a list of the indices.
New in version 1.6.0.

Returns

results [list or array of lists] If x is a single point, returns a list of the indices of the neighbors of x. If x is an array of points, returns an object array of shape tuple containing lists of neighbors.

Notes

If you have many points whose neighbors you want to find, you may save substantial amounts of time by putting them in a KDTree and using query_ball_tree.
Examples

```python
>>> from scipy import spatial
>>> x, y = np.mgrid[0:5, 0:5]
>>> points = np.c_[x.ravel(), y.ravel()]
>>> tree = spatial.KDTree(points)
>>> sorted(tree.query_ball_point(([2, 0], 1))
[5, 10, 11, 15]

Query multiple points and plot the results:

```python
>>> import matplotlib.pyplot as plt
>>> points = np.asarray(points)
>>> plt.plot(points[:,0], points[:,1], '.')
>>> for results in tree.query_ball_point(([2, 0], [3, 3]), 1):
...     nearby_points = points[results]
...     plt.plot(nearby_points[:,0], nearby_points[:,1], 'o')
>>> plt.margins(0.1, 0.1)
>>> plt.show()
```

scipy.spatial.KDTree.query_ball_tree

KDTree.query_ball_tree (other, r, p=2.0, eps=0)

Find all pairs of points between self and other whose distance is at most r.

Parameters

- **other**: [KDTree instance] The tree containing points to search against.
- **r**: [float] The maximum distance, has to be positive.
- **p**: [float, optional] Which Minkowski norm to use. p has to meet the condition 1 <= p <= infinity.
- **eps**: [float, optional] Approximate search. Branches of the tree are not explored if their nearest points are further than r/(1+eps), and branches are added in bulk if their furthest points are nearer than r * (1+eps). eps has to be non-negative.
Returns

results [list of lists] For each element self.data[i] of this tree, results[i] is a list of the indices of its neighbors in other.data.

Examples

You can search all pairs of points between two kd-trees within a distance:

```python
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from scipy.spatial import KDTree
>>> rng = np.random.default_rng()
>>> points1 = rng.random((15, 2))
>>> points2 = rng.random((15, 2))
>>> plt.figure(figsize=(6, 6))
>>> plt.plot(points1[:, 0], points1[:, 1], "xk", markersize=14)
>>> plt.plot(points2[:, 0], points2[:, 1], "og", markersize=14)
>>> kd_tree1 = KDTree(points1)
>>> kd_tree2 = KDTree(points2)
>>> indexes = kd_tree1.query_ball_tree(kd_tree2, r=0.2)
>>> for i in range(len(indexes)):
...     for j in indexes[i]:
...         plt.plot([points1[i, 0], points2[j, 0]],
...                  [points1[i, 1], points2[j, 1]], "-r")
>>> plt.show()
```

scipy.spatial.KDTree.query_pairs

KDTree.query_pairs(r, p=2.0, eps=0, output_type='set')

Find all pairs of points in self whose distance is at most r.

Parameters

- r [positive float] The maximum distance.
- p [float, optional] Which Minkowski norm to use. p has to meet the condition 1 <= p <= infinity.
- eps [float, optional] Approximate search. Branches of the tree are not explored if their nearest points are further than r/(1+eps), and branches are added in bulk if their furthest points are nearer than r * (1+eps). eps has to be non-negative.
- output_type [string, optional] Choose the output container, ‘set’ or ‘ndarray’. Default: ‘set’

New in version 1.6.0.

Returns

results [set or ndarray] Set of pairs (i, j), with i < j, for which the corresponding positions are close. If output_type is ‘ndarray’, an ndarry is returned instead of a set.
Examples

You can search all pairs of points in a kd-tree within a distance:

```python
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from scipy.spatial import KDTree
>>> rng = np.random.default_rng()
>>> points = rng.random((20, 2))
>>> plt.figure(figsize=(6, 6))
>>> plt.plot(points[:, 0], points[:, 1], "xk", markersize=14)
>>> kd_tree = KDTree(points)
>>> pairs = kd_tree.query_pairs(r=0.2)
>>> for (i, j) in pairs:
...     plt.plot([points[i, 0], points[j, 0]],
...              [points[i, 1], points[j, 1]], "-r")
>>> plt.show()
```

scipy.spatial.KDTree.sparse_distance_matrix

KDTree.sparse_distance_matrix(other, max_distance, p=2.0, output_type='dok_matrix')

Compute a sparse distance matrix.

Computes a distance matrix between two KDTrees, leaving as zero any distance greater than max_distance.

Parameters

- **other** [KDTree]
- **max_distance** [positive float]
- **p** [float, 1<=p<=infinity] Which Minkowski p-norm to use. A finite large p may cause a ValueError if overflow can occur.

Returns

- **result** [dok_matrix, coo_matrix, dict or ndarray] Sparse matrix representing the results in “dictionary of keys” format. If a dict is returned the keys are (i,j) tuples of indices. If output_type is ‘ndarray’ a record array with fields ‘i’, ‘j’, and ‘v’ is returned.

Examples

You can compute a sparse distance matrix between two kd-trees:

```python
>>> import numpy as np
>>> from scipy.spatial import KDTree
>>> rng = np.random.default_rng()
>>> points1 = rng.random((5, 2))
>>> points2 = rng.random((5, 2))
>>> kd_tree1 = KDTree(points1)
>>> kd_tree2 = KDTree(points2)
```
You can check distances above the \textit{max distance} are zeros:

```python
>>> from scipy.spatial import distance_matrix
>>> distance_matrix(points1, points2)
array([[0.56906522, 0.39923701, 0.12295571, 0.8658745 , 0.79428925],
       [0.37327919, 0.7225693 , 0.87665969, 0.32580855, 0.75679479],
       [0.28942611, 0.30088013, 0.6395831 , 0.2333084 , 0.33630734],
       [0.31994999, 0.72658602, 0.71124834, 0.55396483, 0.90785663],
       [0.24617575, 0.29571802, 0.26836782, 0.57714465, 0.6473269 ]])
```

scipy.spatial.cKDTree

```python
class scipy.spatial.cKDTree(data, leafsize=16, compact_nodes=True, copy_data=False, balanced_tree=True, boxsize=None)
```

kd-tree for quick nearest-neighbor lookup

This class provides an index into a set of k-dimensional points which can be used to rapidly look up the nearest neighbors of any point.

Note: `cKDTree` is functionally identical to `KDTree`. Prior to SciPy v1.6.0, `cKDTree` had better performance and slightly different functionality but now the two names exist only for backward-compatibility reasons. If compatibility with SciPy < 1.6 is not a concern, prefer `KDTree`.

Parameters

- **data** [array_like, shape (n,m)] The n data points of dimension m to be indexed. This array is not copied unless this is necessary to produce a contiguous array of doubles, and so modifying this data will result in bogus results. The data are also copied if the kd-tree is built with `copy_data=True`.

- **leafsize** [positive int, optional] The number of points at which the algorithm switches over to brute-force. Default: 16.

- **compact_nodes** [bool, optional] If True, the kd-tree is built to shrink the hyperrectangles to the actual data range. This usually gives a more compact tree that is robust against degenerated input data and gives faster queries at the expense of longer build time. Default: True.

- **copy_data** [bool, optional] If True the data is always copied to protect the kd-tree against data corruption. Default: False.

- **balanced_tree**
[bool, optional] If True, the median is used to split the hyperrectangles instead of the midpoint. This usually gives a more compact tree and faster queries at the expense of longer build time. Default: True.

boxsize
[array_like or scalar, optional] Apply a m-d toroidal topology to the KDTree. The topology is generated by \(x_i + n_i L_i\) where \(n_i\) are integers and \(L_i\) is the boxsize along \(i\)-th dimension. The input data shall be wrapped into \([0, L_i)\). A ValueError is raised if any of the data is outside of this bound.

Notes

The algorithm used is described in Maneewongvatana and Mount 1999. The general idea is that the kd-tree is a binary tree, each of whose nodes represents an axis-aligned hyperrectangle. Each node specifies an axis and splits the set of points based on whether their coordinate along that axis is greater than or less than a particular value.

During construction, the axis and splitting point are chosen by the “sliding midpoint” rule, which ensures that the cells do not all become long and thin.

The tree can be queried for the \(r\) closest neighbors of any given point (optionally returning only those within some maximum distance of the point). It can also be queried, with a substantial gain in efficiency, for the \(r\) approximate closest neighbors.

For large dimensions (20 is already large) do not expect this to run significantly faster than brute force. High-dimensional nearest-neighbor queries are a substantial open problem in computer science.

Attributes

- **data** [ndarray, shape (n,m)] The \(n\) data points of dimension \(m\) to be indexed. This array is not copied unless this is necessary to produce a contiguous array of doubles. The data are also copied if the kd-tree is built with \(copy_data=True\).
- **leafsize** [positive int] The number of points at which the algorithm switches over to brute-force.
- **m** [int] The dimension of a single data-point.
- **n** [int] The number of data points.
- **maxes** [ndarray, shape (m,)] The maximum value in each dimension of the \(n\) data points.
- **mins** [ndarray, shape (m,)] The minimum value in each dimension of the \(n\) data points.
- **tree** [object, class cKDTreeNode] This attribute exposes a Python view of the root node in the cKDTree object. A full Python view of the kd-tree is created dynamically on the first access. This attribute allows you to create your own query functions in Python.
- **size** [int] The number of nodes in the tree.

Methods

- **count_neighbors**(self, other, r[, p,...]) Count how many nearby pairs can be formed.
- **query**(self, x[, k, eps, p, ...]) Query the kd-tree for nearest neighbors.
- **query_ball_point**(self, x, r[, p, eps, ...]) Find all points within distance \(r\) of point(s) \(x\).
- **query_ball_tree**(self, other, r[, p, eps]) Find all pairs of points between \(self\) and \(other\) whose distance is at most \(r\).
- **query_pairs**(self, r[, p, eps]) Find all pairs of points in \(self\) whose distance is at most \(r\).
- **sparse_distance_matrix**(self, other, max_distance) Compute a sparse distance matrix.
scipy.spatial.cKDTree.count_neighbors

scipy.spatial.cKDTree.count_neighbors *(self, other, r, p=2., weights=None, cumulative=True)*

Count how many nearby pairs can be formed.

Count the number of pairs \((x_1, x_2)\) can be formed, with \(x_1\) drawn from `self` and \(x_2\) drawn from `other`, and where \(\text{distance}(x_1, x_2, p) \leq r\).

Data points on `self` and `other` are optionally weighted by the `weights` argument. (See below)

This is adapted from the “two-point correlation” algorithm described by Gray and Moore [1]. See notes for further discussion.

Parameters

- `other` : [cKDTree instance] The other tree to draw points from, can be the same tree as `self`.
- `r` : [float or one-dimensional array of floats] The radius to produce a count for. Multiple radii are searched with a single tree traversal. If the count is non-cumulative(`cumulative=False`), `r` defines the edges of the bins, and must be non-decreasing.
- `p` : [float, optional] \(1 \leq p \leq \infty\). Which Minkowski p-norm to use. Default 2.0. A finite large p may cause a ValueError if overflow can occur.
- `weights` : [tuple, array_like, or None, optional] If None, the pair-counting is unweighted. If given as a tuple, `weights[0]` is the weights of points in `self`, and `weights[1]` is the weights of points in `other`; either can be None to indicate the points are unweighted. If given as an array_like, weights is the weights of points in `self` and `other`. For this to make sense, `self` and `other` must be the same tree. If `self` and `other` are two different trees, a ValueError is raised. Default: None
- `cumulative` : [bool, optional] Whether the returned counts are cumulative. When cumulative is set to False the algorithm is optimized to work with a large number of bins (>10) specified by `r`. When cumulative is set to True, the algorithm is optimized to work with a small number of `r`. Default: True

Returns

- `result` : [scalar or 1-D array] The number of pairs. For unweighted counts, the result is integer. For weighted counts, the result is float. If cumulative is False, `result[i]` contains the counts with \((-\infty \text{ if } i == 0 \text{ else } r[i-1]) < R \leq r[i]\)

Notes

Pair-counting is the basic operation used to calculate the two point correlation functions from a data set composed of position of objects.

Two point correlation function measures the clustering of objects and is widely used in cosmology to quantify the large scale structure in our Universe, but it may be useful for data analysis in other fields where self-similar assembly of objects also occur.

The Landy-Szalay estimator for the two point correlation function of \(D\) measures the clustering signal in \(D\). [2]

For example, given the position of two sets of objects,

- objects \(D\) (data) contains the clustering signal, and
- objects \(R\) (random) that contains no signal,
\[\xi(r) = \frac{<D, D> - 2f <D, R> + f^2 <R, R>}{f^2 <R, R>}, \]

where the brackets represents counting pairs between two data sets in a finite bin around \(r \) (distance), corresponding to setting \(cumulative=False \), and \(f = \frac{\text{float(len(D))}}{\text{float(len(R))}} \) is the ratio between number of objects from data and random.

The algorithm implemented here is loosely based on the dual-tree algorithm described in [1]. We switch between two different pair-cumulation scheme depending on the setting of \(cumulative \). The computing time of the method we use when for \(cumulative == False \) does not scale with the total number of bins. The algorithm for \(cumulative == True \) scales linearly with the number of bins, though it is slightly faster when only 1 or 2 bins are used. [5].

As an extension to the naive pair-counting, weighted pair-counting counts the product of weights instead of number of pairs. Weighted pair-counting is used to estimate marked correlation functions ([3], section 2.2), or to properly calculate the average of data per distance bin (e.g. [4], section 2.1 on redshift).

Examples

You can count neighbors number between two kd-trees within a distance:

```python
>>> import numpy as np
>>> from scipy.spatial import cKDTree
>>> rng = np.random.default_rng()
>>> points1 = rng.random((5, 2))
>>> points2 = rng.random((5, 2))
>>> kd_tree1 = cKDTree(points1)
>>> kd_tree2 = cKDTree(points2)
>>> kd_tree1.count_neighbors(kd_tree2, 0.2)
1
```

This number is same as the total pair number calculated by `query_ball_tree`:

```python
>>> indexes = kd_tree1.query_ball_tree(kd_tree2, r=0.2)
>>> sum([len(i) for i in indexes])
1
```

scipy.spatial.cKDTree.query

`cKDTree.query`(*self*, *x*, *k=1*, *eps=0*, *p=2*, *distance_upper_bound=np.inf*, *workers=1*)

Query the kd-tree for nearest neighbors.

Parameters

- **x** ([array_like, last dimension self.m]) An array of points to query.
- **k** ([list of integer or integer]) The list of k-th nearest neighbors to return. If k is an integer it is treated as a list of \([1, \ldots k]\) (range(1, k+1)). Note that the counting starts from 1.
- **eps** ([non-negative float]) Return approximate nearest neighbors; the k-th returned value is guaranteed to be no further than \((1+\text{eps})\) times the distance to the real k-th nearest neighbor.
- **p** ([float, \(1\leq p\leq \infty\)]) Which Minkowski p-norm to use. 1 is the sum-of-absolute-values “Manhattan” distance 2 is the usual Euclidean distance infinity is the maximum-coordinate-difference distance A finite large p may cause a `ValueError` if overflow can occur.
distance_upper_bound

[nonnegative float] Return only neighbors within this distance. This is used to prune tree searches, so if you are doing a series of nearest-neighbor queries, it may help to supply the distance to the nearest neighbor of the most recent point.

workers

[int, optional] Number of workers to use for parallel processing. If -1 is given all CPU threads are used. Default: 1.

Changed in version 1.6.0: The “n_jobs” argument was renamed “workers”. The old name “n_jobs” is deprecated and will stop working in SciPy 1.8.0.

Returns

- **d** [array of floats] The distances to the nearest neighbors. If x has shape tuple+(self.m,), then d has shape tuple+(k,). When k == 1, the last dimension of the output is squeezed. Missing neighbors are indicated with infinite distances.

- **i** [ndarray of ints] The index of each neighbor in self.data. If x has shape tuple+(self.m,), then i has shape tuple+(k,). When k == 1, the last dimension of the output is squeezed. Missing neighbors are indicated with self.n.

Notes

If the KD-Tree is periodic, the position x is wrapped into the box.

When the input k is a list, a query for arange(max(k)) is performed, but only columns that store the requested values of k are preserved. This is implemented in a manner that reduces memory usage.

Examples

```python
>>> import numpy as np
>>> from scipy.spatial import cKDTree
>>> x, y = np.mgrid[0:5, 2:8]
>>> tree = cKDTree(np.c_[x.ravel(), y.ravel()])

To query the nearest neighbours and return squeezed result, use

```python
>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=1)
>>> print(dd, ii, sep='\n')
[2. 0.2236068]
[0 13]
```  

To query the nearest neighbours and return unsqueezed result, use

```python
>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=[1])
>>> print(dd, ii, sep='\n')
[[2.]
 [0.2236068]]
[[0]
 [13]]
```  

To query the second nearest neighbours and return unsqueezed result, use

```python
>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=[2])
>>> print(dd, ii, sep='\n')
[[2.23606798]
 [0.223606798]]
(continues on next page)
To query the first and second nearest neighbours, use

```python
>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=2)
>>> print(dd, ii, sep='\n')
[[2. 2.23606798] [0.2236068 0.80622577]]
[[ 0 6] [13 19]]
```

or, be more specific

```python
>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=[1, 2])
>>> print(dd, ii, sep='\n')
[[2. 2.23606798] [0.2236068 0.80622577]]
[[ 0 6] [13 19]]
```

```
scipy.spatial.cKDTree.query_ball_point
```

cKDTree.query_ball_point (self, x, r=2., eps=0, workers=1, return_sorted=None, return_length=False)

Find all points within distance r of point(s) x.

Parameters

- **x** [array_like, shape tuple + (self.m,)] The point or points to search for neighbors of.
- **r** [array_like, float] The radius of points to return, shall broadcast to the length of x.
- **p** [float, optional] Which Minkowski p-norm to use. Should be in the range [1, inf]. A finite large p may cause a ValueError if overflow can occur.
- **eps** [nonnegative float, optional] Approximate search. Branches of the tree are not explored if their nearest points are further than \(r / (1 + \text{eps}) \), and branches are added in bulk if their furthest points are nearer than \(r * (1 + \text{eps}) \).
- **workers** [int, optional] Number of jobs to schedule for parallel processing. If -1 is given all processors are used. Default: 1. Changed in version 1.6.0: The “n_jobs” argument was renamed “workers”. The old name “n_jobs” is deprecated and will stop working in SciPy 1.8.0.
- **return_sorted** [bool, optional] Sorts returned indicies if True and does not sort them if False. If None, does not sort single point queries, but does sort multi-point queries which was the behavior before this option was added. New in version 1.2.0.
- **return_length**: bool, optional
 Return the number of points inside the radius instead of a list of the indices. .. version-added:: 1.3.0

Returns
results [list or array of lists] If x is a single point, returns a list of the indices of the neighbors of x. If x is an array of points, returns an object array of shape tuple containing lists of neighbors.

Notes

If you have many points whose neighbors you want to find, you may save substantial amounts of time by putting them in a cKDTree and using query_ball_tree.

Examples

```python
>>> from scipy import spatial
>>> x, y = np.mgrid[0:4, 0:4]
>>> points = np.c_[x.ravel(), y.ravel()]
>>> tree = spatial.cKDTree(points)
>>> tree.query_ball_point([2, 0], 1)
[4, 8, 9, 12]
```

Query multiple points and plot the results:

```python
>>> import matplotlib.pyplot as plt
>>> points = np.asarray(points)
>>> plt.plot(points[:,0], points[:,1], '.')
>>> for results in tree.query_ball_point(([2, 0], [3, 3]), 1):
...     nearby_points = points[results]
...     plt.plot(nearby_points[:,0], nearby_points[:,1], 'o')
>>> plt.margins(0.1, 0.1)
>>> plt.show()
```
scipy.spatial.cKDTree.query_ball_tree

cKDTree.query_ball_tree(self, other, r, p=2., eps=0)

Find all pairs of points between self and other whose distance is at most r

Parameters

other [cKDTree instance] The tree containing points to search against.
r [float] The maximum distance, has to be positive.
p [float, optional] Which Minkowski norm to use. p has to meet the condition 1 <= p <= infinity. A finite large p may cause a ValueError if overflow can occur.
eps [float, optional] Approximate search. Branches of the tree are not explored if their nearest points are further than r/(1+eps), and branches are added in bulk if their furthest points are nearer than r * (1+eps). eps has to be non-negative.

Returns

results [list of lists] For each element self.data[i] of this tree, results[i] is a list of the indices of its neighbors in other.data.

Examples

You can search all pairs of points between two kd-trees within a distance:

```python
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from scipy.spatial import cKDTree
>>> rng = np.random.default_rng()
>>> points1 = rng.random((15, 2))
>>> points2 = rng.random((15, 2))
>>> plt.figure(figsize=(6, 6))
>>> plt.plot(points1[:, 0], points1[:, 1], "xk", markersize=14)
>>> plt.plot(points2[:, 0], points2[:, 1], "og", markersize=14)
>>> kd_tree1 = cKDTree(points1)
>>> kd_tree2 = cKDTree(points2)
>>> indexes = kd_tree1.query_ball_tree(kd_tree2, r=0.2)
>>> for i in range(len(indexes)):
...     for j in indexes[i]:
...         plt.plot([points1[i, 0], points2[j, 0]],
...                  [points1[i, 1], points2[j, 1]], "+r")
>>> plt.show()
```

scipy.spatial.cKDTree.query_pairs

cKDTree.query_pairs(self, r, p=2., eps=0)

Find all pairs of points in self whose distance is at most r.

Parameters

r [positive float] The maximum distance.
p [float, optional] Which Minkowski norm to use. p has to meet the condition 1 <= p <= infinity. A finite large p may cause a ValueError if overflow can occur.
eps [float, optional] Approximate search. Branches of the tree are not explored if their nearest points are further than r/(1+eps), and branches are added in bulk if their furthest points are nearer than r * (1+eps). eps has to be non-negative.
3.3. API definition
output_type

[string, optional] Choose the output container, ‘set’ or ‘ndarray’. Default: ‘set’

Returns

results

[set or.ndarray] Set of pairs \((i, j)\), with \(i < j\), for which the corresponding positions
are close. If output_type is ‘ndarray’, an ndarray is returned instead of a set.

Examples

You can search all pairs of points in a kd-tree within a distance:

```python
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from scipy.spatial import cKDTree
>>> rng = np.random.default_rng()
>>> points = rng.random((20, 2))
>>> plt.figure(figsize=(6, 6))
>>> plt.plot(points[:, 0], points[:, 1], "xk", markersize=14)
>>> kd_tree = cKDTree(points)
>>> pairs = kd_tree.query_pairs(r=0.2)
>>> for (i, j) in pairs:
...     plt.plot([points[i, 0], points[j, 0]],
...              [points[i, 1], points[j, 1]], "-r")
>>> plt.show()
```

`scipy.spatial.cKDTree.sparse_distance_matrix`

`cKDTree.sparse_distance_matrix`(self, other, max_distance, p=2.)
Computes a sparse distance matrix between two cKDTrees, leaving as zero any distance greater than max_distance.

Parameters

other [cKDTree]
max_distance [positive float] Which Minkowski p-norm to use. A finite large p may cause a
ValueError if overflow can occur.
p [float, 1<=p<=infinity] Which Minkowski p-norm to use. A finite large p may cause a
ValueError if overflow can occur.
output_type [string, optional] Which container to use for output data. Options: ‘dok_matrix’,

Returns

result [dok_matrix, coo_matrix, dict or ndarray] Sparse matrix representing the results in “diction-
ary of keys” format. If a dict is returned the keys are \((i, j)\) tuples of indices. If
output_type is ‘ndarray’ a record array with fields ‘i’, ‘j’, and ‘v’ is returned,
Examples

You can compute a sparse distance matrix between two kd-trees:

```python
>>> import numpy as np
>>> from scipy.spatial import cKDTree
>>> rng = np.random.default_rng()
>>> points1 = rng.random((5, 2))
>>> points2 = rng.random((5, 2))
>>> kd_tree1 = cKDTree(points1)
>>> kd_tree2 = cKDTree(points2)
>>> sdm = kd_tree1.sparse_distance_matrix(kd_tree2, 0.3)
>>> sdm.toarray()
array([[0. , 0. , 0.12295571, 0. , 0. ],
       [0. , 0. , 0. , 0. , 0. ],
       [0.28942611, 0. , 0. , 0.2333084 , 0. ],
       [0. , 0. , 0. , 0. , 0. ],
       [0.24617575, 0.29571802, 0.26836782, 0. , 0. ]])
```

You can check distances above the `max_distance` are zeros:

```python
>>> from scipy.spatial import distance_matrix
>>> distance_matrix(points1, points2)
array([[0.56906522, 0.39923701, 0.12295571, 0.8658745 , 0.79428925],
       [0.37327919, 0.7225693 , 0.87665969, 0.32580855, 0.75679479],
       [0.28942611, 0.30088013, 0.6395831 , 0.2333084 , 0.33630734],
       [0.31994999, 0.72658602, 0.71124834, 0.55396483, 0.90785663],
       [0.24617575, 0.29571802, 0.26836782, 0.57714465, 0.6473269 ]])
```

scipy.spatial.Rectangle

class scipy.spatial.Rectangle (maxes, mins)

Hyperrectangle class.

Represents a Cartesian product of intervals.

Methods

- `max_distance_point(x[, p])`
 Return the maximum distance between input and points in the hyperrectangle.

- `max_distance_rectangle(other[, p])`
 Compute the maximum distance between points in the two hyperrectangles.

- `min_distance_point(x[, p])`
 Return the minimum distance between input and points in the hyperrectangle.

- `min_distance_rectangle(other[, p])`
 Compute the minimum distance between points in the two hyperrectangles.

- `split(d, split)`
 Produce two hyperrectangles by splitting.

- `volume()`
 Total volume.
scipy.spatial.Rectangle.max_distance_point

Rectangle.max_distance_point(x, p=2.0)
Return the maximum distance between input and points in the hyperrectangle.

Parameters
x [array_like] Input array.
p [float, optional] Input.

scipy.spatial.Rectangle.max_distance_rectangle

Rectangle.max_distance_rectangle(other, p=2.0)
Compute the maximum distance between points in the two hyperrectangles.

Parameters
other [hyperrectangle] Input.
p [float, optional] Input.

scipy.spatial.Rectangle.min_distance_point

Rectangle.min_distance_point(x, p=2.0)
Return the minimum distance between input and points in the hyperrectangle.

Parameters
x [array_like] Input.
p [float, optional] Input.

scipy.spatial.Rectangle.min_distance_rectangle

Rectangle.min_distance_rectangle(other, p=2.0)
Compute the minimum distance between points in the two hyperrectangles.

Parameters
other [hyperrectangle] Input.
p [float] Input.

scipy.spatial.Rectangle.split

Rectangle.split(d, split)
Produce two hyperrectangles by splitting.

In general, if you need to compute maximum and minimum distances to the children, it can be done more efficiently by updating the maximum and minimum distances to the parent.

Parameters
d [int] Axis to split hyperrectangle along.
split [float] Position along axis d to split at.
scipy.spatial.Rectangle.volume

 Rectangle.volume()

 Total volume.

Distance metrics are contained in the `scipy.spatial.distance` submodule.

Delaunay triangulation, convex hulls, and Voronoi diagrams

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delaunay(points[, furthest_site,...])</td>
<td>Delaunay tessellation in N dimensions.</td>
</tr>
<tr>
<td>ConvexHull(points[, incremental, qhull_options])</td>
<td>Convex hulls in N dimensions.</td>
</tr>
<tr>
<td>Voronoi(points[, furthest_site,...])</td>
<td>Voronoi diagrams in N dimensions.</td>
</tr>
<tr>
<td>SphericalVoronoi(points[, radius, center,...])</td>
<td>Voronoi diagrams on the surface of a sphere.</td>
</tr>
<tr>
<td>HalfspaceIntersection(halfspaces, interior_point)</td>
<td>Halfspace intersections in N dimensions.</td>
</tr>
</tbody>
</table>

scipy.spatial.Delaunay

class `scipy.spatial.Delaunay`(points, furthest_site=False, incremental=False, qhull_options=None)

 Delaunay tessellation in N dimensions.

 New in version 0.9.

 Parameters

 points [ndarray of floats, shape (npoints, ndim)] Coordinates of points to triangulate
 incremental [bool, optional] Allow adding new points incrementally. This takes up some additional resources.
 qhull_options [str, optional] Additional options to pass to Qhull. See Qhull manual for details. Option “Qt” is always enabled. Default: “Qbb Qc Qz Qx Q12” for ndim > 4 and “Qbb Qc Qz Q12” otherwise. Incremental mode omits “Qz”. New in version 0.12.0.

 Raises

 QhullError Raised when Qhull encounters an error condition, such as geometrical degeneracy when options to resolve are not enabled.
 ValueError Raised if an incompatible array is given as input.
Notes

The tessellation is computed using the Qhull library.

Note: Unless you pass in the Qhull option “QJ”, Qhull does not guarantee that each input point appears as a vertex in the Delaunay triangulation. Omitted points are listed in the *coplanar* attribute.

Examples

Triangulation of a set of points:

```python
>>> points = np.array([[0, 0], [0, 1.1], [1, 0], [1, 1]])
>>> from scipy.spatial import Delaunay
>>> tri = Delaunay(points)
```

We can plot it:

```python
>>> import matplotlib.pyplot as plt
>>> plt.triplot(points[:,0], points[:,1], tri.simplices)
>>> plt.plot(points[:,0], points[:,1], 'o')
>>> plt.show()
```

Point indices and coordinates for the two triangles forming the triangulation:

```python
>>> tri.simplices
array([[2, 3, 0], # may vary
        [3, 1, 0]], dtype=int32)
```

Note that depending on how rounding errors go, the simplices may be in a different order than above.

```python
>>> points[tri.simplices]
array([[1., 0.], # may vary
        [1., 1.],
        [0., 1.]])
```
Triangle 0 is the only neighbor of triangle 1, and it’s opposite to vertex 1 of triangle 1:

```python
>>> tri.neighbors[1]
array([-1, 0, -1], dtype=int32)
>>> points[tri.simplices[1,1]]
array([0., 1.1])
```

We can find out which triangle points are in:

```python
>>> p = np.array([(0.1, 0.2), (1.5, 0.5), (0.5, 1.05)])
>>> tri.find_simplex(p)
array([1, -1, 1], dtype=int32)
```

The returned integers in the array are the indices of the simplex the corresponding point is in. If -1 is returned, the point is in no simplex. Be aware that the shortcut in the following example only works correctly for valid points as invalid points result in -1 which is itself a valid index for the last simplex in the list.

```python
>>> p_valids = np.array([(0.1, 0.2), (0.5, 1.05)])
>>> tri.simplices[tri.find_simplex(p_valids)]
array([[3, 1, 0], # may vary
       [3, 1, 0]], dtype=int32)
```

We can also compute barycentric coordinates in triangle 1 for these points:

```python
>>> b = tri.transform[1,:2].dot(np.transpose(p - tri.transform[1,2]))
>>> np.c_[np.transpose(b), 1 - b.sum(axis=0)]
array([[ 0.1, 0.09090909, 0.80909091],
       [ 1.5, -0.90909091, 0.40909091],
       [ 0.5, 0.5, 0. ]])
```

The coordinates for the first point are all positive, meaning it is indeed inside the triangle. The third point is on a vertex, hence its null third coordinate.

Attributes

- **points** [ndarray of double, shape (npoints, ndim)] Coordinates of input points.
- **simplices** [ndarray of ints, shape (nsimplex, ndim+1)] Indices of the points forming the simplices in the triangulation. For 2-D, the points are oriented counterclockwise.
- **neighbors** [ndarray of ints, shape (nsimplex, ndim+1)] Indices of neighbor simplices for each simplex. The kth neighbor is opposite to the kth vertex. For simplices at the boundary, -1 denotes no neighbor.
- **equations** [ndarray of double, shape (nsimplex, ndim+2)] [normal, offset] forming the hyperplane equation of the facet on the paraboloid (see Qhull documentation for more).
- **paraboloid_scale, paraboloid_shift** [float] Scale and shift for the extra paraboloid dimension (see Qhull documentation for more).
- **transform** [ndarray of double, shape (nsimplex, ndim+1, ndim)] Affine transform from \(x \) to the barycentric coordinates \(c \).
vertex_to_simplex
[ndarray of int, shape (npoints,)] Lookup array, from a vertex, to some simplex which it is a part of.

convex_hull
[ndarray of int, shape (nfaces, ndim)] Vertices of facets forming the convex hull of the point set.

coplanar
[ndarray of int, shape (ncoplanar, 3)] Indices of coplanar points and the corresponding indices of the nearest facet and the nearest vertex. Coplanar points are input points which were not included in the triangulation due to numerical precision issues. If option “Qc” is not specified, this list is not computed. New in version 0.12.0.

vertices
Same as simplices, but deprecated.

vertex_neighbor_vertices
[tuple of two ndarrays of int; (indptr, indices)] Neighboring vertices of vertices.

furthest_site
True if this was a furthest site triangulation and False if not. New in version 1.4.0.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_points(points[, restart])</td>
<td>Process a set of additional new points.</td>
</tr>
<tr>
<td>close()</td>
<td>Finish incremental processing.</td>
</tr>
<tr>
<td>find_simplex(self, xi[, bruteforce, tol])</td>
<td>Find the simplices containing the given points.</td>
</tr>
<tr>
<td>lift_points(self, x)</td>
<td>Lift points to the Qhull paraboloid.</td>
</tr>
<tr>
<td>plane_distance(self, xi)</td>
<td>Compute hyperplane distances to the point xi from all simplices.</td>
</tr>
</tbody>
</table>

scipy.spatial.Delaunay.add_points

Delaunay.add_points(points, restart=False)
Process a set of additional new points.

Parameters

- **points** [ndarray] New points to add. The dimensionality should match that of the initial points.
- **restart** [bool, optional] Whether to restart processing from scratch, rather than adding points incrementally.

Raises

- **QhullError** Raised when Qhull encounters an error condition, such as geometrical degeneracy when options to resolve are not enabled.

See also:

close
Notes

You need to specify `incremental=True` when constructing the object to be able to add points incrementally. Incremental addition of points is also not possible after `close` has been called.

scipy.spatial.Delaunay.close

Delaunay.close()

Finish incremental processing.

Call this to free resources taken up by Qhull, when using the incremental mode. After calling this, adding more points is no longer possible.

scipy.spatial.Delaunay.find_simplex

Delaunay.find_simplex(self, xi, bruteforce=False, tol=None)

Find the simplices containing the given points.

Parameters

- `tri` [DelaunayInfo] Delaunay triangulation
- `xi` [ndarray of double, shape (…, ndim)] Points to locate
- `bruteforce` [bool, optional] Whether to only perform a brute-force search
- `tol` [float, optional] Tolerance allowed in the inside-triangle check. Default is `100*eps`.

Returns

- `i` [ndarray of int, same shape as `xi`] Indices of simplices containing each point. Points outside the triangulation get the value -1.

Notes

This uses an algorithm adapted from Qhull's `qh_findbestfacet`, which makes use of the connection between a convex hull and a Delaunay triangulation. After finding the simplex closest to the point in N+1 dimensions, the algorithm falls back to directed search in N dimensions.

scipy.spatial.Delaunay.lift_points

Delaunay.lift_points(self, x)

Lift points to the Qhull paraboloid.

scipy.spatial.Delaunay.plane_distance

Delaunay.plane_distance(self, xi)

Compute hyperplane distances to the point `xi` from all simplices.
scipy.spatial.ConvexHull

class scipy.spatial.ConvexHull(points, incremental=False, qhull_options=None)
Convex hulls in N dimensions.
New in version 0.12.0.

Parameters
points [ndarray of floats, shape (npoints, ndim)] Coordinates of points to construct a convex hull from
incremental [bool, optional] Allow adding new points incrementally. This takes up some additional resources.
qhull_options [str, optional] Additional options to pass to Qhull. See Qhull manual for details. (Default: “Qx” for ndim > 4 and “” otherwise) Option “Qt” is always enabled.

Raises
QhullError Raised when Qhull encounters an error condition, such as geometrical degeneracy when options to resolve are not enabled.
ValueError Raised if an incompatible array is given as input.

Notes
The convex hull is computed using the Qhull library.

References
[Qhull]

Examples
Convex hull of a random set of points:

```python
>>> from scipy.spatial import ConvexHull, convex_hull_plot_2d
>>> rng = np.random.default_rng()
>>> points = rng.random((30, 2))  # 30 random points in 2-D
>>> hull = ConvexHull(points)
```

Plot it:

```python
>>> import matplotlib.pyplot as plt
>>> plt.plot(points[:, 0], points[:, 1], 'o')
>>> for simplex in hull.simplices:
...     plt.plot(points[simplex, 0], points[simplex, 1], 'k-')
```

We could also have directly used the vertices of the hull, which for 2-D are guaranteed to be in counterclockwise order:
Facets visible from a point:

Create a square and add a point above the square.

```python
>>> generators = np.array([[[0.2, 0.2],
                        ... [0.2, 0.4],
                        ... [0.4, 0.4],
                        ... [0.4, 0.2],
                        ... [0.3, 0.6]]])
```

Call ConvexHull with the QG option. QG4 means compute the portions of the hull not including point 4, indicating the facets that are visible from point 4.

```python
>>> hull = ConvexHull(points=generators,
                     ...qhull_options='QG4')
```

The “good” array indicates which facets are visible from point 4.

```python
>>> print(hull.simplices)
[[1 0]
 [1 2]
 [3 0]
 [3 2]]
>>> print(hull.good)
[False True False False]
```

Now plot it, highlighting the visible facets.

```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(1,1,1)
(continues on next page)```
```python
>>> for visible_facet in hull.simplices[hull.good]:
... ax.plot(hull.points[visible_facet, 0],
... hull.points[visible_facet, 1],
... color='violet',
... lw=6)
>>> convex_hull_plot_2d(hull, ax=ax)
<Figure size 640x480 with 1 Axes> # may vary
>>> plt.show()
```

**Attributes**

- **points**  
  [ndarray of double, shape (npoints, ndim)] Coordinates of input points.
- **vertices**  
  [ndarray of ints, shape (nvertices,)] Indices of points forming the vertices of the convex hull. For 2-D convex hulls, the vertices are in counterclockwise order. For other dimensions, they are in input order.
- **simplices**  
  [ndarray of ints, shape (nfacet, ndim)] Indices of points forming the simplical facets of the convex hull.
- **neighbors**  
  [ndarray of ints, shape (nfacet, ndim)] Indices of neighbor facets for each facet. The kth neighbor is opposite to the kth vertex. -1 denotes no neighbor.
- **equations**  
  [ndarray of double, shape (nfacet, ndim+1)] [normal, offset] forming the hyperplane equation of the facet (see Qhull documentation for more).
- **coplanar**  
  [ndarray of int, shape (ncoplanar, 3)] Indices of coplanar points and the corresponding indices of the nearest facets and nearest vertex indices. Coplanar points are input points which were not included in the triangulation due to numerical precision issues. If option “Qc” is not specified, this list is not computed.
- **good**  
  [ndarray of bool or None] A one-dimensional Boolean array indicating which facets are good. Used with options that compute good facets, e.g. QGn and QG-n. Good facets are defined as those that are visible (n) or invisible (-n) from point n, where n is the nth point in 'points'. The 'good' attribute may be used as an index into 'simplices' to return the good (visible) facets: simplices[good]. A facet is visible from the outside of the hull only, and neither coplanarity nor degeneracy count as cases of visibility. If a “QGn” or “QG-n” option is not specified, None is returned. New in version 1.3.0.
area  [float] Surface area of the convex hull when input dimension > 2. When input points are 2-dimensional, this is the perimeter of the convex hull.
   New in version 0.17.0.
volume  [float] Volume of the convex hull when input dimension > 2. When input points are 2-dimensional, this is the area of the convex hull.
   New in version 0.17.0.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add_points(points[, restart])</code></td>
<td>Process a set of additional new points.</td>
</tr>
<tr>
<td><code>close()</code></td>
<td>Finish incremental processing.</td>
</tr>
</tbody>
</table>

scipy.spatial.ConvexHull.add_points

ConvexHull.add_points(points, restart=False)
   Process a set of additional new points.

Parameters

- points  [ndarray] New points to add. The dimensionality should match that of the initial points.
- restart  [bool, optional] Whether to restart processing from scratch, rather than adding points incrementally.

Raises

- QhullError
   Raised when Qhull encounters an error condition, such as geometrical degeneracy when options to resolve are not enabled.

See also:

- close

Notes

You need to specify incremental=True when constructing the object to be able to add points incrementally. Incremental addition of points is also not possible after close has been called.

scipy.spatial.ConvexHull.close

ConvexHull.close()
   Finish incremental processing.

   Call this to free resources taken up by Qhull, when using the incremental mode. After calling this, adding more points is no longer possible.
scipy.spatial.Voronoi

**class** scipy.spatial.Voronoi *(points, furthest_site=False, incremental=False, qhull_options=None)*

Voronoi diagrams in N dimensions.

New in version 0.12.0.

**Parameters**

- **points** *(ndarray of floats, shape (npoints, ndim))* Coordinates of points to construct a Voronoi diagram from
- **furthest_site** *(bool, optional)* Whether to compute a furthest-site Voronoi diagram. Default: False
- **incremental** *(bool, optional)* Allow adding new points incrementally. This takes up some additional resources.
- **qhull_options** *(str, optional)* Additional options to pass to Qhull. See Qhull manual for details. (Default: “Qbb Qc Qz Qx” for ndim > 4 and “Qbb Qc Qz” otherwise. Incremental mode omits “Qz”.)

**Raises**

- **QhullError**
  Raised when Qhull encounters an error condition, such as geometrical degeneracy when options to resolve are not enabled.
- **ValueError**
  Raised if an incompatible array is given as input.

**Notes**

The Voronoi diagram is computed using the Qhull library.

**Examples**

Voronoi diagram for a set of points:

```python
>>> points = np.array([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], ...
 [2, 0], [2, 1], [2, 2]])
>>> from scipy.spatial import Voronoi, voronoi_plot_2d
>>> vor = Voronoi(points)
```

Plot it:

```python
>>> import matplotlib.pyplot as plt
>>> fig = voronoi_plot_2d(vor)
>>> plt.show()
```

The Voronoi vertices:

```python
>>> vor.vertices
array([[0.5, 0.5],
 [0.5, 1.5],
 [1.5, 0.5],
 [1.5, 1.5]])
```

There is a single finite Voronoi region, and four finite Voronoi ridges:
The ridges are perpendicular between lines drawn between the following input points:

```python
>>> vor.ridge_points
array([[0, 3],
 [0, 1],
 [2, 5],
 [2, 1],
 [1, 4],
 [7, 8],
 [7, 6],
 [7, 4],
 [8, 5],
 [6, 3],
 [4, 5],
 [4, 3]], dtype=int32)
```

**Attributes**

- **points**  
  [ndarray of double, shape (npoints, ndim)] Coordinates of input points.
- **vertices**  
  [ndarray of double, shape (nvertices, ndim)] Coordinates of the Voronoï vertices.
- **ridge_points**  
  [ndarray of ints, shape (nridges, 2)] Indices of the points between which each Voronoï ridge lies.
- **ridge_vertices**  
  [list of list of ints, shape (nridges, *)] Indices of the Voronoï vertices forming each Voronoï ridge.
regions [list of list of ints, shape (nregions, *)] Indices of the Voronoi vertices forming each Voronoi region. -1 indicates vertex outside the Voronoi diagram.

point_region [list of ints, shape (npoints)] Index of the Voronoi region for each input point. If qhull option “Qc” was not specified, the list will contain -1 for points that are not associated with a Voronoi region.

furthest_site True if this was a furthest site triangulation and False if not. New in version 1.4.0.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_points(points[, restart])</td>
<td>Process a set of additional new points.</td>
</tr>
<tr>
<td>close()</td>
<td>Finish incremental processing.</td>
</tr>
</tbody>
</table>

**scipy.spatial.Voronoi.add_points**

Voronoi.add_points (points, restart=False)  
Process a set of additional new points.

**Parameters**

points [ndarray] New points to add. The dimensionality should match that of the initial points.

restart [bool, optional] Whether to restart processing from scratch, rather than adding points incrementally.

**Raises**

QhullError Raised when Qhull encounters an error condition, such as geometrical degeneracy when options to resolve are not enabled.

**See also:**

close

**Notes**

You need to specify incremental=True when constructing the object to be able to add points incrementally. Incremental addition of points is also not possible after close has been called.

**scipy.spatial.Voronoi.close**

Voronoi.close ()  
Finish incremental processing.

Call this to free resources taken up by Qhull, when using the incremental mode. After calling this, adding more points is no longer possible.
scipy.spatial.SphericalVoronoi

class scipy.spatial.SphericalVoronoi(points, radius=1, center=None, threshold=1e-06)

Voronoi diagrams on the surface of a sphere.

New in version 0.18.0.

Parameters

- **points**: [ndarray of floats, shape (npoints, ndim)] Coordinates of points from which to construct a spherical Voronoi diagram.
- **radius**: [float, optional] Radius of the sphere (Default: 1)
- **center**: [ndarray of floats, shape (ndim,)] Center of sphere (Default: origin)
- **threshold**: [float] Threshold for detecting duplicate points and mismatches between points and sphere parameters. (Default: 1e-06)

Raises

- **ValueError**

  If there are duplicates in points. If the provided radius is not consistent with points.

See also:

Voronoi

Conventional Voronoi diagrams in N dimensions.

Notes

The spherical Voronoi diagram algorithm proceeds as follows. The Convex Hull of the input points (generators) is calculated, and is equivalent to their Delaunay triangulation on the surface of the sphere [Caroli]. The Convex Hull neighbour information is then used to order the Voronoi region vertices around each generator. The latter approach is substantially less sensitive to floating point issues than angle-based methods of Voronoi region vertex sorting.

Empirical assessment of spherical Voronoi algorithm performance suggests quadratic time complexity (loglinear is optimal, but algorithms are more challenging to implement).

References

[Caroli], [VanOosterom]

Examples

Do some imports and take some points on a cube:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.spatial import SphericalVoronoi, geometric_slerp
>>> from mpl_toolkits.mplot3d import proj3d
>>> # set input data
>>> points = np.array([[0, 0, 1], [0, 0, -1], [1, 0, 0],
... [0, 1, 0], [0, -1, 0], [-1, 0, 0],])
```

Calculate the spherical Voronoi diagram:
```python
>>> radius = 1
center = np.array([0, 0, 0])
sv = SphericalVoronoi(points, radius, center)
```

Generate plot:

```python
>>> # sort vertices (optional, helpful for plotting)
>>> sv.sort_vertices_of_regions()
>>> t_vals = np.linspace(0, 1, 2000)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='3d')
>>> # plot the unit sphere for reference (optional)
>>> u = np.linspace(0, 2 * np.pi, 100)
>>> v = np.linspace(0, np.pi, 100)
>>> x = np.outer(np.cos(u), np.sin(v))
>>> y = np.outer(np.sin(u), np.sin(v))
>>> z = np.outer(np.ones(np.size(u)), np.cos(v))
>>> ax.plot_surface(x, y, z, color='y', alpha=0.1)
>>> # plot generator points
>>> ax.scatter(points[:, 0], points[:, 1], points[:, 2], c='b')
>>> # plot Voronoi vertices
>>> ax.scatter(sv.vertices[:, 0], sv.vertices[:, 1], sv.vertices[:, 2],
>>> c='g')
>>> # indicate Voronoi regions (as Euclidean polygons)
>>> for region in sv.regions:
>>> n = len(region)
>>> for i in range(n):
>>> start = sv.vertices[region][i]
>>> end = sv.vertices[region][(i + 1) % n]
>>> result = geometric_slerp(start, end, t_vals)
>>> ax.plot(result[:, 0],
>>> result[:, 1],
>>> result[:, 2],
>>> c='k')
>>> ax.azim = 10
>>> ax.elev = 40
>>> _ = ax.set_xticks([])
>>> _ = ax.set_yticks([])
>>> _ = ax.set_zticks([])
>>> fig.set_size_inches(4, 4)
>>> plt.show()
```

Attributes

- **points**: [double array of shape (npoints, ndim)] the points in ndim dimensions to generate the Voronoi diagram from
- **radius**: [double] radius of the sphere
- **center**: [double array of shape (ndim,)] center of the sphere
- **vertices**: [double array of shape (nvertices, ndim)] Voronoi vertices corresponding to points
- **regions**: [list of list of integers of shape (npoints, _)] the n-th entry is a list consisting of the indices of the vertices belonging to the n-th point in points

3.3. API definition 2091
Methods

`calculate_areas()`  Calculates the areas of the Voronoi regions.

`scipy.spatial.SphericalVoronoi.calculate_areas`

SphericalVoronoi.calculate_areas()
Calculates the areas of the Voronoi regions.

For 2D point sets, the regions are circular arcs. The sum of the areas is \(2 \times \pi \times \text{radius}\).

For 3D point sets, the regions are spherical polygons. The sum of the areas is \(4 \times \pi \times \text{radius}^2\).

New in version 1.5.0.

**Returns**

`areas`  [double array of shape (npoints,)] The areas of the Voronoi regions.
**scipy.spatial.HalfspaceIntersection**

**class scipy.spatial.HalfspaceIntersection(halfspaces, interior_point, incremental=False, qhull_options=None)**

Halfspace intersections in N dimensions.
New in version 0.19.0.

**Parameters**

- **halfspaces** [ndarray of floats, shape (nineq, ndim+1)] Stacked Inequalities of the form $Ax + b \leq 0$ in format $[A; b]$
- **interior_point** [ndarray of floats, shape (ndim,)] Point clearly inside the region defined by halfspaces. Also called a feasible point, it can be obtained by linear programming.
- **incremental** [bool, optional] Allow adding new halfspaces incrementally. This takes up some additional resources.
- **qhull_options** [str, optional] Additional options to pass to Qhull. See Qhull manual for details. (Default: “Qx” for ndim > 4 and “” otherwise) Option “H” is always enabled.

**Raises**

- **QhullError** Raised when Qhull encounters an error condition, such as geometrical degeneracy when options to resolve are not enabled.
- **ValueError** Raised if an incompatible array is given as input.

**Notes**

The intersections are computed using the Qhull library. This reproduces the “qhalf” functionality of Qhull.

**References**

[Qhull], [1]

**Examples**

Halfspace intersection of planes forming some polygon

```python
>>> from scipy.spatial import HalfspaceIntersection
>>> halfspaces = np.array([[−1, 0., 0.],
... [0., −1., 0.],
... [2., 1., −4.],
... [−0.5, 1., −2.]])
>>> feasible_point = np.array([0.5, 0.5])
>>> hs = HalfspaceIntersection(halfspaces, feasible_point)
```

Plot halfspaces as filled regions and intersection points:
By default, qhull does not provide with a way to compute an interior point. This can easily be computed using linear programming. Considering halfspaces of the form $Ax + b \leq 0$, solving the linear program:

$$
\begin{align*}
  & \text{max } y \\
  & \text{s.t. } Ax + y||A_i|| \leq -b \\
\end{align*}
$$

With $A_i$ being the rows of $A$, i.e. the normals to each plane.

Will yield a point $x$ that is furthest inside the convex polyhedron. To be precise, it is the center of the largest hypersphere of radius $y$ inscribed in the polyhedron. This point is called the Chebyshev center of the polyhedron (see [1] 4.3.1, pp148-149). The equations outputted by Qhull are always normalized.

```python
>>> from scipy.optimize import linprog
>>> from matplotlib.patches import Circle
>>> norm_vector = np.reshape(np.linalg.norm(halfspaces[:, -1], axis=1), (halfspaces.shape[0], 1))
>>> c = np.zeros((halfspaces.shape[1],))
>>> c[-1] = -1
>>> A = np.hstack((halfspaces[:, -1], norm_vector))
>>> b = - halfspaces[:, -1]
>>> res = linprog(c, A_ub=A, b_ub=b, bounds=(None, None))
>>> x = res.x[:-1]
>>> y = res.x[-1]
>>> circle = Circle(x, radius=y, alpha=0.3)
>>> ax.add_patch(circle)
>>> plt.legend(bbox_to_anchor=(1.6, 1.0))
>>> plt.show()
```

**Attributes**

- `halfspaces` [ndarray of double, shape (nineq, ndim+1)] Input halfspaces.
**interior_point** : ndarray of floats, shape (ndim,)
   Input interior point.

**intersections**
   [ndarray of double, shape (ninter, ndim)] Intersections of all halfspaces.

**dual_points**
   [ndarray of double, shape (nineq, ndim)] Dual points of the input halfspaces.

**dual_facets**
   [list of lists of ints] Indices of points forming the (non necessarily simplicial) facets of the dual convex hull.

**dual_vertices**
   [ndarray of ints, shape (nvertices,)] Indices of halfspaces forming the vertices of the dual convex hull. For 2-D convex hulls, the vertices are in counterclockwise order. For other dimensions, they are in input order.

**dual_equations**
   [ndarray of double, shape (nfacet, ndim+1)] [normal, offset] forming the hyperplane equation of the dual facet (see Qhull documentation for more).

**dual_area**
   [float] Area of the dual convex hull

**dual_volume**
   [float] Volume of the dual convex hull

---

**Methods**

- `add_halfspaces(halfspaces[, restart])` Process a set of additional new halfspaces.
- `close()` Finish incremental processing.
scipy.spatial.HalfspaceIntersection.add_halfspaces

HalfspaceIntersection.add_halfspaces(halfspaces, restart=False)
Process a set of additional new halfspaces.

**Parameters**

- **halfspaces** [ndarray] New halfspaces to add. The dimensionality should match that of the initial halfspaces.
- **restart** [bool, optional] Whether to restart processing from scratch, rather than adding halfspaces incrementally.

**Raises**

- QhullError
  Raised when Qhull encounters an error condition, such as geometrical degeneracy when options to resolve are not enabled.

**See also:**

- close

**Notes**

You need to specify incremental=True when constructing the object to be able to add halfspaces incrementally. Incremental addition of halfspaces is also not possible after close has been called.
**scipy.spatial.HalfspaceIntersection.close**

HalfspaceIntersection.close()

Finish incremental processing.

Call this to free resources taken up by Qhull, when using the incremental mode. After calling this, adding more points is no longer possible.

**Plotting helpers**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>delaunay_plot_2d(tri, ax=None)</code></td>
<td>Plot the given Delaunay triangulation in 2-D</td>
</tr>
<tr>
<td><code>convex_hull_plot_2d(hull[, ax])</code></td>
<td>Plot the given convex hull diagram in 2-D</td>
</tr>
<tr>
<td><code>voronoi_plot_2d(vor[, ax])</code></td>
<td>Plot the given Voronoi diagram in 2-D</td>
</tr>
</tbody>
</table>

**scipy.spatial.delaunay_plot_2d**

`scipy.spatial.delaunay_plot_2d(tri, ax=None)`

Plot the given Delaunay triangulation in 2-D

**Parameters**

- `tri` [scipy.spatial.Delaunay instance] Triangulation to plot
- `ax` [matplotlib.axes.Axes instance, optional] Axes to plot on

**Returns**

- `fig` [matplotlib.figure.Figure instance] Figure for the plot

**See also:**

- `Delaunay`
- `matplotlib.pyplot.triplot`

**Notes**

Requires Matplotlib.

**Examples**

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.spatial import Delaunay, delaunay_plot_2d
```

The Delaunay triangulation of a set of random points:

```python
>>> rng = np.random.default_rng()
>>> points = rng.random((30, 2))
>>> tri = Delaunay(points)
```

Plot it:

```python
>>> _ = delaunay_plot_2d(tri)
>>> plt.show()
```
scipy.spatial.convex_hull_plot_2d

```
scipy.spatial.convex_hull_plot_2d(hull, ax=None)
```

Plot the given convex hull diagram in 2-D

**Parameters**

- `hull` [scipy.spatial.ConvexHull instance] Convex hull to plot
- `ax` [matplotlib.axes.Axes instance, optional] Axes to plot on

**Returns**

- `fig` [matplotlib.figure.Figure instance] Figure for the plot

**See also:**

ConvexHull

**Notes**

Requires Matplotlib.

**Examples**

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.spatial import ConvexHull, convex_hull_plot_2d
```

The convex hull of a random set of points:

```python
>>> rng = np.random.default_rng()
>>> points = rng.random((30, 2))
>>> hull = ConvexHull(points)
```

Plot it:
scipy.spatial.voronoi_plot_2d

scipy.spatial.voronoi_plot_2d(vor, ax=None, **kw)

Plot the given Voronoi diagram in 2-D

**Parameters**

- **vor** ([scipy.spatial.Voronoi instance]) Diagram to plot
- **ax** ([matplotlib.axes.Axes instance, optional]) Axes to plot on
- **show_points**: bool, optional
  Add the Voronoi points to the plot.
- **show_vertices**: bool, optional
  Add the Voronoi vertices to the plot.
- **line_colors**: string, optional
  Specifies the line color for polygon boundaries
- **line_width**: float, optional
  Specifies the line width for polygon boundaries
- **line_alpha**: float, optional
  Specifies the line alpha for polygon boundaries
- **point_size**: float, optional
  Specifies the size of points

**Returns**

- **fig** ([matplotlib.figure.Figure instance]) Figure for the plot

**See also:**

Voronoi
Notes

Requires Matplotlib.

Examples

Set of point:

```python
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> points = rng.random((10, 2))
```

Voronoi diagram of the points:

```python
>>> from scipy.spatial import Voronoi, voronoi_plot_2d
>>> vor = Voronoi(points)
```

using `voronoi_plot_2d` for visualisation:

```python
>>> fig = voronoi_plot_2d(vor)
```

using `voronoi_plot_2d` for visualisation with enhancements:

```python
>>> fig = voronoi_plot_2d(vor, show_vertices=False, line_colors='orange',
... line_width=2, line_alpha=0.6, point_size=2)
>>> plt.show()
```

See also:

Tutorial
Simplex representation

The simplices (triangles, tetrahedra, etc.) appearing in the Delaunay tessellation (N-D simplices), convex hull facets, and Voronoi ridges (N-1-D simplices) are represented in the following scheme:

```python
coordinates of the jth vertex of the ith simplex
tess.points[tess.simplices[i, j], :] # tessellation element
hull.points[hull.simplices[i, j], :] # convex hull facet
voro.vertices[voro.ridge_vertices[i, j], :] # ridge between Voronoi cells
```

For Delaunay triangulations and convex hulls, the neighborhood structure of the simplices satisfies the condition: `tess.neighbors[i, j]` is the neighboring simplex of the `i`th simplex, opposite to the `j`-vertex. It is -1 in case of no neighbor.

Convex hull facets also define a hyperplane equation:

```python
(hull.equations[i, :-1] * coord).sum() + hull.equations[i, -1] == 0
```

Similar hyperplane equations for the Delaunay triangulation correspond to the convex hull facets on the corresponding N+1-D paraboloid.

The Delaunay triangulation objects offer a method for locating the simplex containing a given point, and barycentric coordinate computations.
Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{tsearch(tri, xi)}</td>
<td>Find simplices containing the given points. This function does the same thing as \texttt{Delaunay.find_simplex}.</td>
</tr>
<tr>
<td>\texttt{distance_matrix(x, y[, p, threshold])}</td>
<td>Compute the distance matrix.</td>
</tr>
<tr>
<td>\texttt{minkowski_distance(x, y[, p])}</td>
<td>Compute the $L^p$ distance between two arrays.</td>
</tr>
<tr>
<td>\texttt{minkowski_distance_p(x, y[, p])}</td>
<td>Compute the $p$th power of the $L^p$ distance between two arrays.</td>
</tr>
<tr>
<td>\texttt{procrustes(data1, data2)}</td>
<td>Procrustes analysis, a similarity test for two data sets.</td>
</tr>
<tr>
<td>\texttt{geometric_slerp(start, end, t[, tol])}</td>
<td>Geometric spherical linear interpolation.</td>
</tr>
</tbody>
</table>

\texttt{scipy.spatial.tsearch}

\texttt{scipy.spatial.tsearch(tri, xi)}

Find simplices containing the given points. This function does the same thing as \texttt{Delaunay.find_simplex}.

New in version 0.9.

See also:

\texttt{Delaunay.find_simplex}

Examples

```
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.spatial import Delaunay, delaunay_plot_2d, tsearch
>>> rng = np.random.default_rng()
```

The Delaunay triangulation of a set of random points:

```
>>> pts = rng.random((20, 2))
>>> tri = Delaunay(pts)
>>> _ = delaunay_plot_2d(tri)
```

Find the simplices containing a given set of points:

```
>>> loc = rng.uniform(0.2, 0.8, (5, 2))
>>> s = tsearch(tri, loc)
>>> plt.triplot(pts[:, 0], pts[:, 1], tri.simplices[s], 'b-', mask=s==-1)
>>> plt.scatter(loc[:, 0], loc[:, 1], c='r', marker='x')
>>> plt.show()
```
**scipy.spatial.distance_matrix**

**scipy.spatial.distance_matrix** *(x, y, p=2, threshold=1000000)*

Compute the distance matrix.

Returns the matrix of all pair-wise distances.

**Parameters**

- **x** *(M, K) array_like* Matrix of M vectors in K dimensions.
- **y** *(N, K) array_like* Matrix of N vectors in K dimensions.
- **p** *[float, 1 <= p <= infinity]* Which Minkowski p-norm to use.
- **threshold** *[positive int]* If $M \times N \times K > threshold$, algorithm uses a Python loop instead of large temporary arrays.

**Returns**

- **result** *(M, N) ndarray* Matrix containing the distance from every vector in x to every vector in y.

**Examples**

```python
>>> from scipy.spatial import distance_matrix
>>> distance_matrix([[0, 0], [0, 1]], [[1, 0], [1, 1]])
array([[1., 1.41421356],
 [1.41421356, 1.]])
```
scipy.spatial.minkowski_distance

scipy.spatial.minkowski_distance(x, y, p=2)

Compute the L**p distance between two arrays.

Parameters

- **x** [(M, K) array_like] Input array.
- **y** [(N, K) array_like] Input array.
- **p** [float, 1 <= p <= infinity] Which Minkowski p-norm to use.

Examples

```python
>>> from scipy.spatial import minkowski_distance

>>> minkowski_distance([[0,0],[0,0]], [[1,1],[0,1]])
array([1.41421356, 1.])
```

scipy.spatial.minkowski_distance_p

scipy.spatial.minkowski_distance_p(x, y, p=2)

Compute the pth power of the L**p distance between two arrays.

For efficiency, this function computes the L**p distance but does not extract the pth root. If p is 1 or infinity, this is equal to the actual L**p distance.

Parameters

- **x** [(M, K) array_like] Input array.
- **y** [(N, K) array_like] Input array.
- **p** [float, 1 <= p <= infinity] Which Minkowski p-norm to use.

Examples

```python
>>> from scipy.spatial import minkowski_distance_p

>>> minkowski_distance_p([[0,0],[0,0]], [[1,1],[0,1]])
array([2, 1])
```

scipy.spatial.procrustes

scipy.spatial.procrustes(data1, data2)

Procrustes analysis, a similarity test for two data sets.

Each input matrix is a set of points or vectors (the rows of the matrix). The dimension of the space is the number of columns of each matrix. Given two identically sized matrices, procrustes standardizes both such that:

- \(tr(AA^T) = 1\).
- Both sets of points are centered around the origin.

Procrustes ([1], [2]) then applies the optimal transform to the second matrix (including scaling/dilation, rotations, and reflections) to minimize \(M^2 = \sum(data1 - data2)^2\), or the sum of the squares of the pointwise differences between the two input datasets.
This function was not designed to handle datasets with different numbers of datapoints (rows). If two data sets have different dimensionality (different number of columns), simply add columns of zeros to the smaller of the two.

**Parameters**

- **data1** [array_like] Matrix, n rows represent points in k (columns) space. data1 is the reference data, after it is standardised, the data from data2 will be transformed to fit the pattern in data1 (must have >1 unique points).

- **data2** [array_like] n rows of data in k space to be fit to data1. Must be the same shape (numrows, numcols) as data1 (must have >1 unique points).

**Returns**

- **mtx1** [array_like] A standardized version of data1.
- **mtx2** [array_like] The orientation of data2 that best fits data1. Centered, but not necessarily $tr(AA^T) = 1$.
- **disparity** [float] $M^2$ as defined above.

**Raises**

- **ValueError**
  
  If the input arrays are not two-dimensional. If the shape of the input arrays is different. If the input arrays have zero columns or zero rows.

**See also:**

- scipy.linalg.orthogonal_procrustes
- scipy.spatial.distance.directed_hausdorff

Another similarity test for two data sets

**Notes**

- The disparity should not depend on the order of the input matrices, but the output matrices will, as only the first output matrix is guaranteed to be scaled such that $tr(AA^T) = 1$.
- Duplicate data points are generally ok, duplicating a data point will increase its effect on the procrustes fit.
- The disparity scales as the number of points per input matrix.

**References**

[1], [2]

**Examples**

```python
>>> from scipy.spatial import procrustes
```

The matrix b is a rotated, shifted, scaled and mirrored version of a here:

```python
>>> a = np.array([[1, 3], [1, 2], [1, 1], [2, 1]], 'd')
>>> b = np.array([[4, -2], [4, -4], [4, -6], [2, -6]], 'd')
>>> mtx1, mtx2, disparity = procrustes(a, b)
>>> round(disparity)
0.0
```
scipy.spatial.geometric_slerp

**scipy.spatial.geometric_slerp**(start, end, t, tol=1e-07)

Geometric spherical linear interpolation.

The interpolation occurs along a unit-radius great circle arc in arbitrary dimensional space.

**Parameters**

- **start**: [(n_dimensions, ) array-like] Single n-dimensional input coordinate in a 1-D array-like object. n must be greater than 1.
- **end**: [(n_dimensions, ) array-like] Single n-dimensional input coordinate in a 1-D array-like object. n must be greater than 1.
- **t**: float or (n_points,) 1D array-like
  A float or 1D array-like of doubles representing interpolation parameters, with values required in the inclusive interval between 0 and 1. A common approach is to generate the array with `np.linspace(0, 1, n_pts)` for linearly spaced points. Ascending, descending, and scrambled orders are permitted.
- **tol**: float
  The absolute tolerance for determining if the start and end coordinates are antipodes.

**Returns**

- **result**: [(t.size, D)] An array of doubles containing the interpolated spherical path and including start and end when 0 and 1 t are used. The interpolated values should correspond to the same sort order provided in the t array. The result may be 1-dimensional if t is a float.

**Raises**

- **ValueError**
  If start and end are antipodes, not on the unit n-sphere, or for a variety of degenerate conditions.

**See also:**

- **scipy.spatial.transform.Slerp**
  3-D Slerp that works with quaternions

**Notes**

The implementation is based on the mathematical formula provided in [1], and the first known presentation of this algorithm, derived from study of 4-D geometry, is credited to Glenn Davis in a footnote of the original quaternion Slerp publication by Ken Shoemake [2].

New in version 1.5.0.

**References**

[1], [2]
Examples

Interpolate four linearly-spaced values on the circumference of a circle spanning 90 degrees:

```python
from scipy.spatial import geometric_slerp
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
start = np.array([1, 0])
end = np.array([0, 1])
t_vals = np.linspace(0, 1, 4)
result = geometric_slerp(start, end, t_vals)
ax.scatter(result[:,0], result[:,1], c='k')
circle = plt.Circle((0,0), 1, color='grey')
ax.add_artist(circle)
ax.set_aspect('equal')
plt.show()
```

The interpolated results should be at 30 degree intervals recognizable on the unit circle:

```python
>>> ax.scatter(result[...,0], result[...,1], c='k')
>>> circle = plt.Circle((0,0), 1, color='grey')
>>> ax.add_artist(circle)
>>> ax.set_aspect('equal')
>>> plt.show()
```

Attempting to interpolate between antipodes on a circle is ambiguous because there are two possible paths, and on a sphere there are infinite possible paths on the geodesic surface. Nonetheless, one of the ambiguous paths is returned along with a warning:

```python
opposite_pole = np.array([-1, 0])
with np.testing.suppress_warnings() as sup:
 sup.filter(UserWarning)
 geometric_slerp(start, opposite_pole, t_vals)
array([[1.00000000e+00, 0.00000000e+00],
 [1.00000000e+00, 0.00000000e+00],
 ...
```
Extend the original example to a sphere and plot interpolation points in 3D:

```python
>>> from mpl_toolkits.mplot3d import Axes3D
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='3d')

Plot the unit sphere for reference (optional):

```python
>>> u = np.linspace(0, 2 * np.pi, 100)
>>> v = np.linspace(0, np.pi, 100)
>>> x = np.outer(np.cos(u), np.sin(v))
>>> y = np.outer(np.sin(u), np.sin(v))
>>> z = np.outer(np.ones(np.size(u)), np.cos(v))
>>> ax.plot_surface(x, y, z, color='y', alpha=0.1)
```

Interpolating over a larger number of points may provide the appearance of a smooth curve on the surface of the sphere, which is also useful for discretized integration calculations on a sphere surface:

```python
>>> start = np.array([1, 0, 0])
>>> end = np.array([0, 0, 1])
>>> t_vals = np.linspace(0, 1, 200)
>>> result = geometric_slerp(start, ...
...           end, ...
...           t_vals)
>>> ax.plot(result[...,0], ...
...           result[...,1], ...
...           result[...,2], ...
...           c='k')
>>> plt.show()
```
Warnings / Errors used in scipy.spatial

QhullError

scipy.spatial.QhullError

exception scipy.spatial.QhullError

 with_traceback()
 Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

3.3.26 Distance computations (scipy.spatial.distance)

Function reference

Distance matrix computation from a collection of raw observation vectors stored in a rectangular array.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdist(X[, metric, out])</td>
<td>Pairwise distances between observations in n-dimensional space.</td>
</tr>
<tr>
<td>cdist(XA, XB[, metric, out])</td>
<td>Compute distance between each pair of the two collections of inputs.</td>
</tr>
<tr>
<td>squareform(X[, force, checks])</td>
<td>Convert a vector-form distance vector to a square-form distance matrix, and vice-versa.</td>
</tr>
<tr>
<td>directed_hausdorff(u, v[, seed])</td>
<td>Compute the directed Hausdorff distance between two 2-D arrays.</td>
</tr>
</tbody>
</table>

scipy.spatial.distance.pdist

scipy.spatial.distance.pdist(X, metric='euclidean', *, out=None, **kwargs)

Pairwise distances between observations in n-dimensional space.

See Notes for common calling conventions.

Parameters

- **X** [array_like] An m by n array of m original observations in an n-dimensional space.
- **metric** [str or function, optional] The distance metric to use. The distance function can be 'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon', 'kulsinski', 'kulczynski1', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'.
- ****kwars [dict, optional] Extra arguments to metric: refer to each metric documentation for a list of all possible arguments.

Some possible arguments:
- p: scalar The p-norm to apply for Minkowski, weighted and unweighted. Default: 2.
- w: ndarray The weight vector for metrics that support weights (e.g., Minkowski).
- V: ndarray The variance vector for standardized Euclidean. Default: var(X, axis=0, ddof=1)
- VI: ndarray The inverse of the covariance matrix for Mahalanobis. Default: inv(cov(X.T)).T
- out: ndarray. The output array If not None, condensed distance matrix Y is stored in this array.

Returns
Y

[ndarray] Returns a condensed distance matrix Y. For each i and j (where $i < j < m$), where m is the number of original observations. The metric $\text{dist}(u=X[i], v=X[j])$ is computed and stored in entry $m * i + j - ((i + 2) * (i + 1)) // 2$.

See also:

squareform

converts between condensed distance matrices and square distance matrices.

Notes

See squareform for information on how to calculate the index of this entry or to convert the condensed distance matrix to a redundant square matrix.

The following are common calling conventions.

1. Y = pdist(X, 'euclidean')

Computes the distance between m points using Euclidean distance (2-norm) as the distance metric between the points. The points are arranged as m n-dimensional row vectors in the matrix X.

2. Y = pdist(X, 'minkowski', p=2.)

Computes the distances using the Minkowski distance $\|u - v\|_p$ (p-norm) where $p > 0$ (note that this is only a quasi-metric if $0 < p < 1$).

3. Y = pdist(X, 'cityblock')

Computes the city block or Manhattan distance between the points.

4. Y = pdist(X, 'seuclidean', V=None)

Computes the standardized Euclidean distance. The standardized Euclidean distance between two n-vectors u and v is

$$
\sqrt{\sum (u_i - v_i)^2 / V[x_i]}
$$

V is the variance vector; $V[i]$ is the variance computed over all the i'th components of the points. If not passed, it is automatically computed.

5. Y = pdist(X, 'sqeuclidean')

Computes the squared Euclidean distance $\|u - v\|_2^2$ between the vectors.

6. Y = pdist(X, 'cosine')

Computes the cosine distance between vectors u and v,

$$
1 - \frac{u \cdot v}{\|u\|_2 \|v\|_2}
$$

where $\|\cdot\|_2$ is the 2-norm of its argument *, and $u \cdot v$ is the dot product of u and v.

7. Y = pdist(X, 'correlation')

Computes the correlation distance between vectors u and v. This is

$$
1 - \frac{(u - \bar{u}) \cdot (v - \bar{v})}{\|(u - \bar{u})\|_2 \|(v - \bar{v})\|_2}
$$

where \bar{v} is the mean of the elements of vector v, and $x \cdot y$ is the dot product of x and y.
8. \(Y = \text{pdist}(X, \text{'hamming'}) \)

Computes the normalized Hamming distance, or the proportion of those vector elements between two n-vectors \(u \) and \(v \) which disagree. To save memory, the matrix \(X \) can be of type boolean.

9. \(Y = \text{pdist}(X, \text{'jaccard'}) \)

Computes the Jaccard distance between the points. Given two vectors, \(u \) and \(v \), the Jaccard distance is the proportion of those elements \(u[i] \) and \(v[i] \) that disagree.

10. \(Y = \text{pdist}(X, \text{'jensenshannon'}) \)

Computes the Jensen-Shannon distance between two probability arrays. Given two probability vectors, \(p \) and \(q \), the Jensen-Shannon distance is

\[
\sqrt{\frac{D(p \parallel m) + D(q \parallel m)}{2}}
\]

where \(m \) is the pointwise mean of \(p \) and \(q \) and \(D \) is the Kullback-Leibler divergence.

11. \(Y = \text{pdist}(X, \text{'chebyshev'}) \)

Computes the Chebyshev distance between the points. The Chebyshev distance between two n-vectors \(u \) and \(v \) is the maximum norm-1 distance between their respective elements. More precisely, the distance is given by

\[
d(u, v) = \max_i |u_i - v_i|
\]

12. \(Y = \text{pdist}(X, \text{'canberra'}) \)

Computes the Canberra distance between the points. The Canberra distance between two points \(u \) and \(v \) is

\[
d(u, v) = \sum_i \frac{|u_i - v_i|}{|u_i| + |v_i|}
\]

13. \(Y = \text{pdist}(X, \text{'braycurtis'}) \)

Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points \(u \) and \(v \) is

\[
d(u, v) = \frac{\sum_i |u_i - v_i|}{\sum_i |u_i + v_i|}
\]

14. \(Y = \text{pdist}(X, \text{'mahalanobis'}, \text{VI=\text{None}}) \)

Computes the Mahalanobis distance between the points. The Mahalanobis distance between two points \(u \) and \(v \) is \(\sqrt{(u - v)(1/\text{V})(u - v)^T} \) where \((1/\text{V}) \) (the \(\text{VI} \) variable) is the inverse covariance. If \(\text{VI} \) is not None, \(\text{VI} \) will be used as the inverse covariance matrix.

15. \(Y = \text{pdist}(X, \text{'yule'}) \)

Computes the Yule distance between each pair of boolean vectors. (see yule function documentation)

16. \(Y = \text{pdist}(X, \text{'matching'}) \)

Synonym for 'hamming'.

17. \(Y = \text{pdist}(X, \text{'dice'}) \)

Computes the Dice distance between each pair of boolean vectors. (see dice function documentation)
18. $Y = \text{pdist}(X, \text{'kulsinski'})$

Computes the Kulsinski distance between each pair of boolean vectors. (see kulsinski function documentation)

19. $Y = \text{pdist}(X, \text{'rogerstanimoto'})$

Computes the Rogers-Tanimoto distance between each pair of boolean vectors. (see rogerstanimoto function documentation)

20. $Y = \text{pdist}(X, \text{'russellrao'})$

Computes the Russell-Rao distance between each pair of boolean vectors. (see russellrao function documentation)

21. $Y = \text{pdist}(X, \text{'sokalmichener'})$

Computes the Sokal-Michener distance between each pair of boolean vectors. (see sokalmichener function documentation)

22. $Y = \text{pdist}(X, \text{'sokalsneath'})$

Computes the Sokal-Sneath distance between each pair of boolean vectors. (see sokalsneath function documentation)

23. $Y = \text{pdist}(X, \text{'kulczynski1'})$

Computes the Kulczynski 1 distance between each pair of boolean vectors. (see kulczynski1 function documentation)

24. $Y = \text{pdist}(X, f)$

Computes the distance between all pairs of vectors in X using the user supplied 2-arity function f. For example, Euclidean distance between the vectors could be computed as follows:

$$dm = \text{pdist}(X, \lambda u, v: \text{np.sqrt}((u-v)^2).\text{sum}())$$

Note that you should avoid passing a reference to one of the distance functions defined in this library. For example,:

$$dm = \text{pdist}(X, \text{sokalsneath})$$

would calculate the pair-wise distances between the vectors in X using the Python function sokalsneath. This would result in sokalsneath being called \(\binom{n}{2}\) times, which is inefficient. Instead, the optimized C version is more efficient, and we call it using the following syntax.:

$$dm = \text{pdist}(X, \text{'sokalsneath'})$$

scipy.spatial.distance.cdist

`scipy.spatial.distance.cdist`($XA, XB, metric='euclidean', *, out=None, **kwargs)`

Compute distance between each pair of the two collections of inputs.

See Notes for common calling conventions.

Parameters

- **XA**
 [array_like] An m_A by n array of m_A original observations in an n-dimensional space. Inputs are converted to float type.

- **XB**
 [array_like] An m_B by n array of m_B original observations in an n-dimensional space. Inputs are converted to float type.
metric [str or callable, optional] The distance metric to use. If a string, the distance function can be 'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon', 'kulsinski', 'kulczynski1', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'.

kwargs [dict, optional] Extra arguments to `metric`: refer to each metric documentation for a list of all possible arguments.

Some possible arguments:
- `p`: scalar The p-norm to apply for Minkowski, weighted and unweighted. Default: 2.
- `w`: array_like The weight vector for metrics that support weights (e.g., Minkowski).
- `V`: array_like The variance vector for standardized Euclidean. Default: `var(vstack([XA, XB]), axis=0, ddof=1)`.
- `VI`: array_like The inverse of the covariance matrix for Mahalanobis. Default: `inv(cov(vstack([XA, XB]).T)).T`.
- `out`: ndarray The output array. If not None, the distance matrix Y is stored in this array.

Returns

Y [ndarray] A m_A by m_B distance matrix is returned. For each i and j, the metric $\text{dist}(u=XA[i], v=XB[j])$ is computed and stored in the ij th entry.

Raises

ValueError An exception is thrown if XA and XB do not have the same number of columns.

Notes

The following are common calling conventions:

1. $Y = \text{cdist}(XA, XB, 'euclidean')$

 Computes the distance between m points using Euclidean distance (2-norm) as the distance metric between the points. The points are arranged as m n-dimensional row vectors in the matrix X.

2. $Y = \text{cdist}(XA, XB, 'minkowski', p=2.)$

 Computes the distances using the Minkowski distance $\|u - v\|_p$ (p-norm) where $p > 0$ (note that this is only a quasi-metric if $0 < p < 1$).

3. $Y = \text{cdist}(XA, XB, 'cityblock')$

 Computes the city block or Manhattan distance between the points.

4. $Y = \text{cdist}(XA, XB, 'sqeuclidean', V=None)$

 Computes the standardized Euclidean distance. The standardized Euclidean distance between two n-vectors u and v is

 \[\sqrt{\sum (u_i - v_i)^2 / V[x_i]} \].

 V is the variance vector; V[i] is the variance computed over all the i'th components of the points. If not passed, it is automatically computed.

5. $Y = \text{cdist}(XA, XB, 'sqeuclidean')$

 Computes the squared Euclidean distance $\|u - v\|_2^2$ between the vectors.
6. \(Y = \text{cdist}(X_A, X_B, \texttt{'cosine'}) \)

Computes the cosine distance between vectors \(u \) and \(v \),

\[
1 - \frac{u \cdot v}{\|u\|_2 \|v\|_2}
\]

where \(\| \ast \|_2 \) is the 2-norm of its argument \(\ast \), and \(u \cdot v \) is the dot product of \(u \) and \(v \).

7. \(Y = \text{cdist}(X_A, X_B, \texttt{'correlation'}) \)

Computes the correlation distance between vectors \(u \) and \(v \). This is

\[
1 - \frac{(u - \bar{u}) \cdot (v - \bar{v})}{\|(u - \bar{u})\|_2 \|(v - \bar{v})\|_2}
\]

where \(\bar{v} \) is the mean of the elements of vector \(v \), and \(x \cdot y \) is the dot product of \(x \) and \(y \).

8. \(Y = \text{cdist}(X_A, X_B, \texttt{'hamming'}) \)

Computes the normalized Hamming distance, or the proportion of those vector elements between two n-vectors \(u \) and \(v \) which disagree. To save memory, the matrix \(X \) can be of type boolean.

9. \(Y = \text{cdist}(X_A, X_B, \texttt{'jaccard'}) \)

Computes the Jaccard distance between the points. Given two vectors, \(u \) and \(v \), the Jaccard distance is the proportion of those elements \(u[i] \) and \(v[i] \) that disagree where at least one of them is non-zero.

10. \(Y = \text{cdist}(X_A, X_B, \texttt{'jensenshannon'}) \)

Computes the Jensen-Shannon distance between two probability arrays. Given two probability vectors, \(p \) and \(q \), the Jensen-Shannon distance is

\[
\sqrt{\frac{D(p \parallel m) + D(q \parallel m)}{2}}
\]

where \(m \) is the pointwise mean of \(p \) and \(q \) and \(D \) is the Kullback-Leibler divergence.

11. \(Y = \text{cdist}(X_A, X_B, \texttt{'chebyshev'}) \)

Computes the Chebyshev distance between the points. The Chebyshev distance between two n-vectors \(u \) and \(v \) is the maximum norm-1 distance between their respective elements. More precisely, the distance is given by

\[
d(u, v) = \max_i |u_i - v_i|.
\]

12. \(Y = \text{cdist}(X_A, X_B, \texttt{'canberra'}) \)

Computes the Canberra distance between the points. The Canberra distance between two points \(u \) and \(v \) is

\[
d(u, v) = \sum_i \frac{|u_i - v_i|}{|u_i| + |v_i|}
\]

13. \(Y = \text{cdist}(X_A, X_B, \texttt{'braycurtis'}) \)

Computes the Bray-Curtis distance between the points. The Bray-Curtis distance between two points \(u \) and \(v \) is

\[
d(u, v) = \frac{\sum_i (|u_i - v_i|)}{\sum_i (|u_i + v_i|)}
\]
14. \(Y = \text{cdist}(XA, XB, 'mahalanobis', VI=\text{None}) \)

Computes the Mahalanobis distance between the points. The Mahalanobis distance between two points \(u \) and \(v \) is \(\sqrt{(u - v)^T (1/V)(u - v)} \) where \((1/V) \) (the \(VI \) variable) is the inverse covariance. If \(VI \) is not None, \(VI \) will be used as the inverse covariance matrix.

15. \(Y = \text{cdist}(XA, XB, 'yule') \)

Computes the Yule distance between the boolean vectors. (see yule function documentation)

16. \(Y = \text{cdist}(XA, XB, 'matching') \)

Synonym for 'hamming'.

17. \(Y = \text{cdist}(XA, XB, 'dice') \)

Computes the Dice distance between the boolean vectors. (see dice function documentation)

18. \(Y = \text{cdist}(XA, XB, 'kulsinski') \)

Computes the Kulsinski distance between the boolean vectors. (see kulsinski function documentation)

19. \(Y = \text{cdist}(XA, XB, 'rogerstanimoto') \)

Computes the Rogers-Tanimoto distance between the boolean vectors. (see rogerstanimoto function documentation)

20. \(Y = \text{cdist}(XA, XB, 'russellrao') \)

Computes the Russell-Rao distance between the boolean vectors. (see russellrao function documentation)

21. \(Y = \text{cdist}(XA, XB, 'sokalmichener') \)

Computes the Sokal-Michener distance between the boolean vectors. (see sokalmichener function documentation)

22. \(Y = \text{cdist}(XA, XB, 'sokalsneath') \)

Computes the Sokal-Sneath distance between the vectors. (see sokalsneath function documentation)

23. \(Y = \text{cdist}(XA, XB, f) \)

Computes the distance between all pairs of vectors in \(X \) using the user supplied 2-arity function \(f \). For example, Euclidean distance between the vectors could be computed as follows:

\[
\text{dm} = \text{cdist}(XA, XB, \text{lambda} \ u, v: \ \text{np.sqrt}(((u-v)**2).\text{sum}()))
\]

Note that you should avoid passing a reference to one of the distance functions defined in this library. For example:

\[
\text{dm} = \text{cdist}(XA, XB, \text{'sokalsneath'})
\]

would calculate the pair-wise distances between the vectors in \(X \) using the Python function \text{sokalsneath}. This would result in \text{sokalsneath} being called \(\binom{n}{2} \) times, which is inefficient. Instead, the optimized C version is more efficient, and we call it using the following syntax:

\[
\text{dm} = \text{cdist}(XA, XB, \text{'sokalsneath'})
\]
Examples

Find the Euclidean distances between four 2-D coordinates:

```python
>>> from scipy.spatial import distance
>>> coords = [(35.0456, -85.2672), ...
             (35.1174, -89.9711), ...
             (35.9728, -83.9422), ...
             (36.1667, -86.7833)]
>>> distance.cdist(coords, coords, 'euclidean')
array([[ 0. , 4.7044, 1.6172, 1.8856],
       [ 4.7044, 0. , 6.0893, 3.3561],
       [ 1.6172, 6.0893, 0. , 2.8477],
       [ 1.8856, 3.3561, 2.8477, 0. ]])
```

Find the Manhattan distance from a 3-D point to the corners of the unit cube:

```python
>>> a = np.array([[0, 0, 0],
                ... [0, 0, 1],
                ... [0, 1, 0],
                ... [0, 1, 1],
                ... [1, 0, 0],
                ... [1, 0, 1],
                ... [1, 1, 0],
                ... [1, 1, 1]])
>>> b = np.array([[0.1, 0.2, 0.4]])
>>> distance.cdist(a, b, 'cityblock')
array([[ 0.7],
       [ 0.9],
       [ 1.3],
       [ 1.5],
       [ 1.5],
       [ 1.7],
       [ 2.1],
       [ 2.3]])
```

scipy.spatial.distance.squareform

`scipy.spatial.distance.squareform(X, force='no', checks=True)`

Convert a vector-form distance vector to a square-form distance matrix, and vice-versa.

Parameters

- **X** [array_like] Either a condensed or redundant distance matrix.
- **force** [str, optional] As with MATLAB(TM), if force is equal to 'tovector' or 'tomatrix', the input will be treated as a distance matrix or distance vector respectively.
- **checks** [bool, optional] If set to False, no checks will be made for matrix symmetry nor zero diagonals. This is useful if it is known that \(X - X.T\) is small and \(\text{diag}(X)\) is close to zero. These values are ignored anyway so they do not disrupt the squareform transformation.

Returns

- **Y** [ndarray] If a condensed distance matrix is passed, a redundant one is returned, or if a redundant one is passed, a condensed distance matrix is returned.
Notes

1. v = squareform(X)
 Given a square n-by-n symmetric distance matrix X, v = squareform(X) returns a \(n * (n-1) / 2 \) (i.e. binomial coefficient \(n \choose 2 \)) sized vector v where \(v[i] = \frac{n!}{(n-i)!i!} + (j-i-1) \) is the distance between distinct points \(i \) and \(j \). If X is non-square or asymmetric, an error is raised.

2. X = squareform(v)
 Given a \(n * (n-1) / 2 \) sized vector v for some integer \(n \geq 1 \) encoding distances as described, X = squareform(v) returns a n-by-n distance matrix X. The X[i, j] and X[j, i] values are set to \(v[i] = \frac{n!}{(n-i)!i!} + (j-i-1) \) and all diagonal elements are zero.

In SciPy 0.19.0, squareform stopped casting all input types to float64, and started returning arrays of the same dtype as the input.

scipy.spatial.distance.directed_hausdorff

scipy.spatial.distance.directed_hausdorff (u, v, seed=0)
Compute the directed Hausdorff distance between two 2-D arrays.

Distances between pairs are calculated using a Euclidean metric.

Parameters
 u [(M,N) array_like] Input array.
 v [(O,N) array_like] Input array.
 seed [int or None] Local numpy.random.RandomState seed. Default is 0, a random shuffling of u and v that guarantees reproducibility.

Returns
 d [double] The directed Hausdorff distance between arrays u and v.
 index_1 [int] index of point contributing to Hausdorff pair in u
 index_2 [int] index of point contributing to Hausdorff pair in v

Raises
 ValueError
 An exception is thrown if u and v do not have the same number of columns.

See also:

scipy.spatial.procrustes
 Another similarity test for two data sets

Notes
Uses the early break technique and the random sampling approach described by [1]. Although worst-case performance is \(O(m * o) \) (as with the brute force algorithm), this is unlikely in practice as the input data would have to require the algorithm to explore every single point interaction, and after the algorithm shuffles the input points at that. The best case performance is \(O(m) \), which is satisfied by selecting an inner loop distance that is less than cmax and leads to an early break as often as possible. The authors have formally shown that the average runtime is closer to \(O(m) \).

New in version 0.19.0.
References

[1]

Examples

Find the directed Hausdorff distance between two 2-D arrays of coordinates:

```python
>>> from scipy.spatial.distance import directed_hausdorff
>>> u = np.array([(1.0, 0.0),
...                (0.0, 1.0),
...                (-1.0, 0.0),
...                (0.0, -1.0)])
>>> v = np.array([(2.0, 0.0),
...                (0.0, 2.0),
...                (-2.0, 0.0),
...                (0.0, -4.0)])

>>> directed_hausdorff(u, v)[0]
2.23606797749979
>>> directed_hausdorff(v, u)[0]
3.0
```

Find the general (symmetric) Hausdorff distance between two 2-D arrays of coordinates:

```python
>>> max(directed_hausdorff(u, v)[0], directed_hausdorff(v, u)[0])
3.0
```

Find the indices of the points that generate the Hausdorff distance (the Hausdorff pair):

```python
>>> directed_hausdorff(v, u)[1:]
(3, 3)
```

Predicates for checking the validity of distance matrices, both condensed and redundant. Also contained in this module are functions for computing the number of observations in a distance matrix.

- `is_valid_dm(D[, tol, throw, name, warning])` Return True if input array is a valid distance matrix.
- `is_valid_y(Y[, warning, throw, name])` Return True if the input array is a valid condensed distance matrix.
- `num_obs_dm(d)` Return the number of original observations that correspond to a square, redundant distance matrix.
- `num_obs_y(Y)` Return the number of original observations that correspond to a condensed distance matrix.
scipy.spatial.distance.is_valid_dm

scipy.spatial.distance.is_valid_dm(D, tol=0.0, throw=False, name='D', warning=False)

Return True if input array is a valid distance matrix.

Distance matrices must be 2-dimensional numpy arrays. They must have a zero-diagonal, and they must be symmetric.

Parameters

- D [array_like] The candidate object to test for validity.
- tol [float, optional] The distance matrix should be symmetric. tol is the maximum difference between entries ij and ji for the distance metric to be considered symmetric.
- throw [bool, optional] An exception is thrown if the distance matrix passed is not valid.
- name [str, optional] The name of the variable to checked. This is useful if throw is set to True so the offending variable can be identified in the exception message when an exception is thrown.
- warning [bool, optional] Instead of throwing an exception, a warning message is raised.

Returns

- valid [bool] True if the variable D passed is a valid distance matrix.

Notes

Small numerical differences in D and $D.T$ and non-zeroness of the diagonal are ignored if they are within the tolerance specified by tol.

scipy.spatial.distance.is_valid_y

scipy.spatial.distance.is_valid_y(y, warning=False, throw=False, name=None)

Return True if the input array is a valid condensed distance matrix.

Condensed distance matrices must be 1-dimensional numpy arrays. Their length must be a binomial coefficient $\binom{n}{2}$ for some positive integer n.

Parameters

- y [array_like] The condensed distance matrix.
- warning [bool, optional] Invokes a warning if the variable passed is not a valid condensed distance matrix. The warning message explains why the distance matrix is not valid. $name$ is used when referencing the offending variable.
- throw [bool, optional] Throws an exception if the variable passed is not a valid condensed distance matrix.
- name [bool, optional] Used when referencing the offending variable in the warning or exception message.

scipy.spatial.distance.num_obs_dm

scipy.spatial.distance.num_obs_dm(d)

Return the number of original observations that correspond to a square, redundant distance matrix.

Parameters

- d [array_like] The target distance matrix.

Returns

- num_obs_dm [int] The number of observations in the redundant distance matrix.
scipy.spatial.distance.num_obs_y

Return the number of original observations that correspond to a condensed distance matrix.

Parameters

Y [array_like] Condensed distance matrix.

Returns

n [int] The number of observations in the condensed distance matrix Y.

Distance functions between two numeric vectors u and v. Computing distances over a large collection of vectors is inefficient for these functions. Use pdist for this purpose.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>braycurtis(u, v, w=None)</td>
<td>Compute the Bray-Curtis distance between two 1-D arrays.</td>
</tr>
<tr>
<td>canberra(u, v, w=None)</td>
<td>Compute the Canberra distance between two 1-D arrays.</td>
</tr>
<tr>
<td>chebyshev(u, v, w=None)</td>
<td>Compute the Chebyshev distance.</td>
</tr>
<tr>
<td>cityblock(u, v, w=None)</td>
<td>Compute the City Block (Manhattan) distance.</td>
</tr>
<tr>
<td>correlation(u, v, w=None, centered=None)</td>
<td>Compute the correlation distance between two 1-D arrays.</td>
</tr>
<tr>
<td>cosine(u, v, w=None)</td>
<td>Compute the Cosine distance between 1-D arrays.</td>
</tr>
<tr>
<td>euclidean(u, v, w=None)</td>
<td>Compute the Euclidean distance between two 1-D arrays.</td>
</tr>
<tr>
<td>jensenshannon(p, q, w=None, base=None, keepdims=None)</td>
<td>Compute the Jensen-Shannon distance (metric) between two probability arrays.</td>
</tr>
<tr>
<td>mahalanobis(u, v, VI)</td>
<td>Compute the Mahalanobis distance between two 1-D arrays.</td>
</tr>
<tr>
<td>minkowski(u, v, w=None, p=None)</td>
<td>Compute the Minkowski distance between two 1-D arrays.</td>
</tr>
<tr>
<td>seuclidean(u, v, V)</td>
<td>Return the standardized Euclidean distance between two 1-D arrays.</td>
</tr>
<tr>
<td>sqeuclidean(u, v, w=None)</td>
<td>Compute the squared Euclidean distance between two 1-D arrays.</td>
</tr>
</tbody>
</table>

scipy.spatial.distance.braycurtis

Compute the Bray-Curtis distance between two 1-D arrays.

Bray-Curtis distance is defined as

\[\frac{\sum |u_i - v_i|}{\sum |u_i + v_i|} \]

The Bray-Curtis distance is in the range [0, 1] if all coordinates are positive, and is undefined if the inputs are of length zero.

Parameters

u [(N,) array_like] Input array.
v [(N,) array_like] Input array.
w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which gives each value a weight of 1.0.

Returns

braycurtis [double] The Bray-Curtis distance between 1-D arrays u and v.
Examples

```python
>>> from scipy.spatial import distance
>>> distance.braycurtis([1, 0, 0], [0, 1, 0])
1.0
>>> distance.braycurtis([1, 1, 0], [0, 1, 0])
0.33333333333333331
```

scipy.spatial.distance.canberra

```python
scipy.spatial.distance.canberra(u, v, w=None)
```

Compute the Canberra distance between two 1-D arrays.

The Canberra distance is defined as

$$d(u, v) = \sum_i \frac{|u_i - v_i|}{|u_i| + |v_i|}.$$

Parameters

- **u** [(N,) array_like] Input array.
- **v** [(N,) array_like] Input array.
- **w** [(N,) array_like, optional] The weights for each value in u and v. Default is None, which gives each value a weight of 1.0

Returns

- **canberra** [double] The Canberra distance between vectors u and v.

Notes

When $u[i]$ and $v[i]$ are 0 for given i, then the fraction 0/0 = 0 is used in the calculation.

Examples

```python
>>> from scipy.spatial import distance
>>> distance.canberra([1, 0, 0], [0, 1, 0])
2.0
>>> distance.canberra([1, 1, 0], [0, 1, 0])
1.0
```

scipy.spatial.distance.chebyshev

```python
scipy.spatial.distance.chebyshev(u, v, w=None)
```

Computes the Chebyshev distance between two 1-D arrays u and v, which is defined as

$$\max_i |u_i - v_i|.$$

Parameters

- **u** [(N,) array_like] Input vector.
- **v** [(N,) array_like] Input vector.
- **w** [(N,) array_like, optional] Unused, as ‘max’ is a weightless operation. Here for API consistency.
Returns

chebyshev [double] The Chebyshev distance between vectors u and v.

Examples

```python
>>> from scipy.spatial import distance
>>> distance.chebyshev([1, 0, 0], [0, 1, 0])
1
>>> distance.chebyshev([1, 1, 0], [0, 1, 0])
```

scipy.spatial.distance.cityblock

scipy.spatial.distance.cityblock(u, v, w=None)
Compute the City Block (Manhattan) distance.
Computes the Manhattan distance between two 1-D arrays u and v, which is defined as

\[\sum_i |u_i - v_i|. \]

Parameters

- u [(N,) array_like] Input array.
- v [(N,) array_like] Input array.
- w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which gives each value a weight of 1.0

Returns

cityblock [double] The City Block (Manhattan) distance between vectors u and v.

Examples

```python
>>> from scipy.spatial import distance
>>> distance.cityblock([1, 0, 0], [0, 1, 0])
2
>>> distance.cityblock([1, 0, 0], [0, 2, 0])
3
>>> distance.cityblock([1, 0, 0], [1, 1, 0])
1
```

scipy.spatial.distance.correlation

scipy.spatial.distance.correlation(u, v, w=None, centered=True)
Compute the correlation distance between two 1-D arrays.
The correlation distance between u and v, is defined as

\[1 - \frac{(u - \bar{u}) \cdot (v - \bar{v})}{\|u - \bar{u}\|_2 \|v - \bar{v}\|_2} \]

where \(\bar{u} \) is the mean of the elements of u and \(x \cdot y \) is the dot product of x and y.

Parameters

SciPy

API definition

scipy.spatial.distance.cosine

scipy.spatial.distance.cosine(u, v, w=None)

Compute the Cosine distance between 1-D arrays.

The Cosine distance between u and v, is defined as

$$1 - \frac{u \cdot v}{\|u\|_2 \|v\|_2}.$$

where $u \cdot v$ is the dot product of u and v.

Parameters

- **u** [(N,) array_like] Input array.
- **v** [(N,) array_like] Input array.
- **w** [(N,) array_like, optional] The weights for each value in u and v. Default is None, which gives each value a weight of 1.0

Returns

- **cosine** [double] The Cosine distance between vectors u and v.

Examples

```python
def main():
    from scipy.spatial import distance
    print(distance.cosine([1, 0, 0], [0, 1, 0]))
    print(distance.cosine([100, 0, 0], [0, 1, 0]))
    print(distance.cosine([1, 1, 0], [0, 1, 0]))
```

```text
1.0
1.0
0.29289321881345254
```

scipy.spatial.distance.euclidean

scipy.spatial.distance.euclidean(u, v, w=None)

Computes the Euclidean distance between two 1-D arrays.

The Euclidean distance between 1-D arrays u and v, is defined as

$$\|u - v\|_2 \left(\sum \frac{w_i}{(u_i - v_i)^2}\right)^{1/2}.$$

Parameters

- **u** [(N,) array_like] Input array.
- **v** [(N,) array_like] Input array.

w [(N,) array_like, optional] The weights for each value in u and v. Default is None, which gives each value a weight of 1.0

Returns

euclidean [double] The Euclidean distance between vectors u and v.

Examples

```python
>>> from scipy.spatial import distance
>>> distance.euclidean([1, 0, 0], [0, 1, 0])
1.4142135623730951
>>> distance.euclidean([1, 1, 0], [0, 1, 0])
1.0
```

scipy.spatial.distance.jensenshannon

scipy.spatial.distance.jensenshannon(p, q, base=None, *, axis=0, keepdims=False)

Compute the Jensen-Shannon distance (metric) between two probability arrays. This is the square root of the Jensen-Shannon divergence.

The Jensen-Shannon distance between two probability vectors p and q is defined as,

$$\sqrt{\frac{D(p \parallel m) + D(q \parallel m)}{2}}$$

where m is the pointwise mean of p and q and D is the Kullback-Leibler divergence.

This routine will normalize p and q if they don’t sum to 1.0.

Parameters

- p [(N,) array_like] left probability vector
- q [(N,) array_like] right probability vector
- base [double, optional] the base of the logarithm used to compute the output if not given, then the routine uses the default base of scipy.stats.entropy.
- axis [int, optional] Axis along which the Jensen-Shannon distances are computed. The default is 0.
 New in version 1.7.0.
- keepdims [bool, optional] If this is set to True, the reduced axes are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. Default is False.
 New in version 1.7.0.

Returns

- js [double or ndarray] The Jensen-Shannon distances between p and q along the axis.
Notes

New in version 1.2.0.

Examples

```python
>>> from scipy.spatial import distance
>>> distance.jensenshannon([1.0, 0.0, 0.0], [0.0, 1.0, 0.0], 2.0)
1.0
>>> distance.jensenshannon([1.0, 0.0], [0.5, 0.5])
0.46450140402245893
>>> distance.jensenshannon([1.0, 0.0, 0.0], [1.0, 0.0, 0.0])
0.0
>>> a = np.array([[1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12]])
>>> b = np.array([[13, 14, 15, 16],
... [17, 18, 19, 20],
... [21, 22, 23, 24]])
>>> distance.jensenshannon(a, b, axis=0)
array([0.1954288, 0.1447697, 0.1138377, 0.0927636])
>>> distance.jensenshannon(a, b, axis=1)
array([0.1402339, 0.0399106, 0.0201815])
```

scipy.spatial.distance.mahalanobis

```
scipy.spatial.distance.mahalanobis(u, v, VI)
```

Compute the Mahalanobis distance between two 1-D arrays.

The Mahalanobis distance between 1-D arrays \(u \) and \(v \), is defined as

\[
\sqrt{(u - v)V^{-1}(u - v)^T}
\]

where \(V \) is the covariance matrix. Note that the argument \(VI \) is the inverse of \(V \).

Parameters

- \(u \) : [(N,) array_like] Input array.
- \(v \) : [(N,) array_like] Input array.
- \(VI \) : [array_like] The inverse of the covariance matrix.

Returns

- \(mahalanobis \) : [double] The Mahalanobis distance between vectors \(u \) and \(v \).
Examples

```python
from scipy.spatial import distance
distance.mahalanobis([1, 0, 0], [0, 1, 0], iv)
1.0
distance.mahalanobis([0, 2, 0], [0, 1, 0], iv)
1.0
distance.mahalanobis([2, 0, 0], [0, 1, 0], iv)
1.7320508075688772
```

scipy.spatial.distance.minkowski

`scipy.spatial.distance.minkowski(u, v, p=2, w=None)`
Compute the Minkowski distance between two 1-D arrays.

The Minkowski distance between 1-D arrays `u` and `v`, is defined as

\[
\|u - v\|_p = \left(\sum_{i=0}^{N} |u_i - v_i|^p \right)^{1/p}.
\]

Parameters:

- `u` : [(N,) array_like] Input array.
- `v` : [(N,) array_like] Input array.
- `p` : [scalar] The order of the norm of the difference `\|u - v\|_p`. Note that for `0 < p < 1`, the triangle inequality only holds with an additional multiplicative factor, i.e. it is only a quasi-metric.
- `w` : [(N,) array_like, optional] The weights for each value in `u` and `v`. Default is None, which gives each value a weight of 1.0

Returns:

- `minkowski` : [double] The Minkowski distance between vectors `u` and `v`.

Examples

```python
from scipy.spatial import distance
distance.minkowski([1, 0, 0], [0, 1, 0], 1)
2.0
distance.minkowski([1, 0, 0], [0, 1, 0], 2)
1.4142135623730951
distance.minkowski([1, 0, 0], [0, 1, 0], 3)
1.2599210498948732
distance.minkowski([1, 1, 0], [0, 1, 0], 1)
1.0
distance.minkowski([1, 1, 0], [0, 1, 0], 2)
1.0
distance.minkowski([1, 1, 0], [0, 1, 0], 3)
1.0
```
scipy.spatial.distance.seuclidean

scipy.spatial.distance.seuclidean(u, v, V)

Return the standardized Euclidean distance between two 1-D arrays.

The standardized Euclidean distance between \(u\) and \(v\).

Parameters

- **u** [(N,) array_like] Input array.
- **v** [(N,) array_like] Input array.
- **V** [(N,) array_like] \(V\) is an 1-D array of component variances. It is usually computed among a larger collection vectors.

Returns

- **seuclidean** [double] The standardized Euclidean distance between vectors \(u\) and \(v\).

Examples

```python
>>> from scipy.spatial import distance
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [0.1, 0.1, 0.1])
4.4721359549995796
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [1, 0.1, 0.1])
3.3166247903553998
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [10, 0.1, 0.1])
3.1780497164141406
```

scipy.spatial.distance.sqeuclidean

scipy.spatial.distance.sqeuclidean(u, v, w=None)

Compute the squared Euclidean distance between two 1-D arrays.

The squared Euclidean distance between \(u\) and \(v\) is defined as

\[
\|
\begin{pmatrix}
u \\
v
\end{pmatrix}
\|^2 \\
\sum (w_i |(u_i - v_i)|^2)
\]

Parameters

- **u** [(N,) array_like] Input array.
- **v** [(N,) array_like] Input array.
- **w** [(N,) array_like, optional] The weights for each value in \(u\) and \(v\). Default is None, which gives each value a weight of 1.0

Returns

- **sqeuclidean** [double] The squared Euclidean distance between vectors \(u\) and \(v\).
Examples

```python
>>> from scipy.spatial import distance
>>> distance.sqeuclidean([1, 0, 0], [0, 1, 0])
2.0
>>> distance.sqeuclidean([1, 1, 0], [0, 1, 0])
1.0
```

Distance functions between two boolean vectors (representing sets) \(u \) and \(v \). As in the case of numerical vectors, \texttt{pdist} is more efficient for computing the distances between all pairs.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{dice(u, v[, w])}</td>
<td>Compute the Dice dissimilarity between two boolean 1-D arrays.</td>
</tr>
<tr>
<td>\texttt{hamming(u, v[, w])}</td>
<td>Compute the Hamming distance between two 1-D arrays.</td>
</tr>
<tr>
<td>\texttt{jaccard(u, v[, w])}</td>
<td>Compute the Jaccard-Needham dissimilarity between two boolean 1-D arrays.</td>
</tr>
<tr>
<td>\texttt{kulsinski(u, v[, w])}</td>
<td>Compute the Kulsinski dissimilarity between two boolean 1-D arrays.</td>
</tr>
<tr>
<td>\texttt{kulczynski(u, v[, w])}</td>
<td>Compute the Kulczynski 1 dissimilarity between two boolean 1-D arrays.</td>
</tr>
<tr>
<td>\texttt{rogerstanimoto(u, v[, w])}</td>
<td>Compute the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays.</td>
</tr>
<tr>
<td>\texttt{russellrao(u, v[, w])}</td>
<td>Compute the Russell-Rao dissimilarity between two boolean 1-D arrays.</td>
</tr>
<tr>
<td>\texttt{sokalmichener(u, v[, w])}</td>
<td>Compute the Sokal-Michener dissimilarity between two boolean 1-D arrays.</td>
</tr>
<tr>
<td>\texttt{sokalsneath(u, v[, w])}</td>
<td>Compute the Sokal-Sneath dissimilarity between two boolean 1-D arrays.</td>
</tr>
<tr>
<td>\texttt{yule(u, v[, w])}</td>
<td>Compute the Yule dissimilarity between two boolean 1-D arrays.</td>
</tr>
</tbody>
</table>

scipy.spatial.distance.dice

\texttt{scipy.spatial.distance.dice(u, v, w=None)}

Compute the Dice dissimilarity between two boolean 1-D arrays.

The Dice dissimilarity between \(u \) and \(v \) is

\[
\frac{c_{TF} + c_{FT}}{2c_{TT} + c_{FT} + c_{TF}}
\]

where \(c_{ij} \) is the number of occurrences of \(u[k] = i \) and \(v[k] = j \) for \(k < n \).

Parameters

- \(u \) [[(N,) array_like, bool]] Input 1-D array.
- \(v \) [[(N,) array_like, bool]] Input 1-D array.
- \(w \) [[(N,) array_like, optional]] The weights for each value in \(u \) and \(v \). Default is None, which gives each value a weight of 1.0

Returns

- \(\text{dice} \) [double] The Dice dissimilarity between 1-D arrays \(u \) and \(v \).
Examples

```python
>>> from scipy.spatial import distance
>>> distance.dice([1, 0, 0], [0, 1, 0])
1.0
>>> distance.dice([1, 0, 0], [1, 1, 0])
0.33333333333333333
>>> distance.dice([1, 0, 0], [2, 0, 0])
-0.33333333333333333
```

scipy.spatial.distance.hamming

`scipy.spatial.distance.hamming(u, v, w=None)`

Compute the Hamming distance between two 1-D arrays.

The Hamming distance between 1-D arrays `u` and `v`, is simply the proportion of disagreeing components in `u` and `v`. If `u` and `v` are boolean vectors, the Hamming distance is

\[
\frac{c_{01} + c_{10}}{n}
\]

where \(c_{ij}\) is the number of occurrences of \(u[k] = i\) and \(v[k] = j\) for \(k < n\).

Parameters

- `u` [(N,) array_like] Input array.
- `v` [(N,) array_like] Input array.
- `w` [(N,) array_like, optional] The weights for each value in `u` and `v`. Default is None, which gives each value a weight of 1.0

Returns

- `hamming` [double] The Hamming distance between vectors `u` and `v`.

Examples

```python
>>> from scipy.spatial import distance
>>> distance.hamming([1, 0, 0], [0, 1, 0])
0.66666666666666663
>>> distance.hamming([1, 0, 0], [1, 1, 0])
0.33333333333333331
>>> distance.hamming([1, 0, 0], [2, 0, 0])
0.33333333333333331
>>> distance.hamming([1, 0, 0], [3, 0, 0])
0.33333333333333331
```

scipy.spatial.distance.jaccard

`scipy.spatial.distance.jaccard(u, v, w=None)`

Compute the Jaccard-Needham dissimilarity between two boolean 1-D arrays.

The Jaccard-Needham dissimilarity between 1-D boolean arrays `u` and `v`, is defined as

\[
\frac{c_{TF} + c_{FT}}{c_{TT} + c_{FT} + c_{TF}}
\]

where \(c_{ij}\) is the number of occurrences of \(u[k] = i\) and \(v[k] = j\) for \(k < n\).
Parameters

- **u** [(N,) array_like, bool] Input array.
- **v** [(N,) array_like, bool] Input array.
- **w** [(N,) array_like, optional] The weights for each value in `u` and `v`. Default is None, which gives each value a weight of 1.0

Returns

- **jaccard** [double] The Jaccard distance between vectors `u` and `v`.

Notes

When both `u` and `v` lead to a 0/0 division i.e. there is no overlap between the items in the vectors the returned distance is 0. See the Wikipedia page on the Jaccard index [1], and this paper [2].

Changed in version 1.2.0: Previously, when `u` and `v` lead to a 0/0 division, the function would return NaN. This was changed to return 0 instead.

References

[1], [2]

Examples

```python
>>> from scipy.spatial import distance
>>> distance.jaccard([1, 0, 0], [0, 1, 0])
1.0
>>> distance.jaccard([1, 0, 0], [1, 1, 0])
0.5
>>> distance.jaccard([1, 0, 0], [1, 2, 0])
0.5
>>> distance.jaccard([1, 0, 0], [1, 1, 1])
0.6666666666666663
```

scipy.spatial.distance.kulsinski

`scipy.spatial.distance.kulsinski(u, v, w=None)`

Compute the Kulsinski dissimilarity between two boolean 1-D arrays.

The Kulsinski dissimilarity between two boolean 1-D arrays `u` and `v`, is defined as

\[
\frac{c_{TF} + c_{FT} - c_{TT} + n}{c_{FT} + c_{TF} + n}
\]

where \(c_{ij}\) is the number of occurrences of \(u[k] = i\) and \(v[k] = j\) for \(k < n\).

Parameters

- **u** [(N,) array_like, bool] Input array.
- **v** [(N,) array_like, bool] Input array.
- **w** [(N,) array_like, optional] The weights for each value in `u` and `v`. Default is None, which gives each value a weight of 1.0

Returns

- **kulsinski** [double] The Kulsinski distance between vectors `u` and `v`.

Examples

```python
>>> from scipy.spatial import distance
>>> distance.kulsinski([1, 0, 0], [0, 1, 0])
1.0
>>> distance.kulsinski([1, 0, 0], [1, 1, 0])
0.75
>>> distance.kulsinski([1, 0, 0], [2, 1, 0])
0.33333333333333331
>>> distance.kulsinski([1, 0, 0], [3, 1, 0])
-0.5
```

`scipy.spatial.distance.kulczynski1`

`scipy.spatial.distance.kulczynski1(u, v, *, w=None)`

Compute the Kulczynski 1 dissimilarity between two boolean 1-D arrays.

The Kulczynski 1 dissimilarity between two boolean 1-D arrays \(u \) and \(v \) of length \(n \), is defined as

\[
\frac{c_{11}}{c_{01} + c_{10}}
\]

where \(c_{ij} \) is the number of occurrences of \(u[k] = i \) and \(v[k] = j \) for \(k \in 0, 1, \ldots, n - 1 \).

Parameters

- \(u \) [(N,) array_like, bool] Input array.
- \(v \) [(N,) array_like, bool] Input array.
- \(w \) [(N,) array_like, optional] The weights for each value in \(u \) and \(v \). Default is None, which gives each value a weight of 1.0

Returns

- \(\text{kulczynski1} \) [float] The Kulczynski 1 distance between vectors \(u \) and \(v \).

See also:

- \(\text{kulsinski} \)

Notes

This measure has a minimum value of 0 and no upper limit. It is un-defined when there are no non-matches.

New in version 1.8.0.

References

[1]
Examples

```python
>>> from scipy.spatial import distance
>>> distance.kulczynski1([1, 0, 0], [0, 1, 0])
0.0
>>> distance.kulczynski1([True, False, False], [True, True, False])
1.0
>>> distance.kulczynski1([True, False, False], True)
0.5
>>> distance.kulczynski1([1, 0, 0], [3, 1, 0])
-3.0
```

`scipy.spatial.distance.rogerstanimoto`

`scipy.spatial.distance.rogerstanimoto(u, v, w=none)`

Compute the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays.

The Rogers-Tanimoto dissimilarity between two boolean 1-D arrays, \(u \) and \(v \), is defined as

\[
R = \frac{c_{TF} + c_{FT}}{c_{TT} + c_{FF}}
\]

where \(c_{ij} \) is the number of occurrences of \(u[k] = i \) and \(v[k] = j \) for \(k < n \) and \(R = 2(c_{TF} + c_{FT}) \).

Parameters

- **u** [(N,) array_like, bool] Input array.
- **v** [(N,) array_like, bool] Input array.
- **w** [(N,) array_like, optional] The weights for each value in \(u \) and \(v \). Default is None, which gives each value a weight of 1.0

Returns

- **rogerstanimoto** [double] The Rogers-Tanimoto dissimilarity between vectors \(u \) and \(v \).

Examples

```python
>>> from scipy.spatial import distance
>>> distance.rogerstanimoto([1, 0, 0], [0, 1, 0])
0.8
>>> distance.rogerstanimoto([1, 0, 0], [1, 1, 0])
0.5
>>> distance.rogerstanimoto([1, 0, 0], [2, 0, 0])
-1.0
```

`scipy.spatial.distance.russellrao`

`scipy.spatial.distance.russellrao(u, v, w=none)`

Compute the Russell-Rao dissimilarity between two boolean 1-D arrays.

The Russell-Rao dissimilarity between two boolean 1-D arrays, \(u \) and \(v \), is defined as

\[
R = \frac{n - c_{TT}}{n}
\]

where \(c_{ij} \) is the number of occurrences of \(u[k] = i \) and \(v[k] = j \) for \(k < n \).
Parameters

- **u** [(N,) array_like, bool] Input array.
- **v** [(N,) array_like, bool] Input array.
- **w** [(N,) array_like, optional] The weights for each value in u and v. Default is None, which gives each value a weight of 1.0

Returns

- **russellrao** [double] The Russell-Rao dissimilarity between vectors u and v.

Examples

```python
>>> from scipy.spatial import distance
>>> distance.russellrao([1, 0, 0], [0, 1, 0])
1.0
>>> distance.russellrao([1, 0, 0], [1, 1, 0])
0.6666666666666666
>>> distance.russellrao([1, 0, 0], [2, 0, 0])
0.3333333333333333
```

scipy.spatial.distance.sokalmichener

scipy.spatial.distance.sokalmichener *(u, v, w=None)*

Compute the Sokal-Michener dissimilarity between two boolean 1-D arrays.

The Sokal-Michener dissimilarity between boolean 1-D arrays u and v, is defined as

\[
\frac{R}{S + R}
\]

where \(c_{ij}\) is the number of occurrences of \(u[k] = i\) and \(v[k] = j\) for \(k < n\), \(R = 2 \times (c_{TF} + c_{FT})\) and \(S = c_{FF} + c_{TT}\).

Parameters

- **u** [(N,) array_like, bool] Input array.
- **v** [(N,) array_like, bool] Input array.
- **w** [(N,) array_like, optional] The weights for each value in u and v. Default is None, which gives each value a weight of 1.0

Returns

- **sokalmichener** [double] The Sokal-Michener dissimilarity between vectors u and v.

Examples

```python
>>> from scipy.spatial import distance
>>> distance.sokalmichener([1, 0, 0], [0, 1, 0])
0.8
>>> distance.sokalmichener([1, 0, 0], [1, 1, 0])
0.5
>>> distance.sokalmichener([1, 0, 0], [2, 0, 0])
-1.0
```
scipy.spatial.distance.sokalsneath

`scipy.spatial.distance.sokalsneath(u, v, w=None)`

Compute the Sokal-Sneath dissimilarity between two boolean 1-D arrays.

The Sokal-Sneath dissimilarity between \(u \) and \(v \),

\[
\frac{R}{c_{TT} + R}
\]

where \(c_{ij} \) is the number of occurrences of \(u[k] = i \) and \(v[k] = j \) for \(k < n \) and \(R = 2(c_{TF} + c_{FT}) \).

Parameters

- **u** [(N,) array_like, bool] Input array.
- **v** [(N,) array_like, bool] Input array.
- **w** [(N,) array_like, optional] The weights for each value in \(u \) and \(v \). Default is None, which gives each value a weight of 1.0

Returns

- **sokalsneath** [double] The Sokal-Sneath dissimilarity between vectors \(u \) and \(v \).

Examples

```python
>>> from scipy.spatial import distance
>>> distance.sokalsneath([1, 0, 0], [0, 1, 0])
1.0
>>> distance.sokalsneath([1, 0, 0], [1, 1, 0])
0.6666666666666663
>>> distance.sokalsneath([1, 0, 0], [2, 1, 0])
0.0
>>> distance.sokalsneath([1, 0, 0], [3, 1, 0])
-2.0
```

scipy.spatial.distance.yule

`scipy.spatial.distance.yule(u, v, w=None)`

Compute the Yule dissimilarity between two boolean 1-D arrays.

The Yule dissimilarity is defined as

\[
\frac{R}{c_{TT} \ast c_{FF} + \frac{R}{2}}
\]

where \(c_{ij} \) is the number of occurrences of \(u[k] = i \) and \(v[k] = j \) for \(k < n \) and \(R = 2.0 \ast c_{TF} \ast c_{FT} \).

Parameters

- **u** [(N,) array_like, bool] Input array.
- **v** [(N,) array_like, bool] Input array.
- **w** [(N,) array_like, optional] The weights for each value in \(u \) and \(v \). Default is None, which gives each value a weight of 1.0

Returns

- **yule** [double] The Yule dissimilarity between vectors \(u \) and \(v \).
Examples

```python
>>> from scipy.spatial import distance
>>> distance.yule([1, 0, 0], [0, 1, 0])
2.0
>>> distance.yule([1, 1, 0], [0, 1, 0])
0.0
```

`hamming` also operates over discrete numerical vectors.

3.3.27 Special functions (scipy.special)

Nearly all of the functions below are universal functions and follow broadcasting and automatic array-looping rules.

See also:

- `scipy.special.cython_special` — Typed Cython versions of special functions

Error handling

Errors are handled by returning NaNs or other appropriate values. Some of the special function routines can emit warnings or raise exceptions when an error occurs. By default this is disabled; to query and control the current error handling state the following functions are provided.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>geterr</code></td>
<td>Get the current way of handling special-function errors.</td>
</tr>
<tr>
<td><code>seterr</code></td>
<td>Set how special-function errors are handled.</td>
</tr>
<tr>
<td><code>errstate(**kwargs)</code></td>
<td>Context manager for special-function error handling.</td>
</tr>
<tr>
<td><code>SpecialFunctionWarning</code></td>
<td>Warning that can be emitted by special functions.</td>
</tr>
<tr>
<td><code>SpecialFunctionError</code></td>
<td>Exception that can be raised by special functions.</td>
</tr>
</tbody>
</table>

scipy.special.geterr

- `scipy.special.geterr()`
 - Get the current way of handling special-function errors.

 Returns

 - `err [dict]` A dictionary with keys “singular”, “underflow”, “overflow”, “slow”, “loss”, “no_result”, “domain”, “arg”, and “other”, whose values are from the strings “ignore”, “warn”, and “raise”. The keys represent possible special-function errors, and the values define how these errors are handled.

 See also:

 - `seterr` set how special-function errors are handled
 - `errstate` context manager for special-function error handling
 - `numpy.geterr` similar numpy function for floating-point errors
Notes

For complete documentation of the types of special-function errors and treatment options, see `seterr`.

Examples

By default all errors are ignored.

```python
>>> import scipy.special as sc
>>> for key, value in sorted(sc.geterr().items()):
...     print("{}: {}\n".format(key, value))
... arg: ignore
domain: ignore
loss: ignore
no_result: ignore
other: ignore
overflow: ignore
singular: ignore
slow: ignore
underflow: ignore
```

`scipy.special.seterr`

`scipy.special.seterr()`

Set how special-function errors are handled.

Parameters

- **all** : [{‘ignore’, ‘warn’, ‘raise’}, optional] Set treatment for all type of special-function errors at once. The options are:
 - ‘ignore’ Take no action when the error occurs
 - ‘warn’ Print a `SpecialFunctionWarning` when the error occurs (via the Python `warnings` module)
 - ‘raise’ Raise a `SpecialFunctionError` when the error occurs.
 The default is to not change the current behavior. If behaviors for additional categories of special-function errors are specified, then all is applied first, followed by the additional categories.

- **no_result** : [{‘ignore’, ‘warn’, ‘raise’}, optional] Treatment for failing to find a result.

Returns

- **olderr** : [dict] Dictionary containing the old settings.

See also:

- `geterr`
get the current way of handling special-function errors

errstate

context manager for special-function error handling

numpy.seterr

similar numpy function for floating-point errors

Examples

```python
>>> import scipy.special as sc
>>> from pytest import raises
>>> sc.gammaln(0)
inf
>>> olderr = sc.seterr(singular='raise')
>>> with raises(sc.SpecialFunctionError):
...     sc.gammaln(0)
...     sc.spence(-1)
..._ = sc.seterr(**olderr)
```

We can also raise for every category except one.

```python
>>> olderr = sc.seterr(all='raise', singular='ignore')
>>> sc.gammaln(0)
inf
>>> with raises(sc.SpecialFunctionError):
...     sc.spence(-1)
..._ = sc.seterr(**olderr)
```

scipy.special.errstate

```python
class scipy.special.errstate(**kwargs)
```

Context manager for special-function error handling.

Using an instance of `errstate` as a context manager allows statements in that context to execute with a known error handling behavior. Upon entering the context the error handling is set with `seterr`, and upon exiting it is restored to what it was before.

Parameters

- **kwargs**

 {[all, singular, underflow, overflow, slow, loss, no_result, domain, arg, other]} Keyword arguments. The valid keywords are possible special-function errors. Each keyword should have a string value that defines the treatment for the particular type of error. Values must be ‘ignore’, ‘warn’, or ‘other’. See `seterr` for details.

See also:

- **geterr**

 get the current way of handling special-function errors

- **seterr**

 set how special-function errors are handled
numpy.errstate

Similar numpy function for floating-point errors.

Examples

```python
>>> import scipy.special as sc
>>> from pytest import raises
>>> sc.gammaln(0)
inf
>>> with sc.errstate(singular='raise):
...     with raises(sc.SpecialFunctionError):
...         sc.gammaln(0)
...     with raises(sc.SpecialFunctionError):
...         sc.spence(-1)
inf
```

We can also raise on every category except one.

```python
>>> with sc.errstate(all='raise', singular='ignore'):
...     sc.gammaln(0)
...     with raises(sc.SpecialFunctionError):
...         sc.spence(-1)
inf
```

scipy.special.SpecialFunctionWarning

exception scipy.special.SpecialFunctionWarning

Warning that can be emitted by special functions.

```python
with_traceback()  
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

scipy.special.SpecialFunctionError

exception scipy.special.SpecialFunctionError

Exception that can be raised by special functions.

```python
with_traceback()  
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

Available functions

Airy functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>airy(z)</td>
<td>Airy functions and their derivatives.</td>
</tr>
<tr>
<td>airy_re(z)</td>
<td>Exponentially scaled Airy functions and their derivatives.</td>
</tr>
<tr>
<td>ai_zeros(nt)</td>
<td>Compute nt zeros and values of the Airy function Ai and its derivative.</td>
</tr>
<tr>
<td>bi_zeros(nt)</td>
<td>Compute nt zeros and values of the Airy function Bi and its derivative.</td>
</tr>
<tr>
<td>itairy(x)</td>
<td>Integrals of Airy functions</td>
</tr>
</tbody>
</table>
scipy.special.airy

```
scipy.special.airy(z) = <ufunc 'airy'>
Airy functions and their derivatives.

Parameters
z         [array_like] Real or complex argument.

Returns
Ai, Aip, Bi, Bip
[ndarrays] Airy functions Ai and Bi, and their derivatives Aip and Bip.

See also:
airy
exponentially scaled Airy functions.

Notes
The Airy functions Ai and Bi are two independent solutions of

\[ y''(x) = xy(x) \]

For real \( z \) in \([-10, 10]\), the computation is carried out by calling the Cephes [1] airy routine, which uses power series summation for small \( z \) and rational minimax approximations for large \( z \).

Outside this range, the AMOS [2] zairy and zbiry routines are employed. They are computed using power series for \(|z| < 1\) and the following relations to modified Bessel functions for larger \( z \) (where \( t = 2z^{3/2}/3 \)):

\[
\begin{align*}
Ai(z) & = \frac{1}{\pi \sqrt{3}} K_{1/3}(t) \\
Ai'(z) & = -\frac{z}{\pi \sqrt{3}} K_{2/3}(t) \\
Bi(z) & = \sqrt{\frac{2}{3}} (I_{-1/3}(t) + I_{1/3}(t)) \\
Bi'(z) & = \frac{z}{\sqrt{3}} (I_{-2/3}(t) + I_{2/3}(t))
\end{align*}
\]

References
[1], [2]

Examples
Compute the Airy functions on the interval \([-15, 5]\).

```
>>> from scipy import special
>>> x = np.linspace(-15, 5, 201)
>>> ai, aip, bi, bip = special.airy(x)
```
Plot \( Ai(x) \) and \( Bi(x) \).
scipy.special.airye

scipy.special.airye(z) = <ufunc 'airye'>
ExpONENTIALLY SCALED AIRY FUNCTIONS AND THEIR DERIVATIVES.

SCALING:

eAi = Ai * exp(2.0/3.0*z*sqrt(z))
eAip = Aip * exp(2.0/3.0*z*sqrt(z))
eBi = Bi * exp(-abs(2.0/3.0*(z*sqrt(z)).real))
eBip = Bip * exp(-abs(2.0/3.0*(z*sqrt(z)).real))

Parameters
z [array_like] real or complex argument.

Returns
eAi, eAip, eBi, eBip [array_like] exponentially scaled airy functions eAi and eBi, and their derivates eAip and eBip

See also:
airy
Notes

Wrapper for the AMOS [1] routines `zairy` and `zbiry`.

References

[1]

Examples

We can compute exponentially scaled Airy functions and their derivatives:

```python
>>> from scipy.special import airye
>>> import matplotlib.pyplot as plt
>>> z = np.linspace(0, 50, 500)
>>> eAi, eAip, eBi, eBip = airye(z)
>>> f, ax = plt.subplots(2, 1, sharex=True)
>>> for ind, data in enumerate([eAi, eAip, "eAi", "eAip"], [eBi, eBip, "eBi", "eBip"]):
... ax[ind].plot(z, data[0], "-r", z, data[1], "-b")
... ax[ind].legend(data[2])
... ax[ind].grid(True)
>>> plt.show()
```

![Graph showing exponentially scaled Airy functions and their derivatives.]

We can compute these using usual non-scaled Airy functions by:

```python
>>> from scipy.special import airy
>>> Ai, Aip, Bi, Bip = airy(z)
>>> np.allclose(eAi, Ai * np.exp(2.0 / 3.0 * z * np.sqrt(z)))
True
>>> np.allclose(eAip, Aip * np.exp(2.0 / 3.0 * z * np.sqrt(z)))
True
```
Comparing non-scaled and exponentially scaled ones, the usual non-scaled function quickly underflows for large values, whereas the exponentially scaled function does not.

```python
>>> np.allclose(eBi, Bi * np.exp(-abs(np.real(2.0 / 3.0 * z * np.sqrt(z)))))
True
>>> np.allclose(eBip, Bip * np.exp(-abs(np.real(2.0 / 3.0 * z * np.sqrt(z)))))
True
```


scipy.special.ai_zeros

**scipy.special.ai_zeros**(nt)

Compute nt zeros and values of the Airy function Ai and its derivative.

Computes the first nt zeros, a, of the Airy function Ai(x); first nt zeros, ap, of the derivative of the Airy function Ai'(x); the corresponding values Ai(a'); and the corresponding values Ai'(a).

**Parameters**

- nt [int] Number of zeros to compute

**Returns**

- a [ndarray] First nt zeros of Ai(x)
- ap [ndarray] First nt zeros of Ai'(x)
- ai [ndarray] Values of Ai(x) evaluated at first nt zeros of Ai'(x)
- aip [ndarray] Values of Ai'(x) evaluated at first nt zeros of Ai(x)

**References**

[1]

**Examples**

```python
>>> from scipy import special
>>> a, ap, ai, aip = special.ai_zeros(3)
>>> a
array([-2.33810741, -4.08794944, -5.52055983])
>>> ap
array([-1.01879297, -3.24819758, -4.82009921])
>>> ai
array([0.53565666, -0.41901548, 0.38040647])
>>> aip
array([0.70121082, -0.80311137, 0.86520403])
```
scipy.special.bi_zeros

scipy.special.bi_zeros(nt)
Compute nt zeros and values of the Airy function Bi and its derivative.

Computes the first nt zeros, b, of the Airy function Bi(x); first nt zeros, b', of the derivative of the Airy function Bi'(x); the corresponding values Bi(b'); and the corresponding values Bi'(b).

Parameters
- nt [int] Number of zeros to compute

Returns
- b [ndarray] First nt zeros of Bi(x)
- bp [ndarray] First nt zeros of Bi'(x)
- bi [ndarray] Values of Bi(x) evaluated at first nt zeros of Bi'(x)
- bip [ndarray] Values of Bi'(x) evaluated at first nt zeros of Bi(x)

References
[1]

Examples

```python
>>> from scipy import special
>>> b, bp, bi, bip = special.bi_zeros(3)
>>> b
array([-1.17371322, -3.2710933 , -4.83073784])
>>> bp
array([-2.29443968, -4.07315509, -5.51239573])
>>> bi
array([-0.45494438, 0.39652284, -0.36796916])
>>> bip
array([0.60195789, -0.76031014, 0.83699101])
```

scipy.special.itairy

scipy.special.itairy(x) = <ufunc 'itairy'>
Integrals of Airy functions
Calculates the integrals of Airy functions from 0 to x.

Parameters
- x: array_like
  Upper limit of integration (float).

Returns
- Apt Integral of Ai(t) from 0 to x.
- Bpt Integral of Bi(t) from 0 to x.
- Ant Integral of Ai(-t) from 0 to x.
- Bnt Integral of Bi(-t) from 0 to x.
Notes

Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1].

References

[1]

Elliptic functions and integrals

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ellipj(u, m)</code></td>
<td>Jacobian elliptic functions</td>
</tr>
<tr>
<td><code>ellipkm1(p)</code></td>
<td>Complete elliptic integral of the first kind around m = 1</td>
</tr>
<tr>
<td><code>ellipkinc(ϕ, m)</code></td>
<td>Incomplete elliptic integral of the first kind</td>
</tr>
<tr>
<td><code>ellipe(m)</code></td>
<td>Complete elliptic integral of the second kind</td>
</tr>
<tr>
<td><code>ellipeinc(ϕ, m)</code></td>
<td>Incomplete elliptic integral of the second kind</td>
</tr>
<tr>
<td><code>elliprc(x, y)</code></td>
<td>Symmetric degenerate elliptic integral</td>
</tr>
<tr>
<td><code>elliprd(x, y, z)</code></td>
<td>Symmetric elliptic integral of the second kind</td>
</tr>
<tr>
<td><code>elliprf(x, y, z)</code></td>
<td>Completely-symmetric elliptic integral of the second kind</td>
</tr>
<tr>
<td><code>elliprg(x, y, z)</code></td>
<td>Completely-symmetric elliptic integral of the second kind</td>
</tr>
<tr>
<td><code>elliprj(x, y, z, p)</code></td>
<td>Symmetric elliptic integral of the third kind</td>
</tr>
</tbody>
</table>

scipy.special.ellipj

`scipy.special.ellipj(u, m) = <ufunc 'ellipj'>`

Jacobian elliptic functions

Calculates the Jacobian elliptic functions of parameter m between 0 and 1, and real argument u.

Parameters

- **m** [array_like] Parameter.
- **u** [array_like] Argument.

Returns

- **sn, cn, dn, ph** [ndarrays] The returned functions:

  - \( sn(u|m) \), \( cn(u|m) \), \( dn(u|m) \)

  The value \( ph \) is such that if \( u = ellipkinc(ph, m) \), then \( sn(u|m) = \sin(ph) \) and \( cn(u|m) = \cos(ph) \).

See also:

- `ellipk`
  Complete elliptic integral of the first kind
- `ellipkinc`
  Incomplete elliptic integral of the first kind
Notes


These functions are periodic, with quarter-period on the real axis equal to the complete elliptic integral $\text{ellip}(m)$. Relation to incomplete elliptic integral: If $u = \text{ellipinc}(\phi, m)$, then $\text{sn}(u|m) = \sin(\phi)$, and $\text{cn}(u|m) = \cos(\phi)$. The $\phi$ is called the amplitude of $u$.

Computation is by means of the arithmetic-geometric mean algorithm, except when $m$ is within $1e-9$ of 0 or 1. In the latter case with $m$ close to 1, the approximation applies only for $\phi < \pi/2$.

References

[1]

**scipy.special.ellipk**

```
scipy.special.ellipk(m) = <ufunc 'ellipk'>
```

Complete elliptic integral of the first kind.

This function is defined as

$$K(m) = \int_0^{\pi/2} \frac{1}{\sqrt{1 - m \sin(t)^2}} dt$$

**Parameters**

- $m$ [array_like] The parameter of the elliptic integral.

**Returns**

- $K$ [array_like] Value of the elliptic integral.

See also:

- **ellipkm1**
  Complete elliptic integral of the first kind around $m = 1$

- **ellipkinc**
  Incomplete elliptic integral of the first kind

- **ellipe**
  Complete elliptic integral of the second kind

- **ellipeinc**
  Incomplete elliptic integral of the second kind

- **elliprf**
  Completely-symmetric elliptic integral of the first kind.
**Notes**

For more precision around point \( m = 1 \), use \( \text{ellipkm1} \), which this function calls.

The parameterization in terms of \( m \) follows that of section 17.2 in [1]. Other parameterizations in terms of the complementary parameter \( 1 - m \), modular angle \( \sin^2(\alpha) = m \), or modulus \( k^2 = m \) are also used, so be careful that you choose the correct parameter.

The Legendre \( K \) integral is related to Carlson’s symmetric \( R_F \) function by [2]:

\[
K(m) = R_F(0, 1 - k^2, 1).
\]

**References**

[1], [2]

**scipy.special.ellipkm1**

\( \text{scipy.special.ellipkm1}(p) = \text{<ufunc 'ellipkm1'>} \)

Complete elliptic integral of the first kind around \( m = 1 \)

This function is defined as

\[
K(p) = \int_0^{\pi/2} [1 - m \sin(t)^2]^{-1/2} dt
\]

where \( m = 1 - p \).

**Parameters**

- \( p \) [array_like] Defines the parameter of the elliptic integral as \( m = 1 - p \).

**Returns**

- \( K \) [ndarray] Value of the elliptic integral.

**See also:**

- \( \text{ellipk} \)
  Complete elliptic integral of the first kind

- \( \text{ellipkinc} \)
  Incomplete elliptic integral of the first kind

- \( \text{ellipe} \)
  Complete elliptic integral of the second kind

- \( \text{ellipeinc} \)
  Incomplete elliptic integral of the second kind

- \( \text{elliprf} \)
  Completely-symmetric elliptic integral of the first kind.
Notes

Wrapper for the Cephes [1] routine $\text{ellpk}$.

For $p \leq 1$, computation uses the approximation,

$$K(p) \approx P(p) - \log(p)Q(p),$$

where $P$ and $Q$ are tenth-order polynomials. The argument $p$ is used internally rather than $m$ so that the logarithmic singularity at $m = 1$ will be shifted to the origin; this preserves maximum accuracy. For $p > 1$, the identity

$$K(p) = K(1/p) / \sqrt{p}$$

is used.

References

[1]

**scipy.special.ellipkinc**

```python
scipy.special.ellipkinc(phi, m) = <ufunc 'ellipkinc'>
```

Incomplete elliptic integral of the first kind

This function is defined as

$$K(\phi, m) = \int_0^{\phi} \frac{1}{1 - m \sin^2(t)} dt$$

This function is also called $F(\phi, m)$.

**Parameters**

- **phi** [array_like] amplitude of the elliptic integral
- **m** [array_like] parameter of the elliptic integral

**Returns**

- **K** [ndarray] Value of the elliptic integral

See also:

- **ellipkm1**
  Complete elliptic integral of the first kind, near $m = 1$
- **ellip**
  Complete elliptic integral of the first kind
- **ellipe**
  Complete elliptic integral of the second kind
- **ellipeinc**
  Incomplete elliptic integral of the second kind
- **elliprf**
  Completely-symmetric elliptic integral of the first kind.
Notes

Wrapper for the Cephes [1] routine ellik. The computation is carried out using the arithmetic-geometric mean algorithm.

The parameterization in terms of \( m \) follows that of section 17.2 in [2]. Other parameterizations in terms of the complementary parameter \( 1 - m \), modular angle \( \sin^2(\alpha) = m \), or modulus \( k^2 = m \) are also used, so be careful that you choose the correct parameter.

The Legendre K incomplete integral (or F integral) is related to Carlson’s symmetric R_F function [3]. Setting \( c = \csc^2 \phi \),

\[
F(\phi, m) = R_F(c - 1, c - k^2, c).
\]

References

[1], [2], [3]

\texttt{scipy.special.ellipe}

\texttt{scipy.special.ellipe}(m) = <ufunc 'ellipe'>

Complete elliptic integral of the second kind

This function is defined as

\[
E(m) = \int_0^{\pi/2} \frac{dt}{\sqrt{1 - m \sin^2(t)}}
\]

Parameters

\( m \) [array_like] Defines the parameter of the elliptic integral.

Returns

\( E \) [ndarray] Value of the elliptic integral.

See also:

\texttt{ellipkm1}

Complete elliptic integral of the first kind, near \( m = 1 \)

\texttt{ellipk}

Complete elliptic integral of the first kind

\texttt{ellipkinc}

Incomplete elliptic integral of the first kind

\texttt{ellipeinc}

Incomplete elliptic integral of the second kind

\texttt{elliprd}

Symmetric elliptic integral of the second kind

\texttt{elliprg}

Completely-symmetric elliptic integral of the second kind.
Notes


For $m > 0$ the computation uses the approximation,

$$ E(m) \approx P(1 - m) - (1 - m) \log(1 - m) Q(1 - m), $$

where $P$ and $Q$ are tenth-order polynomials. For $m < 0$, the relation

$$ E(m) = E(m/(m - 1)) \sqrt{(1 - m)} $$

is used.

The parameterization in terms of $m$ follows that of section 17.2 in [2]. Other parameterizations in terms of the complementary parameter $1 - m$, modular angle $\sin^2(\alpha) = m$, or modulus $k^2 = m$ are also used, so be careful that you choose the correct parameter.

The Legendre E integral is related to Carlson’s symmetric R_D or R_G functions in multiple ways [3]. For example,

$$ E(m) = 2R_G(0, 1 - k^2, 1). $$

References

[1], [2], [3]

Examples

This function is used in finding the circumference of an ellipse with semi-major axis $a$ and semi-minor axis $b$.

```python
>>> from scipy import special

>>> a = 3.5
>>> b = 2.1
>>> e_sq = 1.0 - b**2/a**2 # eccentricity squared

Then the circumference is found using the following:

```python
>>> C = 4*a*special.ellipe(e_sq)  # circumference formula
>>> C
17.868899204378693
```

When a and b are the same (meaning eccentricity is 0), this reduces to the circumference of a circle.

```python
>>> 4*a*special.ellipe(0.0)  # formula for ellipse with a = b
21.991148575128552
>>> 2*np.pi*a  # formula for circle of radius a
21.991148575128552
```
scipy.special.ellipeinc

scipy.special.ellipeinc(phi, m) = <ufunc 'ellipeinc'>

Incomplete elliptic integral of the second kind

This function is defined as

\[E(\phi, m) = \int_0^\phi \frac{1}{\sqrt{1 - m \sin^2 t}} \, dt \]

Parameters

- **phi** [array_like] amplitude of the elliptic integral.
- **m** [array_like] parameter of the elliptic integral.

Returns

- **E** [ndarray] Value of the elliptic integral.

See also:

- **ellipkm1**
 Complete elliptic integral of the first kind, near \(m = 1 \)
- **ellipk**
 Complete elliptic integral of the first kind
- **ellipkinc**
 Incomplete elliptic integral of the first kind
- **ellipe**
 Complete elliptic integral of the second kind
- **elliprd**
 Symmetric elliptic integral of the second kind.
- **elliprf**
 Completely-symmetric elliptic integral of the first kind.
- **elliprg**
 Completely-symmetric elliptic integral of the second kind.

Notes

Computation uses arithmetic-geometric means algorithm.

The parameterization in terms of \(m \) follows that of section 17.2 in [2]. Other parameterizations in terms of the complementary parameter \(1 - m \), modular angle \(\sin^2(\alpha) = m \), or modulus \(k^2 = m \) are also used, so be careful that you choose the correct parameter.

The Legendre E incomplete integral can be related to combinations of Carlson’s symmetric integrals \(R_D \), \(R_F \), and \(R_G \) in multiple ways [3]. For example, with \(c = \csc^2 \phi \),

\[E(\phi, m) = R_F(c - 1, c - k^2, c) - \frac{1}{3} k^2 R_D(c - 1, c - k^2, c) \]
References

[1], [2], [3]

scipy.special.elliprc

scipy.special.elliprc(x, y) = <ufunc 'elliprc'>

Degenerate symmetric elliptic integral.

The function RC is defined as [1]

\[R_C(x, y) = \frac{1}{2} \int_0^{+\infty} \frac{1}{(t + x)(t + y)} dt = R_F(x, y, y) \]

Parameters:

- x, y [array_like] Real or complex input parameters. x can be any number in the complex plane cut along the negative real axis. y must be non-zero.

Returns:

- R [ndarray] Value of the integral. If y is real and negative, the Cauchy principal value is returned. If both of x and y are real, the return value is real. Otherwise, the return value is complex.

See also:

- elliprf
 Completely-symmetric elliptic integral of the first kind.

- elliprd
 Symmetric elliptic integral of the second kind.

- elliprg
 Completely-symmetric elliptic integral of the second kind.

- elliprj
 Symmetric elliptic integral of the third kind.

Notes

RC is a degenerate case of the symmetric integral RF: elliprc(x, y) == elliprf(x, y, y). It is an elementary function rather than an elliptic integral.

The code implements Carlson’s algorithm based on the duplication theorems and series expansion up to the 7th order. [2]

New in version 1.8.0.
References

[1], [2]

scipy.special.elliprd

scipy.special.elliprd(x, y, z) = <ufunc 'elliprd'>
Symmetric elliptic integral of the second kind.

The function RD is defined as [1]

\[
R_D(x, y, z) = \frac{3}{2} \int_0^{+\infty} \left[\frac{1}{(t + x)(t + y)} \right]^{-1/2} \left(\frac{1}{t + z} \right)^{-3/2} dt
\]

Parameters

x, y, z [array_like] Real or complex input parameters. x or y can be any number in the complex plane cut along the negative real axis, but at most one of them can be zero, while z must be non-zero.

Returns

R [ndarray] Value of the integral. If all of x, y, and z are real, the return value is real. Otherwise, the return value is complex.

See also:

elliprc
Degenerate symmetric elliptic integral.

elliprf
Completely-symmetric elliptic integral of the first kind.

elliprg
Completely-symmetric elliptic integral of the second kind.

elliprj
Symmetric elliptic integral of the third kind.

Notes

RD is a degenerate case of the elliptic integral RJ: elliprd(x, y, z) == elliprj(x, y, z, z).

The code implements Carlson’s algorithm based on the duplication theorems and series expansion up to the 7th order. [2]

New in version 1.8.0.
References

[1], [2]

scipy.special.elliprf

```python
scipy.special.elliprf(x, y, z) = <ufunc 'elliprf'>
```

Completely-symmetric elliptic integral of the first kind.

The function RF is defined as

\[
RF(x, y, z) = \frac{1}{2} \int_0^{+\infty} \left[(t + x)(t + y)(t + z) \right]^{-1/2} dt
\]

Parameters

- `x`, `y`, `z` (array_like) Real or complex input parameters. `x`, `y`, or `z` can be any number in the complex plane cut along the negative real axis, but at most one of them can be zero.

Returns

- `R` (ndarray) Value of the integral. If all of `x`, `y`, and `z` are real, the return value is real. Otherwise, the return value is complex.

See also:

- `elliprc`

 Degenerate symmetric integral.

- `elliprd`

 Symmetric elliptic integral of the second kind.

- `elliprg`

 Completely-symmetric elliptic integral of the second kind.

- `elliprj`

 Symmetric elliptic integral of the third kind.

Notes

The code implements Carlson's algorithm based on the duplication theorems and series expansion up to the 7th order (cf.: https://dlmf.nist.gov/19.36.i) and the AGM algorithm for the complete integral. [2]

New in version 1.8.0.

References

[1], [2]
scipy.special.elliprg

```python
scipy.special.elliprg(x, y, z) = <ufunc 'elliprg'>
```

Completely-symmetric elliptic integral of the second kind.

The function \(R_G \) is defined as [1]

\[
R_G(x, y, z) = \frac{1}{4} \int_0^{+\infty} \left(\frac{x}{t+x} + \frac{y}{t+y} + \frac{z}{t+z} \right) tdt
\]

Parameters

- \(x, y, z \) [array_like] Real or complex input parameters. \(x, y, \) or \(z \) can be any number in the complex plane cut along the negative real axis.

Returns

- \(R \) [ndarray] Value of the integral. If all of \(x, y, \) and \(z \) are real, the return value is real. Otherwise, the return value is complex.

See also:

- `elliprc`
 - Degenerate symmetric integral.
- `elliprd`
 - Symmetric elliptic integral of the second kind.
- `elliprf`
 - Completely-symmetric elliptic integral of the first kind.
- `elliprj`
 - Symmetric elliptic integral of the third kind.

Notes

The implementation uses the relation [1]

\[
2R_G(x, y, z) = zR_F(x, y, z) - \frac{1}{3}(x - z)(y - z)R_D(x, y, z) + \sqrt{\frac{xy}{z}}
\]

and the symmetry of \(x, y, z \) when at least one non-zero parameter can be chosen as the pivot. When one of the arguments is close to zero, the AGM method is applied instead. Other special cases are computed following Ref. [2]

New in version 1.8.0.

References

[1], [2]
Examples

The surface area of a triaxial ellipsoid with semiaxes a, b, and c is given by

$$S = 4\pi abc R_G(1/a^2, 1/b^2, 1/c^2).$$

```python
>>> from scipy.special import elliprg
>>> def ellipsoid_area(a, b, c):
...     r = 4.0 * np.pi * a * b * c
...     return r * elliprg(1.0 / (a * a), 1.0 / (b * b), 1.0 / (c * c))
>>> print(ellipsoid_area(1, 3, 5))
108.62688289491807
```

```python
scipy.special.elliprj
```

The function R_J is defined as [1]

$$R_J(x, y, z, p) = \frac{3}{2} \int_0^{+\infty} \frac{(t+x)(t+y)(t+z)}{(t+p)^{1/2}(t+p)^{-1}} dt$$

Warning: This function should be considered experimental when the inputs are unbalanced. Check correctness with another independent implementation.

Parameters

x, y, z, p [array_like] Real or complex input parameters. $x, y,$ or z are numbers in the complex plane cut along the negative real axis (subject to further constraints, see Notes), and at most one of them can be zero. p must be non-zero.

Returns

R [ndarray] Value of the integral. If all of $x, y, z,$ and p are real, the return value is real. Otherwise, the return value is complex. If p is real and negative, while $x, y,$ and z are real, non-negative, and at most one of them is zero, the Cauchy principal value is returned. [1] [2]

See also:

- `elliprc`
 Degenerate symmetric integral.
- `elliprd`
 Symmetric elliptic integral of the second kind.
- `elliprf`
 Completely-symmetric elliptic integral of the first kind.
- `elliprg`
 Completely-symmetric elliptic integral of the second kind.
Notes

The code implements Carlson’s algorithm based on the duplication theorems and series expansion up to the 7th order. [3] The algorithm is slightly different from its earlier incarnation as it appears in [1], in that the call to elliprc (or atan/atanh, see [4]) is no longer needed in the inner loop. Asymptotic approximations are used where arguments differ widely in the order of magnitude. [5]

The input values are subject to certain sufficient but not necessary constraints when input arguments are complex. Notably, x, y, and z must have non-negative real parts, unless two of them are non-negative and complex-conjugates to each other while the other is a real non-negative number. [1] If the inputs do not satisfy the sufficient condition described in Ref. [1] they are rejected outright with the output set to NaN.

In the case where one of x, y, and z is equal to p, the function elliprd should be preferred because of its less restrictive domain.

New in version 1.8.0.

References

[1], [2], [3], [4], [5]

Bessel functions

jv(v, z)	Bessel function of the first kind of real order and complex argument.
jve(v, z)	Exponentially scaled Bessel function of order v.
yn(n, x)	Bessel function of the second kind of integer order and real argument.
yv(v, z)	Bessel function of the second kind of real order and complex argument.
yve(v, z)	Exponentially scaled Bessel function of the second kind of real order.
kn(n, x)	Modified Bessel function of the second kind of integer order n
kv(v, z)	Modified Bessel function of the second kind of real order
kve(v, z)	Exponentially scaled modified Bessel function of the second kind.
iv(v, z)	Modified Bessel function of the first kind of real order.
ive(v, z)	Exponentially scaled modified Bessel function of the first kind
hankeli(v, z)	Hankel function of the first kind
hankelle(v, z)	Exponentially scaled Hankel function of the first kind
hankel2(v, z)	Hankel function of the second kind
hankel2e(v, z)	Exponentially scaled Hankel function of the second kind
wright_bessel(a, b, x)	Wright’s generalized Bessel function.
scipy.special.jv

`scipy.special.jv(v, z) = <ufunc 'jv'>`

Bessel function of the first kind of real order and complex argument.

Parameters

- `v` [array_like] Order (float).
- `z` [array_like] Argument (float or complex).

Returns

- `J` [ndarray] Value of the Bessel function, $J_v(z)$.

See also:

- `jve` J_v with leading exponential behavior stripped off.
- `spherical_jn` spherical Bessel functions.

Notes

For positive v values, the computation is carried out using the AMOS [1] `zbesj` routine, which exploits the connection to the modified Bessel function I_v,

$$
J_v(z) = \exp(v\pi i/2)I_v(-iz) \quad (\Im z > 0)
$$

$$
J_v(z) = \exp(-v\pi i/2)I_v(iz) \quad (\Im z < 0)
$$

For negative v values the formula,

$$
J_{-v}(z) = J_v(z) \cos(\pi v) - Y_v(z) \sin(\pi v)
$$

is used, where $Y_v(z)$ is the Bessel function of the second kind, computed using the AMOS routine `zbys`. Note that the second term is exactly zero for integer v; to improve accuracy the second term is explicitly omitted for v values such that $v = \text{floor}(v)$.

Not to be confused with the spherical Bessel functions (see `spherical_jn`).

References

[1]
scipy.special.jve

scipy.special.jve(v, z) = <ufunc 'jve'>
Exponentially scaled Bessel function of order v.

Defined as:

\[
jve(v, z) = jv(v, z) * \exp(-\text{abs}(z.\text{imag}))
\]

Parameters

- *v* [array_like] Order (float).
- *z* [array_like] Argument (float or complex).

Returns

- *J* [ndarray] Value of the exponentially scaled Bessel function.

Notes

For positive *v* values, the computation is carried out using the AMOS [1] `zbessj` routine, which exploits the connection to the modified Bessel function *I*_{*v*}:

\[
J_v(z) = \exp(v\pi i/2)I_v(-iz) \quad (\Im z > 0)
\]

\[
J_v(z) = \exp(-v\pi i/2)I_v(iz) \quad (\Im z < 0)
\]

For negative *v* values the formula,

\[
J_{-v}(z) = J_v(z) \cos(\pi v) - Y_v(z) \sin(\pi v)
\]

is used, where *Y*_{*v*}(*z*) is the Bessel function of the second kind, computed using the AMOS routine `zbessy`. Note that the second term is exactly zero for integer *v*; to improve accuracy the second term is explicitly omitted for *v* values such that *v* = floor(*v*).

References

[1]

scipy.special.yn

scipy.special.yn(n, x) = <ufunc 'yn'>
Bessel function of the second kind of integer order and real argument.

Parameters

- *n* [array_like] Order (integer).
- *z* [array_like] Argument (float).

Returns

- *Y* [ndarray] Value of the Bessel function, *Y*_{*n*}(*x*).

See also:

- *yv*

For real order and real or complex argument.
Notes

Wrapper for the Cephes [1] routine \(yn \).

The function is evaluated by forward recurrence on \(n \), starting with values computed by the Cephes routines \(y0 \) and \(y1 \). If \(n = 0 \) or 1, the routine for \(y0 \) or \(y1 \) is called directly.

References

[1]

\texttt{scipy.special.yv}

\texttt{scipy.special.yv(v, z) = <ufunc 'yv'>}

Bessel function of the second kind of real order and complex argument.

\textbf{Parameters}

- \(v \) [array_like] Order (float).
- \(z \) [array_like] Argument (float or complex).

\textbf{Returns}

- \(Y \) [ndarray] Value of the Bessel function of the second kind, \(Y_v(x) \).

\textbf{See also:}

\texttt{yve}

\(Y_v \) with leading exponential behavior stripped off.

Notes

For positive \(v \) values, the computation is carried out using the AMOS [1] \texttt{zbesy} routine, which exploits the connection to the Hankel Bessel functions \(H_v^{(1)} \) and \(H_v^{(2)} \),

\[Y_v(z) = \frac{1}{2i} (H_v^{(1)} - H_v^{(2)}). \]

For negative \(v \) values the formula,

\[Y_{-v}(z) = Y_v(z) \cos(\pi v) + J_v(z) \sin(\pi v) \]

is used, where \(J_v(z) \) is the Bessel function of the first kind, computed using the AMOS routine \texttt{zbesj}. Note that the second term is exactly zero for integer \(v \); to improve accuracy the second term is explicitly omitted for \(v \) values such that \(v = \text{floor}(v) \).
References

[1]

scipy.special.yve

scipy.special.yve(v, z) = <ufunc 'yve'>

Exponentially scaled Bessel function of the second kind of real order.

Returns the exponentially scaled Bessel function of the second kind of real order \(v \) at complex \(z \):

\[
yve(v, z) = yv(v, z) \times \exp(-\text{abs}(z.im))
\]

Parameters

\(v \) [array_like] Order (float).
\(z \) [array_like] Argument (float or complex).

Returns

\(Y \) [ndarray] Value of the exponentially scaled Bessel function.

Notes

For positive \(v \) values, the computation is carried out using the AMOS [1] \(zbesy \) routine, which exploits the connection to the Hankel Bessel functions \(H_v^{(1)} \) and \(H_v^{(2)} \),

\[
Y_v(z) = \frac{1}{2i} \left(H_v^{(1)} - H_v^{(2)} \right).
\]

For negative \(v \) values the formula,

\[
Y_{-v}(z) = Y_v(z) \cos(\pi v) + J_v(z) \sin(\pi v)
\]

is used, where \(J_v(z) \) is the Bessel function of the first kind, computed using the AMOS routine \(zbesj \). Note that the second term is exactly zero for integer \(v \); to improve accuracy the second term is explicitly omitted for \(v \) values such that \(v = \text{floor}(v) \).

References

[1]

scipy.special.kn

scipy.special.kn(n, x) = <ufunc 'kn'>

Modified Bessel function of the second kind of integer order \(n \)

Returns the modified Bessel function of the second kind for integer order \(n \) at real \(z \).

These are also sometimes called functions of the third kind, Basset functions, or Macdonald functions.

Parameters

\(n \) [array_like of int] Order of Bessel functions (floats will truncate with a warning)
\(z \) [array_like of float] Argument at which to evaluate the Bessel functions
Returns

out [ndarray] The results

See also:

kv

Same function, but accepts real order and complex argument

kvp

Derivative of this function

Notes

References

[1],[2]

Examples

Plot the function of several orders for real input:

```python
>>> from scipy.special import kn
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(0, 5, 1000)
>>> for N in range(6):
...     plt.plot(x, kn(N, x), label=r'$K_\{\}$\(x\)'.format(N))
>>> plt.ylim(0, 10)
>>> plt.legend()
>>> plt.title(r'Modified Bessel function of the second kind $K_n(x)$')
>>> plt.show()
```

![Modified Bessel function of the second kind $K_n(x)$](image-url)
Calculate for a single value at multiple orders:

```python
>>> kn([4, 5, 6], 1)
array([ 44.23241585, 360.9605896 , 3653.83831186])
```

scipy.special.kv

scipy.special.kv(v, z) = <ufunc 'kv'>

Modified Bessel function of the second kind of real order \(v \)

Returns the modified Bessel function of the second kind for real order \(v \) at complex \(z \).

These are also sometimes called functions of the third kind, Basset functions, or Macdonald functions. They are defined as those solutions of the modified Bessel equation for which,

\[
K_v(x) \sim \sqrt{\pi/(2x)} \exp(-x)
\]

as \(x \to \infty \).[3]

Parameters

- \(v \) [array_like of float] Order of Bessel functions
- \(z \) [array_like of complex] Argument at which to evaluate the Bessel functions

Returns

- \(out \) [ndarray] The results. Note that input must be of complex type to get complex output, e.g. \(kv(3, -2+0j) \) instead of \(kv(3, -2) \).

See also:

- kve
 - This function with leading exponential behavior stripped off.
- kvp
 - Derivative of this function

Notes

References

[1], [2], [3]
Examples

Plot the function of several orders for real input:

```python
>>> from scipy.special import kv
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(0, 5, 1000)
>>> for N in np.linspace(0, 6, 5):
...     plt.plot(x, kv(N, x), label='$K_{{}}(x)$'.format(N))
>>> plt.ylim(0, 10)
>>> plt.legend()
>>> plt.title(r'Modified Bessel function of the second kind $K_{{\nu}}(x)$')
>>> plt.show()
```

![Modified Bessel function of the second kind $K_{{\nu}}(x)$](#)

Calculate for a single value at multiple orders:

```python
>>> kv([4, 4.5, 5], 1+2j)
array([0.1992+2.3892j, 2.3493+3.6j , 7.2827+3.8104j])
```

scipy.special.kve

`scipy.special.kve(v, z) = <ufunc 'kve'>`

Exponentially scaled modified Bessel function of the second kind.

Returns the exponentially scaled, modified Bessel function of the second kind (sometimes called the third kind) for real order v at complex z:

$kve(v, z) = kv(v, z) * \exp(z)$

Parameters

- v [array_like of float]: Order of Bessel functions
- z [array_like of complex]: Argument at which to evaluate the Bessel functions

Returns
out [ndarray] The exponentially scaled modified Bessel function of the second kind.

Notes

References

[1], [2]

\texttt{scipy.special.iv}

\texttt{scipy.special.iv(v,z) = \texttt{ufunc 'iv'}

Modified Bessel function of the first kind of real order.

Parameters

\begin{itemize}
 \item \texttt{v} [array_like] Order. If \(z \) is of real type and negative, \(v \) must be integer valued.
 \item \texttt{z} [array_like of float or complex] Argument.
\end{itemize}

Returns

\begin{itemize}
 \item \texttt{out} [ndarray] Values of the modified Bessel function.
\end{itemize}

See also:

\texttt{kve}

This function with leading exponential behavior stripped off.

Notes

For real \(z \) and \(v \in [-50, 50] \), the evaluation is carried out using Temme’s method [1]. For larger orders, uniform asymptotic expansions are applied.

For complex \(z \) and positive \(v \), the AMOS [2] \texttt{zbesi} routine is called. It uses a power series for small \(z \), the asymptotic expansion for large \(\text{abs}(z) \), the Miller algorithm normalized by the Wronskian and a Neumann series for intermediate magnitudes, and the uniform asymptotic expansions for \(I_v(z) \) and \(J_v(z) \) for large orders. Backward recurrence is used to generate sequences or reduce orders when necessary.

The calculations above are done in the right half plane and continued into the left half plane by the formula,

\[I_v(z \exp(\pm i\pi)) = \exp(\pm \pi v)I_v(z) \]

(valid when the real part of \(z \) is positive). For negative \(v \), the formula

\[I_{-v}(z) = I_v(z) + \frac{2}{\pi} \sin(\pi v)K_v(z) \]

is used, where \(K_v(z) \) is the modified Bessel function of the second kind, evaluated using the AMOS routine \texttt{zbesk}.
References

[1], [2]

scipy.special.ive

scipy.special.ive(v, z) = <ufunc 'ive'>
Exponentially scaled modified Bessel function of the first kind

Defined as:

\[\text{ive}(v, z) = iv(v, z) * \exp(-\text{abs}(z.\text{real})) \]

Parameters

- **v**: [array_like of float] Order.
- **z**: [array_like of float or complex] Argument.

Returns

- **out**: [ndarray] Values of the exponentially scaled modified Bessel function.

Notes

For positive \(v \), the AMOS [1] \(zbesi \) routine is called. It uses a power series for small \(z \), the asymptotic expansion for large \(\text{abs}(z) \), the Miller algorithm normalized by the Wronskian and a Neumann series for intermediate magnitudes, and the uniform asymptotic expansions for \(I_v(z) \) and \(J_v(z) \) for large orders. Backward recurrence is used to generate sequences or reduce orders when necessary.

The calculations above are done in the right half plane and continued into the left half plane by the formula,

\[I_v(z \exp(\pm i\pi)) = \exp(\pm \pi v) I_v(z) \]

(valid when the real part of \(z \) is positive). For negative \(v \), the formula

\[I_{-v}(z) = I_v(z) + \frac{2}{\pi} \sin(\pi v) K_v(z) \]

is used, where \(K_v(z) \) is the modified Bessel function of the second kind, evaluated using the AMOS routine \(zbesk \).

References

[1]

scipy.special.hankel1

scipy.special.hankel1(v, z) = <ufunc 'hankell'>
Hankel function of the first kind

Parameters

- **v**: [array_like] Order (float).
- **z**: [array_like] Argument (float or complex).

Returns
out [Values of the Hankel function of the first kind.]

See also:

hankel1e

this function with leading exponential behavior stripped off.

Notes

A wrapper for the AMOS [1] routine zbesh, which carries out the computation using the relation,

$$H_v^{(1)}(z) = \frac{2}{i\pi} \exp(-i\pi v/2)K_v(z \exp(-i\pi/2))$$

where K_v is the modified Bessel function of the second kind. For negative orders, the relation

$$H_{-v}^{(1)}(z) = H_v^{(1)}(z) \exp(i\pi v)$$

is used.

References

[1]

scipy.special.hankel1e

scipy.special.hankel1e(v, z) = <ufunc 'hankel1e'>

Exponentially scaled Hankel function of the first kind

Defined as:

\[
\text{hankel1e}(v, z) = \text{hankel1}(v, z) \times \exp(-i \times z)
\]

Parameters

v [array_like] Order (float).
z [array_like] Argument (float or complex).

Returns

out [Values of the exponentially scaled Hankel function.]
References

[1]

scipy.special.hankel2

```python
cal.atan2(v, z) = <ufunc 'hankel2'>
```

Hankel function of the second kind

Parameters

- `v`: [array_like] Order (float).
- `z`: [array_like] Argument (float or complex).

Returns

- `out`: [Values of the Hankel function of the second kind.]

See also:

hankel2e

this function with leading exponential behavior stripped off.

Notes

A wrapper for the AMOS [1] routine zbesh, which carries out the computation using the relation,

\[H_v^{(2)}(z) = -\frac{2}{i\pi} \exp(i\pi v/2) K_v(z \exp(i\pi/2)) \]

where \(K_v \) is the modified Bessel function of the second kind. For negative orders, the relation

\[H_{-v}^{(2)}(z) = H_v^{(2)}(z) \exp(-i\pi v) \]

is used.

References

[1]

scipy.special.hankel2e

```python
cal.atan2(v, z) = <ufunc 'hankel2e'>
```

Exponentially scaled Hankel function of the second kind

Defined as:

```python
hankel2e(v, z) = hankel2(v, z) * \exp(1j * z)
```

Parameters

- `v`: [array_like] Order (float).
- `z`: [array_like] Argument (float or complex).

Returns

- `out`: [Values of the exponentially scaled Hankel function of the second kind.]
Notes

A wrapper for the AMOS [1] routine \textit{zbesh}, which carries out the computation using the relation,

\[H_v^{(2)}(z) = -\frac{2}{i\pi} \exp\left(\frac{i\pi v}{2}\right) K_v\left(z\exp\left(\frac{i\pi}{2}\right)\right) \]

where \(K_v\) is the modified Bessel function of the second kind. For negative orders, the relation

\[H_{-v}^{(2)}(z) = H_v^{(2)}(z) \exp(-i\pi v) \]

is used.

References

[1]

\texttt{scipy.special.wright_bessel}

\begin{verbatim}
scipy.special.wright_bessel(a, b, x) = <ufunc 'wright_bessel'>
Wright’s generalized Besselfunction.

Wright’s generalized Besselfunction is an entire function and defined as

\[\Phi(a, b; x) = \sum_{k=0}^{\infty} \frac{x^k}{k! \Gamma(ak + b)} \]

See also [1].

Parameters

- \(a\) [array_like of float] \(a \geq 0\)
- \(b\) [array_like of float] \(b \geq 0\)
- \(x\) [array_like of float] \(x \geq 0\)

Notes

Due to the complexity of the function with its three parameters, only non-negative arguments are implemented.

References

[1]

Examples

```python
>>> from scipy.special import wright_bessel
>>> a, b, x = 1.5, 1.1, 2.5
>>> wright_bessel(a, b-1, x)
4.531446593943025
```
Now, let us verify the relation

$$\Phi(a, b - 1; x) = ax\Phi(a, b + a; x) + (b - 1)\Phi(a, b; x)$$

```
>>> a * x * wright_bessel(a, b+a, x) + (b-1) * wright_bessel(a, b, x)
4.5314465939443025
```

The following is not a universal function:

```python
jmbda(v, x)
```

Jahnke-Emden Lambda function, \(\Lambda_v(x) \).

scipy.special.lmbda

```python
scipy.special.lmbda(v, x)
```

Jahnke-Emden Lambda function, \(\Lambda_v(x) \).

This function is defined as \([2]\),

$$\Lambda_v(x) = \Gamma(v + 1) \frac{J_v(x)}{(x/2)^v},$$

where \(\Gamma \) is the gamma function and \(J_v \) is the Bessel function of the first kind.

Parameters

- \(v \) [float] Order of the Lambda function
- \(x \) [float] Value at which to evaluate the function and derivatives

Returns

- \(vl \) [ndarray] Values of \(\Lambda_v(x) \) for \(vi=v\text{-int}(v), vi=1+v\text{-int}(v), \ldots, vi=v \).
- \(dl \) [ndarray] Derivatives \(\Lambda_v'(x) \) for \(vi=v\text{-int}(v), vi=1+v\text{-int}(v), \ldots, vi=v \).

References

[1], [2]

Zeros of Bessel functions

These are not universal functions:

- \(jnjnp_zeros(nt) \)
 - Compute zeros of integer-order Bessel functions \(J_n \) and \(J_n' \).
- \(jnyn_zeros(n, nt) \)
 - Compute \(nt \) zeros of Bessel functions \(J_n(x), J_n'(x), Y_n(x), \) and \(Y_n'(x) \).
- \(jn_zeros(n, nt) \)
 - Compute zeros of integer-order Bessel functions \(J_n \).
- \(jnp_zeros(n, nt) \)
 - Compute zeros of integer-order Bessel function derivatives \(J_n' \).
- \(yn_zeros(n, nt) \)
 - Compute zeros of integer-order Bessel function \(Y_n(x) \).
- \(ynp_zeros(n, nt) \)
 - Compute zeros of integer-order Bessel function derivatives \(Y_n'(x) \).
Table 233 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{y0_zeros(nt[, complex])}</td>
<td>Compute nt zeros of Bessel function Y0(z), and derivative at each zero.</td>
</tr>
<tr>
<td>\texttt{y1_zeros(nt[, complex])}</td>
<td>Compute nt zeros of Bessel function Y1(z), and derivative at each zero.</td>
</tr>
<tr>
<td>\texttt{y1p_zeros(nt[, complex])}</td>
<td>Compute nt zeros of Bessel derivative Y1'(z), and value at each zero.</td>
</tr>
</tbody>
</table>

scipy.special.jnjnp_zeros

\texttt{scipy.special.jnjnp_zeros(nt)}

Compute nt zeros of integer-order Bessel functions Jn and Jn'.

Results are arranged in order of the magnitudes of the zeros.

Parameters

- \texttt{nt} [int] Number (\(\leq 1200\)) of zeros to compute

Returns

- \texttt{zo[l-1]} [ndarray] Value of the \(l\)th zero of Jn(x) and Jn'(x). Of length \(nt\).
- \texttt{n[l-1]} [ndarray] Order of the Jn(x) or Jn'(x) associated with \(l\)th zero. Of length \(nt\).
- \texttt{m[l-1]} [ndarray] Serial number of the zeros of Jn(x) or Jn'(x) associated with \(l\)th zero. Of length \(nt\).
- \texttt{t[l-1]} [ndarray] 0 if \(l\)th zero in \(zo\) is zero of Jn(x), 1 if it is a zero of Jn'(x). Of length \(nt\).

See also:

- \texttt{jn_zeros}, \texttt{jnp_zeros}
 - to get separated arrays of zeros.

References

[1]

scipy.special.jnyn_zeros

\texttt{scipy.special.jnyn_zeros(n, nt)}

Compute nt zeros of Bessel functions Jn(x), Jn'(x), Yn(x), and Yn'(x).

Returns 4 arrays of length nt, corresponding to the first nt zeros of Jn(x), Jn'(x), Yn(x), and Yn'(x), respectively. The zeros are returned in ascending order.

Parameters

- \texttt{n} [int] Order of the Bessel functions
- \texttt{nt} [int] Number (\(\leq 1200\)) of zeros to compute

Returns

- \texttt{Jn} [ndarray] First nt zeros of Jn
- \texttt{Jnp} [ndarray] First nt zeros of Jn'
- \texttt{Yn} [ndarray] First nt zeros of Yn
- \texttt{Ynp} [ndarray] First nt zeros of Yn'

See also:
jn_zeros, jnp_zeros, yn_zeros, ynp_zeros

References

[1]

scipy.special.jn_zeros

scipy.special.jn_zeros(n, nt)

Compute zeros of integer-order Bessel functions \(J_n \).

Compute \(nt \) zeros of the Bessel functions \(J_n(x) \) on the interval \((0, \infty)\). The zeros are returned in ascending order. Note that this interval excludes the zero at \(x = 0 \) that exists for \(n > 0 \).

Parameters

- \(n \) [int] Order of Bessel function
- \(nt \) [int] Number of zeros to return

Returns

- ndarray First \(nt \) zeros of the Bessel function.

See also:

- \(jv \)

References

[1]

Examples

```python
>>> import scipy.special as sc

We can check that we are getting approximations of the zeros by evaluating them with \( jv \).

```n = 1
````
>>> x = sc.jn_zeros(n, 3)
````
```x
array([ 3.83170597, 7.01558667, 10.17346814])
```
```sc.jv(n, x)
array([-0.00000000e+00, 1.72975330e-16, 2.89157291e-16])
```

Note that the zero at \(x = 0 \) for \(n > 0 \) is not included.

```sc.jv(1, 0)
0.0
```
scipy.special.jnp_zeros

scipy.special.jnp_zeros(n, nt)

Compute zeros of integer-order Bessel function derivatives J'_n.

Compute nt zeros of the functions $J'_n(x)$ on the interval $(0, \infty)$. The zeros are returned in ascending order. Note that this interval excludes the zero at $x = 0$ that exists for $n > 1$.

Parameters

- n [int] Order of Bessel function
- nt [int] Number of zeros to return

Returns

- ndarray First nt zeros of the Bessel function.

See also:

jvp, jv

References

[1]

Examples

```python
>>> import scipy.special as sc
```

We can check that we are getting approximations of the zeros by evaluating them with jvp.

```python
>>> n = 2
>>> x = sc.jnp_zeros(n, 3)
>>> x
array([3.05423693, 6.70613319, 9.96946782])
>>> sc.jvp(n, x)
array([ 2.77555756e-17, 2.08166817e-16, -3.01841885e-16])
```

Note that the zero at $x = 0$ for $n > 1$ is not included.

```python
>>> sc.jvp(n, 0)
0.0
```

scipy.special.yn_zeros

scipy.special.yn_zeros(n, nt)

Compute zeros of integer-order Bessel function $Y_n(x)$.

Compute nt zeros of the functions $Y_n(x)$ on the interval $(0, \infty)$. The zeros are returned in ascending order.

Parameters

- n [int] Order of Bessel function
- nt [int] Number of zeros to return

Returns
ndarray
First nt zeros of the Bessel function.

See also:

yn, yv

References

[1]

Examples

```python
>>> import scipy.special as sc
```

We can check that we are getting approximations of the zeros by evaluating them with yn.

```python
>>> n = 2
>>> x = sc.yn_zeros(n, 3)
>>> x
array([ 3.38424177, 6.79380751, 10.02347798])
```

```python
>>> sc.yn(n, x)
array([-1.94289029e-16, 8.32667268e-17, -1.52655666e-16])
```

scipy.special.ynp_zeros

`scipy.special.ynp_zeros(n, nt)`
Compute zeros of integer-order Bessel function derivatives $Y_n'(x)$.

Compute nt zeros of the functions $Y_n'(x)$ on the interval $(0, \infty)$. The zeros are returned in ascending order.

Parameters

- n
 [int] Order of Bessel function

- nt
 [int] Number of zeros to return

Returns

- ndarray
 First nt zeros of the Bessel derivative function.

See also:

yp

References

[1]
Examples

```python
>>> import scipy.special as sc
```

We can check that we are getting approximations of the zeros by evaluating them with `yvp`.

```python
>>> n = 2
>>> x = sc.ynp_zeros(n, 3)
>>> x
array([ 5.00258293, 8.3507247 , 11.57419547])
>>> sc.yvp(n, x)
array([ 2.22044605e-16, -3.33066907e-16, 2.94902991e-16])
```

scipy.special.y0_zeros

scipy.special.y0_zeros(nt, complex=False)

Compute nt zeros of Bessel function Y0(z), and derivative at each zero.

The derivatives are given by Y0(z0) = -Y1(z0) at each zero z0.

Parameters

- `nt` [int] Number of zeros to return
- `complex` [bool, default False] Set to False to return only the real zeros; set to True to return only the complex zeros with negative real part and positive imaginary part. Note that the complex conjugates of the latter are also zeros of the function, but are not returned by this routine.

Returns

- `z0n` [ndarray] Location of nth zero of Y0(z)
- `y0pz0n` [ndarray] Value of derivative Y0'(z0) for nth zero

References

[1]

scipy.special.y1_zeros

scipy.special.y1_zeros(nt, complex=False)

Compute nt zeros of Bessel function Y1(z), and derivative at each zero.

The derivatives are given by Y1'(z1) = Y0(z1) at each zero z1.

Parameters

- `nt` [int] Number of zeros to return
- `complex` [bool, default False] Set to False to return only the real zeros; set to True to return only the complex zeros with negative real part and positive imaginary part. Note that the complex conjugates of the latter are also zeros of the function, but are not returned by this routine.

Returns

- `z1n` [ndarray] Location of nth zero of Y1(z)
- `y1pz1n` [ndarray] Value of derivative Y1'(z1) for nth zero
References

[1]

scipy.special.y1p_zeros

```python
scipy.special.y1p_zeros(nt, complex=False)
```

Compute nt zeros of Bessel derivative \(Y_1'(z) \), and value at each zero.

The values are given by \(Y_1(z_1) \) at each \(z_1 \) where \(Y_1'(z_1)=0 \).

Parameters

- `nt` [int] Number of zeros to return
- `complex` [bool, default False] Set to False to return only the real zeros; set to True to return only the complex zeros with negative real part and positive imaginary part. Note that the complex conjugates of the latter are also zeros of the function, but are not returned by this routine.

Returns

- `z1pn` [ndarray] Location of nth zero of \(Y_1'(z) \)
- `y1z1pn` [ndarray] Value of derivative \(Y_1(z_1) \) for nth zero

References

[1]

Faster versions of common Bessel functions

<table>
<thead>
<tr>
<th>Bessel function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j_0(x))</td>
<td>Bessel function of the first kind of order 0</td>
</tr>
<tr>
<td>(j_1(x))</td>
<td>Bessel function of the first kind of order 1</td>
</tr>
<tr>
<td>(y_0(x))</td>
<td>Bessel function of the second kind of order 0</td>
</tr>
<tr>
<td>(y_1(x))</td>
<td>Bessel function of the second kind of order 1</td>
</tr>
<tr>
<td>(i_0(x))</td>
<td>Modified Bessel function of order 0</td>
</tr>
<tr>
<td>(i_0e(x))</td>
<td>Exponentially scaled modified Bessel function of order 0</td>
</tr>
<tr>
<td>(i_1(x))</td>
<td>Modified Bessel function of order 1</td>
</tr>
<tr>
<td>(i_1e(x))</td>
<td>Exponentially scaled modified Bessel function of order 1</td>
</tr>
<tr>
<td>(k_0(x))</td>
<td>Modified Bessel function of the second kind of order 0, (K_0).</td>
</tr>
<tr>
<td>(k_0e(x))</td>
<td>Exponentially scaled modified Bessel function K of order 0</td>
</tr>
<tr>
<td>(k_1(x))</td>
<td>Modified Bessel function of the second kind of order 1, (K_1(x)).</td>
</tr>
<tr>
<td>(k_1e(x))</td>
<td>Exponentially scaled modified Bessel function K of order 1</td>
</tr>
</tbody>
</table>

3.3. API definition
scipy.special.j0

scipy.special.j0(x) = <ufunc 'j0'>
Bessel function of the first kind of order 0.

Parameters

x [array_like] Argument (float).

Returns

J [ndarray] Value of the Bessel function of the first kind of order 0 at x.

See also:

jv
Bessel function of real order and complex argument.
spherical_jn
spherical Bessel functions.

Notes

The domain is divided into the intervals [0, 5] and (5, infinity). In the first interval the following rational approximation is used:

\[J_0(x) \approx (w - r_1^2)(w - r_2^2) \frac{P_3(w)}{Q_8(w)}, \]

where \(w = x^2 \) and \(r_1, r_2 \) are the zeros of \(J_0 \), and \(P_3 \) and \(Q_8 \) are polynomials of degrees 3 and 8, respectively.

In the second interval, the Hankel asymptotic expansion is employed with two rational functions of degree 6/6 and 7/7.

This function is a wrapper for the Cephes [1] routine \(j0 \). It should not be confused with the spherical Bessel functions (see spherical_jn).

References

[1]

scipy.special.j1

scipy.special.j1(x) = <ufunc 'j1'>
Bessel function of the first kind of order 1.

Parameters

x [array_like] Argument (float).

Returns

J [ndarray] Value of the Bessel function of the first kind of order 1 at x.

See also:

jv
spherical_jn

spherical Bessel functions.

Notes

The domain is divided into the intervals [0, 8] and (8, infinity). In the first interval a 24 term Chebyshev expansion is used. In the second, the asymptotic trigonometric representation is employed using two rational functions of degree 5/5.

This function is a wrapper for the Cephes [1] routine \texttt{j1}. It should not be confused with the spherical Bessel functions (see \texttt{spherical_jn}).

References

[1]

\texttt{scipy.special.y0}

\texttt{scipy.special.y0(x) = <ufunc 'y0'>}

Bessel function of the second kind of order 0.

Parameters

\texttt{x} [array_like] Argument (float).

Returns

\texttt{Y} [ndarray] Value of the Bessel function of the second kind of order 0 at \texttt{x}.

See also:

\texttt{j0}
\texttt{yv}

Notes

The domain is divided into the intervals [0, 5] and (5, infinity). In the first interval a rational approximation $R(x)$ is employed to compute,

$$Y_0(x) = R(x) + \frac{2\log(x)J_0(x)}{\pi},$$

where J_0 is the Bessel function of the first kind of order 0.

In the second interval, the Hankel asymptotic expansion is employed with two rational functions of degree 6/6 and 7/7.

This function is a wrapper for the Cephes [1] routine $y0$.

3.3. API definition 2177
References

[1]

scipy.special.y1

scipy.special.y1(x) = <ufunc 'y1'>
Bessel function of the second kind of order 1.

Parameters
x [array_like] Argument (float).

Returns
Y [ndarray] Value of the Bessel function of the second kind of order 1 at x.

See also:

j1
yn
yv

Notes

The domain is divided into the intervals [0, 8] and (8, infinity). In the first interval a 25 term Chebyshev expansion is used, and computing \(J_1 \) (the Bessel function of the first kind) is required. In the second, the asymptotic trigonometric representation is employed using two rational functions of degree 5/5.

This function is a wrapper for the Cephes [1] routine \(y1 \).

References

[1]

scipy.special.i0

scipy.special.i0(x) = <ufunc 'i0'>
Modified Bessel function of order 0.

Defined as,

\[
I_0(x) = \sum_{k=0}^{\infty} \frac{(x^2/4)^k}{(k!)^2} = J_0(ix),
\]

where \(J_0 \) is the Bessel function of the first kind of order 0.

Parameters
x [array_like] Argument (float)

Returns
I [ndarray] Value of the modified Bessel function of order 0 at x.
See also:

iv
i0

Notes

The range is partitioned into the two intervals \([0, 8]\) and \((8, \infty)\). Chebyshev polynomial expansions are employed in each interval.

This function is a wrapper for the Cephes [1] routine \(i0\).

References

[1]

`scipy.special.i0e`

`scipy.special.i0e(x) = <ufunc 'i0e'>`

Exponentially scaled modified Bessel function of order 0.

Defined as:

\[
i0e(x) = \exp(-\text{abs}(x)) \times i0(x).
\]

Parameters

- **x** [array_like] Argument (float)

Returns

- **I** [ndarray] Value of the exponentially scaled modified Bessel function of order 0 at \(x\).

See also:

iv
i0

Notes

The range is partitioned into the two intervals \([0, 8]\) and \((8, \infty)\). Chebyshev polynomial expansions are employed in each interval. The polynomial expansions used are the same as those in \(i0\), but they are not multiplied by the dominant exponential factor.

This function is a wrapper for the Cephes [1] routine \(i0e\).
References

[1]

scipy.special.i1

\texttt{scipy.special.i1(x) = <ufunc }'i1'\texttt{>}

Modified Bessel function of order 1.

Defined as,

\[I_1(x) = \frac{1}{2} x \sum_{k=0}^{\infty} \frac{(x^2/4)^k}{k!(k + 1)!} = -i J_1(ix), \]

where \(J_1 \) is the Bessel function of the first kind of order 1.

Parameters

\(x \) [array_like] Argument (float)

Returns

\(I \) [ndarray] Value of the modified Bessel function of order 1 at \(x \).

See also:

iv
i1e

Notes

The range is partitioned into the two intervals \([0, 8]\) and \((8, \infty)\). Chebyshev polynomial expansions are employed in each interval.

This function is a wrapper for the Cephes [1] routine \texttt{i1}.

References

[1]

scipy.special.i1e

\texttt{scipy.special.i1e(x) = <ufunc }'i1e'\texttt{>}

Exponentially scaled modified Bessel function of order 1.

Defined as:

\[i1e(x) = \exp(-\text{abs}(x)) \times i1(x) \]

Parameters

\(x \) [array_like] Argument (float)

Returns
See also:
iv
i1

Notes
The range is partitioned into the two intervals [0, 8] and (8, infinity). Chebyshev polynomial expansions are employed in each interval. The polynomial expansions used are the same as those in i1, but they are not multiplied by the dominant exponential factor.
This function is a wrapper for the Cephes [1] routine i1e.

References
[1]

scipy.special.k0

scipy.special.k0(x) = <ufunc 'k0'>
Modified Bessel function of the second kind of order 0, \(K_0 \).
This function is also sometimes referred to as the modified Bessel function of the third kind of order 0.

Parameters
x
[array_like] Argument (float).

Returns
K
[ndarray] Value of the modified Bessel function \(K_0 \) at \(x \).

See also:
kv
k0e

Notes
The range is partitioned into the two intervals [0, 2] and (2, infinity). Chebyshev polynomial expansions are employed in each interval.
This function is a wrapper for the Cephes [1] routine k0.
scipy.special.k0e

scipy.special.k0e(x) = <ufunc 'k0e'>

Exponentially scaled modified Bessel function K of order 0

Defined as:

\[k0e(x) = \exp(x) \times k0(x). \]

Parameters

- x : [array_like] Argument (float)

Returns

- K : [ndarray] Value of the exponentially scaled modified Bessel function K of order 0 at x.

See also:

- kv
- k0

Notes

The range is partitioned into the two intervals [0, 2] and (2, infinity). Chebyshev polynomial expansions are employed in each interval.

This function is a wrapper for the Cephes [1] routine \(k0e \).

References

[1]

scipy.special.k1

scipy.special.k1(x) = <ufunc 'k1'>

Modified Bessel function of the second kind of order 1, \(K_1(x) \).

Parameters

- x : [array_like] Argument (float)

Returns

- K : [ndarray] Value of the modified Bessel function K of order 1 at x.

See also:

- kv
- k1e
Notes

The range is partitioned into the two intervals [0, 2] and (2, infinity). Chebyshev polynomial expansions are employed in each interval.

This function is a wrapper for the Cephes [1] routine \texttt{k1}.

References

[1]

scipy.special.k1e

scipy.special.\texttt{k1e}(x) = <ufunc 'k1e'>

Exponentially scaled modified Bessel function \textit{K} of order 1

Defined as:

\[
\text{k1e}(x) = \exp(x) * k1(x)
\]

Parameters

\texttt{x} [array_like] Argument (float)

Returns

\texttt{K} [ndarray] Value of the exponentially scaled modified Bessel function \textit{K} of order 1 at \texttt{x}.

See also:

\texttt{kv}

\texttt{k1}

Notes

The range is partitioned into the two intervals [0, 2] and (2, infinity). Chebyshev polynomial expansions are employed in each interval.

This function is a wrapper for the Cephes [1] routine \texttt{k1e}.

References

[1]
Integrals of Bessel functions

\[\text{itj0y0}(x[, \text{out}]) \]
Integrals of Bessel functions of the first kind of order 0.

\[\text{it2j0y0}(x[, \text{out}]) \]
Integrals related to Bessel functions of the first kind of order 0.

\[\text{iti0k0}(x[, \text{out}]) \]
Integrals of modified Bessel functions of order 0.

\[\text{it2i0k0}(x[, \text{out}]) \]
Integrals related to modified Bessel functions of order 0.

\[\text{besselpoly}(a, \text{imb}, \text{nu}[\text{, out}]) \]
Weighted integral of the Bessel function of the first kind.

\textit{scipy.special.itj0y0}

\texttt{scipy.special.itj0y0}(x, \text{out=None}) = \texttt{ufunc 'itj0y0'}

Integrals of Bessel functions of the first kind of order 0.

Computes the integrals

\[\int_0^x J_0(t)dt \]
\[\int_0^x Y_0(t)dt. \]

For more on \(J_0 \) and \(Y_0 \) see \texttt{j0} and \texttt{y0}.

Parameters

- \texttt{x} \ [array_like] Values at which to evaluate the integrals.
- \texttt{out} \ [tuple of ndarrays, optional] Optional output arrays for the function results.

Returns

- \texttt{ij0} \ [scalar or ndarray] The integral of \(J_0 \)
- \texttt{iy0} \ [scalar or ndarray] The integral of \(Y_0 \)

\textit{scipy.special.it2j0y0}

\texttt{scipy.special.it2j0y0}(x, \text{out=None}) = \texttt{ufunc 'it2j0y0'}

Integrals related to Bessel functions of the first kind of order 0.

Computes the integrals

\[\int_0^x \frac{1 - J_0(t)}{t}dt \]
\[\int_x^\infty \frac{Y_0(t)}{t}dt. \]

For more on \(J_0 \) and \(Y_0 \) see \texttt{j0} and \texttt{y0}.

Parameters

- \texttt{x} \ [array_like] Values at which to evaluate the integrals.
- \texttt{out} \ [tuple of ndarrays, optional] Optional output arrays for the function results.

Returns

- \texttt{ij0} \ [scalar or ndarray] The integral for \(J_0 \)
- \texttt{iy0} \ [scalar or ndarray] The integral for \(Y_0 \)
scipy.special.iti0k0

scipy.special.iti0k0(x, out=None) = <ufunc 'iti0k0'>
Integrals of modified Bessel functions of order 0.
Computes the integrals

\[\int_0^x I_0(t)dt \]
\[\int_0^x K_0(t)dt. \]

For more on \(I_0 \) and \(K_0 \) see \(i0 \) and \(k0 \).

Parameters
- x : array_like
 Values at which to evaluate the integrals.
- out : tuple of ndarrays, optional
 Optional output arrays for the function results.

Returns
- ii0 : scalar or ndarray
 The integral for \(i0 \)
- ik0 : scalar or ndarray
 The integral for \(k0 \)

scipy.special.it2i0k0

scipy.special.it2i0k0(x, out=None) = <ufunc 'it2i0k0'>
Integrals related to modified Bessel functions of order 0.
Computes the integrals

\[\int_0^x \frac{I_0(t) - 1}{t}dt \]
\[\int_x^\infty \frac{K_0(t)}{t}dt. \]

Parameters
- x : array_like
 Values at which to evaluate the integrals.
- out : tuple of ndarrays, optional
 Optional output arrays for the function results.

Returns
- ii0 : scalar or ndarray
 The integral for \(i0 \)
- ik0 : scalar or ndarray
 The integral for \(k0 \)

scipy.special.besselpoly

scipy.special.besselpoly(a, lmb, nu, out=None) = <ufunc 'besselpoly'>
Weighted integral of the Bessel function of the first kind.
Computes

\[\int_0^1 x^\lambda J_\nu(2ax) dx \]

where \(J_\nu \) is a Bessel function and \(\lambda = lmb, \nu = nu \).
Parameters

- **a** [array_like] Scale factor inside the Bessel function.
- **lmb** [array_like] Power of x.
- **nu** [array_like] Order of the Bessel function.
- **out** [ndarray, optional] Optional output array for the function results.

Returns

- **scalar or ndarray** Value of the integral.

Derivatives of Bessel functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>jvp(v, z[, n])</code></td>
<td>Compute derivatives of Bessel functions of the first kind.</td>
</tr>
<tr>
<td><code>yvp(v, z[, n])</code></td>
<td>Compute derivatives of Bessel functions of the second kind.</td>
</tr>
<tr>
<td><code>kvp(v, z[, n])</code></td>
<td>Compute nth derivative of real-order modified Bessel function $K_v(z)$.</td>
</tr>
<tr>
<td><code>ivp(v, z[, n])</code></td>
<td>Compute derivatives of modified Bessel functions of the first kind.</td>
</tr>
<tr>
<td><code>h1vp(v, z[, n])</code></td>
<td>Compute nth derivative of Hankel function $H_1^v(z)$ with respect to z.</td>
</tr>
<tr>
<td><code>h2vp(v, z[, n])</code></td>
<td>Compute nth derivative of Hankel function $H_2^v(z)$ with respect to z.</td>
</tr>
</tbody>
</table>

`scipy.special.jvp`

`scipy.special.jvp(v, z[, n])`

Compute derivatives of Bessel functions of the first kind.

Compute the nth derivative of the Bessel function J_v with respect to z.

Parameters

- **v** [float] Order of Bessel function.
- **z** [complex] Argument at which to evaluate the derivative; can be real or complex.
- **n** [int, default 1] Order of derivative.

Returns

- **scalar or ndarray** Values of the derivative of the Bessel function.

Notes

The derivative is computed using the relation DLFM 10.6.7 [2].
scipy.special.yvp

\texttt{scipy.special.yvp}(v, z, n=1)

Compute derivatives of Bessel functions of the second kind.

Compute the \(n\)th derivative of the Bessel function \(Y_v\) with respect to \(z\).

\textit{Parameters}

\begin{itemize}
 \item \texttt{v} [float] Order of Bessel function
 \item \texttt{z} [complex] Argument at which to evaluate the derivative
 \item \texttt{n} [int, default 1] Order of derivative
\end{itemize}

\textit{Returns}

\texttt{scalar or ndarray}

\(n\)th derivative of the Bessel function.

\textbf{Notes}

The derivative is computed using the relation DLMF 10.6.7 [2].

\textbf{References}

[1], [2]

scipy.special.kvp

\texttt{scipy.special.kvp}(v, z, n=1)

Compute \(n\)th derivative of real-order modified Bessel function \(K_v(z)\)

\(K_v(z)\) is the modified Bessel function of the second kind. Derivative is calculated with respect to \(z\).

\textit{Parameters}

\begin{itemize}
 \item \texttt{v} [array_like of float] Order of Bessel function
 \item \texttt{z} [array_like of complex] Argument at which to evaluate the derivative
 \item \texttt{n} [int] Order of derivative. Default is first derivative.
\end{itemize}

\textit{Returns}

\texttt{out} [ndarray] The results
Notes

The derivative is computed using the relation DLFM 10.29.5 [2].

References

[1], [2]

Examples

Calculate multiple values at order 5:

```python
>>> from scipy.special import kvp
>>> kvp(5, (1, 2, 3+5j))
array([[-1.84903536e+03+0.j , -2.57735387e+01+0.j ,
       -3.06627741e-02+0.08750845j]])
```

Calculate for a single value at multiple orders:

```python
>>> kvp((4, 4.5, 5), 1)
array([-184.0309, -568.9585, -1849.0354])
```

scipy.special.ivp

scipy.special.\texttt{ivp}(\texttt{v}, \texttt{z}, \texttt{n}=\texttt{1})

Compute derivatives of modified Bessel functions of the first kind.

Compute the nth derivative of the modified Bessel function I_v with respect to z.

Parameters

- v [array_like] Order of Bessel function
- z [array_like] Argument at which to evaluate the derivative; can be real or complex.
- n [int, default 1] Order of derivative

Returns

- scalar or ndarray

nth derivative of the modified Bessel function.

See also:

iv
Notes
The derivative is computed using the relation DLFM 10.29.5 [2].

References
[1], [2]

scipy.special.h1vp

`scipy.special.h1vp(v, z, n=1)`
Compute nth derivative of Hankel function $H_1^v(z)$ with respect to z.

Parameters
- `v` : array_like
 Order of Hankel function
- `z` : array_like
 Argument at which to evaluate the derivative. Can be real or complex.
- `n` : int, default 1
 Order of derivative

Returns
- scalar or ndarray
 Values of the derivative of the Hankel function.

Notes
The derivative is computed using the relation DLFM 10.6.7 [2].

References
[1], [2]

scipy.special.h2vp

`scipy.special.h2vp(v, z, n=1)`
Compute nth derivative of Hankel function $H_2^v(z)$ with respect to z.

Parameters
- `v` : array_like
 Order of Hankel function
- `z` : array_like
 Argument at which to evaluate the derivative. Can be real or complex.
- `n` : int, default 1
 Order of derivative

Returns
- scalar or ndarray
 Values of the derivative of the Hankel function.
Notes

The derivative is computed using the relation DLMF 10.6.7 [2].

References

[1], [2]

Spherical Bessel functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>spherical_jn(n, z[, derivative])</code></td>
<td>Spherical Bessel function of the first kind or its derivative.</td>
</tr>
<tr>
<td><code>spherical_yn(n, z[, derivative])</code></td>
<td>Spherical Bessel function of the second kind or its derivative.</td>
</tr>
<tr>
<td><code>spherical_in(n, z[, derivative])</code></td>
<td>Modified spherical Bessel function of the first kind or its derivative.</td>
</tr>
<tr>
<td><code>spherical_kn(n, z[, derivative])</code></td>
<td>Modified spherical Bessel function of the second kind or its derivative.</td>
</tr>
</tbody>
</table>

`scipy.special.spherical_jn`

`scipy.special.spherical_jn(n, z[, derivative=False])`
Spherical Bessel function of the first kind or its derivative.

Defined as [1],

\[j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n+1/2}(z), \]

where \(J_n \) is the Bessel function of the first kind.

Parameters

- **n** [int, array_like] Order of the Bessel function (n >= 0).
- **z** [complex or float, array_like] Argument of the Bessel function.
- **derivative** [bool, optional] If True, the value of the derivative (rather than the function itself) is returned.

Returns

- **jn** [ndarray]

Notes

For real arguments greater than the order, the function is computed using the ascending recurrence [2]. For small real or complex arguments, the definitional relation to the cylindrical Bessel function of the first kind is used.

The derivative is computed using the relations [3],

\[
\begin{align*}
 j'_n(z) &= j_{n-1}(z) - \frac{n + 1}{z} j_n(z). \\
 j'_0(z) &= -j_1(z)
\end{align*}
\]

New in version 0.18.0.
References

[1], [2], [3], [AS]

Examples

The spherical Bessel functions of the first kind j_n accept both real and complex second argument. They can return a complex type:

```python
>>> from scipy.special import spherical_jn
>>> spherical_jn(0, 3+5j)
(-9.878987731663194-8.021894345786002j)
>>> type(spherical_jn(0, 3+5j))
<class 'numpy.complex128'>
```

We can verify the relation for the derivative from the Notes for $n = 3$ in the interval $[1, 2]$:

```python
>>> from scipy.special import spherical_jn
>>> x = np.arange(1.0, 2.0, 0.01)
>>> np.allclose(spherical_jn(3, x, True), ...
... spherical_jn(2, x) - 4/x * spherical_jn(3, x))
True
```

The first few j_n with real argument:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.special import spherical_jn
>>> x = np.arange(0.0, 10.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(-0.5, 1.5)
>>> ax.set_title(r'$Spherical Bessel functions$ $j_n$')
>>> for n in np.arange(0, 4):
...     ax.plot(x, spherical_jn(n, x), label=rf'$j_{n}$')
>>> plt.legend(loc='best')
>>> plt.show()
```

`scipy.special.spherical_y`n

`scipy.special.spherical_y`n $(n, z, derivative=False)$

Spherical Bessel function of the second kind or its derivative.

Defined as [1],

$$y_n(z) = \sqrt{\frac{\pi}{2z}} Y_{n+1/2}(z),$$

where Y_n is the Bessel function of the second kind.

Parameters

- n : [int, array_like] Order of the Bessel function ($n >= 0$).
- z : [complex or float, array_like] Argument of the Bessel function.
- $derivative$: [bool, optional] If True, the value of the derivative (rather than the function itself) is returned.

Returns

3.3. API definition 2191
Spherical Bessel functions j_n

```

<table>
<thead>
<tr>
<th>j0</th>
<th>j1</th>
<th>j2</th>
<th>j3</th>
</tr>
</thead>
</table>
```

Notes

For real arguments, the function is computed using the ascending recurrence [2]. For complex arguments, the definitional relation to the cylindrical Bessel function of the second kind is used.

The derivative is computed using the relations [3],

\[y'_n = y_{n-1} - \frac{n + 1}{z} y_n, \]
\[y'_0 = -y_1 \]

New in version 0.18.0.

References

[1], [2], [3], [AS]

Examples

The spherical Bessel functions of the second kind y_n accept both real and complex second argument. They can return a complex type:

```python
>>> from scipy.special import spherical_yn
>>> spherical_yn(0, 3+5j)
(8.022343088587197-9.880052589376795j)
>>> type(spherical_yn(0, 3+5j))
<class 'numpy.complex128'>
```

We can verify the relation for the derivative from the Notes for $n = 3$ in the interval [1, 2]:

\[y'_3 = y_2 - \frac{3 + 1}{z} y_3 = -y_2 \]
The first few y_n with real argument:

```python
>>> from scipy.special import spherical_yn
>>> x = np.arange(1.0, 2.0, 0.01)
>>> np.allclose(spherical_yn(3, x, True),
              spherical_yn(2, x) - 4/x * spherical_yn(3, x))
True
```

```
>>> import matplotlib.pyplot as plt
>>> from scipy.special import spherical_yn
>>> x = np.arange(0.0, 10.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(-2.0, 1.0)
>>> ax.set_title(r'Spherical Bessel functions $y_n$')
>>> for n in np.arange(0, 4):
...    ax.plot(x, spherical_yn(n, x), label=rf'$y_{n}$')
>>> plt.legend(loc='best')
>>> plt.show()
```

![Spherical Bessel functions y_n](image)

scipy.special.spherical_in

`scipy.special.spherical_in(n, z, derivative=False)`
Modified spherical Bessel function of the first kind or its derivative.
Defined as [1],

$$i_n(z) = \sqrt{\frac{\pi}{2z}} I_{n+\frac{1}{2}}(z),$$

where I_n is the modified Bessel function of the first kind.

Parameters

- **n**
 [int, array_like] Order of the Bessel function ($n \geq 0$).
- **z**
 [complex or float, array_like] Argument of the Bessel function.
derivative [bool, optional] If True, the value of the derivative (rather than the function itself) is returned.

Returns
in [ndarray]

Notes
The function is computed using its definitional relation to the modified cylindrical Bessel function of the first kind. The derivative is computed using the relations

\[i'_n = i_{n-1} - \frac{n+1}{z} i_n. \]

\[i'_1 = i_0 \]

New in version 0.18.0.

References
[1], [2], [AS]

Examples
The modified spherical Bessel functions of the first kind \(i_n \) accept both real and complex second argument. They can return a complex type:

```python
>>> from scipy.special import spherical_in
>>> spherical_in(0, 3+5j)
(-1.1689867793369182-1.2697305267234222j)
>>> type(spherical_in(0, 3+5j))
<class 'numpy.complex128'>
```

We can verify the relation for the derivative from the Notes for \(n = 3 \) in the interval \([1, 2]\):

```python
>>> from scipy.special import spherical_in
>>> x = np.arange(1.0, 2.0, 0.01)
>>> np.allclose(spherical_in(3, x, True),
... spherical_in(2, x) - 4/x * spherical_in(3, x))
True
```

The first few \(i_n \) with real argument:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.special import spherical_in
>>> x = np.arange(0.0, 6.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_xlim(-0.5, 5.0)
>>> ax.set_title(r'Modified spherical Bessel functions $i_n$')
>>> for n in np.arange(0, 4):
...     ax.plot(x, spherical_in(n, x), label=rf'$i_\{n\}$')
>>> plt.legend(loc='best')
>>> plt.show()
```
scipy.special.spherical_kn

scipy.special.spherical_kn(n, z, derivative=False)
Modified spherical Bessel function of the second kind or its derivative.

Defined as [1],

\[k_n(z) = \sqrt{\frac{z}{2}} K_{n+1/2}(z), \]

where \(K_n \) is the modified Bessel function of the second kind.

Parameters

- **n** [int, array_like] Order of the Bessel function (\(n \geq 0 \)).
- **z** [complex or float, array_like] Argument of the Bessel function.
- **derivative** [bool, optional] If True, the value of the derivative (rather than the function itself) is returned.

Returns

- **kn** [ndarray]

Notes

The function is computed using its definitional relation to the modified cylindrical Bessel function of the second kind.

The derivative is computed using the relations [2],

\[k'_n = -k_{n-1} - \frac{n+1}{z} k_n. \]

\[k'_0 = -k_1 \]

New in version 0.18.0.
References

[1], [2], [AS]

Examples

The modified spherical Bessel functions of the second kind k_n accept both real and complex second argument. They can return a complex type:

```python
>>> from scipy.special import spherical_kn
>>> spherical_kn(0, 3+5j)
(0.012985785614001561+0.003354691603137546j)
>>> type(spherical_kn(0, 3+5j))
<class 'numpy.complex128'>
```

We can verify the relation for the derivative from the Notes for $n = 3$ in the interval [1, 2]:

```python
>>> from scipy.special import spherical_kn
>>> x = np.arange(1.0, 2.0, 0.01)
>>> np.allclose(spherical_kn(3, x, True),
...              -4/x * spherical_kn(3, x) - spherical_kn(2, x))
True
```

The first few k_n with real argument:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.special import spherical_kn
>>> x = np.arange(0.0, 4.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(0.0, 5.0)
>>> ax.set_title(r'Modified spherical Bessel functions $k_n$')
>>> for n in np.arange(0, 4):
...     ax.plot(x, spherical_kn(n, x), label=rf'$k_{n}$')
>>> plt.legend(loc='best')
>>> plt.show()
```

Riccati-Bessel functions

These are not universal functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>riccati_jn(n, x)</code></td>
<td>Compute Ricatti-Bessel function of the first kind and its derivative.</td>
</tr>
<tr>
<td><code>riccati_yn(n, x)</code></td>
<td>Compute Ricatti-Bessel function of the second kind and its derivative.</td>
</tr>
</tbody>
</table>
scipy.special.riccati_jn

scipy.special.riccati_jn(n, x)

Compute Ricatti-Bessel function of the first kind and its derivative.

The Ricatti-Bessel function of the first kind is defined as \(x j_n(x) \), where \(j_n \) is the spherical Bessel function of the first kind of order \(n \).

This function computes the value and first derivative of the Ricatti-Bessel function for all orders up to and including \(n \).

Parameters

- \(n \) [int] Maximum order of function to compute
- \(x \) [float] Argument at which to evaluate

Returns

- \(jn \) [ndarray] Value of \(j0(x) \), ..., \(jn(x) \)
- \(jnp \) [ndarray] First derivative \(j0'(x) \), ..., \(jn'(x) \)

Notes

The computation is carried out via backward recurrence, using the relation DLMF 10.51.1 [2].

Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1].

References

[1], [2]

scipy.special.riccati_yn

scipy.special.riccati_yn(n, x)

Compute Ricatti-Bessel function of the second kind and its derivative.

The Ricatti-Bessel function of the second kind is defined as \(xy_n(x) \), where \(y_n \) is the spherical Bessel function of the second kind of order \(n \).

This function computes the value and first derivative of the function for all orders up to and including \(n \).
Notes

The computation is carried out via ascending recurrence, using the relation DLMF 10.51.1 [2]. Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1].

References

[1, 2]

Struve functions

- `struve(v, x)` Struve function.
- `modstruve(v, x)` Modified Struve function.
- `itstruve0(x)` Integral of the Struve function of order 0.
- `it2struve0(x)` Integral related to the Struve function of order 0.
- `itmodstruve0(x)` Integral of the modified Struve function of order 0.

scipy.special.struve

`scipy.special.struve(v, x) = <ufunc 'struve'>`

Struve function.

Return the value of the Struve function of order \(v \) at \(x \). The Struve function is defined as,

\[
H_v(x) = \frac{z}{2}^{v+1} \sum_{n=0}^{\infty} \frac{(-1)^n (z/2)^{2n}}{\Gamma(n + \frac{3}{2}) \Gamma(n + v + \frac{3}{2})},
\]

where \(\Gamma \) is the gamma function.

Parameters

- `v` [array_like] Order of the Struve function (float).
- `x` [array_like] Argument of the Struve function (float; must be positive unless \(v \) is an integer).

Returns

- `H` [ndarray] Value of the Struve function of order \(v \) at \(x \).

See also:

- `modstruve`

Notes

Three methods discussed in [1] are used to evaluate the Struve function:

- power series
- expansion in Bessel functions (if \(|z| < |v| + 20 \))
- asymptotic large-\(z \) expansion (if \(z \geq 0.7v + 12 \))

Rounding errors are estimated based on the largest terms in the sums, and the result associated with the smallest error is returned.
References

[1]

scipy.special.modstruve

scipy.special.modstruve \((v, x) = \langle\text{ufunc 'modstruve'}\rangle\)

Modified Struve function.

Return the value of the modified Struve function of order \(v\) at \(x\). The modified Struve function is defined as,

\[
L_v(x) = -i \exp(-\pi i v/2) H_v(ix),
\]

where \(H_v\) is the Struve function.

Parameters

- \(v\) [array_like] Order of the modified Struve function (float).
- \(x\) [array_like] Argument of the Struve function (float; must be positive unless \(v\) is an integer).

Returns

- \(L\) [ndarray] Value of the modified Struve function of order \(v\) at \(x\).

See also:

struve

Notes

Three methods discussed in [1] are used to evaluate the function:

- power series
- expansion in Bessel functions (if \(|x| < |v| + 20\)
- asymptotic large-x expansion (if \(x \geq 0.7v + 12\))

Rounding errors are estimated based on the largest terms in the sums, and the result associated with the smallest error is returned.

References

[1]

scipy.special.itstruve0

scipy.special.itstruve0 \((x) = \langle\text{ufunc 'itstruve0'}\rangle\)

Integral of the Struve function of order 0.

\[
I = \int_0^x H_0(t) \, dt
\]

Parameters

- \(x\) [array_like] Upper limit of integration (float).
Returns

I [ndarray] The integral of H_0 from 0 to x.

See also:

struve

Notes

Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1].

References

[1]

scipy.special.it2struve0

c scipy.special.it2struve0 (x) = <ufunc 'it2struve0'>

Integral related to the Struve function of order 0.

Returns the integral,

$$
\int_{x}^{\infty} \frac{H_0(t)}{t} \, dt
$$

where H_0 is the Struve function of order 0.

Parameters

x [array_like] Lower limit of integration.

Returns

I [ndarray] The value of the integral.

See also:

struve

Notes

Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1].

References

[1]
scipy.special.itmodstruve0

scipy.special.itmodstruve0(x) = <ufunc 'itmodstruve0'>
Integral of the modified Struve function of order 0.

\[I = \int_0^x L_0(t) \, dt \]

Parameters

x [array_like] Upper limit of integration (float).

Returns

I [ndarray] The integral of \(L_0 \) from 0 to \(x \).

Notes

Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1].

References

[1]

Raw statistical functions

See also:

scipy.stats: Friendly versions of these functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bdtr(k, n, p)</td>
<td>Binomial distribution cumulative distribution function.</td>
</tr>
<tr>
<td>bdtrc(k, n, p)</td>
<td>Binomial distribution survival function.</td>
</tr>
<tr>
<td>bdtri(k, n, y)</td>
<td>Inverse function to bdtr with respect to p.</td>
</tr>
<tr>
<td>bdtrix(y, n, p)</td>
<td>Inverse function to bdtr with respect to k.</td>
</tr>
<tr>
<td>bdtrin(k, y, p)</td>
<td>Inverse function to bdtr with respect to n.</td>
</tr>
<tr>
<td>btdtri(a, b, x)</td>
<td>Cumulative distribution function of the beta distribution.</td>
</tr>
<tr>
<td>btdtria(a, b, x)</td>
<td>The p-th quantile of the beta distribution.</td>
</tr>
<tr>
<td>btdtrib(a, p, x)</td>
<td>Inverse of btdtr with respect to a.</td>
</tr>
<tr>
<td>btdtrin(a, p, x)</td>
<td>Inverse of btdtr with respect to b.</td>
</tr>
<tr>
<td>fdtr(dfn, dfd, x)</td>
<td>F cumulative distribution function.</td>
</tr>
<tr>
<td>fdtrc(dfn, dfd, x)</td>
<td>F survival function.</td>
</tr>
<tr>
<td>fdtri(dfn, dfd, p)</td>
<td>The p-th quantile of the F-distribution.</td>
</tr>
<tr>
<td>fdtridfd(dfn, dfd, p)</td>
<td>Inverse to fdtr vs dfd.</td>
</tr>
<tr>
<td>gdtr(a, b, x)</td>
<td>Gamma distribution cumulative distribution function.</td>
</tr>
<tr>
<td>gdtrc(a, b, x)</td>
<td>Gamma distribution survival function.</td>
</tr>
<tr>
<td>gdtria(p, b, x[. out])</td>
<td>Inverse of gdtr vs a.</td>
</tr>
<tr>
<td>gdtrib(a, p, x[. out])</td>
<td>Inverse of gdtr vs b.</td>
</tr>
<tr>
<td>gdtrix(a, b, p[. out])</td>
<td>Inverse of gdtr vs x.</td>
</tr>
<tr>
<td>nbdtr(k, n, p)</td>
<td>Negative binomial cumulative distribution function.</td>
</tr>
<tr>
<td>nbdtrc(k, n, p)</td>
<td>Negative binomial survival function.</td>
</tr>
<tr>
<td>nbdtri(k, n, y)</td>
<td>Inverse of nbdtr vs p.</td>
</tr>
<tr>
<td>nbdtrik(y, n, p)</td>
<td>Inverse of nbdtr vs k.</td>
</tr>
<tr>
<td>nbdtrin(k, y, p)</td>
<td>Inverse of nbdtr vs n.</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td><code>ncfdtr(dfn, dfd, nc, f)</code></td>
<td>Cumulative distribution function of the non-central F distribution.</td>
</tr>
<tr>
<td><code>ncfdtridfd(dfn, p, nc, f)</code></td>
<td>Calculate degrees of freedom (denominator) for the non-central F-distribution.</td>
</tr>
<tr>
<td><code>ncfdtridfn(p, dfd, nc, f)</code></td>
<td>Calculate degrees of freedom (numerator) for the non-central F-distribution.</td>
</tr>
<tr>
<td><code>ncfdtri(dfn, dfd, nc, p)</code></td>
<td>Inverse with respect to f of the CDF of the non-central F distribution.</td>
</tr>
<tr>
<td><code>ncfdtrinc(dfn, dfd, nc, p)</code></td>
<td>Calculate non-centrality parameter for non-central F distribution.</td>
</tr>
<tr>
<td><code>ncdtr(df, nc, t)</code></td>
<td>Cumulative distribution function of the non-central t distribution.</td>
</tr>
<tr>
<td><code>ncdtridf(p, nc, t)</code></td>
<td>Calculate degrees of freedom for non-central t distribution.</td>
</tr>
<tr>
<td><code>ncdtrit(df, nc, p)</code></td>
<td>Inverse cumulative distribution function of the non-central t distribution.</td>
</tr>
<tr>
<td><code>ncdtrinc(df, p, t)</code></td>
<td>Calculate non-centrality parameter for non-central t distribution.</td>
</tr>
<tr>
<td><code>nrdtrmn(p, x, std)</code></td>
<td>Calculate mean of normal distribution given other params.</td>
</tr>
<tr>
<td><code>nrdtrisd(p, x, mn)</code></td>
<td>Calculate standard deviation of normal distribution given other params.</td>
</tr>
<tr>
<td><code>pdtr(k, m[, out])</code></td>
<td>Poisson cumulative distribution function.</td>
</tr>
<tr>
<td><code>pdtrc(k, m)</code></td>
<td>Poisson survival function</td>
</tr>
<tr>
<td><code>pdtri(k, y)</code></td>
<td>Inverse to <code>pdtr</code> vs m</td>
</tr>
<tr>
<td><code>pdtrik(p, m)</code></td>
<td>Inverse to <code>pdtr</code> vs k</td>
</tr>
<tr>
<td><code>stdtr(df, t)</code></td>
<td>Student t distribution cumulative distribution function</td>
</tr>
<tr>
<td><code>stdtridf(p, t)</code></td>
<td>Inverse of <code>stdtr</code> vs df</td>
</tr>
<tr>
<td><code>stdtrit(df, p)</code></td>
<td>Inverse of <code>stdtr</code> vs t</td>
</tr>
<tr>
<td><code>chdtr(v, x[, out])</code></td>
<td>Chi square cumulative distribution function.</td>
</tr>
<tr>
<td><code>chdtrc(v, x[, out])</code></td>
<td>Chi square survival function.</td>
</tr>
<tr>
<td><code>chdtriv(p, x[, out])</code></td>
<td>Inverse to <code>chdtr</code> with respect to x.</td>
</tr>
<tr>
<td><code>ndtr(x)</code></td>
<td>Gaussian cumulative distribution function.</td>
</tr>
<tr>
<td><code>log_ndtr(x)</code></td>
<td>Logarithm of Gaussian cumulative distribution function.</td>
</tr>
<tr>
<td><code>ndtri(y)</code></td>
<td>Inverse of <code>ndtr</code> vs x</td>
</tr>
<tr>
<td><code>ndtri_exp(y)</code></td>
<td>Inverse of <code>log_ndtr</code> vs x.</td>
</tr>
<tr>
<td><code>chdtr(x, df, nc)</code></td>
<td>Non-central chi square cumulative distribution function</td>
</tr>
<tr>
<td><code>chdtridf(x, p, nc)</code></td>
<td>Inverse to <code>chdtr</code> vs df</td>
</tr>
<tr>
<td><code>chdtrinc(x, df, p)</code></td>
<td>Inverse to <code>chdtr</code> vs nc</td>
</tr>
<tr>
<td><code>chdtrix(p, df, nc)</code></td>
<td>Inverse to <code>chdtr</code> vs x</td>
</tr>
<tr>
<td><code>smirnov(n, d)</code></td>
<td>Kolmogorov-Smirnov complementary cumulative distribution function</td>
</tr>
<tr>
<td><code>smirnovi(n, p)</code></td>
<td>Inverse to <code>smirnov</code></td>
</tr>
<tr>
<td><code>kolmogorov(y)</code></td>
<td>Complementary cumulative distribution (Survival Function) function of Kolmogorov distribution.</td>
</tr>
<tr>
<td><code>kolmogi(p)</code></td>
<td>Inverse Survival Function of Kolmogorov distribution</td>
</tr>
<tr>
<td><code>tklmbda(x, lmbda)</code></td>
<td>Tukey-Lambda cumulative distribution function</td>
</tr>
<tr>
<td><code>logit(x)</code></td>
<td>Logit ufunc for ndarrays.</td>
</tr>
<tr>
<td><code>expit(x)</code></td>
<td>Expit (a.k.a.</td>
</tr>
<tr>
<td><code>log_expit(x)</code></td>
<td>Logarithm of the logistic sigmoid function.</td>
</tr>
</tbody>
</table>

continues on next page
Table 240 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boxcox(x, lmbda)</td>
<td>Compute the Box-Cox transformation.</td>
</tr>
<tr>
<td>boxcox1p(x, lmbda)</td>
<td>Compute the Box-Cox transformation of $1 + x$.</td>
</tr>
<tr>
<td>inv_boxcox(y, lmbda)</td>
<td>Compute the inverse of the Box-Cox transformation.</td>
</tr>
<tr>
<td>inv_boxcox1p(y, lmbda)</td>
<td>Compute the inverse of the Box-Cox transformation.</td>
</tr>
<tr>
<td>owens_t(h, a)</td>
<td>Owen’s T Function.</td>
</tr>
</tbody>
</table>

scipy.special.bdtr

scipy.special.bdtr(k, n, p) = <ufunc 'bdtr'>

Binomial distribution cumulative distribution function.

Sum of the terms 0 through $\lfloor k \rfloor$ of the Binomial probability density.

$$bdtr(k, n, p) = \sum_{j=0}^{\lfloor k \rfloor} \binom{n}{j} p^j (1 - p)^{n-j}$$

Parameters

- **k** [array_like] Number of successes (double), rounded down to the nearest integer.
- **n** [array_like] Number of events (int).
- **p** [array_like] Probability of success in a single event (float).

Returns

- **y** [ndarray] Probability of $\lfloor k \rfloor$ or fewer successes in n independent events with success probabilities of p.

Notes

The terms are not summed directly; instead the regularized incomplete beta function is employed, according to the formula,

$$bdtr(k, n, p) = I_{1-p}(n - \lfloor k \rfloor, \lfloor k \rfloor + 1).$$

References

[1]

scipy.special.bdtrc

scipy.special.bdtrc(k, n, p) = <ufunc 'bdtrc'>

Binomial distribution survival function.

Sum of the terms $\lfloor k \rfloor + 1$ through n of the binomial probability density,

$$bdtrc(k, n, p) = \sum_{j=\lfloor k \rfloor + 1}^{n} \binom{n}{j} p^j (1 - p)^{n-j}$$

Parameters

k
[array_like] Number of successes (double), rounded down to nearest integer.

n
[array_like] Number of events (int)

p
[array_like] Probability of success in a single event.

Returns

y
[ndarray] Probability of \(\lfloor k \rfloor + 1 \) or more successes in \(n \) independent events with success probabilities of \(p \).

See also:

bdtr
betainc

Notes

The terms are not summed directly; instead the regularized incomplete beta function is employed, according to the formula,

\[
bdtrc(k, n, p) = I_p([k] + 1, n - [k]).
\]

Wrapper for the Cephes \([1]\) routine \(bdtrc\).

References

[1]

```python
scipy.special.bdtri
```

\[
\text{scipy.special.bdtri}(k, n, y) = \text{ufunc } \text{"bdtri"}
\]

Inverse function to \(bdtr\) with respect to \(p\).

Finds the event probability \(p\) such that the sum of the terms 0 through \(k\) of the binomial probability density is equal to the given cumulative probability \(y\).

Parameters

k
[array_like] Number of successes (float), rounded down to the nearest integer.

n
[array_like] Number of events (float)

y
[array_like] Cumulative probability (probability of \(k\) or fewer successes in \(n\) events).

Returns

p
[ndarray] The event probability such that \(bdtr(\lfloor k \rfloor, n, p) = y\).

See also:

bdtr
betaincinv
Notes

The computation is carried out using the inverse beta integral function and the relation:

\[1 - p = \text{betaincinv}(n - k, k + 1, y). \]

Wrapper for the Cephes [1] routine \textit{bdtri}.

References

[1]

\texttt{scipy.special.bdtrik}

\texttt{scipy.special.bdtrik(y, n, p) = \texttt{<ufunc 'bdtrik'>}}

Inverse function to \textit{bdtr} with respect to \(k \).

Finds the number of successes \(k \) such that the sum of the terms 0 through \(k \) of the Binomial probability density for \(n \) events with probability \(p \) is equal to the given cumulative probability \(y \).

\begin{itemize}
 \item \textbf{Parameters}
 \begin{itemize}
 \item \texttt{y} [array_like] Cumulative probability (probability of \(k \) or fewer successes in \(n \) events).
 \item \texttt{n} [array_like] Number of events (float).
 \item \texttt{p} [array_like] Success probability (float).
 \end{itemize}
 \item \textbf{Returns}
 \begin{itemize}
 \item \texttt{k} [ndarray] The number of successes \(k \) such that \(\text{bdtr}(k, n, p) = y \).
 \end{itemize}
\end{itemize}

See also:

\texttt{bdtr}

Notes

Formula 26.5.24 of [1] is used to reduce the binomial distribution to the cumulative incomplete beta distribution. Computation of \(k \) involves a search for a value that produces the desired value of \(y \). The search relies on the monotonicity of \(y \) with \(k \).

References

[1], [2]
scipy.special.bdtrin

\[\text{scipy.special.bdtrin}(k, y, p) = \texttt{<ufunc 'bdtrin'>} \]
Inverse function to \texttt{bdtr} with respect to \(n \).

Finds the number of events \(n \) such that the sum of the terms 0 through \(k \) of the Binomial probability density for events with probability \(p \) is equal to the given cumulative probability \(y \).

Parameters
- \(k \) [array_like] Number of successes (float).
- \(y \) [array_like] Cumulative probability (probability of \(k \) or fewer successes in \(n \) events).
- \(p \) [array_like] Success probability (float).

Returns
- \(n \) [ndarray] The number of events \(n \) such that \(\text{bdtr}(k, n, p) = y \).

See also:
\texttt{bdtr}

Notes
Formula 26.5.24 of [1] is used to reduce the binomial distribution to the cumulative incomplete beta distribution.

Computation of \(n \) involves a search for a value that produces the desired value of \(y \). The search relies on the monotonicity of \(y \) with \(n \).

Wrapper for the CDFLIB [2] Fortran routine \texttt{cdfbin}.

References
[1], [2]

scipy.special.btdtr

\[\text{scipy.special.btdtr}(a, b, x) = \texttt{<ufunc 'btdtr'>} \]
Cumulative distribution function of the beta distribution.

Returns the integral from zero to \(x \) of the beta probability density function,
\[
I = \int_0^x \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} t^{a-1}(1-t)^{b-1} \, dt
\]
where \(\Gamma \) is the gamma function.

Parameters
- \(a \) [array_like] Shape parameter (\(a > 0 \)).
- \(b \) [array_like] Shape parameter (\(b > 0 \)).
- \(x \) [array_like] Upper limit of integration, in [0, 1].

Returns
- \(I \) [ndarray] Cumulative distribution function of the beta distribution with parameters \(a \) and \(b \) at \(x \).

See also:
betainc

Notes

This function is identical to the incomplete beta integral function \texttt{betainc}.
Wrapper for the Cephes [1] routine \texttt{btdtr}.

References

[1]

\texttt{scipy.special.btdtri}

\texttt{scipy.special.btdtri}(a, b, p) = <ufunc 'btdtri'>
The \(p\)-th quantile of the beta distribution.

This function is the inverse of the beta cumulative distribution function, \texttt{btdtr}, returning the value of \(x\) for which \(btdtr(a, b, x) = p\), or

\[
p = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1}(1-t)^{b-1} \, dt
\]

Parameters

- \(a\) [array_like] Shape parameter \((a > 0)\).
- \(b\) [array_like] Shape parameter \((b > 0)\).
- \(p\) [array_like] Cumulative probability, in \([0, 1]\).

Returns

- \(x\) [ndarray] The quantile corresponding to \(p\).

See also:

betaincinv
btdtr

Notes

The value of \(x\) is found by interval halving or Newton iterations.
Wrapper for the Cephes [1] routine \texttt{incbi}, which solves the equivalent problem of finding the inverse of the incomplete beta integral.
References

[1]

scipy.special.btdtria

\texttt{scipy.special.btdtria}(p, b, x) = <ufunc 'btdtria'>

Inverse of \texttt{btdtr} with respect to \(a\).

This is the inverse of the beta cumulative distribution function, \texttt{btdtr}, considered as a function of \(a\), returning the value of \(a\) for which \(\texttt{btdtr}(a, b, x) = p\), or

\[
p = \int_0^x \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1 - t)^{b-1} dt
\]

Parameters

\(p\) [array_like] Cumulative probability, in [0, 1].

\(b\) [array_like] Shape parameter \((b > 0)\).

\(x\) [array_like] The quantile, in [0, 1].

Returns

\(a\) [ndarray] The value of the shape parameter \(a\) such that \(\texttt{btdtr}(a, b, x) = p\).

See also:

\texttt{btdtr}

Cumulative distribution function of the beta distribution.

\texttt{btdtri}

Inverse with respect to \(x\).

\texttt{btdtrib}

Inverse with respect to \(b\).

Notes

Wrapper for the CDFLIB [1] Fortran routine \texttt{cdfbet}.

The cumulative distribution function \(p\) is computed using a routine by DiDinato and Morris [2]. Computation of \(a\) involves a search for a value that produces the desired value of \(p\). The search relies on the monotonicity of \(p\) with \(a\).

References

[1], [2]
scipy.special.btdtrib

```python
scipy.special.btdtrib(a, p, x) = <ufunc 'btdtrib'>
```

Inverse of `btdtr` with respect to b.

This is the inverse of the beta cumulative distribution function, `btdtr`, considered as a function of b, returning the value of b for which $btdtr(a, b, x) = p$, or

$$
p = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1}(1 - t)^{b-1} dt
$$

Parameters

- `a` [array_like] Shape parameter ($a > 0$).
- `p` [array_like] Cumulative probability, in [0, 1].
- `x` [array_like] The quantile, in [0, 1].

Returns

- `b` [ndarray] The value of the shape parameter b such that $btdtr(a, b, x) = p$.

See also:

- `btdtr` Cumulative distribution function of the beta distribution.
- `btdtri` Inverse with respect to x.
- `btdtria` Inverse with respect to a.

Notes

The cumulative distribution function p is computed using a routine by DiDinato and Morris [2]. Computation of b involves a search for a value that produces the desired value of p. The search relies on the monotonicity of p with b.

References

[1], [2]

scipy.special.fdtr

```python
scipy.special.fdtr(dfn, dfd, x) = <ufunc 'fdtr'>
```

F cumulative distribution function.

Returns the value of the cumulative distribution function of the F-distribution, also known as Snedecor's F-distribution or the Fisher-Snedecor distribution.

The F-distribution with parameters d_n and d_d is the distribution of the random variable,

$$
X = \frac{U_n/d_n}{U_d/d_d}
$$
where \(U_n \) and \(U_d \) are random variables distributed \(\chi^2 \), with \(d_n \) and \(d_d \) degrees of freedom, respectively.

Parameters
- **dfn**: [array_like] First parameter (positive float).
- **dfd**: [array_like] Second parameter (positive float).
- **x**: [array_like] Argument (nonnegative float).

Returns
- **y**: [ndarray] The CDF of the F-distribution with parameters \(dfn \) and \(dfd \) at \(x \).

Notes
The regularized incomplete beta function is used, according to the formula,

\[
F(d_n, d_d; x) = I_{xd_n/(d_d+xd_n)}(d_n/2, d_d/2).
\]

Wrapper for the Cephes \([1]\) routine `fdtr`.

References
1. scipy.special.fdtrc

```python
scipy.special.fdtrc(dfn, dfd, x) = <ufunc 'fdtrc'>
```

F survival function.

Returns the complemented F-distribution function (the integral of the density from \(x \) to infinity).

Parameters
- **dfn**: [array_like] First parameter (positive float).
- **dfd**: [array_like] Second parameter (positive float).
- **x**: [array_like] Argument (nonnegative float).

Returns
- **y**: [ndarray] The complemented F-distribution function with parameters \(dfn \) and \(dfd \) at \(x \).

See also:
- `fdtr`

Notes
The regularized incomplete beta function is used, according to the formula,

\[
F(d_n, d_d; x) = I_{d_d/(d_n+xd_n)}(d_d/2, d_n/2).
\]

Wrapper for the Cephes \([1]\) routine `fdtrc`.
References

[1]

scipy.special.fdtri

\[
\text{scipy.special.fdtri}(dfn, dfd, p) = \text{<ufunc 'fdtri'>}
\]

The \(p\)-th quantile of the F-distribution.

This function is the inverse of the F-distribution CDF, \(\text{fdtr}\), returning the \(x\) such that \(\text{fdtr}(dfn, dfd, x) = p\).

Parameters
- **dfn** : [array_like] First parameter (positive float).
- **dfd** : [array_like] Second parameter (positive float).
- **p** : [array_like] Cumulative probability, in [0, 1].

Returns
- **x** : [ndarray] The quantile corresponding to \(p\).

Notes

The computation is carried out using the relation to the inverse regularized beta function, \(\text{I}^{-1}_x(a, b)\). Let \(z = \text{I}^{-1}_p(d_d/2, d_n/2)\). Then,

\[
x = \frac{d_d(1 - z)}{d_n z}.
\]

If \(p\) is such that \(x < 0.5\), the following relation is used instead for improved stability: let \(z' = \text{I}^{-1}_{1-p}(d_n/2, d_d/2)\). Then,

\[
x = \frac{d_d z'}{d_n(1 - z')}.
\]

Wrapper for the Cephes [1] routine \(\text{fdtri}\).

References

[1]

scipy.special.fdtridfd

\[
\text{scipy.special.fdtridfd}(dfn, p, x) = \text{<ufunc 'fdtridfd'>}
\]

Inverse to \(\text{fdtr}\) vs \(\text{dfd}\)

Finds the F density argument \(\text{dfd}\) such that \(\text{fdtr}(dfn, dfd, x) = p\).
scipy.special.gdtr

\[\text{scipy.special.gdtr}(a, b, x) = \text{ufunc 'gdtr'} \]

Gamma distribution cumulative distribution function.

Returns the integral from zero to \(x \) of the gamma probability density function,

\[
F = \int_0^x \frac{a^b}{\Gamma(b)} t^{b-1} e^{-at} dt,
\]

where \(\Gamma \) is the gamma function.

Parameters

- \(a \) [array_like] The rate parameter of the gamma distribution, sometimes denoted \(\beta \) (float). It is also the reciprocal of the scale parameter \(\theta \).
- \(b \) [array_like] The shape parameter of the gamma distribution, sometimes denoted \(\alpha \) (float).
- \(x \) [array_like] The quantile (upper limit of integration; float).

Returns

- \(F \) [ndarray] The CDF of the gamma distribution with parameters \(a \) and \(b \) evaluated at \(x \).

See also:

gdtrc

1 - CDF of the gamma distribution.

Notes

The evaluation is carried out using the relation to the incomplete gamma integral (regularized gamma function). Wrapper for the Cephes [1] routine \(\text{gdtr} \).

References

[1]

scipy.special.gdtrc

\[\text{scipy.special.gdtrc}(a, b, x) = \text{ufunc 'gdtrc'} \]

Gamma distribution survival function.

Integral from \(x \) to infinity of the gamma probability density function,

\[
F = \int_x^\infty \frac{a^b}{\Gamma(b)} t^{b-1} e^{-at} dt,
\]

where \(\Gamma \) is the gamma function.

Parameters

- \(a \) [array_like] The rate parameter of the gamma distribution, sometimes denoted \(\beta \) (float). It is also the reciprocal of the scale parameter \(\theta \).
- \(b \) [array_like] The shape parameter of the gamma distribution, sometimes denoted \(\alpha \) (float).
- \(x \) [array_like] The quantile (lower limit of integration; float).
Returns

\[F \] [ndarray] The survival function of the gamma distribution with parameters \(a \) and \(b \) evaluated at \(x \).

See also:

\texttt{gdtr, gdtrix}

Notes

The evaluation is carried out using the relation to the incomplete gamma integral (regularized gamma function).

Wrapper for the Cephes [1] routine \texttt{gdtrc}.

References

[1]

\texttt{scipy.special.gdtria}

\texttt{scipy.special.gdtria}(p, b, x, out=None) = <ufunc 'gdtria'>

Inverse of \texttt{gdtr} vs \(a \).

Returns the inverse with respect to the parameter \(a \) of \(p = \text{gdtr}(a, b, x) \), the cumulative distribution function of the gamma distribution.

Parameters

\(p \) [array_like] Probability values.
\(b \) [array_like] \(b \) parameter values of \(\text{gdtr}(a, b, x) \). \(b \) is the “shape” parameter of the gamma distribution.
\(x \) [array_like] Nonnegative real values, from the domain of the gamma distribution.
\(\text{out} \) [ndarray, optional] If a fourth argument is given, it must be a numpy.ndarray whose size matches the broadcast result of \(a, b \) and \(x \). \(\text{out} \) is then the array returned by the function.

Returns

\(a \) [ndarray] Values of the \(a \) parameter such that \(p = \text{gdtr}(a, b, x) \). \(1/a \) is the “scale” parameter of the gamma distribution.

See also:

\texttt{gdtr}

CDF of the gamma distribution.

\texttt{gdtrib}

Inverse with respect to \(b \) of \(\text{gdtr}(a, b, x) \).

\texttt{gdtrix}

Inverse with respect to \(x \) of \(\text{gdtr}(a, b, x) \).
Notes

The cumulative distribution function p is computed using a routine by DiDinato and Morris [2]. Computation of a involves a search for a value that produces the desired value of p. The search relies on the monotonicity of p with a.

References

[1], [2]

Examples

First evaluate $gdtr$.

```python
>>> from scipy.special import gdtr, gdtrib
>>> p = gdtr(1.2, 3.4, 5.6)
>>> print(p)
0.94378087442
```

Verify the inverse.

```python
>>> gdtrib(p, 3.4, 5.6)
1.2
```

`scipy.special.gdtrib`

`scipy.special.gdtrib`(a, p, x, `out=None`) = `<ufunc 'gdtrib'>`

Inverse of $gdtr$ vs b.

Returns the inverse with respect to the parameter b of $p = gdtr(a, b, x)$, the cumulative distribution function of the gamma distribution.

Parameters

- a [array_like] a parameter values of $gdtr(a, b, x)$. $1/a$ is the “scale” parameter of the gamma distribution.
- p [array_like] Probability values.
- x [array_like] Nonnegative real values, from the domain of the gamma distribution.
- `out` [ndarray, optional] If a fourth argument is given, it must be a numpy.ndarray whose size matches the broadcast result of a, b and x. `out` is then the array returned by the function.

Returns

- b [ndarray] Values of the b parameter such that $p = gdtr(a, b, x)$. b is the “shape” parameter of the gamma distribution.

See also:

- $gdtr$

CDF of the gamma distribution.
gdtria

Inverse with respect to a of $\text{gdtr}(a, b, x)$.

gdtrix

Inverse with respect to x of $\text{gdtr}(a, b, x)$.

Notes

Wrapper for the CDFLIB [1] Fortran routine cdfgam.

The cumulative distribution function p is computed using a routine by DiDinato and Morris [2]. Computation of b involves a search for a value that produces the desired value of p. The search relies on the monotonicity of p with b.

References

[1], [2]

Examples

First evaluate gdtr.

```python
>>> from scipy.special import gdtr, gdtrib
>>> p = gdtr(1.2, 3.4, 5.6)
>>> print(p)
0.94378087442
```

Verify the inverse.

```python
>>> gdtrib(1.2, p, 5.6)
3.3999999997238882
```

scipy.special.gdtrix

`scipy.special.gdtrix(a, b, p, out=None) = <ufunc 'gdtrix'>`

Inverse of gdtr vs x.

Returns the inverse with respect to the parameter x of $p = \text{gdtr}(a, b, x)$, the cumulative distribution function of the gamma distribution. This is also known as the pth quantile of the distribution.

Parameters

- **a**
 - [array_like] a parameter values of $\text{gdtr}(a, b, x)$. $1/a$ is the “scale” parameter of the gamma distribution.
- **b**
 - [array_like] b parameter values of $\text{gdtr}(a, b, x)$. b is the “shape” parameter of the gamma distribution.
- **p**
 - [array_like] Probability values.
- **out**
 - [ndarray, optional] If a fourth argument is given, it must be a numpy.ndarray whose size matches the broadcast result of a, b and x. out is then the array returned by the function.

Returns

- **x**
 - [ndarray] Values of the x parameter such that $p = \text{gdtr}(a, b, x)$.
See also:

\texttt{gdtr}

CDF of the gamma distribution.

\texttt{gdtria}

Inverse with respect to \(a \) of \(\text{gdtr}(a, b, x) \).

\texttt{gdtrib}

Inverse with respect to \(b \) of \(\text{gdtr}(a, b, x) \).

Notes

Wrapper for the CDFLIB [1] Fortran routine \texttt{cdfgam}.

The cumulative distribution function \(p \) is computed using a routine by DiDinato and Morris [2]. Computation of \(x \) involves a search for a value that produces the desired value of \(p \). The search relies on the monotonicity of \(p \) with \(x \).

References

[1], [2]

Examples

First evaluate \texttt{gdtr}.

```python
>>> from scipy.special import gdtr, gdtrix
>>> p = gdtr(1.2, 3.4, 5.6)
>>> print(p)
0.94378087442
```

Verify the inverse.

```python
>>> gdtrix(1.2, 3.4, p)
5.5999999999999996
```

\texttt{scipy.special.nbdtr}

\texttt{scipy.special.nbdtr}(k, n, p) = \texttt{ufunc 'nbdtr'}

Negative binomial cumulative distribution function.

Returns the sum of the terms 0 through \(k \) of the negative binomial distribution probability mass function,

\[
F = \sum_{j=0}^{k} \binom{n+j-1}{j} p^n (1-p)^j.
\]

In a sequence of Bernoulli trials with individual success probabilities \(p \), this is the probability that \(k \) or fewer failures precede the \(n \)th success.

Parameters

\(k \) [array_like] The maximum number of allowed failures (nonnegative int).
\(n \) [array_like] The target number of successes (positive int).
\(p \) [array_like] Probability of success in a single event (float).

Returns

\(F \) [ndarray] The probability of \(k \) or fewer failures before \(n \) successes in a sequence of events with individual success probability \(p \).

See also:

nbdtrc

Notes

If floating point values are passed for \(k \) or \(n \), they will be truncated to integers.

The terms are not summed directly; instead the regularized incomplete beta function is employed, according to the formula,

\[
nbdtr(k, n, p) = I_p(n, k + 1).
\]

Wrapper for the Cephes [1] routine *nbdtr*.

References

[1]

scipy.special.nbdtrc

scipy.special.nbdtrc(\(k, n, p \)) = <ufunc 'nbdtrc'>

Negative binomial survival function.

Returns the sum of the terms \(k + 1 \) to infinity of the negative binomial distribution probability mass function,

\[
F = \sum_{j=k+1}^{\infty} \binom{n+j-1}{j} p^n (1-p)^j.
\]

In a sequence of Bernoulli trials with individual success probabilities \(p \), this is the probability that more than \(k \) failures precede the \(nth \) success.

Parameters

\(k \) [array_like] The maximum number of allowed failures (nonnegative int).
\(n \) [array_like] The target number of successes (positive int).
\(p \) [array_like] Probability of success in a single event (float).

Returns

\(F \) [ndarray] The probability of \(k + 1 \) or more failures before \(n \) successes in a sequence of events with individual success probability \(p \).
Notes

If floating point values are passed for \(k \) or \(n \), they will be truncated to integers.

The terms are not summed directly; instead the regularized incomplete beta function is employed, according to the formula,

\[
\text{nbdtrc}(k, n, p) = I_{1-p}(k + 1, n).
\]

Wrapper for the Cephes [1] routine \text{nbdtrc}.

References

[1]

\texttt{scipy.special.nbdtri}

\texttt{scipy.special.nbdtri}(k, n, y) = <ufunc 'nbdtri'>

Inverse of \text{nbdtr} vs \(p \).

Returns the inverse with respect to the parameter \(p \) of \(y = nbdtr(k, n, p) \), the negative binomial cumulative distribution function.

\textbf{Parameters}

\begin{itemize}
 \item \(k \) [array_like] The maximum number of allowed failures (nonnegative int).
 \item \(n \) [array_like] The target number of successes (positive int).
 \item \(y \) [array_like] The probability of \(k \) or fewer failures before \(n \) successes (float).
\end{itemize}

\textbf{Returns}

\(p \) [ndarray] Probability of success in a single event (float) such that \(nbdtr(k, n, p) = y \).

See also:

\texttt{nbdtr}

Cumulative distribution function of the negative binomial.

\texttt{nbdtrik}

Inverse with respect to \(k \) of \(nbdtr(k, n, p) \).

\texttt{nbdtrin}

Inverse with respect to \(n \) of \(nbdtr(k, n, p) \).

Notes

Wrapper for the Cephes [1] routine \text{nbdtri}.
References

[1]

scipy.special.nbdtrik

\texttt{scipy.special.nbdtrik}(y, n, p) = \texttt{ufunc 'nbdtrik'}

Inverse of \texttt{nbdtr} vs \(k \).

Returns the inverse with respect to the parameter \(k \) of \(y = \text{nbdtr}(k, n, p) \), the negative binomial cumulative distribution function.

\textit{Parameters}

- \(y \) [array_like] The probability of \(k \) or fewer failures before \(n \) successes (float).
- \(n \) [array_like] The target number of successes (positive int).
- \(p \) [array_like] Probability of success in a single event (float).

\textit{Returns}

- \(k \) [ndarray] The maximum number of allowed failures such that \(\text{nbdtr}(k, n, p) = y \).

\textit{See also:}

- \texttt{nbdtr}
 Cumulative distribution function of the negative binomial.
- \texttt{nbdtri}
 Inverse with respect to \(p \) of \(\text{nbdtr}(k, n, p) \).
- \texttt{nbdtrin}
 Inverse with respect to \(n \) of \(\text{nbdtr}(k, n, p) \).

\textit{Notes}

Wrapper for the CDFLIB [1] Fortran routine \texttt{cdfnbn}.

Formula 26.5.26 of [2],

\[
\sum_{j=k+1}^{\infty} \binom{n+j-1}{j} p^n (1-p)^j = I_{1-p}(k+1, n),
\]

is used to reduce calculation of the cumulative distribution function to that of a regularized incomplete beta \(I \).

Computation of \(k \) involves a search for a value that produces the desired value of \(y \). The search relies on the monotonicity of \(y \) with \(k \).
scipy.special.nbdtrin

scipy.special.nbdtrin(k, y, p) = <ufunc 'nbdtrin'>
Inverse of nbdtr vs n.
Returns the inverse with respect to the parameter n of $y = nbdtr(k, n, p)$, the negative binomial cumulative distribution function.

Parameters
- **k** [array_like] The maximum number of allowed failures (nonnegative int).
- **y** [array_like] The probability of k or fewer failures before n successes (float).
- **p** [array_like] Probability of success in a single event (float).

Returns
- **n** [ndarray] The number of successes n such that $nbdtr(k, n, p) = y$.

See also:
- **nbdtr** Cumulative distribution function of the negative binomial.
- **nbdtri** Inverse with respect to p of $nbdtr(k, n, p)$.
- **nbdtrik** Inverse with respect to k of $nbdtr(k, n, p)$.

Notes
Wrapper for the CDFLIB [1] Fortran routine *cdfnb*.
Formula 26.5.26 of [2],
\[
\sum_{j=k+1}^{\infty} \binom{n+j-1}{j} p^n (1-p)^j = I_{1-p}(k+1, n),
\]
is used to reduce calculation of the cumulative distribution function to that of a regularized incomplete beta I.

Computation of n involves a search for a value that produces the desired value of y. The search relies on the monotonicity of y with n.

References
[1], [2]
References

[1], [2]

scipy.special.ncfdtr

`scipy.special.ncfdtr(dfn, dfd, nc, f) = <ufunc 'ncfdtr'>`

Cumulative distribution function of the non-central F distribution.

The non-central F describes the distribution of,

\[Z = \frac{X/d_n}{Y/d_d} \]

where \(X \) and \(Y \) are independently distributed, with \(X \) distributed non-central \(\chi^2 \) with noncentrality parameter \(nc \) and \(d_n \) degrees of freedom, and \(Y \) distributed \(\chi^2 \) with \(d_d \) degrees of freedom.

Parameters

- `dfn` [array_like] Degrees of freedom of the numerator sum of squares. Range (0, inf).
- `dfd` [array_like] Degrees of freedom of the denominator sum of squares. Range (0, inf).
- `nc` [array_like] Noncentrality parameter. Should be in range (0, 1e4).
- `f` [array_like] Quantiles, i.e. the upper limit of integration.

Returns

- `cdf` [float or ndarray] The calculated CDF. If all inputs are scalar, the return will be a float. Otherwise it will be an array.

See also:

- `ncfdtri` Quantile function; inverse of `ncfdtr` with respect to \(f \).
- `ncfdtridfd` Inverse of `ncfdtr` with respect to \(dfd \).
- `ncfdtridfn` Inverse of `ncfdtr` with respect to \(dfn \).
- `ncfdtrinc` Inverse of `ncfdtr` with respect to \(nc \).

Notes

The cumulative distribution function is computed using Formula 26.6.20 of [2]:

\[F(d_n, d_d, n_c, f) = \sum_{j=0}^{\infty} e^{-n_c/2} \frac{(n_c/2)^j}{j!} I_x \left(\frac{d_n}{2} + j, \frac{d_d}{2} \right), \]

where \(I \) is the regularized incomplete beta function, and \(x = fd_n/(fd_n + d_d) \).

The computation time required for this routine is proportional to the noncentrality parameter \(nc \). Very large values of this parameter can consume immense computer resources. This is why the search range is bounded by 10,000.
References

[1],[2]

Examples

```python
>>> from scipy import special
>>> from scipy import stats
>>> import matplotlib.pyplot as plt

Plot the CDF of the non-central F distribution, for nc=0. Compare with the F-distribution from scipy.stats:

```python
>>> x = np.linspace(-1, 8, num=500)
>>> dfn = 3
>>> dfd = 2
>>> ncf_stats = stats.f.cdf(x, dfn, dfd)
>>> ncf_special = special.ncfdtr(dfn, dfd, 0, x)
```  
```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, ncf_stats, 'b-', lw=3)
>>> ax.plot(x, ncf_special, 'r-')
>>> plt.show()
```
scipy.special.ncfdtridfd

scipy.special.ncfdtridfd(dfn, p, nc, f) = <ufunc 'ncfdtridfd'>

Calculate degrees of freedom (denominator) for the noncentral F-distribution.

This is the inverse with respect to dfd of ncfdtr. See ncfdtr for more details.

Parameters

- dfn [array_like] Degrees of freedom of the numerator sum of squares. Range (0, inf).
- p [array_like] Value of the cumulative distribution function. Must be in the range [0, 1].
- nc [array_like] Noncentrality parameter. Should be in range (0, 1e4).
- f [array_like] Quantiles, i.e., the upper limit of integration.

Returns

- dfd [float] Degrees of freedom of the denominator sum of squares.

See also:

ncfdtr

CDF of the non-central F distribution.

ncfdtri

Quantile function; inverse of ncfdtr with respect to f.

ncfdtridfn

Inverse of ncfdtr with respect to dfn.

ncfdtrinc

Inverse of ncfdtr with respect to nc.

Notes

The value of the cumulative noncentral F distribution is not necessarily monotone in either degrees of freedom.

There thus may be two values that provide a given CDF value. This routine assumes monotonicity and will find an
arbitrary one of the two values.

Examples

```python
>>> from scipy.special import ncfdtr, ncfdtridfd

Compute the CDF for several values of dfd:

>>> dfd = [1, 2, 3]
>>> p = ncfdtr(2, dfd, 0.25, 15)
>>> p
array([0.8097138 , 0.93020416, 0.96787852])

Compute the inverse. We recover the values of dfd, as expected:

>>> ncfdtridfd(2, p, 0.25, 15)
array([1., 2., 3.])
```
scipy.special.ncfdtridfn

scipy.special.ncfdtridfn(p, dfd, nc, f) = <ufunc 'ncfdtridfn'>
Calculate degrees of freedom (numerator) for the noncentral F-distribution.
This is the inverse with respect to dfn of ncftr. See ncftr for more details.

Parameters

- p [array_like] Value of the cumulative distribution function. Must be in the range [0, 1].
- dfd [array_like] Degrees of freedom of the denominator sum of squares. Range (0, inf).
- nc [array_like] Noncentrality parameter. Should be in range (0, 1e4).
- f [float] Quantiles, i.e., the upper limit of integration.

Returns

- dfn [float] Degrees of freedom of the numerator sum of squares.

See also:

- ncftr
  CDF of the non-central F distribution.
- ncftridf
  Quantile function; inverse of ncftr with respect to f.
- ncftridfd
  Inverse of ncftr with respect to dfd.
- ncftrinc
  Inverse of ncftr with respect to nc.

Notes

The value of the cumulative noncentral F distribution is not necessarily monotone in either degrees of freedom.
There thus may be two values that provide a given CDF value. This routine assumes monotonicity and will find an
arbitrary one of the two values.

Examples

```python
>>> from scipy.special import ncftr, ncftridfn
```

Compute the CDF for several values of dfn:

```python
>>> dfn = [1, 2, 3]
>>> p = ncftr(dfn, 2, 0.25, 15)
>>> p
array([0.92562363, 0.93020416, 0.93188394])
```

Compute the inverse. We recover the values of dfn, as expected:

```python
>>> ncftridfn(p, 2, 0.25, 15)
array([[1., 2., 3.]])
```
scipy.special.ncfdtri

scipy.special.ncfdtri(dfn, dfd, nc, p) = <ufunc 'ncfdtri'>
Inverse with respect to \( f \) of the CDF of the non-central F distribution.

See ncfctr for more details.

Parameters

- dfn [array_like] Degrees of freedom of the numerator sum of squares. Range (0, \( \infty \)).
- dfd [array_like] Degrees of freedom of the denominator sum of squares. Range (0, \( \infty \)).
- nc [array_like] Noncentrality parameter. Should be in range (0, \( 1e4 \)).
- p [array_like] Value of the cumulative distribution function. Must be in the range [0, 1].

Returns

- f [float] Quantiles, i.e., the upper limit of integration.

See also:
ncfctr
CDF of the non-central F distribution.
ncfdtridfd
Inverse of ncfctr with respect to dfd.
ncfdtridfn
Inverse of ncfctr with respect to dfn.
ncfdtrinc
Inverse of ncfctr with respect to nc.

Examples

```python
>>> from scipy.special import ncfctr, ncfdtri

Compute the CDF for several values of \(f \):

```python
def f = [0.5, 1, 1.5]
>>> p = ncfctr(2, 3, 1.5, f)
>>> p
array([0.20782291, 0.36107392, 0.47345752])
```

Compute the inverse. We recover the values of \(f \), as expected:

```python
>>> ncfdtri(2, 3, 1.5, p)
array([0.5, 1. , 1.5])
```
scipy.special.ncftrinc

scipy.special.ncftrinc(dfn, dfd, p, f) = <ufunc 'ncftrinc'>
Calculate non-centrality parameter for non-central F distribution.

This is the inverse with respect to nc of ncftr. See ncftr for more details.

Parameters

- dfn [array_like] Degrees of freedom of the numerator sum of squares. Range (0, inf).
- dfd [array_like] Degrees of freedom of the denominator sum of squares. Range (0, inf).
- p [array_like] Value of the cumulative distribution function. Must be in the range [0, 1].
- f [array_like] Quantiles, i.e., the upper limit of integration.

Returns

- nc [float] Noncentrality parameter.

See also:

- ncftr
 CDF of the non-central F distribution.
- ncftri
 Quantile function; inverse of ncftr with respect to f.
- ncftridfd
 Inverse of ncftr with respect to dfd.
- ncftridfn
 Inverse of ncftr with respect to dfn.

Examples

```python
>>> from scipy.special import ncftr, ncftrinc

Compute the CDF for several values of nc:

```python
>>> nc = [0.5, 1.5, 2.0]
>>> p = ncftr(2, 3, nc, 15)
>>> p
array([0.96309246, 0.94327955, 0.93304098])
```  

Compute the inverse. We recover the values of nc, as expected:

```python
>>> ncftrinc(2, 3, p, 15)
array([0.5, 1.5, 2.])
```
**scipy.special.nctdtr**

```
scipy.special.nctdtr(df, nc, t) = <ufunc 'nctdtr'>
```

Cumulative distribution function of the non-central t distribution.

**Parameters**

- `df` [array_like] Degrees of freedom of the distribution. Should be in range `(0, inf)`.  
- `nc` [array_like] Noncentrality parameter. Should be in range `(-1e6, 1e6)`.  
- `t` [array_like] Quantiles, i.e., the upper limit of integration.

**Returns**

- `cdf` [float or ndarray] The calculated CDF. If all inputs are scalar, the return will be a float. Otherwise, it will be an array.

**See also:**

- `nctdtrit`  
  Inverse CDF (iCDF) of the non-central t distribution.

- `nctdtridf`  
  Calculate degrees of freedom, given CDF and iCDF values.

- `nctdtrinc`  
  Calculate non-centrality parameter, given CDF iCDF values.

**Examples**

```python
>>> from scipy import special
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
```

Plot the CDF of the non-central t distribution, for `nc=0`. Compare with the t-distribution from scipy.stats:

```python
>>> x = np.linspace(-5, 5, num=500)
>>> df = 3
>>> nct_stats = stats.t.cdf(x, df)
>>> nct_special = special.nctdtr(df, 0, x)
```

```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, nct_stats, 'b-', lw=3)
>>> ax.plot(x, nct_special, 'r-')
>>> plt.show()
```
scipy.special.nctdtridf

scipy.special.nctdtridf(p, nc, t) = <ufunc 'nctdtridf'>
Calculate degrees of freedom for non-central t distribution.

See nctdtr for more details.

Parameters

p [array_like] CDF values, in range (0, 1).
nc [array_like] Noncentrality parameter. Should be in range (-1e6, 1e6).
t [array_like] Quantiles, i.e., the upper limit of integration.

scipy.special.nctdtrit

scipy.special.nctdtrit(df, nc, p) = <ufunc 'nctdtrit'>
Inverse cumulative distribution function of the non-central t distribution.

See nctdtr for more details.

Parameters

df [array_like] Degrees of freedom of the distribution. Should be in range (0, inf).
nc [array_like] Noncentrality parameter. Should be in range (-1e6, 1e6).
p [array_like] CDF values, in range (0, 1).
scipy.special.nctdtrinc

scipy.special.nctdtrinc(df, p, t) = <ufunc 'nctdtrinc'>

Calculate non-centrality parameter for non-central t distribution.

See nctdtr for more details.

Parameters

df [array_like] Degrees of freedom of the distribution. Should be in range (0, inf).
p [array_like] CDF values, in range (0, 1].
t [array_like] Quantiles, i.e., the upper limit of integration.

scipy.special.nrdtrimn

scipy.special.nrdtrimn(p, x, std) = <ufunc 'nrdtrimn'>

Calculate mean of normal distribution given other params.

Parameters

p [array_like] CDF values, in range (0, 1].
x [array_like] Quantiles, i.e. the upper limit of integration.
std [array_like] Standard deviation.

Returns

mn [float or ndarray] The mean of the normal distribution.

See also:

nrdtrimn, ndtr

scipy.special.nrdtrisd

scipy.special.nrdtrisd(p, x, mn) = <ufunc 'nrdtrisd'>

Calculate standard deviation of normal distribution given other params.

Parameters

p [array_like] CDF values, in range (0, 1].
x [array_like] Quantiles, i.e. the upper limit of integration.
mn [float or ndarray] The mean of the normal distribution.

Returns

std [array_like] Standard deviation.

See also:

ndtr
scipy.special.pdtr

`scipy.special.pdtr(k, m, out=None)` = `<ufunc 'pdtr'>`

Poisson cumulative distribution function.

Defined as the probability that a Poisson-distributed random variable with event rate \( m \) is less than or equal to \( k \). More concretely, this works out to be [1]

\[
\exp(-m) \sum_{j=0}^{[k]} \frac{m^j}{j!}.
\]

**Parameters**

- `k` [array_like] Nonnegative real argument
- `m` [array_like] Nonnegative real shape parameter
- `out` [ndarray] Optional output array for the function results

**Returns**

- scalar or ndarray
  Values of the Poisson cumulative distribution function

**See also:**

- `pdtrc`
  Poisson survival function

- `pdtrik`
  inverse of `pdtr` with respect to \( k \)

- `pdtri`
  inverse of `pdtr` with respect to \( m \)

**References**

[1]

**Examples**

```python
>>> import scipy.special as sc
```

It is a cumulative distribution function, so it converges to 1 monotonically as \( k \) goes to infinity.

```python
>>> sc.pdtr([1, 10, 100, np.inf], 1)
array([0.73575888, 0.99999999, 1., 1.])
```

It is discontinuous at integers and constant between integers.

```python
>>> sc.pdtr([1, 1.5, 1.9, 2], 1)
array([0.73575888, 0.73575888, 0.73575888, 0.9196986])
```
scipy.special.pdtrc

`scipy.special.pdtrc(k, m) = <ufunc 'pdtrc'>`

Poisson survival function

Returns the sum of the terms from k+1 to infinity of the Poisson distribution: 
\[ \text{sum} \left( \exp(-m) \cdot m^j / j!, \quad j=k+1..\infty \right) \]
\[ = \text{gammainc}(k+1, m) \]
Arguments must both be non-negative doubles.

scipy.special.pdtri

`scipy.special.pdtri(k, y) = <ufunc 'pdtri'>`

Inverse to pdtr vs m

Returns the Poisson variable m such that the sum from 0 to k of the Poisson density is equal to the given probability y: calculated by gammaincinv(k+1, y). k must be a nonnegative integer and y between 0 and 1.

scipy.special.pdtrik

`scipy.special.pdtrik(p, m) = <ufunc 'pdtrik'>`

Inverse to pdtr vs k

Returns the quantile k such that pdtr(k, m) = p

scipy.special.stdtr

`scipy.special.stdtr(df, t) = <ufunc 'stdtr'>`

Student t distribution cumulative distribution function

Returns the integral from minus infinity to t of the Student t distribution with df > 0 degrees of freedom:

\[
\frac{\Gamma((df+1)/2)}{\sqrt{df\pi}\Gamma(df/2)} \quad \int_{-\infty}^{t} (1+x**2/df)**(-df/2-1/2), \quad x=-\infty..t
\]

scipy.special.stdtridf

`scipy.special.stdtridf(p, t) = <ufunc 'stdtridf'>`

Inverse of stdtr vs df

Returns the argument df such that stdtr(df, t) is equal to p.

scipy.special.stdtrit

`scipy.special.stdtrit(df, p) = <ufunc 'stdtrit'>`

Inverse of stdtr vs t

Returns the argument t such that stdtr(df, t) is equal to p.
scipy.special.chdtr

scipy.special.chdtr(v, x, out=None) = <ufunc 'chdtr'>

Chi square cumulative distribution function.

Returns the area under the left tail (from 0 to x) of the Chi square probability density function with v degrees of freedom:

\[
\frac{1}{2^{v/2}\Gamma(v/2)} \int_0^x t^{v/2-1}e^{-t/2}dt
\]

Here \(\Gamma\) is the Gamma function; see gamma. This integral can be expressed in terms of the regularized lower incomplete gamma function gammainc as gammainc(v / 2, x / 2).[1]

Parameters

- v [array_like] Degrees of freedom.
- x [array_like] Upper bound of the integral.
- out [ndarray, optional] Optional output array for the function results.

Returns

scalar or ndarray
Values of the cumulative distribution function.

See also:

chdtrc, chdtri, chdtriv, gammainc

References

[1]

Examples

```python
>>> import scipy.special as sc
```

It can be expressed in terms of the regularized lower incomplete gamma function.

```python
>>> v = 1
>>> x = np.arange(4)
>>> sc.chdtr(v, x)
array([0. , 0.68268949, 0.84270079, 0.91673548])
>>> sc.gammainc(v / 2, x / 2)
array([0. , 0.68268949, 0.84270079, 0.91673548])
```
scipy.special.chdtrc

scipy.special.chdtrc(v, x, out=None) = <ufunc 'chdtrc'>

Chi square survival function.

Returns the area under the right hand tail (from x to infinity) of the Chi square probability density function with v degrees of freedom:

\[
\frac{1}{2^{v/2} \Gamma(v/2)} \int_x^{\infty} t^{v/2-1} e^{-t/2} dt
\]

Here \( \Gamma \) is the Gamma function; see \texttt{gamma}. This integral can be expressed in terms of the regularized upper incomplete gamma function \texttt{gammaincc} as \texttt{gammaincc(v/2, x/2)}. [1]

**Parameters**

- \( v \)  [array_like] Degrees of freedom.
- \( x \)  [array_like] Lower bound of the integral.
- \( \text{out} \)  [ndarray, optional] Optional output array for the function results.

**Returns**

- scalar or ndarray
  Values of the survival function.

**See also:**

\texttt{chdtr}, \texttt{chdtri}, \texttt{chdtriv}, \texttt{gammaincc}

**References**

[1]

**Examples**

```python
>>> import scipy.special as sc

It can be expressed in terms of the regularized upper incomplete gamma function.

```
scipy.special.chdtri

scipy.special.chdtri\(v, p, \text{out=None}\) = <ufunc 'chdtri'>

Inverse to \(chdtrc\) with respect to \(x\).

Returns \(x\) such that \(chdtrc(v, x) == p\).

**Parameters**

\(v\)  
[array_like] Degrees of freedom.

\(p\)  
[array_like] Probability.

\(\text{out}\)  
[ndarray, optional] Optional output array for the function results.

**Returns**

\(x\)  
[scalar or ndarray] Value so that the probability a Chi square random variable with \(v\) degrees of freedom is greater than \(x\) equals \(p\).

See also:

chdtrc, chdtr, chdtriv

**References**

[1]

**Examples**

```python
>>> import scipy.special as sc

It inverts \(chdtrc\).

>>> v, p = 1, 0.3
>>> sc.chdtrc(v, sc.chdtri(v, p))
0.3
>>> x = 1
>>> sc.chdtri(v, sc.chdtrc(v, x))
1.0
```

scipy.special.chdtriv

scipy.special.chdtriv\(p, x, \text{out=None}\) = <ufunc 'chdtriv'>

Inverse to \(chdtr\) with respect to \(v\).

Returns \(v\) such that \(chdtr(v, x) == p\).

**Parameters**

\(p\)  
[array_like] Probability that the Chi square random variable is less than or equal to \(x\).

\(x\)  
[array_like] Nonnegative input.

\(\text{out}\)  
[ndarray, optional] Optional output array for the function results.

**Returns**

**scalar or ndarray**

Degrees of freedom.
See also:

chdtr, chdtrc, chdtri

References

[1]

Examples

```python
>>> import scipy.special as sc

It inverts chdtr.

>>> p, x = 0.5, 1
>>> sc.chdtr(sc.chdtriv(p, x), x)
0.5000000000202172
>>> v = 1
>>> sc.chdtriv(sc.chdtr(v, x), v)
1.0000000000000013
```

**scipy.special.ndtr**

c scipy.special.ndtr(x) = <ufunc 'ndtr'>

Gaussian cumulative distribution function.

Returns the area under the standard Gaussian probability density function, integrated from minus infinity to \( x \)

\[
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp(-t^2/2) dt
\]

**Parameters**

- x : array_like, real or complex Argument

**Returns**

- ndarray The value of the normal CDF evaluated at \( x \)

See also:

- erf
- erfc
- scipy.stats.norm
- log_ndtr
scipy.special.log_ndtr

\texttt{scipy.special.log\textunderscore ndtr}(x) = \texttt{ufunc 'log\textunderscore ndtr'}

Logarithm of Gaussian cumulative distribution function.

Returns the log of the area under the standard Gaussian probability density function, integrated from minus infinity to \(x\):

\[
\log\left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-t^2 / 2\right) dt\right)
\]

\textit{Parameters}

\(x\) [array_like, real or complex] Argument

\textit{Returns}

\(\text{ndarray}\) The value of the log of the normal CDF evaluated at \(x\)

See also:

\texttt{erf}
\texttt{erfc}
\texttt{scipy.stats.norm}
\texttt{ndtr}

scipy.special.ndtri

\texttt{scipy.special.ndtri}(y) = \texttt{ufunc 'ndtri'}

Inverse of \texttt{ndtr} vs \(x\)

Returns the argument \(x\) for which the area under the Gaussian probability density function (integrated from minus infinity to \(x\)) is equal to \(y\).

scipy.special.ndtri_exp

\texttt{scipy.special.ndtri\textunderscore exp}(y) = \texttt{ufunc 'ndtri\textunderscore exp'}

Inverse of \texttt{log\textunderscore ndtr} vs \(x\). Allows for greater precision than \texttt{ndtri} composed with \texttt{numpy.exp} for very small values of \(y\) and for \(y\) close to 0.

\textit{Parameters}

\(y\) [array_like of float]

\textit{Returns}

\texttt{scalar or ndarray}\n
Inverse of the log CDF of the standard normal distribution, evaluated at \(y\).

See also:

\texttt{log\textunderscore ndtr, ndtri, ndtr}
Examples

```python
>>> import scipy.special as sc

dndiexpagreesthennaitiveimplementationwhenthelatterdoesnotsufferfromunderflow.

```n```python
>>> sc.ndtri_exp(-1)
-0.33747496376420244
```n```python
>>> sc.ndtri(np.exp(-1))
-0.33747496376420244

For extreme values of y, the naive approach fails

```python
>>> sc.ndtri(np.exp(-800))
-inf
```n```python
```n```python
>>> sc.ndtri(np.exp(-1e-20))
inf

whereas `ndtri_exp` is still able to compute the result to high precision.

```python
>>> sc.ndtri_exp(-800)
-39.88469483825668
```n```python
```n```python
>>> sc.ndtri_exp(-1e-20)
9.262340089798409
```

`scipy.special.chndtr`

`scipy.special.chndtr(x, df, nc) = <ufunc 'chndtr'>`

Non-central chi square cumulative distribution function

`scipy.special.chndtridf`

`scipy.special.chndtridf(x, p, nc) = <ufunc 'chndtridf'>`

Inverse to `chndtr` vs `df`

`scipy.special.chndtrinc`

`scipy.special.chndtrinc(x, df, p) = <ufunc 'chndtrinc'>`

Inverse to `chndtr` vs `nc`

`scipy.special.chndtrix`

`scipy.special.chndtrix(p, df, nc) = <ufunc 'chndtrix'>`

Inverse to `chndtr` vs `x`
scipy.special.smirnov

scipy.special.smirnov(n, d) = <ufunc 'smirnov'>

Kolmogorov-Smirnov complementary cumulative distribution function

Returns the exact Kolmogorov-Smirnov complementary cumulative distribution function (aka the Survival Function) of Dn+ (or Dn-) for a one-sided test of equality between an empirical and a theoretical distribution. It is equal to the probability that the maximum difference between a theoretical distribution and an empirical one based on n samples is greater than d.

Parameters

- n [int] Number of samples
- d [float array_like] Deviation between the Empirical CDF (ECDF) and the target CDF.

Returns

- float The value(s) of smirnov(n, d), Prob(Dn+ >= d) (Also Prob(Dn- >= d))

See also:

- smirnovi The Inverse Survival Function for the distribution
- scipy.stats.ksone Provides the functionality as a continuous distribution
- kolmogorov, kolmogi Functions for the two-sided distribution

Notes

smirnov is used by stats.kstest in the application of the Kolmogorov-Smirnov Goodness of Fit test. For historical reasons this function is exposed in scipy.special, but the recommended way to achieve the most accurate CDF/SF/PDF/PPF/ISF computations is to use the stats.ksone distribution.

Examples

```python
>>> from scipy.special import smirnov

Show the probability of a gap at least as big as 0, 0.5 and 1.0 for a sample of size 5

```python
>>> smirnov(5, [0, 0.5, 1.0])
array([ 1. , 0.056, 0. ])
```  

Compare a sample of size 5 drawn from a source N(0.5, 1) distribution against a target N(0, 1) CDF.

```python
>>> from scipy.stats import norm
>>> rng = np.random.default_rng()
>>> n = 5
>>> gendist = norm(0.5, 1)  # Normal distribution, mean 0.5, stddev 1
>>> x = np.sort(gendist.rvs(size=n, random_state=rng))
>>> x
array([-1.3922078 , -0.13526532, 0.1371477 , 0.18981686, 1.81948167])
```
>>> target = norm(0, 1)
>>> cdfs = target.cdf(x)
>>> cdfs
array([0.08192974, 0.44620105, 0.55427368, 0.96558101])

Construct the Empirical CDF and the K-S statistics (Dn+, Dn-, Dn)
>>> ecdfs = np.arange(n+1, dtype=float)/n
>>> cols = np.column_stack([x, ecdfs[1:], cdfs, cdfs - ecdfs[:n],
 -ecdfs[1:] - cdfs])
>>> np.set_printoptions(precision=3)
>>> cols
array([[-1.392, 0.2 , 0.082, 0.082, 0.118],
 [-0.135, 0.4 , 0.446, 0.246, -0.046],
 [0.137, 0.6 , 0.555, 0.155, 0.045],
 [0.19 , 0.8 , 0.575, -0.025, 0.225],
 [1.819, 1. , 0.966, 0.166, 0.034]])

>>> gaps = cols[:, -2:]
>>> Dnpm = np.max(gaps, axis=0)
>>> print('Dn-=%f, Dn+=%f' % (Dnpm[0], Dnpm[1]))
Dn-=0.246201, Dn+=0.224726
>>> probs = smirnov(n, Dnpm)
>>> print(chr(10).join(['For a sample of size %d drawn from a N(0, 1)
 distribution:
 ' % n,
 ... ' Smirnov n=%d: Prob(Dn- >= %f) = %.4f' % (n, Dnpm[0],
 ... -probs[0]),
 ... ' Smirnov n=%d: Prob(Dn+ >= %f) = %.4f' % (n, Dnpm[1],
 ... -probs[1]))
]))
For a sample of size 5 drawn from a N(0, 1) distribution:
Smirnov n=5: Prob(Dn- >= 0.246201) = 0.4713
Smirnov n=5: Prob(Dn+ >= 0.224726) = 0.5243

Plot the Empirical CDF against the target N(0, 1) CDF

>>> import matplotlib.pyplot as plt
>>> plt.step(np.concatenate([[-3], x]), ecdfs, where='post', label=
 'Empirical CDF')
>>> x3 = np.linspace(-3, 3, 100)
>>> plt.plot(x3, target.cdf(x3), label='CDF for N(0, 1)')
>>> plt.ylim([0, 1]); plt.grid(True); plt.legend();
Add vertical lines marking Dn+ and Dn-
>>> iminus, iplus = np.argmax(gaps, axis=0)
>>> plt.vlines([x[iminus]], ecdfs[iminus], cdfs[iminus], color='r',
 linestyle='dashed', lw=4)
>>> plt.vlines([x[iplus]], cdfs[iplus], ecdfs[iplus+1], color='m',
 linestyle='dashed', lw=4)
>>> plt.show()
scipy.special.smirnovi

`scipy.special.smirnovi(n, p) = <ufunc 'smirnovi'>`

Inverse to `smirnov`

Returns d such that $\text{smirnov}(n, d) == p$, the critical value corresponding to p.

Parameters

- **n** [int] Number of samples
- **p** [float array_like] Probability

Returns

- **float** The value(s) of `smirnovi(n, p)`, the critical values.

See also:

- `smirnov`
 - The Survival Function (SF) for the distribution
- `scipy.stats.ksone`
 - Provides the functionality as a continuous distribution
- `kolmogorov, kolmogi, scipy.stats.kstwobign`
 - Functions for the two-sided distribution
Notes

`smirnov` is used by `stats.kstest` in the application of the Kolmogorov-Smirnov Goodness of Fit test. For historical reasons this function is exposed in `scipy.special`, but the recommended way to achieve the most accurate CDF/SF/PDF/PPF/ISF computations is to use the `stats.ksone` distribution.

`scipy.special.kolmogorov`

`scipy.special.kolmogorov(y) = <ufunc 'kolmogorov'>`

Complementary cumulative distribution (Survival Function) function of Kolmogorov distribution.

Returns the complementary cumulative distribution function of Kolmogorov’s limiting distribution \((\sqrt{n} \cdot D_n)\) as \(n\) goes to infinity) of a two-sided test for equality between an empirical and a theoretical distribution. It is equal to the (limit as \(n\to\infty\) of the) probability that \(\sqrt{n} \cdot \max \text{ absolute deviation} > y\).

Parameters

- `y` : [float array_like] Absolute deviation between the Empirical CDF (ECDF) and the target CDF, multiplied by \(\sqrt{n}\).

Returns

- `float` : The value(s) of `kolmogorov(y)`

See also:

- `kolmogi` : The Inverse Survival Function for the distribution
- `scipy.stats.kstwobign` : Provides the functionality as a continuous distribution
- `smirnov, smirnovi` : Functions for the one-sided distribution

Notes

`kolmogorov` is used by `stats.kstest` in the application of the Kolmogorov-Smirnov Goodness of Fit test. For historical reasons this function is exposed in `scipy.special`, but the recommended way to achieve the most accurate CDF/SF/PDF/PPF/ISF computations is to use the `stats.kstwobign` distribution.

Examples

Show the probability of a gap at least as big as 0, 0.5 and 1.0.

```python
>>> from scipy.special import kolmogorov
>>> from scipy.stats import kstwobign
>>> kolmogorov([0, 0.5, 1.0])
array([ 1.        , 0.96394524, 0.26999967])
```

Compare a sample of size 1000 drawn from a Laplace(0, 1) distribution against the target distribution, a Normal(0, 1) distribution.
>>> from scipy.stats import norm, laplace
>>> rng = np.random.default_rng()
>>> n = 1000
>>> lap01 = laplace(0, 1)
>>> x = np.sort(lap01.rvs(n, random_state=rng))
>>> np.mean(x), np.std(x)
(-0.05841730131499543, 1.3968109101997568)

Construct the Empirical CDF and the K-S statistic D_n.

```python
>>> target = norm(0,1)  # Normal mean 0, stddev 1
>>> cdfs = target.cdf(x)
>>> ecdfs = np.arange(n+1, dtype=float)/n
>>> gaps = np.column_stack([cdfs - ecdfs[:n], ecdfs[1:] - cdfs])
>>> Dn = np.max(gaps)
>>> Kn = np.sqrt(n) * Dn
>>> print('Dn=%f, sqrt(n)*Dn=%f' % (Dn, Kn))
Dn=0.043363, sqrt(n)*Dn=1.371265
```

For a sample of size n drawn from a $N(0, 1)$ distribution:
the approximate Kolmogorov probability that $\sqrt{n}\times D_n \geq \sqrt{n}\times D_n$ is 0.046533
the approximate Kolmogorov probability that $\sqrt{n}\times D_n \leq \sqrt{n}\times D_n$ is 0.953467

Plot the Empirical CDF against the target $N(0, 1)$ CDF.

```python
>>> import matplotlib.pyplot as plt
>>> x3 = np.linspace(-3, 3, 100)
>>> plt.plot(x3, target.cdf(x3), label='CDF for N(0, 1)')
>>> plt.ylim([0, 1]); plt.grid(True); plt.legend();
>>> # Add vertical lines marking $D_n+$ and $D_n-$
>>> iminus, iplus = np.argmax(gaps, axis=0)
>>> plt.vlines([x[iminus]], ecdfs[iminus], cdfs[iminus], color='r',
             linestyle='dashed', lw=4)
>>> plt.vlines([x[plus]], cdfs[plus], ecdfs[plus+1], color='r',
             linestyle='dashed', lw=4)
>>> plt.show()
```
scipy.special.kolmogi

scipy.special.kolmogi(p) = <ufunc 'kolmogi'>
Inverse Survival Function of Kolmogorov distribution

It is the inverse function to kolmogorov. Returns y such that kolmogorov(y) == p.

Parameters

p [float array_like] Probability

Returns

float The value(s) of kolmogi(p)

See also:

kolmogorov
The Survival Function for the distribution

scipy.stats.kstwobign
Provides the functionality as a continuous distribution

smirnov, smirnovi
Functions for the one-sided distribution

3.3. API definition
Notes

`kolmogorov` is used by `stats.kstest` in the application of the Kolmogorov-Smirnov Goodness of Fit test. For historical reasons this function is exposed in `scipy.special`, but the recommended way to achieve the most accurate CDF/SF/PDF/PPF/ISF computations is to use the `stats.kstwobign` distribution.

Examples

```python
>>> from scipy.special import kolmogi
>>> kolmogi([0, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0])
array([ inf, 1.22384787, 1.01918472, 0.82757356, 0.67644769,
         0.57117327, 0.])
```

scipy.special.tklmbda

`scipy.special.tklmbda(x, lmbda) = <ufunc 'tklmbda'>`

Tukey-Lambda cumulative distribution function.

scipy.special.logit

`scipy.special.logit(x) = <ufunc 'logit'>`

Logit ufunc for ndarrays.

The logit function is defined as logit(p) = log(p/(1-p)). Note that logit(0) = -inf, logit(1) = inf, and logit(p) for p<0 or p>1 yields nan.

Parameters

- `x` [ndarray] The ndarray to apply logit to element-wise.

Returns

- `out` [ndarray] An ndarray of the same shape as x. Its entries are logit of the corresponding entry of x.

See also:

- `expit`

Notes

As a ufunc logit takes a number of optional keyword arguments. For more information see `ufuncs`

New in version 0.10.0.
Examples

```python
>>> from scipy.special import logit, expit

>>> logit([0, 0.25, 0.5, 0.75, 1])
array([-inf, -1.09861229, 0., 1.09861229, inf])

expit is the inverse of logit:

>>> expit(logit([0.1, 0.75, 0.999]))
array([ 0.1 , 0.75 , 0.999])
```

Plot logit(x) for x in [0, 1]:

```python
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(0, 1, 501)
>>> y = logit(x)
>>> plt.plot(x, y)
>>> plt.grid()
>>> plt.ylim(-6, 6)
>>> plt.xlabel('x')
>>> plt.title('logit(x)')
>>> plt.show()
```

![Plot of logit(x) for x in [0, 1]](image-url)
scipy.special.expit

```python
scipy.special.expit(x) = <ufunc 'expit'>
```

Exipt (a.k.a. logistic sigmoid) ufunc for ndarrays.

The expit function, also known as the logistic sigmoid function, is defined as $\expit(x) = 1/(1+\exp(-x))$. It is the inverse of the logit function.

Parameters

- **x** ([ndarray]) The ndarray to apply expit to element-wise.

Returns

- **out** ([ndarray]) An ndarray of the same shape as x. Its entries are expit of the corresponding entry of x.

See also:

logit

Notes

As a ufunc expit takes a number of optional keyword arguments. For more information see ufuncs

New in version 0.10.0.

Examples

```python
>>> from scipy.special import expit, logit

>>> expit([-np.inf, -1.5, 0, 1.5, np.inf])
array([ 0. , 0.18242552, 0.5 , 0.81757448, 1. ])

logit is the inverse of expit:

>>> logit(expit([-2.5, 0, 3.1, 5.0]))
array([-2.5, 0. , 3.1, 5. ])
```

Plot expit(x) for x in [-6, 6]:

```python
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-6, 6, 121)
>>> y = expit(x)
>>> plt.plot(x, y)
>>> plt.grid()
>>> plt.xlim(-6, 6)
>>> plt.xlabel('x')
>>> plt.title('expit(x)')
>>> plt.show()
```
scipy.special.log_expit

scipy.special.log_expit(x) = <ufunc 'log_expit'>
Logarithm of the logistic sigmoid function.

The SciPy implementation of the logistic sigmoid function is scipy.special.expit, so this function is called log_expit.

The function is mathematically equivalent to \(\log(\text{expit}(x)) \), but is formulated to avoid loss of precision for inputs with large (positive or negative) magnitude.

Parameters
- x [array_like] The values to apply log_expit to element-wise.

Returns
- out [ndarray] The computed values, an ndarray of the same shape as x.

See also:
- expit

Notes

As a ufunc, log_expit takes a number of optional keyword arguments. For more information see ufuncs
New in version 1.8.0.
Examples

```python
>>> from scipy.special import log_expit, expit

>>> log_expit([-3.0, 0.25, 2.5, 5.0])
array([-3.04858735, -0.57593942, -0.07888973, -0.00671535])

Large negative values:

```python
>>> log_expit([-100, -500, -1000])
array([-100., -500., -1000.])

Note that expit(-1000) returns 0, so the naive implementation \(\log(\text{expit}(-1000)) \) return -inf.

Large positive values:

```python
>>> log_expit([29, 120, 400])
array([-2.54366565e-013, -7.66764807e-053, -1.91516960e-174])

Compare that to the naive implementation:

```python
>>> np.log(expit([29, 120, 400]))
array([-2.54463117e-13, 0.00000000e+00, 0.00000000e+00])

The first value is accurate to only 3 digits, and the larger inputs lose all precision and return 0.

scipy.special.boxcox

```python
scipy.special.boxcox(x, lmbda) = <ufunc 'boxcox'>
```

Compute the Box-Cox transformation.

The Box-Cox transformation is:

```latex
y = (x**lmbda - 1) / lmbda \quad \text{if } lmbda \neq 0
\log(x) \quad \text{if } lmbda == 0
```

Returns \(\text{nan} \) if \(x < 0 \). Returns \(-\infty \) if \(x == 0 \) and \(lmbda < 0 \).

Parameters

- \(x \) [array_like] Data to be transformed.
- \(lmbda \) [array_like] Power parameter of the Box-Cox transform.

Returns

- \(y \) [array] Transformed data.
Notes

New in version 0.14.0.

Examples

```python
>>> from scipy.special import boxcox
>>> boxcox([1, 4, 10], 2.5)
array([ 0. , 12.4 , 126.09110641])
>>> boxcox(2, [0, 1, 2])
array([ 0.69314718, 1. , 1.5 ])```

```
scipy.special.boxcox1p

scipy.special.boxcox1p(x, lmbda) = <ufunc 'boxcox1p'>

Compute the Box-Cox transformation of 1 + x.

The Box-Cox transformation computed by `boxcox1p` is:

\[
y = \frac{(1+x)^*lmbda - 1}{lmbda} \quad \text{if } lmbda \neq 0
\]
\[
\log(1+x) \quad \text{if } lmbda = 0
\]

Returns `nan` if \(x < -1 \). Returns `-inf` if \(x = -1 \) and \(lmbda < 0 \).

Parameters

- **x** [array_like] Data to be transformed.
- **lmbda** [array_like] Power parameter of the Box-Cox transform.

Returns

- **y** [array] Transformed data.

Notes

New in version 0.14.0.

Examples

```python
>>> from scipy.special import boxcox1p
>>> boxcox1p(1e-4, [0, 0.5, 1])
array([ 9.99950003e-05, 9.99975001e-05, 1.00000000e-04])
>>> boxcox1p([0.01, 0.1], 0.25)
array([ 0.00996272, 0.09645476])
```
scipy.special.inv_boxcox

scipy.special.inv_boxcox(y, lmbda) = <ufunc 'inv_boxcox'>
Compute the inverse of the Box-Cox transformation.

Find x such that:

\[
y = \begin{cases}
(x^{lmbda} - 1) / lmbda & \text{if } lmbda \neq 0 \\
\log(x) & \text{if } lmbda = 0
\end{cases}
\]

Parameters

 y [array_like] Data to be transformed.
 lmbda [array_like] Power parameter of the Box-Cox transform.

Returns

 x [array] Transformed data.

Notes

New in version 0.16.0.

Examples

>>> from scipy.special import boxcox, inv_boxcox
>>> y = boxcox([1, 4, 10], 2.5)
>>> inv_boxcox(y, 2.5)
array([1., 4., 10.])

scipy.special.inv_boxcox1p

scipy.special.inv_boxcox1p(y, lmbda) = <ufunc 'inv_boxcox1p'>
Compute the inverse of the Box-Cox transformation.

Find x such that:

\[
y = \begin{cases}
((1+x)^{lmbda} - 1) / lmbda & \text{if } lmbda \neq 0 \\
\log(1+x) & \text{if } lmbda = 0
\end{cases}
\]

Parameters

 y [array_like] Data to be transformed.
 lmbda [array_like] Power parameter of the Box-Cox transform.

Returns

 x [array] Transformed data.
Notes

New in version 0.16.0.

Examples

```python
>>> from scipy.special import boxcox1p, inv_boxcox1p
>>> y = boxcox1p([1, 4, 10], 2.5)
>>> inv_boxcox1p(y, 2.5)
array([1., 4., 10.])
```

scipy.special.owens_t

`scipy.special.owens_t(h, a) = <ufunc 'owens_t'>`

Owen's T Function.

The function $T(h, a)$ gives the probability of the event $(X > h$ and $0 < Y < a \cdot X)$ where X and Y are independent standard normal random variables.

Parameters

- **h**: array_like
 - Input value.
- **a**: array_like
 - Input value.

Returns

- **t**: scalar or ndarray
 - Probability of the event $(X > h$ and $0 < Y < a \cdot X)$, where X and Y are independent standard normal random variables.

References

[1]

Examples

```python
>>> from scipy import special
>>> a = 3.5
>>> h = 0.78
>>> special.owens_t(h, a)
0.10877216734852274
```
Information Theory functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>entr(x)</code></td>
<td>Elementwise function for computing entropy.</td>
</tr>
<tr>
<td><code>rel_entr(x, y[, out])</code></td>
<td>Elementwise function for computing relative entropy.</td>
</tr>
<tr>
<td><code>kl_div(x, y[, out])</code></td>
<td>Elementwise function for computing Kullback-Leibler divergence.</td>
</tr>
<tr>
<td><code>huber(delta, r)</code></td>
<td>Huber loss function.</td>
</tr>
<tr>
<td><code>pseudo_huber(delta, r)</code></td>
<td>Pseudo-Huber loss function.</td>
</tr>
</tbody>
</table>

scipy.special.entr

```python
scipy.special.entr(x) = <ufunc 'entr'>
```

Elementwise function for computing entropy.

\[
\text{entr}(x) = \begin{cases}
-x \log(x) & x > 0 \\
0 & x = 0 \\
-\infty & \text{otherwise}
\end{cases}
\]

Parameters
- `x` [ndarray] Input array.

Returns
- `res` [ndarray] The value of the elementwise entropy function at the given points `x`.

See also:
- `kl_div`, `rel_entr`

Notes
This function is concave.
New in version 0.15.0.

scipy.special.rel_entr

```python
scipy.special.rel_entr(x, y, out=None) = <ufunc 'rel_entr'>
```

Elementwise function for computing relative entropy.

\[
\text{rel_entr}(x, y) = \begin{cases}
x \log(x/y) & x > 0, y > 0 \\
0 & x = 0, y \geq 0 \\
\infty & \text{otherwise}
\end{cases}
\]

Parameters
- `x, y` [array_like] Input arrays
- `out` [ndarray, optional] Optional output array for the function results

Returns
- `scalar or ndarray` Relative entropy of the inputs

See also:

entr, kl_div

Notes

New in version 0.15.0.

This function is jointly convex in x and y.

The origin of this function is in convex programming; see [1]. Given two discrete probability distributions p_1, \ldots, p_n and q_1, \ldots, q_n, to get the relative entropy of statistics compute the sum

$$
\sum_{i=1}^n \text{rel}_\text{entr}(p_i, q_i).
$$

References

[1], [2]

scipy.special.kl_div

scipy.special.kl_div(x, y, out=None) = <ufunc 'kl_div'>

Elementwise function for computing Kullback-Leibler divergence.

$$
\text{kl}_\text{div}(x, y) = \begin{cases}
 x \log(x/y) - x + y & x > 0, y > 0 \\
 y & x = 0, y \geq 0 \\
 \infty & \text{otherwise}
\end{cases}
$$

Parameters

x, y [array_like] Real arguments

out [ndarray, optional] Optional output array for the function results

Returns

scalar or ndarray

Values of the Kullback-Liebler divergence.

See also:

entr, rel_entr

Notes

New in version 0.15.0.

This function is non-negative and is jointly convex in x and y.

The origin of this function is in convex programming; see [1] for details. This is why the the function contains the extra $-x+y$ terms over what might be expected from the Kullback-Leibler divergence. For a version of the function without the extra terms, see rel_entr.
References

[1]

scipy.special.huber

`scipy.special.huber(delta, r) = <ufunc 'huber'>`

Huber loss function.

\[
\text{huber}(\delta, r) = \begin{cases}
\infty & \delta < 0 \\
\frac{1}{2} r^2 & 0 \leq \delta, |r| \leq \delta \\
\delta(|r| - \frac{1}{2} \delta) & \text{otherwise}
\end{cases}
\]

Parameters

- `delta` [ndarray] Input array, indicating the quadratic vs. linear loss changepoint.
- `r` [ndarray] Input array, possibly representing residuals.

Returns

- `res` [ndarray] The computed Huber loss function values.

Notes

This function is convex in \(r \).
New in version 0.15.0.

scipy.special.pseudo_huber

`scipy.special.pseudo_huber(delta, r) = <ufunc 'pseudo_huber'>`

Pseudo-Huber loss function.

\[
\text{pseudo}_\text{huber}(\delta, r) = \delta^2 \left(\sqrt{1 + \left(\frac{r}{\delta} \right)^2} - 1 \right)
\]

Parameters

- `delta` [ndarray] Input array, indicating the soft quadratic vs. linear loss changepoint.
- `r` [ndarray] Input array, possibly representing residuals.

Returns

Notes

This function is convex in \(r \).
New in version 0.15.0.
Gamma and related functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gamma(z)</td>
<td>Gamma function.</td>
</tr>
<tr>
<td>gammaln(x[, out])</td>
<td>Logarithm of the absolute value of the gamma function.</td>
</tr>
<tr>
<td>loggamma(z[, out])</td>
<td>Principal branch of the logarithm of the gamma function.</td>
</tr>
<tr>
<td>gammasgn(x)</td>
<td>Sign of the gamma function.</td>
</tr>
<tr>
<td>gammainc(a, x)</td>
<td>Regularized lower incomplete gamma function.</td>
</tr>
<tr>
<td>gammaincinv(a, y)</td>
<td>Inverse to the regularized lower incomplete gamma function.</td>
</tr>
<tr>
<td>gammaincc(a, x)</td>
<td>Regularized upper incomplete gamma function.</td>
</tr>
<tr>
<td>gammainccinv(a, y)</td>
<td>Inverse of the regularized upper incomplete gamma function.</td>
</tr>
<tr>
<td>beta(a, b[, out])</td>
<td>Beta function.</td>
</tr>
<tr>
<td>betaln(a, b)</td>
<td>Natural logarithm of absolute value of beta function.</td>
</tr>
<tr>
<td>betainc(a, b, x[, out])</td>
<td>Incomplete beta function.</td>
</tr>
<tr>
<td>betaincinv(a, b, y[, out])</td>
<td>Inverse of the incomplete beta function.</td>
</tr>
<tr>
<td>psi(z[, out])</td>
<td>The digamma function.</td>
</tr>
<tr>
<td>rgamma(z[, out])</td>
<td>Reciprocal of the gamma function.</td>
</tr>
<tr>
<td>polygamma(n, x)</td>
<td>Polygamma functions.</td>
</tr>
<tr>
<td>multigammaln(a, d)</td>
<td>Returns the log of multivariate gamma, also sometimes called the generalized gamma.</td>
</tr>
<tr>
<td>digamma(z[, out])</td>
<td>The digamma function.</td>
</tr>
<tr>
<td>poch(z, m)</td>
<td>Pochhammer symbol.</td>
</tr>
</tbody>
</table>

scipy.special.gamma

scipy.special.gamma(z) = <ufunc 'gamma'>

gamma function.

The gamma function is defined as

\[\Gamma(z) = \int_0^{\infty} t^{z-1} e^{-t} dt \]

for \(\Re(z) > 0 \) and is extended to the rest of the complex plane by analytic continuation. See [dlmf] for more details.

Parameters

- z : [array_like] Real or complex valued argument

Returns

- scalar or ndarray Values of the gamma function
Notes

The gamma function is often referred to as the generalized factorial since \(\Gamma(n + 1) = n! \) for natural numbers \(n \). More generally it satisfies the recurrence relation \(\Gamma(z + 1) = z \cdot \Gamma(z) \) for complex \(z \), which, combined with the fact that \(\Gamma(1) = 1 \), implies the above identity for \(z = n \).

References

[dlmf]

Examples

```python
>>> from scipy.special import gamma, factorial

>>> gamma([0, 0.5, 1, 5])
array([ inf, 1.77245385, 1. , 24. ])

>>> z = 2.5 + 1j
>>> gamma(z)
(0.77476210455108352+0.70763120437959293j)
>>> gamma(z+1), z*gamma(z)  # Recurrence property
((1.2292740569981158+2.5438401155000658j),
 (1.2292740569981158+2.5438401155000658j))

>>> gamma(0.5)**2  # gamma(0.5) = sqrt(pi)
3.1415926535897927

Plot gamma(x) for real x

>>> x = np.linspace(-3.5, 5.5, 2251)
>>> y = gamma(x)

>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'b', alpha=0.6, label='gamma(x)')
>>> k = np.arange(1, 7)
>>> plt.plot(k, factorial(k-1), 'k*', alpha=0.6,
... label='(x-1)!, x = 1, 2, ...')
>>> plt.xlim(-3.5, 5.5)
>>> plt.ylim(-10, 25)
>>> plt.grid()
>>> plt.xlabel('x')
>>> plt.ylabel('gamma(x)')
>>> plt.legend(loc='lower right')
>>> plt.show()
```
scipy.special.gammaln

scipy.special.gammaln(x, out=None) = <ufunc 'gammaln'>

Logarithm of the absolute value of the gamma function.

Defined as

\[\ln(|\Gamma(x)|) \]

where \(\Gamma \) is the gamma function. For more details on the gamma function, see [dlmf].

Parameters

- **x** [array_like] Real argument
- **out** [ndarray, optional] Optional output array for the function results

Returns

- **scalar or ndarray**
 Values of the log of the absolute value of gamma

See also:

- **gammasgn**
 sign of the gamma function
- **loggamma**
 principal branch of the logarithm of the gamma function
Notes

It is the same function as the Python standard library function \texttt{math.lgamma}.

When used in conjunction with \texttt{gammasgn}, this function is useful for working in logspace on the real axis without having to deal with complex numbers via the relation \(\exp(\text{gammaln}(x)) = \text{gammasgn}(x) \times \text{gamma}(x) \).

For complex-valued log-gamma, use \texttt{loggamma} instead of \texttt{gammaln}.

References

[dlmf]

Examples

```python
>>> import scipy.special as sc
```

It has two positive zeros.

```python
>>> sc.gammaln([1, 2])
array([0., 0.])
```

It has poles at nonpositive integers.

```python
>>> sc.gammaln([0, -1, -2, -3, -4])
array([inf, inf, inf, inf, inf])
```

It asymptotically approaches \(x \times \log(x) \) (Stirling’s formula).

```python
>>> x = np.array([1e10, 1e20, 1e40, 1e80])
>>> sc.gammaln(x)
array([2.20258509e+11, 4.50517019e+21, 9.11034037e+41, 1.83206807e+82])
>>> x * np.log(x)
array([2.30258509e+11, 4.60517019e+21, 9.21034037e+41, 1.84206807e+82])
```

\texttt{scipy.special.loggamma}

\texttt{scipy.special.loggamma}(z, out=None) = <ufunc 'loggamma'>

Principal branch of the logarithm of the gamma function.

Defined to be \(\log(\Gamma(x)) \) for \(x > 0 \) and extended to the complex plane by analytic continuation. The function has a single branch cut on the negative real axis.

New in version 0.18.0.

Parameters

- **z** [array-like] Values in the complex plain at which to compute \texttt{loggamma}
- **out** [ndarray, optional] Output array for computed values of \texttt{loggamma}

Returns

- **loggamma** [ndarray] Values of \texttt{loggamma} at z.

See also:
gammaln

logarithm of the absolute value of the gamma function

gammagammasgn

sign of the gamma function

Notes

It is not generally true that \(\log \Gamma(z) = \log(\Gamma(z)) \), though the real parts of the functions do agree. The benefit of not defining \(\loggamma \) as \(\log(\Gamma(z)) \) is that the latter function has a complicated branch cut structure whereas \(\loggamma \) is analytic except for on the negative real axis.

The identities

\[
\exp(\log \Gamma(z)) = \Gamma(z) \\
\log \Gamma(z + 1) = \log(z) + \log \Gamma(z)
\]

make \(\loggamma \) useful for working in complex logspace.

On the real line \(\loggamma \) is related to \(\gammaln \) via \(\exp(\loggamma(x + 0j)) = \gammagammasgn(x) \times \exp(\gammaln(x)) \), up to rounding error.

The implementation here is based on [hare1997].

References

[hare1997]

scipy.special.gammasgn

\[\text{scipy.special.gammasgn}(x) = \text{<ufunc 'gammasgn'}}> \]

Sign of the gamma function.

It is defined as

\[
\text{gammagammasgn}(x) = \begin{cases}
 +1 & \Gamma(x) > 0 \\
 -1 & \Gamma(x) < 0
\end{cases}
\]

where \(\Gamma \) is the gamma function; see \(\text{gamma} \). This definition is complete since the gamma function is never zero; see the discussion after [dlmf].

Parameters

- \(x \) [array_like] Real argument

Returns

- scalar or ndarray

 Sign of the gamma function

See also:

- \(\text{gamma} \)

 the gamma function

3.3. API definition 2259
gammaln

log of the absolute value of the gamma function

loggamma

analytic continuation of the log of the gamma function

Notes

The gamma function can be computed as \(\text{gammag}
\text{sn}(x) \times \exp(\text{gammaln}(x)) \).

References

[dlmf]

Examples

```python
>>> import scipy.special as sc
```

It is 1 for \(x > 0 \).

```python
>>> sc.gammag
\text{sn}([1, 2, 3, 4])
array([1., 1., 1., 1.])
```

It alternates between -1 and 1 for negative integers.

```python
>>> sc.gammag
\text{sn}([-0.5, -1.5, -2.5, -3.5])
array([-1., 1., -1., 1.])
```

It can be used to compute the gamma function.

```python
>>> x = [1.5, 0.5, -0.5, -1.5]
>>> sc.gammag
\text{sn}(x) \times \exp(sc.gammaln(x))
array([0.88622693, 1.77245385, -3.5449077, 2.3632718])
>>> sc.gammainc(x)
array([0.88622693, 1.77245385, -3.5449077, 2.3632718])
```

scipy.special.gammainc

\texttt{scipy.special.gammainc}(a, x) = <ufunc 'gammainc'>

Regularized lower incomplete gamma function.

It is defined as

\[
P(a,x) = \frac{1}{\Gamma(a)} \int_0^x t^{a-1} e^{-t} dt
\]

for \(a > 0 \) and \(x \geq 0 \). See [dlmf] for details.

Parameters

- **a** [array_like] Positive parameter
- **x** [array_like] Nonnegative argument
Returns

`scalar or ndarray`

Values of the lower incomplete gamma function

See also:

`gammaincc`

regularized upper incomplete gamma function

`gammaincinv`

inverse of the regularized lower incomplete gamma function

`gammainccinv`

inverse of the regularized upper incomplete gamma function

Notes

The function satisfies the relation $\text{gammainc}(a, x) + \text{gammaincc}(a, x) = 1$ where gammaincc is the regularized upper incomplete gamma function.

The implementation largely follows that of [boost].

References

[dlmf], [boost]

Examples

```python
>>> import scipy.special as sc
```

It is the CDF of the gamma distribution, so it starts at 0 and monotonically increases to 1.

```python
>>> sc.gammainc(0.5, [0, 1, 10, 100])
array([0. , 0.84270079, 0.99999226, 1.])
```

It is equal to one minus the upper incomplete gamma function.

```python
>>> a, x = 0.5, 0.4
>>> sc.gammainc(a, x)
0.6289066304773024
>>> 1 - sc.gammaincc(a, x)
0.6289066304773024
```
scipy.special.gammaincinv

```python
gammaincinv \(a, y\) = \text{<ufunc 'gammaincinv'>}
```

Inverse to the regularized lower incomplete gamma function.

Given an input \(y\) between 0 and 1, returns \(x\) such that \(y = P(a,x)\). Here \(P\) is the regularized lower incomplete gamma function; see \texttt{gammainc}. This is well-defined because the lower incomplete gamma function is monotonic as can be seen from its definition in \[\text{dlmf}\].

Parameters

- \(a\) [array_like] Positive parameter
- \(y\) [array_like] Parameter between 0 and 1, inclusive

Returns

- scalar or ndarray Values of the inverse of the lower incomplete gamma function

See also:

- \texttt{gammainc} regularized lower incomplete gamma function
- \texttt{gammaincc} regularized upper incomplete gamma function
- \texttt{gammainccinv} inverse of the regularized upper incomplete gamma function

References

- \[\text{dlmf}\]

Examples

```python
>>> import scipy.special as sc
```

It starts at 0 and monotonically increases to infinity.

```python
>>> sc.gammaincinv(0.5, [0, 0.1, 0.5, 1])
array([0. , 0.00789539, 0.22746821, inf])
```

It inverts the lower incomplete gamma function.

```python
>>> a, x = 0.5, [0, 0.1, 0.5, 1]
>>> sc.gammainc(a, sc.gammaincinv(a, x))
array([0. , 0.1, 0.5, 1.1])
```

```python
>>> a, x = 0.5, [0, 10, 25]
>>> sc.gammaincinv(a, sc.gammainc(a, x))
array([ 0. , 10. , 25.00001465])
```
scipy.special.gammaincc

scipy.special.gammaincc(a, x) = <ufunc 'gammaincc'>

Regularized upper incomplete gamma function.

It is defined as

\[Q(a, x) = \frac{1}{\Gamma(a)} \int_x^\infty t^{a-1}e^{-t} dt \]

for \(a > 0 \) and \(x \geq 0 \). See [dlmf] for details.

Parameters

- a [array_like] Positive parameter
- x [array_like] Nonnegative argument

Returns

scalar or ndarray

Values of the upper incomplete gamma function

See also:

gammainc

regularized lower incomplete gamma function

gammaincinv

inverse of the regularized lower incomplete gamma function

gammainccinv

inverse of the regularized upper incomplete gamma function

Notes

The function satisfies the relation \(\text{gammainc}(a, x) + \text{gammaincc}(a, x) = 1 \) where \(\text{gammainc} \) is the regularized lower incomplete gamma function.

The implementation largely follows that of [boost].

References

[dlmf], [boost]

Examples

```python
>>> import scipy.special as sc
```

It is the survival function of the gamma distribution, so it starts at 1 and monotonically decreases to 0.

```python
>>> sc.gammaincc(0.5, [0, 1, 10, 100, 1000])
array([1.00000000e+00, 1.57299207e-01, 7.74421643e-06, 2.08848758e-45,
       0.00000000e+00])
```

It is equal to one minus the lower incomplete gamma function.
scipy.special.gammainccinv

scipy.special.gammainccinv(a, y) = <ufunc 'gammainccinv'>

Inverse of the regularized upper incomplete gamma function.

Given an input \(y \) between 0 and 1, returns \(x \) such that \(y = Q(a, x) \). Here \(Q \) is the regularized upper incomplete gamma function; see gammaincc. This is well-defined because the upper incomplete gamma function is monotonic as can be seen from its definition in [dlmf].

Parameters

- **a** [array_like] Positive parameter
- **y** [array_like] Argument between 0 and 1, inclusive

Returns

- **scalar or ndarray**
 Values of the inverse of the upper incomplete gamma function

See also:

- gammaincc
 regularized upper incomplete gamma function
- gammainc
 regularized lower incomplete gamma function
- gammaincinv
 inverse of the regularized lower incomplete gamma function

References

[dlmf]

Examples

```python
>>> import scipy.special as sc
```

It starts at infinity and monotonically decreases to 0.

```python
>>> sc.gammainccinv(0.5, [0., 0.1, 0.5, 1.])
array([inf, 1.35277173, 0.22746821, 0.])
```

It inverts the upper incomplete gamma function.
```python
>>> a, x = 0.5, [0, 0.1, 0.5, 1]
>>> sc.gammaincc(a, sc.gammainccinv(a, x))
array([0., 0.1, 0.5, 1.])
```

```python
>>> a, x = 0.5, [0, 10, 50]
>>> sc.gammainccinv(a, sc.gammaincc(a, x))
array([ 0., 10., 50.])
```

scipy.special.beta

The function `scipy.special.beta(a, b, out=None)` is defined in [1] as

\[
B(a, b) = \int_0^1 t^{a-1} (1-t)^{b-1} \, dt = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a + b)},
\]

where \(\Gamma \) is the gamma function.

Parameters

- `a`, `b` ([array-like]) Real-valued arguments
- `out` [ndarray, optional] Optional output array for the function result

Returns

- `scalar` or `ndarray` Value of the beta function

See also:

- `gamma` the gamma function
- `betainc` the incomplete beta function
- `betaincinv` the incomplete beta function
- `betainv` the natural logarithm of the absolute value of the beta function

References

[1]
Examples

```python
>>> import scipy.special as sc
```

The beta function relates to the gamma function by the definition given above:

```python
>>> sc.beta(2, 3)
0.08333333333333333
>>> sc.gamma(2)*sc.gamma(3)/sc.gamma(2 + 3)
0.08333333333333333
```

As this relationship demonstrates, the beta function is symmetric:

```python
>>> sc.beta(1.7, 2.4)
0.16567527689031739
>>> sc.beta(2.4, 1.7)
0.16567527689031739
```

This function satisfies $B(1, b) = 1/b$:

```python
>>> sc.beta(1, 4)
0.25
```

scipy.special.betaln

`scipy.special.betaln(a, b) = <ufunc 'betaln'>`

Natural logarithm of absolute value of beta function.

Computes $\ln(\text{abs}(\text{beta}(a, b)))$.

scipy.special.betainc

`scipy.special.betainc(a, b, x, out=None) = <ufunc 'betainc'>`

Incomplete beta function.

Computes the incomplete beta function, defined as [1]:

$$I_x(a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^x t^{a-1}(1-t)^{b-1}dt,$$

for $0 \leq x \leq 1$.

Parameters
- `a, b` [array-like] Positive, real-valued parameters
- `x` [array-like] Real-valued such that $0 \leq x \leq 1$, the upper limit of integration
- `out` [ndarray, optional] Optional output array for the function values

Returns
- `array-like` Value of the incomplete beta function

See also:
- `beta`

betaincinv

inverse of the incomplete beta function

Notes

The incomplete beta function is also sometimes defined without the \texttt{gamma} terms, in which case the above definition is the so-called regularized incomplete beta function. Under this definition, you can get the incomplete beta function by multiplying the result of the SciPy function by \texttt{beta}.

References

[1]

Examples

Let $B(a, b)$ be the \texttt{beta} function.

```python
>>> import scipy.special as sc
```

The coefficient in terms of \texttt{gamma} is equal to $1/B(a, b)$. Also, when $x = 1$ the integral is equal to $B(a, b)$. Therefore, $I_{x=1}(a, b) = 1$ for any a, b.

```python
>>> sc.betainc(0.2, 3.5, 1.0)
1.0
```

It satisfies $I_x(a, b) = x^a F(a, 1 - b, a + 1, x)/(aB(a, b))$, where F is the hypergeometric function \texttt{hyp2f1}:

```python
>>> a, b, x = 1.4, 3.1, 0.5
>>> x**a * sc.hyp2f1(a, 1 - b, a + 1, x) / (a * sc.beta(a, b))
0.8148904036225295
>>> sc.betainc(a, b, x)
0.8148904036225296
```

This functions satisfies the relationship $I_x(a, b) = 1 - I_{1-x}(b, a)$:

```python
>>> sc.betainc(2.2, 3.1, 0.4)
0.49339638807619446
>>> 1 - sc.betainc(3.1, 2.2, 1 - 0.4)
0.49339638807619446
```

\texttt{scipy.special.betaincinv}

\texttt{scipy.special.betaincinv}(a, b, y, out=None) = <ufunc 'betaincinv'>

Inverse of the incomplete beta function.

Computes x such that:

$$y = I_x(a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \int_0^x t^{a-1}(1 - t)^{b-1}dt,$$

where I_x is the normalized incomplete beta function \texttt{betainc} and Γ is the \texttt{gamma} function [1].

3.3. API definition 2267
Parameters

- \(a, b\) [array-like] Positive, real-valued parameters
- \(y\) [array-like] Real-valued input
- \(\text{out}\) [ndarray, optional] Optional output array for function values

Returns

- array-like Value of the inverse of the incomplete beta function

See also:

- `betainc`
 - incomplete beta function
- `gamma`
 - gamma function

References

[1]

Examples

```python
>>> import scipy.special as sc
```

This function is the inverse of `betainc` for fixed values of \(a\) and \(b\).

```python
>>> a, b = 1.2, 3.1
>>> y = sc.betainc(a, b, 0.2)
>>> sc.betaincinv(a, b, y)
0.2
>>> a, b = 7.5, 0.4
>>> x = sc.betaincinv(a, b, 0.5)
>>> sc.betainc(a, b, x)
0.5
```

`scipy.special.psi`

`scipy.special.psi(z, out=None) = <ufunc 'psi'>`

The digamma function.

The logarithmic derivative of the gamma function evaluated at \(z\).

Parameters

- \(z\) [array_like] Real or complex argument.
- \(\text{out}\) [ndarray, optional] Array for the computed values of \(\psi\).

Returns

- \(\psi\) [ndarray] Computed values of \(\psi\).
Notes

For large values not close to the negative real axis, ψ is computed using the asymptotic series (5.11.2) from [1]. For small arguments not close to the negative real axis, the recurrence relation (5.5.2) from [1] is used until the argument is large enough to use the asymptotic series. For values close to the negative real axis, the reflection formula (5.5.4) from [1] is used first. Note that ψ has a family of zeros on the negative real axis which occur between the poles at nonpositive integers. Around the zeros the reflection formula suffers from cancellation and the implementation loses precision. The sole positive zero and the first negative zero, however, are handled separately by precomputing series expansions using [2], so the function should maintain full accuracy around the origin.

References

[1],[2]

Examples

```python
>>> from scipy.special import psi
>>> z = 3 + 4j
>>> psi(z)
(1.55035981733341+1.0105022091860445j)
```

Verify $\psi(z) = \psi(z + 1) - 1/z$:

```python
>>> psi(z + 1) - 1/z
(1.55035981733341+1.0105022091860445j)
```

scipy.special.rgamma

scipy.special.\texttt{rgamma}(z, \texttt{out}=\texttt{None}) = <ufunc 'rgamma'>

Reciprocal of the gamma function.

Defined as $1/\Gamma(z)$, where Γ is the gamma function. For more on the gamma function see \texttt{gamma}.

Parameters

- **z** [array_like] Real or complex valued input
- **out** [ndarray, optional] Optional output array for the function results

Returns

- scalar or ndarray
 Function results

See also:

\texttt{gamma}, \texttt{gammaln}, \texttt{loggamma}
Notes

The gamma function has no zeros and has simple poles at nonpositive integers, so \(\text{rgamma} \) is an entire function with zeros at the nonpositive integers. See the discussion in [dlmf] for more details.

References

[dlmf]

Examples

```python
>>> import scipy.special as sc
```

It is the reciprocal of the gamma function.

```python
>>> sc.rgamma([1, 2, 3, 4])
array([1. , 1. , 0.5 , 0.16666667])
>>> 1 / sc.gamma([1, 2, 3, 4])
array([1. , 1. , 0.5 , 0.16666667])
```

It is zero at nonpositive integers.

```python
>>> sc.rgamma([0, -1, -2, -3])
array([0., 0., 0., 0.])
```

It rapidly underflows to zero along the positive real axis.

```python
>>> sc.rgamma([10, 100, 179])
array([2.75573192e-006, 1.07151029e-156, 0.00000000e+000])
```

`scipy.special.polygamma`

`scipy.special.polygamma(n, x)`

Polygamma functions.

Defined as \(\psi^{(n)}(x) \) where \(\psi \) is the \text{digamma} function. See [dlmf] for details.

Parameters

- `n` [array_like] The order of the derivative of the digamma function; must be integral
- `x` [array_like] Real valued input

Returns

- `ndarray` Function results

See also:

- `digamma`
References

[dlmf]

Examples

```python
>>> from scipy import special
>>> x = [2, 3, 25.5]
>>> special.polygamma(1, x)
array([ 0.64493407, 0.39493407, 0.03999467])
>>> special.polygamma(0, x) == special.psi(x)
array([ True, True, True], dtype=bool)
```

scipy.special.multigammaln

`scipy.special.multigammaln(a, d)`

Returns the log of multivariate gamma, also sometimes called the generalized gamma.

- **Parameters**
 - `a` [ndarray] The multivariate gamma is computed for each item of `a`.
 - `d` [int] The dimension of the space of integration.

- **Returns**
 - `res` [ndarray] The values of the log multivariate gamma at the given points `a`.

Notes

The formal definition of the multivariate gamma of dimension `d` for a real `a` is

\[
\Gamma_d(a) = \int_{A>0} e^{-\text{tr}(A)} |A|^{a-(d+1)/2} dA
\]

with the condition `a > (d - 1)/2`, and `A > 0` being the set of all the positive definite matrices of dimension `d`. Note that `a` is a scalar: the integrand only is multivariate, the argument is not (the function is defined over a subset of the real set).

This can be proven to be equal to the much friendlier equation

\[
\Gamma_d(a) = \pi^{d(d-1)/4} \prod_{i=1}^{d} \Gamma(a - (i - 1)/2).
\]

References

Examples

```python
>>> from scipy.special import multigammaln, gammaln
>>> a = 23.5
>>> d = 10
>>> multigammaln(a, d)
454.1488605074416
```

Verify that the result agrees with the logarithm of the equation shown above:

```python
>>> d*(d-1)/4*np.log(np.pi) + gammaln(a - 0.5*np.arange(0, d)).sum()
454.1488605074416
```

scipy.special.digamma

`scipy.special.digamma(z, out=None) = <ufunc 'psi'>`

The digamma function.

The logarithmic derivative of the gamma function evaluated at `z`.

Parameters

- `z` : array_like
 Real or complex argument.
- `out` : ndarray, optional
 Array for the computed values of `psi`.

Returns

- `digamma` : ndarray
 Computed values of `psi`.

Notes

For large values not close to the negative real axis, `psi` is computed using the asymptotic series (5.11.2) from [1]. For small arguments not close to the negative real axis, the recurrence relation (5.5.2) from [1] is used until the argument is large enough to use the asymptotic series. For values close to the negative real axis, the reflection formula (5.5.4) from [1] is used first. Note that `psi` has a family of zeros on the negative real axis which occur between the poles at nonpositive integers. Around the zeros the reflection formula suffers from cancellation and the implementation loses precision. The sole positive zero and the first negative zero, however, are handled separately by precomputing series expansions using [2], so the function should maintain full accuracy around the origin.

References

[1], [2]
Examples

```python
>>> from scipy.special import psi
>>> z = 3 + 4j
>>> psi(z)
(1.55035981733341+1.0105022091860445j)
```

Verify $\psi(z) = \psi(z+1) - 1/z$:

```python
>>> psi(z + 1) - 1/z
(1.55035981733341+1.0105022091860445j)
```

scipy.special.poch

scipy.special.poch(z, m) = <ufunc 'poch'>

Pochhammer symbol.

The Pochhammer symbol (rising factorial) is defined as

\[
(z)_m = \frac{\Gamma(z + m)}{\Gamma(z)}
\]

For positive integer m it reads

\[
(z)_m = z(z+1)...(z+m-1)
\]

See [dlmf] for more details.

Parameters

- **z, m**
 [array_like] Real-valued arguments.

Returns

- **scalar or ndarray**
 The value of the function.

References

[dlmf]

Examples

```python
>>> import scipy.special as sc
```

It is 1 when m is 0.

```python
>>> sc.poch([1, 2, 3, 4], 0)
array([1., 1., 1., 1.])
```

For z equal to 1 it reduces to the factorial function.
>>> sc.poch(1, 5)
120.0
>>> 1 * 2 * 3 * 4 * 5
120

It can be expressed in terms of the gamma function.

>>> z, m = 3.7, 2.1
>>> sc.poch(z, m)
20.52958193377693
>>> sc.gamma(z + m) / sc.gamma(z)
20.52958193377696

Error function and Fresnel integrals

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>erf(z)</td>
<td>Returns the error function of complex argument.</td>
</tr>
<tr>
<td>erfc(x[, out])</td>
<td>Complementary error function, 1 - erf(x).</td>
</tr>
<tr>
<td>erfcx(x[, out])</td>
<td>Scaled complementary error function, exp(x**2) * erfc(x).</td>
</tr>
<tr>
<td>erfj(z[, out])</td>
<td>Imaginary error function, -i erf(i z).</td>
</tr>
<tr>
<td>erfinv(x[, out, where, casting, order,...])</td>
<td>Inverse of the error function.</td>
</tr>
<tr>
<td>erfcinv(x[, out, where, casting, order,...])</td>
<td>Inverse of the complementary error function.</td>
</tr>
<tr>
<td>wofz(z)</td>
<td>Faddeeva function</td>
</tr>
<tr>
<td>dawsn(x)</td>
<td>Dawson’s integral.</td>
</tr>
<tr>
<td>fresnel(z[, out])</td>
<td>Fresnel integrals.</td>
</tr>
<tr>
<td>fresnel_zeros(nt)</td>
<td>Compute nt complex zeros of sine and cosine Fresnel integrals S(z) and C(z).</td>
</tr>
<tr>
<td>modfresnelp(x)</td>
<td>Modified Fresnel positive integrals</td>
</tr>
<tr>
<td>modfresnelm(x)</td>
<td>Modified Fresnel negative integrals</td>
</tr>
<tr>
<td>voigt_profile(x, sigma, gamma[, out])</td>
<td>Voigt profile.</td>
</tr>
</tbody>
</table>

scipy.special.erf

scipy.special.erf(z) = <ufunc 'erf'>

Returns the error function of complex argument.

It is defined as \(\frac{2}{\sqrt{\pi}} \int \exp(-t^2) \, dt \) at \(t=0..z \).

Parameters

- x [ndarray] Input array.

Returns

- res [ndarray] The values of the error function at the given points x.

See also:

erfc, erfinv, erfcinv, wofz, erfcx, erfi
Notes

The cumulative of the unit normal distribution is given by $\Phi(z) = \frac{1}{2}[1 + \text{erf}(z/\sqrt{2})]$.

References

[1], [2], [3]

Examples

```python
>>> from scipy import special
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-3, 3)
>>> plt.plot(x, special.erf(x))
>>> plt.xlabel('$x$')
>>> plt.ylabel('$\text{erf}(x)$')
>>> plt.show()
```

![Graph of erf(x)](image)

scipy.special.erfc

`scipy.special.erfc(x, out=None) = <ufunc 'erfc'>`
Complementary error function, $1 - \text{erf}(x)$.

Parameters

- `x` : array_like
 Real or complex valued argument
- `out` : ndarray, optional
 Optional output array for the function results

Returns

- `scalar or ndarray`
 Values of the complementary error function
See also:

- **erf**, **erfi**, **erfcx**, **dawsn**, **wofz**

References

[1]

Examples

```python
>>> from scipy import special
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-3, 3)
>>> plt.plot(x, special.erfc(x))
>>> plt.xlabel(r'$x$')
>>> plt.ylabel(r'$erfc(x)$')
>>> plt.show()
```

![Graph of erfc(x)](image)

scipy.special.erfcx

`scipy.special.erfcx(x, out=None) = <ufunc 'erfcx'>`

Scaled complementary error function, \(\exp(x^2) \cdot \text{erfc}(x) \).

Parameters

- **x** [array_like] Real or complex valued argument
- **out** [ndarray, optional] Optional output array for the function results

Returns

- **scalar or ndarray** Values of the scaled complementary error function

See also:
erf, erfc, erfi, dawsn, wofz

Notes

New in version 0.12.0.

References

[1]

Examples

```python
>>> from scipy import special
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-3, 3)
>>> plt.plot(x, special.erfcx(x))
>>> plt.xlabel('$x$')
>>> plt.ylabel('$erfcx(x)$')
>>> plt.show()
```

```
3
2
1
0 1 2 3
x
0
5000
10000
15000
```

scipy.special.erfi

scipy.special.erfi(z, out=None) = <ufunc 'erfi'>

Imaginary error function, \(-i \text{erf}(i \, z)\).

Parameters

- **z** [array_like] Real or complex valued argument
- **out** [ndarray, optional] Optional output array for the function results

Returns
scalar or ndarray
Values of the imaginary error function

See also:

erf, erfc, erfcx, dawsn, wofz

Notes

New in version 0.12.0.

References

[1]

Examples

```python
>>> from scipy import special
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-3, 3)
>>> plt.plot(x, special.erfi(x))
>>> plt.xlabel('$x$')
>>> plt.ylabel('$\text{erfi}(x)$')
>>> plt.show()
```
scipy.special.erfinv

scipy.special.erfinv(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True) = <ufunc 'erfinv'>

Inverse of the error function.

Computes the inverse of the error function.
In the complex domain, there is no unique complex number w satisfying erf(w)=z. This indicates a true inverse function would have multi-value. When the domain restricts to the real, -1 < x < 1, there is a unique real number satisfying erf(erfinv(x)) = x.

Parameters

- y [ndarray] Argument at which to evaluate. Domain: [-1, 1]

Returns

- erfinv [ndarray] The inverse of erf of y, element-wise)

See also:

- erf
 Error function of a complex argument

- erfc
 Complementary error function, 1 - erf(x)

- erfcinv
 Inverse of the complementary error function

Examples

1) evaluating a float number

```python
>>> from scipy import special
>>> special.erfinv(0.5)
0.4769362762044698
```

2) evaluating an ndarray

```python
>>> from scipy import special
>>> y = np.linspace(-1.0, 1.0, num=10)
>>> special.erfinv(y)
array([-inf, -0.86312307, -0.5407314 , -0.30457019, -0.0987901 ,
       0.0987901 , 0.30457019, 0.5407314 , 0.86312307, inf])
```
scipy.special.erfcinv

```python
scipy.special.erfcinv(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True, signature=None, extobj=None)
```

Inverse of the complementary error function.

Computes the inverse of the complementary error function.
In the complex domain, there is no unique complex number \(w \) satisfying \(\text{erfc}(w)=z \). This indicates a true inverse function would have multi-value. When the domain restricts to the real, \(0 < x < 2 \), there is a unique real number satisfying \(\text{erfc}(\text{erfcinv}(x))=\text{erfcinv}(\text{erfc}(x)) \).

It is related to inverse of the error function by \(\text{erfcinv}(1-x)=\text{erfinv}(x) \)

Parameters

- \(y \) [ndarray] Argument at which to evaluate. Domain: \([0, 2]\)

Returns

- \(\text{erfcinv} \) [ndarray] The inverse of \(\text{erfc} \) of \(y \), element-wise

See also:

- \(\text{erf} \)
 Error function of a complex argument

- \(\text{erfc} \)
 Complementary error function, \(1 - \text{erf}(x) \)

- \(\text{erfinv} \)
 Inverse of the error function

Examples

1) evaluating a float number

```python
>>> from scipy import special
>>> special.erfcinv(0.5)
0.4769362762044698
```

2) evaluating an ndarray

```python
>>> from scipy import special
>>> y = np.linspace(0.0, 2.0, num=11)
>>> special.erfcinv(y)
array([        inf,    0.9061938 ,    0.59511608,    0.37080716,    0.17914345,
       -0. ,    -0.17914345,    -0.37080716,    -0.59511608,    -0.9061938 ,
       -inf])
```
scipy.special.wofz

scipy.special.wofz(z) = <ufunc 'wofz'>

Faddeeva function

Returns the value of the Faddeeva function for complex argument:

\[\exp(-z^2) \times \text{erfc}(-i\cdot z) \]

See also:
dawsn, erf, erfc, erfcx, erfi

References

[1]

Examples

```python
>>> from scipy import special
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-3, 3)
>>> z = special.wofz(x)

>>> plt.plot(x, z.real, label='wofz(x).real')
>>> plt.plot(x, z.imag, label='wofz(x).imag')
>>> plt.xlabel('$x$')
>>> plt.legend(framealpha=1, shadow=True)
>>> plt.grid(alpha=0.25)
>>> plt.show()
```
scipy.special.dawsn

scipy.special.dawsn(x) = <ufunc 'dawsn'>
Dawson’s integral.

Computes:
\[\exp(-x^2) \times \text{integral}(\exp(t^2), t=0..x). \]

See also:

wofz, erf, erfc, erfcx, erfi

References

[1]

Examples

```python
>>> from scipy import special
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-15, 15, num=1000)
>>> plt.plot(x, special.dawsn(x))
>>> plt.xlabel('$x$')
>>> plt.ylabel('$dawsn(x)$')
>>> plt.show()
```
scipy.special.fresnel

scipy.special.fresnel(z, out=None) = <ufunc 'fresnel'>

Fresnel integrals.

The Fresnel integrals are defined as

\[
S(z) = \int_0^z \sin(\pi t^2 / 2) dt \\
C(z) = \int_0^z \cos(\pi t^2 / 2) dt.
\]

See [dlmf] for details.

Parameters

- **z** [array_like] Real or complex valued argument
- **out** [2-tuple of ndarrays, optional] Optional output arrays for the function results

Returns

- **S, C** [2-tuple of scalar or ndarray] Values of the Fresnel integrals

See also:

- fresnel_zeros
 - zeros of the Fresnel integrals

References

- [dlmf]

Examples

```python
given:

As z goes to infinity along the real axis, S and C converge to 0.5.

```python
>>> S, C = sc.fresnel([0.1, 1, 10, 100, np.inf])
>>> S
array([0.00052359, 0.43825915, 0.46816998, 0.4968169 , 0.5])
>>> C
array([0.09999753, 0.7798934 , 0.49989869, 0.4999999 , 0.5])
```

They are related to the error function `erf`.

```python
>>> z = np.array([1, 2, 3, 4])
>>> zeta = 0.5 * np.sqrt(np.pi) * (1 + 1j) * z
>>> S, C = sc.fresnel(zeta)
>>> C + 1j*S
array([0.7798934 +0.43825915j, 0.48825341+0.34341568j,
 0.60572079+0.496313j , 0.49842603+0.42051575j])
```
scipy.special.fresnel_zeros

scipy.special.fresnel_zeros(nt)
Compute nt complex zeros of sine and cosine Fresnel integrals S(z) and C(z).

References
[1]

scipy.special.modfresnelp

scipy.special.modfresnelp(x) = <ufunc 'modfresnelp'>
Modified Fresnel positive integrals

Returns
fp       Integral F_+(x): integral(exp(1j*t*t), t=x..inf)
kp       Integral K_+(x): 1/sqrt(pi)*exp(-1j*(x*x+pi/4))*fp

scipy.special.modfresnelm

scipy.special.modfresnelm(x) = <ufunc 'modfresnelm'>
Modified Fresnel negative integrals

Returns
fm       Integral F_-(x): integral(exp(-1j*t*t), t=x..inf)
km       Integral K_-(x): 1/sqrt(pi)*exp(1j*(x*x+pi/4))*fp

scipy.special.voigt_profile

scipy.special.voigt_profile(x, sigma, gamma, out=None) = <ufunc 'voigt_profile'>
Voigt profile.
The Voigt profile is a convolution of a 1-D Normal distribution with standard deviation sigma and a 1-D Cauchy
distribution with half-width at half-maximum gamma.

If sigma = 0, PDF of Cauchy distribution is returned. Conversely, if gamma = 0, PDF of Normal distribution
is returned. If sigma = gamma = 0, the return value is Inf for x = 0, and 0 for all other x.

Parameters
x        [array_like] Real argument
sigma    [array_like] The standard deviation of the Normal distribution part
gamma    [array_like] The half-width at half-maximum of the Cauchy distribution part
out      [ndarray, optional] Optional output array for the function values

Returns
scalar or ndarray
The Voigt profile at the given arguments

See also:
wofz

Faddeeva function

Notes

It can be expressed in terms of Faddeeva function

\[ V(x; \sigma, \gamma) = \frac{\text{Re}[w(z)]}{\sigma \sqrt{2\pi}}, \]

\[ z = \frac{x + i\gamma}{\sqrt{2\sigma}} \]

where \( w(z) \) is the Faddeeva function.

References

[1]

These are not universal functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>erf_zeros(nt)</td>
<td>Compute the first nt zero in the first quadrant, ordered by absolute value.</td>
</tr>
<tr>
<td>fresnelc_zeros(nt)</td>
<td>Compute nt complex zeros of cosine Fresnel integral ( C(z) ).</td>
</tr>
<tr>
<td>fresnels_zeros(nt)</td>
<td>Compute nt complex zeros of sine Fresnel integral ( S(z) ).</td>
</tr>
</tbody>
</table>

scipy.special.erf_zeros

\[ \text{scipy.special.erf_zeros}(nt) \]

Compute the first nt zero in the first quadrant, ordered by absolute value.

Zeros in the other quadrants can be obtained by using the symmetries \( \text{erf}(-z) = \text{erf}(z) \) and \( \text{erf}(\text{conj}(z)) = \text{conj}(\text{erf}(z)) \).

Parameters

- \( nt \) [int] The number of zeros to compute

Returns

- The locations of the zeros of \( \text{erf} \) [ndarray (complex)] Complex values at which zeros of \( \text{erf}(z) \)

References

[1]
Examples

```python
>>> from scipy import special
>>> special.erf_zeros(1)
array([1.45061616+1.880943j])
```

Check that erf is (close to) zero for the value returned by erf_zeros

```python
>>> special.erf(special.erf_zeros(1))
array([4.95159469e-14-1.16407394e-16j])
```

**scipy.special.fresnelc_zeros**

`scipy.special.fresnelc_zeros(nt)`

Compute nt complex zeros of cosine Fresnel integral \( C(z) \).

References

[1]

**scipy.special.fresnelf_zeros**

`scipy.special.fresnelf_zeros(nt)`

Compute nt complex zeros of sine Fresnel integral \( S(z) \).

References

[1]

**Legendre functions**

<table>
<thead>
<tr>
<th>( lpmv(m, v, x) )</th>
<th>Associated Legendre function of integer order and real degree.</th>
</tr>
</thead>
<tbody>
<tr>
<td>( sph_harm(m, n, theta, phi) )</td>
<td>Compute spherical harmonics.</td>
</tr>
</tbody>
</table>

**scipy.special.lpmv**

`scipy.special.lpmv(m, v, x) = <ufunc 'lpmv'>`

Associated Legendre function of integer order and real degree.

Defined as

\[
P_v^m = (-1)^m (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_v(x)
\]

where

\[
P_v = \sum_{k=0}^{\infty} \frac{(-v)_k (v + 1)_k}{(k!)^2} \left( \frac{1 - x}{2} \right)^k
\]

is the Legendre function of the first kind. Here \((\cdot)_k\) is the Pochhammer symbol; see `poch`.  

Parameters

- \( m \) [array_like] Order (int or float). If passed a float not equal to an integer the function returns NaN.
- \( v \) [array_like] Degree (float).
- \( x \) [array_like] Argument (float). Must have \(|x| \leq 1\).

Returns

- \( pmv \) [ndarray] Value of the associated Legendre function.

See also:

- \( lpmn \)
  Compute the associated Legendre function for all orders 0, ..., \( m \) and degrees 0, ..., \( n \).
- \( clpmn \)
  Compute the associated Legendre function at complex arguments.

Notes

Note that this implementation includes the Condon-Shortley phase.

References

[1]

`scipy.special.sph_harm`

`scipy.special.sph_harm(m, n, theta, phi) = <ufunc 'sph_harm'>`

Compute spherical harmonics.

The spherical harmonics are defined as

\[
Y_n^m(\theta, \phi) = \frac{2n+1}{4\pi} \frac{(n-m)!}{(n+m)!} e^{im\theta} P_n^m(\cos(\phi))
\]

where \( P_n^m \) are the associated Legendre functions; see \( lpmv \).

Parameters

- \( m \) [array_like] Order of the harmonic (int); must have \(|m| \leq n\).
- \( n \) [array_like] Degree of the harmonic (int); must have \( n \geq 0 \). This is often denoted by \( l \) (lower case L) in descriptions of spherical harmonics.
- \( \theta \) [array_like] Azimuthal (longitudinal) coordinate; must be in \([0, 2\pi]\].
- \( \phi \) [array_like] Polar (colatitudinal) coordinate; must be in \([0, \pi]\).

Returns

- \( y_{mn} \) [complex float] The harmonic \( Y_n^m \) sampled at \( \theta \) and \( \phi \).
Notes

There are different conventions for the meanings of the input arguments theta and phi. In SciPy theta is the azimuthal angle and phi is the polar angle. It is common to see the opposite convention, that is, theta as the polar angle and phi as the azimuthal angle.

Note that SciPy’s spherical harmonics include the Condon-Shortley phase because it is part of lpmv.

With SciPy’s conventions, the first several spherical harmonics are

\[
Y_0^0(\theta, \phi) = \frac{1}{2} \sqrt{\frac{1}{\pi}} \\
Y_1^{-1}(\theta, \phi) = \frac{1}{2} \sqrt{\frac{3}{2\pi}} e^{-i\phi} \sin(\phi) \\
Y_1^0(\theta, \phi) = \frac{1}{2} \sqrt{\frac{3}{\pi}} \cos(\phi) \\
Y_1^1(\theta, \phi) = \frac{1}{2} \sqrt{\frac{3}{2\pi}} e^{i\phi} \sin(\phi).
\]

References

[1], [2]

These are not universal functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clpmn(m, n, z[, type])</td>
<td>Associated Legendre function of the first kind for complex arguments.</td>
</tr>
<tr>
<td>lpmn(n, z)</td>
<td>Legendre function of the first kind.</td>
</tr>
<tr>
<td>lqmn(n, z)</td>
<td>Legendre function of the second kind.</td>
</tr>
<tr>
<td>lpmn(m, n, z)</td>
<td>Sequence of associated Legendre functions of the first kind.</td>
</tr>
<tr>
<td>lqmn(m, n, z)</td>
<td>Sequence of associated Legendre functions of the second kind.</td>
</tr>
</tbody>
</table>

scipy.special.clpmn

scipy.special.clpmn(m, n, z[, type=3])

Associated Legendre function of the first kind for complex arguments.

Computes the associated Legendre function of the first kind of order m and degree n, \( P_{mn}(z) = \frac{P^m_n(z)}{P^m_n(1)} \), and its derivative, \( P_{mn}'(z) \). Returns two arrays of size (m+1, n+1) containing \( P_{mn}(z) \) and \( P_{mn}'(z) \) for all orders from 0..m and degrees from 0..n.

Parameters

- m : [int] \(|m| \leq n\); the order of the Legendre function.
- n : [int] where \( n \geq 0 \); the degree of the Legendre function. Often called \( l \) (lower case L) in descriptions of the associated Legendre function.
- z : [float or complex] Input value.
- type : [int, optional] takes values 2 or 3 2: cut on the real axis \(|x| > 1\); 3: cut on the real axis \(-1 < x < 1\) (default)

Returns

\[ P_{m,n} \] \[(m+1, n+1)\text{array}\] Values for all orders \(0 \ldots m\) and degrees \(0 \ldots n\)

\[ P_{m,n}^{d} \] \[(m+1, n+1)\text{array}\] Derivatives for all orders \(0 \ldots m\) and degrees \(0 \ldots n\)

See also:

\lpmn\n
associated Legendre functions of the first kind for real \(z\)

Notes

By default, i.e. for \texttt{type=3}, phase conventions are chosen according to \cite{1} such that the function is analytic. The cut lies on the interval (-1, 1). Approaching the cut from above or below in general yields a phase factor with respect to Ferrer's function of the first kind (cf. \lpmn).

For \texttt{type=2} a cut at \(|x| > 1\) is chosen. Approaching the real values on the interval (-1, 1) in the complex plane yields Ferrer's function of the first kind.

References

\cite{1}, \cite{2}

\texttt{scipy.special.lpn}

\texttt{scipy.special.lpn(n,z)}

Legendre function of the first kind.

Compute sequence of Legendre functions of the first kind (polynomials), \(P_n(z)\) and derivatives for all degrees from 0 to \(n\) (inclusive).

See also \texttt{special.legendre} for polynomial class.

References

\cite{1}

\texttt{scipy.special.lqn}

\texttt{scipy.special.lqn(n,z)}

Legendre function of the second kind.

Compute sequence of Legendre functions of the second kind, \(Q_n(z)\) and derivatives for all degrees from 0 to \(n\) (inclusive).
**scipy.special.lpmn**

Sequence of associated Legendre functions of the first kind.

Computes the associated Legendre function of the first kind of order \( m \) and degree \( n \), \( P_{mn}(z) = P^n_m(z) \), and its derivative, \( P_{mn}'(z) \). Returns two arrays of size \((m+1, n+1)\) containing \( P_{mn}(z) \) and \( P_{mn}'(z) \) for all orders from \( 0..m \) and degrees from \( 0..n \).

This function takes a real argument \( z \). For complex arguments \( z \) use clpmn instead.

**Parameters**

- \( m \) : [int] \(|m| \leq n\); the order of the Legendre function.
- \( n \) : [int] where \( n \geq 0 \); the degree of the Legendre function. Often called \( l \) (lower case L) in descriptions of the associated Legendre function
- \( z \) : [float] Input value.

**Returns**

- \( P_{mn\_z} \) : [(m+1, n+1) array] Values for all orders \( 0..m \) and degrees \( 0..n \)
- \( P_{mn\_d\_z} \) : [(m+1, n+1) array] Derivatives for all orders \( 0..m \) and degrees \( 0..n \)

See also:

- **clpmn**

  associated Legendre functions of the first kind for complex \( z \)

**Notes**

In the interval \((-1, 1)\), Ferrer’s function of the first kind is returned. The phase convention used for the intervals \((1, \infty)\) and \((-\infty, -1)\) is such that the result is always real.

**References**

[1], [2]

**scipy.special.lqmn**

Sequence of associated Legendre functions of the second kind.

Computes the associated Legendre function of the second kind of order \( m \) and degree \( n \), \( Q_{mn}(z) = Q^n_m(z) \), and its derivative, \( Q_{mn}'(z) \). Returns two arrays of size \((m+1, n+1)\) containing \( Q_{mn}(z) \) and \( Q_{mn}'(z) \) for all orders from \( 0..m \) and degrees from \( 0..n \).

**Parameters**

- \( m \) : [int] \(|m| \leq n\); the order of the Legendre function.
- \( n \) : [int] where \( n \geq 0 \); the degree of the Legendre function. Often called \( l \) (lower case L) in descriptions of the associated Legendre function
z [complex] Input value.

Returns

Qmn_z [(m+1, n+1) array] Values for all orders 0..m and degrees 0..n
Qmn_d_z [(m+1, n+1) array] Derivatives for all orders 0..m and degrees 0..n

References

[1]

Ellipsoidal harmonics

scipy.special.ellip_harm

scipy.special.ellip_harm(h2, k2, n, p, s[, signm, signn]) Ellipsoidal harmonic functions E^p_n(l)

These are also known as Lame functions of the first kind, and are solutions to the Lame equation:

\[(s^2 - h^2)(s^2 - k^2)E''(s) + s(2s^2 - h^2 - k^2)E'(s) + (a - qs^2)E(s) = 0\]

where \(q = (n + 1)n\) and \(a\) is the eigenvalue (not returned) corresponding to the solutions.

Parameters

h2 [float] \(h^2\)

k2 [float] \(k^2\); should be larger than \(h^2\)

n [int] Degree

s [float] Coordinate

p [int] Order, can range between [1,2n+1]

signm [[1, -1], optional] Sign of prefactor of functions. Can be +/-1. See Notes.

signn [[1, -1], optional] Sign of prefactor of functions. Can be +/-1. See Notes.

Returns

E [float] the harmonic \(E_p^n(s)\)

See also:

ellip_harm_2, ellip_normal
Notes

The geometric interpretation of the ellipsoidal functions is explained in [2], [3], [4]. The `signm` and `signn` arguments control the sign of prefactors for functions according to their type:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>+1</td>
</tr>
<tr>
<td>L</td>
<td><code>signm</code></td>
</tr>
<tr>
<td>M</td>
<td><code>signn</code></td>
</tr>
<tr>
<td>N</td>
<td><code>signm</code>*<code>signn</code></td>
</tr>
</tbody>
</table>

New in version 0.15.0.

References

[1], [2], [3], [4]

Examples

```python
>>> from scipy.special import ellip_harm
>>> w = ellip_harm(5, 8, 1, 1, 2.5)
>>> w
2.5
```

Check that the functions indeed are solutions to the Lame equation:

```python
>>> from scipy.interpolate import UnivariateSpline
>>> def eigenvalue(f, df, ddf):
... r = ((s**2 - h**2)*(s**2 - k**2)*ddf + s*(2*s**2 - h**2 -
... k**2)*df - n*(n+1)*s**2*f)/f
... return -r.mean(), r.std()
... >>> s = np.linspace(0.1, 10, 200)
... >>> k, h, n, p = 8.0, 2.2, 3, 2
... >>> E = ellip_harm(h**2, k**2, n, p, s)
... >>> E_spl = UnivariateSpline(s, E)
... >>> a, a_err = eigenvalue(E_spl(s), E_spl(s, 1), E_spl(s, 2))
... >>> a, a_err
(583.44366156701483, 6.4580890640310646e-11)
```

`scipy.special.ellip_harm_2`

`scipy.special.ellip_harm_2(h2, k2, n, p, s)`

Ellipsoidal harmonic functions $F^p_n(l)$

These are also known as Lame functions of the second kind, and are solutions to the Lame equation:

$$(s^2 - h^2)(s^2 - k^2)F''(s) + s(2s^2 - h^2 - k^2)F'(s) + (a - qs^2)F(s) = 0$$

where $q = (n+1)n$ and $a$ is the eigenvalue (not returned) corresponding to the solutions.

**Parameters**

- **h2** [float] $h^2$
- **k2** [float] $k^2$; should be larger than $h^2$

Parameters

- \(n\) [int] Degree.
- \(p\) [int] Order, can range between \([1, 2n+1]\).
- \(s\) [float] Coordinate

Returns

- \(F\) [float] The harmonic \(F^p_n(s)\)

See also:

- `ellip_harm`, `ellip_normal`

Notes

Lame functions of the second kind are related to the functions of the first kind:

\[
F^p_n(s) = (2n + 1)E^p_n(s) \int_0^{1/s} \frac{du}{(E^p_n(1/u))^2 \sqrt{(1-u^2k^2)(1-u^2h^2)}}
\]

New in version 0.15.0.

Examples

```python
>>> from scipy.special import ellip_harm_2
>>> w = ellip_harm_2(5, 8, 2, 1, 10)
>>> w
0.00108056853382
```

scipy.special.ellip_normal

`scipy.special.ellip_normal(h2, k2, n, p)`

Ellipsoidal harmonic normalization constants \(\gamma^p_n\)

The normalization constant is defined as

\[
\gamma^p_n = 8 \int_0^{h} dx \int_h^{k} dy \frac{(y^2 - x^2)(E^p_n(y)E^p_n(x))^2}{\sqrt{(k^2 - y^2)(y^2 - h^2)(h^2 - x^2)(k^2 - x^2)}}
\]

Parameters

- \(h2\) [float] \(h^2\)
- \(k2\) [float] \(k^2\); should be larger than \(h^2\)
- \(n\) [int] Degree.
- \(p\) [int] Order, can range between \([1, 2n+1]\).

Returns

- \(gamma\) [float] The normalization constant \(\gamma^p_n\)

See also:

- `ellip_harm`, `ellip_harm_2`
Notes

New in version 0.15.0.

Examples

```python
>>> from scipy.special import ellip_normal
>>> w = ellip_normal(5, 8, 3, 7)
>>> w
1723.38796997
```

Orthogonal polynomials

The following functions evaluate values of orthogonal polynomials:

```python
assoc_laguerre(x, n[, k]) # Compute the generalized (associated) Laguerre polynomial of degree n and order k.
eval_legendre(n, x[, out]) # Evaluate Legendre polynomial at a point.
eval_chebyt(n, x[, out]) # Evaluate Chebyshev polynomial of the first kind at a point.
eval_chebyu(n, x[, out]) # Evaluate Chebyshev polynomial of the second kind at a point.
eval_chebyc(n, x[, out]) # Evaluate Chebyshev polynomial of the first kind on [-2, 2] at a point.
eval_chebys(n, x[, out]) # Evaluate Chebyshev polynomial of the second kind on [-2, 2] at a point.
eval_jacobi(n, alpha, beta, x[, out]) # Evaluate Jacobi polynomial at a point.
eval_laguerre(n, x[, out]) # Evaluate Laguerre polynomial at a point.
eval_genlaguerre(n, alpha, x[, out]) # Evaluate generalized Laguerre polynomial at a point.
eval_hermite(n, x[, out]) # Evaluate physicist's Hermite polynomial at a point.
eval_hermitenorm(n, x[, out]) # Evaluate probabilist's (normalized) Hermite polynomial at a point.
eval_gegenbauer(n, alpha, x[, out]) # Evaluate Gegenbauer polynomial at a point.
eval_sh_legendre(n, x[, out]) # Evaluate shifted Legendre polynomial at a point.
eval_sh_chebyt(n, x[, out]) # Evaluate shifted Chebyshev polynomial of the first kind at a point.
eval_sh_chebyu(n, x[, out]) # Evaluate shifted Chebyshev polynomial of the second kind at a point.
eval_sh_jacobi(n, p, q, x[, out]) # Evaluate shifted Jacobi polynomial at a point.
```

scipy.special.assoc_laguerre

Computes the generalized (associated) Laguerre polynomial of degree n and order k.

The polynomial \( L_n^{(k)}(x) \) is orthogonal over \([0, \infty)\), with weighting function \( \exp(-x) \times x^k \) with \( k > -1 \).
Notes

`assoc_laguerre` is a simple wrapper around `eval_genlaguerre`, with reversed argument order 
\((x, \ n, \ k=0.0) \rightarrow (n, \ k, \ x)\).

**scipy.special.eval_legendre**

`scipy.special.eval_legendre(n, x, out=None) = <ufunc 'eval_legendre'>`

Evaluate Legendre polynomial at a point.

The Legendre polynomials can be defined via the Gauss hypergeometric function \(2F_1\) as
\[
P_n(x) = \frac{\pi}{2} \frac{\Gamma(n+1)}{\Gamma(1/2)} \frac{\Gamma(n+1/2)}{\Gamma(n+1)} \frac{\Gamma(1-n)}{\Gamma(-n)} \, _2\!F_1\left(-n, n + 1; 1; \frac{1-x}{2}\right) .
\]

When \(n\) is an integer the result is a polynomial of degree \(n\). See 22.5.49 in \[AS\] for details.

**Parameters**

- **n** [array_like] Degree of the polynomial. If not an integer, the result is determined via the relation to the Gauss hypergeometric function.
- **x** [array_like] Points at which to evaluate the Legendre polynomial

**Returns**

- **P** [ndarray] Values of the Legendre polynomial

See also:

- `roots_legendre`
  roots and quadrature weights of Legendre polynomials
- `legendre`
  Legendre polynomial object
- `hyp2f1`
  Gauss hypergeometric function
- `numpy.polynomial.legendre.Legendre`
  Legendre series

**References**

\[AS\]

**Examples**

```python
>>> from scipy.special import eval_legendre
```

Evaluate the zero-order Legendre polynomial at \(x = 0\)

```python
>>> eval_legendre(0, 0)
1.0
```

Evaluate the first-order Legendre polynomial between -1 and 1

```python
>>> eval_legendre(1, 0)
1.0
```
Evaluate Legendre polynomials of order 0 through 4 at $x = 0$

```python
>>> X = np.linspace(-1, 1, 5) # Domain of Legendre polynomials
>>> eval_legendre(1, X)
array([-1. , -0.5, 0. , 0.5, 1.])
```

Plot Legendre polynomials of order 0 through 4

```python
>>> N = range(0, 5)
>>> eval_legendre(N, 0)
array([1. , 0. , -0.5 , 0. , 0.375])
```

```python
>>> X = np.linspace(-1, 1)

>>> import matplotlib.pyplot as plt
>>> for n in range(0, 5):
... y = eval_legendre(n, X)
... plt.plot(X, y, label=r'$P_{}(x)$'.format(n))

>>> plt.title("Legendre Polynomials")
>>> plt.xlabel("x")
>>> plt.ylabel(r'$P_n(x)$')
>>> plt.legend(loc='lower right')
>>> plt.show()
```
scipy.special.eval_chebyt

scipy.special.eval_chebyt(n, x, out=None) = <ufunc 'eval_chebyt'>

Evaluate Chebyshev polynomial of the first kind at a point.

The Chebyshev polynomials of the first kind can be defined via the Gauss hypergeometric function $2F_1$ as

$$T_n(x) = 2F_1(n, -n; 1/2; (1 - x)/2).$$

When $n$ is an integer the result is a polynomial of degree $n$. See 22.5.47 in [AS] for details.

Parameters

- **n** [array_like] Degree of the polynomial. If not an integer, the result is determined via the relation to the Gauss hypergeometric function.
- **x** [array_like] Points at which to evaluate the Chebyshev polynomial

Returns

- **T** [ndarray] Values of the Chebyshev polynomial

See also:

- roots_chebyt
  - roots and quadrature weights of Chebyshev polynomials of the first kind
- chebyu
  - Chebychev polynomial object
- eval_chebyu
  - evaluate Chebyshev polynomials of the second kind
- hyp2f1
  - Gauss hypergeometric function
- numpy.polynomial.chebyshev.Chebyshev
  - Chebyshev series

Notes

This routine is numerically stable for $x$ in $[-1, 1]$ at least up to order $10000$.

References

[AS]
scipy.special.eval_chebyu

scipy.special.eval_chebyu(n, x, out=None) = <ufunc 'eval_chebyu'>
Evaluate Chebyshev polynomial of the second kind at a point.

The Chebyshev polynomials of the second kind can be defined via the Gauss hypergeometric function \( _2F_1 \) as

\[
U_n(x) = (n + 1) \frac{\Gamma(n + 2)}{\Gamma(\frac{3}{2})} \, _2F_1(-n, n + 2; 3/2; (1 - x)/2).
\]

When \( n \) is an integer the result is a polynomial of degree \( n \). See 22.5.48 in [AS] for details.

Parameters

- \( n \) [array_like] Degree of the polynomial. If not an integer, the result is determined via the relation to the Gauss hypergeometric function.
- \( x \) [array_like] Points at which to evaluate the Chebyshev polynomial

Returns

- \( U \) [ndarray] Values of the Chebyshev polynomial

See also:

- roots_chebyu
  roots and quadrature weights of Chebyshev polynomials of the second kind
- chebyu
  Chebyshev polynomial object
- eval_chebyt
  evaluate Chebyshev polynomials of the first kind
- hyp2f1
  Gauss hypergeometric function

References

[AS]

scipy.special.eval_chebyc

scipy.special.eval_chebyc(n, x, out=None) = <ufunc 'eval_chebyc'>
Evaluate Chebyshev polynomial of the first kind on \([-2, 2]\] at a point.

These polynomials are defined as

\[
C_n(x) = 2T_n(x/2)
\]

where \( T_n \) is a Chebyshev polynomial of the first kind. See 22.5.11 in [AS] for details.

Parameters

- \( n \) [array_like] Degree of the polynomial. If not an integer, the result is determined via the relation to eval_chebyt.
- \( x \) [array_like] Points at which to evaluate the Chebyshev polynomial

Returns

- \( C \) [ndarray] Values of the Chebyshev polynomial
C  [ndarray] Values of the Chebyshev polynomial

See also:

roots_chebyc

roots and quadrature weights of Chebyshev polynomials of the first kind on [-2, 2]

chebyc

Chebyshev polynomial object

numpy.polynomial.chebyshev.Chebyshev

Chebyshev series

eval_chebyt

evaluate Chebyshev polynomials of the first kind

References

[AS]

Examples

```python
>>> import scipy.special as sc
```

They are a scaled version of the Chebyshev polynomials of the first kind.

```python
>>> x = np.linspace(-2, 2, 6)
>>> sc.eval_chebyc(3, x)
array([-2. , 1.872, 1.136, -1.136, -1.872, 2.])
>>> 2 * sc.eval_chebyt(3, x / 2)
array([-2. , 1.872, 1.136, -1.136, -1.872, 2.])
```

scipy.special.eval_chebys

scipy.special.eval_chebys(n, x, out=None) = <ufunc 'eval_chebys'>

Evaluate Chebyshev polynomial of the second kind on [-2, 2] at a point.

These polynomials are defined as

\[ S_n(x) = U_n(x/2) \]

where \( U_n \) is a Chebyshev polynomial of the second kind. See 22.5.13 in [AS] for details.

Parameters

- **n** [array_like] Degree of the polynomial. If not an integer, the result is determined via the relation to eval_chebyu.
- **x** [array_like] Points at which to evaluate the Chebyshev polynomial

Returns

- **S** [ndarray] Values of the Chebyshev polynomial

See also:
**roots_chebys**

roots and quadrature weights of Chebyshev polynomials of the second kind on [-2, 2]

**chebys**

Chebyshev polynomial object

**eval_chebyu**

evaluate Chebyshev polynomials of the second kind

**References**

[AS]

**Examples**

```python
>>> import scipy.special as sc
```

They are a scaled version of the Chebyshev polynomials of the second kind.

```python
>>> x = np.linspace(-2, 2, 6)
>>> sc.eval_chebys(3, x)
array([-4. , 0.672, 0.736, -0.736, -0.672, 4.])
>>> sc.eval_chebyu(3, x / 2)
array([-4. , 0.672, 0.736, -0.736, -0.672, 4.])
```

**scipy.special.eval_jacobi**

`scipy.special.eval_jacobi(n, alpha, beta, x, out=None)` = <ufunc 'eval_jacobi'>

Evaluate Jacobi polynomial at a point.

The Jacobi polynomials can be defined via the Gauss hypergeometric function \( _2F_1 \) as

\[
P_n^{\alpha,\beta}(x) = \frac{(\alpha + 1)_n}{\Gamma(n+1)} \, _2F_1(-n, 1 + \alpha + \beta + n; \alpha + 1; (1 - z)/2)
\]

where \((\cdot)_n\) is the Pochhammer symbol; see `poch`. When \(n\) is an integer the result is a polynomial of degree \(n\). See 22.5.42 in [AS] for details.

**Parameters**

- `n` [array_like] Degree of the polynomial. If not an integer the result is determined via the relation to the Gauss hypergeometric function.
- `alpha` [array_like] Parameter
- `beta` [array_like] Parameter
- `x` [array_like] Points at which to evaluate the polynomial

**Returns**

- `P` [ndarray] Values of the Jacobi polynomial

**See also:**

**roots_jacobi**

roots and quadrature weights of Jacobi polynomials
jacobi

Jacobi polynomial object

hyp2f1

Gauss hypergeometric function

References

[AS]

scipy.special.eval_laguerre

scipy.special.eval_laguerre(n, x, out=None) = <ufunc 'eval_laguerre'>

Evaluate Laguerre polynomial at a point.

The Laguerre polynomials can be defined via the confluent hypergeometric function \( _1F_1 \) as

\[
L_n(x) = _1F_1(-n, 1, x).
\]

See 22.5.16 and 22.5.54 in [AS] for details. When \( n \) is an integer the result is a polynomial of degree \( n \).

Parameters

- **n** [array_like] Degree of the polynomial. If not an integer the result is determined via the relation to the confluent hypergeometric function.
- **x** [array_like] Points at which to evaluate the Laguerre polynomial

Returns

- **L** [ndarray] Values of the Laguerre polynomial

See also:

roots_laguerre

roots and quadrature weights of Laguerre polynomials

laguerre

Laguerre polynomial object

numpy.polynomial.laguerre.Laguerre

Laguerre series

eval_genlaguerre

evaluate generalized Laguerre polynomials
References

[AS]

scipy.special.eval_genlaguerre

scipy.special.eval_genlaguerre(n, alpha, x, out=None) = <ufunc 'eval_genlaguerre'>

Evaluate generalized Laguerre polynomial at a point.

The generalized Laguerre polynomials can be defined via the confluent hypergeometric function \( {}_1F_1 \) as

\[
L_n^{(\alpha)}(x) = \binom{n + \alpha}{n} {}_1F_1(-n, \alpha + 1, x).
\]

When \( n \) is an integer the result is a polynomial of degree \( n \). See 22.5.54 in [AS] for details. The Laguerre polynomials are the special case where \( \alpha = 0 \).

Parameters

- n [array_like] Degree of the polynomial. If not an integer, the result is determined via the relation to the confluent hypergeometric function.
- alpha [array_like] Parameter; must have \( \alpha > -1 \)
- x [array_like] Points at which to evaluate the generalized Laguerre polynomial

Returns

- L [ndarray] Values of the generalized Laguerre polynomial

See also:

roots_genlaguerre

roots and quadrature weights of generalized Laguerre polynomials

genlaguerre

generalized Laguerre polynomial object

hyp1f1

confluent hypergeometric function

eval_laguerre

evaluate Laguerre polynomials

References

[AS]
scipy.special.eval_hermite

scipy.special.eval_hermite(n, x, out=None) = <ufunc 'eval_hermite'>
Evaluate physicist's Hermite polynomial at a point.
Defined by

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2};$$

$H_n$ is a polynomial of degree $n$. See 22.11.7 in [AS] for details.

Parameters

- n [array_like] Degree of the polynomial
- x [array_like] Points at which to evaluate the Hermite polynomial

Returns

- H [ndarray] Values of the Hermite polynomial

See also:

- roots_hermite
  roots and quadrature weights of physicist's Hermite polynomials
- hermite
  physicist's Hermite polynomial object
- numpy.polynomial.hermite.Hermite
  Physicist's Hermite series
- eval_hermitenorm
  evaluate Probabilist's Hermite polynomials

References

[AS]

scipy.special.eval_hermitenorm

scipy.special.eval_hermitenorm(n, x, out=None) = <ufunc 'eval_hermitenorm'>
Evaluate probabilist’s (normalized) Hermite polynomial at a point.
Defined by

$$He_n(x) = (-1)^n \frac{e^{x^2/2}}{\sqrt{\pi}} \frac{d^n}{dx^n} e^{-x^2/2};$$

$He_n$ is a polynomial of degree $n$. See 22.11.8 in [AS] for details.

Parameters

- n [array_like] Degree of the polynomial
- x [array_like] Points at which to evaluate the Hermite polynomial

Returns
He ndarray] Values of the Hermite polynomial

See also:

roots_hermitenorm
roots and quadrature weights of probabilist’s Hermite polynomials

hermitenorm
probabilist’s Hermite polynomial object

numpy.polynomial.hermite_e.HermiteE
Probabilist’s Hermite series
eval_hermite
evaluate physicist’s Hermite polynomials

References

[AS]

scipy.special.eval_gegenbauer

scipy.special.eval_gegenbauer(n, alpha, x, out=None) = <ufunc 'eval_gegenbauer'>
Evaluate Gegenbauer polynomial at a point.

The Gegenbauer polynomials can be defined via the Gauss hypergeometric function \( _2F_1 \) as

\[
C_n^{(\alpha)} = \frac{(2\alpha)_n}{\Gamma(n + 1)} _2F_1(-n, 2\alpha + n; \alpha + 1/2; (1 - z)/2).
\]

When \( n \) is an integer the result is a polynomial of degree \( n \). See 22.5.46 in [AS] for details.

Parameters

n [array_like] Degree of the polynomial. If not an integer, the result is determined via the relation to the Gauss hypergeometric function.

alpha [array_like] Parameter

x [array_like] Points at which to evaluate the Gegenbauer polynomial

Returns

C [ndarray] Values of the Gegenbauer polynomial

See also:

roots_gegenbauer
roots and quadrature weights of Gegenbauer polynomials
gegenbauer
Gegenbauer polynomial object
hyp2f1
Gauss hypergeometric function
References

[AS]

\texttt{scipy.special.eval\_sh\_legendre}

\texttt{scipy.special.eval\_sh\_legendre}(n, x, out=None) = <ufunc 'eval\_sh\_legendre'>

Evaluate shifted Legendre polynomial at a point.

These polynomials are defined as

\[ P_n^*(x) = P_n(2x - 1) \]

where \( P_n \) is a Legendre polynomial. See 2.2.11 in [AS] for details.

\textbf{Parameters}

\begin{itemize}
  \item \( n \) [array_like] Degree of the polynomial. If not an integer, the value is determined via the relation to \texttt{eval\_legendre}.
  \item \( x \) [array_like] Points at which to evaluate the shifted Legendre polynomial
\end{itemize}

\textbf{Returns}

\( P \) [ndarray] Values of the shifted Legendre polynomial

\textbf{See also:}

\texttt{roots\_sh\_legendre}

oots and quadrature weights of shifted Legendre polynomials

\texttt{sh\_legendre}
shifted Legendre polynomial object

\texttt{eval\_legendre}
evaluate Legendre polynomials

\texttt{numpy.polynomial.legendre.Legendre}
Legendre series

\textbf{References}

[AS]

\texttt{scipy.special.eval\_sh\_chebyt}

\texttt{scipy.special.eval\_sh\_chebyt}(n, x, out=None) = <ufunc 'eval\_sh\_chebyt'>

Evaluate shifted Chebyshev polynomial of the first kind at a point.

These polynomials are defined as

\[ T_n^*(x) = T_n(2x - 1) \]

where \( T_n \) is a Chebyshev polynomial of the first kind. See 22.5.14 in [AS] for details.

\textbf{Parameters}


\[ n \in \text{array_like} \] Degree of the polynomial. If not an integer, the result is determined via the relation to `eval_chebyt`.

\[ x \in \text{array_like} \] Points at which to evaluate the shifted Chebyshev polynomial

**Returns**

\[ T \in \text{ndarray} \] Values of the shifted Chebyshev polynomial

**See also:**

- `roots_sh_chebyt`
  - roots and quadrature weights of shifted Chebyshev polynomials of the first kind
- `sh_chebyt`
  - shifted Chebyshev polynomial object
- `eval_chebyt`
  - evaluate Chebyshev polynomials of the first kind
- `numpy.polynomial.chebyshev.Chebyshev`
  - Chebyshev series

**References**

[AS]

**scipy.special.eval_sh_chebyu**

`scipy.special.eval_sh_chebyu(n, x, out=None) = <ufunc 'eval_sh_chebyu'>`

Evaluate shifted Chebyshev polynomial of the second kind at a point.

These polynomials are defined as

\[ U_n^*(x) = U_n(2x - 1) \]

where \( U_n \) is a Chebyshev polynomial of the first kind. See 22.5.15 in [AS] for details.

**Parameters**

- \( n \in \text{array_like} \) Degree of the polynomial. If not an integer, the result is determined via the relation to `eval_chebyu`.

- \( x \in \text{array_like} \) Points at which to evaluate the shifted Chebyshev polynomial

**Returns**

- \( U \in \text{ndarray} \) Values of the shifted Chebyshev polynomial

**See also:**

- `roots_sh_chebyu`
  - roots and quadrature weights of shifted Chebyshev polynomials of the second kind
- `sh_chebyu`
  - shifted Chebyshev polynomial object
- `eval_chebyu`
  - evaluate Chebyshev polynomials of the second kind
References

[AS]

scipy.special.eval_sh_jacobi

scipy.special.eval_sh_jacobi(n, p, q, x, out=None) = <ufunc 'eval_sh_jacobi'>

Evaluate shifted Jacobi polynomial at a point.

Defined by

\[ G_n^{(p,q)}(x) = \binom{2n + p - 1}{n}^{-1} P_n^{(p-q,q-1)}(2x - 1), \]

where \( P_n^{(r,s)} \) is the n-th Jacobi polynomial. See 22.5.2 in [AS] for details.

Parameters

- n [int] Degree of the polynomial. If not an integer, the result is determined via the relation to binom and eval_jacobi.
- p [float] Parameter
- q [float] Parameter

Returns

- G [ndarray] Values of the shifted Jacobi polynomial.

See also:

- roots_sh_jacobi
  - roots and quadrature weights of shifted Jacobi polynomials
- sh_jacobi
  - shifted Jacobi polynomial object
- eval_jacobi
  - evaluate Jacobi polynomials

References

[AS]

The following functions compute roots and quadrature weights for orthogonal polynomials:

- roots_legendre(n[, mu]) Gauss-Legendre quadrature.
- roots_chebyshev(n[, mu]) Gauss-Chebyshev (first kind) quadrature.
- roots_chebyshev2(n[, mu]) Gauss-Chebyshev (second kind) quadrature.
- roots_jacobi(n, alpha, beta[, mu]) Gauss-Jacobi quadrature.
- roots_laguerre(n[, mu]) Gauss-Laguerre quadrature.
- roots_genlaguerre(n, alpha[, mu]) Gauss-generalized Laguerre quadrature.
- roots_hermite(n[, mu]) Gauss-Hermite (physicist’s) quadrature.

continues on next page
Table 249 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>roots_hermitenorm(n[, mu])</code></td>
<td>Gauss-Hermite (statistician’s) quadrature.</td>
</tr>
<tr>
<td><code>roots_gegenbauer(n, alpha[, mu])</code></td>
<td>Gauss-Gegenbauer quadrature.</td>
</tr>
<tr>
<td><code>roots_sh_legendre(n[, mu])</code></td>
<td>Gauss-Legendre (shifted) quadrature.</td>
</tr>
<tr>
<td><code>roots_sh_chebyt(n[, mu])</code></td>
<td>Gauss-Chebyshev (first kind, shifted) quadrature.</td>
</tr>
<tr>
<td><code>roots_sh_chebyu(n[, mu])</code></td>
<td>Gauss-Chebyshev (second kind, shifted) quadrature.</td>
</tr>
<tr>
<td><code>roots_sh_jacobi(n, p1, q1[, mu])</code></td>
<td>Gauss-Jacobi (shifted) quadrature.</td>
</tr>
</tbody>
</table>

scipy.special.roots_legendre

**scipy.special.roots_legendre**(n, mu=False)

Gauss-Legendre quadrature.

Compute the sample points and weights for Gauss-Legendre quadrature [GL]. The sample points are the roots of the nth degree Legendre polynomial \( P_n(x) \). These sample points and weights correctly integrate polynomials of degree \( 2n - 1 \) or less over the interval \([-1, 1]\) with weight function \( w(x) = 1 \). See 2.2.10 in [AS] for more details.

**Parameters**

- **n** [int] quadrature order
- **mu** [bool, optional] If True, return the sum of the weights, optional.

**Returns**

- **x** [ndarray] Sample points
- **w** [ndarray] Weights
- **mu** [float] Sum of the weights

See also:

- `scipy.integrate.quadrature`
- `scipy.integrate.fixed_quad`
- `numpy.polynomial.legendre.leggauss`

**References**

[AS], [GL]

**Examples**

```python
>>> from scipy.special import roots_legendre, eval_legendre

>>> roots, weights = roots_legendre(9)

roots holds the roots, and weights holds the weights for Gauss-Legendre quadrature.
```

```python
>>> roots
array([-0.96816024, -0.83603111, -0.61337143, -0.32425342, 0.,
 0.32425342, 0.61337143, 0.83603111, 0.96816024])

>>> weights
array([0.08127439, 0.18064816, 0.2606107 , 0.31234708, 0.33023936,
 0.31234708, 0.2606107 , 0.18064816, 0.08127439])
```
Verify that we have the roots by evaluating the degree 9 Legendre polynomial at \texttt{roots}. All the values are approximately zero:

\begin{verbatim}
>>> eval_legendre(9, roots)
array([-8.88178420e-16, -2.22044605e-16, 1.11022302e-16, 1.11022302e-16,
    0.00000000e+00, -5.55111512e-17, -1.94289029e-16, 1.38777878e-16,
   -8.32667268e-17])
\end{verbatim}

Here we’ll show how the above values can be used to estimate the integral from 1 to 2 of \( f(t) = t + 1/t \) with Gauss-Legendre quadrature \([GL]\). First define the function and the integration limits.

\begin{verbatim}
>>> def f(t):
...     return t + 1/t
...
>>> a = 1
>>> b = 2
\end{verbatim}

We’ll use \texttt{integral(f(t), t=a, t=b)} to denote the definite integral of \( f \) from \( t=a \) to \( t=b \). The sample points in \texttt{roots} are from the interval \([-1, 1]\), so we’ll rewrite the integral with the simple change of variable:

\[
x = \frac{2}{b - a} \cdot t - \frac{a + b}{b - a}
\]

with inverse:

\[
t = \frac{(b - a)/2 \cdot x + (a + 2)/2}{x = -1, x = 1}
\]

Then:

\[
\text{integral}(f(t), a, b) = \frac{(b - a)/2 \cdot \text{integral}(f((b-a)/2 \cdot x + (a+b)/2), x=-1, x=1)}{x = -1, x = 1}
\]

We can approximate the latter integral with the values returned by \texttt{roots_legendre}.

Map the roots computed above from \([-1, 1]\) to \([a, b]\).

\begin{verbatim}
>>> t = (b - a)/2 * roots + (a + b)/2
\end{verbatim}

Approximate the integral as the weighted sum of the function values.

\begin{verbatim}
>>> (b - a)/2 * f(t).dot(weights)
2.1931471805599276
\end{verbatim}

Compare that to the exact result, which is \( 3/2 + \log(2) \):

\begin{verbatim}
>>> 1.5 + np.log(2)
2.1931471805599454
\end{verbatim}
scipy.special.roots_chebyt

scipy.special.roots_chebyt(n, mu=False)

Gauss-Chebyshev (first kind) quadrature.
Computes the sample points and weights for Gauss-Chebyshev quadrature. The sample points are the roots of the nth degree Chebyshev polynomial of the first kind, \( T_n(x) \). These sample points and weights correctly integrate polynomials of degree \( 2n - 1 \) or less over the interval \([-1, 1]\) with weight function \( w(x) = \frac{1}{\sqrt{1 - x^2}} \). See 22.2.4 in [AS] for more details.

Parameters

- \( n \) [int] quadrature order
- \( mu \) [bool, optional] If True, return the sum of the weights, optional.

Returns

- \( x \) [ndarray] Sample points
- \( w \) [ndarray] Weights
- \( mu \) [float] Sum of the weights

See also:

scipy.integrate.quadrature
scipy.integrate.fixed_quad
numpy.polynomial.chebyshev.chebgauss

References

[AS]

scipy.special.roots_chebyu

scipy.special.roots_chebyu(n, mu=False)

Gauss-Chebyshev (second kind) quadrature.
Computes the sample points and weights for Gauss-Chebyshev quadrature. The sample points are the roots of the nth degree Chebyshev polynomial of the second kind, \( U_n(x) \). These sample points and weights correctly integrate polynomials of degree \( 2n - 1 \) or less over the interval \([-1, 1]\) with weight function \( w(x) = \sqrt{1 - x^2} \). See 22.2.5 in [AS] for details.

Parameters

- \( n \) [int] quadrature order
- \( mu \) [bool, optional] If True, return the sum of the weights, optional.

Returns

- \( x \) [ndarray] Sample points
- \( w \) [ndarray] Weights
- \( mu \) [float] Sum of the weights

See also:

scipy.integrate.quadrature
scipy.integrate.fixed_quad
scipy.special.roots_chebyc

Compute the sample points and weights for Gauss-Chebyshev quadrature. The sample points are the roots of the
nth degree Chebyshev polynomial of the first kind, \( C_n(x) \). These sample points and weights correctly integrate
degree 2n – 1 or less over the interval \([-2, 2]\) with weight function \( w(x) = 1/\sqrt{1 - (x/2)^2} \). See
22.2.6 in [AS] for more details.

Parameters

\( n \) : [int] quadrature order
\( mu \) : [bool, optional] If True, return the sum of the weights, optional.

Returns

\( x \) : [ndarray] Sample points
\( w \) : [ndarray] Weights
\( mu \) : [float] Sum of the weights

See also:

scipy.integrate.quadrature
scipy.integrate.fixed_quad

scipy.special.roots_chebys

Compute the sample points and weights for Gauss-Chebyshev quadrature. The sample points are the roots of the
nth degree Chebyshev polynomial of the second kind, \( S_n(x) \). These sample points and weights correctly integrate
degree 2n – 1 or less over the interval \([-2, 2]\) with weight function \( w(x) = \sqrt{1 - (x/2)^2} \). See
22.2.7 in [AS] for more details.

Parameters

\( n \) : [int] quadrature order
\( mu \) : [bool, optional] If True, return the sum of the weights, optional.

Returns

\( x \) : [ndarray] Sample points
\( w \) : [ndarray] Weights
\( mu \) : [float] Sum of the weights

See also:
**scipy.integrate.quadrature**  
**scipy.integrate.fixed_quad**

References

[AS]

**scipy.special.roots_jacobi**

```python
def scipy.special.roots_jacobi(n, alpha, beta, mu=False):
 # Gauss-Jacobi quadrature.
 Compute the sample points and weights for Gauss-Jacobi quadrature. The sample points are the roots of the nth degree Jacobi polynomial, $P_n^{\alpha,\beta}(x)$. These sample points and weights correctly integrate polynomials of degree $2n - 1$ or less over the interval $[-1, 1]$ with weight function $w(x) = (1-x)^\alpha(1+x)^\beta$. See 22.2.1 in [AS] for details.

Parameters

- `n` [int] quadrature order
- `alpha` [float] alpha must be > -1
- `beta` [float] beta must be > -1
- `mu` [bool, optional] If True, return the sum of the weights, optional.

Returns

- `x` [ndarray] Sample points
- `w` [ndarray] Weights
- `mu` [float] Sum of the weights

See also:

scipy.integrate.quadrature
scipy.integrate.fixed_quad

References

[AS]

scipy.special.roots_laguerre

```python
def scipy.special.roots_laguerre(n, mu=False):
    # Gauss-Laguerre quadrature.
    Compute the sample points and weights for Gauss-Laguerre quadrature. The sample points are the roots of the nth degree Laguerre polynomial, $L_n(x)$. These sample points and weights correctly integrate polynomials of degree $2n - 1$ or less over the interval $[0, \infty]$ with weight function $w(x) = e^{-x}$. See 22.2.13 in [AS] for details.

Parameters

- `n` [int] quadrature order
- `mu` [bool, optional] If True, return the sum of the weights, optional.

Returns

- `x` [ndarray] Sample points
- `w` [ndarray] Weights
- `mu` [float] Sum of the weights
```

See also:

scipy.integrate.quadrature
scipy.integrate.fixed_quad

```python
x [ndarray] Sample points
w [ndarray] Weights
mu [float] Sum of the weights

See also:

scipy.integrate.quadrature
scipy.integrate.fixed_quad
numpy.polynomial.laguerre.laggauss

References

[AS]
```

scipy.special.roots_genlaguerre

```python
scipy.special.roots_genlaguerre(n, alpha, mu=False)
```

Gauss-generalized Laguerre quadrature.

Compute the sample points and weights for Gauss-generalized Laguerre quadrature. The sample points are the roots of the nth degree generalized Laguerre polynomial, \(L_α^n(x) \). These sample points and weights correctly integrate polynomials of degree \(2n - 1 \) or less over the interval \([0, \infty]\) with weight function \(w(x) = x^α e^{-x} \). See 22.3.9 in [AS] for details.

Parameters

- n [int] quadrature order
- alpha [float] alpha must be > -1
- mu [bool, optional] If True, return the sum of the weights, optional.

Returns

- x [ndarray] Sample points
- w [ndarray] Weights
- mu [float] Sum of the weights

See also:

scipy.integrate.quadrature
scipy.integrate.fixed_quad

References

[AS]
scipy.special.roots_hermite

scipy.special.roots_hermite(n, mu=False)

Gauss-Hermite (physicist’s) quadrature.

Compute the sample points and weights for Gauss-Hermite quadrature. The sample points are the roots of the nth degree Hermite polynomial, \(H_n(x) \). These sample points and weights correctly integrate polynomials of degree \(2n - 1 \) or less over the interval \([-\infty, \infty]\) with weight function \(w(x) = e^{-x^2} \). See 22.2.14 in [AS] for details.

Parameters

- **n** [int] quadrature order
- **mu** [bool, optional] If True, return the sum of the weights, optional.

Returns

- **x** [ndarray] Sample points
- **w** [ndarray] Weights
- **mu** [float] Sum of the weights

See also:

- `scipy.integrate.quadrature`
- `scipy.integrate.fixed_quad`
- `numpy.polynomial.hermite.hermgauss`
- `roots_hermitenorm`

Notes

For small n up to 150 a modified version of the Golub-Welsch algorithm is used. Nodes are computed from the eigenvalue problem and improved by one step of a Newton iteration. The weights are computed from the well-known analytical formula.

For n larger than 150 an optimal asymptotic algorithm is applied which computes nodes and weights in a numerically stable manner. The algorithm has linear runtime making computation for very large n (several thousand or more) feasible.

References

[townsend.trogdon.olver-2014], [townsend.trogdon.olver-2015], [AS]

scipy.special.roots_hermitenorm

scipy.special.roots_hermitenorm(n, mu=False)

Gauss-Hermite (statistician's) quadrature.

Compute the sample points and weights for Gauss-Hermite quadrature. The sample points are the roots of the nth degree Hermite polynomial, \(H_e_n(x) \). These sample points and weights correctly integrate polynomials of degree \(2n - 1 \) or less over the interval \([-\infty, \infty]\) with weight function \(w(x) = e^{-x^2/2} \). See 22.2.15 in [AS] for more details.

Parameters

- **n** [int] quadrature order
mu [bool, optional] If True, return the sum of the weights, optional.

Returns

- x [ndarray] Sample points
- w [ndarray] Weights
- mu [float] Sum of the weights

See also:

- scipy.integrate.quadrature
- scipy.integrate.fixed_quad
- numpy.polynomial.hermite_e.hermgauss

Notes

For small n up to 150 a modified version of the Golub-Welsch algorithm is used. Nodes are computed from the eigenvalue problem and improved by one step of a Newton iteration. The weights are computed from the well-known analytical formula.

For n larger than 150 an optimal asymptotic algorithm is used which computes nodes and weights in a numerical stable manner. The algorithm has linear runtime making computation for very large n (several thousand or more) feasible.

References

[AS]

scipy.special.roots_gegenbauer

scipy.special.roots_gegenbauer (n, alpha, mu=False)

Gauss-Gegenbauer quadrature.

Compute the sample points and weights for Gauss-Gegenbauer quadrature. The sample points are the roots of the nth degree Gegenbauer polynomial, \(C_n^\alpha(x) \). These sample points and weights correctly integrate polynomials of degree 2n − 1 or less over the interval \([-1, 1]\) with weight function \(w(x) = (1 - x^2)^{\alpha - 1/2} \). See 22.2.3 in [AS] for more details.

Parameters

- n [int] quadrature order
- alpha [float] alpha must be > -0.5
- mu [bool, optional] If True, return the sum of the weights, optional.

Returns

- x [ndarray] Sample points
- w [ndarray] Weights
- mu [float] Sum of the weights

See also:

- scipy.integrate.quadrature
- scipy.integrate.fixed_quad
References

[AS]

scipy.special.roots_sh_legendre

scipy.special.roots_sh_legendre(n, mu=False)

Gauss-Legendre (shifted) quadrature.

Compute the sample points and weights for Gauss-Legendre quadrature. The sample points are the roots of the nth degree shifted Legendre polynomial $P_n^*(x)$. These sample points and weights correctly integrate polynomials of degree $2n - 1$ or less over the interval $[0, 1]$ with weight function $w(x) = 1$. See 2.2.11 in [AS] for details.

Parameters

- n [int] quadrature order
- mu [bool, optional] If True, return the sum of the weights, optional.

Returns

- x [ndarray] Sample points
- w [ndarray] Weights
- mu [float] Sum of the weights

See also:

scipy.integrate.quadrature
scipy.integrate.fixed_quad

References

[AS]

scipy.special.roots_sh_chebyt

scipy.special.roots_sh_chebyt(n, mu=False)

Gauss-Chebyshev (first kind, shifted) quadrature.

Compute the sample points and weights for Gauss-Chebyshev quadrature. The sample points are the roots of the nth degree shifted Chebyshev polynomial of the first kind, $T_n(x)$. These sample points and weights correctly integrate polynomials of degree $2n - 1$ or less over the interval $[0, 1]$ with weight function $w(x) = 1/\sqrt{x - x^2}$. See 22.2.8 in [AS] for more details.

Parameters

- n [int] quadrature order
- mu [bool, optional] If True, return the sum of the weights, optional.

Returns

- x [ndarray] Sample points
- w [ndarray] Weights
- mu [float] Sum of the weights

See also:
scipy.integrate.quadrature
scipy.integrate.fixed_quad

References

[AS]

scipy.special.roots_sh_chebyu

scipy.special.roots_sh_chebyu(n, mu=False)
Gauss-Chebyshev (second kind, shifted) quadrature.

Computes the sample points and weights for Gauss-Chebyshev quadrature. The sample points are the roots of the nth degree shifted Chebyshev polynomial of the second kind, \(U_n(x) \). These sample points and weights correctly integrate polynomials of degree \(2n - 1 \) or less over the interval \([0, 1]\) with weight function \(w(x) = \sqrt{x - x^2} \). See 22.2.9 in [AS] for more details.

Parameters

- **n** [int] quadrature order
- **mu** [bool, optional] If True, return the sum of the weights, optional.

Returns

- **x** [ndarray] Sample points
- **w** [ndarray] Weights
- **mu** [float] Sum of the weights

See also:

scipy.integrate.quadrature
scipy.integrate.fixed_quad

References

[AS]

scipy.special.roots_sh_jacobi

scipy.special.roots_sh_jacobi(n, p1, q1, mu=False)
Gauss-Jacobi (shifted) quadrature.

Compute the sample points and weights for Gauss-Jacobi (shifted) quadrature. The sample points are the roots of the nth degree shifted Jacobi polynomial, \(G_{n}^{p,q}(x) \). These sample points and weights correctly integrate polynomials of degree \(2n - 1 \) or less over the interval \([0, 1]\) with weight function \(w(x) = (1 - x)^{p-1}x^q \). See 22.2.2 in [AS] for details.

Parameters

- **n** [int] quadrature order
- **p1** [float] \((p1 - q1)\) must be > -1
- **q1** [float] \(q1\) must be > 0
- **mu** [bool, optional] If True, return the sum of the weights, optional.
Returns

- \(\mathbf{x} \) [ndarray] Sample points
- \(\mathbf{w} \) [ndarray] Weights
- \(\mu \) [float] Sum of the weights

See also:

scipy.integrate.quadrature
scipy.integrate.fixed_quad

References

[AS]

The functions below, in turn, return the polynomial coefficients in orthopoly1d objects, which function similarly as numpy.poly1d. The orthopoly1d class also has an attribute weights, which returns the roots, weights, and total weights for the appropriate form of Gaussian quadrature. These are returned in an \(n \times 3 \) array with roots in the first column, weights in the second column, and total weights in the final column. Note that orthopoly1d objects are converted to poly1d when doing arithmetic, and lose information of the original orthogonal polynomial.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>legendre(n[, monic])</td>
<td>Legendre polynomial.</td>
</tr>
<tr>
<td>chebyt(n[, monic])</td>
<td>Chebyshev polynomial of the first kind.</td>
</tr>
<tr>
<td>chebyu(n[, monic])</td>
<td>Chebyshev polynomial of the second kind.</td>
</tr>
<tr>
<td>chebys(n[, monic])</td>
<td>Chebyshev polynomial of the first kind on ([-2, 2]).</td>
</tr>
<tr>
<td>chebys(n[, monic])</td>
<td>Chebyshev polynomial of the second kind on ([-2, 2]).</td>
</tr>
<tr>
<td>jacobi(n, alpha, beta[, monic])</td>
<td>Jacobi polynomial.</td>
</tr>
<tr>
<td>laguerre(n[, monic])</td>
<td>Laguerre polynomial.</td>
</tr>
<tr>
<td>genlaguerre(n, alpha[, monic])</td>
<td>Generalized (associated) Laguerre polynomial.</td>
</tr>
<tr>
<td>hermite(n[, monic])</td>
<td>Physicist’s Hermite polynomial.</td>
</tr>
<tr>
<td>hermitenorm(n[, monic])</td>
<td>Normalized (probabilist’s) Hermite polynomial.</td>
</tr>
<tr>
<td>gegenbauer(n, alpha[, monic])</td>
<td>Gegenbauer (ultraspherical) polynomial.</td>
</tr>
<tr>
<td>sh_legendre(n[, monic])</td>
<td>Shifted Legendre polynomial.</td>
</tr>
<tr>
<td>sh_chebyt(n[, monic])</td>
<td>Shifted Chebyshev polynomial of the first kind.</td>
</tr>
<tr>
<td>sh_chebyu(n[, monic])</td>
<td>Shifted Chebyshev polynomial of the second kind.</td>
</tr>
<tr>
<td>sh_jacobi(n, p, q[, monic])</td>
<td>Shifted Jacobi polynomial.</td>
</tr>
</tbody>
</table>

scipy.special.legendre

scipy.special.legendre(n, monic=False)

Legends polynomial.

Defined to be the solution of

\[
\frac{d}{dx} \left((1 - x^2) \frac{d}{dx} P_n(x) \right) + n(n + 1) P_n(x) = 0;
\]

\(P_n(x) \) is a polynomial of degree \(n \).

Parameters

- \(n \) [int] Degree of the polynomial.
- \(\text{monic} \) [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

\[P \] [orthopoly1d] Legendre polynomial.

Notes

The polynomials \(P_n \) are orthogonal over \([-1, 1]\) with weight function 1.

Examples

Generate the 3rd-order Legendre polynomial \(\frac{1}{2} (5x^3 + 0x^2 - 3x + 0) \):

```python
>>> from scipy.special import legendre
>>> legendre(3)
poly1d([2.5, 0., -1.5, 0.])
```

scipy.special.chebyt

scipy.special.chebyt \((n, \text{monic}=False)\)

Chebyshev polynomial of the first kind.

Defined to be the solution of

\[
(1 - x^2) \frac{d^2}{dx^2} T_n - x \frac{d}{dx} T_n + n^2 T_n = 0;
\]

\(T_n \) is a polynomial of degree \(n \).

Parameters

- \(n \) [int] Degree of the polynomial.
- \(\text{monic} \) [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

- \(T \) [orthopoly1d] Chebyshev polynomial of the first kind.

See also:

chebyu

Chebyshev polynomial of the second kind.

Notes

The polynomials \(T_n \) are orthogonal over \([-1, 1]\) with weight function \((1 - x^2)^{-1/2}\).
References

[AS]

Examples

Chebyshev polynomials of the first kind of order \(n \) can be obtained as the determinant of specific \(n \times n \) matrices. As an example we can check how the points obtained from the determinant of the following \(3 \times 3 \) matrix lay exactly on \(T_3 \):

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.linalg import det
>>> from scipy.special import chebyt
>>> x = np.arange(-1.0, 1.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(-2.0, 2.0)
>>> ax.set_title(r'Chebyshev polynomial $T_3$')
>>> ax.plot(x, chebyt(3)(x), label=rf'$T_3$')
>>> for p in np.arange(-1.0, 1.0, 0.1):
...     ax.plot(p,
...     det(np.array([[p, 1, 0], [1, 2*p, 1], [0, 1, 2*p]])),
...     'rx')
>>> plt.legend(loc='best')
>>> plt.show()
```

They are also related to the Jacobi Polynomials \(P_n^{(-0.5,-0.5)} \) through the relation:

\[
P_n^{(-0.5,-0.5)}(x) = \frac{1}{4^n} \binom{2n}{n} T_n(x)
\]

Let's verify it for \(n = 3 \):

```python
>>> from scipy.special import binom
>>> from scipy.special import chebyt
```
We can plot the Chebyshev polynomials T_n for some values of n:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.special import chebyt
>>> x = np.arange(-1.5, 1.5, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(-4.0, 4.0)
>>> ax.set_title(r'Chebyshev polynomials $T_n$')
>>> for n in np.arange(2, 5):
...    ax.plot(x, chebyt(n)(x), label=rf'$T_n={n}$')
>>> plt.legend(loc='best')
>>> plt.show()
```

scipy.special.chebyu

`scipy.special.chebyu(n, monic=False)`

Chebyshev polynomial of the second kind.

Defined to be the solution of

$$(1 - x^2) \frac{d^2}{dx^2} U_n - 3x \frac{d}{dx} U_n + n(n+2)U_n = 0;$$

U_n is a polynomial of degree n.

Parameters

- `n` [int] Degree of the polynomial.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

U[orthopoly1d] Chebyshev polynomial of the second kind.

See also:

chebyt

Chebyshev polynomial of the first kind.

Notes

The polynomials U_n are orthogonal over $[-1, 1]$ with weight function $(1 - x^2)^{1/2}$.

References

[AS]

Examples

Chebyshev polynomials of the second kind of order n can be obtained as the determinant of specific $n \times n$ matrices. As an example we can check how the points obtained from the determinant of the following 3×3 matrix lay exactly on U_3:

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.linalg import det
>>> from scipy.special import chebyu
>>> x = np.arange(-1.0, 1.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(-2.0, 2.0)
>>> ax.set_title(r'Chebyshev polynomial $U_3$')
>>> ax.plot(x, chebyu(3)(x), label='U_3')
>>> for p in np.arange(-1.0, 1.0, 0.1):
...     det(np.array([[2*p, 1, 0], [1, 2*p, 1], [0, 1, 2*p]])),
...     'rx')
>>> plt.legend(loc='best')
>>> plt.show()
```

They satisfy the recurrence relation:

$$U_{2n-1}(x) = 2T_n(x)U_{n-1}(x)$$

where the T_n are the Chebyshev polynomial of the first kind. Let’s verify it for $n = 2$:

```python
>>> from scipy.special import chebyt
>>> from scipy.special import chebyu
>>> x = np.arange(-1.0, 1.0, 0.01)
>>> np.allclose(chebyu(3)(x), 2 * chebyt(2)(x) * chebyu(1)(x))
True
```

We can plot the Chebyshev polynomials U_n for some values of n:

```python
>>> for n in range(5):
...     x = np.arange(-1.0, 1.0, 0.01)
...     plt.plot(x, chebyu(n)(x), label=f'$U_{n}$')
>>> plt.legend()
>>> plt.show()
```
>>> import matplotlib.pyplot as plt
>>> from scipy.special import chebyu
>>> x = np.arange(-1.0, 1.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(-1.5, 1.5)
>>> ax.set_title(r'Chebyshev polynomials U_n')
>>> for n in np.arange(1, 5):
... ax.plot(x, chebyu(n)(x), label=rf'$U_n={n}$')
>>> plt.legend(loc='best')
>>> plt.show()
scipy.special.chebyc

`scipy.special.chebyc(n, monic=False)`

Chebyshev polynomial of the first kind on $[-2, 2]$.

Defined as $C_n(x) = 2T_n(x/2)$, where T_n is the nth Chebychev polynomial of the first kind.

Parameters

- `n` [int] Degree of the polynomial.
- `monic` [bool, optional] If `True`, scale the leading coefficient to be 1. Default is `False`.

Returns

- `C` [orthopoly1d] Chebyshev polynomial of the first kind on $[-2, 2]$.

See also:

- `chebyt`
 Chebyshev polynomial of the first kind.

Notes

The polynomials $C_n(x)$ are orthogonal over $[-2, 2]$ with weight function $1/\sqrt{1-(x/2)^2}$.

References

[1]

scipy.special.chebys

`scipy.special.chebys(n, monic=False)`

Chebyshev polynomial of the second kind on $[-2, 2]$.

Defined as $S_n(x) = U_n(x/2)$ where U_n is the nth Chebychev polynomial of the second kind.

Parameters

- `n` [int] Degree of the polynomial.
- `monic` [bool, optional] If `True`, scale the leading coefficient to be 1. Default is `False`.

Returns

- `S` [orthopoly1d] Chebyshev polynomial of the second kind on $[-2, 2]$.

See also:

- `chebyu`
 Chebyshev polynomial of the second kind
Notes

The polynomials $S_n(x)$ are orthogonal over $[-2, 2]$ with weight function $\sqrt{1 - (x/2)^2}$.

References

[1]

scipy.special.jacobi

scipy.special.jacobi(n, $alpha$, $beta$, monic=False)

Jacobi polynomial.

defined to be the solution of

$$(1 - x^2) \frac{d^2}{dx^2} P_n^{(\alpha,\beta)} + (\beta - \alpha - (\alpha + \beta + 2)x) \frac{d}{dx} P_n^{(\alpha,\beta)} + n(n + \alpha + \beta + 1)P_n^{(\alpha,\beta)} = 0$$

for $\alpha, \beta > -1$; $P_n^{(\alpha,\beta)}$ is a polynomial of degree n.

Parameters

n [int] Degree of the polynomial.
$alpha$ [float] Parameter, must be greater than -1.
$beta$ [float] Parameter, must be greater than -1.
monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

P [orthopoly1d] Jacobi polynomial.

Notes

For fixed α, β, the polynomials $P_n^{(\alpha,\beta)}$ are orthogonal over $[-1, 1]$ with weight function $(1 - x)^{\alpha}(1 + x)^{\beta}$.

References

[AS]

Examples

The Jacobi polynomials satisfy the recurrence relation:

$P_n^{(\alpha,\beta-1)}(x) - P_n^{(\alpha-1,\beta)}(x) = P_{n-1}^{(\alpha,\beta)}(x)$

This can be verified, for example, for $\alpha = \beta = 2$ and $n = 1$ over the interval $[-1, 1]$:

```python
>>> import numpy as np
d >>> from scipy.special import jacobi
d >>> x = np.arange(-1.0, 1.0, 0.01)
d >>> np.allclose(jacobi(0, 2, 2)(x),
... jacobi(0, 2, 2)(x) - jacobi(1, 2, 1)(x) - jacobi(1, 1, 2)(x))
True
```
Plot of the Jacobi polynomial $P_5^{(\alpha,-0.5)}$ for different values of α:

```python
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from scipy.special import jacobi
>>> x = np.arange(-1.0, 1.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(-2.0, 2.0)
>>> ax.set_title(r'$Jacobi polynomials P_5^{(\alpha, -0.5)}$')
>>> for alpha in np.arange(0, 4, 1):
...    ax.plot(x, jacobi(5, alpha, -0.5)(x), label=rf'$\alpha={alpha}$')
>>> plt.legend(loc='best')
>>> plt.show()
```

Scipy.special.laguerre

Scipy.special.laguerre (n, monic=False)

Laguerre polynomial.

Defined to be the solution of

$$x \frac{d^2}{dx^2} L_n + (1-x) \frac{d}{dx} L_n + n L_n = 0;$$

L_n is a polynomial of degree n.

Parameters

- **n** [int] Degree of the polynomial.
- **monic** [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

- **L** [orthopoly1d] Laguerre Polynomial.

See also:
genlaguerre

Generalized (associated) Laguerre polynomial.

Notes

The polynomials \(L_n \) are orthogonal over \([0, \infty)\) with weight function \(e^{-x} \).

References

[AS]

Examples

The Laguerre polynomials \(L_n \) are the special case \(\alpha = 0 \) of the generalized Laguerre polynomials \(L_n^{(\alpha)} \). Let’s verify it on the interval \([-1, 1]\):

```python
>>> from scipy.special import genlaguerre
>>> from scipy.special import laguerre
>>> x = np.arange(-1.0, 1.0, 0.01)
>>> np.allclose(genlaguerre(3, 0)(x), laguerre(3)(x))
True
```

The polynomials \(L_n \) also satisfy the recurrence relation:

\[
(n + 1)L_{n+1}(x) = (2n + 1 - x)L_n(x) - nL_{n-1}(x)
\]

This can be easily checked on \([0, 1]\) for \(n = 3 \):

```python
>>> from scipy.special import laguerre
>>> x = np.arange(0.0, 1.0, 0.01)
>>> np.allclose(4 * laguerre(4)(x),
...             (7 - x) * laguerre(3)(x) - 3 * laguerre(2)(x))
True
```

This is the plot of the first few Laguerre polynomials \(L_n \):

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.special import laguerre
>>> x = np.arange(-1.0, 5.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_xlim(-5.0, 5.0)
>>> ax.set_title(r'Laguerre polynomials $L_n$')
>>> for n in np.arange(0, 5):
...     ax.plot(x, laguerre(n)(x), label=rf'$L_{n}$')
>>> plt.legend(loc='best')
>>> plt.show()
```
scipy.special.genlaguerre

scipy.special.genlaguerre(n, alpha, monic=False)

Generalized (associated) Laguerre polynomial.

Defined to be the solution of

\[x \frac{d^2}{dx^2} L_n^{(\alpha)} + (\alpha + 1 - x) \frac{d}{dx} L_n^{(\alpha)} + n L_n^{(\alpha)} = 0, \]

where \(\alpha > -1; L_n^{(\alpha)} \) is a polynomial of degree \(n \).

Parameters

- **n** [int] Degree of the polynomial.
- **alpha** [float] Parameter, must be greater than -1.
- **monic** [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

- **L** [orthopoly1d] Generalized Laguerre polynomial.

See also:

- **laguerre**

 Laguerre polynomial.

- **hyp1f1**

 confluent hypergeometric function
Notes

For fixed \(\alpha \), the polynomials \(L_n^{(\alpha)} \) are orthogonal over \([0, \infty)\) with weight function \(e^{-x}x^{\alpha} \).
The Laguerre polynomials are the special case where \(\alpha = 0 \).

References

[AS]

Examples

The generalized Laguerre polynomials are closely related to the confluent hypergeometric function \(\, _1F_1 \):

\[
L_n^{(\alpha)} = \binom{n + \alpha}{n} \, _1F_1(-n, \alpha + 1, x)
\]

This can be verified, for example, for \(n = \alpha = 3 \) over the interval \([-1, 1]\):

```
>>> from scipy.special import binom
>>> from scipy.special import genlaguerre
>>> from scipy.special import hyp1f1
>>> x = np.arange(-1.0, 1.0, 0.01)
>>> np.allclose(genlaguerre(3, 3)(x), binom(6, 3) * hyp1f1(-3, 4, x))
True
```

This is the plot of the generalized Laguerre polynomials \(L_3^{(\alpha)} \) for some values of \(\alpha \):

```
>>> from matplotlib import pyplot as plt
>>> from scipy.special import genlaguerre
>>> x = np.arange(-4.0, 12.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(-5.0, 10.0)
>>> ax.set_title(r'Generalized Laguerre polynomials $L_3^{(\alpha)}$')
>>> for alpha in np.arange(0, 5):
...     ax.plot(x, genlaguerre(3, alpha)(x), label=r'$L_3^{(' + str(alpha) + r')}$$')
>>> plt.legend(loc='best')
>>> plt.show()
```

\texttt{scipy.special.hermite}

\texttt{scipy.special.hermite(n, monic=False)}

Physicist's Hermite polynomial.

Defined by

\[
H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2};
\]

\(H_n \) is a polynomial of degree \(n \).
Generalized Laguerre polynomials \(L^g \)

Parameters
- **n** [int] Degree of the polynomial.
- **monic** [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns
- **H** [orthopoly1d] Hermite polynomial.

Notes
The polynomials \(H_n \) are orthogonal over \((-\infty, \infty)\) with weight function \(e^{-x^2} \).

Examples
```python
>>> from scipy import special
>>> import matplotlib.pyplot as plt
>>> import numpy as np

>>> p_monic = special.hermite(3, monic=True)
>>> p_monic.poly1d([ 1. , 0. , -1.5, 0. ])
>>> p_monic(1)
-0.4999999999999983
>>> x = np.linspace(-3, 3, 400)
>>> y = p_monic(x)
>>> plt.plot(x, y)
>>> plt.title("Monic Hermite polynomial of degree 3")
>>> plt.xlabel("x")
>>> plt.ylabel("H_3(x)")
>>> plt.show()
```
scipy.special.hermitenorm

scipy.special.hermitenorm(n, monic=False)

Normalized (probabilist’s) Hermite polynomial.

Defined by

\[H_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}; \]

\(H_n \) is a polynomial of degree \(n \).

Parameters

- **n** [int] Degree of the polynomial.
- **monic** [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

- **He** [orthopoly1d] Hermite polynomial.

Notes

The polynomials \(H_n \) are orthogonal over \((−∞, ∞)\) with weight function \(e^{-x^2/2} \).

scipy.special.gegenbauer

scipy.special.gegenbauer(n, alpha, monic=False)

Gegenbauer (ultraspherical) polynomial.

Defined to be the solution of

\[(1 - x^2) \frac{d^2}{dx^2} C_n^{(α)} - (2α + 1)x \frac{d}{dx} C_n^{(α)} + n(n + 2α)C_n^{(α)} = 0 \]

for \(α > -1/2 \); \(C_n^{(α)} \) is a polynomial of degree \(n \).
Parameters

- **n** [int] Degree of the polynomial.
- **alpha** [float] Parameter, must be greater than -0.5.
- **monic** [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns

- **C** [orthopoly1d] Gegenbauer polynomial.

Notes

The polynomials $C_n^{(\alpha)}$ are orthogonal over $[-1, 1]$ with weight function $(1 - x^2)^{(\alpha-1)/2}$.

Examples

```python
>>> from scipy import special
>>> import matplotlib.pyplot as plt

We can initialize a variable \( p \) as a Gegenbauer polynomial using the `gegenbauer` function and evaluate at a point \( x = 1 \).

```python
>>> p = special.gegenbauer(3, 0.5, monic=False)
>>> p
poly1d([2.5, 0. , -1.5, 0.])
>>> p(1)
1.0
```

To evaluate \( p \) at various points \( x \) in the interval \((-3, 3)\), simply pass an array \( x \) to \( p \) as follows:

```python
>>> x = np.linspace(-3, 3, 400)
>>> y = p(x)
```

We can then visualize \( x, y \) using `matplotlib.pyplot`.

```python
>>> fig, ax = plt.subplots()
>>> ax.plot(x, y)
>>> ax.set_title("Gegenbauer (ultraspherical) polynomial of degree 3")
>>> ax.set_xlabel("x")
>>> ax.set_ylabel("G_3(x)")
>>> plt.show()
```

`scipy.special.sh_legendre`

`scipy.special.sh_legendre(n, monic=False)`

Shifted Legendre polynomial.

Defined as $P_n^*(x) = P_n(2x - 1)$ for $P_n$ the \( n \)th Legendre polynomial.

Parameters

- **n** [int] Degree of the polynomial.
- **monic** [bool, optional] If True, scale the leading coefficient to be 1. Default is False.
Gegenbauer (ultraspherical) polynomial of degree 3

Returns
P [orthopoly1d] Shifted Legendre polynomial.

Notes
The polynomials $P_n^*$ are orthogonal over $[0, 1]$ with weight function $1$.

scipy.special.sh_chebyt

scipy.special.sh_chebyt$(n, monic=False)$
Shifted Chebyshev polynomial of the first kind.
Defined as $T_n^*(x) = T_n(2x - 1)$ for $T_n$ the nth Chebyshev polynomial of the first kind.

Parameters
- n [int] Degree of the polynomial.
- monic [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

Returns
T [orthopoly1d] Shifted Chebyshev polynomial of the first kind.

Notes
The polynomials $T_n^*$ are orthogonal over $[0, 1]$ with weight function $(x - x^2)^{-1/2}$.
scipy.special.sh_chebyu

\[ \text{scipy.special.sh_chebyu}(n, \text{monic}=False) \]
Shifted Chebyshev polynomial of the second kind.

Defined as \[ U_n^*(x) = U_n(2x - 1) \] for \( U_n \) the nth Chebyshev polynomial of the second kind.

**Parameters**

- `n` [int] Degree of the polynomial.
- `monic` [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

**Returns**

- `U` [orthopoly1d] Shifted Chebyshev polynomial of the second kind.

**Notes**

The polynomials \( U_n^* \) are orthogonal over \([0, 1]\) with weight function \( (x - x^2)^{1/2} \).

scipy.special.sh_jacobi

\[ \text{scipy.special.sh_jacobi}(n, p, q, \text{monic}=False) \]
Shifted Jacobi polynomial.

Defined by

\[ G_n^{(p,q)}(x) = \binom{2n + p - 1}{n}^{-1} P_n^{(p-q,q-1)}(2x - 1), \]

where \( P_n^{(\cdot,\cdot)} \) is the nth Jacobi polynomial.

**Parameters**

- `n` [int] Degree of the polynomial.
- `p` [float] Parameter, must have \( p > q - 1 \).
- `q` [float] Parameter, must be greater than 0.
- `monic` [bool, optional] If True, scale the leading coefficient to be 1. Default is False.

**Returns**

- `G` [orthopoly1d] Shifted Jacobi polynomial.

**Notes**

For fixed \( p, q \), the polynomials \( G_n^{(p,q)} \) are orthogonal over \([0, 1]\) with weight function \( (1 - x)^{p-q} x^{q-1} \).

**Warning:** Computing values of high-order polynomials (around order > 20) using polynomial coefficients is numerically unstable. To evaluate polynomial values, the eval_* functions should be used instead.
Hypergeometric functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hyp2f1(a, b, c, z)</td>
<td>Gauss hypergeometric function 2F1(a, b; c; z)</td>
</tr>
<tr>
<td>hyp1f1(a, b, x[, out])</td>
<td>Confluent hypergeometric function 1F1.</td>
</tr>
<tr>
<td>hyperu(a, b, x[, out])</td>
<td>Confluent hypergeometric function U</td>
</tr>
<tr>
<td>hyp0f1(v, z[, out])</td>
<td>Confluent hypergeometric limit function 0F1.</td>
</tr>
</tbody>
</table>

scipy.special.hyp2f1

scipy.special.hyp2f1(a, b, c, z) = <ufunc 'hyp2f1'>
Gauss hypergeometric function 2F1(a, b; c; z)

Parameters

a, b, c  array_like  Arguments, should be real-valued.
z  array_like  Argument, real or complex.

Returns

hyp2f1  [scalar or ndarray]  The values of the gaussian hypergeometric function.

See also:

hyp0f1  confluent hypergeometric limit function.

hyp1f1  Kummer’s (confluent hypergeometric) function.

Notes

This function is defined for |z| < 1 as

\[ \text{hyp2f1}(a, b, c, z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n n!} z^n, \]

and defined on the rest of the complex z-plane by analytic continuation [1]. Here \((\cdot)_n\) is the Pochhammer symbol; see poch. When \(n\) is an integer the result is a polynomial of degree \(n\).

The implementation for complex values of \(z\) is described in [2], except for \(z\) in the region defined by

\[ 0.9 \leq |z| < 1.1, |1 - z| > 0.9, \text{real}(z) \geq 0 \]

in which the implementation follows [4].

References

[1], [2], [3], [4]
Examples

```python
>>> import scipy.special as sc
```

It has poles when \( c \) is a negative integer.

```python
>>> sc.hyp2f1(1, 1, -2, 1)
inf
```

It is a polynomial when \( a \) or \( b \) is a negative integer.

```python
da, b, c = -1, 1, 1.5
z = np.linspace(0, 1, 5)
>>> sc.hyp2f1(a, b, c, z)
array([1. , 0.83333333, 0.66666667, 0.5 , 0.33333333])
```

```python
>>> 1 + a * b * z / c
array([1. , 0.83333333, 0.66666667, 0.5 , 0.33333333])
```

It is symmetric in \( a \) and \( b \).

```python
>>> a = np.linspace(0, 1, 5)
>>> b = np.linspace(0, 1, 5)
>>> sc.hyp2f1(a, b, 1, 0.5)
array([1. , 1.03997334, 1.1803406 , 1.47074441, 2.])
```

```python
>>> sc.hyp2f1(b, a, 1, 0.5)
array([1. , 1.03997334, 1.1803406 , 1.47074441, 2.])
```

It contains many other functions as special cases.

```python
>>> z = 0.5
>>> sc.hyp2f1(1, 1, 2, z)
1.3862943611198901
>>> -np.log(1 - z) / z
1.3862943611198906
```

```python
>>> sc.hyp2f1(0.5, 1, 1.5, z**2)
1.098612288868109
>>> np.log((1 + z) / (1 - z)) / (2 * z)
1.0986122888681098
```

```python
>>> sc.hyp2f1(0.5, 1, 1.5, -z**2)
0.9272952180016117
>>> np.arctan(z) / z
0.9272952180016123
```
scipy.special.hyp1f1

scipy.special.hyp1f1(a, b, x, out=None) = <ufunc 'hyp1f1'>

Confluent hypergeometric function 1F1.

The confluent hypergeometric function is defined by the series

\[ \text{I}_1 F_1(a; b; x) = \sum_{k=0}^{\infty} \frac{(a)_k}{(b)_k k!} x^k. \]

See [dlmf] for more details. Here \( (\cdot)_k \) is the Pochhammer symbol; see `poch`.

Parameters

- **a**, **b** [array_like] Real parameters
- **x** [array_like] Real or complex argument
- **out** [ndarray, optional] Optional output array for the function results

Returns

- scalar or ndarray
  Values of the confluent hypergeometric function

See also:

`hyperu`

another confluent hypergeometric function

`hyp0f1`

confluent hypergeometric limit function

`hyp2f1`

Gaussian hypergeometric function

References

[dlmf]

Examples

```python
>>> import scipy.special as sc
```

It is one when \( x \) is zero:

```python
>>> sc.hyp1f1(0.5, 0.5, 0)
1.0
```

It is singular when \( b \) is a nonpositive integer.

```python
>>> sc.hyp1f1(0.5, -1, 0)
inf
```

It is a polynomial when \( a \) is a nonpositive integer.
```python
>>> a, b, x = -1, 0.5, np.array([1.0, 2.0, 3.0, 4.0])
>>> sc.hyp1f1(a, b, x)
array([-1., -3., -5., -7.])
>>> 1 + (a / b) * x
array([-1., -3., -5., -7.])
```

It reduces to the exponential function when \( a = b \).

```python
>>> sc.hyp1f1(2, 2, [1, 2, 3, 4])
array([2.71828183, 7.3890561, 20.08553692, 54.59815003])
>>> np.exp([1, 2, 3, 4])
array([2.71828183, 7.3890561, 20.08553692, 54.59815003])
```

### scipy.special.hyperu

`scipy.special.hyperu(a, b, x, out=None) = <ufunc 'hyperu'>`

Confluent hypergeometric function \( U \)

It is defined as the solution to the equation

\[
x \frac{d^2w}{dx^2} + (b - x) \frac{dw}{dx} - aw = 0
\]

which satisfies the property

\[
U(a, b, x) \sim x^{-a}
\]

as \( x \to \infty \). See [dlmf] for more details.

**Parameters**

- **a** [array_like]: Real-valued parameters
- **b** [array_like]: Real-valued argument
- **x** [array_like]: Real-valued argument
- **out** [ndarray]: Optional output array for the function values

**Returns**

- **scalar** or **ndarray**: Values of \( U \)

**References**

[dlmf]

**Examples**

```python
>>> import scipy.special as sc
```

It has a branch cut along the negative \( x \) axis.

```python
>>> x = np.linspace(-0.1, -10, 5)
>>> sc.hyperu(1, 1, x)
array([nan, nan, nan, nan, nan])
```
It approaches zero as $x$ goes to infinity.

```python
>>> x = np.array([1, 10, 100])
>>> sc.hyperu(1, 1, x)
array([0.59634736, 0.09156333, 0.00990194])
```

It satisfies Kummer's transformation.

```python
>>> a, b, x = 2, 1, 1
>>> sc.hyperu(a, b, x)
0.1926947246463881
>>> x**(1 - b) * sc.hyperu(a - b + 1, 2 - b, x)
0.1926947246463881
```

**scipy.special.hyp0f1**

*scipy.special.hyp0f1(v, z, out=None) = <ufunc 'hyp0f1'>*

Confluent hypergeometric limit function 0F1.

**Parameters**

- `v`  
  [array_like] Real-valued parameter

- `z`  
  [array_like] Real- or complex-valued argument

- `out`  
  [ndarray, optional] Optional output array for the function results

**Returns**

- `scalar or ndarray`
  The confluent hypergeometric limit function

**Notes**

This function is defined as:

$$0F_1(v, z) = \sum_{k=0}^{\infty} \frac{z^k}{(v)_k k!}.$$  

It's also the limit as $q \to \infty$ of $1F_1(q; v; z/q)$, and satisfies the differential equation $f''(z) + vf'(z) = f(z)$. See [1] for more information.

**References**

[1]
Examples

```python
>>> import scipy.special as sc
```

It is one when \( z \) is zero.

```python
>>> sc.hyp0f1(1, 0)
1.0
```

It is the limit of the confluent hypergeometric function as \( q \) goes to infinity.

```python
>>> q = np.array([1, 10, 100, 1000])
>>> v = 1
>>> z = 1
>>> sc.hyp1f1(q, v, z / q)
array([2.71828183, 2.31481985, 2.28303778, 2.27992985])
```

It is related to Bessel functions.

```python
>>> n = 1
>>> x = np.linspace(0, 1, 5)
>>> sc.jv(n, x)
array([0. , 0.12402598, 0.24226846, 0.3492436 , 0.44005059])
```

Parabolic cylinder functions

- `pbdv(v, x)` Parabolic cylinder function D
- `pbvv(v, x)` Parabolic cylinder function V
- `pbwa(a, x)` Parabolic cylinder function W.

**scipy.special.pbdv**

```
scipy.special.pbdv(v, x) = <ufunc 'pbdv'>
```

Parabolic cylinder function D

Returns \( (d, dp) \) the parabolic cylinder function \( D(v)(x) \) in \( d \) and the derivative, \( D(v)(x) \) in \( dp \).

**Returns**

- **d** Value of the function
- **dp** Value of the derivative vs \( x \)
scipy.special.pbvv

scipy.special.pbvv(v, x) = <ufunc 'pbvv'>
Parabolic cylinder function $V$

Returns the parabolic cylinder function $V_v(x)$ in $v$ and the derivative, $V'_v(x)$ in $vp$.

Returns

$v$  Value of the function
$vp$  Value of the derivative vs $x$

scipy.special.pbwa

scipy.special.pbwa(a, x) = <ufunc 'pbwa'>
Parabolic cylinder function $W$.

The function is a particular solution to the differential equation

$$y'' + \left( \frac{1}{4} x^2 - a \right) y = 0,$$

for a full definition see section 12.14 in [1].

Parameters

$a$  [array_like] Real parameter
$x$  [array_like] Real argument

Returns

$w$  [scalar or ndarray] Value of the function
$wp$  [scalar or ndarray] Value of the derivative in $x$

Notes

The function is a wrapper for a Fortran routine by Zhang and Jin [2]. The implementation is accurate only for $|a|, |x| < 5$ and returns NaN outside that range.

References

[1], [2]

These are not universal functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pbdv_seq(v, x)</td>
<td>Parabolic cylinder functions $D_v(x)$ and derivatives.</td>
</tr>
<tr>
<td>pbvv_seq(v, x)</td>
<td>Parabolic cylinder functions $V_v(x)$ and derivatives.</td>
</tr>
<tr>
<td>pbdn_seq(n, z)</td>
<td>Parabolic cylinder functions $D_n(z)$ and derivatives.</td>
</tr>
</tbody>
</table>
scipy.special.pbdv_seq

scipy.special.pbdv_seq(v, x)
Parabolic cylinder functions Dv(x) and derivatives.

Parameters

v [float] Order of the parabolic cylinder function
x [float] Value at which to evaluate the function and derivatives

Returns

dv [ndarray] Values of D_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
dp [ndarray] Derivatives D_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.

References

[1]

scipy.special.pbv_seq

scipy.special.pbv_seq(v, x)
Parabolic cylinder functions Vv(x) and derivatives.

Parameters

v [float] Order of the parabolic cylinder function
x [float] Value at which to evaluate the function and derivatives

Returns

dv [ndarray] Values of V_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
dp [ndarray] Derivatives V_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.

References

[1]

scipy.special.pbdn_seq

scipy.special.pbdn_seq(n, z)
Parabolic cylinder functions Dn(z) and derivatives.

Parameters

n [int] Order of the parabolic cylinder function
z [complex] Value at which to evaluate the function and derivatives

Returns

dv [ndarray] Values of D_i(z), for i=0, ..., i=n.
dp [ndarray] Derivatives D_i'(z), for i=0, ..., i=n.
## References

[1]

### Mathieu and related functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mathieu_a(m, q)</code></td>
<td>Characteristic value of even Mathieu functions</td>
</tr>
<tr>
<td><code>mathieu_b(m, q)</code></td>
<td>Characteristic value of odd Mathieu functions</td>
</tr>
</tbody>
</table>

### scipy.special.mathieu_a

```python
scipy.special.mathieu_a(m, q) = <ufunc 'mathieu_a'>
```

Characteristic value of even Mathieu functions

Returns the characteristic value for the even solution, \(ce_m(z, q)\), of Mathieu’s equation.

### scipy.special.mathieu_b

```python
scipy.special.mathieu_b(m, q) = <ufunc 'mathieu_b'>
```

Characteristic value of odd Mathieu functions

Returns the characteristic value for the odd solution, \(se_m(z, q)\), of Mathieu’s equation.

These are not universal functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mathieu_even_coef(m, q)</code></td>
<td>Fourier coefficients for even Mathieu and modified Mathieu functions.</td>
</tr>
<tr>
<td><code>mathieu_odd_coef(m, q)</code></td>
<td>Fourier coefficients for even Mathieu and modified Mathieu functions.</td>
</tr>
</tbody>
</table>

### scipy.special.mathieu_even_coef

```python
scipy.special.mathieu_even_coef(m, q)
```

Fourier coefficients for even Mathieu and modified Mathieu functions.

The Fourier series of the even solutions of the Mathieu differential equation are of the form

\[
ce_{2n}(z, q) = \sum_{k=0}^{\infty} A_{(2n)}^{(2k)} \cos 2kz
\]

\[
ce_{2n+1}(z, q) = \sum_{k=0}^{\infty} A_{(2n+1)}^{(2k+1)} \cos(2k + 1)z
\]

This function returns the coefficients \(A_{(2n)}^{(2k)}\) for even input \(m=2n\), and the coefficients \(A_{(2n+1)}^{(2k+1)}\) for odd input \(m=2n+1\).

**Parameters**

- \(m\) [int] Order of Mathieu functions. Must be non-negative.
- \(q\) [float (>=0)] Parameter of Mathieu functions. Must be non-negative.

**Returns**

- \(Ak\) [ndarray] Even or odd Fourier coefficients, corresponding to even or odd \(m\).
scipy.special.mathieu_odd_coef

scipy.special.mathieu_odd_coef(m, q)

Fourier coefficients for even Mathieu and modified Mathieu functions.

The Fourier series of the odd solutions of the Mathieu differential equation are of the form

\[ se_{2n+1}(z, q) = \sum_{k=0}^{\infty} B^{(2k+1)}_{(2n+1)} \sin(2k + 1)z \]

\[ se_{2n+2}(z, q) = \sum_{k=0}^{\infty} B^{(2k+2)}_{(2n+2)} \sin(2k + 2)z \]

This function returns the coefficients \( B^{(2k+2)}_{(2n+2)} \) for even input \( m=2n+2 \), and the coefficients \( B^{(2k+1)}_{(2n+1)} \) for odd input \( m=2n+1 \).

Parameters

- **m** [int] Order of Mathieu functions. Must be non-negative.
- **q** [float (>=0)] Parameter of Mathieu functions. Must be non-negative.

Returns

- **Bk** [ndarray] Even or odd Fourier coefficients, corresponding to even or odd m.

References

[1]

The following return both function and first derivative:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mathieu_cem(m, q, x)</td>
<td>Even Mathieu function and its derivative</td>
</tr>
<tr>
<td>mathieu_sem(m, q, x)</td>
<td>Odd Mathieu function and its derivative</td>
</tr>
<tr>
<td>mathieu_modcem1(m, q, x)</td>
<td>Even modified Mathieu function of the first kind and its derivative</td>
</tr>
<tr>
<td>mathieu_modcem2(m, q, x)</td>
<td>Even modified Mathieu function of the second kind and its derivative</td>
</tr>
<tr>
<td>mathieu_modsem1(m, q, x)</td>
<td>Odd modified Mathieu function of the first kind and its derivative</td>
</tr>
<tr>
<td>mathieu_modsem2(m, q, x)</td>
<td>Odd modified Mathieu function of the second kind and its derivative</td>
</tr>
</tbody>
</table>
scipy.special.mathieu_cem

```python
scipy.special.mathieu_cem(m, q, x) = <ufunc 'mathieu_cem'>
```

Even Mathieu function and its derivative

Returns the even Mathieu function, $ce_m(x, q)$, of order $m$ and parameter $q$ evaluated at $x$ (given in degrees). Also returns the derivative with respect to $x$ of $ce_m(x, q)$

Parameters

- **m**: Order of the function
- **q**: Parameter of the function
- **x**: Argument of the function, *given in degrees, not radians*

Returns

- **y**: Value of the function
- **yp**: Value of the derivative vs $x$

scipy.special.mathieu_sem

```python
scipy.special.mathieu_sem(m, q, x) = <ufunc 'mathieu_sem'>
```

Odd Mathieu function and its derivative

Returns the odd Mathieu function, $se_m(x, q)$, of order $m$ and parameter $q$ evaluated at $x$ (given in degrees). Also returns the derivative with respect to $x$ of $se_m(x, q)$.

Parameters

- **m**: Order of the function
- **q**: Parameter of the function
- **x**: Argument of the function, *given in degrees, not radians*

Returns

- **y**: Value of the function
- **yp**: Value of the derivative vs $x$

scipy.special.mathieu_modcem1

```python
scipy.special.mathieu_modcem1(m, q, x) = <ufunc 'mathieu_modcem1'>
```

Even modified Mathieu function of the first kind and its derivative

Evaluates the even modified Mathieu function of the first kind, $Mc1m(x, q)$, and its derivative at $x$ for order $m$ and parameter $q$.

Returns

- **y**: Value of the function
- **yp**: Value of the derivative vs $x$
scipy.special.mathieu_modcem2

scipy.special.mathieu_modcem2(m, q, x) = <ufunc 'mathieu_modcem2'>

Even modified Mathieu function of the second kind and its derivative

Evaluates the even modified Mathieu function of the second kind, Mc2m(x, q), and its derivative at x (given in degrees) for order m and parameter q.

Returns

y Value of the function
yp Value of the derivative vs x

scipy.special.mathieu_modsem1

scipy.special.mathieu_modsem1(m, q, x) = <ufunc 'mathieu_modsem1'>

Odd modified Mathieu function of the first kind and its derivative

Evaluates the odd modified Mathieu function of the first kind, Ms1m(x, q), and its derivative at x (given in degrees) for order m and parameter q.

Returns

y Value of the function
yp Value of the derivative vs x

scipy.special.mathieu_modsem2

scipy.special.mathieu_modsem2(m, q, x) = <ufunc 'mathieu_modsem2'>

Odd modified Mathieu function of the second kind and its derivative

Evaluates the odd modified Mathieu function of the second kind, Ms2m(x, q), and its derivative at x (given in degrees) for order m and parameter q.

Returns

y Value of the function
yp Value of the derivative vs x

Spheroidal wave functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pro_ang1(m, n, c, x)</td>
<td>Prolate spheroidal angular function of the first kind and its derivative</td>
</tr>
<tr>
<td>pro_rad1(m, n, c, x)</td>
<td>Prolate spheroidal radial function of the first kind and its derivative</td>
</tr>
<tr>
<td>pro_rad2(m, n, c, x)</td>
<td>Prolate spheroidal radial function of the second kind and its derivative</td>
</tr>
<tr>
<td>ob1_ang1(m, n, c, x)</td>
<td>Oblate spheroidal angular function of the first kind and its derivative</td>
</tr>
<tr>
<td>ob1_rad1(m, n, c, x)</td>
<td>Oblate spheroidal radial function of the first kind and its derivative</td>
</tr>
<tr>
<td>ob1_rad2(m, n, c, x)</td>
<td>Oblate spheroidal radial function of the second kind and its derivative</td>
</tr>
<tr>
<td>pro_cv(m, n, c)</td>
<td>Characteristic value of prolate spheroidal function</td>
</tr>
<tr>
<td>ob1_cv(m, n, c)</td>
<td>Characteristic value of oblate spheroidal function</td>
</tr>
</tbody>
</table>

continues on next page
Table 257 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pro_cv_seq(m, n, c)</td>
<td>Characteristic values for prolate spheroidal wave functions.</td>
</tr>
<tr>
<td>obl_cv_seq(m, n, c)</td>
<td>Characteristic values for oblate spheroidal wave functions.</td>
</tr>
</tbody>
</table>

**scipy.special.pro_ang1**

```python
scipy.special.pro_ang1(m, n, c, x) = <ufunc 'pro_ang1'>
```

Prolate spheroidal angular function of the first kind and its derivative

Computes the prolate spheroidal angular function of the first kind and its derivative (with respect to \(x\)) for mode parameters \(m \geq 0\) and \(n \geq m\), spheroidal parameter \(c\) and \(|x| < 1.0\).

**Returns**

- **s**: Value of the function
- **sp**: Value of the derivative vs \(x\)

**scipy.special.pro_rad1**

```python
scipy.special.pro_rad1(m, n, c, x) = <ufunc 'pro_rad1'>
```

Prolate spheroidal radial function of the first kind and its derivative

Computes the prolate spheroidal radial function of the first kind and its derivative (with respect to \(x\)) for mode parameters \(m \geq 0\) and \(n \geq m\), spheroidal parameter \(c\) and \(|x| < 1.0\).

**Returns**

- **s**: Value of the function
- **sp**: Value of the derivative vs \(x\)

**scipy.special.pro_rad2**

```python
scipy.special.pro_rad2(m, n, c, x) = <ufunc 'pro_rad2'>
```

Prolate spheroidal radial function of the second kind and its derivative

Computes the prolate spheroidal radial function of the second kind and its derivative (with respect to \(x\)) for mode parameters \(m \geq 0\) and \(n \geq m\), spheroidal parameter \(c\) and \(|x| < 1.0\).

**Returns**

- **s**: Value of the function
- **sp**: Value of the derivative vs \(x\)

**scipy.special.obl_ang1**

```python
scipy.special.obl_ang1(m, n, c, x) = <ufunc 'obl_ang1'>
```

Oblate spheroidal angular function of the first kind and its derivative

Computes the oblate spheroidal angular function of the first kind and its derivative (with respect to \(x\)) for mode parameters \(m \geq 0\) and \(n \geq m\), spheroidal parameter \(c\) and \(|x| < 1.0\).

**Returns**

- **s**: Value of the function
- **sp**: Value of the derivative vs \(x\)
scipy.special.obl_rad1

```python
def scipy.special.obl_rad1(m, n, c, x):
 # Oblate spheroidal radial function of the first kind and its derivative
 Computes the oblate spheroidal radial function of the first kind and its derivative (with respect to x) for mode parameters m>=0 and n>=m, spheroidal parameter c and |x|<1.0.
 Returns
 s : Value of the function
 sp : Value of the derivative vs x
```
**References**

[1]

**scipy.special.obl_cv_seq**

`scipy.special.obl_cv_seq(m, n, c)`  
Characteristic values for oblate spheroidal wave functions.  
Compute a sequence of characteristic values for the oblate spheroidal wave functions for mode \( m \) and \( n'=m..n \) and spheroidal parameter \( c \).

**References**

[1]

The following functions require pre-computed characteristic value:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pro_ang1_cv(m, n, c, cv, x)</code></td>
<td>Prolate spheroidal angular function ( \text{pro}_{\text{ang1}} ) for precomputed characteristic value</td>
</tr>
<tr>
<td><code>pro_rad1_cv(m, n, c, cv, x)</code></td>
<td>Prolate spheroidal radial function ( \text{pro}_{\text{rad1}} ) for precomputed characteristic value</td>
</tr>
<tr>
<td><code>pro_rad2_cv(m, n, c, cv, x)</code></td>
<td>Prolate spheroidal radial function ( \text{pro}_{\text{rad2}} ) for precomputed characteristic value</td>
</tr>
<tr>
<td><code>obl_ang1_cv(m, n, c, cv, x)</code></td>
<td>Oblate spheroidal angular function ( \text{obl}_{\text{ang1}} ) for precomputed characteristic value</td>
</tr>
<tr>
<td><code>obl_rad1_cv(m, n, c, cv, x)</code></td>
<td>Oblate spheroidal radial function ( \text{obl}_{\text{rad1}} ) for precomputed characteristic value</td>
</tr>
<tr>
<td><code>obl_rad2_cv(m, n, c, cv, x)</code></td>
<td>Oblate spheroidal radial function ( \text{obl}_{\text{rad2}} ) for precomputed characteristic value</td>
</tr>
</tbody>
</table>

**scipy.special.pro_ang1_cv**

`scipy.special.pro_ang1_cv(m, n, c, cv, x) = <ufunc 'pro_ang1_cv'>`  
Prolate spheroidal angular function \( \text{pro}_{\text{ang1}} \) for precomputed characteristic value  
Computes the prolate spheroidal angular function of the first kind and its derivative (with respect to \( x \)) for mode parameters \( m\geq 0 \) and \( n\geq m \), spheroidal parameter \( c \) and \( |x| < 1.0 \). Requires pre-computed characteristic value.

**Returns**

- \( s \) Value of the function
- \( sp \) Value of the derivative vs \( x \)
scipy.special.pro_rad1_cv

```python
scipy.special.pro_rad1_cv(m, n, c, cv, x) = <ufunc 'pro_rad1_cv'>
```

Prolate spheroidal radial function pro_rad1 for precomputed characteristic value

Computes the prolate spheroidal radial function of the first kind and its derivative (with respect to \(x\)) for mode parameters \(m \geq 0\) and \(n \geq m\), spheroidal parameter \(c\) and \(|x| < 1.0\). Requires pre-computed characteristic value.

**Returns**

- **s**: Value of the function
- **sp**: Value of the derivative vs \(x\)

scipy.special.pro_rad2_cv

```python
scipy.special.pro_rad2_cv(m, n, c, cv, x) = <ufunc 'pro_rad2_cv'>
```

Prolate spheroidal radial function pro_rad2 for precomputed characteristic value

Computes the prolate spheroidal radial function of the second kind and its derivative (with respect to \(x\)) for mode parameters \(m \geq 0\) and \(n \geq m\), spheroidal parameter \(c\) and \(|x| < 1.0\). Requires pre-computed characteristic value.

**Returns**

- **s**: Value of the function
- **sp**: Value of the derivative vs \(x\)

scipy.special.obl_ang1_cv

```python
scipy.special.obl_ang1_cv(m, n, c, cv, x) = <ufunc 'obl_ang1_cv'>
```

Oblate spheroidal angular function obl_ang1 for precomputed characteristic value

Computes the oblate spheroidal angular function of the first kind and its derivative (with respect to \(x\)) for mode parameters \(m \geq 0\) and \(n \geq m\), spheroidal parameter \(c\) and \(|x| < 1.0\). Requires pre-computed characteristic value.

**Returns**

- **s**: Value of the function
- **sp**: Value of the derivative vs \(x\)

scipy.special.obl_rad1_cv

```python
scipy.special.obl_rad1_cv(m, n, c, cv, x) = <ufunc 'obl_rad1_cv'>
```

Oblate spheroidal radial function obl_rad1 for precomputed characteristic value

Computes the oblate spheroidal radial function of the first kind and its derivative (with respect to \(x\)) for mode parameters \(m \geq 0\) and \(n \geq m\), spheroidal parameter \(c\) and \(|x| < 1.0\). Requires pre-computed characteristic value.

**Returns**

- **s**: Value of the function
- **sp**: Value of the derivative vs \(x\)
scipy.special.obl_rad2_cv

scipy.special.obl_rad2_cv(m, n, c, cv, x) = <ufunc 'obl_rad2_cv'>

Oblate spheroidal radial function obl_rad2 for precomputed characteristic value

Computes the oblate spheroidal radial function of the second kind and its derivative (with respect to \(x\)) for mode parameters \(m \geq 0\) and \(n \geq m\), spheroidal parameter \(c\) and \(|x| < 1.0\). Requires pre-computed characteristic value.

**Returns**

- \(s\) Value of the function
- \(sp\) Value of the derivative vs \(x\)

Kelvin functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kelvin(x)</td>
<td>Kelvin functions as complex numbers</td>
</tr>
<tr>
<td>kelvin_zeros(nt)</td>
<td>Compute nt zeros of all Kelvin functions.</td>
</tr>
<tr>
<td>ber(x[, out])</td>
<td>Kelvin function (ber).</td>
</tr>
<tr>
<td>bei(x[, out])</td>
<td>Kelvin function (bei).</td>
</tr>
<tr>
<td>berp(x[, out])</td>
<td>Derivative of the Kelvin function (ber).</td>
</tr>
<tr>
<td>beip(x[, out])</td>
<td>Derivative of the Kelvin function (bei).</td>
</tr>
<tr>
<td>ker(x[, out])</td>
<td>Kelvin function (ker).</td>
</tr>
<tr>
<td>kei(x[, out])</td>
<td>Kelvin function (kei).</td>
</tr>
<tr>
<td>kerp(x[, out])</td>
<td>Derivative of the Kelvin function (ker).</td>
</tr>
<tr>
<td>keip(x[, out])</td>
<td>Derivative of the Kelvin function (kei).</td>
</tr>
</tbody>
</table>

scipy.special.kelvin

scipy.special.kelvin(x) = <ufunc 'kelvin'>

Kelvin functions as complex numbers

**Returns**

- \(Be, Ke, Bep, Kep\)

  The tuple \((Be, Ke, Bep, Kep)\) contains complex numbers representing the real and imaginary Kelvin functions and their derivatives evaluated at \(x\). For example, \(kelvin(x)[0].real = ber x\) and \(kelvin(x)[0].imag = bei x\) with similar relationships for \(ker\) and \(kei\).

scipy.special.kelvin_zeros

scipy.special.kelvin_zeros(nt)

Compute nt zeros of all Kelvin functions.

Returned in a length-8 tuple of arrays of length nt. The tuple contains the arrays of zeros of (ber, bei, ker, kei, ber', bei', ker', kei').

3.3. API definition 2351
References

[1]

scipy.special.ber

scipy.special.ber(x, out=None) = <ufunc 'ber'>
Kelvin function ber.
Defined as
\[
ber(x) = \Re[J_0(xe^{3\pi i/4})]
\]
where \(J_0\) is the Bessel function of the first kind of order zero (see jv). See [dlmf] for more details.

Parameters

- **x** [array_like] Real argument.
- **out** [ndarray, optional] Optional output array for the function results.

Returns

- scalar or ndarray
  Values of the Kelvin function.

See also:

- **bei**
  the corresponding real part
- **berp**
  the derivative of bei
- **jv**
  Bessel function of the first kind

References

[dlmf]

Examples

It can be expressed using Bessel functions.

```python
>>> import scipy.special as sc
>>> x = np.array([1.0, 2.0, 3.0, 4.0])
>>> sc.jv(0, x * np.exp(3 * np.pi * 1j / 4)).real
array([0.98438178, 0.75173418, -0.22138025, -2.56341656])
>>> sc.ber(x)
array([0.98438178, 0.75173418, -0.22138025, -2.56341656])
```
scipy.special.bei

`scipy.special.bei(x, out=None) = <ufunc 'bei'>`

Kelvin function bei.

Defined as

\[ bei(x) = \Im\left[J_0(xe^{3\pi i/4})\right] \]

where \( J_0 \) is the Bessel function of the first kind of order zero (see \( jv \)). See [dlmf] for more details.

**Parameters**

- `x` : [array_like] Real argument.
- `out` : [ndarray, optional] Optional output array for the function results.

**Returns**

- scalar or ndarray
  Values of the Kelvin function.

**See also:**

- `ber`
  the corresponding real part
- `beip`
  the derivative of bei
- `jv`
  Bessel function of the first kind

**References**

[dlmf]

**Examples**

It can be expressed using Bessel functions.

```python
>>> import scipy.special as sc
>>> x = np.array([1.0, 2.0, 3.0, 4.0])
>>> sc.jv(0, x * np.exp(3 * np.pi * 1j / 4)).imag
array([0.24956604, 0.97229163, 1.93758679, 2.29269032])
>>> sc.bei(x)
array([0.24956604, 0.97229163, 1.93758679, 2.29269032])
```
scipy.special.berp

scipy.special.berp(x, out=None) = <ufunc 'berp'>
Derivative of the Kelvin function ber.

Parameters

x [array_like] Real argument.
out [ndarray, optional] Optional output array for the function results.

Returns

scalar or ndarray
The values of the derivative of ber.

See also:
ber

References

[dlmf]

scipy.special.beip

scipy.special.beip(x, out=None) = <ufunc 'beip'>
Derivative of the Kelvin function bei.

Parameters

x [array_like] Real argument.
out [ndarray, optional] Optional output array for the function results.

Returns

scalar or ndarray
The values of the derivative of bei.

See also:
bei

References

[dlmf]
scipy.special.ker

scipy.special.ker(x, out=None) = <ufunc 'ker'>
Kelvin function ker.

Defined as

\[ \ker(x) = \Re[K_0(xe^{\pi i/4})] \]

Where \( K_0 \) is the modified Bessel function of the second kind (see \( kv \)). See [dlmf] for more details.

**Parameters**

- **x** [array_like] Real argument.
- **out** [ndarray, optional] Optional output array for the function results.

**Returns**

- scalar or ndarray
  Values of the Kelvin function.

**See also:**

- **kei**
  the corresponding imaginary part
- **kerp**
  the derivative of ker
- **kv**
  modified Bessel function of the second kind

**References**

[dlmf]

**Examples**

It can be expressed using the modified Bessel function of the second kind.

```python
>>> import scipy.special as sc
>>> x = np.array([1.0, 2.0, 3.0, 4.0])
>>> sc.kv(0, x * np.exp(np.pi * 1j / 4)).real
array([0.28670621, -0.04166451, -0.06702923, -0.03617885])
>>> sc.ker(x)
array([0.28670621, -0.04166451, -0.06702923, -0.03617885])
```
scipy.special.kei

scipy.special.kei(x, out=None) = <ufunc 'kei'>
Kelvin function kei.
Defined as

\[ \text{kei}(x) = \Im[K_0(xe^{\pi i/4})] \]

where \( K_0 \) is the modified Bessel function of the second kind (see \( kv \)). See [dlmf] for more details.

**Parameters**

- \( x \) : [array_like] Real argument.
- \( \text{out} \) : [ndarray, optional] Optional output array for the function results.

**Returns**

- scalar or ndarray: Values of the Kelvin function.

**See also:**

- \( ker \): the corresponding real part
- \( keip \): the derivative of \( kei \)
- \( kv \): modified Bessel function of the second kind

**References**

[dlmf]

**Examples**

It can be expressed using the modified Bessel function of the second kind.

```python
>>> import scipy.special as sc
>>> x = np.array([1.0, 2.0, 3.0, 4.0])
>>> sc.kv(0, x * np.exp(np.pi * 1j / 4)).imag
array([-0.49499464, -0.20240007, -0.05112188, 0.0021984])
>>> sc.kei(x)
array([-0.49499464, -0.20240007, -0.05112188, 0.0021984])
```
scipy.special.kerp

\texttt{scipy.special.kerp(x, out=\texttt{None}) = \texttt{ufunc \ 'kerp'}}

Derivative of the Kelvin function \texttt{ker}.

\textbf{Parameters}

- \texttt{x} \ [\texttt{array_like}] Real argument.
- \texttt{out} \ [\texttt{ndarray, optional}] Optional output array for the function results.

\textbf{Returns}

- \texttt{scalar or ndarray}
  
  Values of the derivative of \texttt{ker}.

\textbf{See also:}

- \texttt{ker}

\textbf{References}

[dlmf]

scipy.special.keip

\texttt{scipy.special.keip(x, out=\texttt{None}) = \texttt{ufunc \ 'keip'}}

Derivative of the Kelvin function \texttt{kei}.

\textbf{Parameters}

- \texttt{x} \ [\texttt{array_like}] Real argument.
- \texttt{out} \ [\texttt{ndarray, optional}] Optional output array for the function results.

\textbf{Returns}

- \texttt{scalar or ndarray}
  
  The values of the derivative of \texttt{kei}.

\textbf{See also:}

- \texttt{kei}

\textbf{References}

[dlmf]

These are not universal functions:

- \texttt{ber_zeros(nt)} \hspace{1cm} Compute \texttt{nt} zeros of the Kelvin function \texttt{ber}.
- \texttt{bei_zeros(nt)} \hspace{1cm} Compute \texttt{nt} zeros of the Kelvin function \texttt{bei}.
- \texttt{berp_zeros(nt)} \hspace{1cm} Compute \texttt{nt} zeros of the derivative of the Kelvin function \texttt{ber}.
- \texttt{beip_zeros(nt)} \hspace{1cm} Compute \texttt{nt} zeros of the derivative of the Kelvin function \texttt{bei}.
- \texttt{ker_zeros(nt)} \hspace{1cm} Compute \texttt{nt} zeros of the Kelvin function \texttt{ker}.

\textbf{continues on next page}
Table 260 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>kei_zeros(nt)</code></td>
<td>Compute nt zeros of the Kelvin function kei.</td>
</tr>
<tr>
<td><code>kerp_zeros(nt)</code></td>
<td>Compute nt zeros of the derivative of the Kelvin function ker.</td>
</tr>
<tr>
<td><code>keip_zeros(nt)</code></td>
<td>Compute nt zeros of the derivative of the Kelvin function kei.</td>
</tr>
</tbody>
</table>

### scipy.special.ber_zeros

**scipy.special.ber_zeros**

`scipy.special.ber_zeros(nt)`

Compute nt zeros of the Kelvin function ber.

**Parameters**

- `nt` [int] Number of zeros to compute. Must be positive.

**Returns**

- `ndarray` First nt zeros of the Kelvin function.

**See also:**

- `ber`

**References**

[1]

### scipy.special.bei_zeros

**scipy.special.bei_zeros**

`scipy.special.bei_zeros(nt)`

Compute nt zeros of the Kelvin function bei.

**Parameters**

- `nt` [int] Number of zeros to compute. Must be positive.

**Returns**

- `ndarray` First nt zeros of the Kelvin function.

**See also:**

- `bei`

**References**

[1]
scipy.special.berp_zeros

scipy.special.berp_zeros(nt)
Compute nt zeros of the derivative of the Kelvin function ber.

Parameters
nt [int] Number of zeros to compute. Must be positive.

Returns
ndarray First nt zeros of the derivative of the Kelvin function.

See also:
ber, berp

References
[1]

scipy.special.beip_zeros

scipy.special.beip_zeros(nt)
Compute nt zeros of the derivative of the Kelvin function bei.

Parameters
nt [int] Number of zeros to compute. Must be positive.

Returns
ndarray First nt zeros of the derivative of the Kelvin function.

See also:
bei, beip

References
[1]

scipy.special.ker_zeros

scipy.special.ker_zeros(nt)
Compute nt zeros of the Kelvin function ker.

Parameters
nt [int] Number of zeros to compute. Must be positive.

Returns
ndarray First nt zeros of the Kelvin function.

See also:
ker
References

[1]

scipy.special.kei_zeros

scipy.special.\texttt{kei\_zeros}(nt)

Compute nt zeros of the Kelvin function $\text{kei}$.

\textbf{Parameters}

- \texttt{nt} \hspace{1em} [int] Number of zeros to compute. Must be positive.

\textbf{Returns}

- \texttt{ndarray} \hspace{1em} First $nt$ zeros of the Kelvin function.

See also:

\texttt{kei}

References

[1]

scipy.special.kerp_zeros

scipy.special.\texttt{kerp\_zeros}(nt)

Compute nt zeros of the derivative of the Kelvin function $\text{ker}$.

\textbf{Parameters}

- \texttt{nt} \hspace{1em} [int] Number of zeros to compute. Must be positive.

\textbf{Returns}

- \texttt{ndarray} \hspace{1em} First $nt$ zeros of the derivative of the Kelvin function.

See also:

\texttt{ker}, \texttt{kerp}

References

[1]
**scipy.special.keip_zeros**

**scipy.special.keip_zeros**(*nt*)

Compute *nt* zeros of the derivative of the Kelvin function *kei*.

**Parameters**

*nt*  
[int] Number of zeros to compute. Must be positive.

**Returns**

*ndarray*  
First *nt* zeros of the derivative of the Kelvin function.

**See also:**

*kei, keip*

**References**

[1]

### Combinatorics

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>comb</strong>(<em>N, k[, exact, repetition]</em>)</td>
<td>The number of combinations of <em>N</em> things taken <em>k</em> at a time.</td>
</tr>
<tr>
<td><strong>perm</strong>(<em>N, k[, exact]</em>)</td>
<td>Permutations of <em>N</em> things taken <em>k</em> at a time, i.e., <em>k</em>-permutations of <em>N</em>.</td>
</tr>
</tbody>
</table>

**scipy.special.comb**

**scipy.special.comb**(*N, k, exact=False, repetition=False*)

The number of combinations of *N* things taken *k* at a time.

This is often expressed as “*N* choose *k*”.

**Parameters**

*N*  
[int, ndarray] Number of things.

*k*  
[int, ndarray] Number of elements taken.

*exact*  
[bool, optional] If *exact* is False, then floating point precision is used, otherwise exact long integer is computed.

*repetition*  
[bool, optional] If *repetition* is True, then the number of combinations with repetition is computed.

**Returns**

*val*  
[int, float, ndarray] The total number of combinations.

**See also:**

*binom*

Binomial coefficient ufunc
Notes

- Array arguments accepted only for exact=False case.
- If N < 0, or k < 0, then 0 is returned.
- If k > N and repetition=False, then 0 is returned.

Examples

```python
>>> from scipy.special import comb
>>> k = np.array([3, 4])
>>> n = np.array([10, 10])
>>> comb(n, k, exact=False)
array([120., 210.])
>>> comb(10, 3, exact=True)
120
>>> comb(10, 3, exact=True, repetition=True)
220
```

```
scipy.special.perm
```

`scipy.special.perm(N, k, exact=False)`

Permutations of N things taken k at a time, i.e., k-permutations of N.

It’s also known as “partial permutations”.

**Parameters**

- **N** [int, ndarray] Number of things.
- **k** [int, ndarray] Number of elements taken.
- **exact** [bool, optional] If exact is False, then floating point precision is used, otherwise exact long integer is computed.

**Returns**

- **val** [int, ndarray] The number of k-permutations of N.

Notes

- Array arguments accepted only for exact=False case.
- If k > N, N < 0, or k < 0, then a 0 is returned.

Examples

```python
>>> from scipy.special import perm
>>> k = np.array([3, 4])
>>> n = np.array([10, 10])
>>> perm(n, k)
array([720., 5040.])
>>> perm(10, 3, exact=True)
720
```
Lambert W and related functions

\[ \text{lambertw}(z, k, \text{tol}) \] Lambert W function.

\[ \text{wrightomega}(z, \text{out}) \] Wright Omega function.

**scipy.special.lambertw**

```
scipy.special.lambertw(z, k=0, tol=1e-8)
```
Lambert W function.

The Lambert W function \( W(z) \) is defined as the inverse function of \( w \times \exp(w) \). In other words, the value of \( W(z) \) is such that \( z = W(z) \times \exp(W(z)) \) for any complex number \( z \).

The Lambert W function is a multivalued function with infinitely many branches. Each branch gives a separate solution of the equation \( z = w \exp(w) \). Here, the branches are indexed by the integer \( k \).

**Parameters**

- \( z \) [array_like] Input argument.
- \( k \) [int, optional] Branch index.
- \( \text{tol} \) [float, optional] Evaluation tolerance.

**Returns**

- \( w \) [array] \( w \) will have the same shape as \( z \).

**See also:**

- \[ \text{wrightomega} \]
  - the Wright Omega function

**Notes**

All branches are supported by \( \text{lambertw} \):

- \( \text{lambertw}(z) \) gives the principal solution (branch 0)
- \( \text{lambertw}(z, k) \) gives the solution on branch \( k \)

The Lambert W function has two partially real branches: the principal branch \( k = 0 \) is real for real \( z > -1/e \), and the \( k = -1 \) branch is real for \( -1/e < z < 0 \). All branches except \( k = 0 \) have a logarithmic singularity at \( z = 0 \).

**Possible issues**

The evaluation can become inaccurate very close to the branch point at \( -1/e \). In some corner cases, \( \text{lambertw} \) might currently fail to converge, or can end up on the wrong branch.

**Algorithm**

Halley’s iteration is used to invert \( w \times \exp(w) \), using a first-order asymptotic approximation \( O(\log(w)) \) or \( O(w) \) as the initial estimate.

The definition, implementation and choice of branches is based on [2].

3.3. API definition 2363
References
[1],[2]

Examples
The Lambert W function is the inverse of $w \exp(w)$:

```python
>>> from scipy.special import lambertw
>>> w = lambertw(1)
>>> w
(0.56714329040978384+0j)
>>> w * np.exp(w)
(1.0+0j)
```

Any branch gives a valid inverse:

```python
>>> w = lambertw(1, k=3)
>>> w
(-2.8535817554090377+17.113535539412148j)
>>> w * np.exp(w)
(1.0000000000000002+1.609823385706477e-15j)
```

Applications to equation-solving
The Lambert W function may be used to solve various kinds of equations, such as finding the value of the infinite power tower $z^{z^{\ldots}}$:

```python
>>> def tower(z, n):
... if n == 0:
... return z
... return z ** tower(z, n-1)
...
>>> tower(0.5, 100)
0.641185744504986
>>> -lambertw(-np.log(0.5)) / np.log(0.5)
(0.64118574450498589+0j)
```

`scipy.special.wrightomega`

`scipy.special.wrightomega(z, out=None) = <ufunc 'wrightomega'>`
Wright Omega function.
Defined as the solution to

$$\omega + \log(\omega) = z$$

where log is the principal branch of the complex logarithm.

Parameters

- `z` [array_like] Points at which to evaluate the Wright Omega function

Returns
omega  [ndarray] Values of the Wright Omega function

See also:

lambertw

The Lambert W function

Notes

New in version 0.19.0.

The function can also be defined as

\[ \omega(z) = W_{K(z)}(e^z) \]

where \( K(z) = \lceil (3(z - \pi)/(2\pi) \rceil \) is the unwinding number and \( W \) is the Lambert W function.

The implementation here is taken from [1].

References

[1]

Other special functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>agm(a, b)</td>
<td>Compute the arithmetic-geometric mean of ( a ) and ( b ).</td>
</tr>
<tr>
<td>bernoulli(n)</td>
<td>Bernoulli numbers ( B_0 ) to ( B_n ) (inclusive).</td>
</tr>
<tr>
<td>binom(n, k)</td>
<td>Binomial coefficient</td>
</tr>
<tr>
<td>diric(x, n)</td>
<td>Periodic sinc function, also called the Dirichlet function.</td>
</tr>
<tr>
<td>euler(n)</td>
<td>Euler numbers ( E(0), E(1), ..., E(n) ).</td>
</tr>
<tr>
<td>expn(n, x, [out])</td>
<td>Generalized exponential integral ( E_n ).</td>
</tr>
<tr>
<td>expi(x, [out])</td>
<td>Exponential integral ( E_i ).</td>
</tr>
<tr>
<td>factorial(n, [exact])</td>
<td>The factorial of a number or array of numbers.</td>
</tr>
<tr>
<td>factorialk(n, k, [exact])</td>
<td>Multifactorial of ( n ) of order ( k ), ( n!!...! ).</td>
</tr>
<tr>
<td>shichi(x, [out])</td>
<td>Hyperbolic sine and cosine integrals.</td>
</tr>
<tr>
<td>sic(x, [out])</td>
<td>Sine and cosine integrals.</td>
</tr>
<tr>
<td>softmax(x, [axis])</td>
<td>Softmax function</td>
</tr>
<tr>
<td>log_softmax(x, [axis])</td>
<td>Logarithm of softmax function.</td>
</tr>
<tr>
<td>spence(z, [out])</td>
<td>Spence’s function, also known as the dilogarithm.</td>
</tr>
<tr>
<td>zeta(x, [q, out])</td>
<td>Riemann or Hurwitz zeta function.</td>
</tr>
<tr>
<td>zetac(x)</td>
<td>Riemann zeta function minus 1.</td>
</tr>
</tbody>
</table>
scipy.special.agm

scipy.special.agm(a, b) = <ufunc 'agm'>

Compute the arithmetic-geometric mean of a and b.

Start with a_0 = a and b_0 = b and iteratively compute:

\[
\begin{align*}
a_{n+1} &= (a_n + b_n) / 2 \\
b_{n+1} &= \sqrt{a_n \times b_n}
\end{align*}
\]

a_n and b_n converge to the same limit as n increases; their common limit is agm(a, b).

**Parameters**

- **a, b**  
  [array_like] Real values only. If the values are both negative, the result is negative. If one value is negative and the other is positive, nan is returned.

**Returns**

- **float**  
  The arithmetic-geometric mean of a and b.

**Examples**

```python
>>> from scipy.special import agm
>>> a, b = 24.0, 6.0
>>> agm(a, b)
13.458171481725614
```

Compare that result to the iteration:

```python
>>> while a != b:
... a, b = (a + b) / 2, np.sqrt(a*b)
... print("a = %19.16f b=%19.16f" % (a, b))
... ...
```

```
a = 15.0000000000000000 b=12.0000000000000000
a = 13.5000000000000000 b=13.4164078649987388
a = 13.4582039324993694 b=13.4581390309909850
a = 13.4581714817451772 b=13.4581714817060547
a = 13.4581714817256159 b=13.4581714817256159
```

When array-like arguments are given, broadcasting applies:

```python
>>> a = np.array([[1.5], [3], [6]]) # a has shape (3, 1).
>>> b = np.array([6, 12, 24, 48]) # b has shape (4,).
>>> agm(a, b)
array([[3.36454287, 5.42363427, 9.05798751, 15.53650756],
 [4.37037309, 6.72908574, 10.84726853, 18.11597502],
 [6. , 8.74074619, 13.45817148, 21.69453707]])
```
scipy.special.bernoulli

scipy.special.bernoulli(n)
Bernoulli numbers B0..Bn (inclusive).

Parameters

n [int] Indicated the number of terms in the Bernoulli series to generate.

Returns

ndarray The Bernoulli numbers [B(0), B(1), ..., B(n)].

References

[1], [2]

Examples

```python
>>> from scipy.special import bernoulli, zeta
>>> bernoulli(4)
array([1. , -0.5 , 0.16666667, 0. , -0.03333333])
```

The Wikipedia article ([2]) points out the relationship between the Bernoulli numbers and the zeta function, \( B_n^+ = -n \cdot \zeta(1 - n) \) for \( n > 0 \):

```python
>>> n = np.arange(1, 5)
>>> -n * zeta(1 - n)
array([0.5 , 0.16666667, -0. , -0.03333333])
```

Note that, in the notation used in the wikipedia article, `bernoulli` computes \( B_n^- \) (i.e. it used the convention that \( B_1 \) is \(-1/2\)). The relation given above is for \( B_n^+ \), so the sign of 0.5 does not match the output of `bernoulli(4)`.

scipy.special.binom

scipy.special.binom(n, k) = <ufunc 'binom'>
Binomial coefficient

See also:

comb
The number of combinations of N things taken k at a time.
**scipy.special.dirc**

**scipy.special.dirc(x, n)**

Periodic sinc function, also called the Dirichlet function.

The Dirichlet function is defined as:

\[
\text{dirc}(x, n) = \frac{\sin(x \times n / 2)}{(n \times \sin(x / 2))},
\]

where \( n \) is a positive integer.

**Parameters**

- **x** [array_like] Input data
- **n** [int] Integer defining the periodicity.

**Returns**

- **dirc** [ndarray]

**Examples**

```python
>>> from scipy import special
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-8*np.pi, 8*np.pi, num=201)
>>> plt.figure(figsize=(8, 8));
>>> for idx, n in enumerate([2, 3, 4, 9]):
... plt.subplot(2, 2, idx+1)
... plt.plot(x, special.dirc(x, n))
... plt.title('dirc, n={}'.format(n))
>>> plt.show()
```

The following example demonstrates that `dirc` gives the magnitudes (modulo the sign and scaling) of the Fourier coefficients of a rectangular pulse.

Suppress output of values that are effectively 0:

```python
>>> np.set_printoptions(suppress=True)
```

Create a signal \( x \) of length \( m \) with \( k \) ones:

```python
>>> m = 8
>>> k = 3
>>> x = np.zeros(m)
>>> x[:k] = 1
```

Use the FFT to compute the Fourier transform of \( x \), and inspect the magnitudes of the coefficients:

```python
>>> np.abs(np.fft.fft(x))
array([3. , 2.41421356, 1. , 0.41421356, 1. , 0.41421356, 1. , 2.41421356])
```

Now find the same values (up to sign) using `dirc`. We multiply by \( k \) to account for the different scaling conventions of `numpy.fft.fft` and `dirc`: 
3.3. API definition
>>> theta = np.linspace(0, 2*np.pi, m, endpoint=False)
>>> k * special.diric(theta, k)
array([ 3. , 2.41421356, 1. , -0.41421356, -1. ,
      -0.41421356, 1. , 2.41421356])

cipy.special.euler

cipy.special.euler(n)
Euler numbers E(0), E(1), …, E(n).

The Euler numbers [1] are also known as the secant numbers.

Because euler(n) returns floating point values, it does not give exact values for large n. The first inexact value is E(22).

Parameters

n [int] The highest index of the Euler number to be returned.

Returns

ndarray The Euler numbers [E(0), E(1), …, E(n)]. The odd Euler numbers, which are all zero, are included.

References

[1], [2]

Examples

>>> from scipy.special import euler
>>> euler(6)
array([ 1., 0., -1., 0., 5., 0., -61.])

>>> euler(13).astype(np.int64)
array([ 1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521, 0, 2702765, 0])

>>> euler(22)[-1] # Exact value of E(22) is -69348874393137901.
-69348874393137976.0

scipy.special.expn

scipy.special.expn(n, x, out=None) = <ufunc 'expn'>
Generalized exponential integral En.

For integer \( n \geq 0 \) and real \( x \geq 0 \) the generalized exponential integral is defined as [dlmf]

\[ E_n(x) = x^{n-1} \int_x^\infty \frac{e^{-t}}{t^n} dt. \]

Parameters
**SciPy Reference Guide, Release 1.8.0**

- **n**: array_like
  - Non-negative integers
- **x**: array_like
  - Real argument
- **out**: ndarray, optional
  - Optional output array for the function results

**Returns**

- scalar or ndarray
  - Values of the generalized exponential integral

**See also:**

- **exp1**
  - special case of $E_n$ for $n = 1$
- **expi**
  - related to $E_n$ when $n = 1$

**References**

[dmlf]

**Examples**

```python
>>> import scipy.special as sc
```

Its domain is nonnegative $n$ and $x$.

```python
>>> sc.expn(-1, 1.0), sc.expn(1, -1.0)
(nan, nan)
```

It has a pole at $x = 0$ for $n = 1, 2$; for larger $n$ it is equal to $1 / (n - 1)$.

```python
>>> sc.expn([0, 1, 2, 3, 4], 0)
array([inf, inf, 1. , 0.5 , 0.33333333])
```

For $n$ equal to 0 it reduces to $\exp(-x) / x$.

```python
>>> x = np.array([1, 2, 3, 4])
>>> sc.expn(0, x)
array([0.36787944, 0.06766764, 0.01659569, 0.00457891])
>>> np.exp(-x) / x
array([0.36787944, 0.06766764, 0.01659569, 0.00457891])
```

For $n$ equal to 1 it reduces to **exp1**.

```python
>>> sc.expn(1, x)
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
>>> sc.expl(x)
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
```
scipy.special.exp1

scipy.special.exp1(z, out=None) = <ufunc 'exp1'>

Exponential integral E1.

For complex \( z \neq 0 \) the exponential integral can be defined as [1]

\[
E_1(z) = \int_{z}^{\infty} \frac{e^{-t}}{t} dt,
\]

where the path of the integral does not cross the negative real axis or pass through the origin.

Parameters

- **z**: array_like
  - Real or complex argument.

- **out**: ndarray, optional
  - Optional output array for the function results

Returns

- **scalar or ndarray**
  - Values of the exponential integral E1

See also:

- expi
  - exponential integral \( Ei \)
- expn
  - generalization of \( E_1 \)

Notes

For \( x > 0 \) it is related to the exponential integral \( Ei \) (see expi) via the relation

\[
E_1(x) = -Ei(-x).
\]

References

[1]

Examples

```python
>>> import scipy.special as sc
```

It has a pole at 0.

```python
>>> sc.exp1(0)
inf
```

It has a branch cut on the negative real axis.
It approaches \( 0 \) along the positive real axis.

```python
>>> sc.exp1([-1, 10, 100, 1000])
array([2.19383934e-01, 4.15696893e-06, 3.68359776e-46, 0.00000000e+00])
```

It is related to \( \text{expi} \).

```python
>>> x = np.array([1, 2, 3, 4])
>>> sc.exp1(x)
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
>>> -sc.expi(-x)
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
```

### scipy.special.expi

`scipy.special.expi(x, out=None) = <ufunc 'expi'>`

Exponential integral \( \text{Ei} \).

For real \( x \), the exponential integral is defined as [1]

\[
\text{Ei}(x) = \int_{-\infty}^{x} \frac{e^t}{t} dt.
\]

For \( x > 0 \) the integral is understood as a Cauchy principle value.

It is extended to the complex plane by analytic continuation of the function on the interval \((0, \infty)\). The complex variant has a branch cut on the negative real axis.

**Parameters**

- `x`: array_like
  - Real or complex valued argument
- `out`: ndarray, optional
  - Optional output array for the function results

**Returns**

- scalar or ndarray
  - Values of the exponential integral

**See also:**

- `exp1`
  - Exponential integral \( E_1 \)
- `expn`
  - Generalized exponential integral \( E_n \)
Notes

The exponential integrals $E_1$ and $E_i$ satisfy the relation

$$E_1(x) = -E_i(-x)$$

for $x > 0$.

References

[1]

Examples

```python
>>> import scipy.special as sc

It is related to `exp1`.

>>> x = np.array([1, 2, 3, 4])
>>> -sc.expi(-x)
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
>>> sc.exp1(x)
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])

The complex variant has a branch cut on the negative real axis.

>>> import scipy.special as sc
>>> sc.expi(-1 + 1e-12j)
(-0.21938393439552062+3.1415926535894254j)
>>> sc.expi(-1 - 1e-12j)
(-0.21938393439552062-3.1415926535894254j)

As the complex variant approaches the branch cut, the real parts approach the value of the real variant.

>>> sc.expi(-1)
-0.21938393439552062

The SciPy implementation returns the real variant for complex values on the branch cut.

>>> sc.expi(complex(-1, 0.0))
(-0.21938393439552062-0j)
>>> sc.expi(complex(-1, -0.0))
(-0.21938393439552062-0j)
```
**scipy.special.factorial**

**scipy.special.factorial**(\(n, \text{exact}=\text{False}\))

The factorial of a number or array of numbers.

The factorial of non-negative integer \(n\) is the product of all positive integers less than or equal to \(n\):

\[
n! = n \times (n - 1) \times (n - 2) \times \ldots \times 1
\]

**Parameters**

- \(n\) [int or array_like of ints] Input values. If \(n < 0\), the return value is 0.
- \(\text{exact}\) [bool, optional] If True, calculate the answer exactly using long integer arithmetic. If False, result is approximated in floating point rapidly using the \textit{gamma} function. Default is False.

**Returns**

- \(nf\) [float or int or ndarray] Factorial of \(n\), as integer or float depending on \(\text{exact}\).

**Notes**

For arrays with \(\text{exact}=\text{True}\), the factorial is computed only once, for the largest input, with each other result computed in the process. The output dtype is increased to int64 or object if necessary.

With \(\text{exact}=\text{False}\) the factorial is approximated using the gamma function:

\[
n! = \Gamma(n + 1)
\]

**Examples**

```python
>>> from scipy.special import factorial
>>> arr = np.array([3, 4, 5])
>>> factorial(arr, exact=False)
array([6., 24., 120.])
>>> factorial(arr, exact=True)
array([6, 24, 120])
>>> factorial(5, exact=True)
120
```

**scipy.special.factorial2**

**scipy.special.factorial2**(\(n, \text{exact}=\text{False}\))

Double factorial.

This is the factorial with every second value skipped. E.g., \(7!! = 7 \times 5 \times 3 \times 1\). It can be approximated numerically as:

\[
n!! = \text{special.gamma}(n/2+1)\times2^{{2\times((n+1)/2)/\sqrt{\pi}}} \quad n \text{ odd}
\]

\[
= 2^{{n/2}} \times (n/2)! \quad n \text{ even}
\]

**Parameters**
**n** [int or array_like] Calculate \( n!! \). Arrays are only supported with `exact` set to False. If \( n < 0 \), the return value is 0.

**exact** [bool, optional] The result can be approximated rapidly using the gamma-formula above (default). If `exact` is set to True, calculate the answer exactly using integer arithmetic.

**Returns**

**nff** [float or int] Double factorial of \( n \), as an int or a float depending on `exact`.

**Examples**

```python
>>> from scipy.special import factorial2
>>> factorial2(7, exact=False)
array(105.00000000000001)
>>> factorial2(7, exact=True)
105
```

**scipy.special.factorialk**

**scipy.special.factorialk** \((n, k, exact=True)\)

Multifactorial of \( n \) of order \( k \), \( n(!!!\ldots!) \).

This is the multifactorial of \( n \) skipping \( k \) values. For example,

\[
\text{factorialk}(17, 4) = 17!!!! = 17 \times 13 \times 9 \times 5 \times 1
\]

In particular, for any integer \( n \), we have

\[
\text{factorialk}(n, 1) = \text{factorial}(n)
\]

\[
\text{factorialk}(n, 2) = \text{factorial2}(n)
\]

**Parameters**

**n** [int] Calculate multifactorial. If \( n < 0 \), the return value is 0.

**k** [int] Order of multifactorial.

**exact** [bool, optional] If exact is set to True, calculate the answer exactly using integer arithmetic.

**Returns**

**val** [int] Multifactorial of \( n \).

**Raises**

**NotImplementedError**

Raises when exact is False

**Examples**

```python
>>> from scipy.special import factorialk
>>> factorialk(5, 1, exact=True)
120
>>> factorialk(5, 3, exact=True)
10
```
scipy.special.shichi

scipy.special.shichi(x, out=None) = <ufunc 'shichi'>

Hyperbolic sine and cosine integrals.

The hyperbolic sine integral is

\[ \int_0^x \frac{\sinh t}{t} dt \]

and the hyperbolic cosine integral is

\[ \gamma + \log(x) + \int_0^x \frac{\cosh t - 1}{t} dt \]

where \( \gamma \) is Euler’s constant and \( \log \) is the principle branch of the logarithm.

Parameters

- \( x \) : [array_like] Real or complex points at which to compute the hyperbolic sine and cosine integrals.

Returns

- \( si \) : [ndarray] Hyperbolic sine integral at \( x \)
- \( ci \) : [ndarray] Hyperbolic cosine integral at \( x \)

Notes

For real arguments with \( x < 0 \), \( \chi \) is the real part of the hyperbolic cosine integral. For such points \( \chi(x) \) and \( \chi(x + 0j) \) differ by a factor of \( 1j \pi \).

For real arguments the function is computed by calling Cephes’ [1] shichi routine. For complex arguments the algorithm is based on Mpmath’s [2] shi and chi routines.

References

[1], [2]

scipy.special.sici

scipy.special.sici(x, out=None) = <ufunc 'sici'>

Sine and cosine integrals.

The sine integral is

\[ \int_0^x \frac{\sin t}{t} dt \]

and the cosine integral is

\[ \gamma + \log(x) + \int_0^x \frac{\cos t - 1}{t} dt \]

where \( \gamma \) is Euler’s constant and \( \log \) is the principle branch of the logarithm.

Parameters
x  [array_like] Real or complex points at which to compute the sine and cosine integrals.

Returns

si  [ndarray] Sine integral at x
  ci  [ndarray] Cosine integral at x

Notes

For real arguments with $x < 0$, $ci$ is the real part of the cosine integral. For such points $ci(x)$ and $ci(x + 0j)$ differ by a factor of $1j\pi$.

For real arguments the function is computed by calling Cephes' [1] $sici$ routine. For complex arguments the algorithm is based on Mpmath's [2] $si$ and $ci$ routines.

References

[1], [2]

scipy.special.softmax

scipy.special.softmax(x, axis=None)

Softmax function

The softmax function transforms each element of a collection by computing the exponential of each element divided by the sum of the exponentials of all the elements. That is, if $x$ is a one-dimensional numpy array:

$$softmax(x) = \frac{\exp(x)}{\text{sum}(\exp(x))}$$

Parameters

x  [array_like] Input array.
  axis  [int or tuple of ints, optional] Axis to compute values along. Default is None and softmax will be computed over the entire array $x$.

Returns

s  [ndarray] An array the same shape as $x$. The result will sum to 1 along the specified axis.

Notes

The formula for the softmax function $\sigma(x)$ for a vector $x = \{x_0, x_1, ..., x_{n-1}\}$ is

$$\sigma(x)_j = \frac{e^{x_j}}{\sum_k e^{x_k}}$$

The softmax function is the gradient of logsumexp.

New in version 1.2.0.
Examples

```python
from scipy.special import softmax
np.set_printoptions(precision=5)

x = np.array([[1, 0.5, 0.2, 3],
 [1, -1, 7, 3],
 [2, 12, 13, 3]])

m = softmax(x)
m
array([[4.48309e-06, 2.71913e-06, 2.01438e-06, 3.31258e-05],
 [4.48309e-06, 6.06720e-07, 1.80861e-03, 3.31258e-05],
 [1.21863e-05, 2.68421e-01, 7.29644e-01, 3.31258e-05]])

m.sum()
1.0000000000000002

m = softmax(x, axis=0)
m
array([[2.11942e-01, 1.01300e-05, 2.75394e-06, 3.33333e-01],
 [2.11942e-01, 2.26030e-06, 2.47262e-03, 3.33333e-01],
 [5.76117e-01, 9.99988e-01, 9.97525e-01, 3.33333e-01]])

m.sum(axis=0)
array([1., 1., 1., 1.])

m = softmax(x, axis=1)
m
array([[1.05877e-01, 6.42177e-02, 4.75736e-02, 7.82332e-01],
 [2.42746e-03, 3.28521e-04, 9.79307e-01, 1.79366e-02],
 [1.22094e-05, 2.68929e-01, 7.31025e-01, 3.31885e-05]])

m.sum(axis=1)
array([1., 1., 1.])
```
scipy.special.log_softmax

scipy.special.log_softmax(x, axis=None)

Logarithm of softmax function:

\[
\log(\text{softmax}(x)) = \log(\text{softmax}(x))
\]

**Parameters**

- **x** [array_like] Input array.
- **axis** [int or tuple of ints, optional] Axis to compute values along. Default is None and softmax will be computed over the entire array x.

**Returns**

- **s** [ndarray or scalar] An array with the same shape as x. Exponential of the result will sum to 1 along the specified axis. If x is a scalar, a scalar is returned.

**Notes**

\(\log(\text{softmax})\) is more accurate than \(\text{np.log(softmax(x))}\) with inputs that make \(\text{softmax}\) saturate (see examples below).

New in version 1.5.0.

**Examples**

```python
>>> from scipy.special import log_softmax
>>> from scipy.special import softmax
>>> np.set_printoptions(precision=5)

>>> x = np.array([[1000.0, 1.0]])

>>> y = log_softmax(x)
>>> y
array([[0., -999.]])

>>> with np.errstate(divide='ignore'):
... y = np.log(softmax(x))
... ...
>>> y
array([[0., -inf]])
```
scipy.special.spence

\texttt{scipy.special.spence}(z, out=None) = <ufunc 'spence'>

Spence's function, also known as the dilogarithm.

It is defined to be

\[ \int_{1}^{z} \frac{\log(t)}{1-t} dt \]

for complex \( z \), where the contour of integration is taken to avoid the branch cut of the logarithm. Spence's function is analytic everywhere except the negative real axis where it has a branch cut.

\textbf{Parameters}

- \( z \) [array_like] Points at which to evaluate Spence's function

\textbf{Returns}

- \( s \) [ndarray] Computed values of Spence's function

\textbf{Notes}

There is a different convention which defines Spence's function by the integral

\[ - \int_{0}^{z} \frac{\log(1-t)}{t} dt; \]

this is our \texttt{spence}(1 - z).

scipy.special.zeta

\texttt{scipy.special.zeta}(x, q=None, out=None)

Riemann or Hurwitz zeta function.

\textbf{Parameters}

- \( x \) [array_like of float] Input data, must be real
- \( q \) [array_like of float, optional] Input data, must be real. Defaults to Riemann zeta.
- \( out \) [ndarray, optional] Output array for the computed values.

\textbf{Returns}

- \( out \) [array_like] Values of zeta(x).

\textbf{See also:}

- \texttt{zetac}

\textbf{Notes}

The two-argument version is the Hurwitz zeta function

\[ \zeta(x, q) = \sum_{k=0}^{\infty} \frac{1}{(k + q)^x}; \]

see [dlmf] for details. The Riemann zeta function corresponds to the case when \( q = 1 \).
References

[dlmf]

Examples

```python
>>> from scipy.special import zeta, polygamma, factorial
```

Some specific values:

```python
>>> zeta(2), np.pi**2/6
(1.6449340668482266, 1.6449340668482264)
```

```python
>>> zeta(4), np.pi**4/90
(1.0823232337111381, 1.0823232337111381)
```

Relation to the `polygamma` function:

```python
>>> m = 3
>>> x = 1.25
>>> polygamma(m, x)
array(2.782144009188397)
```

```python
>>> (-1)**(m+1) * factorial(m) * zeta(m+1, x)
2.7821440091883969
```

`scipy.special.zetac`

`scipy.special.zetac(x) = <ufunc 'zetac'>`

Riemann zeta function minus 1.

This function is defined as

\[
\zeta(x) = \sum_{k=2}^{\infty} \frac{1}{k^x},
\]

where \( x > 1 \). For \( x < 1 \) the analytic continuation is computed. For more information on the Riemann zeta function, see [dlmf].

**Parameters**

- \( x \)  
  [array_like of float] Values at which to compute \( \zeta(x) - 1 \) (must be real).

**Returns**

- **out**  
  [array_like] Values of \( \zeta(x) - 1 \).

**See also:**

- `zeta`
References

[dlmf]

Examples

```python
>>> from scipy.special import zetac, zeta
```

Some special values:

```python
>>> zetac(2), np.pi**2/6 - 1
(0.64493406684822641, 0.6449340668482264)
```

```python
>>> zetac(-1), -1.0/12 - 1
(-1.0833333333333333, -1.0833333333333333)
```

Compare `zetac(x)` to `zeta(x) - 1` for large `x`:

```python
>>> zetac(60), zeta(60) - 1
(8.673617380119933e-19, 0.0)
```

Convenience functions

```
cbrt(x) Element-wise cube root of x.
expl10(x) Compute 10**x element-wise.
exp2(x) Compute 2**x element-wise.
radian(d, m, s[, out]) Convert from degrees to radians.
cosdg(x[, out]) Cosine of the angle x given in degrees.
sindg(x[, out]) Sine of the angle x given in degrees.
tandg(x[, out]) Tangent of angle x given in degrees.
cotdg(x[, out]) Cotangent of the angle x given in degrees.
log1p(x[, out]) Calculates log(1+x) for use when x is near zero.
expm1(x) Compute exp(x) - 1.
```
scipy.special.cbrt

scipy.special.cbrt(x) = <ufunc 'cbrt'>
Element-wise cube root of x.

Parameters
x [array_like] x must contain real numbers.

Returns
float The cube root of each value in x.

Examples

```python
>>> from scipy.special import cbrt

>>> cbrt(8)
2.0
>>> cbrt([-8, -3, 0.125, 1.331])
array([-2. , -1.44224957, 0.5 , 1.1])
```

scipy.special.exp10

scipy.special.exp10(x) = <ufunc 'exp10'>
Compute 10**x element-wise.

Parameters
x [array_like] x must contain real numbers.

Returns
float 10**x, computed element-wise.

Examples

```python
>>> from scipy.special import exp10

>>> exp10(3)
1000.0
>>> x = np.array([[-1, -0.5, 0], [0.5, 1, 1.5]])
>>> exp10(x)
anarray([[0.1 , 0.31622777, 1.],
 [3.16227766, 10. , 31.6227766]])
```
scipy.special.exp2

scipy.special.exp2(x) = <ufunc 'exp2'>
Compute \(2^x\) element-wise.

Parameters

  x    [array_like] x must contain real numbers.

Returns

  float \(2^x\), computed element-wise.

Examples

>>> from scipy.special import exp2

>>> exp2(3)
8.0
>>> x = np.array([[[-1, -0.5, 0], [0.5, 1, 1.5]]])
>>> exp2(x)
array([[  0.5       ,   0.70710678,  1.         ],
       [ 1.41421356,  2.         ,  2.82842712]])

scipy.special.radian

scipy.special.radian(d, m, s, out=None) = <ufunc 'radian'>
Convert from degrees to radians.
Returns the angle given in (d)egrees, (m)inutes, and (s)econds in radians.

Parameters

  d    [array_like] Degrees, can be real-valued.
  m    [array_like] Minutes, can be real-valued.
  s    [array_like] Seconds, can be real-valued.
  out  [ndarray, optional] Optional output array for the function results.

Returns

  scalar or ndarray
  Values of the inputs in radians.

Examples

>>> import scipy.special as sc

There are many ways to specify an angle.

>>> sc.radian(90, 0, 0)
1.5707963267948966
>>> sc.radian(0, 60 * 90, 0)
1.5707963267948966

(continues on next page)
The inputs can be real-valued.

```python
>>> sc.radian(1.5, 0, 0)
0.02617993877991494
>>> sc.radian(1, 30, 0)
0.02617993877991494
```

### scipy.special.cosdg

`scipy.special.cosdg(x, out=None) = <ufunc 'cosdg'>`

Cosine of the angle $x$ given in degrees.

**Parameters**

- `x` : array_like
  Angle, given in degrees.
- `out` : ndarray, optional
  Optional output array for the function results.

**Returns**

- scalar or ndarray
  Cosine of the input.

**See also:**

`sindg`, `tandg`, `cotdg`

**Examples**

```python
>>> import scipy.special as sc
```

It is more accurate than using cosine directly.

```python
>>> x = 90 + 180 * np.arange(3)
>>> sc.cosdg(x)
array([-0., 0., -0.])
>>> np.cos(x * np.pi / 180)
array([6.1232340e-17, -1.8369702e-16, 3.0616170e-16])
```

### scipy.special.sindg

`scipy.special.sindg(x, out=None) = <ufunc 'sindg'>`

Sine of the angle $x$ given in degrees.

**Parameters**

- `x` : array_like
  Angle, given in degrees.
- `out` : ndarray, optional
  Optional output array for the function results.

**Returns**

- scalar or ndarray
  Sine of the input.
scalar or ndarray
   Sine at the input.

See also:

cosdg, tandg, cotdg

Examples

```python
>>> import scipy.special as sc
```

It is more accurate than using sine directly.

```python
>>> x = 180 * np.arange(3)
>>> sc.sindg(x)
array([0., -0., 0.])
>>> np.sin(x * np.pi / 180)
array([0.0000000e+00, 1.2246468e-16, -2.4492936e-16])
```

scipy.special.tandg

scipy.special.tandg(x, out=None) = <ufunc 'tandg'>
   Tangent of angle x given in degrees.

   Parameters
   
   x          [array_like] Angle, given in degrees.
   out        [ndarray, optional] Optional output array for the function results.

   Returns

   scalar or ndarray
   Tangent at the input.

See also:

sindg, cosdg, cotdg

Examples

```python
>>> import scipy.special as sc
```

It is more accurate than using tangent directly.

```python
>>> x = 180 * np.arange(3)
>>> sc.tandg(x)
array([0., 0., 0.])
>>> np.tan(x * np.pi / 180)
array([0.0000000e+00, -1.2246468e-16, -2.4492936e-16])
```
scipy.special.cotdg

scipy.special.cotdg(x, out=None) = <ufunc 'cotdg'>
Cotangent of the angle x given in degrees.

Parameters

x       [array_like] Angle, given in degrees.
out     [ndarray, optional] Optional output array for the function results.

Returns

scalar or ndarray
  Cotangent at the input.

See also:

sindg, cosdg, tandg

Examples

>>> import scipy.special as sc
It is more accurate than using cotangent directly.

>>> x = 90 + 180 * np.arange(3)
>>> sc.cotdg(x)
array([ 0. , 0. , 0. ])
>>> 1 / np.tan(x * np.pi / 180)
array([6.1232340e-17, 1.8369702e-16, 3.0616170e-16])

scipy.special.log1p

scipy.special.log1p(x, out=None) = <ufunc 'log1p'>
Calculates log(1 + x) for use when x is near zero.

Parameters

x       [array_like] Real or complex valued input.
out     [ndarray, optional] Optional output array for the function results.

Returns

scalar or ndarray
  Values of log(1 + x).

See also:

expm1, cos1
Examples

```python
>>> import scipy.special as sc
```

It is more accurate than using `log(1 + x)` directly for \(x\) near 0. Note that in the below example \(1 + 1e-17 \approx 1\) to double precision.

```python
>>> sc.log1p(1e-17)
1e-17
>>> np.log(1 + 1e-17)
0.0
```

`scipy.special.expm1`

`scipy.special.expm1(x) = <ufunc 'expm1'>`

Compute \(e^x - 1\).

When \(x\) is near zero, \(e^x\) is near 1, so the numerical calculation of \(e^x - 1\) can suffer from catastrophic loss of precision. \(\text{expm1}(x)\) is implemented to avoid the loss of precision that occurs when \(x\) is near zero.

**Parameters**

- `x` (array_like): \(x\) must contain real numbers.

**Returns**

- `float`: \(e^x - 1\) computed element-wise.

Examples

```python
>>> from scipy.special import expm1
```

```python
>>> expm1(1.0)
1.7182818284590451
>>> expm1([-0.2, -0.1, 0, 0.1, 0.2])
array([-0.18126925, -0.09516258, 0. , 0.10517092, 0.22140276])
```

The exact value of \(\exp(7.5e-13) - 1\) is:

```python
7.500000000000000000138...*10**-13.
```

Here is what \(\text{expm1}(7.5e-13)\) gives:

```python
>>> expm1(7.5e-13)
7.50000000000000028135e-13
```

Compare that to \(\exp(7.5e-13) - 1\), where the subtraction results in a “catastrophic” loss of precision:

```python
>>> np.exp(7.5e-13) - 1
7.5006667543675576e-13
```
scipy.special.cosm1

scipy.special.cosm1(x, out=None) = <ufunc 'cosm1'>

\[ \cos(x) - 1 \] for use when \( x \) is near zero.

**Parameters**

- **x** [array_like] Real valued argument.
- **out** [ndarray, optional] Optional output array for the function results.

**Returns**

- **scalar or ndarray**

  Values of \( \cos(x) - 1 \).

**See also:**

expm1, log1p

**Examples**

```python
>>> import scipy.special as sc
```

It is more accurate than computing \( \cos(x) - 1 \) directly for \( x \) around 0.

```python
>>> x = 1e-30
>>> np.cos(x) - 1
0.0
>>> sc.cosm1(x)
-5.0000000000000005e-61
```

scipy.special.round

scipy.special.round(x, out=None) = <ufunc 'round'>

Round to the nearest integer.

Returns the nearest integer to \( x \). If \( x \) ends in 0.5 exactly, the nearest even integer is chosen.

**Parameters**

- **x** [array_like] Real valued input.
- **out** [ndarray, optional] Optional output array for the function results.

**Returns**

- **scalar or ndarray**

  The nearest integers to the elements of \( x \). The result is of floating type, not integer type.
Examples

```python
>>> import scipy.special as sc

It rounds to even.

```scipy
>>> sc.round([0.5, 1.5])
array([0., 2.])
```

scipy.special.xlogy

```python
scipy.special.xlogy(x, y) = <ufunc 'xlogy'>
```
Compute \(x \times \log(y) \) so that the result is 0 if \(x = 0 \).

Parameters

- `x` [array_like] Multiplier
- `y` [array_like] Argument

Returns

- `z` [array_like] Computed \(x \times \log(y) \)

Notes

New in version 0.13.0.

scipy.special.xlog1py

```python
scipy.special.xlog1py(x, y) = <ufunc 'xlog1py'>
```
Compute \(x \times \log(1+y) \) so that the result is 0 if \(x = 0 \).

Parameters

- `x` [array_like] Multiplier
- `y` [array_like] Argument

Returns

- `z` [array_like] Computed \(x \times \log(1+y) \)

Notes

New in version 0.13.0.
scipy.special.logsumexp

Compute the log of the sum of exponentials of input elements.

Parameters

- **a** [array_like] Input array.
- **axis** [None or int or tuple of ints, optional] Axis or axes over which the sum is taken. By default axis is None, and all elements are summed. New in version 0.11.0.
- **keepdims** [bool, optional] If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array. New in version 0.15.0.
- **b** [array-like, optional] Scaling factor for exp(a) must be of the same shape as a or broadcastable to a. These values may be negative in order to implement subtraction. New in version 0.12.0.
- **return_sign** [bool, optional] If this is set to True, the result will be a pair containing sign information; if False, results that are negative will be returned as NaN. Default is False (no sign information). New in version 0.16.0.

Returns

- **res** [ndarray] The result, np.log(np.sum(np.exp(a))) calculated in a numerically more stable way. If b is given then np.log(np.sum(b*np.exp(a))) is returned.
- **sgn** [ndarray] If return_sign is True, this will be an array of floating-point numbers matching res and +1, 0, or -1 depending on the sign of the result. If False, only one result is returned.

See also:

numpy.logaddexp, numpy.logaddexp2

Notes

NumPy has a logaddexp function which is very similar to logsumexp, but only handles two arguments. logaddexp.reduce is similar to this function, but may be less stable.

Examples

```python
>>> from scipy.special import logsumexp
>>> a = np.arange(10)
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
>>> logsumexp(a)
9.4586297444267107
```

With weights

```python
>>> a = np.arange(10)
>>> b = np.arange(10, 0, -1)
>>> logsumexp(a, b=b)
9.9170178533034665
```
```python
>>> np.log(np.sum(b*np.exp(a)))
9.917017853034647
```

Returning a sign flag

```python
>>> logsumexp([1,2],b=[1,-1],return_sign=True)
(1.5413248546129181, -1.0)
```

Notice that `logsumexp` does not directly support masked arrays. To use it on a masked array, convert the mask into zero weights:

```python
>>> a = np.ma.array([np.log(2), 2, np.log(3)],
...                   mask=[False, True, False])
>>> b = (~a.mask).astype(int)
>>> logsumexp(a.data, b=b, np.log(5))
1.6094379124341005, 1.6094379124341005
```

scipy.special.exprel

```python
scipy.special.exprel(x) = <ufunc 'exprel'>
```

Relative error exponential, \(\frac{\exp(x) - 1}{x} \).

When \(x \) is near zero, \(\exp(x) \) is near 1, so the numerical calculation of \(\exp(x) - 1 \) can suffer from catastrophic loss of precision. `exprel(x)` is implemented to avoid the loss of precision that occurs when \(x \) is near zero.

Parameters

- **x**
 [ndarray] Input array. \(x \) must contain real numbers.

Returns

- **float**
 \(\frac{\exp(x) - 1}{x} \), computed element-wise.

Notes

New in version 0.17.0.

Examples

```python
>>> from scipy.special import exprel

>>> exprel(0.01)
1.0050167084168056
>>> exprel([-0.25, -0.1, 0, 0.1, 0.25])
array([ 0.88479687, 0.95162582, 1. , 1.05170918, 1.13610167])
```

Compare `exprel(5e-9)` to the naive calculation. The exact value is `1.00000000025000000416...`
scipy.special.sinc

Return the normalized sinc function.

The sinc function is \(\sin(\pi x) / (\pi x) \).

Note: Note the normalization factor of \(\pi \) used in the definition. This is the most commonly used definition in signal processing. Use \(\text{sinc}(x / \text{np.pi}) \) to obtain the unnormalized sinc function \(\sin(x)/(x) \) that is more common in mathematics.

Parameters

- \(x \) [ndarray] Array (possibly multi-dimensional) of values for which to calculate \(\text{sinc}(x) \).

Returns

- \(\text{out} \) [ndarray] \(\text{sinc}(x) \), which has the same shape as the input.

Notes

\(\text{sinc}(0) \) is the limit value 1.

The name sinc is short for “sine cardinal” or “sinus cardinalis”.

The sinc function is used in various signal processing applications, including in anti-aliasing, in the construction of a Lanczos resampling filter, and in interpolation.

For bandlimited interpolation of discrete-time signals, the ideal interpolation kernel is proportional to the sinc function.

References

[1], [2]

Examples

```python
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-4, 4, 41) # may vary
>>> np.sinc(x)
array([-3.89804309e-17, -4.92362781e-02, -8.40918587e-02, -8.90384387e-02, -5.84680802e-02, 3.89804309e-17, 6.68206631e-02, 1.16434881e-01, 1.26137788e-01, 8.50444803e-02, -3.89804309e-17, -1.03943254e-01, # may vary])
```
-1.89206682e-01, -2.16236208e-01, -1.55914881e-01, 3.89804309e-17, 2.33872321e-01, 5.04551152e-01, 7.56826729e-01, 9.35489284e-01, 1.00000000e+00, 9.35489284e-01, 7.56826729e-01, 5.04551152e-01, 2.33872321e-01, 3.89804309e-17, -1.55914881e-01, -2.16236208e-01, -1.89206682e-01, -1.03943254e-01, -3.89804309e-17, 8.50444803e-02, 1.26137788e-01, 1.16434881e-01, 6.68206631e-02, 3.89804309e-17, -5.84680802e-02, -8.90384387e-02, -8.40918587e-02, -4.92362781e-02, -3.89804309e-17]

```python
>>> plt.plot(x, np.sinc(x))
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Sinc Function")
Text(0.5, 1.0, 'Sinc Function')
>>> plt.ylabel("Amplitude")
Text(0, 0.5, 'Amplitude')
>>> plt.xlabel("X")
Text(0.5, 0, 'X')
>>> plt.show()
```

3.3.28 Statistical functions (scipy.stats)

This module contains a large number of probability distributions, summary and frequency statistics, correlation functions and statistical tests, masked statistics, kernel density estimation, quasi-Monte Carlo functionality, and more.

Statistics is a very large area, and there are topics that are out of scope for SciPy and are covered by other packages. Some of the most important ones are:

- **statsmodels**: regression, linear models, time series analysis, extensions to topics also covered by `scipy.stats`.
- **Pandas**: tabular data, time series functionality, interfaces to other statistical languages.
- **PyMC**: Bayesian statistical modeling, probabilistic machine learning.
• scikit-learn: classification, regression, model selection.
• Seaborn: statistical data visualization.
• rpy2: Python to R bridge.

Probability distributions

Each univariate distribution is an instance of a subclass of \texttt{rv_continuous} (\texttt{rv_discrete} for discrete distributions):

\begin{tabular}{ll}
\texttt{rv_continuous} & A generic continuous random variable class meant for \texttt{subclassing}. \\
\texttt{rv_discrete} & A generic discrete random variable class meant for \texttt{subclassing}. \\
\texttt{rv_histogram} & Generates a distribution given by a histogram.
\end{tabular}

\texttt{scipy.stats.rv_continuous}

class \texttt{scipy.stats.rv_continuous} (\texttt{momtype=1, a=None, b=None, xtol=1e-14, badvalue=None, name=None, longname=None, shapes=None, extradoc=None, seed=None})

A generic continuous random variable class meant for subclassing.

\texttt{rv_continuous} is a base class to construct specific distribution classes and instances for continuous random variables. It cannot be used directly as a distribution.

\textit{Parameters}

- \texttt{momtype} [int, optional] The type of generic moment calculation to use: 0 for pdf, 1 (default) for ppf.
- \texttt{a} [float, optional] Lower bound of the support of the distribution, default is minus infinity.
- \texttt{b} [float, optional] Upper bound of the support of the distribution, default is plus infinity.
- \texttt{xtol} [float, optional] The tolerance for fixed point calculation for generic ppf.
- \texttt{badvalue} [float, optional] The value in a result arrays that indicates a value that for which some argument restriction is violated, default is np.nan.
- \texttt{name} [str, optional] The name of the instance. This string is used to construct the default example for distributions.
- \texttt{longname} [str, optional] This string is used as part of the first line of the docstring returned when a subclass has no docstring of its own. Note: \texttt{longname} exists for backwards compatibility, do not use for new subclasses.
- \texttt{shapes} [str, optional] The shape of the distribution. For example "m, n" for a distribution that takes two integers as the two shape arguments for all its methods. If not provided, shape parameters will be inferred from the signature of the private methods, _pdf and _cdf of the instance.
- \texttt{extradoc} [str, optional, deprecated] This string is used as the last part of the docstring returned when a subclass has no docstring of its own. Note: \texttt{extradoc} exists for backwards compatibility, do not use for new subclasses.
- \texttt{seed} [
\begin{itemize}
 \item [None, int, numpy.random.Generator,]
 \item numpy.random.RandomState
\end{itemize}]

If \texttt{seed} is None (or \texttt{np.random}), the \texttt{numpy.random.RandomState} singleton is used. If \texttt{seed} is an int, a new \texttt{RandomState} instance is used, seeded with \texttt{seed}. If \texttt{seed} is already a \texttt{Generator} or \texttt{RandomState} instance then that instance is used.
Notes

Public methods of an instance of a distribution class (e.g., pdf, cdf) check their arguments and pass valid arguments to private, computational methods (_pdf, _cdf). For pdf(x), x is valid if it is within the support of the distribution. Whether a shape parameter is valid is decided by an _argcheck method (which defaults to checking that its arguments are strictly positive.)

Subclassing

New random variables can be defined by subclassing the rv_continuous class and re-defining at least the _pdf or the _cdf method (normalized to location 0 and scale 1).

If positive argument checking is not correct for your RV then you will also need to re-define the _argcheck method.

For most of the scipy.stats distributions, the support interval doesn’t depend on the shape parameters. x being in the support interval is equivalent to self.a <= x <= self.b. If either of the endpoints of the support do depend on the shape parameters, then i) the distribution must implement the _get_support method; and ii) those dependent endpoints must be omitted from the distribution’s call to the rv_continuous initializer.

Correct, but potentially slow defaults exist for the remaining methods but for speed and/or accuracy you can override:

_logsdf, _cdf, _logcdf, _ppf, _rvs, _isf, _sf, _logsf

The default method _rvs relies on the inverse of the cdf, _ppf, applied to a uniform random variate. In order to generate random variates efficiently, either the default _ppf needs to be overwritten (e.g. if the inverse cdf can expressed in an explicit form) or a sampling method needs to be implemented in a custom _rvs method.

If possible, you should override _isf, _sf or _logsf. The main reason would be to improve numerical accuracy: for example, the survival function _sf is computed as 1 - _cdf which can result in loss of precision if _cdf(x) is close to one.

Methods that can be overwritten by subclasses

_rvs
_pdf
_cdf
_sf
_ppf
_isf
_stats
_munp
_entropy
_argcheck
_get_support

There are additional (internal and private) generic methods that can be useful for cross-checking and for debugging, but might work in all cases when directly called.

A note on shapes: subclasses need not specify them explicitly. In this case, shapes will be automatically deduced from the signatures of the overridden methods (pdf, cdf etc). If, for some reason, you prefer to avoid relying on introspection, you can specify shapes explicitly as an argument to the instance constructor.

Frozen Distributions

Normally, you must provide shape parameters (and, optionally, location and scale parameters to each call of a method of a distribution.)
Alternatively, the object may be called (as a function) to fix the shape, location, and scale parameters returning a “frozen” continuous RV object:

\[
rv = generic(<shape(s)>, \text{loc}=0, \text{scale}=1)
\]

\(rv_frozen\) object with the same methods but holding the given shape, location, and scale fixed

Statistics

Statistics are computed using numerical integration by default. For speed you can redefine this using _stats:

- take shape parameters and return mu, mu2, g1, g2
- If you can’t compute one of these, return it as None
- Can also be defined with a keyword argument \text{moments}, which is a string composed of “m”, “v”, “s”, and/or “k”. Only the components appearing in string should be computed and returned in the order “m”, “v”, “s”, or “k” with missing values returned as None.

Alternatively, you can override _munp, which takes \(n\) and shape parameters and returns the \(n\)-th non-central moment of the distribution.

Examples

To create a new Gaussian distribution, we would do the following:

```python
>>> from scipy.stats import rv_continuous
>>> class gaussian_gen(rv_continuous):
...    "Gaussian distribution"
...    def _pdf(self, x):
...        return np.exp(-x**2 / 2.) / np.sqrt(2.0 * np.pi)
>>> gaussian = gaussian_gen(name='gaussian')
```

\text{scipy.stats} distributions are \textit{instances}, so here we subclass \texttt{rv_continuous} and create an instance. With this, we now have a fully functional distribution with all relevant methods automatically generated by the framework.

Note that above we defined a standard normal distribution, with zero mean and unit variance. Shifting and scaling of the distribution can be done by using \text{loc} and \text{scale} parameters: \texttt{gaussian.pdf(x, loc, scale)} essentially computes \(y = (x - \text{loc}) / \text{scale}\) and \texttt{gaussian._pdf(y) / scale}.

Attributes

- \texttt{random_state}\n
 Get or set the generator object for generating random variates.

Methods

- \texttt{rvs(*args, **kwds)}
- \texttt{pdf(x, *args, **kwds)}
- \texttt{logpdf(x, *args, **kwds)}
- \texttt{cdf(x, *args, **kwds)}
- \texttt{logcdf(x, *args, **kwds)}
- \texttt{sf(x, *args, **kwds)}
- \texttt{logsf(x, *args, **kwds)}
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppf(q, *args, **kwds)</td>
<td>Percent point function (inverse of cdf) at q of the given RV.</td>
</tr>
<tr>
<td>isf(q, *args, **kwds)</td>
<td>Inverse survival function (inverse of sf) at q of the given RV.</td>
</tr>
<tr>
<td>moment(n, *args, **kwds)</td>
<td>n-th order non-central moment of distribution.</td>
</tr>
<tr>
<td>stats(*args, **kwds)</td>
<td>Some statistics of the given RV.</td>
</tr>
<tr>
<td>entropy(*args, **kwds)</td>
<td>Differential entropy of the RV.</td>
</tr>
<tr>
<td>expect([func, args, loc, scale, lb, ub, ...])</td>
<td>Calculate expected value of a function with respect to the distribution by numerical integration.</td>
</tr>
<tr>
<td>median(*args, **kwds)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(*args, **kwds)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>std(*args, **kwds)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>var(*args, **kwds)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, *args, **kwds)</td>
<td>Confidence interval with equal areas around the median.</td>
</tr>
<tr>
<td>call(*args, **kwds)</td>
<td>Freeze the distribution for the given arguments.</td>
</tr>
<tr>
<td>fit(data, *args, **kwds)</td>
<td>Return estimates of shape (if applicable), location, and scale parameters from data.</td>
</tr>
<tr>
<td>fit_loc_scale(data, *args)</td>
<td>Estimate loc and scale parameters from data using 1st and 2nd moments.</td>
</tr>
<tr>
<td>nnlf(theta, x)</td>
<td>Negative loglikelihood function.</td>
</tr>
<tr>
<td>support(*args, **kwargs)</td>
<td>Support of the distribution.</td>
</tr>
</tbody>
</table>

scipy.stats.rv_continuous.rvs

rv_continuous.rvs(*args, **kwds)

Random variates of given type.

Parameters

- arg1, arg2, arg3...
 - [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information).
- loc
 - [array_like, optional] Location parameter (default=0).
- scale
 - [array_like, optional] Scale parameter (default=1).
- size
 - [int or tuple of ints, optional] Defining number of random variates (default is 1).
- random_state
 - [{None, int, numpy.random.Generator.}
 - numpy.random.RandomState], optional
 - If seed is None (or np.random), the numpy.random.RandomState singleton is used. If seed is an int, a new RandomState instance is used, seeded with seed. If seed is already a Generator or RandomState instance then that instance is used.

Returns

- rvs
 - [ndarray or scalar] Random variates of given size.
scipy.stats.rv_continuous.pdf

detected
rv_continuous.pdf(x, *args, **kwds)
Probability density function at x of the given RV.

Parameters

- x [array_like] quantiles
- arg1, arg2, arg3,...
 [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
- loc [array_like, optional] location parameter (default=0)
- scale [array_like, optional] scale parameter (default=1)

Returns

- pdf [ndarray] Probability density function evaluated at x

scipy.stats.rv_continuous.logpdf

detected
rv_continuous.logpdf(x, *args, **kwds)
Log of the probability density function at x of the given RV.
This uses a more numerically accurate calculation if available.

Parameters

- x [array_like] quantiles
- arg1, arg2, arg3,...
 [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
- loc [array_like, optional] location parameter (default=0)
- scale [array_like, optional] scale parameter (default=1)

Returns

- logpdf [array_like] Log of the probability density function evaluated at x

scipy.stats.rv_continuous.cdf

detected
rv_continuous.cdf(x, *args, **kwds)
Cumulative distribution function of the given RV.

Parameters

- x [array_like] quantiles
- arg1, arg2, arg3,...
 [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
- loc [array_like, optional] location parameter (default=0)
- scale [array_like, optional] scale parameter (default=1)

Returns

- cdf [ndarray] Cumulative distribution function evaluated at x
scipy.stats.rv_continuous.logcdf

```python
rv_continuous.logcdf(x, *args, **kwds)
```

Log of the cumulative distribution function at x of the given RV.

Parameters

- `x` : array_like quantiles
- `arg1, arg2, arg3,...` : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information)
- `loc` : array_like, optional location parameter (default=0)
- `scale` : array_like, optional scale parameter (default=1)

Returns

- `logcdf` : array_like Log of the cumulative distribution function evaluated at x

scipy.stats.rv_continuous.sf

```python
rv_continuous.sf(x, *args, **kwds)
```

Survival function (1 - cdf) at x of the given RV.

Parameters

- `x` : array_like quantiles
- `arg1, arg2, arg3,...` : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information)
- `loc` : array_like, optional location parameter (default=0)
- `scale` : array_like, optional scale parameter (default=1)

Returns

- `sf` : array_like Survival function evaluated at x

scipy.stats.rv_continuous.logsf

```python
rv_continuous.logsf(x, *args, **kwds)
```

Log of the survival function of the given RV.

Returns the log of the “survival function,” defined as (1 - cdf), evaluated at x.

Parameters

- `x` : array_like quantiles
- `arg1, arg2, arg3,...` : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information)
- `loc` : array_like, optional location parameter (default=0)
- `scale` : array_like, optional scale parameter (default=1)

Returns

- `logsf` : ndarray Log of the survival function evaluated at x.
scipy.stats.rv_continuous.ppf

`rv_continuous.ppf(q, *args, **kwds)`

Percent point function (inverse of cdf) at q of the given RV.

Parameters

- `q` : array_like, lower tail probability
- `arg1, arg2, arg3,...` : array_like, shape parameter(s) for the distribution (see docstring of the instance object for more information)
- `loc` : array_like, optional, location parameter (default=0)
- `scale` : array_like, optional, scale parameter (default=1)

Returns

- `x` : array_like, quantile corresponding to the lower tail probability q.

scipy.stats.rv_continuous.isf

`rv_continuous.isf(q, *args, **kwds)`

Inverse survival function (inverse of sf) at q of the given RV.

Parameters

- `q` : array_like, upper tail probability
- `arg1, arg2, arg3,...` : array_like, shape parameter(s) for the distribution (see docstring of the instance object for more information)
- `loc` : array_like, optional, location parameter (default=0)
- `scale` : array_like, optional, scale parameter (default=1)

Returns

- `x` : ndarray or scalar, quantile corresponding to the upper tail probability q.

scipy.stats.rv_continuous.moment

`rv_continuous.moment(n, *args, **kwds)`

n-th order non-central moment of distribution.

Parameters

- `n` : int, n >= 1, Order of moment.
- `arg1, arg2, arg3,...` : float, The shape parameter(s) for the distribution (see docstring of the instance object for more information).
- `loc` : array_like, optional, location parameter (default=0)
- `scale` : array_like, optional, scale parameter (default=1)
scipy.stats.rv_continuous.stats

```
rv_continuous.stats(*args, **kwds)
```
Some statistics of the given RV.

Parameters

- **arg1, arg2, arg3,**...
 - [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
- **loc**
 - [array_like, optional] location parameter (default=0)
- **scale**
 - [array_like, optional (continuous RVs only)] scale parameter (default=1)
- **moments**
 - [str, optional] composed of letters ['mvsk'] defining which moments to compute: 'm' = mean, 'v' = variance, 's' = (Fisher’s) skew, 'k' = (Fisher’s) kurtosis. (default is ‘mv’)

Returns

- **stats**
 - [sequence] of requested moments.

scipy.stats.rv_continuous.entropy

```
rv_continuous.entropy(*args, **kwds)
```
Differential entropy of the RV.

Parameters

- **arg1, arg2, arg3,**...
 - [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information).
- **loc**
 - [array_like, optional] Location parameter (default=0).
- **scale**
 - [array_like, optional (continuous distributions only).] Scale parameter (default=1).

Notes

Entropy is defined base e:

```python
>>> drv = rv_discrete(values=((0, 1), (0.5, 0.5)))
>>> np.allclose(drv.entropy(), np.log(2.0))
True
```

scipy.stats.rv_continuous.expect

```
rv_continuous.expect(func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
```
Calculate expected value of a function with respect to the distribution by numerical integration.

The expected value of a function \(f(x) \) with respect to a distribution \(\text{dist} \) is defined as:

\[
\begin{align*}
\mathbb{E}[f(x)] &= \int_{lb}^{ub} f(x) \cdot \text{dist.pdf}(x) \, dx,
\end{align*}
\]
where \(ub \) and \(lb \) are arguments and \(x \) has the \(\text{dist.pdf}(x) \) distribution. If the bounds \(lb \) and \(ub \) correspond to the support of the distribution, e.g. \([-\infty, \infty]\) in the default case, then the integral is the unrestricted expectation of \(f(x) \). Also, the function \(f(x) \) may be defined such that \(f(x) = 0 \) outside a finite interval in which case the expectation is calculated within the finite range \([lb, ub]\).

Parameters

- **func** [callable, optional] Function for which integral is calculated. Takes only one argument. The default is the identity mapping \(f(x) = x \).
- **args** [tuple, optional] Shape parameters of the distribution.
- **loc** [float, optional] Location parameter (default=0).
- **scale** [float, optional] Scale parameter (default=1).
- **lb, ub** [scalar, optional] Lower and upper bound for integration. Default is set to the support of the distribution.
- **conditional** [bool, optional] If True, the integral is corrected by the conditional probability of the integration interval. The return value is the expectation of the function, conditional on being in the given interval. Default is False.

Returns

- **expect** [float] The calculated expected value.

Notes

The integration behavior of this function is inherited from \(\text{scipy.integrate.quad} \). Neither this function nor \(\text{scipy.integrate.quad} \) can verify whether the integral exists or is finite. For example \(\text{cauchy}(0).\text{mean()} \) returns \(\text{np.nan} \) and \(\text{cauchy}(0).\text{expect()} \) returns \(0.0 \).

The function is not vectorized.

Examples

To understand the effect of the bounds of integration consider

```python
>>> from scipy.stats import expon
>>> expon(1).expect(lambda x: 1, lb=0.0, ub=2.0)
0.6321205588285578
```

This is close to

```python
>>> expon(1).cdf(2.0) - expon(1).cdf(0.0)
0.6321205588285577
```

If \(\text{conditional}=\text{True} \)

```python
>>> expon(1).expect(lambda x: 1, lb=0.0, ub=2.0, conditional=True)
1.0000000000000002
```

The slight deviation from 1 is due to numerical integration.
scipy.stats.rv_continuous.median

rv_continuous.median(*args, **kwds)
Median of the distribution.

Parameters

arg1, arg2, arg3,...
[array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc
[array_like, optional] Location parameter, Default is 0.
scale
[array_like, optional] Scale parameter, Default is 1.

Returns

median [float] The median of the distribution.

See also:

rv_discrete.ppf
Inverse of the CDF

scipy.stats.rv_continuous.mean

rv_continuous.mean(*args, **kwds)
Mean of the distribution.

Parameters

arg1, arg2, arg3,...
[array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc
[array_like, optional] location parameter (default=0)
scale
[array_like, optional] scale parameter (default=1)

Returns

mean [float] the mean of the distribution

scipy.stats.rv_continuous.std

rv_continuous.std(*args, **kwds)
Standard deviation of the distribution.

Parameters

arg1, arg2, arg3,...
[array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc
[array_like, optional] location parameter (default=0)
scale
[array_like, optional] scale parameter (default=1)

Returns

std [float] standard deviation of the distribution
scipy.stats.rv_continuous.var

```python
rv_continuous.var(*args, **kwds)
```

Variance of the distribution.

Parameters

- `arg1, arg2, arg3, ...`
 - [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
- `loc`
 - [array_like, optional] location parameter (default=0)
- `scale`
 - [array_like, optional] scale parameter (default=1)

Returns

- `var`
 - [float] the variance of the distribution

scipy.stats.rv_continuous.interval

```python
rv_continuous.interval(alpha, *args, **kwds)
```

Confidence interval with equal areas around the median.

Parameters

- `alpha`
 - [array_like of float] Probability that an rv will be drawn from the returned range. Each value should be in the range [0, 1].
- `arg1, arg2, ...`
 - [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information).
- `loc`
 - [array_like, optional] location parameter, Default is 0.
- `scale`
 - [array_like, optional] scale parameter, Default is 1.

Returns

- `a, b`
 - [ndarray of float] end-points of range that contain 100 * alpha % of the rv's possible values.

scipy.stats.rv_continuous.__call__

```python
rv_continuous.__call__(*args, **kwds)
```

Freeze the distribution for the given arguments.

Parameters

- `arg1, arg2, arg3, ...`
 - [array_like] The shape parameter(s) for the distribution. Should include all the non-optional arguments, may include loc and scale.

Returns

- `rv_frozen`
 - [rv_frozen instance] The frozen distribution.
scipy.stats.rv_continuous.fit

rv_continuous.fit(data, *args, **kwds)

Return estimates of shape (if applicable), location, and scale parameters from data. The default estimation method is Maximum Likelihood Estimation (MLE), but Method of Moments (MM) is also available.

Starting estimates for the fit are given by input arguments; for any arguments not provided with starting estimates, self._fitstart(data) is called to generate such.

One can hold some parameters fixed to specific values by passing in keyword arguments f0, f1, ..., fn (for shape parameters) and floc and fscale (for location and scale parameters, respectively).

Parameters

data [array_like] Data to use in estimating the distribution parameters.
arg1, arg2, arg3,... [floats, optional] Starting value(s) for any shape-characterizing arguments (those not provided will be determined by a call to _fitstart(data)). No default value.
kwds [floats, optional]
 • loc: initial guess of the distribution's location parameter.
 • scale: initial guess of the distribution's scale parameter.

Special keyword arguments are recognized as holding certain parameters fixed:
 • f0...fn : hold respective shape parameters fixed. Alternatively, shape parameters to fix can be specified by name. For example, if self.shapes == "a, b", fa and fix_a are equivalent to f0, and fb and fix_b are equivalent to f1.
 • floc: hold location parameter fixed to specified value.
 • fscale: hold scale parameter fixed to specified value.
 • optimizer: The optimizer to use. The optimizer must take func and starting position as the first two arguments, plus args (for extra arguments to pass to the function to be optimized) and disp=0 to suppress output as keyword arguments.
 • method: The method to use. The default is “MLE” (Maximum Likelihood Estimate); “MM” (Method of Moments) is also available.

Returns

parameter_tuple [tuple of floats] Estimates for any shape parameters (if applicable), followed by those for location and scale. For most random variables, shape statistics will be returned, but there are exceptions (e.g. norm).

Notes

With method="MLE" (default), the fit is computed by minimizing the negative log-likelihood function. A large, finite penalty (rather than infinite negative log-likelihood) is applied for observations beyond the support of the distribution.

With method="MM", the fit is computed by minimizing the L2 norm of the relative errors between the first k raw (about zero) data moments and the corresponding distribution moments, where k is the number of non-fixed parameters. More precisely, the objective function is:

```python
(((data_moments - dist_moments)
 / np.maximum(np.abs(data_moments), 1e-8))**2).sum()
```

where the constant 1e-8 avoids division by zero in case of vanishing data moments. Typically, this error norm can be reduced to zero. Note that the standard method of moments can produce parameters for which some data are outside the support of the fitted distribution; this implementation does nothing to prevent this.
For either method, the returned answer is not guaranteed to be globally optimal; it may only be locally optimal, or the optimization may fail altogether. If the data contain any of np.nan, np.inf, or -np.inf, the fit method will raise a RuntimeError.

Examples

Generate some data to fit: draw random variates from the beta distribution

```python
>>> from scipy.stats import beta
>>> a, b = 1., 2.
>>> x = beta.rvs(a, b, size=1000)
```

Now we can fit all four parameters (a, b, loc and scale):

```python
>>> a1, b1, loc1, scale1 = beta.fit(x)
```

We can also use some prior knowledge about the dataset: let’s keep loc and scale fixed:

```python
>>> a1, b1, loc1, scale1 = beta.fit(x, floc=0, fscale=1)
>>> loc1, scale1
(0, 1)
```

We can also keep shape parameters fixed by using f-keywords. To keep the zero-th shape parameter a equal 1, use f0=1 or, equivalently, fa=1:

```python
>>> a1, b1, loc1, scale1 = beta.fit(x, fa=1, floc=0, fscale=1)
>>> a1
1
```

Not all distributions return estimates for the shape parameters. norm for example just returns estimates for location and scale:

```python
>>> from scipy.stats import norm
>>> x = norm.rvs(a, b, size=1000, random_state=123)
>>> loc1, scale1 = norm.fit(x)
>>> loc1, scale1
(0.92087172783841631, 2.0015750750324668)
```

scipy.stats.rv_continuous.fit_loc_scale

rv_continuous.fit_loc_scale(data, *args)

Estimate loc and scale parameters from data using 1st and 2nd moments.

Parameters

- **data** [array_like] Data to fit.
- **arg1, arg2, arg3,...** [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information).

Returns

- **Lhat** [float] Estimated location parameter for the data.
- **Shat** [float] Estimated scale parameter for the data.
scipy.stats.rv_continuous.nnlf

rv_continuous.nnlf(theta, x)
Negative loglikelihood function.

Notes

This is \(-\text{sum}(\log \text{ pdf}(x, \theta)), \text{ axis}=0\) where \(\theta\) are the parameters (including loc and scale).

scipy.stats.rv_continuous.support

rv_continuous.support(*args, **kwargs)
Support of the distribution.

Parameters

arg1, arg2, ...
[array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information).

loc [array_like, optional] location parameter, Default is 0.

scale [array_like, optional] scale parameter, Default is 1.

Returns

a, b [array_like] end-points of the distribution’s support.

scipy.stats.rv_discrete

class scipy.stats.rv_discrete(a=0, b=inf, name=None, badvalue=None, moment_tol=1e-08, values=None, inc=1, longname=None, shapes=None, extradoc=None, seed=None)
A generic discrete random variable class meant for subclassing.

rv_discrete is a base class to construct specific distribution classes and instances for discrete random variables. It can also be used to construct an arbitrary distribution defined by a list of support points and corresponding probabilities.

Parameters

a [float, optional] Lower bound of the support of the distribution, default: 0

b [float, optional] Upper bound of the support of the distribution, default: plus infinity

moment_tol [float, optional] The tolerance for the generic calculation of moments.

values [tuple of two array_like, optional] \((x_k, p_k)\) where \(x_k\) are integers and \(p_k\) are the non-zero probabilities between 0 and 1 with \(\text{sum}(p_k) = 1\). \(x_k\) and \(p_k\) must have the same shape.

inc [integer, optional] Increment for the support of the distribution. Default is 1. (other values have not been tested)

badvalue [float, optional] The value in a result arrays that indicates a value that for which some argument restriction is violated, default is np.nan.

name [str, optional] The name of the instance. This string is used to construct the default example for distributions.

longname [str, optional] This string is used as part of the first line of the docstring returned when a subclass has no docstring of its own. Note: longname exists for backwards compatibility, do not use for new subclasses.
shapes [str, optional] The shape of the distribution. For example “m, n” for a distribution that takes two integers as the two shape arguments for all its methods. If not provided, shape parameters will be inferred from the signatures of the private methods, _pmf and _cdf of the instance.

extradoc [str, optional] This string is used as the last part of the docstring returned when a subclass has no docstring of its own. Note: extradoc exists for backwards compatibility, do not use for new subclasses.

seed [[None, int, numpy.random.Generator],
numpy.random.RandomState], optional
If seed is None (or np.random), the numpy.random.RandomState singleton is used. If seed is an int, a new RandomState instance is used, seeded with seed. If seed is already a Generator or RandomState instance then that instance is used.

Notes

This class is similar to rv_continuous. Whether a shape parameter is valid is decided by an _argcheck method (which defaults to checking that its arguments are strictly positive.) The main differences are:

- the support of the distribution is a set of integers
- instead of the probability density function, pdf (and the corresponding private _pdf), this class defines the probability mass function, pmf (and the corresponding private _pmf.)
- scale parameter is not defined.

To create a new discrete distribution, we would do the following:

```python
>>> from scipy.stats import rv_discrete
>>> class poisson_gen(rv_discrete):
...     "Poisson distribution"
...     def _pmf(self, k, mu):
...         return exp(-mu) * mu**k / factorial(k)
```

and create an instance:

```python
>>> poisson = poisson_gen(name="poisson")
```

Note that above we defined the Poisson distribution in the standard form. Shifting the distribution can be done by providing the loc parameter to the methods of the instance. For example, poisson.pmf(x, mu, loc) delegates the work to poisson._pmf(x-loc, mu).

Discrete distributions from a list of probabilities

Alternatively, you can construct an arbitrary discrete rv defined on a finite set of values xk with Prob(X=xk) = pk by using the values keyword argument to the rv_discrete constructor.

Examples

Custom made discrete distribution:

```python
>>> from scipy import stats
>>> xk = np.arange(7)
>>> pk = (0.1, 0.2, 0.3, 0.1, 0.1, 0.0, 0.2)
>>> custm = stats rv_discrete(name='custm', values=(xk, pk))
>>> import matplotlib.pyplot as plt
```
Random number generation:

```python
>>> R = custm.rvs(size=100)
```

Attributes

- `random_state`
 Get or set the generator object for generating random variates.

Methods

- `rvs(*args, **kwargs)` Random variates of given type.
- `pmf(k, *args, **kwds)` Probability mass function at k of the given RV.
- `logpmf(k, *args, **kwds)` Log of the probability mass function at k of the given RV.
- `cdf(k, *args, **kwds)` Cumulative distribution function of the given RV.
- `logcdf(k, *args, **kwds)` Log of the cumulative distribution function at k of the given RV.
- `sf(k, *args, **kwds)` Survival function (1 - cdf) at k of the given RV.
- `logsf(k, *args, **kwds)` Log of the survival function of the given RV.
- `ppf(q, *args, **kwds)` Percent point function (inverse of cdf) at q of the given RV.
- `isf(q, *args, **kwds)` Inverse survival function (inverse of sf) at q of the given RV.
- `moment(n, *args, **kwds)` n-th order non-central moment of distribution.

continues on next page
Table 267 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>stats(*args, **kwds)</code></td>
<td>Some statistics of the given RV.</td>
</tr>
<tr>
<td><code>entropy(*args, **kwds)</code></td>
<td>Differential entropy of the RV.</td>
</tr>
<tr>
<td><code>expect(func, args, loc, lb, ub, ...)</code></td>
<td>Calculate expected value of a function with respect to the distribution for discrete distribution by numerical summation.</td>
</tr>
<tr>
<td><code>median(*args, **kwds)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(*args, **kwds)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>std(*args, **kwds)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>var(*args, **kwds)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, *args, **kwds)</code></td>
<td>Confidence interval with equal areas around the median.</td>
</tr>
<tr>
<td><code>__call__(*args, **kwds)</code></td>
<td>Freeze the distribution for the given arguments.</td>
</tr>
<tr>
<td><code>support(*args, **kwds)</code></td>
<td>Support of the distribution.</td>
</tr>
</tbody>
</table>

scipy.stats.rv_discrete.rvs

`rv_discrete.rvs(*args, **kwargs)`
Random variates of given type.

Parameters

- `arg1, arg2, arg3,...`
 [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information).
- `loc`
 [array_like, optional] Location parameter (default=0).
- `size`
 [int or tuple of ints, optional] Defining number of random variates (Default is 1). Note that `size` has to be given as keyword, not as positional argument.
- `random_state`
 [[None, int, numpy.random.Generator,]
 numpy.random.RandomState], optional
 If `seed` is None (or np.random), the numpy.random.RandomState singleton is used. If `seed` is an int, a new RandomState instance is used, seeded with `seed`. If `seed` is already a Generator or RandomState instance then that instance is used.

Returns

- `rvs`
 [ndarray or scalar] Random variates of given `size`.

scipy.stats.rv_discrete.pmf

`rv_discrete.pmf(k, *args, **kwds)`
Probability mass function at k of the given RV.

Parameters

- `k`
 [array_like] Quantiles.
- `arg1, arg2, arg3,...`
 [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
- `loc`
 [array_like, optional] Location parameter (default=0).

Returns

- `pmf`
 [array_like] Probability mass function evaluated at k
scipy.stats.rv_discrete.logpmf

rv_discrete.logpmf(k, *args, **kwds)

Log of the probability mass function at k of the given RV.

Parameters

k [array_like] Quantiles.
arg1, arg2, arg3,...
 [array_like] The shape parameter(s) for the distribution (see docstring of the instance
 object for more information).
loc [array_like, optional] Location parameter. Default is 0.

Returns

logpmf [array_like] Log of the probability mass function evaluated at k.

scipy.stats.rv_discrete.cdf

rv_discrete.cdf(k, *args, **kwds)

Cumulative distribution function of the given RV.

Parameters

k [array_like, int] Quantiles.
arg1, arg2, arg3,...
 [array_like] The shape parameter(s) for the distribution (see docstring of the instance
 object for more information).
loc [array_like, optional] Location parameter (default=0).

Returns

cdf [ndarray] Cumulative distribution function evaluated at k.

scipy.stats.rv_discrete.logcdf

rv_discrete.logcdf(k, *args, **kwds)

Log of the cumulative distribution function at k of the given RV.

Parameters

k [array_like, int] Quantiles.
arg1, arg2, arg3,...
 [array_like] The shape parameter(s) for the distribution (see docstring of the instance
 object for more information).
loc [array_like, optional] Location parameter (default=0).

Returns

logcdf [array_like] Log of the cumulative distribution function evaluated at k.
scipy.stats.rv_discrete.sf

`rv_discrete.sf(k, *args, **kwds)`

Survival function (1 - cdf) at k of the given RV.

Parameters

- `k` [array_like] Quantiles.
- `arg1, arg2, arg3,...` [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information).
- `loc` [array_like, optional] Location parameter (default=0).

Returns

- `sf` [array_like] Survival function evaluated at k.

scipy.stats.rv_discrete.logsf

`rv_discrete.logsf(k, *args, **kwds)`

Log of the survival function of the given RV.

Returns the log of the “survival function,” defined as 1 - cdf, evaluated at k.

Parameters

- `k` [array_like] Quantiles.
- `arg1, arg2, arg3,...` [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information).
- `loc` [array_like, optional] Location parameter (default=0).

Returns

- `logsf` [ndarray] Log of the survival function evaluated at k.

scipy.stats.rv_discrete.ppf

`rv_discrete.ppf(q, *args, **kwds)`

Percent point function (inverse of cdf) at q of the given RV.

Parameters

- `q` [array_like] Lower tail probability.
- `arg1, arg2, arg3,...` [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information).
- `loc` [array_like, optional] Location parameter (default=0).

Returns

- `k` [array_like] Quantile corresponding to the lower tail probability, q.
scipy.stats.rv_discrete.isf

rv_discrete.isf(q, *args, **kwds)
Inversesurvival function (inverse of sf) at q of the given RV.

Parameters
q [array_like] Upper tail probability.
arg1, arg2, arg3,...
[array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information).
loc [array_like, optional] Location parameter (default=0).

Returns
k [ndarray or scalar] Quantile corresponding to the upper tail probability, q.

scipy.stats.rv_discrete.moment

rv_discrete.moment(n, *args, **kwds)
n-th order non-central moment of distribution.

Parameters
n [int, n >= 1] Order of moment.
arg1, arg2, arg3,...
[float] The shape parameter(s) for the distribution (see docstring of the instance object for more information).
loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

scipy.stats.rv_discrete.stats

rv_discrete.stats(*args, **kwds)
Some statistics of the given RV.

Parameters
arg1, arg2, arg3,...
[array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc [array_like, optional] location parameter (default=0)
scale [array_like, optional (continuous RVs only)] scale parameter (default=1)
moments [str, optional] composed of letters ['mvsk'] defining which moments to compute: ‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew, ‘k’ = (Fisher’s) kurtosis. (default is ‘mv’)

Returns
stats [sequence] of requested moments.
scipy.stats.rv_discrete.entropy

`rv_discrete.entropy(*args, **kwds)`

Differential entropy of the RV.

Parameters

- `arg1, arg2, arg3,...`
 - [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information).
- `loc`
 - [array_like, optional] Location parameter (default=0).
- `scale`
 - [array_like, optional (continuous distributions only).] Scale parameter (default=1).

Notes

Entropy is defined base e:

```python
>>> drv = rv_discrete(values=((0, 1), (0.5, 0.5)))
>>> np.allclose(drv.entropy(), np.log(2.0))
True
```

scipy.stats.rv_discrete.expect

`rv_discrete.expect(func=None, args=(), loc=0, lb=None, ub=None, conditional=False, maxcount=1000, tolerance=1e-10, chunksize=32)`

Calculate expected value of a function with respect to the distribution for discrete distribution by numerical summation.

Parameters

- `func`
 - [callable, optional] Function for which the expectation value is calculated. Takes only one argument. The default is the identity mapping $f(k) = k$.
- `args`
 - [tuple, optional] Shape parameters of the distribution.
- `loc`
 - [float, optional] Location parameter. Default is 0.
- `lb, ub`
 - [int, optional] Lower and upper bound for the summation, default is set to the support of the distribution, inclusive ($lb \leq k \leq ub$).
- `conditional`
 - [bool, optional] If true then the expectation is corrected by the conditional probability of the summation interval. The return value is the expectation of the function, `func`, conditional on being in the given interval (k such that $lb \leq k \leq ub$). Default is False.
- `maxcount`
 - [int, optional] Maximal number of terms to evaluate (to avoid an endless loop for an infinite sum). Default is 1000.
- `tolerance`
 - [float, optional] Absolute tolerance for the summation. Default is 1e-10.
- `chunksize`
 - [int, optional] Iterate over the support of a distributions in chunks of this size. Default is 32.

Returns

- `expect`
 - [float] Expected value.
Notes

For heavy-tailed distributions, the expected value may or may not exist, depending on the function, \(\text{func} \). If it does exist, but the sum converges slowly, the accuracy of the result may be rather low. For instance, for \(\text{zipf}(4) \), accuracy for mean, variance in example is only 1e-5. increasing \text{maxcount} and/or \text{chunksize} may improve the result, but may also make \text{zipf} very slow.

The function is not vectorized.

\texttt{scipy.stats.rv_discrete.median}

\texttt{rv_discrete.median(*args, **kwds)}

Median of the distribution.

\textit{Parameters}

\begin{itemize}
 \item \texttt{arg1, arg2, arg3,...} [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
 \item \texttt{loc} [array_like, optional] Location parameter, Default is 0.
 \item \texttt{scale} [array_like, optional] Scale parameter, Default is 1.
\end{itemize}

\textit{Returns}

\begin{itemize}
 \item \texttt{median} [float] The median of the distribution.
\end{itemize}

\textit{See also:}

\texttt{rv_discrete.ppf}

Inverse of the CDF

\texttt{scipy.stats.rv_discrete.mean}

\texttt{rv_discrete.mean(*args, **kwds)}

Mean of the distribution.

\textit{Parameters}

\begin{itemize}
 \item \texttt{arg1, arg2, arg3,...} [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
 \item \texttt{loc} [array_like, optional] location parameter (default=0)
 \item \texttt{scale} [array_like, optional] scale parameter (default=1)
\end{itemize}

\textit{Returns}

\begin{itemize}
 \item \texttt{mean} [float] the mean of the distribution
scipy.stats.rv_discrete.std

rv_discrete.std(*args, **kwds)

Standard deviation of the distribution.

Parameters

- `arg1, arg2, arg3,...`
 - `[array_like]` The shape parameter(s) for the distribution (see docstring of the instance object for more information)
- `loc`
 - `[array_like, optional]` location parameter (default=0)
- `scale`
 - `[array_like, optional]` scale parameter (default=1)

Returns

- `std` [float] standard deviation of the distribution

scipy.stats.rv_discrete.var

rv_discrete.var(*args, **kwds)

Variance of the distribution.

Parameters

- `arg1, arg2, arg3,...`
 - `[array_like]` The shape parameter(s) for the distribution (see docstring of the instance object for more information)
- `loc`
 - `[array_like, optional]` location parameter (default=0)
- `scale`
 - `[array_like, optional]` scale parameter (default=1)

Returns

- `var` [float] the variance of the distribution

scipy.stats.rv_discrete.interval

rv_discrete.interval(alpha, *args, **kwds)

Confidence interval with equal areas around the median.

Parameters

- `alpha`
 - `[array_like of float]` Probability that an rv will be drawn from the returned range. Each value should be in the range [0, 1].
- `arg1, arg2, ...`
 - `[array_like]` The shape parameter(s) for the distribution (see docstring of the instance object for more information).
- `loc`
 - `[array_like, optional]` location parameter. Default is 0.
- `scale`
 - `[array_like, optional]` scale parameter. Default is 1.

Returns

- `a, b` [ndarray of float] end-points of range that contain $100 * \alpha$ % of the rv's possible values.
scipy.stats.rv_discrete.__call__

`rv_discrete.__call__(*args, **kwds)`

Freeze the distribution for the given arguments.

Parameters

- `arg1, arg2, arg3,...`
 - [array_like] The shape parameter(s) for the distribution. Should include all the non-optional arguments, may include `loc` and `scale`.

Returns

- `rv_frozen` [rv_frozen instance] The frozen distribution.

scipy.stats.rv_discrete.support

`rv_discrete.support(*args, **kwargs)`

Support of the distribution.

Parameters

- `arg1, arg2, ...`
 - [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information).
- `loc` [array_like, optional] location parameter, Default is 0.
- `scale` [array_like, optional] scale parameter, Default is 1.

Returns

- `a, b` [array_like] end-points of the distribution’s support.

scipy.stats.rv_histogram

class `scipy.stats.rv_histogram` (`histogram`, *args, **kwargs)`

Generates a distribution given by a histogram. This is useful to generate a template distribution from a binned datasample.

As a subclass of the `rv_continuous` class, `rv_histogram` inherits from it a collection of generic methods (see `rv_continuous` for the full list), and implements them based on the properties of the provided binned datasample.

Parameters

- `histogram` [tuple of array_like] Tuple containing two array_like objects The first containing the content of n bins The second containing the (n+1) bin boundaries In particular the return value `np.histogram` is accepted

Notes

There are no additional shape parameters except for the loc and scale. The pdf is defined as a stepwise function from the provided histogram The cdf is a linear interpolation of the pdf.

New in version 0.19.0.
Examples

Create a scipy.stats distribution from a numpy histogram

```python
>>> import scipy.stats
>>> import numpy as np

>>> data = scipy.stats.norm.rvs(size=100000, loc=0, scale=1.5, random_state=123)
>>> hist = np.histogram(data, bins=100)
>>> hist_dist = scipy.stats.rv_histogram(hist)
```

Behaves like an ordinary scipy rv_continuous distribution

```python
>>> hist_dist.pdf(1.0)
0.20538577847618705
>>> hist_dist.cdf(2.0)
0.90818568543056499
```

PDF is zero above (below) the highest (lowest) bin of the histogram, defined by the max (min) of the original dataset

```python
>>> hist_dist.pdf(np.max(data))
0.0
>>> hist_dist.cdf(np.max(data))
1.0
>>> hist_dist.pdf(np.min(data))
7.7591907244498314e-05
>>> hist_dist.cdf(np.min(data))
0.0
```

PDF and CDF follow the histogram

```python
>>> import matplotlib.pyplot as plt
>>> X = np.linspace(-5.0, 5.0, 100)
>>> plt.title("PDF from Template")
>>> plt.hist(data, density=True, bins=100)
>>> plt.plot(X, hist_dist.pdf(X), label='PDF')
>>> plt.plot(X, hist_dist.cdf(X), label='CDF')
>>> plt.show()
```

Attributes

- `random_state`
 Get or set the generator object for generating random variates.

Methods

- `__call__(*args, **kwds)` Freeze the distribution for the given arguments.
- `cdf(x, *args, **kwds)` Cumulative distribution function of the given RV.
- `entropy(*args, **kwds)` Differential entropy of the RV.
- `expect(*func, args, loc, scale, lb, ub, ...)` Calculate expected value of a function with respect to the distribution by numerical integration.
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit(data, *args, **kwds)</td>
<td>Return estimates of shape (if applicable), location, and scale parameters from data.</td>
</tr>
<tr>
<td>fit_loc_scale(data, *args)</td>
<td>Estimate loc and scale parameters from data using 1st and 2nd moments.</td>
</tr>
<tr>
<td>freeze(*args, **kwds)</td>
<td>Freeze the distribution for the given arguments.</td>
</tr>
<tr>
<td>interval(alpha, *args, **kwds)</td>
<td>Confidence interval with equal areas around the median.</td>
</tr>
<tr>
<td>isf(q, *args, **kwds)</td>
<td>Inverse survival function (inverse of sf) at q of the given RV.</td>
</tr>
<tr>
<td>logcdf(x, *args, **kwds)</td>
<td>Log of the cumulative distribution function at x of the given RV.</td>
</tr>
<tr>
<td>logpdf(x, *args, **kwds)</td>
<td>Log of the probability density function at x of the given RV.</td>
</tr>
<tr>
<td>logsf(x, *args, **kwds)</td>
<td>Log of the survival function of the given RV.</td>
</tr>
<tr>
<td>mean(*args, **kwds)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>median(*args, **kwds)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>moment(n, *args, **kwds)</td>
<td>n-th order non-central moment of distribution.</td>
</tr>
<tr>
<td>nnlf(theta, x)</td>
<td>Negative loglikelihood function.</td>
</tr>
<tr>
<td>pdf(x, *args, **kwds)</td>
<td>Probability density function at x of the given RV.</td>
</tr>
<tr>
<td>ppf(q, *args, **kwds)</td>
<td>Percent point function (inverse of cdf) at q of the given RV.</td>
</tr>
<tr>
<td>rvs(*args, **kwds)</td>
<td>Random variates of given type.</td>
</tr>
<tr>
<td>sf(x, *args, **kwds)</td>
<td>Survival function (1 - cdf) at x of the given RV.</td>
</tr>
<tr>
<td>stats(*args, **kwds)</td>
<td>Some statistics of the given RV.</td>
</tr>
<tr>
<td>std(*args, **kwds)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>support(*args, **kwargs)</td>
<td>Support of the distribution.</td>
</tr>
<tr>
<td>var(*args, **kwds)</td>
<td>Variance of the distribution.</td>
</tr>
</tbody>
</table>

scipy.stats.rv_histogram.__call__

rv_histogram.__call__(*args, **kwds)

Freeze the distribution for the given arguments.

Parameters

arg1, arg2, arg3,...

[array_like] The shape parameter(s) for the distribution. Should include all the non-optional arguments, may include loc and scale.

Returns

rv_frozen [rv_frozen instance] The frozen distribution.
scipy.stats.rv_histogram.cdf

`rv_histogram.cdf(x, *args, **kwds)`
Cumulative distribution function of the given RV.

Parameters

- `x` [array_like] quantiles
- `arg1, arg2, arg3,...` [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
- `loc` [array_like, optional] location parameter (default=0)
- `scale` [array_like, optional] scale parameter (default=1)

Returns

- `cdf` [ndarray] Cumulative distribution function evaluated at `x`

scipy.stats.rv_histogram.entropy

`rv_histogram.entropy(*args, **kwds)`
Differential entropy of the RV.

Parameters

- `arg1, arg2, arg3,...` [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information).
- `loc` [array_like, optional] Location parameter (default=0).
- `scale` [array_like, optional (continuous distributions only).] Scale parameter (default=1).
Entrophy is defined base e:

```python
>>> drv = rv_discrete(values=((0, 1), (0.5, 0.5)))
>>> np.allclose(drv.entropy(), np.log(2.0))
True
```

`scipy.stats.rv_histogram.expect`

`rv_histogram.expect` (func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)

Calculate expected value of a function with respect to the distribution by numerical integration.

The expected value of a function $f(x)$ with respect to a distribution dist is defined as:

$$
E[f(x)] = \int_{lb}^{ub} f(x) \times \text{dist.pdf}(x) \, dx
$$

where ub and lb are arguments and x has the $\text{dist.pdf}(x)$ distribution. If the bounds lb and ub correspond to the support of the distribution, e.g. $[-\infty, \infty]$ in the default case, then the integral is the unrestricted expectation of $f(x)$. Also, the function $f(x)$ may be defined such that $f(x) = 0$ outside a finite interval in which case the expectation is calculated within the finite range $[lb, ub]$.

Parameters

- **func** [callable, optional] Function for which integral is calculated. Takes only one argument. The default is the identity mapping $f(x) = x$.
- **args** [tuple, optional] Shape parameters of the distribution.
- **loc** [float, optional] Location parameter (default=0).
- **scale** [float, optional] Scale parameter (default=1).
- **lb, ub** [scalar, optional] Lower and upper bound for integration. Default is set to the support of the distribution.
- **conditional** [bool, optional] If True, the integral is corrected by the conditional probability of the integration interval. The return value is the expectation of the function, conditional on being in the given interval. Default is False.

Additional keyword arguments are passed to the integration routine.

Returns

- **expect** [float] The calculated expected value.

Notes

The integration behavior of this function is inherited from `scipy.integrate.quad`. Neither this function nor `scipy.integrate.quad` can verify whether the integral exists or is finite. For example `cauchy(0).mean()` returns `np.nan` and `cauchy(0).expect()` returns `0.0`.

The function is not vectorized.
Examples

To understand the effect of the bounds of integration consider

```python
>>> from scipy.stats import expon
>>> expon(1).expect(lambda x: 1, lb=0.0, ub=2.0)
0.6321205588285578
```

This is close to

```python
>>> expon(1).cdf(2.0) - expon(1).cdf(0.0)
0.6321205588285577
```

If `conditional=True`

```python
>>> expon(1).expect(lambda x: 1, lb=0.0, ub=2.0, conditional=True)
1.0000000000000002
```

The slight deviation from 1 is due to numerical integration.

`scipy.stats.rv_histogram.fit`

`rv_histogram.fit(data, *args, **kwds)`

Return estimates of shape (if applicable), location, and scale parameters from data. The default estimation method is Maximum Likelihood Estimation (MLE), but Method of Moments (MM) is also available.

Starting estimates for the fit are given by input arguments; for any arguments not provided with starting estimates, `self._fitstart(data)` is called to generate such.

One can hold some parameters fixed to specific values by passing in keyword arguments `f0, f1, ..., fn` (for shape parameters) and `floc` and `fscale` (for location and scale parameters, respectively).

Parameters

- `data` [array_like] Data to use in estimating the distribution parameters.
- `arg1, arg2, arg3,...` [floats, optional] Starting value(s) for any shape-characterizing arguments (those not provided will be determined by a call to `_fitstart(data)`). No default value.
- `kwds` [floats, optional]
 - `loc`: initial guess of the distribution’s location parameter.
 - `scale`: initial guess of the distribution’s scale parameter.
 Special keyword arguments are recognized as holding certain parameters fixed:
 - `f0...fn`: hold respective shape parameters fixed. Alternatively, shape parameters to fix can be specified by name. For example, if `self.shapes == "a, b", fa and fix_a are equivalent to f0, and fb and fix_b are equivalent to f1.
 - `floc`: hold location parameter fixed to specified value.
 - `fscale`: hold scale parameter fixed to specified value.
 - `optimizer`: The optimizer to use. The optimizer must take `func` and starting position as the first two arguments, plus `args` (for extra arguments to pass to the function to be optimized) and `disp=0` to suppress output as keyword arguments.
 - `method`: The method to use. The default is “MLE” (Maximum Likelihood Estimate); “MM” (Method of Moments) is also available.

Returns
parameter_tuple
[tuple of floats] Estimates for any shape parameters (if applicable), followed by those for location and scale. For most random variables, shape statistics will be returned, but there are exceptions (e.g. norm).

Notes

With method="MLE" (default), the fit is computed by minimizing the negative log-likelihood function. A large, finite penalty (rather than infinite negative log-likelihood) is applied for observations beyond the support of the distribution.

With method="MM", the fit is computed by minimizing the L2 norm of the relative errors between the first \(k \) raw (about zero) data moments and the corresponding distribution moments, where \(k \) is the number of non-fixed parameters. More precisely, the objective function is:

\[
\left(\frac{\text{data}_\text{moments} - \text{dist}_\text{moments}}{\max(\text{abs(data}_\text{moments}), 1e^{-8})} \right)^2 \sum()
\]

where the constant \(1e^{-8} \) avoids division by zero in case of vanishing data moments. Typically, this error norm can be reduced to zero. Note that the standard method of moments can produce parameters for which some data are outside the support of the fitted distribution; this implementation does nothing to prevent this.

For either method, the returned answer is not guaranteed to be globally optimal; it may only be locally optimal, or the optimization may fail altogether. If the data contain any of np.nan, np.inf, or -np.inf, the fit method will raise a RuntimeError.

Examples

Generate some data to fit: draw random variates from the beta distribution

```python
>>> from scipy.stats import beta
>>> a, b = 1., 2.
>>> x = beta.rvs(a, b, size=1000)
```

Now we can fit all four parameters (a,b,loc and scale):

```python
>>> a1, b1, loc1, scale1 = beta.fit(x)
```

We can also use some prior knowledge about the dataset: let's keep loc and scale fixed:

```python
>>> a1, b1, loc1, scale1 = beta.fit(x, floc=0, fscale=1)
>>> loc1, scale1
(0, 1)
```

We can also keep shape parameters fixed by using f-keywords. To keep the zero-th shape parameter a equal 1, use f0=1 or, equivalently, fa=1:

```python
>>> a1, b1, loc1, scale1 = beta.fit(x, fa=1, floc=0, fscale=1)
>>> a1
1
```

Not all distributions return estimates for the shape parameters. norm for example just returns estimates for location and scale:
```python
>>> from scipy.stats import norm
>>> x = norm.rvs(a, b, size=1000, random_state=123)
>>> loc1, scale1 = norm.fit(x)
>>> loc1, scale1
(0.92087172783841631, 2.0015750750324668)
```

scipy.stats.rv_histogram.fit_loc_scale

`rv_histogram.fit_loc_scale(data, *args)`

Estimate loc and scale parameters from data using 1st and 2nd moments.

Parameters

- `data` ([array_like]) Data to fit.
- `arg1, arg2, arg3,...` ([array_like]) The shape parameter(s) for the distribution (see docstring of the instance object for more information).

Returns

- `Lhat` ([float]) Estimated location parameter for the data.
- `S` ([float]) Estimated scale parameter for the data.

scipy.stats.rv_histogram.freeze

`rv_histogram.freeze(*args, **kwds)`

Freeze the distribution for the given arguments.

Parameters

- `arg1, arg2, arg3,...` ([array_like]) The shape parameter(s) for the distribution. Should include all the non-optional arguments, may include `loc` and `scale`.

Returns

- `rv_frozen` ([rv_frozen instance]) The frozen distribution.

scipy.stats.rv_histogram.interval

`rv_histogram.interval(alpha, *args, **kwds)`

Confidence interval with equal areas around the median.

Parameters

- `alpha` ([array_like of float]) Probability that an rv will be drawn from the returned range. Each value should be in the range [0, 1].
- `arg1, arg2, ...` ([array_like]) The shape parameter(s) for the distribution (see docstring of the instance object for more information).
- `loc` ([array_like, optional]) location parameter, Default is 0.
- `scale` ([array_like, optional]) scale parameter, Default is 1.

Returns
a, b [ndarray of float] end-points of range that contain $100 \times \alpha$ % of the rv's possible values.

scipy.stats.rv_histogram.isf

rv_histogram.isf(q, *args, **kwds)
Inverse survival function (inverse of sf) at q of the given RV.

Parameters

q [array_like] upper tail probability
arg1, arg2, arg3,... [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

x [ndarray or scalar] Quantile corresponding to the upper tail probability q.

scipy.stats.rv_histogram.logcdf

rv_histogram.logcdf(x, *args, **kwds)
Log of the cumulative distribution function at x of the given RV.

Parameters

x [array_like] quantiles
arg1, arg2, arg3,... [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns

logcdf [array_like] Log of the cumulative distribution function evaluated at x

scipy.stats.rv_histogram.logpdf

rv_histogram.logpdf(x, *args, **kwds)
Log of the probability density function at x of the given RV.
This uses a more numerically accurate calculation if available.

Parameters

x [array_like] quantiles
arg1, arg2, arg3,... [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns
logpdf [array_like] Log of the probability density function evaluated at x

scipy.stats.rv_histogram.logsf

rv_histogram.logsf(x, *args, **kwds)

Log of the survival function of the given RV.

Returns

logsf [ndarray] Log of the survival function evaluated at x.

scipy.stats.rv_histogram.mean

rv_histogram.mean(*args, **kwds)

Mean of the distribution.

Parameters

arg1, arg2, arg3,...

[array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)

loc [array_like, optional] location parameter (default=0)

scale [array_like, optional] scale parameter (default=1)

Returns

mean [float] the mean of the distribution

scipy.stats.rv_histogram.median

rv_histogram.median(*args, **kwds)

Median of the distribution.

Parameters

arg1, arg2, arg3,...

[array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)

loc [array_like, optional] Location parameter. Default is 0.

scale [array_like, optional] Scale parameter. Default is 1.

Returns

median [float] The median of the distribution.

See also:
rv_discrete.ppf

Inverse of the CDF

scipy.stats.rv_histogram.moment

```
rv_histogram.moment(n, *args, **kwds)
```

n-th order non-central moment of distribution.

Parameters

- **n** [int, n >= 1] Order of moment.
- **arg1, arg2, arg3,…** [float] The shape parameter(s) for the distribution (see docstring of the instance object for more information).
- **loc** [array_like, optional] location parameter (default=0)
- **scale** [array_like, optional] scale parameter (default=1)

scipy.stats.rv_histogram.nnlf

```
rv_histogram.nnlf(theta, x)
```

Negative loglikelihood function.

Notes

This is \(-\text{sum} (\log \text{pdf}(x, \theta), \text{axis}=0)\) where \(\theta\) are the parameters (including loc and scale).

scipy.stats.rv_histogram.pdf

```
rv_histogram.pdf(x, *args, **kwds)
```

Probability density function at x of the given RV.

Parameters

- **x** [array_like] quantiles
- **arg1, arg2, arg3,…** [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
- **loc** [array_like, optional] location parameter (default=0)
- **scale** [array_like, optional] scale parameter (default=1)

Returns

- **pdf** [ndarray] Probability density function evaluated at x
scipy.stats.rv_histogram.ppf

rv_histogram.ppf(q, *args, **kwds)
Percent point function (inverse of cdf) at q of the given RV.

Parameters
q [array_like] lower tail probability
arg1, arg2, arg3,… [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns
x [array_like] quantile corresponding to the lower tail probability q.

scipy.stats.rv_histogram.rvs

rv_histogram.rvs(*args, **kwds)
Random variates of given type.

Parameters
arg1, arg2, arg3,… [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information).
loc [array_like, optional] Location parameter (default=0).
scale [array_like, optional] Scale parameter (default=1).
size [int or tuple of ints, optional] Defining number of random variates (default is 1).
random_state [{None, int, numpy.random.Generator, numpy.random.RandomState}, optional]
If seed is None (or np.random), the numpy.random.RandomState singleton is used. If seed is an int, a new RandomState instance is used, seeded with seed. If seed is already a Generator or RandomState instance then that instance is used.

Returns
rvs [ndarray or scalar] Random variates of given size.

scipy.stats.rv_histogram.sf

rv_histogram.sf(x, *args, **kwds)
Survival function (1 - cdf) at x of the given RV.

Parameters
x [array_like] quantiles
arg1, arg2, arg3,… [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
loc [array_like, optional] location parameter (default=0)
scale [array_like, optional] scale parameter (default=1)

Returns
scipy.stats.rv_histogram.stats

```python
def stats(*args, **kwds):
    """Some statistics of the given RV."
    
    Parameters
    arg1, arg2, arg3,...
        [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
    loc
        [array_like, optional] location parameter (default=0)
    scale
        [array_like, optional (continuous RVs only)] scale parameter (default=1)
    moments
        [str, optional] composed of letters ['mvsk'] defining which moments to compute: 'm' = mean, 'v' = variance, 's' = (Fisher's) skew, 'k' = (Fisher's) kurtosis. (default is 'mv')

    Returns
    stats
        [sequence] of requested moments.
```

scipy.stats.rv_histogram.std

```python
def std(*args, **kwds):
    """Standard deviation of the distribution."
    
    Parameters
    arg1, arg2, arg3,...
        [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)
    loc
        [array_like, optional] location parameter (default=0)
    scale
        [array_like, optional] scale parameter (default=1)

    Returns
    std
        [float] standard deviation of the distribution
```

scipy.stats.rv_histogram.support

```python
def support(*args, **kwargs):
    """Support of the distribution."
    
    Parameters
    arg1, arg2, ...
        [array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information).
    loc
        [array_like, optional] location parameter. Default is 0.
    scale
        [array_like, optional] scale parameter. Default is 1.

    Returns
    a, b
        [array_like] end-points of the distribution’s support.
```
scipy.stats.rv_histogram.var

rv_histogram.var(*args, **kwds)
Variance of the distribution.

Parameters

arg1, arg2, arg3,...
[array_like] The shape parameter(s) for the distribution (see docstring of the instance object for more information)

loc
[array_like, optional] location parameter (default=0)

scale
[array_like, optional] scale parameter (default=1)

Returns

var [float] the variance of the distribution

Continuous distributions

alpha
An alpha continuous random variable.

anglit
An anglit continuous random variable.

arcsine
An arcsine continuous random variable.

argus
Argus distribution

beta
A beta continuous random variable.

betaprame
A beta prime continuous random variable.

bradford
A Bradford continuous random variable.

burr
A Burr (Type III) continuous random variable.

burr12
A Burr (Type XII) continuous random variable.

cauhy
A Cauchy continuous random variable.

chi
A chi continuous random variable.

chi2
A chi-squared continuous random variable.

cosine
A cosine continuous random variable.

crystalball
Crystalball distribution

dgamma
A double gamma continuous random variable.

dweibull
A double Weibull continuous random variable.

erlang
An Erlang continuous random variable.

expon
An exponential continuous random variable.

exponnorm
An exponentially modified Normal continuous random variable.

exponweib
An exponentiated Weibull continuous random variable.

exponpow
An exponential power continuous random variable.

f
An F continuous random variable.

fatiguelife
A fatigue-life (Birnbaum-Saunders) continuous random variable.

fisk
A Fisk continuous random variable.

foldcauchy
A folded Cauchy continuous random variable.

foldnorm
A folded normal continuous random variable.

genlogistic
A generalized logistic continuous random variable.

genorm
A generalized normal continuous random variable.

genpareto
A generalized Pareto continuous random variable.

genexpon
A generalized exponential continuous random variable.

genextreme
A generalized extreme value continuous random variable.

gausshyper
A Gauss hypergeometric continuous random variable.

continues on next page
Table 269 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gamma</td>
<td>A gamma continuous random variable.</td>
</tr>
<tr>
<td>gengamma</td>
<td>A generalized gamma continuous random variable.</td>
</tr>
<tr>
<td>genhalflogistic</td>
<td>A generalized half-logistic continuous random variable.</td>
</tr>
<tr>
<td>genhyperbolic</td>
<td>A generalized hyperbolic continuous random variable.</td>
</tr>
<tr>
<td>geninvgaussian</td>
<td>A Generalized Inverse Gaussian continuous random variable.</td>
</tr>
<tr>
<td>gilbrat</td>
<td>A Gilbrat continuous random variable.</td>
</tr>
<tr>
<td>gompertz</td>
<td>A Gompertz (or truncated Gumbel) continuous random variable.</td>
</tr>
<tr>
<td>gumbel_r</td>
<td>A right-skewed Gumbel continuous random variable.</td>
</tr>
<tr>
<td>gumbel_l</td>
<td>A left-skewed Gumbel continuous random variable.</td>
</tr>
<tr>
<td>halfcauchy</td>
<td>A Half-Cauchy continuous random variable.</td>
</tr>
<tr>
<td>halflogistic</td>
<td>A half-logistic continuous random variable.</td>
</tr>
<tr>
<td>halfnorm</td>
<td>A half-normal continuous random variable.</td>
</tr>
<tr>
<td>halfgennorm</td>
<td>The upper half of a generalized normal continuous random variable.</td>
</tr>
<tr>
<td>hypsecant</td>
<td>A hyperbolic secant continuous random variable.</td>
</tr>
<tr>
<td>invgamma</td>
<td>An inverted gamma continuous random variable.</td>
</tr>
<tr>
<td>invgauss</td>
<td>An inverse Gaussian continuous random variable.</td>
</tr>
<tr>
<td>invweibull</td>
<td>An inverted Weibull continuous random variable.</td>
</tr>
<tr>
<td>johnsons</td>
<td>A Johnson SB continuous random variable.</td>
</tr>
<tr>
<td>johnsonsu</td>
<td>A Johnson SU continuous random variable.</td>
</tr>
<tr>
<td>kappa4</td>
<td>Kappa 4 parameter distribution.</td>
</tr>
<tr>
<td>kappa3</td>
<td>Kappa 3 parameter distribution.</td>
</tr>
<tr>
<td>kstwo</td>
<td>Kolmogorov-Smirnov one-sided test statistic distribution.</td>
</tr>
<tr>
<td>kstwo</td>
<td>Kolmogorov-Smirnov two-sided test statistic distribution.</td>
</tr>
<tr>
<td>kstwobign</td>
<td>Limiting distribution of scaled Kolmogorov-Smirnov two-sided test statistic.</td>
</tr>
<tr>
<td>laplace</td>
<td>A Laplace continuous random variable.</td>
</tr>
<tr>
<td>laplace_asymmetric</td>
<td>An asymmetric Laplace continuous random variable.</td>
</tr>
<tr>
<td>levy</td>
<td>A Levy continuous random variable.</td>
</tr>
<tr>
<td>levy_1</td>
<td>A left-skewed Levy continuous random variable.</td>
</tr>
<tr>
<td>levy_stable</td>
<td>A Levy-stable continuous random variable.</td>
</tr>
<tr>
<td>logistic</td>
<td>A logistic (or Sech-squared) continuous random variable.</td>
</tr>
<tr>
<td>loggamma</td>
<td>A log gamma continuous random variable.</td>
</tr>
<tr>
<td>loglaplace</td>
<td>A log-Laplace continuous random variable.</td>
</tr>
<tr>
<td>lognorm</td>
<td>A lognormal continuous random variable.</td>
</tr>
<tr>
<td>loguniform</td>
<td>A loguniform or reciprocal continuous random variable.</td>
</tr>
<tr>
<td>lomax</td>
<td>A Lomax (Pareto of the second kind) continuous random variable.</td>
</tr>
<tr>
<td>maxwell</td>
<td>A Maxwell continuous random variable.</td>
</tr>
<tr>
<td>mielke</td>
<td>A Mielke Beta-Kappa / Dagum continuous random variable.</td>
</tr>
<tr>
<td>moyl</td>
<td>A Moyal continuous random variable.</td>
</tr>
<tr>
<td>nakagami</td>
<td>A Nakagami continuous random variable.</td>
</tr>
<tr>
<td>ncx2</td>
<td>A non-central chi-squared continuous random variable.</td>
</tr>
<tr>
<td>ncf</td>
<td>A non-central F distribution continuous random variable.</td>
</tr>
<tr>
<td>nct</td>
<td>A non-central Student’s t continuous random variable.</td>
</tr>
<tr>
<td>norm</td>
<td>A normal continuous random variable.</td>
</tr>
<tr>
<td>norminvgaussian</td>
<td>A Normal Inverse Gaussian continuous random variable.</td>
</tr>
</tbody>
</table>

continues on next page
Table 269 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pareto</td>
<td>A Pareto continuous random variable.</td>
</tr>
<tr>
<td>pearson3</td>
<td>A Pearson type III continuous random variable.</td>
</tr>
<tr>
<td>powerlaw</td>
<td>A power-function continuous random variable.</td>
</tr>
<tr>
<td>powerlognorm</td>
<td>A power log-normal continuous random variable.</td>
</tr>
<tr>
<td>powernorm</td>
<td>A power normal continuous random variable.</td>
</tr>
<tr>
<td>rdist</td>
<td>An R-distributed (symmetric beta) continuous random variable.</td>
</tr>
<tr>
<td>rayleigh</td>
<td>A Rayleigh continuous random variable.</td>
</tr>
<tr>
<td>rice</td>
<td>A Rice continuous random variable.</td>
</tr>
<tr>
<td>recipinvgauss</td>
<td>A reciprocal inverse Gaussian continuous random variable.</td>
</tr>
<tr>
<td>semicircular</td>
<td>A semicircular continuous random variable.</td>
</tr>
<tr>
<td>skewcauchy</td>
<td>A skewed Cauchy random variable.</td>
</tr>
<tr>
<td>skewnorm</td>
<td>A skew-normal random variable.</td>
</tr>
<tr>
<td>studentized_range</td>
<td>A studentized range continuous random variable.</td>
</tr>
<tr>
<td>t</td>
<td>A Student's t continuous random variable.</td>
</tr>
<tr>
<td>trapezoid</td>
<td>A trapezoidal continuous random variable.</td>
</tr>
<tr>
<td>triang</td>
<td>A triangular continuous random variable.</td>
</tr>
<tr>
<td>truncexp</td>
<td>A truncated exponential continuous random variable.</td>
</tr>
<tr>
<td>truncnorm</td>
<td>A truncated normal continuous random variable.</td>
</tr>
<tr>
<td>tukeylambda</td>
<td>A Tukey-Lambda continuous random variable.</td>
</tr>
<tr>
<td>uniform</td>
<td>A uniform continuous random variable.</td>
</tr>
<tr>
<td>vonmises</td>
<td>A Von Mises continuous random variable.</td>
</tr>
<tr>
<td>vonmises_line</td>
<td>A Von Mises continuous random variable.</td>
</tr>
<tr>
<td>wald</td>
<td>A Wald continuous random variable.</td>
</tr>
<tr>
<td>weibull_min</td>
<td>Weibull minimum continuous random variable.</td>
</tr>
<tr>
<td>weibull_max</td>
<td>Weibull maximum continuous random variable.</td>
</tr>
<tr>
<td>wrapcauchy</td>
<td>A wrapped Cauchy continuous random variable.</td>
</tr>
</tbody>
</table>

scipy.stats.alpha

An alpha continuous random variable.

As an instance of the rv_continuous class, alpha object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for alpha ([1], [2]) is:

\[f(x, a) = \frac{1}{x^2 \Phi(a) \sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(a - \frac{1}{x}\right)^2\right) \]

where \(\Phi \) is the normal CDF, \(x > 0 \), and \(a > 0 \).

alpha takes \(a \) as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, alpha.pdf(x, a, loc, scale) is identically equivalent to alpha.pdf(y, a) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
References

[1], [2]

Examples

```python
>>> from scipy.stats import alpha
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> a = 3.57
>>> mean, var, skew, kurt = alpha.stats(a, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(alpha.ppf(0.01, a),
... alpha.ppf(0.99, a), 100)
>>> ax.plot(x, alpha.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='alpha pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = alpha(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = alpha.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], alpha.cdf(vals, a))
True
```

Generate random numbers:

```python
>>> r = alpha.rvs(a, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(a, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, a, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, a, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, a, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, a, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, a, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - ( \text{cdf} ), but ( sf ) is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, a, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, a, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of ( \text{cdf} ) — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, a, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of ( sf )).</td>
</tr>
<tr>
<td><code>moment(n, a, loc=0, scale=1)</code></td>
<td>Non-central moment of order ( n ).</td>
</tr>
<tr>
<td><code>stats(a, loc=0, scale=1, moments='mv')</code></td>
<td>Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).</td>
</tr>
<tr>
<td><code>entropy(a, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(a,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(a, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(a, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(a, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(a, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, a, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction ( \alpha ) of the distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.anglit

scipy.stats.anglit = <scipy.stats._continuous_distns.anglit_gen object>
An anglit continuous random variable.

As an instance of the rv_continuous class, anglit object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for anglit is:

\[ f(x) = \sin(2x + \pi/2) = \cos(2x) \]

for \(-\pi/4 \leq x \leq \pi/4\).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, anglit.pdf(x, loc, scale) is identically equivalent to anglit.pdf(y) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import anglit
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = anglit.stats(moments='mvsk')
```  
Display the probability density function (pdf):

```python
>>> x = np.linspace(anglit.ppf(0.01),
...              anglit.ppf(0.99), 100)
>>> ax.plot(x, anglit.pdf(x),
...              'r-', lw=5, alpha=0.6, label='anglit pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = anglit()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = anglit.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], anglit.cdf(vals))
True
```

Generate random numbers:
```python
>>> r = anglit.rvs(size=1000)

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.arcsine

scipy.stats.arcsine = <scipy.stats._continuous_distns.arcsine_gen object>

An arcsine continuous random variable.

As an instance of the rv_continuous class, arcsine object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for arcsine is:

\[
f(x) = \frac{1}{\pi \sqrt{x(1-x)}}
\]

for \(0 < x < 1\).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, arcsine.pdf(x, loc, scale) is identically equivalent to arcsine.pdf(y) / scale with \(y = (x - \text{loc}) / \text{scale}\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Examples

```python
>>> from scipy.stats import arcsine
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = arcsine.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(arcsine.ppf(0.01),
 ... arcsine.ppf(0.99), 100)
>>> ax.plot(x, arcsine.pdf(x),
 ... 'r-', lw=5, alpha=0.6, label='arcsine pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = arcsine()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = arcsine.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], arcsine.cdf(vals))
True
```

Generate random numbers:

```python
>>> r = arcsine.rvs(size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.argus

scipy.stats.argus = <scipy.stats._continuous_distns.argus_gen object>

Argus distribution

As an instance of the rv_continuous class, argus object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for argus is:

\[
f(x, \chi) = \frac{\chi^3}{\sqrt{2\pi} \Psi(\chi)} x \sqrt{1 - x^2} \exp(-\chi^2(1 - x^2)/2)
\]

for \(0 < x < 1\) and \(\chi > 0\), where

\[
\Psi(\chi) = \Phi(\chi) - \chi \phi(\chi) - 1/2
\]

with \(\Phi\) and \(\phi\) being the CDF and PDF of a standard normal distribution, respectively.

argus takes \(\chi\) as shape a parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, argus.pdf(x, chi, loc, scale) is identically equivalent to argus.pdf(y, chi) / scale with \(y = (x - \text{loc}) / \text{scale}\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

New in version 0.19.0.

[1]

Examples

```python
>>> from scipy.stats import argus
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> chi = 1
>>> mean, var, skew, kurt = argus.stats(chi, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(argus.ppf(0.01, chi), ...
...     argus.ppf(0.99, chi), 100)
>>> ax.plot(x, argus.pdf(x, chi), ...
...     'r-', lw=5, alpha=0.6, label='argus pdf')
```
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = argus(chi)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = argus.ppf([0.001, 0.5, 0.999], chi)
>>> np.allclose([0.001, 0.5, 0.999], argus.cdf(vals, chi))
True
```

Generate random numbers:

```python
>>> r = argus.rvs(chi, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(chi, loc=0, scale=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, chi, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, chi, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, chi, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, chi, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, chi, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but <code>sf</code> is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, chi, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, chi, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of <code>cdf</code> — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, chi, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of <code>sf</code>).</td>
</tr>
<tr>
<td><code>moment(n, chi, loc=0, scale=1)</code></td>
<td>Non-central moment of order <code>n</code>.</td>
</tr>
<tr>
<td><code>stats(chi, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(chi, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(chi,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(chi, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(chi, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(chi, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(chi, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, chi, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction <code>alpha</code> [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.beta

`scipy.stats.beta = <scipy.stats._continuous_distns.beta_gen object>`

A beta continuous random variable.

As an instance of the `rv_continuous` class, `beta` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `beta` is:

$$f(x, a, b) = \frac{\Gamma(a + b) x^{a-1}(1 - x)^{b-1}}{\Gamma(a)\Gamma(b)}$$

for $0 \leq x \leq 1, a > 0, b > 0$, where Γ is the gamma function (`scipy.special.gamma`).

`beta` takes a and b as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `beta.pdf(x, a, b, loc, scale)` is identically equivalent to `beta.pdf(y, a, b) / scale` with $y = (x - loc) / scale$. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Examples

```python
>>> from scipy.stats import beta
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> a, b = 2.31, 0.627
>>> mean, var, skew, kurt = beta.stats(a, b, moments='mvsk')
```  
Display the probability density function (pdf):

```python
>>> x = np.linspace(beta.ppf(0.01, a, b), ...
... beta.ppf(0.99, a, b), 100)
>>> ax.plot(x, beta.pdf(x, a, b), ...
... 'r-', lw=5, alpha=0.6, label='beta pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = beta(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = beta.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], beta.cdf(vals, a, b))
True
```

Generate random numbers:

```python
>>> r = beta.rvs(a, b, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(a, b, loc=0, scale=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, a, b, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, a, b, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, a, b, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, a, b, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, a, b, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, a, b, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, a, b, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, a, b, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, a, b, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(a, b, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(a, b, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(a, b, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(a, b, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(a, b, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(a, b, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, a, b, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.betaprime

scipy.stats.betaprime = <scipy.stats._continuous_distns.betaprime_gen object>
A beta prime continuous random variable.

As an instance of the rv_continuous class, betaprime object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for betaprime is:

\[ f(x, a, b) = \frac{x^{a-1}(1 + x)^{-a-b}}{\beta(a, b)} \]

for \( x \geq 0, a > 0, b > 0 \), where \( \beta(a, b) \) is the beta function (see scipy.special.beta).

betaprime takes \( a \) and \( b \) as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, betaprime.pdf(\( x\), \( a \), \( b \), loc, scale) is identically equivalent to betaprime.pdf(\( y\), \( a \), \( b \)) / scale with \( y = (x - loc) / scale \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import betaprime
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> a, b = 5, 6
>>> mean, var, skew, kurt = betaprime.stats(a, b, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(betaprime.ppf(0.01, a, b),
... betaprime.ppf(0.99, a, b), 100)
>>> ax.plot(x, betaprime.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='betaprime pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = betaprime(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:
```python
>>> vals = betaprime.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], betaprime.cdf(vals, a, b))
True

Generate random numbers:
```n
```python
>>> r = betaprime.rvs(a, b, size=1000)

And compare the histogram:
```n
```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(a, b, loc=0, scale=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, a, b, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, a, b, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, a, b, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, a, b, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, a, b, loc=0, scale=1)</code></td>
<td>Survival function (also defined as ( 1 - \text{cdf} ), but ( sf ) is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, a, b, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, a, b, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of ( \text{cdf} ) — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, a, b, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of ( sf )).</td>
</tr>
<tr>
<td><code>moment(n, a, b, loc=0, scale=1)</code></td>
<td>Non-central moment of order ( n )</td>
</tr>
<tr>
<td><code>stats(a, b, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(a, b, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(a, b, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(a, b, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(a, b, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(a, b, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, a, b, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction ( \alpha ) of the distribution.</td>
</tr>
</tbody>
</table>

### scipy.stats.bradford

`scipy.stats.bradford = <scipy.stats._continuous_distns.bradford_gen object>`

A Bradford continuous random variable.

As an instance of the `rv_continuous` class, `bradford` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

### Notes

The probability density function for `bradford` is:

\[
f(x, c) = \frac{c}{\log(1 + c)(1 + cx)}
\]

for \( 0 \leq x \leq 1 \) and \( c > 0 \).

`bradford` takes \( c \) as a shape parameter for \( c \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `bradford.pdf(x, c, loc, scale)` is identically equivalent to `bradford.pdf(y, c) / scale` with \( y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Examples

```python
>>> from scipy.stats import bradford
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
c = 0.299
>>> mean, var, skew, kurt = bradford.stats(c, moments='mvsk')
``` Display the probability density function (pdf):

```python
>>> x = np.linspace(bradford.ppf(0.01, c), ...
...                 bradford.ppf(0.99, c), 100)
>>> ax.plot(x, bradford.pdf(x, c), ...
...         'r-', lw=5, alpha=0.6, label='bradford pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = bradford(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = bradford.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], bradford.cdf(vals, c))
True
```

Generate random numbers:

```python
>>> r = bradford.rvs(c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.burr

scipy.stats.burr = <scipy.stats._continuous_distns.burr_gen object>
A Burr (Type III) continuous random variable.

As an instance of the rv_continuous class, burr object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

fisk
a special case of either burr or burr12 with d=1

burr12
Burr Type XII distribution

mielke
Mielke Beta-Kappa / Dagum distribution

Notes

The probability density function for burr is:

\[f(x, c, d) = cd x^{c-1} / (1 + x^{-c})^{d+1} \]

for \(x \geq 0 \) and \(c, d > 0 \).

burr takes \(c \) and \(d \) as shape parameters.

This is the PDF corresponding to the third CDF given in Burr’s list; specifically, it is equation (11) in Burr’s paper [1]. The distribution is also commonly referred to as the Dagum distribution [2]. If the parameter \(c < 1 \) then the mean of the distribution does not exist and if \(c < 2 \) the variance does not exist [2]. The PDF is finite at the left endpoint \(x = 0 \) if \(c * d > 1 \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, burr.pdf(x, c, d, loc, scale) is identically equivalent to burr.pdf(y, c, d) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

[1], [2], [3]

Examples

```python
>>> from scipy.stats import burr
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:
>>> c, d = 10.5, 4.3
>>> mean, var, skew, kurt = burr.stats(c, d, moments='mvsk')

Display the probability density function (pdf):

```python
>>> x = np.linspace(burr.ppf(0.01, c, d),
...                  burr.ppf(0.99, c, d), 100)
>>> ax.plot(x, burr.pdf(x, c, d),
...          'r-', lw=5, alpha=0.6, label='burr pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = burr(c, d)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = burr.ppf([0.001, 0.5, 0.999], c, d)
>>> np.allclose([0.001, 0.5, 0.999], burr.cdf(vals, c, d))
True
```

Generate random numbers:

```python
>>> r = burr.rvs(c, d, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, d, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, d, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, d, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, d, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, d, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, d, loc=0, scale=1)</code></td>
<td>Survival function (also defined as (1 - cdf), but <code>sf</code> is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, d, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, d, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, d, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of <code>sf</code>).</td>
</tr>
<tr>
<td><code>moment(n, c, d, loc=0, scale=1)</code></td>
<td>Non-central moment of order (n)</td>
</tr>
<tr>
<td><code>stats(c, d, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, d, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c, d), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, d, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, d, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, d, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, d, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, d, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction (alpha) ([0, 1]) of the distribution.</td>
</tr>
</tbody>
</table>

scipy.stats.burr12

```
scipy.stats.burr12 = <scipy.stats._continuous_distns.burr12_gen object>
```

A Burr (Type XII) continuous random variable.

As an instance of the `rv_continuous` class, `burr12` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

- **fisk**

 a special case of either `burr` or `burr12` with \(d=1\)

- **burr**

 Burr Type III distribution
Notes

The probability density function for \texttt{burr} is:

\[f(x, c, d) = cdx^{c-1}/(1+x^c)^{d+1} \]

for \(x \geq 0 \) and \(c, d > 0 \).

\texttt{burr12} takes \(c \) and \(d \) as shape parameters for \(c \) and \(d \).

This is the PDF corresponding to the twelfth CDF given in Burr’s list; specifically, it is equation (20) in Burr’s paper [1].

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the \texttt{loc} and \texttt{scale} parameters. Specifically, \texttt{burr12.pdf(x, c, d, loc, scale)} is identically equivalent to \texttt{burr12.pdf(y, c, d)} / \texttt{scale} with \(y = (x \text{-} \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

The Burr type 12 distribution is also sometimes referred to as the Singh-Maddala distribution from NIST [2].

References

[1], [2], [3]

Examples

```python
>>> from scipy.stats import burr12
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> c, d = 10, 4
>>> mean, var, skew, kurt = burr12.stats(c, d, moments='mvsk')
Display the probability density function (pdf):
>>> x = np.linspace(burr12.ppf(0.01, c, d),
... burr12.ppf(0.99, c, d), 100)
>>> ax.plot(x, burr12.pdf(x, c, d),
... 'r-', lw=5, alpha=0.6, label='burr12 pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:
>>> rv = burr12(c, d)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of cdf and ppf:
>>> vals = burr12.ppf([0.001, 0.5, 0.999], c, d)
>>> np.allclose([0.001, 0.5, 0.999], burr12.cdf(vals, c, d))
True
```
Generate random numbers:

```python
>>> r = burr12.rvs(c, d, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, d, loc=0, scale=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, d, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, d, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, d, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, d, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, d, loc=0, scale=1)</code></td>
<td>Survival function (also defined as (1 - cdf), but (sf) is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, d, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, d, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of (cdf) — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, d, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of (sf)).</td>
</tr>
<tr>
<td><code>moment(n, c, d, loc=0, scale=1)</code></td>
<td>Non-central moment of order (n)</td>
</tr>
<tr>
<td><code>stats(c, d, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, d, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See (\text{scipy.stats.rv_continuous.fit}) for detailed documentation of the keyword arguments.</td>
</tr>
</tbody>
</table>

scipy.stats.cauchy

`scipy.stats.cauchy = <scipy.stats._continuous_distns.cauchy_gen object>`

A Cauchy continuous random variable.

As an instance of the \(\text{rv_continuous} \) class, \(\text{cauchy} \) object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for \(\text{cauchy} \) is

\[
f(x) = \frac{1}{\pi(1 + x^2)}
\]

for a real number \(x \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the \(\text{loc} \) and \(\text{scale} \) parameters. Specifically, \(\text{cauchy.pdf}(x, \text{loc}, \text{scale}) \) is identically equivalent to \(\text{cauchy.pdf}(y) / \text{scale} \) with \(y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Examples

```python
>>> from scipy.stats import cauchy
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = cauchy.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(cauchy.ppf(0.01), cauchy.ppf(0.99), 100)
>>> ax.plot(x, cauchy.pdf(x), 'r-', lw=5, alpha=0.6, label='cauchy pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = cauchy()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = cauchy.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], cauchy.cdf(vals))
```

Generate random numbers:

```python
>>> r = cauchy.rvs(size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.chi

c = scipy.stats.chi = <scipy.stats._continuous_distns.chi_gen object>
A chi continuous random variable.

As an instance of the rv_continuous class, chi object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for chi is:

\[ f(x, k) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k-1} \exp\left(-\frac{x^2}{2}\right) \]

for \( x \geq 0 \) and \( k > 0 \) (degrees of freedom, denoted df in the implementation). \( \Gamma \) is the gamma function (scipy.special.gamma).

Special cases of chi are:

- chi(1, loc, scale) is equivalent to halfnorm
- chi(2, 0, scale) is equivalent to rayleigh
- chi(3, 0, scale) is equivalent to maxwell

chi takes df as a shape parameter.

The probability density above is defined in the "standardized" form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, \( \text{chi.pdf}(x, df, \text{loc}, \text{scale}) \) is identically equivalent to \( \text{chi.pdf}(y, df) / \text{scale} \) with \( y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import chi
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> df = 78
>>> mean, var, skew, kurt = chi.stats(df, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(chi.ppf(0.01, df),
...                  chi.ppf(0.99, df), 100)
>>> ax.plot(x, chi.pdf(x, df),
...         'r-', lw=5, alpha=0.6, label='chi pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:
```python
>>> rv = chi(df)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:
```n
```python
>>> vals = chi.ppf([0.001, 0.5, 0.999], df)
>>> np.allclose([0.001, 0.5, 0.999], chi.cdf(vals, df))
True

Generate random numbers:
```n
```python
>>> r = chi.rvs(df, size=1000)

And compare the histogram:
```n
```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(df, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, df, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, df, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, df, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, df, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, df, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, df, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, df, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, df, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, df, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(df, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(df, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(df,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(df, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(df, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(df, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(df, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, df, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.chi2

```python
scipy.stats.chi2 = <scipy.stats._continuous_distns.chi2_gen object>
```

A chi-squared continuous random variable.

For the noncentral chi-square distribution, see `ncx2`.

As an instance of the `rv_continuous` class, `chi2` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

- `ncx2`
Notes

The probability density function for \(\text{chi2} \) is:

\[
f(x, k) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2 - 1} \exp(-x/2)
\]

for \(x > 0 \) and \(k > 0 \) (degrees of freedom, denoted \(\text{df} \) in the implementation).

\(\text{chi2} \) takes \(\text{df} \) as a shape parameter.

The chi-squared distribution is a special case of the gamma distribution, with gamma parameters \(a = \text{df}/2, \text{loc} = 0 \) and \(\text{scale} = 2 \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the \(\text{loc} \) and \(\text{scale} \) parameters. Specifically, \(\text{chi2.pdf}(x, \text{df}, \text{loc}, \text{scale}) \) is identically equivalent to \(\text{chi2.pdf}(y, \text{df}) / \text{scale} \) with \(y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import chi2
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> df = 55
>>> mean, var, skew, kurt = chi2.stats(df, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(chi2.ppf(0.01, df),
... chi2.ppf(0.99, df), 100)
>>> ax.plot(x, chi2.pdf(x, df),
... 'r-', lw=5, alpha=0.6, label='chi2 pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = chi2(df)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = chi2.ppf([0.001, 0.5, 0.999], df)
>>> np.allclose([0.001, 0.5, 0.999], chi2.cdf(vals, df))
True
```

Generate random numbers:

```python
>>> r = chi2.rvs(df, size=1000)
```

And compare the histogram:
```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

![Chi-squared distribution](image)

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(df, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, df, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, df, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, df, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, df, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, df, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but <code>sf</code> is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, df, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, df, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of <code>cdf</code>).</td>
</tr>
<tr>
<td><code>isf(q, df, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of <code>sf</code>).</td>
</tr>
<tr>
<td><code>moment(n, df, loc=0, scale=1)</code></td>
<td>Non-central moment of order <code>n</code>.</td>
</tr>
<tr>
<td><code>stats(df, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(df, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(df,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(df, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(df, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(df, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(df, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, df, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.cosine

scipy.stats.cosine = <scipy.stats._continuous_distns.cosine_gen object>
A cosine continuous random variable.

As an instance of the rv_continuous class, cosine object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The cosine distribution is an approximation to the normal distribution. The probability density function for cosine is:

\[ f(x) = \frac{1}{2\pi}(1 + \cos(x)) \]

for \(-\pi \leq x \leq \pi\).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, \( \text{cosine.pdf}(x, \text{loc}, \text{scale}) \) is identically equivalent to \( \text{cosine.pdf}(y) \div \text{scale} \) with \( y = (x - \text{loc}) \div \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import cosine
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = cosine.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(cosine.ppf(0.01),
... cosine.ppf(0.99), 100)
>>> ax.plot(x, cosine.pdf(x),
... '-', lw=5, alpha=0.6, label='cosine pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = cosine()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = cosine.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], cosine.cdf(vals))
```

3.3. API definition
Generate random numbers:

```python
>>> r = cosine.rvs(size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, loc=0, scale=1)</code></td>
<td>Survival function (also defined as (1 - cdf), but (sf) is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of (cdf) — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of (sf)).</td>
</tr>
<tr>
<td><code>moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order (n).</td>
</tr>
<tr>
<td><code>stats(loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction (alpha) [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>

### scipy.stats.crystalball

`scipy.stats.crystalball = <scipy.stats._continuous_distns.crystalball_gen object>`

Crystalball distribution

As an instance of the `rv_continuous` class, `crystalball` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

### Notes

The probability density function for `crystalball` is:

\[
f(x, \beta, m) = \begin{cases} 
N \exp(-x^2/2), & \text{for } x > -\beta \\
NA(B - x)^{-m} & \text{for } x \leq -\beta 
\end{cases}
\]

where \(A = (m/|\beta|)^m \exp(-\beta^2/2)\), \(B = m/|\beta| - |\beta|\) and \(N\) is a normalisation constant.

`crystalball` takes \(\beta > 0\) and \(m > 1\) as shape parameters. \(\beta\) defines the point where the pdf changes from a power-law to a Gaussian distribution. \(m\) is the power of the power-law tail.
References

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc and scale parameters. Specifically, \( \text{crystalball.pdf}(x, \beta, m, \text{loc, scale}) \) is identically equivalent to
\( \text{crystalball.pdf}(y, \beta, m) / \text{scale} \) with \( y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

New in version 0.19.0.

[1]

Examples

```python
>>> from scipy.stats import crystalball
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> beta, m = 2, 3
>>> mean, var, skew, kurt = crystalball.stats(beta, m, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(crystalball.ppf(0.01, beta, m), ...
... crystalball.ppf(0.99, beta, m), 100)
>>> ax.plot(x, crystalball.pdf(x, beta, m), ...
... '-r', lw=5, alpha=0.6, label='crystalball pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = crystalball(beta, m)
>>> ax.plot(x, rv.pdf(x), '-k', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = crystalball.ppf([0.001, 0.5, 0.999], beta, m)
>>> np.allclose([0.001, 0.5, 0.999], crystalball.cdf(vals, beta, m))
True
```

Generate random numbers:

```python
>>> r = crystalball.rvs(beta, m, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(beta, m, loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, beta, m, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, beta, m, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, beta, m, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, beta, m, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, beta, m, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, beta, m, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, beta, m, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, beta, m, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, beta, m, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(beta, m, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(beta, m, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(beta, m), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(beta, m, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(beta, m, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(beta, m, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(beta, m, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, beta, m, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.dgamma

scipy.stats.dgamma = <scipy.stats._continuous_distns.dgamma_gen object>
A double gamma continuous random variable.

As an instance of the rv_continuous class, dgamma object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for dgamma is:

$$f(x,a) = \frac{1}{2\Gamma(a)}|x|^{a-1}\exp(-|x|)$$

for a real number $x$ and $a > 0$. $\Gamma$ is the gamma function (scipy.special.gamma).
dgamma takes $a$ as a shape parameter for $a$.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, dgamma.pdf(x, a, loc, scale) is identically equivalent to dgamma.pdf(y, a) / scale with $y = (x - loc) / scale$. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import dgamma
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> a = 1.1
>>> mean, var, skew, kurt = dgamma.stats(a, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(dgamma.ppf(0.01, a),
... dgamma.ppf(0.99, a), 100)
>>> ax.plot(x, dgamma.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='dgamma pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = dgamma(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = dgamma.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], dgamma.cdf(vals, a))
True
```
Generate random numbers:

```python
>>> r = dgamma.rvs(a, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(a, loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, a, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, a, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, a, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, a, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, a, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, a, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, a, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, a, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, a, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(a, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(a, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(a,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(a, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(a, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(a, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(a, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, a, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.dweibull

scipy.stats.dweibull = <scipy.stats._continuous_distns.dweibull_gen object>
A double Weibull continuous random variable.

As an instance of the rv_continuous class, dweibull object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for dweibull is given by

$$f(x, c) = c/2|x|^{c-1} \exp(-|x|^c)$$

for a real number $$x$$ and $$c > 0$$.

dweibull takes $$c$$ as a shape parameter for $$c$$.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, dweibull.pdf(x, c, loc, scale) is identically equivalent to dweibull.pdf(y, c) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Examples

```python
>>> from scipy.stats import dweibull
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:
```n```python
>>> c = 2.07
>>> mean, var, skew, kurt = dweibull.stats(c, moments='mvsk')
```n```

Display the probability density function (pdf):
```python
>>> x = np.linspace(dweibull.ppf(0.01, c), ...
... dweibull.ppf(0.99, c), 100)
>>> ax.plot(x, dweibull.pdf(x, c), ...
... 'r-', lw=5, alpha=0.6, label='dweibull pdf')
```n```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:
```python
>>> rv = dweibull(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```n```

Check accuracy of cdf and ppf:
```python
>>> vals = dweibull.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], dweibull.cdf(vals, c))
True
```n```

Generate random numbers:
```python
>>> r = dweibull.rvs(c, size=1000)
```n```

And compare the histogram:
```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as (1 - \text{cdf}), but (sf) is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of (\text{cdf}) — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of (\text{sf})).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order (n).</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha ([0, 1]) of the distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.erlang

scipy.stats.erlang = <scipy.stats._continuous_distns.erlang_gen object>

An Erlang continuous random variable.

As an instance of the \texttt{rv_continuous} class, \texttt{erlang} object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

gamma

Notes

The Erlang distribution is a special case of the Gamma distribution, with the shape parameter \(a\) an integer. Note that this restriction is not enforced by \texttt{erlang}. It will, however, generate a warning the first time a non-integer value is used for the shape parameter.

Refer to \texttt{gamma} for examples.

Methods

\begin{align*}
\texttt{rvs}(a, \text{loc}=0, \text{scale}=1, \text{size}=1, \\
\text{random_state}=\text{None}) & \quad \text{Random variates.} \\
\texttt{pdf}(x, a, \text{loc}=0, \text{scale}=1) & \quad \text{Probability density function.} \\
\texttt{logpdf}(x, a, \text{loc}=0, \text{scale}=1) & \quad \text{Log of the probability density function.} \\
\texttt{cdf}(x, a, \text{loc}=0, \text{scale}=1) & \quad \text{Cumulative distribution function.} \\
\texttt{logcdf}(x, a, \text{loc}=0, \text{scale}=1) & \quad \text{Log of the cumulative distribution function.} \\
\texttt{sf}(x, a, \text{loc}=0, \text{scale}=1) & \quad \text{Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).} \\
\texttt{logsf}(x, a, \text{loc}=0, \text{scale}=1) & \quad \text{Log of the survival function.} \\
\texttt{ppf}(q, a, \text{loc}=0, \text{scale}=1) & \quad \text{Percent point function (inverse of cdf — percentiles).} \\
\texttt{isf}(q, a, \text{loc}=0, \text{scale}=1) & \quad \text{Inverse survival function (inverse of sf).} \\
\texttt{moment}(n, a, \text{loc}=0, \text{scale}=1) & \quad \text{Non-central moment of order } n \\
\texttt{stats}(a, \text{loc}=0, \text{scale}=1, \text{moments}=\text{`mv'}) & \quad \text{Mean(`m'), variance(`v'), skew(`s'), and/or kurtosis(`k').} \\
\texttt{entropy}(a, \text{loc}=0, \text{scale}=1) & \quad \text{(Differential) entropy of the RV.} \\
\texttt{fit}(\text{data}) & \quad \text{Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.} \\
\texttt{expect}(\text{func}, \text{args}=(a,), \text{loc}=0, \text{scale}=1, \text{lb}=\text{None}, \text{ub}=\text{None}, \text{conditional}=\text{False}, \text{**kwds}) & \quad \text{Expected value of a function (of one argument) with respect to the distribution.} \\
\texttt{median}(a, \text{loc}=0, \text{scale}=1) & \quad \text{Median of the distribution.} \\
\texttt{mean}(a, \text{loc}=0, \text{scale}=1) & \quad \text{Mean of the distribution.} \\
\texttt{var}(a, \text{loc}=0, \text{scale}=1) & \quad \text{Variance of the distribution.} \\
\texttt{std}(a, \text{loc}=0, \text{scale}=1) & \quad \text{Standard deviation of the distribution.} \\
\texttt{interval}(\text{alpha}, a, \text{loc}=0, \text{scale}=1) & \quad \text{Endpoints of the range that contains fraction alpha [0, 1] of the distribution.}
\end{align*}
scipy.stats.expon

scipy.stats.expon = <scipy.stats._continuous_distns.expon_gen object>

An exponential continuous random variable.

As an instance of the rv_continuous class, expon object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for expon is:

\[f(x) = \exp(-x) \]

for \(x \geq 0 \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, expon.pdf(x, loc, scale) is identically equivalent to expon.pdf(y) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

A common parameterization for expon is in terms of the rate parameter \(\lambda \), such that pdf = \(\lambda \) * exp(-\(\lambda \) * x). This parameterization corresponds to using scale = 1 / \(\lambda \).

The exponential distribution is a special case of the gamma distributions, with gamma shape parameter \(a = 1 \).

Examples

```python
>>> from scipy.stats import expon
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = expon.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(expon.ppf(0.01),
... expon.ppf(0.99), 100)
>>> ax.plot(x, expon.pdf(x),
... 'r-', lw=5, alpha=0.6, label='expon pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = expon()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
```
>>> vals = expon.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], expon.cdf(vals))
True

Generate random numbers:

```python
>>> r = expon.rvs(size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.exponnorm

scipy.stats.exponnorm = <scipy.stats._continuous_distns.exponnorm_gen object>
An exponentially modified Normal continuous random variable.

Also known as the exponentially modified Gaussian distribution [1].

As an instance of the rv_continuous class, exponnorm object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for exponnorm is:

\[ f(x, K) = \frac{1}{2K} \exp \left( \frac{1}{2K^2} - \frac{x}{K} \right) \text{erfc} \left( \frac{x - 1/K}{\sqrt{2}} \right) \]

where \( x \) is a real number and \( K > 0 \).

It can be thought of as the sum of a standard normal random variable and an independent exponentially distributed random variable with rate \( 1/K \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, exponnorm.pdf(x, K, loc, scale) is identically equivalent
to `exponnorm.pdf(y, K) / scale` with \( y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

An alternative parameterization of this distribution (for example, in the Wikipedia article [1]) involves three parameters, \( \mu, \lambda \) and \( \sigma \).

In the present parameterization this corresponds to having `loc` and `scale` equal to \( \mu \) and \( \sigma \), respectively, and shape parameter \( K = 1/(\sigma \lambda) \).

New in version 0.16.0.

**References**

[1]

**Examples**

```python
>>> from scipy.stats import exponnorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> K = 1.5
>>> mean, var, skew, kurt = exponnorm.stats(K, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(exponnorm.ppf(0.01, K),
... exponnorm.ppf(0.99, K), 100)
>>> ax.plot(x, exponnorm.pdf(x, K),
... 'r-', lw=5, alpha=0.6, label='exponnorm pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = exponnorm(K)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = exponnorm.ppf([0.001, 0.5, 0.999], K)
>>> np.allclose([0.001, 0.5, 0.999], exponnorm.cdf(vals, K))
True
```

Generate random numbers:

```python
>>> r = exponnorm.rvs(K, size=1000)
```

And compare the histogram:
```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(K, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, K, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, K, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, K, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, K, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, K, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, K, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, K, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, K, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, K, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(K, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(K, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(K,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(K, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(K, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(K, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(K, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, K, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.exponweib

scipy.stats.exponweib = <scipy.stats._continuous_distns.exponweib_gen object>
An exponentiated Weibull continuous random variable.
As an instance of the rv_continuous class, exponweib object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:
weibull_min, numpy.random.Generator.weibull

Notes
The probability density function for exponweib is:
\[
f(x, a, c) = ac[1 - \exp(-x^c)]^{a-1}\exp(-x^c)x^{-c-1}
\]
and its cumulative distribution function is:
\[
F(x, a, c) = [1 - \exp(-x^c)]^a
\]
for \(x > 0, a > 0, c > 0\).

exponweib takes \(a\) and \(c\) as shape parameters:
• \(a\) is the exponentiation parameter, with the special case \(a = 1\) corresponding to the (non-exponentiated) Weibull distribution weibull_min.
• \(c\) is the shape parameter of the non-exponentiated Weibull law.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, exponweib.pdf\((x, a, c, \text{loc}, \text{scale})\) is identically equivalent to exponweib.pdf\((y, a, c) / \text{scale}\) with \(y = (x - \text{loc}) / \text{scale}\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

Examples

```
>>> from scipy.stats import exponweib
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:
```
>>> a, c = 2.89, 1.95
>>> mean, var, skew, kurt = exponweib.stats(a, c, moments='mvsk')
```

Display the probability density function (pdf):
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```
>>> rv = exponweib(a, c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```
>>> vals = exponweib.ppf([0.001, 0.5, 0.999], a, c)
>>> np.allclose([0.001, 0.5, 0.999], exponweib.cdf(vals, a, c))
True
```

Generate random numbers:

```
>>> r = exponweib.rvs(a, c, size=1000)
```

And compare the histogram:

```
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(a, c, loc=0, scale=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, a, c, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, a, c, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, a, c, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, a, c, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, a, c, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, a, c, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, a, c, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, a, c, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, a, c, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(a, c, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(a, c, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(a, c), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(a, c, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(a, c, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(a, c, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(a, c, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, a, c, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

**scipy.stats.exponpow**

```python
scipy.stats.exponpow = <scipy.stats._continuous_distns.exponpow_gen object>
```

An exponential power continuous random variable.

As an instance of the `rv_continuous` class, `exponpow` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

**Notes**

The probability density function for `exponpow` is:

\[
f(x, b) = bx^{b-1} \exp(1 + x^b - \exp(x^b))
\]

for \( x \geq 0, \ b > 0 \). Note that this is a different distribution from the exponential power distribution that is also known under the names “generalized normal” or “generalized Gaussian”.

`exponpow` takes \( b \) as a shape parameter for \( b \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `exponpow.pdf(x, b, loc, scale)` is identically equivalent to `exponpow.pdf(y, b) / scale` with \( y = (x - loc) / scale \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
References

http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Exponentialpower.pdf

Examples

```python
>>> from scipy.stats import exponpow
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> b = 2.7
>>> mean, var, skew, kurt = exponpow.stats(b, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(exponpow.ppf(0.01, b), ...
...                   exponpow.ppf(0.99, b), 100)
>>> ax.plot(x, exponpow.pdf(x, b), ...
...         'r-', lw=5, alpha=0.6, label='exponpow pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = exponpow(b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = exponpow.ppf([0.001, 0.5, 0.999], b)
>>> np.allclose([0.001, 0.5, 0.999], exponpow.cdf(vals, b))
True
```

Generate random numbers:

```python
>>> r = exponpow.rvs(b, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(b, loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
<td>b, loc, scale, size, random_state</td>
</tr>
<tr>
<td>pdf(x, b, loc=0, scale=1)</td>
<td>Probability density function.</td>
<td>x, b, loc, scale</td>
</tr>
<tr>
<td>logpdf(x, b, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
<td>x, b, loc, scale</td>
</tr>
<tr>
<td>cdf(x, b, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
<td>x, b, loc, scale</td>
</tr>
<tr>
<td>logcdf(x, b, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
<td>x, b, loc, scale</td>
</tr>
<tr>
<td>sf(x, b, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
<td>x, b, loc, scale</td>
</tr>
<tr>
<td>logsf(x, b, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
<td>x, b, loc, scale</td>
</tr>
<tr>
<td>ppf(q, b, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
<td>q, b, loc, scale</td>
</tr>
<tr>
<td>isf(q, b, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
<td>q, b, loc, scale</td>
</tr>
<tr>
<td>moment(n, b, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
<td>n, b, loc, scale</td>
</tr>
<tr>
<td>stats(b, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
<td>b, loc, scale, moments</td>
</tr>
<tr>
<td>entropy(b, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
<td>b, loc, scale</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
<td>data</td>
</tr>
<tr>
<td>expect(func, args=(b,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwd)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
<td>func, args, loc, scale, lb, ub, conditional, **kwd</td>
</tr>
<tr>
<td>median(b, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
<td>b, loc, scale</td>
</tr>
<tr>
<td>mean(b, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
<td>b, loc, scale</td>
</tr>
<tr>
<td>var(b, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
<td>b, loc, scale</td>
</tr>
<tr>
<td>std(b, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
<td>b, loc, scale</td>
</tr>
<tr>
<td>interval(alpha, b, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
<td>alpha, b, loc, scale</td>
</tr>
</tbody>
</table>
scipy.stats.f

scipy.stats.f = <scipy.stats._continuous_distns.f_gen object>

An F continuous random variable.

For the noncentral F distribution, see ncf.

As an instance of the rv_continuous class, f object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

ncf

Notes

The probability density function for f is:

\[f(x, df_1, df_2) = \frac{df_2^{df_2/2} df_1^{df_1/2} x^{df_1/2 - 1}}{(df_2 + df_1 x)^{(df_1 + df_2)/2} B(df_1/2, df_2/2)} \]

for \(x > 0 \).

f takes dfn and dfd as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, f.pdf(x, dfn, dfd, loc, scale) is identically equivalent to f.pdf(y, dfn, dfd) / scale with \(y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import f
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> dfn, dfd = 29, 18
>>> mean, var, skew, kurt = f.stats(dfn, dfd, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(f.ppf(0.01, dfn, dfd), ...
... f.ppf(0.99, dfn, dfd), 100)
>>> ax.plot(x, f.pdf(x, dfn, dfd), ...
... 'r-', lw=5, alpha=0.6, label='f pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:
>>> rv = f(dfn, dfd)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = f.ppf([0.001, 0.5, 0.999], dfn, dfd)
>>> np.allclose([0.001, 0.5, 0.999], f.cdf(vals, dfn, dfd))
True

Generate random numbers:

>>> r = f.rvs(dfn, dfd, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(dfn, dfd, loc=0, scale=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, dfn, dfd, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, dfn, dfd, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, dfn, dfd, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, dfn, dfd, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, dfn, dfd, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, dfn, dfd, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, dfn, dfd, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, dfn, dfd, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, dfn, dfd, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(dfn, dfd, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(dfn, dfd, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(dfn, dfd), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(dfn, dfd, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(dfn, dfd, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(dfn, dfd, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(dfn, dfd, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, dfn, dfd, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.fatiguelife

scipy.stats.fatiguelife = `<scipy.stats._continuous_distns.fatiguelife_gen object>`

A fatigue-life (Birnbaum-Saunders) continuous random variable.

As an instance of the *rv_continuous* class, *fatiguelife* object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for *fatiguelife* is:

$$ f(x, c) = \frac{x + 1}{2c\sqrt{2\pi x^3}} \exp\left(-\frac{(x - 1)^2}{2xc^2}\right) $$

for $x \geq 0$ and $c > 0$.

fatiguelife takes c as a shape parameter for c.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the *loc* and *scale* parameters. Specifically, *fatiguelife.pdf(x, c, loc, scale)* is identically equivalent to *fatiguelife.pdf(y, c) / scale* with $y = (x - loc) / scale$. Note that
shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

[1]

Examples

```python
>>> from scipy.stats import fatiguelife
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> c = 29
>>> mean, var, skew, kurt = fatiguelife.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(fatiguelife.ppf(0.01, c), ...
... fatiguelife.ppf(0.99, c), 100)
>>> ax.plot(x, fatiguelife.pdf(x, c), ...
... 'r-', lw=5, alpha=0.6, label='fatiguelife pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = fatiguelife(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = fatiguelife.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], fatiguelife.cdf(vals, c))
```

Generate random numbers:

```python
>>> r = fatiguelife.rvs(c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.fisk

scipy.stats.fisk = <scipy.stats._continuous_distns.fisk_gen object>
A Fisk continuous random variable.

The Fisk distribution is also known as the log-logistic distribution.

As an instance of the rv_continuous class, fisk object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:
burr

Notes

The probability density function for fisk is:

\[ f(x, c) = cx^{-c-1}(1 + x^{-c})^{-2} \]

for \( x \geq 0 \) and \( c > 0 \).

fisk takes \( c \) as a shape parameter for \( c \).

fisk is a special case of burr or burr12 with \( d=1 \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, \( fisk.pdf(x, c, loc, scale) \) is identically equivalent to \( fisk.pdf(y, c) / scale \) with \( y = (x - loc) / scale \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import fisk
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> c = 3.09
>>> mean, var, skew, kurt = fisk.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(fisk.ppf(0.01, c), ...
...                   fisk.ppf(0.99, c), 100)
>>> ax.plot(x, fisk.pdf(x, c), ...
...         'r-', lw=5, alpha=0.6, label='fisk pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:
```python
>>> rv = fisk(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = fisk.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], fisk.cdf(vals, c))
True
```

Generate random numbers:

```python
>>> r = fisk.rvs(c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as (1 - \text{cdf}), but (\text{sf}) is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of (\text{cdf}) — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of (\text{sf})).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order (n)</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See \texttt{scipy.stats.rv_continuous.fit} for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha ([0, 1]) of the distribution</td>
</tr>
</tbody>
</table>

\texttt{scipy.stats.foldcauchy}:

\texttt{scipy.stats.foldcauchy} = \texttt{<scipy.stats._continuous_distns.foldcauchy_gen object>}

A folded Cauchy continuous random variable.

As an instance of the \texttt{rv_continuous} class, \texttt{foldcauchy} object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for \texttt{foldcauchy} is:

\[
 f(x, c) = \frac{1}{\pi(1 + (x - c)^2)} + \frac{1}{\pi(1 + (x + c)^2)}
\]

for \(x \geq 0\).

\texttt{foldcauchy} takes \(c\) as a shape parameter for \(c\).
Examples

```python
>>> from scipy.stats import foldcauchy
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> c = 4.72
>>> mean, var, skew, kurt = foldcauchy.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(foldcauchy.ppf(0.01, c), ...
... foldcauchy.ppf(0.99, c), 100)
>>> ax.plot(x, foldcauchy.pdf(x, c), ...
... 'r-', lw=5, alpha=0.6, label='foldcauchy pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = foldcauchy(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = foldcauchy.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], foldcauchy.cdf(vals, c))
True
```

Generate random numbers:

```python
>>> r = foldcauchy.rvs(c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but $sf$ is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of $cdf$ — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of $sf$).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order $n$.</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.foldnorm

scipy.stats.foldnorm = <scipy.stats._continuous_distns.foldnorm_gen object>
A folded normal continuous random variable.

As an instance of the rv_continuous class, foldnorm object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for foldnorm is:

\[ f(x,c) = \frac{p}{2\pi c \cosh(cx)} \exp(-\frac{x^2 + c^2}{2}) \]

for \( c \geq 0 \).

foldnorm takes \( c \) as a shape parameter for \( c \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, \( \text{foldnorm.pdf}(x, c, \text{loc}, \text{scale}) \) is identically equivalent to \( \text{foldnorm.pdf}(y, c) / \text{scale} \) with \( y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import foldnorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> c = 1.95
>>> mean, var, skew, kurt = foldnorm.stats(c, moments='mvsk')

Display the probability density function (pdf):

```python
>>> x = np.linspace(foldnorm.ppf(0.01, c),
 ... foldnorm.ppf(0.99, c), 100)
>>> ax.plot(x, foldnorm.pdf(x, c),
 ... 'r-', lw=5, alpha=0.6, label='foldnorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters.
This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = foldnorm(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

```python
>>> vals = foldnorm.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], foldnorm.cdf(vals, c))
True
```
Generate random numbers:

```python
>>> r = foldnorm.rvs(c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as ( 1 - cdf ), but <code>sf</code> is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of <code>cdf</code> — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of <code>sf</code>).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments=’mv’)</code></td>
<td>Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha ([0, 1]) of the distribution.</td>
</tr>
</tbody>
</table>

**scipy.stats.genlogistic**

`scipy.stats.genlogistic = <scipy.stats._continuous_distns.genlogistic_genobject>`

A generalized logistic continuous random variable.

As an instance of the `rv_continuous` class, `genlogistic` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

**Notes**

The probability density function for `genlogistic` is:

\[
f(x, c) = c \frac{\exp(-x)}{(1 + \exp(-x))^{c+1}}
\]

for \( x \geq 0, c > 0 \).

`genlogistic` takes \( c \) as a shape parameter for \( c \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, \( \text{genlogistic.pdf}(x, \ c, \ \text{loc}, \ \text{scale}) \) is identically equivalent to \( \text{genlogistic.pdf}(y, \ c) / \text{scale} \) with \( y = (x - \text{loc}) / \text{scale} \). Note that
shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import genlogistic
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> c = 0.412
>>> mean, var, skew, kurt = genlogistic.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(genlogistic.ppf(0.01, c),
...                 genlogistic.ppf(0.99, c), 100)
>>> ax.plot(x, genlogistic.pdf(x, c),
...         'r-', lw=5, alpha=0.6, label='genlogistic pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = genlogistic(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = genlogistic.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], genlogistic.cdf(vals, c))
```

Generate random numbers:

```python
>>> r = genlogistic.rvs(c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.gennorm

scipy.stats.gennorm = <scipy.stats._continuous_distns.gennorm_gen object>
A generalized normal continuous random variable.

As an instance of the rv_continuous class, gennorm object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

laplace
Laplace distribution

norm
normal distribution

Notes

The probability density function for gennorm is [1]:

\[f(x, \beta) = \frac{\beta}{2\Gamma(1/\beta)} \exp(-|x|^\beta) \]

\(\Gamma\) is the gamma function (scipy.special.gamma).

gennorm takes beta as a shape parameter for \(\beta\). For \(\beta = 1\), it is identical to a Laplace distribution. For \(\beta = 2\), it is identical to a normal distribution (with scale=1/sqrt(2)).

References

[1]

Examples

```python
>>> from scipy.stats import gennorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> beta = 1.3
>>> mean, var, skew, kurt = gennorm.stats(beta, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(gennorm.ppf(0.01, beta),
... gennorm.ppf(0.99, beta), 100)
>>> ax.plot(x, gennorm.pdf(x, beta),
... 'r-', lw=5, alpha=0.6, label='gennorm pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:
```python
>>> rv = gennorm(beta)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

```python
>>> vals = gennorm.ppf([0.001, 0.5, 0.999], beta)
>>> np.allclose([0.001, 0.5, 0.999], gennorm.cdf(vals, beta))
True
```

Generate random numbers:

```python
>>> r = gennorm.rvs(beta, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>.rvs(beta, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>.pdf(x, beta, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>.logpdf(x, beta, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>.cdf(x, beta, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>.logcdf(x, beta, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>.sf(x, beta, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - \text{cdf}$, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>.logsf(x, beta, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>.ppf(q, beta, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>.isf(q, beta, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>.moment(n, beta, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>.stats(beta, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>.entropy(beta, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>.fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>.expect(func, args=(beta,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>.median(beta, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>.mean(beta, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>.var(beta, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>.std(beta, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>.interval(alpha, beta, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.genpareto

`scipy.stats.genpareto = <scipy.stats._continuous_distns.genpareto_gen object>`

A generalized Pareto continuous random variable.

As an instance of the `rv_continuous` class, `genpareto` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `genpareto` is:

$$ f(x, c) = (1 + cx)^{-1 - 1/c} $$

defined for $x \geq 0$ if $c \geq 0$, and for $0 \leq x \leq -1/c$ if $c < 0$.

`genpareto` takes c as a shape parameter for c.

For $c = 0$, `genpareto` reduces to the exponential distribution, `expon`:

$$ f(x, 0) = \exp(-x) $$

For $c = -1$, `genpareto` is uniform on [0, 1]:

$$ f(x, -1) = 1 $$
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, \(\text{genpareto.pdf}(x, c, \text{loc}, \text{scale}) \) is identically equivalent to \(\text{genpareto.pdf}(y, c) / \text{scale} \) with \(y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import genpareto
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> c = 0.1
>>> mean, var, skew, kurt = genpareto.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(genpareto.ppf(0.01, c),
...                 genpareto.ppf(0.99, c), 100)
>>> ax.plot(x, genpareto.pdf(x, c),
...         '-r', lw=5, alpha=0.6, label='genpareto pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = genpareto(c)
>>> ax.plot(x, rv.pdf(x), '-k', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = genpareto.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], genpareto.cdf(vals, c))
True
```

Generate random numbers:

```python
>>> r = genpareto.rvs(c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

- `rvs(c, loc=0, scale=1, size=1, random_state=None)`
 Random variates.

- `pdf(x, c, loc=0, scale=1)`
 Probability density function.

- `logpdf(x, c, loc=0, scale=1)`
 Log of the probability density function.

- `cdf(x, c, loc=0, scale=1)`
 Cumulative distribution function.

- `logcdf(x, c, loc=0, scale=1)`
 Log of the cumulative distribution function.

- `sf(x, c, loc=0, scale=1)`
 Survival function (also defined as $1 - cdf$, but sf is sometimes more accurate).

- `logsf(x, c, loc=0, scale=1)`
 Log of the survival function.

- `ppf(q, c, loc=0, scale=1)`
 Percent point function (inverse of cdf — percentiles).

- `isf(q, c, loc=0, scale=1)`
 Inverse survival function (inverse of sf).

- `moment(n, c, loc=0, scale=1)`
 Non-central moment of order n

- `stats(c, loc=0, scale=1, moments='mv')`
 Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').

- `entropy(c, loc=0, scale=1)`
 (Differential) entropy of the RV.

- `fit(data)`
 Parameter estimates for generic data. See `scipy.stats.rv_continuous.fit` for detailed documentation of the keyword arguments.

- `expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)`
 Expected value of a function (of one argument) with respect to the distribution.

- `median(c, loc=0, scale=1)`
 Median of the distribution.

- `mean(c, loc=0, scale=1)`
 Mean of the distribution.

- `var(c, loc=0, scale=1)`
 Variance of the distribution.

- `std(c, loc=0, scale=1)`
 Standard deviation of the distribution.

- `interval(alpha, c, loc=0, scale=1)`
 Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution.
scipy.stats.genexpon

An instance of the rv_continuous class, genexpon object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for genexpon is:

\[
f(x, a, b, c) = (a + b(1 - \exp(-cx))) \exp(-ax - bx + \frac{b}{c}(1 - \exp(-cx)))
\]

for \(x \geq 0, a, b, c > 0\).

genexpon takes \(a, b, c\) as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, \(\text{genexpon.pdf}(x, a, b, c, \text{loc}, \text{scale})\) is identically equivalent to \(\text{genexpon.pdf}(y, a, b, c) / \text{scale}\) with \(y = (x - \text{loc}) / \text{scale}\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

Examples

```python
>>> from scipy.stats import genexpon
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> a, b, c = 9.13, 16.2, 3.28
>>> mean, var, skew, kurt = genexpon.stats(a, b, c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(genexpon.ppf(0.01, a, b, c),
... genexpon.ppf(0.99, a, b, c), 100)
>>> ax.plot(x, genexpon.pdf(x, a, b, c),
... 'r-', lw=5, alpha=0.6, label='genexpon pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:
>>> rv = genexpon(a, b, c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = genexpon.ppf([0.001, 0.5, 0.999], a, b, c)
>>> np.allclose([0.001, 0.5, 0.999], genexpon.cdf(vals, a, b, c))
True

Generate random numbers:

>>> r = genexpon.rvs(a, b, c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(a, b, c, loc=0, scale=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, a, b, c, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, a, b, c, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, a, b, c, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, a, b, c, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, a, b, c, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, a, b, c, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, a, b, c, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, a, b, c, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, a, b, c, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(a, b, c, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(a, b, c, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(a, b, c), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(a, b, c, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(a, b, c, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(a, b, c, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(a, b, c, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, a, b, c, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.genextreme

**scipy.stats.genextreme = <scipy.stats._continuous_distns.genextreme_gen object>**

A generalized extreme value continuous random variable.

As an instance of the rv_continuous class, genextreme object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

gumbel_r
Notes

For \( c = 0 \), \texttt{genextreme} is equal to \texttt{gumbel_r}. The probability density function for \texttt{genextreme} is:

\[
f(x, c) = \begin{cases} 
\exp(-\exp(-x))\exp(-x) & \text{for } c = 0 \\
\exp(-(1 - cx)^{1/c})(1 - cx)^{1/c-1} & \text{for } x \leq 1/c, c > 0 
\end{cases}
\]

Note that several sources and software packages use the opposite convention for the sign of the shape parameter \( c \). \texttt{genextreme} takes \( c \) as a shape parameter for \( c \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the \texttt{loc} and \texttt{scale} parameters. Specifically, \texttt{genextreme.pdf(x, c, loc, scale)} is identically equivalent to \texttt{genextreme.pdf(y, c)} / \texttt{scale} with \( y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import genextreme
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> c = -0.1
>>> mean, var, skew, kurt = genextreme.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(genextreme.ppf(0.01, c),
... genextreme.ppf(0.99, c), 100)
>>> ax.plot(x, genextreme.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='genextreme pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = genextreme(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = genextreme.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], genextreme.cdf(vals, c))
```

Generate random numbers:

```python
>>> r = genextreme.rvs(c, size=1000)
```

And compare the histogram:
```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

![Graph showing genextreme pdf and frozen pdf]

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but <code>sf</code> is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of <code>cdf</code> — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of <code>sf</code>).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order n.</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.gausshyper

`scipy.stats.gausshyper = <scipy.stats._continuous_distns.gausshyper_gen object>`

A Gauss hypergeometric continuous random variable.

As an instance of the `rv_continuous` class, `gausshyper` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `gausshyper` is:

\[f(x, a, b, c, z) = C x^{a-1}(1-x)^{b-1}(1+zx)^{-c} \]

for \(0 \leq x \leq 1\), \(a > 0\), \(b > 0\), \(z > -1\), and \(C = \frac{1}{B(a,b)F[2,1](c,a;a+b;-z)}\). \(F[2,1]\) is the Gauss hypergeometric function `scipy.special.hyp2f1`.

`gausshyper` takes \(a\), \(b\), \(c\) and \(z\) as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `gausshyper.pdf(x, a, b, c, z, loc, scale)` is identically equivalent to `gausshyper.pdf(y, a, b, c, z) / scale` with \(y = (x - loc) / scale\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

[1]

Examples

```python
>>> from scipy.stats import gausshyper
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> a, b, c, z = 13.8, 3.12, 2.51, 5.18
>>> mean, var, skew, kurt = gausshyper.stats(a, b, c, z, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(gausshyper.ppf(0.01, a, b, c, z),
... gausshyper.ppf(0.99, a, b, c, z), 100)
>>> ax.plot(x, gausshyper.pdf(x, a, b, c, z),
... 'r-', lw=5, alpha=0.6, label='gausshyper pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:
>>> rv = gausshyper(a, b, c, z)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = gausshyper.ppf([0.001, 0.5, 0.999], a, b, c, z)
>>> np.allclose([0.001, 0.5, 0.999], gausshyper.cdf(vals, a, b, c, z))
True

Generate random numbers:

>>> r = gausshyper.rvs(a, b, c, z, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(a, b, c, z, loc=0, scale=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, a, b, c, z, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, a, b, c, z, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, a, b, c, z, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, a, b, c, z, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, a, b, c, z, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, a, b, c, z, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, a, b, c, z, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, a, b, c, z, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, a, b, c, z, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(a, b, c, z, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(a, b, c, z, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(a, b, c, z), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(a, b, c, z, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(a, b, c, z, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(a, b, c, z, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(a, b, c, z, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, a, b, c, z, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.gamma

scipy.stats.gamma = <scipy.stats._continuous_distns.gamma_gen object>

A gamma continuous random variable.

As an instance of the rv_continuous class, gamma object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

erlang, expon
Notes

The probability density function for $\text{gamma}$ is:

$$f(x, a) = \frac{x^{a-1}e^{-x}}{\Gamma(a)}$$

for $x \geq 0$, $a > 0$. Here $\Gamma(a)$ refers to the gamma function.

$\text{gamma}$ takes $a$ as a shape parameter for $a$.

When $a$ is an integer, $\text{gamma}$ reduces to the Erlang distribution, and when $a = 1$ to the exponential distribution.

Gamma distributions are sometimes parameterized with two variables, with a probability density function of:

$$f(x, \alpha, \beta) = \frac{\beta^\alpha x^{\alpha-1}e^{-\beta x}}{\Gamma(\alpha)}$$

Note that this parameterization is equivalent to the above, with scale = $1 / \beta$.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, $\text{gamma.pdf}(x, a, \text{loc}, \text{scale})$ is identically equivalent to $\text{gamma.pdf}(y, a) / \text{scale}$ with $y = (x - \text{loc}) / \text{scale}$. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import gamma
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> a = 1.99
>>> mean, var, skew, kurt = gamma.stats(a, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(gamma.ppf(0.01, a), ...
... gamma.ppf(0.99, a), 100)
>>> ax.plot(x, gamma.pdf(x, a), ...
... 'r-', lw=5, alpha=0.6, label='gamma pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = gamma(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = gamma.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], gamma.cdf(vals, a))
True
```
Generate random numbers:

```python
>>> r = gamma.rvs(a, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

- **rvs(a, loc=0, scale=1, size=1, random_state=None)**: Random variates.
- **pdf(x, a, loc=0, scale=1)**: Probability density function.
- **logpdf(x, a, loc=0, scale=1)**: Log of the probability density function.
- **cdf(x, a, loc=0, scale=1)**: Cumulative distribution function.
- **logcdf(x, a, loc=0, scale=1)**: Log of the cumulative distribution function.
- **sf(x, a, loc=0, scale=1)**: Survival function (also defined as \(1 - \text{cdf}\), but \(sf\) is sometimes more accurate).
- **logsf(x, a, loc=0, scale=1)**: Log of the survival function.
- **ppf(q, a, loc=0, scale=1)**: Percent point function (inverse of \(\text{cdf}\) — percentiles).
- **isf(q, a, loc=0, scale=1)**: Inverse survival function (inverse of \(sf\)).
- **moment(n, a, loc=0, scale=1)**: Non-central moment of order \(n\).
- **stats(a, loc=0, scale=1, moments=’mv’)**: Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
- **entropy(a, loc=0, scale=1)**: (Differential) entropy of the RV.
- **fit(data)**: Parameter estimates for generic data. See `scipy.stats.rv_continuous.fit` for detailed documentation of the keyword arguments.
- **expect(func, args=(a,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)**: Expected value of a function (of one argument) with respect to the distribution.
- **median(a, loc=0, scale=1)**: Median of the distribution.
- **mean(a, loc=0, scale=1)**: Mean of the distribution.
- **var(a, loc=0, scale=1)**: Variance of the distribution.
- **std(a, loc=0, scale=1)**: Standard deviation of the distribution.
- **interval(alpha, a, loc=0, scale=1)**: Endpoints of the range that contains fraction \(\alpha\) of the distribution.

scipy.stats.gengamma

scipy.stats.gengamma = <scipy.stats._continuous_distns.gengamma_gen object>

A generalized gamma continuous random variable.

As an instance of the `rv_continuous` class, `gengamma` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

- `gamma`, `invgamma`, `weibull_min`

Notes

The probability density function for `gengamma` is ([1]):

\[
f(x; a, c) = \left| c \right| x^{ca-1} \exp(-x^c) / \Gamma(a)
\]

for \(x \geq 0\), \(a > 0\), and \(c \neq 0\). \(\Gamma\) is the gamma function (`scipy.special.gamma`).

`gengamma` takes \(a\) and \(c\) as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, \(gengamma.pdf(x, a, c, \text{loc}, \text{scale}) \) is identically equivalent to \(gengamma.pdf(y, a, c) / \text{scale} \) with \(y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

[1]

Examples

```python
>>> from scipy.stats import gengamma
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> a, c = 4.42, -3.12
>>> mean, var, skew, kurt = gengamma.stats(a, c, moments='mvsk')
```  
Display the probability density function (pdf):

```python
>>> x = np.linspace(gengamma.ppf(0.01, a, c),
... gengamma.ppf(0.99, a, c), 100)
>>> ax.plot(x, gengamma.pdf(x, a, c),
... 'r-', lw=5, alpha=0.6, label='gengamma pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = gengamma(a, c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = gengamma.ppf([0.001, 0.5, 0.999], a, c)
>>> np.allclose([0.001, 0.5, 0.999], gengamma.cdf(vals, a, c))
```

Generate random numbers:

```python
>>> r = gengamma.rvs(a, c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(a, c, loc=0, scale=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, a, c, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, a, c, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, a, c, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, a, c, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, a, c, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, a, c, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, a, c, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, a, c, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, a, c, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(a, c, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(a, c, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(a, c), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(a, c, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(a, c, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(a, c, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(a, c, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, a, c, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.genhalflogistic

scipy.stats.genhalflogistic =
<scipy.stats._continuous_distns.genhalflogistic_gen object>
A generalized half-logistic continuous random variable.

As an instance of the rv_continuous class, genhalflogistic object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for genhalflogistic is:

\[f(x, c) = \frac{2(1 - cx)^{(c-1)/2}}{[1 + (1 - cx)^{1/c}]^2} \]

for \(0 \leq x \leq 1/c\), and \(c > 0\).

genhalflogistic takes \(c\) as a shape parameter for \(c\).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, genhalflogistic.pdf(x, c, loc, scale) is identically equivalent to genhalflogistic.pdf(y, c) / scale with \(y = (x - loc) / scale\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import genhalflogistic
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> c = 0.773
>>> mean, var, skew, kurt = genhalflogistic.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(genhalflogistic.ppf(0.01, c), ...
... genhalflogistic.ppf(0.99, c), 100)
>>> ax.plot(x, genhalflogistic.pdf(x, c), ...
... 'r-', lw=5, alpha=0.6, label='genhalflogistic pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = genhalflogistic(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:
```python
>>> vals = genhalflogistic.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], genhalflogistic.cdf(vals, c))
True
```

Generate random numbers:

```python
>>> r = genhalflogistic.rvs(c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - \text{cdf}$, but $\text{sf}$ is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of $\text{cdf}$ — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of $\text{sf}$).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order $n$</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution.</td>
</tr>
</tbody>
</table>

### scipy.stats.genhyperbolic

`scipy.stats.genhyperbolic = <scipy.stats._continuous_distns.genhyperbolic_gen object>`

A generalized hyperbolic continuous random variable.

As an instance of the `rv_continuous` class, `genhyperbolic` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

`t, norminvgauss, geninvgauss, laplace, cauchy`
Notes

The probability density function for \texttt{genhyperbolic} is:

\[
    f(x, p, a, b) = \frac{(a^2 - b^2)^{p/2}}{\sqrt{2\pi a^p - 0.5} K_p \left(\sqrt{a^2 - b^2}\right)} e^{bx} \times \frac{K_{p-1/2}(a\sqrt{1 + x^2})}{(\sqrt{1 + x^2})^{1/2-p}}
\]

for \(x, p \in (-\infty; \infty), |b| < a \text{ if } p \geq 0, |b| \leq a \text{ if } p < 0\). \(K_p(.)\) denotes the modified Bessel function of the second kind and order \(p\) (\texttt{scipy.special.kn}).

\texttt{genhyperbolic} takes \(p\) as a tail parameter, \(a\) as a shape parameter, and \(b\) as a skewness parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the \texttt{loc} and \texttt{scale} parameters. Specifically, \texttt{genhyperbolic.pdf(x, p, a, b, loc, scale)} is identically equivalent to \texttt{genhyperbolic.pdf(y, p, a, b) / scale} with \(y = (x - \texttt{loc}) / \texttt{scale}\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

The original parameterization of the Generalized Hyperbolic Distribution is found in [1] as follows

\[
    f(x, \lambda, \alpha, \beta, \delta, \mu) = \frac{\gamma/\delta}{\sqrt{2\pi K_\lambda(\delta \gamma)}} e^{\beta(x-\mu)} \times \frac{K_{\lambda-1/2}(\alpha \sqrt{\delta^2 + (x-\mu)^2})}{(\sqrt{\delta^2 + (x-\mu)^2}/\alpha)^{1/2-\lambda}}
\]

for \(x \in (-\infty; \infty), \gamma := \sqrt{\alpha^2 - \beta^2}, \lambda, \mu \in (-\infty; \infty), \delta \geq 0, |\beta| < \alpha \text{ if } \lambda \geq 0, \delta > 0, |\beta| \leq \alpha \text{ if } \lambda < 0\).

The location-scale-based parameterization implemented in SciPy is based on [2], where \(a = \alpha \delta, b = \beta \delta, p = \lambda, \texttt{scale} = \delta\), and \texttt{loc} = \mu.

Moments are implemented based on [3] and [4].

For the distributions that are a special case such as Student’s \(t\), it is not recommended to rely on the implementation of \texttt{genhyperbolic}. To avoid potential numerical problems and for performance reasons, the methods of the specific distributions should be used.

References

[1], [2], [3], [4]

Examples

```python
>>> from scipy.stats import genhyperbolic
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> p, a, b = 0.5, 1.5, -0.5
>>> mean, var, skew, kurt = genhyperbolic.stats(p, a, b, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(genhyperbolic.ppf(0.01, p, a, b), ... genhyperbolic.ppf(0.99, p, a, b), 100)
>>> ax.plot(x, genhyperbolic.pdf(x, p, a, b), ... 'r-', lw=5, alpha=0.6, label='genhyperbolic pdf')
```
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = genhyperbolic(p, a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = genhyperbolic.ppf([0.001, 0.5, 0.999], p, a, b)
>>> np.allclose([0.001, 0.5, 0.999], genhyperbolic.cdf(vals, p, a, b))
True
```

Generate random numbers:

```python
>>> r = genhyperbolic.rvs(p, a, b, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(p, a, b, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, p, a, b, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, p, a, b, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, p, a, b, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, p, a, b, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, p, a, b, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, p, a, b, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, p, a, b, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, p, a, b, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, p, a, b, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(p, a, b, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(p, a, b, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(p, a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(p, a, b, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(p, a, b, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(p, a, b, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(p, a, b, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, p, a, b, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

`scipy.stats.geninvgauss`

`scipy.stats.geninvgauss = <scipy.stats._continuous_distns.geninvgauss_gen object>

A Generalized Inverse Gaussian continuous random variable.

As an instance of the `rv_continuous` class, `geninvgauss` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `geninvgauss` is:

\[
    f(x, p, b) = x^{p-1} \exp(-b(x + 1/x)/2)/(2K_p(b))
\]

where \( x > 0 \), and the parameters \( p, b \) satisfy \( b > 0 \) ([1]). \( K_p \) is the modified Bessel function of second kind of order \( p \) (`scipy.special.kv`).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `geninvgauss.pdf(x, p, b, loc, scale)` is identically equivalent to `geninvgauss.pdf(y, p, b) / scale` with \( y = (x - loc) / scale \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
The inverse Gaussian distribution \texttt{stats.invgauss(mu)} is a special case of \texttt{geninvgauss} with \( p = -1/2, \ b = 1 / \mu \) and \( \text{scale} = \mu \).

Generating random variates is challenging for this distribution. The implementation is based on [2].

\textbf{References}

[1], [2]

\textbf{Examples}

```python
>>> from scipy.stats import geninvgauss
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> p, b = 2.3, 1.5
>>> mean, var, skew, kurt = geninvgauss.stats(p, b, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(geninvgauss.ppf(0.01, p, b), ...
... geninvgauss.ppf(0.99, p, b), 100)
>>> ax.plot(x, geninvgauss.pdf(x, p, b), ...
... 'r-', lw=5, alpha=0.6, label='geninvgauss pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = geninvgauss(p, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = geninvgauss.ppf([0.001, 0.5, 0.999], p, b)
>>> np.allclose([0.001, 0.5, 0.999], geninvgauss.cdf(vals, p, b))
True
```

Generate random numbers:

```python
>>> r = geninvgauss.rvs(p, b, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

- **rvs**(p, b, loc=0, scale=1, size=1, random_state=None)  
  Random variates.
- **pdf**(x, p, b, loc=0, scale=1)  
  Probability density function.
- **logpdf**(x, p, b, loc=0, scale=1)  
  Log of the probability density function.
- **cdf**(x, p, b, loc=0, scale=1)  
  Cumulative distribution function.
- **logcdf**(x, p, b, loc=0, scale=1)  
  Log of the cumulative distribution function.
- **sf**(x, p, b, loc=0, scale=1)  
  Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).
- **logsf**(x, p, b, loc=0, scale=1)  
  Log of the survival function.
- **ppf**(q, p, b, loc=0, scale=1)  
  Percent point function (inverse of cdf — percentiles).
- **isf**(q, p, b, loc=0, scale=1)  
  Inverse survival function (inverse of sf).
- **moment**(n, p, b, loc=0, scale=1)  
  Non-central moment of order n
- **stats**(p, b, loc=0, scale=1, moments='mv')  
  Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
- **entropy**(p, b, loc=0, scale=1)  
  (Differential) entropy of the RV.
- **fit**(data)  
  Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.
- **expect**(func, args=(p, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)  
  Expected value of a function (of one argument) with respect to the distribution.
- **median**(p, b, loc=0, scale=1)  
  Median of the distribution.
- **mean**(p, b, loc=0, scale=1)  
  Mean of the distribution.
- **var**(p, b, loc=0, scale=1)  
  Variance of the distribution.
- **std**(p, b, loc=0, scale=1)  
  Standard deviation of the distribution.
- **interval**(alpha, p, b, loc=0, scale=1)  
  Endpoints of the range that contains fraction alpha [0, 1] of the distribution.
scipy.stats.gilbrat

\[
s\text{gilbrat} = \langle \text{scipy.stats._continuous_distns.gilbrat_gen object} \rangle
\]

A Gilbrat continuous random variable.

As an instance of the \text{rv_continuous} class, \text{gilbrat} object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for \text{gilbrat} is:

\[
f(x) = \frac{1}{x\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\log(x))^2\right)
\]

\text{gilbrat} is a special case of \text{lognorm} with \(s=1\).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the \text{loc} and \text{scale} parameters. Specifically, \text{gilbrat.pdf}(x, \text{loc}, \text{scale}) is identically equivalent to \text{gilbrat.pdf}(y) / \text{scale} with \(y = (x - \text{loc}) / \text{scale}\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import gilbrat
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = gilbrat.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(gilbrat.ppf(0.01),
...                  gilbrat.ppf(0.99), 100)
>>> ax.plot(x, gilbrat.pdf(x),
...          'r-', lw=5, alpha=0.6, label='gilbrat pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = gilbrat()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = gilbrat.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], gilbrat.cdf(vals))
True
```

Generate random numbers:
```python
>>> r = gilbrat.rvs(size=1000)

And compare the histogram:
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.gompertz

`scipy.stats.gompertz = <scipy.stats._continuous_distns.gompertz_gen object>`

A Gompertz (or truncated Gumbel) continuous random variable.

As an instance of the `rv_continuous` class, `gompertz` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `gompertz` is:

\[
 f(x, c) = c \exp(x) \exp(-c(e^x - 1))
\]

for \(x \geq 0, c > 0 \).

`gompertz` takes \(c \) as a shape parameter for \(c \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `gompertz.pdf(x, c, loc, scale)` is identically equivalent to `gompertz.pdf(y, c) / scale` with \(y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Examples

```python
>>> from scipy.stats import gompertz
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> c = 0.947
>>> mean, var, skew, kurt = gompertz.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(gompertz.ppf(0.01, c),
...                 gompertz.ppf(0.99, c), 100)
>>> ax.plot(x, gompertz.pdf(x, c),
...          'r-', lw=5, alpha=0.6, label='gompertz pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = gompertz(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = gompertz.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], gompertz.cdf(vals, c))
```

Generate random numbers:

```python
>>> r = gompertz.rvs(c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(c, loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, c, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, c, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, c, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, c, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, c, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, c, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, c, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, c, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, c, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(c, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(c, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(c, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(c, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(c, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(c, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, c, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.gumbel_r

scipy.stats.gumbel_r = <scipy.stats._continuous_distns.gumbel_r_gen object>
A right-skewed Gumbel continuous random variable.

As an instance of the rv_continuous class, gumbel_r object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:
gumbel_l, gompertz, genextreme

Notes

The probability density function for gumbel_r is:

\[f(x) = \exp(-(x + e^{-x})) \]

The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett distribution. It is also related to the extreme value distribution, log-Weibull and Gompertz distributions.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, gumbel_r.pdf(x, loc, scale) is identically equivalent to gumbel_r.pdf(y) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import gumbel_r
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = gumbel_r.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(gumbel_r.ppf(0.01),
... gumbel_r.ppf(0.99), 100)
>>> ax.plot(x, gumbel_r.pdf(x),
... 'r-', lw=5, alpha=0.6, label='gumbel_r pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = gumbel_r()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:
>>> vals = gumbel_r.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], gumbel_r.cdf(vals))
True

Generate random numbers:

>>> r = gumbel_r.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>.rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>.pdf(x, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>.logpdf(x, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>.cdf(x, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>.logcdf(x, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>.sf(x, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - \text{cdf}$, but $sf$ is sometimes more accurate).</td>
</tr>
<tr>
<td><code>.logsf(x, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>.ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of $\text{cdf}$ — percentiles).</td>
</tr>
<tr>
<td><code>.isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of $sf$).</td>
</tr>
<tr>
<td><code>.moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order $n$.</td>
</tr>
<tr>
<td><code>.stats(loc=0, scale=1, moments='mv')</code></td>
<td>Mean($'m'$), variance($'v'$), skew($'s'$), and/or kurtosis($'k'$).</td>
</tr>
<tr>
<td><code>.entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>.fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>.expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>.median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>.mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>.var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>.std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>.interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>

### scipy.stats.gumbel_l

`scipy.stats.gumbel_l = <scipy.stats._continuous_distns.gumbel_l_gen object>`

A left-skewed Gumbel continuous random variable.

As an instance of the `rv_continuous` class, `gumbel_l` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

**See also:**
- `gumbel_r`, `gompertz`, `genextreme`

### Notes

The probability density function for `gumbel_l` is:

$$f(x) = \exp(x - e^x)$$

The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett distribution. It is also related to the extreme value distribution, log-Weibull and Gompertz distributions.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `gumbel_l.pdf(x, loc, scale)` is identically equivalent to
gumbel_l.pdf(y) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import gumbel_l
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = gumbel_l.stats(moments='mvsk')
``` Display the probability density function (pdf):

```python
>>> x = np.linspace(gumbel_l.ppf(0.01),
...                 gumbel_l.ppf(0.99), 100)
>>> ax.plot(x, gumbel_l.pdf(x),
...          'r-', lw=5, alpha=0.6, label='gumbel_l pdf')
```
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = gumbel_l()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```
Check accuracy of cdf and ppf:

```python
>>> vals = gumbel_l.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], gumbel_l.cdf(vals))
True
```
Generate random numbers:

```python
>>> r = gumbel_l.rvs(size=1000)
```
And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.halfcauchy

`scipy.stats.halfcauchy = <scipy.stats._continuous_distns.halfcauchy_gen object>`

A Half-Cauchy continuous random variable.

As an instance of the `rv_continuous` class, `halfcauchy` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `halfcauchy` is:

\[
f(x) = \frac{2}{\pi(1 + x^2)}
\]

for \(x \geq 0\).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `halfcauchy.pdf(x, loc, scale)` is identically equivalent to `halfcauchy.pdf(y) / scale` with \(y = (x - \text{loc}) / \text{scale}\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import halfcauchy
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = halfcauchy.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(halfcauchy.ppf(0.01),
...                  halfcauchy.ppf(0.99), 100)
>>> ax.plot(x, halfcauchy.pdf(x),
...         'r-', lw=5, alpha=0.6, label='halfcauchy pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = halfcauchy()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of `cdf` and `ppf`:

```python
>>> vals = halfcauchy.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], halfcauchy.cdf(vals))
True
```
Generate random numbers:

```python
>>> r = halfcauchy.rvs(size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.halflogistic

A half-logistic continuous random variable.

As an instance of the `rv_continuous` class, `halflogistic` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `halflogistic` is:

\[
f(x) = \frac{2e^{-x}}{(1 + e^{-x})^2} = \frac{1}{2} \text{sech}(x/2)^2
\]

for \(x \geq 0 \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `halflogistic.pdf(x, loc, scale)` is identically equivalent to `halflogistic.pdf(y) / scale` with \(y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Examples

```python
>>> from scipy.stats import halflogistic
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
def f(x):
 return x*x
```

```python
>>> mean, var, skew, kurt = halflogistic.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(halflogistic.ppf(0.01),
 halflogistic.ppf(0.99), 100)
>>> ax.plot(x, halflogistic.pdf(x),
 'r-', lw=5, alpha=0.6, label='halflogistic pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = halflogistic()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = halflogistic.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], halflogistic.cdf(vals))
True
```

Generate random numbers:

```python
>>> r = halflogistic.rvs(size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but $sf$ is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of $cdf$ — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of $sf$).</td>
</tr>
<tr>
<td><code>moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order $n$.</td>
</tr>
<tr>
<td><code>stats(loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.halfnorm

scipy.stats.halfnorm = <scipy.stats._continuous_distns.halfnorm_gen object>
A half-normal continuous random variable.

As an instance of the rv_continuous class, halfnorm object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for halfnorm is:

$$f(x) = \frac{2}{\sqrt{\pi}} \exp(-x^2/2)$$

for $$x \geq 0$$.

halfnorm is a special case of chi with df=1.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, halfnorm.pdf(x, loc, scale) is identically equivalent to halfnorm.pdf(y) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import halfnorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = halfnorm.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(halfnorm.ppf(0.01),
...                 halfnorm.ppf(0.99), 100)
>>> ax.plot(x, halfnorm.pdf(x),
...          'r-', lw=5, alpha=0.6, label='halfnorm pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = halfnorm()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = halfnorm.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], halfnorm.cdf(vals))
```

True
Generate random numbers:

```python
>>> r = halfnorm.rvs(size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.halfgennorm

As an instance of the `rv_continuous` class, `halfgennorm` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

- **gennorm**
 - generalized normal distribution
- **expon**
 - exponential distribution
- **halfnorm**
 - half normal distribution
Notes

The probability density function for halfgennorm is:

\[f(x, \beta) = \frac{\beta}{\Gamma(1/\beta)} \exp(-|x|^\beta) \]

for \(x > 0 \). \(\Gamma \) is the gamma function (scipy.special.gamma).

gennorm takes beta as a shape parameter for \(\beta \). For \(\beta = 1 \), it is identical to an exponential distribution. For \(\beta = 2 \), it is identical to a half normal distribution (with scale=1/sqrt(2)).

References

[1]

Examples

```python
>>> from scipy.stats import halfgennorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> beta = 0.675
>>> mean, var, skew, kurt = halfgennorm.stats(beta, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(halfgennorm.ppf(0.01, beta), ...
... halfgennorm.ppf(0.99, beta), 100)
>>> ax.plot(x, halfgennorm.pdf(x, beta), ...
... 'r-', lw=5, alpha=0.6, label='halfgennorm pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = halfgennorm(beta)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = halfgennorm.ppf([0.001, 0.5, 0.999], beta)
>>> np.allclose([0.001, 0.5, 0.999], halfgennorm.cdf(vals, beta))
True
```

Generate random numbers:

```python
>>> r = halfgennorm.rvs(beta, size=1000)
```

And compare the histogram:
```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

```

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(beta, loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, beta, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, beta, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, beta, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, beta, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, beta, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, beta, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, beta, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, beta, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, beta, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(beta, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(beta, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(beta,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(beta, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(beta, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(beta, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(beta, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, beta, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
```
scipy.stats.hypsecant

scipy.stats.hypsecant = <scipy.stats._continuous_distns.hypsecant_gen object>
A hyperbolic secant continuous random variable.

As an instance of the rv_continuous class, hypsecant object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for hypsecant is:

\[ f(x) = \frac{1}{\pi \text{sech}(x)} \]

for a real number \( x \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, hypsecant.pdf(x, loc, scale) is identically equivalent to hypsecant.pdf(y) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import hypsecant
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = hypsecant.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(hypsecant.ppf(0.01),
... hypsecant.ppf(0.99), 100)
>>> ax.plot(x, hypsecant.pdf(x),
... 'r-', lw=5, alpha=0.6, label='hypsecant pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = hypsecant()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = hypsecant.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], hypsecant.cdf(vals))
```

Generate random numbers:
```python
>>> r = hypsecant.rvs(size=1000)

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(loc=0, scale=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
</tbody>
</table>

scipy.stats.invgamma

scipy.stats.invgamma = <scipy.stats._continuous_distns.invgamma_gen object>

An inverted gamma continuous random variable.

As an instance of the rv_continuous class, invgamma object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for invgamma is:

$$f(x, a) = \frac{x^{-a-1}}{\Gamma(a)} \exp\left(-\frac{1}{x}\right)$$

for \(x \geq 0, a > 0\). \(\Gamma\) is the gamma function (scipy.special.gamma).

invgamma takes \(a\) as a shape parameter for \(a\).

invgamma is a special case of gengamma with \(c=-1\), and it is a different parameterization of the scaled inverse chi-squared distribution. Specifically, if the scaled inverse chi-squared distribution is parameterized with degrees of freedom \(\nu\) and scaling parameter \(\tau^2\), then it can be modeled using invgamma with \(a = \nu/2\) and \(scale = \nu \tau^2/2\).
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, \( \text{invgamma.pdf}(x, a, \text{loc}, \text{scale}) \) is identically equivalent to \( \text{invgamma.pdf}(y, a) / \text{scale} \) with \( y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

**Examples**

```python
>>> from scipy.stats import invgamma
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> a = 4.07
>>> mean, var, skew, kurt = invgamma.stats(a, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(invgamma.ppf(0.01, a), ...
... invgamma.ppf(0.99, a), 100)
>>> ax.plot(x, invgamma.pdf(x, a), ...
... 'r-', lw=5, alpha=0.6, label='invgamma pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = invgamma(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = invgamma.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], invgamma.cdf(vals, a))
```

Generate random numbers:

```python
>>> r = invgamma.rvs(a, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(a, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, a, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, a, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, a, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, a, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, a, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but <code>sf</code> is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, a, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, a, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of <code>cdf</code> — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, a, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of <code>sf</code>).</td>
</tr>
<tr>
<td><code>moment(n, a, loc=0, scale=1)</code></td>
<td>Non-central moment of order <code>n</code></td>
</tr>
<tr>
<td><code>stats(a, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(a, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(a,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(a, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(a, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(a, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(a, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, a, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.invgauss

scipy.stats.invgauss = <scipy.stats._continuous_distns.invgauss_gen object>
An inverse Gaussian continuous random variable.

As an instance of the rv_continuous class, invgauss object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for invgauss is:

\[
f(x, \mu) = \frac{1}{\sqrt{2\pi x^3}} \exp\left(-\frac{(x - \mu)^2}{2x\mu^2}\right)
\]

for \(x \geq 0\) and \(\mu > 0\).

invgauss takes mu as a shape parameter for \(\mu\).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, invgauss.pdf(x, mu, loc, scale) is identically equivalent to invgauss.pdf(y, mu) / scale with \(y = (x - loc) / scale\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import invgauss
>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mu = 0.145
>>> mean, var, skew, kurt = invgauss.stats(mu, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(invgauss.ppf(0.01, mu),
...                  invgauss.ppf(0.99, mu), 100)

>>> ax.plot(x, invgauss.pdf(x, mu), 'r-', lw=5, alpha=0.6, label='invgauss pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = invgauss(mu)

>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
```

```
>>> vals = invgauss.ppf([0.001, 0.5, 0.999], mu)
>>> np.allclose([0.001, 0.5, 0.999], invgauss.cdf(vals, mu))
True

Generate random numbers:

>>> r = invgauss.rvs(mu, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(mu, loc=0, scale=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, mu, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, mu, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, mu, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, mu, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, mu, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but $sf$ is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, mu, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, mu, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of $cdf$ — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, mu, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of $sf$).</td>
</tr>
<tr>
<td><code>moment(n, mu, loc=0, scale=1)</code></td>
<td>Non-central moment of order $n$</td>
</tr>
<tr>
<td><code>stats(mu, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(mu, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(mu,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(mu, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(mu, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(mu, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(mu, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, mu, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>

`scipy.stats.invweibull`

An inverted Weibull continuous random variable.

This distribution is also known as the Fréchet distribution or the type II extreme value distribution.

As an instance of the `rv_continuous` class, `invweibull` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `invweibull` is:

$$f(x, c) = cx^{-c-1} \exp(-x^{-c})$$

for $x > 0$, $c > 0$.

`invweibull` takes $c$ as a shape parameter for $c$.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `invweibull.pdf(x, c, loc, scale)` is identically equivalent to `invweibull.pdf(y, c) / scale` with $y = (x - loc) / scale$. Note that shifting the location
of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

**References**


**Examples**

```python
>>> from scipy.stats import invweibull
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
c = 10.6
>>> mean, var, skew, kurt = invweibull.stats(c, moments='mvsk')
```  
Display the probability density function (pdf):

```python
>>> x = np.linspace(invweibull.ppf(0.01, c), ...
        invweibull.ppf(0.99, c), 100)
>>> ax.plot(x, invweibull.pdf(x, c), ...
        'r-', lw=5, alpha=0.6, label='invweibull pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = invweibull(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```  
Check accuracy of cdf and ppf:

```python
>>> vals = invweibull.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], invweibull.cdf(vals, c))
True
```  
Generate random numbers:

```python
>>> r = invweibull.rvs(c, size=1000)
```  
And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as (1 - \text{cdf}), but (\text{sf}) is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of (\text{cdf}) — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of (\text{sf})).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order (n).</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments='mv')</code></td>
<td>Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha ([0, 1]) of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.johnsonsb

scipy.stats.johnsonsb = <scipy.stats._continuous_distns.johnsonsb_gen object>
A Johnson SB continuous random variable.

As an instance of the rv_continuous class, johnsonsb object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

johnsonsu

Notes

The probability density function for johnsonsb is:

\[
f(x,a,b) = \frac{b}{x(1-x)} \phi(a + b \log \frac{x}{1-x})
\]

where \(x, a,\) and \(b\) are real scalars; \(b > 0\) and \(x \in [0, 1]\). \(\phi\) is the pdf of the normal distribution.

johnsonsb takes \(a\) and \(b\) as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, johnsonsb.pdf\((x, a, b, \text{loc, scale})\) is identically equivalent to johnsonsb.pdf\((y, a, b) / \text{scale}\) with \(y = (x - \text{loc}) / \text{scale}\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import johnsonsb
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> a, b = 4.32, 3.18
>>> mean, var, skew, kurt = johnsonsb.stats(a, b, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(johnsonsb.ppf(0.01, a, b),
...                  johnsonsb.ppf(0.99, a, b), 100)
>>> ax.plot(x, johnsonsb.pdf(x, a, b),
...          'r-', lw=5, alpha=0.6, label='johnsonsb pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = johnsonsb(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:
```python
>>> vals = johnsonsb.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], johnsonsb.cdf(vals, a, b))
True

Generate random numbers:

```python
>>> r = johnsonsb.rvs(a, b, size=1000)

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(a, b, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, a, b, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, a, b, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, a, b, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, a, b, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, a, b, loc=0, scale=1)</code></td>
<td>Survival function (also defined as (1 - cdf), but (sf) is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, a, b, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, a, b, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of (cdf) — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, a, b, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of (sf)).</td>
</tr>
<tr>
<td><code>moment(n, a, b, loc=0, scale=1)</code></td>
<td>Non-central moment of order (n).</td>
</tr>
<tr>
<td><code>stats(a, b, loc=0, scale=1, moments='mv')</code></td>
<td>Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).</td>
</tr>
<tr>
<td><code>entropy(a, b, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See (\text{scipy.stats.rv_continuous.fit}) for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(a, b, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(a, b, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(a, b, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(a, b, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, a, b, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction (\alpha) of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.johnsonsu

scipy.stats.johnsonsu = <scipy.stats._continuous_distns.johnsonsu_gen object>

A Johnson SU continuous random variable.

As an instance of the \(\text{rv_continuous} \) class, \(\text{johnsonsu} \) object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

johnsonsb

Notes

The probability density function for \(\text{johnsonsu} \) is:

\[
f(x, a, b) = \frac{b}{\sqrt{x^2 + 1}} \phi(a + b \log(x + \sqrt{x^2 + 1}))
\]

where \(x, a, \) and \(b \) are real scalars; \(b > 0 \). \(\phi \) is the pdf of the normal distribution.

\(\text{johnsonsu} \) takes \(a \) and \(b \) as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, johnsonsu.pdf(x, a, b, loc, scale) is identically equivalent to johnsonsu.pdf(y, a, b) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import johnsonsu
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> a, b = 2.55, 2.25
>>> mean, var, skew, kurt = johnsonsu.stats(a, b, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(johnsonsu.ppf(0.01, a, b),
...                 johnsonsu.ppf(0.99, a, b), 100)
>>> ax.plot(x, johnsonsu.pdf(x, a, b),
...          'r-', lw=5, alpha=0.6, label='johnsonsu pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = johnsonsu(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = johnsonsu.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], johnsonsu.cdf(vals, a, b))
```

Generate random numbers:

```python
>>> r = johnsonsu.rvs(a, b, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(a, b, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, a, b, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, a, b, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, a, b, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, a, b, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, a, b, loc=0, scale=1)</code></td>
<td>Survival function (also defined as (1 - \text{cdf}), but (\text{sf}) is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, a, b, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, a, b, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of (\text{cdf}) — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, a, b, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of (\text{sf})).</td>
</tr>
<tr>
<td><code>moment(n, a, b, loc=0, scale=1)</code></td>
<td>Non-central moment of order (n).</td>
</tr>
<tr>
<td><code>stats(a, b, loc=0, scale=1, moments=’mv’)</code></td>
<td>Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).</td>
</tr>
<tr>
<td><code>entropy(a, b, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(a, b, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(a, b, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(a, b, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(a, b, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, a, b, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.kappa4

`scipy.stats.kappa4 = <scipy.stats._continuous_distns.kappa4_gen object>`

Kappa 4 parameter distribution.

As an instance of the `rv_continuous` class, `kappa4` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for kappa4 is:

\[
 f(x, h, k) = (1 - kx)^{1/k-1}(1 - h(1 - kx)^{1/k})^{1/h-1}
\]

if \(h \) and \(k \) are not equal to 0.

If \(h \) or \(k \) are zero then the pdf can be simplified:

- \(h = 0 \) and \(k \neq 0 \):
 \[
 \text{pdf}(x, h, k) = (1.0 - k*x)^{(1.0/k - 1.0)} \cdot \exp\left(-(1.0 - k*x)^{(1.0/k)}\right)
 \]

- \(h \neq 0 \) and \(k = 0 \):
 \[
 \text{pdf}(x, h, k) = \exp(-x) \cdot (1.0 - h \cdot \exp(-x))^{(1.0/h - 1.0)}
 \]

- \(h = 0 \) and \(k = 0 \):
 \[
 \text{pdf}(x, h, k) = \exp(-x) \cdot \exp(-\exp(-x))
 \]

kappa4 takes \(h \) and \(k \) as shape parameters.

The kappa4 distribution returns other distributions when certain \(h \) and \(k \) values are used.

<table>
<thead>
<tr>
<th>(h)</th>
<th>(k=0.0)</th>
<th>(k=1.0)</th>
<th>(-\infty \leq k \leq \infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>Logistic\nlogistic(x)</td>
<td></td>
<td>Generalized Logistic(1)</td>
</tr>
<tr>
<td>0.0</td>
<td>Gumbel\ngumbel_r(x)</td>
<td>Reverse Exponential(2)</td>
<td>Generalized Extreme Value\ngenextreme(x, k)</td>
</tr>
<tr>
<td>1.0</td>
<td>Exponential\nexpon(x)</td>
<td>Uniform\nuniform(x)</td>
<td>Generalized Pareto\ngenpareto(x, -k)</td>
</tr>
</tbody>
</table>

(1) There are at least five generalized logistic distributions. Four are described here: https://en.wikipedia.org/wiki/Generalized_logistic_distribution The “fifth” one is the one kappa4 should match which currently isn’t implemented in scipy: https://en.wikipedia.org/wiki/Talk:Generalized_logistic_distribution https://www.mathwave.com/help/easyfit/html/analyses/distributions/gen_logistic.html

(2) This distribution is currently not in scipy.
References

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, kappa4.pdf(x, h, k, loc, scale) is identically equivalent to kappa4.pdf(y, h, k) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import kappa4
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> h, k = 0.1, 0
>>> mean, var, skew, kurt = kappa4.stats(h, k, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(kappa4.ppf(0.01, h, k),
...                 kappa4.ppf(0.99, h, k), 100)
>>> ax.plot(x, kappa4.pdf(x, h, k),
...          'r-', lw=5, alpha=0.6, label='kappa4 pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” distribution object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = kappa4(h, k)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = kappa4.ppf([0.001, 0.5, 0.999], h, k)
>>> np.allclose([0.001, 0.5, 0.999], kappa4.cdf(vals, h, k))
True
```

Generate random numbers:

```python
>>> r = kappa4.rvs(h, k, size=1000)
```
And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(h, k, loc=0, scale=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, h, k, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, h, k, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, h, k, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, h, k, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, h, k, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, h, k, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, h, k, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, h, k, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, h, k, loc=0, scale=1)</code></td>
<td>Non-central moment of order n.</td>
</tr>
<tr>
<td><code>stats(h, k, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(h, k, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(h, k), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(h, k, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(h, k, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(h, k, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(h, k, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, h, k, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>

scipy.stats.kappa3

scipy.stats.kappa3 = <scipy.stats._continuous_distns.kappa3_gen object>

Kappa 3 parameter distribution.

As an instance of the `rv_continuous` class, `kappa3` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `kappa3` is:

$$f(x, a) = a(a + x^a)^{-(a+1)/a}$$

for $x > 0$ and $a > 0$.

`kappa3` takes a as a shape parameter for a.

2565
References

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, kappa3.pdf(x, a, loc, scale) is identically equivalent to kappa3.pdf(y, a) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import kappa3
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> a = 1
>>> mean, var, skew, kurt = kappa3.stats(a, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(kappa3.ppf(0.01, a),
... kappa3.ppf(0.99, a), 100)
>>> ax.plot(x, kappa3.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='kappa3 pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = kappa3(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = kappa3.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], kappa3.cdf(vals, a))
True
```

Generate random numbers:

```python
>>> r = kappa3.rvs(a, size=1000)
```

And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(a, loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, a, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, a, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, a, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, a, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, a, loc=0, scale=1)</td>
<td>Survival function (also defined as $1 - \text{cdf}$, but $sf$ is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, a, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, a, loc=0, scale=1)</td>
<td>Percent point function (inverse of $\text{cdf}$ — percentiles).</td>
</tr>
<tr>
<td>isf(q, a, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of $sf$).</td>
</tr>
<tr>
<td>moment(n, a, loc=0, scale=1)</td>
<td>Non-central moment of order $n$.</td>
</tr>
<tr>
<td>stats(a, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(a, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(a,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(a, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(a, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(a, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(a, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, a, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.ksone

scipy.stats.ksone = <scipy.stats._continuous_distns.ksone_gen object>

Kolmogorov-Smirnov one-sided test statistic distribution.

This is the distribution of the one-sided Kolmogorov-Smirnov (KS) statistics $D^+_n$ and $D^-_n$ for a finite sample size $n$ (the shape parameter).

As an instance of the rv_continuous class, ksome object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

kstwobign, kstwo, ktest

Notes

$D^+_n$ and $D^-_n$ are given by

$$
D^+_n = \sup_x (F_n(x) - F(x)),
$$
$$
D^-_n = \sup_x (F(x) - F_n(x)),
$$

where $F$ is a continuous CDF and $F_n$ is an empirical CDF. ksome describes the distribution under the null hypothesis of the KS test that the empirical CDF corresponds to $n$ i.i.d. random variates with CDF $F$.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, ksome.pdf(x, n, loc, scale) is identically equivalent to ksome.pdf(y, n) / scale with $y = (x - \text{loc}) / \text{scale}$. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

[1]

Examples

```python
>>> from scipy.stats import ksome
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> n = 1e+03
>>> mean, var, skew, kurt = ksome.stats(n, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(ksome.ppf(0.01, n),
... ksome.ppf(0.99, n), 100)
>>> ax.plot(x, ksome.pdf(x, n),
... 'r-', lw=5, alpha=0.6, label='ksome pdf')
```
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = ksome(n)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = ksome.ppf([0.001, 0.5, 0.999], n)
>>> np.allclose([0.001, 0.5, 0.999], ksome.cdf(vals, n))
True
```

Generate random numbers:

```python
>>> r = ksome.rvs(n, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(n, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, n, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, n, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, n, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, n, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, n, loc=0, scale=1)</code></td>
<td>Survival function (also defined as (1 - \text{cdf}), but (sf) is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, n, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, n, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of (\text{cdf}) — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, n, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of (sf)).</td>
</tr>
<tr>
<td><code>moment(n, n, loc=0, scale=1)</code></td>
<td>Non-central moment of order (n)</td>
</tr>
<tr>
<td><code>stats(n, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(n, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(n,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(n, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(n, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(n, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(n, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, n, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha ([0, 1]) of the distribution.</td>
</tr>
</tbody>
</table>

`scipy.stats.kstwo`

`scipy.stats.kstwo = <scipy.stats._continuous_distns.kstwo_gen object>`

Kolmogorov-Smirnov two-sided test statistic distribution.

This is the distribution of the two-sided Kolmogorov-Smirnov (KS) statistic \(D_n\) for a finite sample size \(n\) (the shape parameter).

As an instance of the `rv_continuous` class, \(kstwo\) object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

`kstwobign, ksone, ktest`
Notes

$D_n$ is given by

$$D_n = \sup_x |F_n(x) - F(x)|$$

where $F$ is a (continuous) CDF and $F_n$ is an empirical CDF. $kstwo$ describes the distribution under the null hypothesis of the KS test that the empirical CDF corresponds to $n$ i.i.d. random variates with CDF $F$.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, $kstwo.pdf(x, n, \text{loc}, \text{scale})$ is identically equivalent to $kstwo.pdf(y, n) / \text{scale}$ with $y = (x - \text{loc}) / \text{scale}$. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

[1]

Examples

```python
>>> from scipy.stats import kstwo
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```n = 10```n
>>> mean, var, skew, kurt = kstwo.stats(n, moments='mvsk')

Display the probability density function (pdf):

```x = np.linspace(kstwo.ppf(0.01, n),
... kstwo.ppf(0.99, n), 100)
>>> ax.plot(x, kstwo.pdf(x, n),
... 'r-', lw=5, alpha=0.6, label='kstwo pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```rv = kstwo(n)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```vals = kstwo.ppf([0.001, 0.5, 0.999], n)
>>> np.allclose([0.001, 0.5, 0.999], kstwo.cdf(vals, n))
True```

Generate random numbers:
```python
>>> r = kstwo.rvs(n, size=1000)

And compare the histogram:

```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(n, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, n, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, n, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, n, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, n, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, n, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, n, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, n, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of <code>cdf</code> — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, n, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of <code>sf</code>).</td>
</tr>
<tr>
<td><code>moment(n, n, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(n, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(n, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(n,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(n, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(n, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(n, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(n, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, n, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.kstwobign

`scipy.stats.kstwobign = <scipy.stats._continuous_distns.kstwobign_gen object>`

Limiting distribution of scaled Kolmogorov-Smirnov two-sided test statistic.

This is the asymptotic distribution of the two-sided Kolmogorov-Smirnov statistic $\sqrt{n}D_n$ that measures the maximum absolute distance of the theoretical (continuous) CDF from the empirical CDF. (see `kstest`).

As an instance of the `rv_continuous` class, `kstwobign` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

`ksone, kstwo, kstest`
Notes

\[\sqrt{n}D_n \text{ is given by} \]

\[D_n = \sup_x |F_n(x) - F(x)| \]

where \(F \) is a continuous CDF and \(F_n \) is an empirical CDF. \texttt{kstwobign} describes the asymptotic distribution (i.e. the limit of \(\sqrt{n}D_n \)) under the null hypothesis of the KS test that the empirical CDF corresponds to i.i.d. random variates with CDF \(F \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the \texttt{loc} and \texttt{scale} parameters. Specifically, \texttt{kstwobign.pdf(x, loc, scale)} is identically equivalent to \texttt{kstwobign.pdf(y) / scale} with \(y = (x - \texttt{loc}) / \texttt{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

[1]

Examples

```python
>>> from scipy.stats import kstwobign
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = kstwobign.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(kstwobign.ppf(0.01),
... kstwobign.ppf(0.99), 100)
>>> ax.plot(x, kstwobign.pdf(x),
... 'r-', lw=5, alpha=0.6, label='kstwobign pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” distribution object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = kstwobign()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of \texttt{cdf} and \texttt{ppf}:

```python
>>> vals = kstwobign.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], kstwobign.cdf(vals))
True
```

Generate random numbers:
>>> r = kstwobign.rvs(size=1000)

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - \text{cdf}$, but $sf$ is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of $\text{cdf}$ — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of $sf$).</td>
</tr>
<tr>
<td><code>moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order $n$</td>
</tr>
<tr>
<td><code>stats(loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution</td>
</tr>
</tbody>
</table>

### scipy.stats.laplace

```python
scipy.stats.laplace = <scipy.stats._continuous_distns.laplace_gen object>
```

A Laplace continuous random variable.

As an instance of the `rv_continuous` class, `laplace` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

### Notes

The probability density function for `laplace` is

$$f(x) = \frac{1}{2} \exp(-|x|)$$

for a real number $x$.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `laplace.pdf(x, loc, scale)` is identically equivalent to `laplace.pdf(y) / scale` with $y = (x - \text{loc}) / \text{scale}$. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Examples

```python
>>> from scipy.stats import laplace
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = laplace.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(laplace.ppf(0.01),
...                 laplace.ppf(0.99), 100)
>>> ax.plot(x, laplace.pdf(x),
...          'r-', lw=5, alpha=0.6, label='laplace pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = laplace()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = laplace.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], laplace.cdf(vals))
```

Generate random numbers:

```python
>>> r = laplace.rvs(size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, loc=0, scale=1)</code></td>
<td>Survival function (also defined as (1 - \text{cdf}), but (sf) is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of (\text{cdf}) — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of (sf)).</td>
</tr>
<tr>
<td><code>moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order (n).</td>
</tr>
<tr>
<td><code>stats(loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha ([0, 1]) of the distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.laplace_asymmetric

scipy.stats.laplace_asymmetric =
<scipy.stats._continuous_distns.laplace_asymmetric_gen object>

An asymmetric Laplace continuous random variable.

As an instance of the rv_continuous class, laplace_asymmetric object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

laplace
Laplace distribution

Notes

The probability density function for laplace_asymmetric is

\[
\begin{align*}
f(x, \kappa) &= \frac{1}{\kappa + \kappa^{-1}} \exp(-x\kappa), \quad x \geq 0 \\
&= \frac{1}{\kappa + \kappa^{-1}} \exp(x/\kappa), \quad x < 0
\end{align*}
\]

for \(-\infty < x < \infty, \kappa > 0\).

laplace_asymmetric takes kappa as a shape parameter for \(\kappa\). For \(\kappa = 1\), it is identical to a Laplace distribution.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, laplace_asymmetric.pdf(x, kappa, loc, scale) is identically equivalent to laplace_asymmetric.pdf(y, kappa) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

[1], [2]

Examples

```python
>>> from scipy.stats import laplace_asymmetric
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> kappa = 2
>>> mean, var, skew, kurt = laplace_asymmetric.stats(kappa, moments='mvsk')
```

Display the probability density function (pdf):

```python
```
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = laplace_asymmetric(kappa)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = laplace_asymmetric.ppf([0.001, 0.5, 0.999], kappa)
>>> np.allclose([0.001, 0.5, 0.999], laplace_asymmetric.cdf(vals, kappa))
True
```

Generate random numbers:

```python
>>> r = laplace_asymmetric.rvs(kappa, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(kappa, loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, kappa, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, kappa, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, kappa, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, kappa, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, kappa, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, kappa, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, kappa, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, kappa, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, kappa, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(kappa, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(kappa, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(kappa,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(kappa, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(kappa, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(kappa, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(kappa, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, kappa, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.levy

scipy.stats.levy = <scipy.stats._continuous_distns.levy_gen object>

A Levy continuous random variable.

As an instance of the rv_continuous class, levy object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

levy_stable, levy_l

Notes

The probability density function for levy is:

\[f(x) = \frac{1}{\sqrt{2\pi x^3}} \exp\left(-\frac{1}{2x}\right) \]

for \(x \geq 0 \).

This is the same as the Levy-stable distribution with \(a = 1/2 \) and \(b = 1 \).
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `levy.pdf(x, loc, scale)` is identically equivalent to `levy.pdf(y) / scale` with `y = (x - loc) / scale`. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import levy
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = levy.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(levy.ppf(0.01),
...                 levy.ppf(0.99), 100)
>>> ax.plot(x, levy.pdf(x),
...          'r-', lw=5, alpha=0.6, label='levy pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = levy()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = levy.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], levy.cdf(vals))
```

Generate random numbers:

```python
>>> r = levy.rvs(size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - \text{cdf}$, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.levy_l

A left-skewed Levy continuous random variable.

As an instance of the rv_continuous class, levy_l object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

levy, levy_stable

Notes

The probability density function for levy_l is:

\[f(x) = \frac{1}{|x|^{2-\alpha} \sqrt{2\pi}} \exp\left(-\frac{1}{2|x|}\right) \]

for \(x \leq 0 \).

This is the same as the Levy-stable distribution with \(\alpha = 1/2 \) and \(b = -1 \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, \(\text{levy}_l.pdf(x, \text{loc}, \text{scale}) \) is identically equivalent to \(\text{levy}_l.pdf(y) / \text{scale} \) with \(y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import levy_l
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = levy_l.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(levy_l.ppf(0.01),
... levy_l.ppf(0.99), 100)
>>> ax.plot(x, levy_l.pdf(x),
... 'r-', lw=5, alpha=0.6, label='levy_l pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = levy_l()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:
>>> vals = levy_l.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], levy_l.cdf(vals))
True

Generate random numbers:

>>> r = levy_l.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>

### scipy.stats.levy_stable

**scipy.stats.levy_stable = <scipy.stats._continuous_distns.levy_stable_gen object>**

A Levy-stable continuous random variable.

As an instance of the `rv_continuous` class, `levy_stable` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

- `levy`  
- `levy_l`
Notes

The distribution for `levy_stable` has characteristic function:

\[ \varphi(t, \alpha, \beta, c, \mu) = e^{it\mu - |ct|^{\alpha} (1-i\beta \text{sign}(t)) \Phi(\alpha, t)} \]

where:

\[ \Phi = \begin{cases} \tan \left( \frac{\pi \alpha}{2} \right) & \alpha \neq 1 \\ -\frac{2}{\pi} \log |t| & \alpha = 1 \end{cases} \]

The probability density function for `levy_stable` is:

\[ f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(t) e^{-ixt} \, dt \]

where \(-\infty < t < \infty\). This integral does not have a known closed form.

For evaluation of pdf we use either Zolotarev \(S_0\) parameterization with integration, direct integration of standard parameterization of characteristic function or FFT of characteristic function. If set to other than None and if number of points is greater than `levy_stable.pdf_fft_min_points_threshold` (defaults to None) we use FFT otherwise we use one of the other methods.

The default method is ‘best’ which uses Zolotarev’s method if alpha = 1 and integration of characteristic function otherwise. The default method can be changed by setting `levy_stable.pdf_default_method` to either ‘zolotarev’, ‘quadrature’ or ‘best’.

To increase accuracy of FFT calculation one can specify `levy_stable.pdf_fft_grid_spacing` (defaults to 0.001) and `pdf_fft_n_points_two_power` (defaults to a value that covers the input range * 4). Setting `pdf_fft_n_points_two_power` to 16 should be sufficiently accurate in most cases at the expense of CPU time.

For evaluation of cdf we use Zolotarev \(S_0\) parameterization with integration or integral of the pdf FFT interpolated spline. The settings affecting FFT calculation are the same as for pdf calculation. Setting the threshold to `None` (default) will disable FFT. For cdf calculations the Zolotarev method is superior in accuracy, so FFT is disabled by default.

Fitting estimate uses quantile estimation method in [MC]. MLE estimation of parameters in fit method uses this quantile estimate initially. Note that MLE doesn’t always converge if using FFT for pdf calculations; so it’s best that `pdf_fft_min_points_threshold` is left unset.

**Warning:** For pdf calculations implementation of Zolotarev is unstable for values where alpha = 1 and beta \(!= 0\). In this case the quadrature method is recommended. FFT calculation is also considered experimental.

For cdf calculations FFT calculation is considered experimental. Use Zolotarev’s method instead (default).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `levy_stable.pdf(x, alpha, beta, loc, scale)` is identically equivalent to `levy_stable.pdf(y, alpha, beta) / scale` with \( y = (x - loc) / scale \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

3.3. API definition 2587
References

[MC], [MS], [BS]

Examples

```python
>>> from scipy.stats import levy_stable
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> alpha, beta = 1.8, -0.5
>>> mean, var, skew, kurt = levy_stable.stats(alpha, beta, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(levy_stable.ppf(0.01, alpha, beta), ...
... levy_stable.ppf(0.99, alpha, beta), 100)
>>> ax.plot(x, levy_stable.pdf(x, alpha, beta), ...
... 'r-', lw=5, alpha=0.6, label='levy_stable pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = levy_stable(alpha, beta)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = levy_stable.ppf([0.001, 0.5, 0.999], alpha, beta)
>>> np.allclose([0.001, 0.5, 0.999], levy_stable.cdf(vals, alpha, beta))
True
```

Generate random numbers:

```python
>>> r = levy_stable.rvs(alpha, beta, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(alpha, beta, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, alpha, beta, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, alpha, beta, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, alpha, beta, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, alpha, beta, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, alpha, beta, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, alpha, beta, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, alpha, beta, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, alpha, beta, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, alpha, beta, loc=0, scale=1)</code></td>
<td>Non-central moment of order n.</td>
</tr>
<tr>
<td><code>stats(alpha, beta, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(alpha, beta, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(alpha, beta), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(alpha, beta, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(alpha, beta, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(alpha, beta, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(alpha, beta, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, alpha, beta, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.logistic

scipy.stats.logistic = <scipy.stats._continuous_distns.logistic_gen object>

A logistic (or Sech-squared) continuous random variable.

As an instance of the rv_continuous class, logistic object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for logistic is:

\[ f(x) = \frac{\exp(-x)}{(1 + \exp(-x))^2} \]

logistic is a special case of genlogistic with c=1.

Remark that the survival function (logistic.sf) is equal to the Fermi-Dirac distribution describing fermionic statistics.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, logistic.pdf(x, loc, scale) is identically equivalent to logistic.pdf(y) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import logistic
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = logistic.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(logistic.ppf(0.01),
...                  logistic.ppf(0.99), 100)
>>> ax.plot(x, logistic.pdf(x),
...         'r-', lw=5, alpha=0.6, label='logistic pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = logistic()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:
>>> vals = logistic.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], logistic.cdf(vals))
True

Generate random numbers:

>>> r = logistic.rvs(size=1000)

And compare the histogram:

```python
generate_plot(r, density=True, histtype='stepfilled', alpha=0.2)
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.loggamma

scipy.stats.loggamma = <scipy.stats._continuous_distns.loggamma_gen object>

A log gamma continuous random variable.

As an instance of the rv_continuous class, loggamma object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for loggamma is:

\[f(x, c) = \frac{\exp(cx - \exp(x))}{\Gamma(c)} \]

for all \(x, c > 0 \). Here, \(\Gamma \) is the gamma function (scipy.special.gamma).

loggamma takes \(c \) as a shape parameter for \(c \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, loggamma.pdf(x, c, loc, scale) is identically equivalent to loggamma.pdf(y, c) / scale with \(y = (x - loc) / scale \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Examples

```python
>>> from scipy.stats import loggamma
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> c = 0.414
>>> mean, var, skew, kurt = loggamma.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(loggamma.ppf(0.01, c),
... loggamma.ppf(0.99, c), 100)
>>> ax.plot(x, loggamma.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='loggamma pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = loggamma(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = loggamma.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], loggamma.cdf(vals, c))
True
```

Generate random numbers:

```python
>>> r = loggamma.rvs(c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
```

```python
>>> plt.show()
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but $sf$ is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of $sf$).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order $n$</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.loglaplace

scipy.stats.loglaplace = <scipy.stats._continuous_distns.loglaplace_gen object>

A log-Laplace continuous random variable.

As an instance of the rv_continuous class, loglaplace object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for loglaplace is:

\[
f(x, c) = \begin{cases} 
\frac{c}{2} x^{-1} & \text{for } 0 < x < 1 \\
\frac{c}{2} x^{-c-1} & \text{for } x \geq 1 
\end{cases}
\]

for \(c > 0\).

loglaplace takes \(c\) as a shape parameter for \(c\).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, loglaplace.pdf(x, c, loc, scale) is identically equivalent to loglaplace.pdf(y, c) / scale with \(y = (x - \text{loc}) / \text{scale}\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References


Examples

```python
>>> from scipy.stats import loglaplace
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> c = 3.25
>>> mean, var, skew, kurt = loglaplace.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(loglaplace.ppf(0.01, c),
...                 loglaplace.ppf(0.99, c), 100)
>>> ax.plot(x, loglaplace.pdf(x, c),
...         lw=5, alpha=0.6, label='loglaplace pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:
```python
>>> rv = loglaplace(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:
```nn```python
>>> vals = loglaplace.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], loglaplace.cdf(vals, c))
True

Generate random numbers:
```nn```python
>>> r = loglaplace.rvs(c, size=1000)

And compare the histogram:
```nn```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>

scipy.stats.lognorm

`scipy.stats.lognorm = <scipy.stats._continuous_distns.lognorm_gen object>`

A lognormal continuous random variable.

As an instance of the `rv_continuous` class, `lognorm` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `lognorm` is:

\[ f(x, s) = \frac{1}{sx \sqrt{2\pi}} \exp \left( -\frac{\log^2(x)}{2s^2} \right) \]

for \( x > 0, s > 0 \).

`lognorm` takes \( s \) as a shape parameter for \( s \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `lognorm.pdf(x, s, loc, scale)` is identically equivalent to `lognorm.pdf(y, s) / scale` with \( y = (x - loc) / scale \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
A common parametrization for a lognormal random variable $Y$ is in terms of the mean, $\mu$, and standard deviation, $\sigma$, of the unique normally distributed random variable $X$ such that $\exp(X) = Y$. This parametrization corresponds to setting $s = \sigma$ and $\text{scale} = \exp(\mu)$.

Examples

```python
>>> from scipy.stats import lognorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> s = 0.954
>>> mean, var, skew, kurt = lognorm.stats(s, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(lognorm.ppf(0.01, s), ...
... lognorm.ppf(0.99, s), 100)
>>> ax.plot(x, lognorm.pdf(x, s), ...
... 'r-', lw=5, alpha=0.6, label='lognorm pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = lognorm(s)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = lognorm.ppf([0.001, 0.5, 0.999], s)
>>> np.allclose([0.001, 0.5, 0.999], lognorm.cdf(vals, s))
True
```

Generate random numbers:

```python
>>> r = lognorm.rvs(s, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(s, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, s, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, s, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, s, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, s, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, s, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, s, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, s, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, s, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, s, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(s, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(s, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(s,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(s, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(s, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(s, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(s, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, s, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>
**scipy.stats.loguniform**

**scipy.stats.loguniform = <scipy.stats._continuous_distns.reciprocal_gen object>**  
A loguniform or reciprocal continuous random variable.

As an instance of the `rv_continuous` class, `loguniform` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

**Notes**

The probability density function for this class is:

\[ f(x,a,b) = \frac{1}{x \log(b/a)} \]

for \( a \leq x \leq b > a > 0 \). This class takes \( a \) and \( b \) as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, \( \text{loguniform.pdf}(x, a, b, \text{loc}, \text{scale}) \) is identically equivalent to \( \text{loguniform.pdf}(y, a, b) / \text{scale} \) with \( y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

**Examples**

```python
>>> from scipy.stats import loguniform
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> a, b = 0.01, 1.25
>>> mean, var, skew, kurt = loguniform.stats(a, b, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(loguniform.ppf(0.01, a, b),
... loguniform.ppf(0.99, a, b), 100)
>>> ax.plot(x, loguniform.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='loguniform pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = loguniform(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = loguniform.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], loguniform.cdf(vals, a, b))
True
```
Generate random numbers:

```python
>>> r = loguniform.rvs(a, b, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

This doesn’t show the equal probability of 0.01, 0.1 and 1. This is best when the x-axis is log-scaled:

```python
>>> import numpy as np
>>> fig, ax = plt.subplots(1, 1)
>>> ax.hist(np.log10(r))
>>> ax.set_ylabel("Frequency")
>>> ax.set_xlabel("Value of random variable")
>>> ax.xaxis.set_major_locator(plt.FixedLocator([-2, -1, 0]))
>>> ticks = ["$10^{{\{}}}$".format(i) for i in [-2, -1, 0]]
>>> ax.set_xticklabels(ticks)
>>> plt.show()
```

This random variable will be log-uniform regardless of the base chosen for \( a \) and \( b \). Let’s specify with base 2 instead:

```python
>>> rvs = loguniform(2**-2, 2**0).rvs(size=1000)
```

Values of \( 1/4, 1/2 \) and 1 are equally likely with this random variable. Here’s the histogram:

```python
>>> fig, ax = plt.subplots(1, 1)
>>> ax.hist(np.log2(rvs))
>>> ax.set_ylabel("Frequency")
>>> ax.set_xlabel("Value of random variable")
>>> ax.xaxis.set_major_locator(plt.FixedLocator([-2, -1, 0]))
>>> ticks = ["$2^{{\{}}}$".format(i) for i in [-2, -1, 0]]
```

(continues on next page)
```python
>>> ax.set_xlabels(ticks)
>>> plt.show()
```
## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(a, b, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, a, b, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, a, b, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, a, b, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, a, b, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, a, b, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but $sf$ is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, a, b, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, a, b, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of $cdf$ — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, a, b, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of $sf$).</td>
</tr>
<tr>
<td><code>moment(n, a, b, loc=0, scale=1)</code></td>
<td>Non-central moment of order $n$</td>
</tr>
<tr>
<td><code>stats(a, b, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(a, b, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(a, b, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(a, b, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(a, b, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(a, b, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, a, b, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction $alpha$ $[0, 1]$ of the distribution</td>
</tr>
</tbody>
</table>

### scipy.stats.lomax

`scipy.stats.lomax = <scipy.stats._continuous_distns.lomax_gen object>`

A Lomax (Pareto of the second kind) continuous random variable.

As an instance of the `rv_continuous` class, `lomax` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

### Notes

The probability density function for `lomax` is:

$$f(x, c) = \frac{c}{(1 + x)^{c+1}}$$

for $x \geq 0$, $c > 0$.

`lomax` takes $c$ as a shape parameter for $c$.

`lomax` is a special case of `pareto` with `loc=-1.0`.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `lomax.pdf(x, c, loc, scale)` is identically equivalent to `lomax.pdf(y, c) / scale` with $y = (x - loc) / scale$. Note that shifting the location of
a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import lomax
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> c = 1.88
>>> mean, var, skew, kurt = lomax.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(lomax.ppf(0.01, c), ...
... lomax.ppf(0.99, c), 100)
>>> ax.plot(x, lomax.pdf(x, c), ...
... 'r-', lw=5, alpha=0.6, label='lomax pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = lomax(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = lomax.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], lomax.cdf(vals, c))
True
```

Generate random numbers:

```python
>>> r = lomax.rvs(c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as (1 - \text{cdf}), but (sf) is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of (cdf) — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of (sf)).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order (n).</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha ([0, 1]) of the distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.maxwell

scipy.stats.maxwell = <scipy.stats._continuous_distns.maxwell_gen object>
A Maxwell continuous random variable.

As an instance of the rv_continuous class, maxwell object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

A special case of a chi distribution, with df=3, loc=0.0, and given scale = a, where a is the parameter used in the Mathworld description [1].

The probability density function for maxwell is:

\[ f(x) = \frac{\sqrt{2}}{\pi x^2} \exp\left(-\frac{x^2}{2}\right) \]
for \( x \geq 0 \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, maxwell.pdf(x, loc, scale) is identically equivalent to maxwell.pdf(y) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

[1]

Examples

```python
>>> from scipy.stats import maxwell
>>> import matplotlib.pyplot as plt
>>> means, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = maxwell.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(maxwell.ppf(0.01),
... maxwell.ppf(0.99), 100)
>>> ax.plot(x, maxwell.pdf(x),
... 'r-', lw=5, alpha=0.6, label='maxwell pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = maxwell()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```
Check accuracy of `cdf` and `ppf`:

```python
>>> vals = maxwell.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], maxwell.cdf(vals))
True
```

Generate random numbers:

```python
>>> r = maxwell.rvs(size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

**scipy.stats.mielke**

`scipy.stats.mielke = <scipy.stats._continuous_distns.mielke_gen object>`

A Mielke Beta-Kappa / Dagum continuous random variable.

As an instance of the `rv_continuous` class, `mielke` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

**Notes**

The probability density function for `mielke` is:

\[
f(x, k, s) = \frac{k x^{k-1}}{(1 + x^s)^{1+k/s}}
\]

for \(x > 0\) and \(k, s > 0\). The distribution is sometimes called Dagum distribution ([2]). It was already defined in [3], called a Burr Type III distribution (burr with parameters \(c=s\) and \(d=k/s\)).

`mielke` takes \(k\) and \(s\) as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `mielke.pdf(x, k, s, loc, scale)` is identically equivalent to `mielke.pdf(y, k, s) / scale` with \(y = (x - loc) / scale\). Note that shifting the location
of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

[1], [2], [3]

Examples

```python
>>> from scipy.stats import mielke
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> k, s = 10.4, 4.6
>>> mean, var, skew, kurt = mielke.stats(k, s, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(mielke.ppf(0.01, k, s),
... mielke.ppf(0.99, k, s), 100)
>>> ax.plot(x, mielke.pdf(x, k, s),
... 'r-', lw=5, alpha=0.6, label='mielke pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = mielke(k, s)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = mielke.ppf([0.001, 0.5, 0.999], k, s)
>>> np.allclose([0.001, 0.5, 0.999], mielke.cdf(vals, k, s))
```

Generate random numbers:

```python
>>> r = mielke.rvs(k, s, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>rvs</strong></td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf</td>
<td>Survival function (also defined as (1 - cdf), but (sf) is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf</td>
<td>Inverse survival function (inverse of (sf)).</td>
</tr>
<tr>
<td>moment</td>
<td>Non-central moment of order (n).</td>
</tr>
<tr>
<td>stats</td>
<td>Mean((m)), variance((\gamma)), skew((\gamma)), and/or kurtosis((k)).</td>
</tr>
<tr>
<td>entropy</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.moyal

scipy.stats.moyal = <scipy.stats._continuous_distns.moyal_gen object>
A Moyal continuous random variable.

As an instance of the rv_continuous class, moyal object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for moyal is:

\[ f(x) = \exp\left(-\frac{x + \exp(-x)}{2}\right)/\sqrt{2\pi} \]

for a real number \( x \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, \( moyal.pdf(x, \text{loc}, \text{scale}) \) is identically equivalent to \( moyal.pdf(y) / \text{scale} \) with \( y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

This distribution has utility in high-energy physics and radiation detection. It describes the energy loss of a charged relativistic particle due to ionization of the medium [1]. It also provides an approximation for the Landau distribution. For an in depth description see [2]. For additional description, see [3].

References

New in version 1.1.0.

[1], [2], [3]

Examples

```python
>>> from scipy.stats import moyal
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = moyal.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(moyal.ppf(0.01),
... moyal.ppf(0.99), 100)
>>> ax.plot(x, moyal.pdf(x),
... 'r-', lw=5, alpha=0.6, label='moyal pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:
```python
>>> rv = moyal()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of cdf and ppf:

```python
>>> vals = moyal.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], moyal.cdf(vals))
True

Generate random numbers:

```python
>>> r = moyal.rvs(size=1000)
And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.nakagami

`scipy.stats.nakagami = <scipy.stats._continuous_distns.nakagami_gen object>`

A Nakagami continuous random variable.

As an instance of the `rv_continuous` class, `nakagami` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `nakagami` is:

\[
f(x, \nu) = \frac{2^{\nu} \nu}{\Gamma(\nu)} x^{2\nu-1} \exp(-\nu x^2)
\]

for \(x \geq 0, \nu > 0 \).

`nakagami` takes `nu` as a shape parameter for \(\nu \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `nakagami.pdf(x, nu, loc, scale)` is identically equivalent to `nakagami.pdf(y, nu) / scale` with \(y = (x - loc) / scale \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Examples

```python
>>> from scipy.stats import nakagami
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> nu = 4.97
>>> mean, var, skew, kurt = nakagami.stats(nu, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(nakagami.ppf(0.01, nu),
... nakagami.ppf(0.99, nu), 100)
>>> ax.plot(x, nakagami.pdf(x, nu),
... 'r-', lw=5, alpha=0.6, label='nakagami pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = nakagami(nu)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = nakagami.ppf([0.001, 0.5, 0.999], nu)
>>> np.allclose([0.001, 0.5, 0.999], nakagami.cdf(vals, nu))
True
```

Generate random numbers:

```python
>>> r = nakagami.rvs(nu, size=1000)

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()```
Methods

- `rvs(nu, loc=0, scale=1, size=1, random_state=None)`
  - Random variates.

- `pdf(x, nu, loc=0, scale=1)`
  - Probability density function.

- `logpdf(x, nu, loc=0, scale=1)`
  - Log of the probability density function.

- `cdf(x, nu, loc=0, scale=1)`
  - Cumulative distribution function.

- `logcdf(x, nu, loc=0, scale=1)`
  - Log of the cumulative distribution function.

- `sf(x, nu, loc=0, scale=1)`
  - Survival function (also defined as \(1 - \text{cdf}\), but \(sf\) is sometimes more accurate).

- `logsf(x, nu, loc=0, scale=1)`
  - Log of the survival function.

- `ppf(q, nu, loc=0, scale=1)`
  - Percent point function (inverse of \(\text{cdf}\) — percentiles).

- `isf(q, nu, loc=0, scale=1)`
  - Inverse survival function (inverse of \(sf\)).

- `moment(n, nu, loc=0, scale=1)`
  - Non-central moment of order \(n\).

- `stats(nu, loc=0, scale=1, moments='mv')`
  - Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').

- `entropy(nu, loc=0, scale=1)`
  - (Differential) entropy of the RV.

- `fit(data)`
  - Parameter estimates for generic data. See \(\text{scipy.stats.rv_continuous.fit}\) for detailed documentation of the keyword arguments.

- `expect(func, args=(nu,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)`
  - Expected value of a function (of one argument) with respect to the distribution.

- `median(nu, loc=0, scale=1)`
  - Median of the distribution.

- `mean(nu, loc=0, scale=1)`
  - Mean of the distribution.

- `var(nu, loc=0, scale=1)`
  - Variance of the distribution.

- `std(nu, loc=0, scale=1)`
  - Standard deviation of the distribution.

- `interval(alpha, nu, loc=0, scale=1)`
  - Endpoints of the range that contains fraction \(\alpha\) [0, 1] of the distribution.
scipy.stats.ncx2

scipy.stats.ncx2 = <scipy.stats._continuous_distns.ncx2_gen object>

A non-central chi-squared continuous random variable.

As an instance of the rv_continuous class, ncx2 object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for ncx2 is:

\[ f(x, k, \lambda) = \frac{1}{2} \exp\left(-\left(\frac{\lambda + x}{2}\right)\right) \left(\frac{x}{\lambda}\right)^{\left(k - 2\right)/4} I_{\left(k - 2\right)/2}(\sqrt{\lambda x}) \]

for \( x \geq 0 \) and \( k, \lambda > 0 \). \( k \) specifies the degrees of freedom (denoted df in the implementation) and \( \lambda \) is the non-centrality parameter (denoted nc in the implementation). \( I_\nu \) denotes the modified Bessel function of first order of degree \( \nu \) (scipy.special.iv).

ncx2 takes df and nc as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, ncx2.pdf(x, df, nc) is identical to ncx2.pdf(y, df, nc) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import ncx2
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> df, nc = 21, 1.06
>>> mean, var, skew, kurt = ncx2.stats(df, nc, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(ncx2.ppf(0.01, df, nc),
...                 ncx2.ppf(0.99, df, nc), 100)
>>> ax.plot(x, ncx2.pdf(x, df, nc),
...          'r-', lw=5, alpha=0.6, label='ncx2 pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = ncx2(df, nc)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:
>>> vals = ncx2.ppf([0.001, 0.5, 0.999], df, nc)
>>> np.allclose([0.001, 0.5, 0.999], ncx2.cdf(vals, df, nc))
True

Generate random numbers:

>>> r = ncx2.rvs(df, nc, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`rvs(df, nc=0, loc=0, scale=1, size=1,</td>
<td>Random variates.</td>
</tr>
<tr>
<td>random_state=None)`</td>
<td></td>
</tr>
<tr>
<td><code>pdf(x, df, nc=0, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, df, nc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, df, nc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, df, nc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, df, nc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but sf is sometimes more</td>
</tr>
<tr>
<td></td>
<td>accurate).</td>
</tr>
<tr>
<td><code>logsf(x, df, nc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, df, nc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, df, nc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, df, nc=0, scale=1)</code></td>
<td>Non-central moment of order n.</td>
</tr>
<tr>
<td><code>stats(df, nc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(df, nc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code></td>
</tr>
<tr>
<td></td>
<td>for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(df, nc), loc=0, scale=1,</code></td>
<td>Expected value of a function (of one argument) with respect to the</td>
</tr>
<tr>
<td><code>lb=None, ub=None, conditional=False,</code></td>
<td>distribution.</td>
</tr>
<tr>
<td><code>**kwds)</code></td>
<td></td>
</tr>
<tr>
<td><code>median(df, nc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(df, nc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(df, nc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(df, nc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, df, nc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction $alpha$ [0, 1] of the</td>
</tr>
<tr>
<td></td>
<td>distribution.</td>
</tr>
</tbody>
</table>

scipy.stats.ncf

`scipy.stats.ncf = <scipy.stats._continuous_distns.ncf_gen object>`

A non-central F distribution continuous random variable.

As an instance of the `rv_continuous` class, `ncf` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

scipy.stats.f

Fisher distribution
Notes

The probability density function for \(ncf \) is:

\[
f(x, n_1, n_2, \lambda) = \exp\left(\frac{\lambda}{2} + \frac{\lambda n_1 x}{2(n_1 x + n_2)}\right) n_1^{n_1/2} n_2^{n_2/2} x^{n_1/2 - 1} (n_2 + n_1 x)^{-(n_1 + n_2)/2} \gamma(n_1/2) \gamma(1 + n_2/2) L_{n_2/2}^{n_1/2 - 1} \left(-\frac{\lambda n_1 x}{2(n_1 x + n_2)}\right) B(n_1/2, n_2/2) \gamma\left(\frac{n_1 + n_2}{2}\right)\]

for \(n_1, n_2 > 0, \lambda \geq 0 \). Here \(n_1 \) is the degrees of freedom in the numerator, \(n_2 \) the degrees of freedom in the denominator, \(\lambda \) the non-centrality parameter, \(\gamma \) is the logarithm of the Gamma function, \(L_{n}^{k} \) is a generalized Laguerre polynomial and \(B \) is the beta function.

\(ncf \) takes \(df1, df2 \) and \(nc \) as shape parameters. If \(nc=0 \), the distribution becomes equivalent to the Fisher distribution.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the \(loc \) and \(scale \) parameters. Specifically, \(ncf.pdf(x, dfn, dfd, nc, loc, scale) \) is identically equivalent to \(ncf.pdf(y, dfn, dfd, nc) / scale \) with \(y = (x - loc) / scale \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import ncf
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> dfn, dfd, nc = 27, 27, 0.416
>>> mean, var, skew, kurt = ncf.stats(dfn, dfd, nc, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(ncf.ppf(0.01, dfn, dfd, nc),
... ncf.ppf(0.99, dfn, dfd, nc), 100)
>>> ax.plot(x, ncf.pdf(x, dfn, dfd, nc),
... 'r-', lw=5, alpha=0.6, label='ncf pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = ncf(dfn, dfd, nc)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of \( cdf \) and \( ppf \):

```python
>>> vals = ncf.ppf([0.001, 0.5, 0.999], dfn, dfd, nc)
>>> np.allclose([0.001, 0.5, 0.999], ncf.cdf(vals, dfn, dfd, nc))
True
```
Generate random numbers:

```python
>>> r = ncf.rvs(dfn, dfd, nc, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(df, dfd, nc, loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, df, dfd, nc, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, df, dfd, nc, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, df, dfd, nc, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, df, dfd, nc, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, df, dfd, nc, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, df, dfd, nc, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, df, dfd, nc, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, df, dfd, nc, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, df, dfd, nc, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(df, dfd, nc, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(df, dfd, nc, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(df, dfd, nc), loc=0, scale=1)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(df, dfd, nc, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(df, dfd, nc, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(df, dfd, nc, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(df, dfd, nc, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, df, dfd, nc, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>

scipy.stats.nct

scipy.stats.nct = <scipy.stats._continuous_distns.nct_gen object>
A non-central Student’s t continuous random variable.

As an instance of the rv_continuous class, nct object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

If Y is a standard normal random variable and V is an independent chi-square random variable (chi2) with k degrees of freedom, then

\[ X = \frac{Y + c}{\sqrt{V/k}} \]

has a non-central Student’s t distribution on the real line. The degrees of freedom parameter \( k \) (denoted df in the implementation) satisfies \( k > 0 \) and the noncentrality parameter \( c \) (denoted nc in the implementation) is a real number.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, nct.pdf(x, df, nc, loc, scale) is identically equivalent
to \text{nct.pdf}(y, \text{df}, \text{nc}) / \text{scale} with \ y = (x - \text{loc}) / \text{scale}. \text{Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.}

\textbf{Examples}

```python
>>> from scipy.stats import nct
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> df, nc = 14, 0.24
>>> mean, var, skew, kurt = nct.stats(df, nc, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(nct.ppf(0.01, df, nc), ...
... nct.ppf(0.99, df, nc), 100)
>>> ax.plot(x, nct.pdf(x, df, nc), ...
... 'r-', lw=5, alpha=0.6, label='nct pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = nct(df, nc)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = nct.ppf([0.001, 0.5, 0.999], df, nc)
>>> np.allclose([0.001, 0.5, 0.999], nct.cdf(vals, df, nc))
True
```

Generate random numbers:

```python
>>> r = nct.rvs(df, nc, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(df, nc, loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, df, nc, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, df, nc, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, df, nc, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, df, nc, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, df, nc, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, df, nc, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, df, nc, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, df, nc, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, df, nc, loc=0, scale=1)</td>
<td>Non-central moment of order (n).</td>
</tr>
<tr>
<td>stats(df, nc, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(df, nc, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(df, nc), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(df, nc, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(df, nc, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(df, nc, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(df, nc, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, df, nc, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.norm

scipy.stats.norm = <scipy.stats._continuous_distns.norm_gen object>
A normal continuous random variable.

The location (loc) keyword specifies the mean. The scale (scale) keyword specifies the standard deviation.

As an instance of the rv_continuous class, norm object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for norm is:

\[ f(x) = \frac{\exp(-x^2/2)}{\sqrt{2\pi}} \]

for a real number \( x \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, norm.pdf(x, loc, scale) is identically equivalent to norm.pdf(y) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import norm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = norm.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(norm.ppf(0.01), norm.ppf(0.99), 100)
>>> ax.plot(x, norm.pdf(x), 'r-', lw=5, alpha=0.6, label='norm pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = norm()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = norm.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], norm.cdf(vals))
True
```
Generate random numbers:

```python
>>> r = norm.rvs(size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order n.</td>
</tr>
<tr>
<td><code>stats(loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.norminvgauss

`scipy.stats.norminvgauss = <scipy.stats._continuous_distns.norminvgauss_gen object>`

A Normal Inverse Gaussian continuous random variable.

As an instance of the `rv_continuous` class, `norminvgauss` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `norminvgauss` is:

\[
f(x, a, b) = \frac{a K_1(a \sqrt{1+x^2})}{\pi \sqrt{1+x^2}} \exp(\sqrt{a^2 - b^2 + bx})
\]

where \(x\) is a real number, the parameter \(a\) is the tail heaviness and \(b\) is the asymmetry parameter satisfying \(a > 0\) and \(|b| <= a\). \(K_1\) is the modified Bessel function of second kind (`scipy.special.k1`).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `norminvgauss.pdf(x, a, b, loc, scale)` is identically equivalent to `norminvgauss.pdf(y, a, b) / scale with y = (x - loc) / scale`. Note
that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

A normal inverse Gaussian random variable \(Y \) with parameters \(a \) and \(b \) can be expressed as a normal mean-variance mixture: \(Y = b \ast V + \sqrt{V} \ast X \) where \(X \) is \(\text{norm}(0,1) \) and \(V \) is \(\text{invgauss}(\mu=1/sqrt(a**2 - b**2)) \). This representation is used to generate random variates.

Another common parametrization of the distribution (see Equation 2.1 in [2]) is given by the following expression of the pdf:

\[
g(x, \alpha, \beta, \delta, \mu) = \frac{\alpha \delta K_1(\alpha \sqrt{\delta^2 + (x - \mu)^2})}{\pi \sqrt{\delta^2 + (x - \mu)^2}} e^{\delta \sqrt{\alpha^2 - \beta^2 + \beta(x - \mu)}}
\]

In SciPy, this corresponds to \(a = alpha * delta, b = beta * delta, loc = mu, scale=delta \).

References

[1], [2]

Examples

```python
>>> from scipy.stats import norminvgauss
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> a, b = 1.25, 0.5
>>> mean, var, skew, kurt = norminvgauss.stats(a, b, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(norminvgauss.ppf(0.01, a, b),
... norminvgauss.ppf(0.99, a, b), 100)
>>> ax.plot(x, norminvgauss.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='norminvgauss pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = norminvgauss(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = norminvgauss.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], norminvgauss.cdf(vals, a, b))
True
```

Generate random numbers:
>>> r = norminvgauss.rvs(a, b, size=1000)

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(a, b, loc=0, scale=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, a, b, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, a, b, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, a, b, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, a, b, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, a, b, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, a, b, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, a, b, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, a, b, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, a, b, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(a, b, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(a, b, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(a, b, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(a, b, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(a, b, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(a, b, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, a, b, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.pareto

```python
scipy.stats.pareto = <scipy.stats._continuous_distns.pareto_gen object>
```

A Pareto continuous random variable.

As an instance of the `rv_continuous` class, `pareto` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `pareto` is:

$$f(x, b) = \frac{b}{x^{b+1}}$$

for $x \geq 1$, $b > 0$.

`pareto` takes b as a shape parameter for b.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `pareto.pdf(x, b, loc, scale)` is identically equivalent to `pareto.pdf(y, b) / scale` with $y = (x - loc) / scale$. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Examples

```python
>>> from scipy.stats import pareto
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> b = 2.62
>>> mean, var, skew, kurt = pareto.stats(b, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(pareto.ppf(0.01, b),
...                 pareto.ppf(0.99, b), 100)
>>> ax.plot(x, pareto.pdf(x, b),
...         'r-', lw=5, alpha=0.6, label='pareto pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = pareto(b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = pareto.ppf([0.001, 0.5, 0.999], b)
>>> np.allclose([0.001, 0.5, 0.999], pareto.cdf(vals, b))
True
```

Generate random numbers:

```python
>>> r = pareto.rvs(b, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(b, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, b, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, b, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, b, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, b, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, b, loc=0, scale=1)</code></td>
<td>Survival function (also defined as (1 - \text{cdf}), but (sf) is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, b, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, b, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of (cdf) — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, b, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of (sf)).</td>
</tr>
<tr>
<td><code>moment(n, b, loc=0, scale=1)</code></td>
<td>Non-central moment of order (n).</td>
</tr>
<tr>
<td><code>stats(b, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(b, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(b,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(b, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(b, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(b, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(b, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, b, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.pearson3

scipy.stats.pearson3 = <scipy.stats._continuous_distns.pearson3_gen object>

A Pearson type III continuous random variable.

As an instance of the rv_continuous class, pearson3 object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for pearson3 is:

\[f(x, \kappa) = \left| \frac{\beta}{\Gamma(\alpha)} \right| (\beta(x - \zeta))^\alpha - 1 \exp(-\beta(x - \zeta)) \]

where:

\[\beta = \frac{2}{\kappa} \]
\[\alpha = \beta^2 = \frac{4}{\kappa^2} \]
\[\zeta = -\frac{\alpha}{\beta} = -\beta \]

\(\Gamma \) is the gamma function (scipy.special.gamma). Pass the skew \(\kappa \) into pearson3 as the shape parameter skew.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, pearson3.pdf(x, skew, loc, scale) is identically equivalent to pearson3.pdf(y, skew) / scale with \(y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

Examples

```python
>>> from scipy.stats import pearson3
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> skew = 0.1
>>> mean, var, skew, kurt = pearson3.stats(skew, moments='mvsk')
```

Display the probability density function (pdf):
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = pearson3(skew)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = pearson3.ppf([0.001, 0.5, 0.999], skew)
>>> np.allclose([0.001, 0.5, 0.999], pearson3.cdf(vals, skew))
True
```

Generate random numbers:

```python
>>> r = pearson3.rvs(skew, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

```
rvs(skew, loc=0, scale=1, random_state=None)  # Random variates.
pdf(x, skew, loc=0, scale=1)  # Probability density function.
logpdf(x, skew, loc=0, scale=1)  # Log of the probability density function.
cdf(x, skew, loc=0, scale=1)  # Cumulative distribution function.
logcdf(x, skew, loc=0, scale=1)  # Log of the cumulative distribution function.
sf(x, skew, loc=0, scale=1)  # Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).
logsf(x, skew, loc=0, scale=1)  # Log of the survival function.
ppf(q, skew, loc=0, scale=1)  # Percent point function (inverse of cdf — percentiles).
isf(q, skew, loc=0, scale=1)  # Inverse survival function (inverse of sf).
moment(n, skew, loc=0, scale=1)  # Non-central moment of order n.
stats(skew, loc=0, scale=1, moments='mv')  # Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
entropy(skew, loc=0, scale=1)  # (Differential) entropy of the RV.
fit(data)  # Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.
expect(func, args=(skew,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)  # Expected value of a function (of one argument) with respect to the distribution.
median(skew, loc=0, scale=1)  # Median of the distribution.
mean(skew, loc=0, scale=1)  # Mean of the distribution.
var(skew, loc=0, scale=1)  # Variance of the distribution.
std(skew, loc=0, scale=1)  # Standard deviation of the distribution.
interval(alpha, skew, loc=0, scale=1)  # Endpoints of the range that contains fraction alpha [0, 1] of the distribution
```

scipy.stats.powerlaw

```
scipy.stats.powerlaw = <scipy.stats._continuous_distns.powerlaw_gen object>
```

A power-function continuous random variable.

As an instance of the **rv_continuous** class, **powerlaw** object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for **powerlaw** is:

$$f(x, a) = ax^{a-1}$$

for $0 \leq x \leq 1$, $a > 0$.

powerlaw takes a as a shape parameter for a.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the **loc** and **scale** parameters. Specifically, **powerlaw.pdf(x, a, loc, scale)** is identically equivalent to **powerlaw.pdf(y, a) / scale** with $y = (x - loc) / scale$. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
powerlaw is a special case of beta with \(b=1 \).

Examples

```python
>>> from scipy.stats import powerlaw
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> a = 1.66
>>> mean, var, skew, kurt = powerlaw.stats(a, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(powerlaw.ppf(0.01, a),
... powerlaw.ppf(0.99, a), 100)
>>> ax.plot(x, powerlaw.pdf(x, a),
... 'r-', lw=5, alpha=0.6, label='powerlaw pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = powerlaw(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = powerlaw.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], powerlaw.cdf(vals, a))
```

Generate random numbers:

```python
>>> r = powerlaw.rvs(a, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(a, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, a, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, a, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, a, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, a, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, a, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, a, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, a, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, a, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, a, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(a, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(a, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(a,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(a, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(a, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(a, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(a, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, a, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.powerlognorm

scipy.stats.powerlognorm = <scipy.stats._continuous_distns.powerlognorm_gen object>

A power log-normal continuous random variable.

As an instance of the rv_continuous class, powerlognorm object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for powerlognorm is:

\[ f(x, c, s) = \frac{c}{x s} \phi(\log(x)/s)(\Phi(-\log(x)/s))^{c-1} \]

where \( \phi \) is the normal pdf, and \( \Phi \) is the normal cdf, and \( x > 0, s, c > 0 \).

powerlognorm takes \( c \) and \( s \) as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, \( \text{powerlognorm.pdf}(x, c, s, \text{loc}, \text{scale}) \) is identically equivalent to \( \text{powerlognorm.pdf}(y, c, s) / \text{scale} \) with \( y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import powerlognorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> c, s = 2.14, 0.446
>>> mean, var, skew, kurt = powerlognorm.stats(c, s, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(powerlognorm.ppf(0.01, c, s),
... powerlognorm.ppf(0.99, c, s), 100)
>>> ax.plot(x, powerlognorm.pdf(x, c, s),
... 'r-', lw=5, alpha=0.6, label='powerlognorm pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = powerlognorm(c, s)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:
```python
>>> vals = powerlognorm.ppf([0.001, 0.5, 0.999], c, s)
>>> np.allclose([0.001, 0.5, 0.999], powerlognorm.cdf(vals, c, s))
True

Generate random numbers:

```python
>>> r = powerlognorm.rvs(c, s, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, s, loc=0, scale=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, s, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, s, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, s, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, s, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, s, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, s, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, s, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, s, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, c, s, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(c, s, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, s, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c, s), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, s, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, s, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, s, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, s, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, s, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.powernorm

`scipy.stats.powernorm = <scipy.stats._continuous_distns.powernorm_gen object>`

A power normal continuous random variable.

As an instance of the `rv_continuous` class, `powernorm` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `powernorm` is:

$$f(x, c) = c \phi(x)(\Phi(-x))^{c-1}$$

where ϕ is the normal pdf, and Φ is the normal cdf, and $x \geq 0, c > 0$.

`powernorm` takes c as a shape parameter for c.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `powernorm.pdf(x, c, loc, scale)` is identically equivalent to `powernorm.pdf(y, c) / scale` with $y = (x - loc) / scale$. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Examples

```python
>>> from scipy.stats import powernorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> c = 4.45
>>> mean, var, skew, kurt = powernorm.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(powernorm.ppf(0.01, c),
... powernorm.ppf(0.99, c), 100)
>>> ax.plot(x, powernorm.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='powernorm pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = powernorm(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = powernorm.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], powernorm.cdf(vals, c))
True
```

Generate random numbers:

```python
>>> r = powernorm.rvs(c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as (1 - cdf), but (sf) is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of (cdf) — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of (sf)).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order (n).</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <a href="https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html">scipy.stats.rv_continuous.fit</a> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha ([0, 1]) of the distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.rdist

scipy.stats.rdist = <scipy.stats._continuous_distns.rdist_gen object>

An R-distributed (symmetric beta) continuous random variable.

As an instance of the rv_continuous class, rdist object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for rdist is:

\[
f(x, c) = \frac{(1 - x^2)^{c/2-1}}{B(1/2, c/2)}
\]

for \(-1 \leq x \leq 1, c > 0\). rdist is also called the symmetric beta distribution: if \(B\) has a beta distribution with parameters \((c/2, c/2)\), then \(X = 2B - 1\) follows a R-distribution with parameter \(c\).

rdist takes \(c\) as a shape parameter for \(c\).

This distribution includes the following distribution kernels as special cases:

<table>
<thead>
<tr>
<th>(c)</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>uniform</td>
</tr>
<tr>
<td>3</td>
<td>'semicircular'</td>
</tr>
<tr>
<td>4</td>
<td>Epanechnikov (parabolic)</td>
</tr>
<tr>
<td>6</td>
<td>quartic (biweight)</td>
</tr>
<tr>
<td>8</td>
<td>triweight</td>
</tr>
</tbody>
</table>

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, rdist.pdf(x, c, loc, scale) is identically equivalent to rdist.pdf(y, c) / scale with \(y = (x - \text{loc}) / \text{scale}\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import rdist
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> c = 1.6
>>> mean, var, skew, kurt = rdist.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(rdist.ppf(0.01, c), ...
... rdist.ppf(0.99, c), 100)
>>> ax.plot(x, rdist.pdf(x, c), ...
... 'r-', lw=5, alpha=0.6, label='rdist pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:
>>> rv = rdist(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = rdist.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], rdist.cdf(vals, c))
True

Generate random numbers:

>>> r = rdist.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(c, loc=0, scale=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, c, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, c, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, c, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, c, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, c, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, c, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, c, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, c, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, c, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(c, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(c, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(c, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(c, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(c, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(c, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, c, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.rayleigh

scipy.stats.rayleigh = <scipy.stats._continuous_distns.rayleigh_gen object>

A Rayleigh continuous random variable.

As an instance of the rv_continuous class, rayleigh object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for rayleigh is:

\[ f(x) = x \exp(-x^2/2) \]

for \( x \geq 0 \).

rayleigh is a special case of chi with df=2.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, rayleigh.pdf(x, loc, scale) is identically equivalent to rayleigh.pdf(y) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
Examples

```python
>>> from scipy.stats import rayleigh
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = rayleigh.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(rayleigh.ppf(0.01),
...                 rayleigh.ppf(0.99), 100)
>>> ax.plot(x, rayleigh.pdf(x),
...          'r-', lw=5, alpha=0.6, label='rayleigh pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = rayleigh()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = rayleigh.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], rayleigh.cdf(vals))
True
```

Generate random numbers:

```python
>>> r = rayleigh.rvs(size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
</table>
| **rvs**

(loc=0, scale=1, size=1, random_state=None) | Random variates. |
| **pdf**
(x, loc=0, scale=1) | Probability density function. |
| **logpdf**
(x, loc=0, scale=1) | Log of the probability density function. |
| **cdf**
(x, loc=0, scale=1) | Cumulative distribution function. |
| **logcdf**
(x, loc=0, scale=1) | Log of the cumulative distribution function. |
| **sf**
(x, loc=0, scale=1) | Survival function (also defined as 1 - cdf, but sf is sometimes more accurate). |
| **logsf**
(x, loc=0, scale=1) | Log of the survival function. |
| **ppf**
(q, loc=0, scale=1) | Percent point function (inverse of cdf — percentiles). |
| **isf**
(q, loc=0, scale=1) | Inverse survival function (inverse of sf). |
| **moment**
(n, loc=0, scale=1) | Non-central moment of order n |
| **stats**
(loc=0, scale=1, moments='mv') | Mean('m'), variance('v'), skew('s'), and/or kurtosis('k'). |
| **entropy**
(loc=0, scale=1) | (Differential) entropy of the RV. |
| **fit**
(data) | Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments. |
| **expect**
(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
| **median**
(loc=0, scale=1) | Median of the distribution. |
| **mean**
(loc=0, scale=1) | Mean of the distribution. |
| **var**
(loc=0, scale=1) | Variance of the distribution. |
| **std**
(loc=0, scale=1) | Standard deviation of the distribution. |
| **interval**
(alpha, loc=0, scale=1) | Endpoints of the range that contains fraction alpha [0, 1] of the distribution |
scipy.stats.rice

scipy.stats.rice = <scipy.stats._continuous_distns.rice_gen object>

A Rice continuous random variable.

As an instance of the `rv_continuous` class, `rice` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `rice` is:

\[f(x, b) = x \exp\left(-\frac{x^2 + b^2}{2}\right)I_0(xb) \]

for \(x \geq 0, b > 0 \). \(I_0 \) is the modified Bessel function of order zero (`scipy.special.i0`). `rice` takes `b` as a shape parameter for `b`.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `rice.pdf(x, b, loc, scale)` is identically equivalent to `rice.pdf(y, b) / scale` with \(y = (x - loc) / scale \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

The Rice distribution describes the length, \(r \), of a 2-D vector with components \((U + u, V + v)\), where \(U, V \) are constant, \(u, v \) are independent Gaussian random variables with standard deviation \(s \). Let \(R = \sqrt{U^2 + V^2} \). Then the pdf of \(r \) is `rice.pdf(x, R/s, scale=s)`.

Examples

```python
>>> from scipy.stats import rice
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> b = 0.775
>>> mean, var, skew, kurt = rice.stats(b, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(rice.ppf(0.01, b),
... rice.ppf(0.99, b), 100)
>>> ax.plot(x, rice.pdf(x, b),
... 'r-', lw=5, alpha=0.6, label='rice pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = rice(b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=5, alpha=0.6, label='frozen pdf')
```

Check accuracy of cdf and ppf:

3.3. API definition
>>> vals = rice.ppf([0.001, 0.5, 0.999], b)
>>> np.allclose([0.001, 0.5, 0.999], rice.cdf(vals, b))
True

Generate random numbers:

```python
>>> r = rice.rvs(b, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
#### Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(b, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, b, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, b, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, b, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, b, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, b, loc=0, scale=1)</code></td>
<td>Survival function (also defined as <code>1 - cdf</code>, but <code>sf</code> is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, b, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, b, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of <code>cdf</code> — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, b, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of <code>sf</code>).</td>
</tr>
<tr>
<td><code>moment(n, b, loc=0, scale=1)</code></td>
<td>Non-central moment of order <code>n</code>.</td>
</tr>
<tr>
<td><code>stats(b, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(b, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(b,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(b, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(b, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(b, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(b, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, b, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction <code>alpha</code> [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>

**scipy.stats.recipinvgauss**

`scipy.stats.recipinvgauss = <scipy.stats._continuous_distns.recipinvgauss_gen object>`

A reciprocal inverse Gaussian continuous random variable.

As an instance of the `rv_continuous` class, `recipinvgauss` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

**Notes**

The probability density function for `recipinvgauss` is:

$$f(x, \mu) = \frac{1}{\sqrt{2\pi} \mu x} \exp \left( -\frac{(1 - \mu x)^2}{2\mu^2 x} \right)$$

for $x \geq 0$.

`recipinvgauss` takes `mu` as a shape parameter for $\mu$.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `recipinvgauss.pdf(x, mu, loc, scale)` is identically equivalent to `recipinvgauss.pdf(y, mu) / scale` with $y = (x - loc) / scale$. Note that
shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import recipinvgauss
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> mu = 0.63
>>> mean, var, skew, kurt = recipinvgauss.stats(mu, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(recipinvgauss.ppf(0.01, mu),
 recipinvgauss.ppf(0.99, mu), 100)
>>> ax.plot(x, recipinvgauss.pdf(x, mu),
 'r-', lw=5, alpha=0.6, label='recipinvgauss pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = recipinvgauss(mu)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = recipinvgauss.ppf([0.001, 0.5, 0.999], mu)
>>> np.allclose([0.001, 0.5, 0.999], recipinvgauss.cdf(vals, mu))
True
```

Generate random numbers:

```python
>>> r = recipinvgauss.rvs(mu, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(mu, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, mu, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, mu, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, mu, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, mu, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, mu, loc=0, scale=1)</code></td>
<td>Survival function (also defined as <code>1 - cdf</code>, but <code>sf</code> is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, mu, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, mu, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of <code>cdf</code> — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, mu, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of <code>sf</code>).</td>
</tr>
<tr>
<td><code>moment(n, mu, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(mu, loc=0, scale=1, moments='mvk')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(mu, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(mu,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(mu, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(mu, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(mu, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(mu, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, mu, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.semicircular

scipy.stats.semicircular = <scipy.stats._continuous_distns.semicircular_gen object>
A semicircular continuous random variable.

As an instance of the rv_continuous class, semicircular object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:
rdist

Notes

The probability density function for semicircular is:

\[ f(x) = \frac{2}{\pi \sqrt{1 - x^2}} \]

for \(-1 \leq x \leq 1\).

The distribution is a special case of rdist with \(c = 3\).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, semicircular.pdf(x, loc, scale) is identically equivalent to semicircular.pdf(y) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

[1]

Examples

```python
>>> from scipy.stats import semicircular
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:
```
```python
>>> mean, var, skew, kurt = semicircular.stats(moments='mvsk')
```

Display the probability density function (pdf):
```
```python
>>> x = np.linspace(semicircular.ppf(0.01),
...                  semicircular.ppf(0.99), 100)
>>> ax.plot(x, semicircular.pdf(x),
...         'r-', lw=5, alpha=0.6, label='semicircular pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed. Freeze the distribution and display the frozen pdf:
>>> rv = semicircular()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = semicircular.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], semicircular.cdf(vals))
True

Generate random numbers:

>>> r = semicircular.rvs(size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order n.</td>
</tr>
<tr>
<td><code>stats(loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.skewcauchy

scipy.stats.skewcauchy = <scipy.stats._continuous_distns.skewcauchy_gen object>

A skewed Cauchy random variable.

As an instance of the `rv_continuous` class, `skewcauchy` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

cauchy

Cauchy distribution
Notes

The probability density function for `skewcauchy` is:

\[
f(x) = \frac{1}{\pi \left(a \text{sign}(x)^2 + 1 \right)^2 + 1}
\]

for a real number \(x\) and skewness parameter \(-1 < a < 1\).

When \(a = 0\), the distribution reduces to the usual Cauchy distribution.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, \(\text{skewcauchy.pdf}(x, a, \text{loc}, \text{scale})\) is identically equivalent to \(\text{skewcauchy.pdf}(y, a) / \text{scale}\) with \(y = (x - \text{loc}) / \text{scale}\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

[1]

Examples

```python
>>> from scipy.stats import skewcauchy
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> a = 0.5
>>> mean, var, skew, kurt = skewcauchy.stats(a, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(skewcauchy.ppf(0.01, a), ...
... skewcauchy.ppf(0.99, a), 100)
>>> ax.plot(x, skewcauchy.pdf(x, a), ...
... 'r-', lw=5, alpha=0.6, label='skewcauchy pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = skewcauchy(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = skewcauchy.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], skewcauchy.cdf(vals, a))
True
```

Generate random numbers:
```python
>>> r = skewcauchy.rvs(a, size=1000)

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(a, loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, a, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, a, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, a, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, a, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, a, loc=0, scale=1)</td>
<td>Survival function (also defined as (1 - \text{cdf}), but (sf) is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, a, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, a, loc=0, scale=1)</td>
<td>Percent point function (inverse of (\text{cdf}) — percentiles).</td>
</tr>
<tr>
<td>isf(q, a, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of (sf)).</td>
</tr>
<tr>
<td>moment(n, a, loc=0, scale=1)</td>
<td>Non-central moment of order (n).</td>
</tr>
<tr>
<td>stats(a, loc=0, scale=1, moments='mv')</td>
<td>Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).</td>
</tr>
<tr>
<td>entropy(a, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See \scipy.stats.rv_continuous.fit\ for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(a,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(a, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(a, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(a, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(a, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, a, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha ([0, 1]) of the distribution.</td>
</tr>
</tbody>
</table>

**scipy.stats.skewnorm**

\scipy.stats.skewnorm = <scipy.stats._continuous_distns.skew_norm_gen object>\n
A skew-normal random variable.

As an instance of the \(rv\_continuous\) class, \skewnorm\ object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

**Notes**

The pdf is:

\[
\text{skewnorm.pdf}(x, a) = 2 \times \text{norm.pdf}(x) \times \text{norm.cdf}(a \times x)
\]

\skewnorm\ takes a real number \(a\) as a skewness parameter When \(a = 0\) the distribution is identical to a normal distribution (\text{norm}). \text{rvs} implements the method of [1].

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the \loc\ and \scale\ parameters. Specifically, \skewnorm.pdf(x, a, loc, scale) is identically equivalent to \skewnorm.pdf(y, a) / \scale\ with \(y = (x - \text{loc}) / \scale\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
References

[1]

Examples

```python
>>> from scipy.stats import skewnorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> a = 4
>>> mean, var, skew, kurt = skewnorm.stats(a, moments='mvsk')
```  
Display the probability density function (pdf):

```python
>>> x = np.linspace(skewnorm.ppf(0.01, a), ...
...                   skewnorm.ppf(0.99, a), 100)
>>> ax.plot(x, skewnorm.pdf(x, a), ...
...          'r-', lw=5, alpha=0.6, label='skewnorm pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = skewnorm(a)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```  
Check accuracy of cdf and ppf:

```python
>>> vals = skewnorm.ppf([0.001, 0.5, 0.999], a)
>>> np.allclose([0.001, 0.5, 0.999], skewnorm.cdf(vals, a))
True
```

Generate random numbers:

```python
>>> r = skewnorm.rvs(a, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(a, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, a, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, a, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, a, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, a, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, a, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - \text{cdf}$, but $sf$ is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, a, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, a, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of $\text{cdf}$ — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, a, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of $sf$).</td>
</tr>
<tr>
<td><code>moment(n, a, loc=0, scale=1)</code></td>
<td>Non-central moment of order $n$</td>
</tr>
<tr>
<td><code>stats(a, loc=0, scale=1, moments='mv')</code></td>
<td>Mean($'m'$), variance($'v'$), skew($'s'$), and/or kurtosis($'k'$).</td>
</tr>
<tr>
<td><code>entropy(a, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(a,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(a, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(a, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(a, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(a, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, a, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution.</td>
</tr>
</tbody>
</table>
A studentized range continuous random variable.

As an instance of the `rv_continuous` class, `studentized_range` object inherits from it a collection of
generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:
- Student’s t distribution

Notes

The probability density function for `studentized_range` is:

\[
f(x; k, \nu) = \frac{k(k - 1)\nu^{\nu/2}}{\Gamma(\nu/2)2^{\nu/2-1}} \int_{-\infty}^{\infty} s^\nu e^{-s^2/2} \phi(s) \phi(sx + z) [\Phi(sx + z) - \Phi(z)]^{k-2} dz ds
\]

for \( x \geq 0, \ k > 1, \) and \( \nu > 0. \)

`studentized_range` takes \( k \) for \( k \) and \( df \) for \( \nu \) as shape parameters.

When \( \nu \) exceeds 100,000, an asymptotic approximation (infinite degrees of freedom) is used to compute the cumulative distribution function [4].

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `studentized_range.pdf(x, k, df, loc, scale)` is identically equivalent to `studentized_range.pdf(y, k, df) / scale` with \( y = (x - loc) / scale \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

[1], [2], [3], [4]

Examples

```python
>>> from scipy.stats import studentized_range
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> k, df = 3, 10
>>> mean, var, skew, kurt = studentized_range.stats(k, df, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(studentized_range.ppf(0.01, k, df), ...
... studentized_range.ppf(0.99, k, df), 100)
>>> ax.plot(x, studentized_range.pdf(x, k, df), ...
... 'r-', lw=5, alpha=0.6, label='studentized_range pdf')
```
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = studentized_range(k, df)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = studentized_range.ppf([0.001, 0.5, 0.999], k, df)
>>> np.allclose([0.001, 0.5, 0.999], studentized_range.cdf(vals, k, df))
True
```

Rather than using (studentized_range.rvs) to generate random variates, which is very slow for this distribution, we can approximate the inverse CDF using an interpolator, and then perform inverse transform sampling with this approximate inverse CDF.

This distribution has an infinite but thin right tail, so we focus our attention on the leftmost 99.9 percent.

```python
>>> a, b = studentized_range.ppf([0, .999], k, df)
>>> a, b
0, 7.41058083802274
```

```python
>>> from scipy.interpolate import interp1d
>>> rng = np.random.default_rng()
>>> xs = np.linspace(a, b, 50)
>>> cdf = studentized_range.cdf(xs, k, df)
Create an interpolant of the inverse CDF
>>> ppf = interp1d(cdf, xs, fill_value='extrapolate')
Perform inverse transform sampling using the interpolant
>>> r = ppf(rng.uniform(size=1000))
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(k, df, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, k, df, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, k, df, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, k, df, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, k, df, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, k, df, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but $sf$ is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, k, df, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, k, df, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of $cdf$ — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, k, df, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of $sf$).</td>
</tr>
<tr>
<td><code>moment(n, k, df, loc=0, scale=1)</code></td>
<td>Non-central moment of order $n$</td>
</tr>
<tr>
<td><code>stats(k, df, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(k, df, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(k, df), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(k, df, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(k, df, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(k, df, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(k, df, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, k, df, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.t

scipy.stats.t = <scipy.stats._continuous_distns.t_gen object>

A Student's t continuous random variable.

For the noncentral t distribution, see nct.

As an instance of the rv_continuous class, t object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

nct

Notes

The probability density function for t is:

\[ f(x, \nu) = \frac{\Gamma((\nu + 1)/2)}{\sqrt{\pi\nu}\Gamma(\nu/2)} (1 + x^2/\nu)^{-(\nu+1)/2} \]

where \( x \) is a real number and the degrees of freedom parameter \( \nu \) (denoted df in the implementation) satisfies \( \nu > 0 \). \( \Gamma \) is the gamma function (scipy.special.gamma).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, \( t.pdf(x, df, \text{loc}, \text{scale}) \) is identically equivalent to \( t.pdf(y, df) / \text{scale} \) with \( y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import t
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> df = 2.74
>>> mean, var, skew, kurt = t.stats(df, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(t.ppf(0.01, df), ...
... t.ppf(0.99, df), 100)
>>> ax.plot(x, t.pdf(x, df), ...
... 'r-', lw=5, alpha=0.6, label='t pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = t(df)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=5, alpha=0.6, label='frozen pdf')
```
Check accuracy of `cdf` and `ppf`:

```python
>>> vals = t.ppf([0.001, 0.5, 0.999], df)
>>> np.allclose([0.001, 0.5, 0.999], t.cdf(vals, df))
True
```

Generate random numbers:

```python
>>> r = t.rvs(df, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(df, loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, df, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, df, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, df, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, df, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, df, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, df, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, df, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, df, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, df, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(df, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(df, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(df,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(df, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(df, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(df, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(df, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, df, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.trapezoid

scipy.stats.trapezoid = <scipy.stats._continuous_distns.trapezoid_gen object>

A trapezoidal continuous random variable.

As an instance of the rv_continuous class, trapezoid object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The trapezoidal distribution can be represented with an up-sloping line from loc to (loc + c*scale), then constant to (loc + d*scale) and then downsloping from (loc + d*scale) to (loc+scale). This defines the trapezoid base from loc to (loc+scale) and the flat top from c to d proportional to the position along the base with 0 <= c <= d <= 1. When c=d, this is equivalent to triang with the same values for loc, scale and c. The method of [1] is used for computing moments.

trapezoid takes c and d as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, trapezoid.pdf(x, c, d, loc, scale) is identically equivalent to trapezoid.pdf(y, c, d) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.
The standard form is in the range [0, 1] with c the mode. The location parameter shifts the start to \( \text{loc} \). The scale parameter changes the width from 1 to \( \text{scale} \).

References

[1] 

Examples

```python
>>> from scipy.stats import trapezoid
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> c, d = 0.2, 0.8
>>> mean, var, skew, kurt = trapezoid.stats(c, d, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(trapezoid.ppf(0.01, c, d),
... trapezoid.ppf(0.99, c, d), 100)
>>> ax.plot(x, trapezoid.pdf(x, c, d),
... 'r-', lw=5, alpha=0.6, label='trapezoid pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = trapezoid(c, d)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = trapezoid.ppf([0.001, 0.5, 0.999], c, d)
>>> np.allclose([0.001, 0.5, 0.999], trapezoid.cdf(vals, c, d))
```

Generate random numbers:

```python
>>> r = trapezoid.rvs(c, d, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(c, d, loc=0, scale=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, c, d, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, c, d, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, c, d, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, c, d, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, c, d, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, c, d, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, c, d, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, c, d, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, c, d, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(c, d, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(c, d, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(c, d), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(c, d, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(c, d, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(c, d, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(c, d, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, c, d, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.triang

`scipy.stats.triang = <scipy.stats._continuous_distns.triang_gen object>`

A triangular continuous random variable.

As an instance of the `rv_continuous` class, `triang` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

**Notes**

The triangular distribution can be represented with an up-sloping line from `loc` to `(loc + c*scale)` and then downsloping for `(loc + c*scale)` to `(loc + scale)`.

`triang` takes `c` as a shape parameter for `c`.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `triang.pdf(x, c, loc, scale)` is identically equivalent to `triang.pdf(y, c) / scale` with `y = (x - loc) / scale`. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

The standard form is in the range `[0, 1]` with `c` the mode. The location parameter shifts the start to `loc`. The scale parameter changes the width from 1 to `scale`.

**Examples**

```python
>>> from scipy.stats import triang
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> c = 0.158
>>> mean, var, skew, kurt = triang.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(triang.ppf(0.01, c),
...                 triang.ppf(0.99, c), 100)
>>> ax.plot(x, triang.pdf(x, c),
...         'r-', lw=5, alpha=0.6, label='triang pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = triang(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = triang.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], triang.cdf(vals, c))
True
```
Generate random numbers:

```python
>>> r = triang.rvs(c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(c, loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, c, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, c, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, c, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, c, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, c, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, c, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, c, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, c, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, c, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(c, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(c, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(c, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(c, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(c, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(c, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, c, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.truncexpon

scipy.stats.truncexpon = <scipy.stats._continuous_distns.truncexpon_gen object>

A truncated exponential continuous random variable.

As an instance of the rv_continuous class, truncexpon object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for truncexpon is:

\[
f(x, b) = \frac{\exp(-x)}{1 - \exp(-b)}
\]

for \(0 \leq x \leq b\).

truncexpon takes \(b\) as a shape parameter for \(b\).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, \(\text{truncexpon.pdf}(x, b, \text{loc}, \text{scale})\) is identically equivalent to \(\text{truncexpon.pdf}(y, b) / \text{scale}\) with \(y = (x - \text{loc}) / \text{scale}\). Note that shifting the location
of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import truncexpon
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> b = 4.69
>>> mean, var, skew, kurt = truncexpon.stats(b, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(truncexpon.ppf(0.01, b),
... truncexpon.ppf(0.99, b), 100)
>>> ax.plot(x, truncexpon.pdf(x, b),
... 'r-', lw=5, alpha=0.6, label='truncexpon pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = truncexpon(b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = truncexpon.ppf([0.001, 0.5, 0.999], b)
>>> np.allclose([0.001, 0.5, 0.999], truncexpon.cdf(vals, b))
True
```

Generate random numbers:

```python
>>> r = truncexpon.rvs(b, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(b, loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, b, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, b, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, b, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, b, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, b, loc=0, scale=1)</td>
<td>Survival function (also defined as $1 - \text{cdf}$, but $sf$ is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, b, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, b, loc=0, scale=1)</td>
<td>Percent point function (inverse of $\text{cdf}$ — percentiles).</td>
</tr>
<tr>
<td>isf(q, b, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of $sf$).</td>
</tr>
<tr>
<td>moment(n, b, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(b, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(b, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(b,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(b, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(b, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(b, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(b, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, b, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.truncnorm

scipy.stats.truncnorm = <scipy.stats._continuous_distns.truncnorm_gen object>

A truncated normal continuous random variable.

As an instance of the rv_continuous class, truncnorm object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The standard form of this distribution is a standard normal truncated to the range [a, b] — notice that a and b are defined over the domain of the standard normal. To convert clip values for a specific mean and standard deviation, use:

\[
a, b = (\text{myclip}_a - \text{my}_\text{mean}) / \text{my}_\text{std}, (\text{myclip}_b - \text{my}_\text{mean}) / \text{my}_\text{std}
\]

truncnorm takes a and b as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, \( \text{truncnorm.pdf}(x, a, b, \text{loc}, \text{scale}) \) is identically equivalent to \( \text{truncnorm.pdf}(y, a, b) / \text{scale} \) with \( y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import truncnorm
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> a, b = 0.1, 2
>>> mean, var, skew, kurt = truncnorm.stats(a, b, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(truncnorm.ppf(0.01, a, b),
... truncnorm.ppf(0.99, a, b), 100)
>>> ax.plot(x, truncnorm.pdf(x, a, b),
... 'r-', lw=5, alpha=0.6, label='truncnorm pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = truncnorm(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:
Generate random numbers:

```python
>>> r = truncnorm.rvs(a, b, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(a, b, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, a, b, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, a, b, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, a, b, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, a, b, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, a, b, loc=0, scale=1)</code></td>
<td>Survival function (also defined as (1 - \text{cdf}), but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, a, b, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, a, b, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, a, b, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, a, b, loc=0, scale=1)</code></td>
<td>Non-central moment of order (n).</td>
</tr>
<tr>
<td><code>stats(a, b, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(a, b, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(a, b, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(a, b, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(a, b, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(a, b, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, a, b, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha ([0, 1]) of the distribution</td>
</tr>
</tbody>
</table>

### scipy.stats.tukeylambda

**scipy.stats.tukeylambda = <scipy.stats._continuous_distns.tukeylambda_gen object>**

A Tukey-Lambda continuous random variable.

As an instance of the `rv_continuous` class, `tukeylambda` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

### Notes

A flexible distribution, able to represent and interpolate between the following distributions:

- Cauchy \((\lambda = -1)\)
- logistic \((\lambda = 0)\)
- approx Normal \((\lambda = 0.14)\)
- uniform from -1 to 1 \((\lambda = 1)\)

`tukeylambda` takes a real number \(\lambda\) (denoted \(\lambda\) in the implementation) as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `tukeylambda.pdf(x, lam, loc, scale)` is identically
equivalent to \( \text{tukeylambda.pdf}(y, \ lam) / \ scale \) with \( y = (x - \ loc) / \ scale \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

**Examples**

```python
>>> from scipy.stats import tukeylambda
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> lam = 3.13
>>> mean, var, skew, kurt = tukeylambda.stats(lam, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(tukeylambda.ppf(0.01, lam), ...
... tukeylambda.ppf(0.99, lam), 100)
>>> ax.plot(x, tukeylambda.pdf(x, lam), ...
... 'r-', lw=5, alpha=0.6, label='tukeylambda pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = tukeylambda(lam)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = tukeylambda.ppf([0.001, 0.5, 0.999], lam)
>>> np.allclose([0.001, 0.5, 0.999], tukeylambda.cdf(vals, lam))
True
```

Generate random numbers:

```python
>>> r = tukeylambda.rvs(lam, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
### Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(lam, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, lam, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, lam, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, lam, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, lam, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, lam, loc=0, scale=1)</code></td>
<td>Survival function (also defined as <code>1 - cdf</code>, but <code>sf</code> is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, lam, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, lam, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of <code>cdf</code> — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, lam, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of <code>sf</code>).</td>
</tr>
<tr>
<td><code>moment(n, lam, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(lam, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(lam, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(lam,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(lam, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(lam, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(lam, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(lam, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, lam, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
**scipy.stats.uniform**

`scipy.stats.uniform = <scipy.stats._continuous_distns.uniform_gen object>`

A uniform continuous random variable.

In the standard form, the distribution is uniform on [0, 1]. Using the parameters `loc` and `scale`, one obtains the uniform distribution on [loc, loc + scale].

As an instance of the `rv_continuous` class, `uniform` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

**Examples**

```python
>>> from scipy.stats import uniform
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> mean, var, skew, kurt = uniform.stats(moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(uniform.ppf(0.01),
... uniform.ppf(0.99), 100)
>>> ax.plot(x, uniform.pdf(x),
... 'r-', lw=5, alpha=0.6, label='uniform pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = uniform()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = uniform.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], uniform.cdf(vals))
True
```

Generate random numbers:

```python
>>> r = uniform.rvs(size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(loc=0, scale=1, moments=’mv’)</code></td>
<td>Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).</td>
</tr>
<tr>
<td><code>entropy(loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.vonmises

scipy.stats.vonmises = <scipy.stats._continuous_distns.vonmises_gen object>
A Von Mises continuous random variable.

As an instance of the rv_continuous class, vonmises object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for vonmises and vonmises_line is:

\[ f(x, \kappa) = \frac{\exp(\kappa \cos(x))}{2\pi I_0(\kappa)} \]

for \(-\pi \leq x \leq \pi, \kappa > 0\). \(I_0\) is the modified Bessel function of order zero (scipy.special.i0).

vonmises is a circular distribution which does not restrict the distribution to a fixed interval. Currently, there is no circular distribution framework in scipy. The cdf is implemented such that \(\text{cdf}(x + 2*\text{np.pi}) == \text{cdf}(x) + 1\).

vonmises_line is the same distribution, defined on \([-\pi, \pi]\) on the real line. This is a regular (i.e. non-circular) distribution.

vonmises and vonmises_line take kappa as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, vonmises.pdf(x, kappa, loc, scale) is identically equivalent to vonmises.pdf(y, kappa) / scale with \(y = (x - \text{loc}) / \text{scale}\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import vonmises
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> kappa = 3.99
>>> mean, var, skew, kurt = vonmises.stats(kappa, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(vonmises.ppf(0.01, kappa),
...                  vonmises.ppf(0.99, kappa), 100)
>>> ax.plot(x, vonmises.pdf(x, kappa),
...         'r-', lw=5, alpha=0.6, label='vonmises pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:
>>> rv = vonmises(kappa)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = vonmises.ppf([0.001, 0.5, 0.999], kappa)
>>> np.allclose([0.001, 0.5, 0.999], vonmises.cdf(vals, kappa))
True

Generate random numbers:

>>> r = vonmises.rvs(kappa, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(kappa, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, kappa, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, kappa, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, kappa, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, kappa, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, kappa, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, kappa, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, kappa, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, kappa, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, kappa, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(kappa, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(kappa, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(kappa,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(kappa, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(kappa, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(kappa, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(kappa, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, kappa, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.vonmises_line

`scipy.stats.vonmises_line = <scipy.stats._continuous_distns.vonmises_gen object>`

A Von Mises continuous random variable.

As an instance of the `rv_continuous` class, `vonmises_line` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `vonmises` and `vonmises_line` is:

\[
f(x, \kappa) = \frac{\exp(\kappa \cos(x))}{2\pi I_0(\kappa)}
\]

for \(-\pi \leq x \leq \pi, \kappa > 0\). \(I_0\) is the modified Bessel function of order zero (`scipy.special.i0`).

`vonmises` is a circular distribution which does not restrict the distribution to a fixed interval. Currently, there is no circular distribution framework in scipy. The `cdf` is implemented such that `cdf(x + 2*np.pi) == cdf(x) + 1`.

`vonmises_line` is the same distribution, defined on \([-\pi, \pi]\) on the real line. This is a regular (i.e. non-circular) distribution.
\texttt{vonmises} and \texttt{vonmises_line} take \texttt{kappa} as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the \texttt{loc} and \texttt{scale} parameters. Specifically, \texttt{vonmises_line.pdf(x, kappa, loc, scale)} is identically equivalent to \texttt{vonmises_line.pdf(y, kappa) / scale} with \(y = (x - \text{loc}) / \text{scale} \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import vonmises_line
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> kappa = 3.99
>>> mean, var, skew, kurt = vonmises_line.stats(kappa, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(vonmises_line.ppf(0.01, kappa), ...
...                vonmises_line.ppf(0.99, kappa), 100)
>>> ax.plot(x, vonmises_line.pdf(x, kappa), ...
...         'r-', lw=5, alpha=0.6, label='vonmises\_line pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = vonmises_line(kappa)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of \texttt{cdf} and \texttt{ppf}:

```python
>>> vals = vonmises_line.ppf([0.001, 0.5, 0.999], kappa)
>>> np.allclose([0.001, 0.5, 0.999], vonmises_line.cdf(vals, kappa))
```

Generate random numbers:

```python
>>> r = vonmises_line.rvs(kappa, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(kappa, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, kappa, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, kappa, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, kappa, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, kappa, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, kappa, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - cdf$, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, kappa, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, kappa, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, kappa, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, kappa, loc=0, scale=1)</code></td>
<td>Non-central moment of order n.</td>
</tr>
<tr>
<td><code>stats(kappa, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(kappa, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(kappa,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(kappa, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(kappa, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(kappa, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(kappa, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, kappa, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction $alpha$ [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.wald

`scipy.stats.wald = <scipy.stats._continuous_distns.wald_gen object>`

A Wald continuous random variable.

As an instance of the `rv_continuous` class, `wald` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `wald` is:

\[f(x) = \frac{1}{\sqrt{2\pi x^3}} \exp\left(-\frac{(x-1)^2}{2x}\right) \]

for \(x \geq 0 \).

`wald` is a special case of `invgauss` with \(\mu = 1 \).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `wald.pdf(x, loc, scale)` is identically equivalent to `wald.pdf(y) / scale` with \(y = (x - loc) / scale \). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import wald
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:
```n
```python
>>> mean, var, skew, kurt = wald.stats(moments='mvsk')
```

Display the probability density function (pdf):
```python
>>> x = np.linspace(wald.ppf(0.01), wald.ppf(0.99), 100)
>>> ax.plot(x, wald.pdf(x), 'r-', lw=5, alpha=0.6, label='wald pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:
```python
>>> rv = wald()
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:
```python
>>> vals = wald.ppf([0.001, 0.5, 0.999])
>>> np.allclose([0.001, 0.5, 0.999], wald.cdf(vals))
```

3.3. API definition
Generate random numbers:

```python
>>> r = wald.rvs(size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(loc=0, scale=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, loc=0, scale=1)</td>
<td>Survival function (also defined as $1 - \text{cdf}$, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.weibull_min

scipy.stats.weibull_min = <scipy.stats._continuous_distns.weibull_min_gen object>

Weibull minimum continuous random variable.

The Weibull Minimum Extreme Value distribution, from extreme value theory (Fisher-Gnedenko theorem), is also often simply called the Weibull distribution. It arises as the limiting distribution of the rescaled minimum of iid random variables.

As an instance of the rv_continuous class, weibull_min object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

weibull_max, numpy.random.Generator.weibull, exponweib
Notes

The probability density function for \texttt{weibull_min} is:

\[
f(x, c) = cx^{c-1} \exp(-x^c)
\]

for \(x > 0, c > 0\).

\texttt{weibull_min} takes \(c\) as a shape parameter for \(c\). (named \(k\) in Wikipedia article and \(a\) in \texttt{numpy.random.
weibull}). Special shape values are \(c = 1\) and \(c = 2\) where Weibull distribution reduces to the \texttt{expon} and \texttt{rayleigh} distributions respectively.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the \texttt{loc} and \texttt{scale} parameters. Specifically, \texttt{weibull_min.pdf(x, c, loc, scale)} is identically equivalent to \texttt{weibull_min.pdf(y, c) / scale} with \(y = (x - \text{loc}) / \text{scale}\). Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

https://en.wikipedia.org/wiki/Weibull_distribution

Examples

```python
>>> from scipy.stats import weibull_min
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> c = 1.79
>>> mean, var, skew, kurt = weibull_min.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(weibull_min.ppf(0.01, c),
... weibull_min.ppf(0.99, c), 100)
>>> ax.plot(x, weibull_min.pdf(x, c),
... 'r-', lw=5, alpha=0.6, label='weibull_min pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = weibull_min(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = weibull_min.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], weibull_min.cdf(vals, c))
```

True
Generate random numbers:

```python
>>> r = weibull_min.rvs(c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

**scipy.stats.weibull_max**

Weibull maximum continuous random variable.

The Weibull Maximum Extreme Value distribution, from extreme value theory (Fisher-Gnedenko theorem), is the limiting distribution of rescaled maximum of iid random variables. This is the distribution of -X if X is from the `weibull_min` function.

As an instance of the `rv_continuous` class, `weibull_max` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

- `weibull_min`
Notes

The probability density function for `weibull_max` is:

$$f(x, c) = c(-x)^{c-1} \exp(-(-x)^c)$$

for $x < 0$, $c > 0$.

`weibull_max` takes $c$ as a shape parameter for $c$.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `weibull_max.pdf(x, c, loc, scale)` is identically equivalent to `weibull_max.pdf(y, c) / scale` with $y = (x - loc) / scale$. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

https://en.wikipedia.org/wiki/Weibull_distribution

Examples

```python
>>> from scipy.stats import weibull_max
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
c = 2.87
>>> mean, var, skew, kurt = weibull_max.stats(c, moments='mvsk')
```  
Display the probability density function (pdf):

```python
>>> x = np.linspace(weibull_max.ppf(0.01, c), ...
... weibull_max.ppf(0.99, c), 100)
>>> ax.plot(x, weibull_max.pdf(x, c), ...
... 'r-', lw=5, alpha=0.6, label='weibull_max pdf')
```  
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = weibull_max(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```  
Check accuracy of cdf and ppf:

```python
>>> vals = weibull_max.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], weibull_max.cdf(vals, c))
True
```  
Generate random numbers:
>> r = weibull_max.rvs(c, size=1000)

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(c, loc=0, scale=1, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pdf(x, c, loc=0, scale=1)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, c, loc=0, scale=1)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, c, loc=0, scale=1)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(x, c, loc=0, scale=1)</code></td>
<td>Survival function (also defined as $1 - \text{cdf}$, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(x, c, loc=0, scale=1)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, c, loc=0, scale=1)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, c, loc=0, scale=1)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>moment(n, c, loc=0, scale=1)</code></td>
<td>Non-central moment of order n.</td>
</tr>
<tr>
<td><code>stats(c, loc=0, scale=1, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(c, loc=0, scale=1)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>fit(data)</code></td>
<td>Parameter estimates for generic data. See <code>scipy.stats.rv_continuous.fit</code> for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td><code>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(c, loc=0, scale=1)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(c, loc=0, scale=1)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(c, loc=0, scale=1)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(c, loc=0, scale=1)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, c, loc=0, scale=1)</code></td>
<td>Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.wrapcauchy

`scipy.stats.wrapcauchy = <scipy.stats._continuous_distns.wrapcauchy_gen object>`

A wrapped Cauchy continuous random variable.

As an instance of the `rv_continuous` class, `wrapcauchy` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for `wrapcauchy` is:

$$ f(x; c) = \frac{1 - c^2}{2\pi(1 + c^2 - 2c\cos(x))} $$

for $0 \leq x \leq 2\pi$, $0 < c < 1$.

`wrapcauchy` takes c as a shape parameter for c.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the `loc` and `scale` parameters. Specifically, `wrapcauchy.pdf(x, c, loc, scale)` is identically equivalent to `wrapcauchy.pdf(y, c) / scale` with $y = (x - \text{loc}) / \text{scale}$. Note that shifting the location
of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

```python
>>> from scipy.stats import wrapcauchy
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> c = 0.0311
>>> mean, var, skew, kurt = wrapcauchy.stats(c, moments='mvsk')
```

Display the probability density function (pdf):

```python
>>> x = np.linspace(wrapcauchy.ppf(0.01, c), ...
... wrapcauchy.ppf(0.99, c), 100)
>>> ax.plot(x, wrapcauchy.pdf(x, c), ...
... 'r-', lw=5, alpha=0.6, label='wrapcauchy pdf')
```

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

```python
>>> rv = wrapcauchy(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
```

Check accuracy of cdf and ppf:

```python
>>> vals = wrapcauchy.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], wrapcauchy.cdf(vals, c))
True
```

Generate random numbers:

```python
>>> r = wrapcauchy.rvs(c, size=1000)
```

And compare the histogram:

```python
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(c, loc=0, scale=1, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pdf(x, c, loc=0, scale=1)</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>logpdf(x, c, loc=0, scale=1)</td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td>cdf(x, c, loc=0, scale=1)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(x, c, loc=0, scale=1)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(x, c, loc=0, scale=1)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(x, c, loc=0, scale=1)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, c, loc=0, scale=1)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, c, loc=0, scale=1)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>moment(n, c, loc=0, scale=1)</td>
<td>Non-central moment of order n</td>
</tr>
<tr>
<td>stats(c, loc=0, scale=1, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(c, loc=0, scale=1)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>fit(data)</td>
<td>Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.</td>
</tr>
<tr>
<td>expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(c, loc=0, scale=1)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(c, loc=0, scale=1)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(c, loc=0, scale=1)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(c, loc=0, scale=1)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, c, loc=0, scale=1)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
Multivariate distributions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>multivariate_normal</code></td>
<td>A multivariate normal random variable.</td>
</tr>
<tr>
<td><code>matrix_normal</code></td>
<td>A matrix normal random variable.</td>
</tr>
<tr>
<td><code>dirichlet</code></td>
<td>A Dirichlet random variable.</td>
</tr>
<tr>
<td><code>wishart</code></td>
<td>A Wishart random variable.</td>
</tr>
<tr>
<td><code>invwishart</code></td>
<td>An inverse Wishart random variable.</td>
</tr>
<tr>
<td><code>dirichlet</code></td>
<td>A Dirichlet random variable.</td>
</tr>
<tr>
<td><code>wishart</code></td>
<td>A Wishart random variable.</td>
</tr>
<tr>
<td><code>multinomial</code></td>
<td>A multinomial random variable.</td>
</tr>
<tr>
<td><code>special_ortho_group</code></td>
<td>A matrix-valued SO(N) random variable.</td>
</tr>
<tr>
<td><code>ortho_group</code></td>
<td>A matrix-valued O(N) random variable.</td>
</tr>
<tr>
<td><code>unitary_group</code></td>
<td>A matrix-valued U(N) random variable.</td>
</tr>
<tr>
<td><code>random_correlation</code></td>
<td>A random correlation matrix.</td>
</tr>
<tr>
<td><code>multivariate_t</code></td>
<td>A multivariate t-distributed random variable.</td>
</tr>
<tr>
<td><code>multivariate_hypergeom</code></td>
<td>A multivariate hypergeometric random variable.</td>
</tr>
</tbody>
</table>

```python
c scipy.stats.multivariate_normal = scipy.stats._multivariate.multivariate_normal_gen object
```

A multivariate normal random variable.

The `mean` keyword specifies the mean. The `cov` keyword specifies the covariance matrix.

Parameters

- **x**
 [array_like] Quantiles, with the last axis of `x` denoting the components.
- **mean**
 [array_like, optional] Mean of the distribution (default zero)
- **cov**
 [array_like, optional] Covariance matrix of the distribution (default one)
- **allow_singular**
 [bool, optional] Whether to allow a singular covariance matrix. (Default: False)
- **random_state**
 [[None, int, `numpy.random.Generator`]
 `numpy.random.RandomState`], optional

 If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used.

 If `seed` is an int, a new `RandomState` instance is used, seeded with `seed`. If `seed` is already
 a `Generator` or `RandomState` instance then that instance is used.

Alternatively, the object may be called (as a function) to fix the mean and covariance parameters, returning a “frozen” multivariate normal random variable:

```python
rv = multivariate_normal(mean=None, cov=1, allow_singular=False)
```

- Frozen object with the same methods but holding the given mean and covariance fixed.

Notes

Setting the parameter mean to None is equivalent to having mean

be the zero-vector. The parameter `cov` can be a scalar, in which case the covariance matrix is the identity times that value, a vector of diagonal entries for the covariance matrix, or a two-dimensional array_like.

The covariance matrix `cov` must be a (symmetric) positive semi-definite matrix. The determinant and inverse of `cov` are computed as the pseudo-determinant and pseudo-inverse, respectively, so that `cov` does not need to have full rank.
The probability density function for `multivariate_normal` is

\[
f(x) = \frac{1}{\sqrt{(2\pi)^k \det \Sigma}} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right),
\]

where \(\mu \) is the mean, \(\Sigma \) the covariance matrix, and \(k \) is the dimension of the space where \(x \) takes values.

New in version 0.14.0.

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.stats import multivariate_normal

>>> x = np.linspace(0, 5, 10, endpoint=False)
>>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y
array([ 0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129,
        0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349])
>>> fig1 = plt.figure()
>>> ax = fig1.add_subplot(111)
>>> ax.plot(x, y)
```

The input quantiles can be any shape of array, as long as the last axis labels the components. This allows us for instance to display the frozen pdf for a non-isotropic random variable in 2D as follows:

```python
>>> x, y = np.mgrid[-1:1:.01, -1:1:.01]
>>> pos = np.dstack((x, y))
>>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])
>>> fig2 = plt.figure()
>>> ax2 = fig2.add_subplot(111)
>>> ax2.contourf(x, y, rv.pdf(pos))
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pdf(x, mean=None, cov=1, allow_singular=False)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, mean=None, cov=1, allow_singular=False)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>cdf(x, mean=None, cov=1, allow_singular=False, maxpts=1000000*dim, abseps=1e-5, releps=1e-5)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(x, mean=None, cov=1, allow_singular=False, maxpts=1000000*dim, abseps=1e-5, releps=1e-5)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>rvs(mean=None, cov=1, size=1, random_state=None)</code></td>
<td>Draw random samples from a multivariate normal distribution.</td>
</tr>
<tr>
<td><code>entropy()</code></td>
<td>Compute the differential entropy of the multivariate normal.</td>
</tr>
</tbody>
</table>

scipy.stats.matrix_normal

```python
scipy.stats.matrix_normal = <scipy.stats._multivariate.matrix_normal_gen object>
```

A matrix normal random variable.

The `mean` keyword specifies the mean. The `rowcov` keyword specifies the among-row covariance matrix. The `colcov` keyword specifies the among-column covariance matrix.

Parameters

- **X** : array_like
 Quatiles, with the last two axes of X denoting the components.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
</table>
| mean | array_like, optional
 Mean of the distribution (default: `None`) |
| rowcov | array_like, optional
 Among-row covariance matrix of the distribution (default: `I`) |
| colcov | array_like, optional
 Among-column covariance matrix of the distribution (default: `I`) |
| random_state | [(None, int, numpy.random.Generator,]
 numpy.random.RandomState], optional |
If seed is None (or np.random), the numpy.random.RandomState singleton is used. If seed is an int, a new RandomState instance is used, seeded with seed. If seed is already a Generator or RandomState instance then that instance is used.

Alternatively, the object may be called (as a function) to fix the mean and covariance parameters, returning a “frozen” matrix normal random variable:

```python
rv = matrix_normal(mean=None, rowcov=1, colcov=1)
```

- Frozen object with the same methods but holding the given mean and covariance fixed.

Notes

If mean is set to None then a matrix of zeros is used for the mean.

The dimensions of this matrix are inferred from the shape of rowcov and colcov, if these are provided, or set to 1 if ambiguous.

rowcov and colcov can be two-dimensional array_likes specifying the covariance matrices directly. Alternatively, a one-dimensional array will be interpreted as the entries of a diagonal matrix, and a scalar or zero-dimensional array will be interpreted as this value times the identity matrix.

The covariance matrices specified by rowcov and colcov must be (symmetric) positive definite. If the samples in X are m × n, then rowcov must be m × m and colcov must be n × n. mean must be the same shape as X.

The probability density function for matrix_normal is

\[
f(X) = (2\pi)^{-\frac{mn}{2}}|U|^\frac{n}{2}|V|^\frac{m}{2} \exp\left(-\frac{1}{2}\text{Tr}\left[U^{-1}(X - M)V^{-1}(X - M)^T\right]\right),
\]

where M is the mean, U the among-row covariance matrix, V the among-column covariance matrix.

The allow_singular behaviour of the multivariate_normal distribution is not currently supported. Covariance matrices must be full rank.

The matrix_normal distribution is closely related to the multivariate_normal distribution. Specifically, Vec(X) (the vector formed by concatenating the columns of X) has a multivariate normal distribution with mean Vec(M) and covariance V ⊗ U (where ⊗ is the Kronecker product). Sampling and pdf evaluation are \(O(m^3 + n^3 + m^2n + mn^2)\) for the matrix normal, but \(O(m^3n^3)\) for the equivalent multivariate normal, making this equivalent form algorithmically inefficient.

New in version 0.17.0.

Examples

```python
>>> from scipy.stats import matrix_normal
```

```python
>>> M = np.arange(6).reshape(3, 2); M
array([[0, 1],
       [2, 3],
       [4, 5]])
>>> U = np.diag([1, 2, 3]); U
array([[1, 0, 0],
       [0, 2, 0],
       [0, 0, 3]])
>>> V = 0.3*np.identity(2); V
```

array([[0.3, 0.2],
 [0.2, 0.3]])
>>> X = M + 0.1; X
array([[0.1, 1.1],
 [2.1, 3.1],
 [4.1, 5.1]])
>>> matrix_normal.pdf(X, mean=M, rowcov=U, colcov=V)
0.023410202050005054

>>> # Equivalent multivariate normal
>>> from scipy.stats import multivariate_normal
>>> vectorised_X = X.T.flatten()
>>> equiv_mean = M.T.flatten()
>>> equiv_cov = np.kron(V, U)
>>> multivariate_normal.pdf(vectorised_X, mean=equiv_mean, cov=equiv_cov)
0.023410202050005054

Methods

``pdf(X, mean=None, rowcov=1, colcov=1)``
Probability density function.

``logpdf(X, mean=None, rowcov=1, colcov=1)``
Log of the probability density function.

``rvs(mean=None, rowcov=1, colcov=1, size=1, random_state=None)``
Draw random samples.

scipy.stats.dirichlet

scipy.stats.dirichlet = <scipy.stats._multivariate.dirichlet_gen object>
A Dirichlet random variable.

The `alpha` keyword specifies the concentration parameters of the distribution.

New in version 0.15.0.

Parameters

- **x** array_like, Quantiles, with the last axis of `x` denoting the components.
- **alpha** array_like, The concentration parameters. The number of entries determines the dimensionality of the distribution.

random_state

``[[None, int, numpy.random.Generator.],
 numpy.random.RandomState], optional``
If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new `RandomState` instance is used, seeded with `seed`. If `seed` is already a `Generator` or `RandomState` instance then that instance is used.

Alternatively, the object may be called (as a function) to fix concentration parameters, returning a “frozen” Dirichlet random variable:

``rv = dirichlet(alpha)``

- Frozen object with the same methods but holding the given concentration parameters fixed.
Notes

Each α entry must be positive. The distribution has only support on the simplex defined by

$$\sum_{i=1}^{K} x_i = 1$$

where $0 < x_i < 1$.

If the quantiles don’t lie within the simplex, a ValueError is raised.

The probability density function for dirichlet is

$$f(x) = \frac{1}{B(\alpha)} \prod_{i=1}^{K} x_i^{\alpha_i - 1}$$

where

$$B(\alpha) = \frac{\prod_{i=1}^{K} \Gamma(\alpha_i)}{\Gamma(\sum_{i=1}^{K} \alpha_i)}$$

and $\alpha = (\alpha_1, \ldots, \alpha_K)$, the concentration parameters and K is the dimension of the space where x takes values.

Note that the dirichlet interface is somewhat inconsistent. The array returned by the rvs function is transposed with respect to the format expected by the pdf and logpdf.

Examples

```python
>>> from scipy.stats import dirichlet

Generate a dirichlet random variable

```quantiles = np.array([0.2, 0.2, 0.6]) # specify quantiles
>>> alpha = np.array([0.4, 5, 15]) # specify concentration parameters
>>> dirichlet.pdf(quantiles, alpha)
0.2843831684937255
```

The same PDF but following a log scale

```python
>>> dirichlet.logpdf(quantiles, alpha)
-1.2574327653159187
```

Once we specify the dirichlet distribution we can then calculate quantities of interest

```python
>>> dirichlet.mean(alpha) # get the mean of the distribution
array([0.01960784, 0.24509804, 0.73529412])
>>> dirichlet.var(alpha) # get variance
array([0.00089829, 0.00864603, 0.00909517])
>>> dirichlet.entropy(alpha) # calculate the differential entropy
-4.3280162474082715
```

We can also return random samples from the distribution
```python
>>> dirichlet.rvs(alpha, size=1, random_state=1)
array([[0.00766178, 0.24670518, 0.74563305]])
>>> dirichlet.rvs(alpha, size=2, random_state=2)
array([[0.01639427, 0.12922732, 0.85437844],
 [0.00156917, 0.19033695, 0.80809388]])
```

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pdf(x, alpha)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, alpha)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>rvs(alpha, size=1, random_state=None)</code></td>
<td>Draw random samples from a Dirichlet distribution.</td>
</tr>
<tr>
<td><code>mean(alpha)</code></td>
<td>The mean of the Dirichlet distribution</td>
</tr>
<tr>
<td><code>var(alpha)</code></td>
<td>The variance of the Dirichlet distribution</td>
</tr>
<tr>
<td><code>entropy(alpha)</code></td>
<td>Compute the differential entropy of the Dirichlet distribution.</td>
</tr>
</tbody>
</table>

#### `scipy.stats.wishart`

`scipy.stats.wishart = <scipy.stats._multivariate.wishart_gen object>`

A Wishart random variable.

The `df` keyword specifies the degrees of freedom. The `scale` keyword specifies the scale matrix, which must be symmetric and positive definite. In this context, the scale matrix is often interpreted in terms of a multivariate normal precision matrix (the inverse of the covariance matrix). These arguments must satisfy the relationship `df > scale.ndim - 1`, but see notes on using the `rvs` method with `df < scale.ndim`.

**Parameters**

- `x` ([array_like]) Quantiles, with the last axis of `x` denoting the components.
- `df` [int] Degrees of freedom, must be greater than or equal to dimension of the scale matrix
- `scale` ([array_like]) Symmetric positive definite scale matrix of the distribution
- `random_state` `[[None, int, numpy.random.Generator],
 numpy.random.RandomState], optional`

If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used.
If `seed` is an int, a new `RandomState` instance is used, seeded with `seed`. If `seed` is already a `Generator` or `RandomState` instance then that instance is used.

Alternatively, the object may be called (as a function) to fix the degrees of freedom and scale parameters, returning a “frozen” Wishart random variable:

```python
rv = wishart(df=1, scale=1)
```

- Frozen object with the same methods but holding the given degrees of freedom and scale fixed.

See also:

- `invwishart`
- `chi2`
### Notes

The scale matrix `scale` must be a symmetric positive definite matrix. Singular matrices, including the symmetric positive semi-definite case, are not supported.

The Wishart distribution is often denoted

\[ W_p(\nu, \Sigma) \]

where \( \nu \) is the degrees of freedom and \( \Sigma \) is the \( p \times p \) scale matrix.

The probability density function for `wishart` has support over positive definite matrices \( S \); if \( S \sim W_p(\nu, \Sigma) \), then its PDF is given by:

\[
f(S) = \frac{|S|^{\nu-p-1}}{2^{p^2/2}|\Sigma|^{\nu/2} \Gamma_p \left( \frac{\nu}{2} \right)} \exp \left( -\text{tr}(\Sigma^{-1} S)/2 \right)
\]

If \( S \sim W_p(\nu, \Sigma) \) (Wishart) then \( S^{-1} \sim W_p^{-1}(\nu, \Sigma^{-1}) \) (inverse Wishart).

If the scale matrix is 1-dimensional and equal to one, then the Wishart distribution \( W_1(\nu, 1) \) collapses to the \( \chi^2(\nu) \) distribution.

The algorithm [2] implemented by the `rvs` method may produce numerically singular matrices with \( p-1 < \nu < p \); the user may wish to check for this condition and generate replacement samples as necessary.

New in version 0.16.0.

### References

[1], [2]

### Examples

```python
gtype >>> import matplotlib.pyplot as plt
gtype >>> from scipy.stats import wishart, chi2
gtype >>> x = np.linspace(1e-5, 8, 100)
gtype >>> w = wishart.pdf(x, df=3, scale=1); w[:5]
gtype array([0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.19296692])
```

```python
gtype >>> c = chi2.pdf(x, 3); c[:5]
gtype array([0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.19296692])
```

```python
gtype >>> plt.plot(x, w)
gtype```

The input quantiles can be any shape of array, as long as the last axis labels the components.

Methods

- `pdf(x, df, scale)`
 - Probability density function.
- `logpdf(x, df, scale)`
 - Log of the probability density function.
- `rvs(df, scale, size=1, random_state=None)`
 - Draw random samples from a Wishart distribution.
- `entropy()`
 - Compute the differential entropy of the Wishart distribution.
scipy.stats.invwishart

scipy.stats.invwishart = <scipy.stats._multivariate.invwishart_gen object>
An inverse Wishart random variable.

The \(df \) keyword specifies the degrees of freedom. The \(scale \) keyword specifies the scale matrix, which must be symmetric and positive definite. In this context, the scale matrix is often interpreted in terms of a multivariate normal covariance matrix.

Parameters

- \(x \) [array_like] Quantiles, with the last axis of \(x \) denoting the components.
- \(df \) [int] Degrees of freedom, must be greater than or equal to dimension of the scale matrix
- \(scale \) [array_like] Symmetric positive definite scale matrix of the distribution
- \(random_state \)
 - [[None, int, numpy.random.Generator,]
 numpy.random.RandomState], optional
 If \(seed \) is None (or \texttt{np.random}), the \texttt{numpy.random.RandomState} singleton is used.
 If \(seed \) is an int, a new \texttt{RandomState} instance is used, seeded with \(seed \). If \(seed \) is already a \texttt{Generator} or \texttt{RandomState} instance then that instance is used.

Alternatively, the object may be called (as a function) to fix the degrees of freedom and scale parameters, returning a “frozen” inverse Wishart random variable:

- \(rv = \text{invwishart}(df=1, scale=1) \)
 - Frozen object with the same methods but holding the given degrees of freedom and scale fixed.

See also:

- wishart
Notes

The scale matrix `scale` must be a symmetric positive definite matrix. Singular matrices, including the symmetric positive semi-definite case, are not supported.

The inverse Wishart distribution is often denoted

\[W_p^{-1}(\nu, \Psi) \]

where \(\nu \) is the degrees of freedom and \(\Psi \) is the \(p \times p \) scale matrix.

The probability density function for `invwishart` has support over positive definite matrices \(S \); if \(S \sim W_p^{-1}(\nu, \Sigma) \), then its PDF is given by:

\[
f(S) = \frac{|\Sigma|^{\frac{\nu}{2}}}{2^\frac{\nu p}{2} |S|^{\frac{\nu + p + 1}{2}} \Gamma_p \left(\frac{\nu}{2} \right)} \exp \left(-\text{tr}(\Sigma S^{-1})/2 \right)
\]

If \(S \sim W_p^{-1}(\nu, \Psi) \) (inverse Wishart) then \(S^{-1} \sim W_p(\nu, \Psi^{-1}) \) (Wishart).

If the scale matrix is 1-dimensional and equal to one, then the inverse Wishart distribution \(W_1(\nu, 1) \) collapses to the inverse Gamma distribution with parameters shape = \(\frac{\nu}{2} \) and scale = \(\frac{1}{2} \).

New in version 0.16.0.

References

[1], [2]

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.stats import invwishart, invgamma
>>> x = np.linspace(0.01, 1, 100)
>>> iw = invwishart.pdf(x, df=6, scale=1)
>>> iw[:3]
array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03])
>>> ig = invgamma.pdf(x, 6/2., scale=1./2)
>>> ig[:3]
array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03])
>>> plt.plot(x, iw)
```

The input quantiles can be any shape of array, as long as the last axis labels the components.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pdf(x, df, scale)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, df, scale)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>rvs(df, scale, size=1, random_state=None)</code></td>
<td>Draw random samples from an inverse Wishart distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.multinomial

scipy.stats.multinomial = <scipy.stats._multivariate.multinomial_gen object>
A multinomial random variable.

Parameters

- x : [array_like] Quantiles, with the last axis of x denoting the components.
- n : [int] Number of trials
- p : [array_like] Probability of a trial falling into each category; should sum to 1
- random_state : [{None, int, numpy.random.Generator, numpy.random.RandomState}, optional]

If seed is None (or np.random), the numpy.random.RandomState singleton is used.
If seed is an int, a new RandomState instance is used, seeded with seed. If seed is already
a Generator or RandomState instance then that instance is used.

See also:

scipy.stats.binom
The binomial distribution.

numpy.random.Generator.multinomial
Sampling from the multinomial distribution.

scipy.stats.multivariate_hypergeom
The multivariate hypergeometric distribution.
Notes

n should be a positive integer. Each element of p should be in the interval $[0, 1]$ and the elements should sum to 1. If they do not sum to 1, the last element of the p array is not used and is replaced with the remaining probability left over from the earlier elements.

Alternatively, the object may be called (as a function) to fix the n and p parameters, returning a “frozen” multinomial random variable:

The probability mass function for multinomial is

$$f(x) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k},$$

supported on $x = (x_1, \ldots, x_k)$ where each x_i is a nonnegative integer and their sum is n.

New in version 0.19.0.

Examples

```python
>>> from scipy.stats import multinomial
>>> rv = multinomial(8, [0.3, 0.2, 0.5])
>>> rv.pmf([1, 3, 4])
0.042000000000000072
```

The multinomial distribution for $k = 2$ is identical to the corresponding binomial distribution (tiny numerical differences notwithstanding):

```python
>>> from scipy.stats import binom
>>> multinomial.pmf([3, 4], n=7, p=[0.4, 0.6])
0.29030399999999973
>>> binom.pmf(3, 7, 0.4)
0.29030400000000012
```

The functions `pmf`, `logpmf`, `entropy`, and `cov` support broadcasting, under the convention that the vector parameters (x and p) are interpreted as if each row along the last axis is a single object. For instance:

```python
>>> multinomial.pmf([[3, 4], [3, 5]], n=[7, 8], p=[.3, .7])
array([0.2268945, 0.25412184])
```

Here, $x\text{.shape} == (2, 2), n\text{.shape} == (2,),$ and $p\text{.shape} == (2,)$, but following the rules mentioned above they behave as if the rows [3, 4] and [3, 5] in x and [.3, .7] in p were a single object, and as if we had $x\text{.shape} == (2,)$, $n\text{.shape} == (2,)$, and $p\text{.shape} == ()$. To obtain the individual elements without broadcasting, we would do this:

```python
>>> multinomial.pmf([3, 4], n=7, p=[.3, .7])
0.2268945
>>> multinomial.pmf([3, 5], 8, p=[.3, .7])
0.25412184
```

This broadcasting also works for `cov`, where the output objects are square matrices of size $p\text{.shape}[-1]$. For example:

```python
>>> multinomial.cov([4, 5], [.3, .7], [.4, .6])
array([[ 0.84, -0.84],
       [-0.84,  0.84]])
```
In this example, `n.shape == (2,)` and `p.shape == (2, 2)`, and following the rules above, these broadcast as if `p.shape == (2,)`. Thus the result should also be of shape `(2,)`. But since each output is a `2 x 2` matrix, the result in fact has shape `(2, 2, 2)`, where `result[0]` is equal to `multinomial.cov(n=4, p=[.3, .7])` and `result[1]` is equal to `multinomial.cov(n=5, p=[.4, .6])`.

Methods

```
```
pmf(x, n, p)``
```
Probability mass function.

```
```
logpmf(x, n, p)``
```
Log of the probability mass function.

```
```
rvs(n, p, size=1, random_state=None)``
```
Draw random samples from a multinomial distribution.

```
```
entropy(n, p)``
```
Compute the entropy of the multinomial distribution.

```
```
cov(n, p)``
```
Compute the covariance matrix of the multinomial distribution.

**scipy.stats.special_ortho_group**

````
scipy.stats.special_ortho_group =
<scipy.stats._multivariate.special_ortho_group_gen object>
```
A matrix-valued SO(N) random variable.

Return a random rotation matrix, drawn from the Haar distribution (the only uniform distribution on SO(n)).

The `dim` keyword specifies the dimension N.

**Parameters**

- `dim` [scalar] Dimension of matrices

**See also:**

`ortho_group`, `scipy.spatial.transform.Rotation.random`

**Notes**

This class is wrapping the random_rot code from the MDP Toolkit, https://github.com/mdp-toolkit/mdp-toolkit

Return a random rotation matrix, drawn from the Haar distribution (the only uniform distribution on SO(n)). The algorithm is described in the paper Stewart, G.W., “The efficient generation of random orthogonal matrices with an application to condition estimators”, SIAM Journal on Numerical Analysis, 17(3), pp. 403-409, 1980. For more information see https://en.wikipedia.org/wiki/Orthogonal_matrix#Randomization

See also the similar `ortho_group`. For a random rotation in three dimensions, see `scipy.spatial.transform.Rotation.random`. 
Examples

```python
>>> from scipy.stats import special_ortho_group
>>> x = special_ortho_group.rvs(3)

>>> np.dot(x, x.T)
array([[1.00000000e+00, 1.13231364e-17, -2.86852790e-16],
 [1.13231364e-17, 1.00000000e+00, -1.46845020e-16],
 [-2.86852790e-16, -1.46845020e-16, 1.00000000e+00]])

>>> import scipy.linalg

>>> scipy.linalg.det(x)
1.0
```

This generates one random matrix from SO(3). It is orthogonal and has a determinant of 1.

Methods

```
`rvs(dim=None, size=1, random_state=None)`
```
Draw random samples from SO(N).

```
scipy.stats.ortho_group
```

*scipy.stats.ortho_group* = <scipy.stats._multivariate.ortho_group_gen object>
A matrix-valued O(N) random variable.

Return a random orthogonal matrix, drawn from the O(N) Haar distribution (the only uniform distribution on O(N)).

The *dim* keyword specifies the dimension N.

**Parameters**

- dim : [scalar] Dimension of matrices

**Notes**

This class is closely related to *special_ortho_group*.

Some care is taken to avoid numerical error, as per the paper by Mezzadri.

**References**

[1]
Examples

```python
>>> from scipy.stats import ortho_group
>>> x = ortho_group.rvs(3)

>>> np.dot(x, x.T)
array([[1.00000000e+00, 1.13231364e-17, 2.86852790e-16],
 [1.13231364e-17, 1.00000000e+00, -1.46845020e-16],
 [2.86852790e-16, -1.46845020e-16, 1.00000000e+00]])

>>> import scipy.linalg
>>> np.fabs(scipy.linalg.det(x))
1.0
```

This generates one random matrix from O(3). It is orthogonal and has a determinant of +1 or -1.

Methods

```
``
| Draw random samples from O(N). |
|``rvs(dim=None, size=1, random_state=None)``

scipy.stats.unitary_group

```
scipy.stats.unitary_group = <scipy.stats._multivariate.unitary_group_gen
object>
```

A matrix-valued U(N) random variable.

Return a random unitary matrix.

The `dim` keyword specifies the dimension N.

Parameters

- **dim** [scalar] Dimension of matrices

Notes

This class is similar to `ortho_group`.

References

[1]
Examples

```python
>>> from scipy.stats import unitary_group
>>> x = unitary_group.rvs(3)
```

```python
>>> np.dot(x, x.conj().T)
array([[ 1.00000000e+00,  1.13231364e-17,  2.86852790e-16],
       [ 1.13231364e-17,  1.00000000e+00, -1.46845020e-16],
       [ 2.86852790e-16, -1.46845020e-16,  1.00000000e+00]])
```

This generates one random matrix from U(3). The dot product confirms that it is unitary up to machine precision.

Methods

```
rvs(dim=None, size=1, random_state=None)``

Draw random samples from U(N).

scipy.stats.random_correlation

scipy.stats.random_correlation =
<scipy.stats._multivariate.random_correlation_gen object>

A random correlation matrix.

Return a random correlation matrix, given a vector of eigenvalues.

The `eigs` keyword specifies the eigenvalues of the correlation matrix, and implies the dimension.

Parameters

- `eigs` [1d ndarray] Eigenvalues of correlation matrix.

Notes

Generates a random correlation matrix following a numerically stable algorithm spelled out by Davies & Higham. This algorithm uses a single O(N) similarity transformation to construct a symmetric positive semi-definite matrix, and applies a series of Givens rotations to scale it to have ones on the diagonal.

References

[1]

Examples

```python
>>> from scipy.stats import random_correlation
>>> rng = np.random.default_rng()
>>> x = random_correlation.rvs((.5, .8, 1.2, 1.5), random_state=rng)
>>> x
array([[1. , -0.07198934, -0.20411041, -0.24385796],
 [-0.07198934, 1. , 0.12968613, -0.29471382],
 [-0.20411041, 0.12968613, 1. , 0.2828693]],
 (continues on next page)
```python
>>> import scipy.linalg
>>> e, v = scipy.linalg.eigh(x)
>>> e
array([ 0.5,  0.8,  1.2,  1.5])
```

Methods

```python
```
```r
`rvs(eigs=None, random_state=None)`
```r
draw random correlation matrices, all with eigenvalues `eigs`
```

**scipy.stats.multivariate_t**

```python
scipy.stats.multivariate_t = <scipy.stats._multivariate.multivariate_t_gen object>
```

A multivariate t-distributed random variable.

The `loc` parameter specifies the location. The `shape` parameter specifies the positive semidefinite shape matrix. The `df` parameter specifies the degrees of freedom.

In addition to calling the methods below, the object itself may be called as a function to fix the location, shape matrix, and degrees of freedom parameters, returning a “frozen” multivariate t-distribution random.

**Parameters**

- `x` [array_like] Quantiles, with the last axis of `x` denoting the components.
- `loc` [array_like, optional] Location of the distribution. (default `0`)
- `shape` [array_like, optional] Positive semidefinite matrix of the distribution. (default `1`)
- `df` [float, optional] Degrees of freedom of the distribution; must be greater than zero. If `np.inf` then results are multivariate normal. The default is `1`.
- `allow_singular` [bool, optional] Whether to allow a singular matrix. (default `False`)
- `random_state` [[None, int, numpy.random.Generator],
numpy.random.RandomState], optional

If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new `RandomState` instance is used, seeded with `seed`. If `seed` is already a `Generator` or `RandomState` instance then that instance is used.

**Notes**

Setting the parameter `loc` to `None` is equivalent to having `loc` be the zero-vector. The parameter `shape` can be a scalar, in which case the shape matrix is the identity times that value, a vector of diagonal entries for the shape matrix, or a two-dimensional array_like. The matrix `shape` must be a (symmetric) positive semidefinite matrix. The determinant and inverse of `shape` are computed as the pseudo-determinant and pseudo-inverse, respectively, so that `shape` does not need to have full rank.

The probability density function for `multivariate_t` is

```latex
f(x) = \frac{\Gamma(\nu + p)/2}{\Gamma(\nu/2)\nu^{p/2}\pi^{p/2}|\Sigma|^{1/2}} \left[1 + \frac{1}{\nu}(x - \mu)^\top \Sigma^{-1}(x - \mu) \right]^{-(\nu+p)/2},
```
where $p$ is the dimension of $x$, $\mu$ is the $p$-dimensional location, $\Sigma$ the $p \times p$-dimensional shape matrix, and $\nu$ is the degrees of freedom.

New in version 1.6.0.

**Examples**

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.stats import multivariate_t
>>> x, y = np.mgrid[-1:3:.01, -2:1.5:.01]
>>> pos = np.dstack((x, y))
>>> rv = multivariate_t([1.0, -0.5], [[2.1, 0.3], [0.3, 1.5]], df=2)
>>> fig, ax = plt.subplots(1, 1)
>>> ax.set_aspect('equal')
>>> plt.contourf(x, y, rv.pdf(pos))
```

![Contour plot of a multivariate t-distribution](image)

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pdf(x, loc=None, shape=1, df=1, allow_singular=False)</code></td>
<td>Probability density function.</td>
</tr>
<tr>
<td><code>logpdf(x, loc=None, shape=1, df=1, allow_singular=False)</code></td>
<td>Log of the probability density function.</td>
</tr>
<tr>
<td><code>rvs(loc=None, shape=1, df=1, size=1, random_state=None)</code></td>
<td>Draw random samples from a multivariate t-distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.multivariate_hypergeom

scipy.stats.multivariate_hypergeom =
<scipy.stats._multivariate.multivariate_hypergeom_gen object>
A multivariate hypergeometric random variable.

Parameters

- **m** [array_like] The number of each type of object in the population. That is, \( m[i] \) is the number of objects of type \( i \).
- **n** [array_like] The number of samples taken from the population.
- **random_state**
  - [{None, int, numpy.random.Generator,}
    numpy.random.RandomState], optional
  - If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used.
  - If `seed` is an int, a new `RandomState` instance is used, seeded with `seed`. If `seed` is already a `Generator` or `RandomState` instance then that instance is used.

See also:

- **scipy.stats.hypergeom**
  - The hypergeometric distribution.
- **scipy.stats.multinomial**
  - The multinomial distribution.

Notes

\( m \) must be an array of positive integers. If the quantile \( i \) contains values out of the range \([0, m_i]\) where \( m_i \) is the number of objects of type \( i \) in the population or if the parameters are inconsistent with one another (e.g. \( x \cdot \text{sum()} \) \( != n \)), methods return the appropriate value (e.g. 0 for `pmf`). If \( m \) or \( n \) contain negative values, the result will contain `nan` there.

The probability mass function for `multivariate_hypergeom` is

\[
P(X_1 = x_1, X_2 = x_2, \ldots, X_k = x_k) = \frac{(m_1)}{(x_1)} \frac{(m_2)}{(x_2)} \cdots \frac{(m_k)}{(x_k)} \frac{M}{n},
\]

\((x_1, x_2, \ldots, x_k) \in \mathbb{N}^k \text{ with } \sum_{i=1}^{k} x_i = n\)

where \( m_i \) are the number of objects of type \( i \), \( M \) is the total number of objects in the population (sum of all the \( m_i \)), and \( n \) is the size of the sample to be taken from the population.

New in version 1.6.0.
References

[1], [2]

Examples

To evaluate the probability mass function of the multivariate hypergeometric distribution, with a dichotomous population of size 10 and 20, at a sample of size 12 with 8 objects of the first type and 4 objects of the second type, use:

```python
>>> from scipy.stats import multivariate_hypergeom
>>> multivariate_hypergeom.pmf(x=[8, 4], m=[10, 20], n=12)
0.0025207176631464523
```

The `multivariate_hypergeom` distribution is identical to the corresponding `hypergeom` distribution (tiny numerical differences notwithstanding) when only two types (good and bad) of objects are present in the population as in the example above. Consider another example for a comparison with the hypergeometric distribution:

```python
>>> from scipy.stats import hypergeom
>>> multivariate_hypergeom.pmf(x=[3, 1], m=[10, 5], n=4)
0.4395604395604395
>>> hypergeom.pmf(k=3, M=15, n=4, N=10)
0.43956043956044005
```

The functions `pmf`, `logpmf`, `mean`, `var`, `cov`, and `rvs` support broadcasting, under the convention that the vector parameters (`x`, `m`, and `n`) are interpreted as if each row along the last axis is a single object. For instance, we can combine the previous two calls to `multivariate_hypergeom` as

```python
>>> multivariate_hypergeom.pmf(x=[[8, 4], [3, 1]], m=[[10, 20], [10, 5]], ...
... n=[12, 4])
array([0.00252072, 0.43956044])
```

This broadcasting also works for `cov`, where the output objects are square matrices of size `m.shape[-1]`. For example:

```python
>>> multivariate_hypergeom.cov(m=[[7, 9], [10, 15]], n=8, 12)
array([[[1.05, -1.05],
 [-1.05, 1.05]],
 [[1.56, -1.56],
 [-1.56, 1.56]])
```

That is, `result[0]` is equal to `multivariate_hypergeom.cov(m=[7, 9], n=8)` and `result[1]` is equal to `multivariate_hypergeom.cov(m=[10, 15], n=12)`.

Alternatively, the object may be called (as a function) to fix the `m` and `n` parameters, returning a “frozen” multivariate hypergeometric random variable.

```python
>>> rv = multivariate_hypergeom(m=[10, 20], n=12)
>>> rv.pmf(x=[8, 4])
0.0025207176631464523
Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pmf(x, m, n)</code></td>
<td>Probability mass function.</td>
</tr>
<tr>
<td><code>logpmf(x, m, n)</code></td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td><code>rvs(m, n, size=1, random_state=None)</code></td>
<td>Draw random samples from a multivariate hypergeometric distribution.</td>
</tr>
<tr>
<td><code>mean(m, n)</code></td>
<td>Mean of the multivariate hypergeometric distribution.</td>
</tr>
<tr>
<td><code>var(m, n)</code></td>
<td>Variance of the multivariate hypergeometric distribution.</td>
</tr>
<tr>
<td><code>cov(m, n)</code></td>
<td>Compute the covariance matrix of the multivariate hypergeometric distribution.</td>
</tr>
</tbody>
</table>

Discrete distributions

- `bernoulli` A Bernoulli discrete random variable.
- `betabinom` A beta-binomial discrete random variable.
- `binom` A binomial discrete random variable.
- `boltzmann` A Boltzmann (Truncated Discrete Exponential) random variable.
- `diaplace` A Laplacian discrete random variable.
- `geom` A geometric discrete random variable.
- `hypergeom` A hypergeometric discrete random variable.
- `logser` A Logarithmic (Log-Series, Series) discrete random variable.
- `nbinom` A negative binomial discrete random variable.
- `nchypergeom_fisher` A Fisher’s noncentral hypergeometric discrete random variable.
- `nchypergeom_wallenius` A Wallenius’ noncentral hypergeometric discrete random variable.
- `nhypergeom` A negative hypergeometric discrete random variable.
- `planck` A Planck discrete exponential random variable.
- `poisson` A Poisson discrete random variable.
- `randint` A uniform discrete random variable.
- `skellam` A Skellam discrete random variable.
- `yulesimon` A Yule-Simon discrete random variable.
- `zipf` A Zipf (Zeta) discrete random variable.
- `zipfian` A Zipfian discrete random variable.
scipy.stats.bernoulli

scipy.stats.bernoulli = <scipy.stats._discrete_distns.bernoulli_gen object>
A Bernoulli discrete random variable.

As an instance of the rv_discrete class, bernoulli object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for bernoulli is:

\[
f(k) = \begin{cases}
1 - p & \text{if } k = 0 \\
p & \text{if } k = 1
\end{cases}
\]

for \(k \in \{0, 1\} \), \(0 \leq p \leq 1 \)

bernoulli takes \(p \) as shape parameter, where \(p \) is the probability of a single success and \(1 - p \) is the probability of a single failure.

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc parameter. Specifically, bernoulli.pmf(k, p, loc) is identically equivalent to bernoulli.pmf(k - loc, p).

Examples

```python
definite
from scipy.stats import bernoulli
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:
```n
```python
>>> p = 0.3
>>> mean, var, skew, kurt = bernoulli.stats(p, moments='mvsk')
```

Display the probability mass function (pmf):
```python
>>> x = np.arange(bernoulli.ppf(0.01, p),
...    bernoulli.ppf(0.99, p))
>>> ax.plot(x, bernoulli.pmf(x, p), 'bo', ms=8, label='Bernoulli pmf')
>>> ax.vlines(x, 0, bernoulli.pmf(x, p), colors='b', lw=5, alpha=0.5)
```

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:
```python
>>> rv = bernoulli(p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, 
...    label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

Check accuracy of cdf and ppf:
```python
>>> prob = bernoulli.cdf(x, p)
>>> np.allclose(x, bernoulli.ppf(prob, p))
True

Generate random numbers:

```python
>>> r = bernoulli.rvs(p, size=1000)
```

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(p, loc=0, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pmf(k, p, loc=0)</td>
<td>Probability mass function.</td>
</tr>
<tr>
<td>logpmf(k, p, loc=0)</td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td>cdf(k, p, loc=0)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(k, p, loc=0)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(k, p, loc=0)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(k, p, loc=0)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, p, loc=0)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, p, loc=0)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>stats(p, loc=0, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(p, loc=0)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>expect(func, args=(p,), loc=0, lb=None, ub=None, conditional=False)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(p, loc=0)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(p, loc=0)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(p, loc=0)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(p, loc=0)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, p, loc=0)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.betabinom

scipy.stats.betabinom = <scipy.stats._discrete_distns.betabinom_gen object>
A beta-binomial discrete random variable.

As an instance of the rv_discrete class, betabinom object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

beta, binom

Notes

The beta-binomial distribution is a binomial distribution with a probability of success $p$ that follows a beta distribution.

The probability mass function for betabinom is:

$$ f(k) = \binom{n}{k} \frac{B(k + a, n - k + b)}{B(a, b)} $$

for $k \in \{0, 1, \ldots, n\}$, $n \geq 0$, $a > 0$, $b > 0$, where $B(a, b)$ is the beta function.

betabinom takes $n$, $a$, and $b$ as shape parameters.

References

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc parameter. Specifically, betabinom.pmf($k$, $n$, $a$, $b$, loc) is identically equivalent to betabinom.pmf($k$ - loc, $n$, $a$, $b$).

New in version 1.4.0.

[1]

Examples

```python
>>> from scipy.stats import betabinom
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> n, a, b = 5, 2.3, 0.63
>>> mean, var, skew, kurt = betabinom.stats(n, a, b, moments='mvsk')
```

Display the probability mass function (pmf):

```python
>>> x = np.arange(betabinom.ppf(0.01, n, a, b),
... betabinom.ppf(0.99, n, a, b))
>>> ax.plot(x, betabinom.pmf(x, n, a, b), 'bo', ms=8, label='betabinom pmf')
>>> ax.vlines(x, 0, betabinom.pmf(x, n, a, b), colors='b', lw=5, alpha=0.5)
```
Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

```python
>>> rv = betabinom(n, a, b)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

Check accuracy of `cdf` and `ppf`:

```python
>>> prob = betabinom.cdf(x, n, a, b)
>>> np.allclose(x, betabinom.ppf(prob, n, a, b))
True
```

Generate random numbers:

```python
>>> r = betabinom.rvs(n, a, b, size=1000)
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(n, a, b, loc=0, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pmf(k, n, a, b, loc=0)</code></td>
<td>Probability mass function.</td>
</tr>
<tr>
<td><code>logpmf(k, n, a, b, loc=0)</code></td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td><code>cdf(k, n, a, b, loc=0)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(k, n, a, b, loc=0)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(k, n, a, b, loc=0)</code></td>
<td>Survival function (also defined as ( 1 - cdf ), but ( sf ) is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(k, n, a, b, loc=0)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, n, a, b, loc=0)</code></td>
<td>Percent point function (inverse of ( cdf ) — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, n, a, b, loc=0)</code></td>
<td>Inverse survival function (inverse of ( sf )).</td>
</tr>
<tr>
<td><code>stats(n, a, b, loc=0, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(n, a, b, loc=0)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>expect(func, args=(n, a, b), loc=0, lb=None, ub=None, conditional=False)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(n, a, b, loc=0)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(n, a, b, loc=0)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(n, a, b, loc=0)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(n, a, b, loc=0)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, n, a, b, loc=0)</code></td>
<td>Endpoints of the range that contains fraction alpha ([0, 1]) of the distribution.</td>
</tr>
</tbody>
</table>

**scipy.stats.binom**

```
scipy.stats.binom = <scipy.stats._discrete_distns.binom_gen object>
```

A binomial discrete random variable.

As an instance of the `rv_discrete` class, `binom` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

**See also:**

`hypergeom`, `nbinom`, `nhypergeom`

**Notes**

The probability mass function for `binom` is:

\[
f(k) = \binom{n}{k} p^k (1 - p)^{n-k}
\]

for \( k \in \{0, 1, \ldots, n\} \), \( 0 \leq p \leq 1 \)

`binom` takes \( n \) and \( p \) as shape parameters, where \( p \) is the probability of a single success and \( 1 - p \) is the probability of a single failure.

The probability mass function above is defined in the “standardized” form. To shift distribution use the `loc` parameter. Specifically, `binom.pmf(k, n, p, loc)` is identically equivalent to `binom.pmf(k - loc, n, p)`. 
Examples

```python
>>> from scipy.stats import binom
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> n, p = 5, 0.4
>>> mean, var, skew, kurt = binom.stats(n, p, moments='mvsk')
```

Display the probability mass function (pmf):

```python
>>> x = np.arange(binom.ppf(0.01, n, p),
... binom.ppf(0.99, n, p))
>>> ax.plot(x, binom.pmf(x, n, p), 'bo', ms=8, label='binom pmf')
>>> ax.vlines(x, 0, binom.pmf(x, n, p), colors='b', lw=5, alpha=0.5)
```

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

```python
>>> rv = binom(n, p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

Check accuracy of cdf and ppf:

```python
>>> prob = binom.cdf(x, n, p)
>>> np.allclose(x, binom.ppf(prob, n, p))
```

True

Generate random numbers:
```python
>>> r = binom.rvs(n, p, size=1000)
```

## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(n, p, loc=0, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pmf(k, n, p, loc=0)</td>
<td>Probability mass function.</td>
</tr>
<tr>
<td>logpmf(k, n, p, loc=0)</td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td>cdf(k, n, p, loc=0)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(k, n, p, loc=0)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(k, n, p, loc=0)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(k, n, p, loc=0)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, n, p, loc=0)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, n, p, loc=0)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>stats(n, p, loc=0, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(n, p, loc=0)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>expect(func, args=(n, p), loc=0, lb=None, ub=None, conditional=False)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(n, p, loc=0)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(n, p, loc=0)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(n, p, loc=0)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(n, p, loc=0)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, n, p, loc=0)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

### scipy.stats.boltzmann

```python
scipy.stats.boltzmann = <scipy.stats._discrete_distns.boltzmann_gen object>
```

A Boltzmann (Truncated Discrete Exponential) random variable.

As an instance of the `rv_discrete` class, `boltzmann` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

### Notes

The probability mass function for `boltzmann` is:

\[ f(k) = (1 - \exp(-\lambda)) \exp(-\lambda k)/(1 - \exp(-\lambda N)) \]

for \( k = 0, ..., N - 1 \).

`boltzmann` takes \( \lambda > 0 \) and \( N > 0 \) as shape parameters.

The probability mass function above is defined in the “standardized” form. To shift distribution use the `loc` parameter. Specifically, `boltzmann.pmf(k, lambda_, N, loc)` is identically equivalent to `boltzmann.pmf(k - loc, lambda_, N)`. 

3.3. API definition 2723
Examples

```python
>>> from scipy.stats import boltzmann
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> lambda_, N = 1.4, 19
>>> mean, var, skew, kurt = boltzmann.stats(lambda_, N, moments='mvsk')
```

Display the probability mass function (pmf):

```python
>>> x = np.arange(boltzmann.ppf(0.01, lambda_, N), ...
... boltzmann.ppf(0.99, lambda_, N))
>>> ax.plot(x, boltzmann.pmf(x, lambda_, N), 'bo', ms=8, label='boltzmann pmf')
>>> ax.vlines(x, 0, boltzmann.pmf(x, lambda_, N), colors='b', lw=5, ...
... alpha=0.5)
```

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

```python
>>> rv = boltzmann(lambda_, N)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ...
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

Check accuracy of `cdf` and `ppf`:
```python
>>> prob = boltzmann.cdf(x, lambda_, N)
>>> np.allclose(x, boltzmann.ppf(prob, lambda_, N))
True
```

Generate random numbers:

```python
>>> r = boltzmann.rvs(lambda_, N, size=1000)
```

### Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(lambda_, N, loc=0, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pmf(k, lambda_, N, loc=0)</td>
<td>Probability mass function.</td>
</tr>
<tr>
<td>logpmf(k, lambda_, N, loc=0)</td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td>cdf(k, lambda_, N, loc=0)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(k, lambda_, N, loc=0)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(k, lambda_, N, loc=0)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(k, lambda_, N, loc=0)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, lambda_, N, loc=0)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, lambda_, N, loc=0)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>stats(lambda_, N, loc=0, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(lambda_, N, loc=0)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>expect(func, args=(lambda_, N), loc=0, lb=None, ub=None, conditional=False)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(lambda_, N, loc=0)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(lambda_, N, loc=0)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(lambda_, N, loc=0)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(lambda_, N, loc=0)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, lambda_, N, loc=0)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.dlaplace

scipy.stats.dlaplace = <scipy.stats._discrete_distns.dlaplace_gen object>

A Laplacian discrete random variable.

As an instance of the rv_discrete class, dlaplace object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for dlaplace is:

\[ f(k) = \tanh(a/2) \exp(-a|k|) \]

for integers \( k \) and \( a > 0 \).

dlaplace takes \( a \) as shape parameter.

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc parameter. Specifically, dlaplace.pmf(\( k, a, loc \)) is identically equivalent to dlaplace.pmf(\( k - loc, a \)).

Examples

```python
>>> from scipy.stats import dlaplace
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> a = 0.8
>>> mean, var, skew, kurt = dlaplace.stats(a, moments='mvsk')
```

Display the probability mass function (pmf):

```python
>>> x = np.arange(dlaplace.ppf(0.01, a), ...
 dlaplace.ppf(0.99, a))
>>> ax.plot(x, dlaplace.pmf(x, a), 'bo', ms=8, label='dlaplace pmf')
>>> ax.vlines(x, 0, dlaplace.pmf(x, a), colors='b', lw=5, alpha=0.5)
```

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

```python
>>> rv = dlaplace(a)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=4, ...
 label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

Check accuracy of cdf and ppf:
```python
>>> prob = dlaplace.cdf(x, a)
>>> np.allclose(x, dlaplace.ppf(prob, a))
```

Generate random numbers:

```python
>>> r = dlaplace.rvs(a, size=1000)
```

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(a, loc=0, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pmf(k, a, loc=0)</td>
<td>Probability mass function.</td>
</tr>
<tr>
<td>logpmf(k, a, loc=0)</td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td>cdf(k, a, loc=0)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(k, a, loc=0)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(k, a, loc=0)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(k, a, loc=0)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, a, loc=0)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, a, loc=0)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>stats(a, loc=0, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(a, loc=0)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>expect(func, args=(a,), loc=0, lb=None, ub=None, conditional=False)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(a, loc=0)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(a, loc=0)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(a, loc=0)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(a, loc=0)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, a, loc=0)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

3.3. API definition
scipy.stats.geom

scipy.stats.geom = <scipy.stats._discrete_distns.geom_gen object>
   A geometric discrete random variable.
   As an instance of the rv_discrete class, geom object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

   See also:

   planck

Notes

The probability mass function for geom is:

   \[ f(k) = (1 - p)^{k-1} p \]

for \( k \geq 1, 0 < p \leq 1 \)

geom takes \( p \) as shape parameter, where \( p \) is the probability of a single success and \( 1 - p \) is the probability of a single failure.

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc parameter. Specifically, geom.pmf \((k, p, loc)\) is identically equivalent to geom.pmf \((k - loc, p)\).

Examples

```python
>>> from scipy.stats import geom
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:
```n
```python
>>> p = 0.5
>>> mean, var, skew, kurt = geom.stats(p, moments='mvsk')
```

Display the probability mass function (pmf):
```python
>>> x = np.arange(geom.ppf(0.01, p),
... geom.ppf(0.99, p))
>>> ax.plot(x, geom.pmf(x, p), 'bo', ms=8, label='geom pmf')
>>> ax.vlines(x, 0, geom.pmf(x, p), colors='b', lw=5, alpha=0.5)
```

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:
```python
>>> rv = geom(p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```
Check accuracy of \texttt{cdf} and \texttt{ppf}:

```python
>>> prob = geom.cdf(x, p)
>>> np.allclose(x, geom.ppf(prob, p))
```

```
True
```

Generate random numbers:

```python
>>> r = geom.rvs(p, size=1000)
```
scipy.stats.hypergeom

scipy.stats.hypergeom = <scipy.stats._discrete_distns.hypergeom_gen object>
A hypergeometric discrete random variable.

The hypergeometric distribution models drawing objects from a bin. $M$ is the total number of objects, $n$ is total number of Type I objects. The random variate represents the number of Type I objects in $N$ drawn without replacement from the total population.

As an instance of the rv_discrete class, hypergeom object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

nhypergeom, binom, nbinom

Notes

The symbols used to denote the shape parameters ($M, n, N$) are not universally accepted. See the Examples for a clarification of the definitions used here.

The probability mass function is defined as,

$$p(k, M, n, N) = \binom{n}{k} \binom{M-n}{N-k} / \binom{M}{N}$$

for $k \in [\max(0, N - M + n), \min(n, N)]$, where the binomial coefficients are defined as,

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc parameter. Specifically, hypergeom.pmf(k, M, n, N, loc) is identically equivalent to hypergeom.pmf(k - loc, M, n, N).

Examples

```python
>>> from scipy.stats import hypergeom
>>> import matplotlib.pyplot as plt

Suppose we have a collection of 20 animals, of which 7 are dogs. Then if we want to know the probability of finding a given number of dogs if we choose at random 12 of the 20 animals, we can initialize a frozen distribution and plot the probability mass function:

```
Instead of using a frozen distribution we can also use `hypergeom` methods directly. To for example obtain the cumulative distribution function, use:

```python
>>> prb = hypergeom.cdf(x, M, n, N)
```

And to generate random numbers:

```python
>>> R = hypergeom.rvs(M, n, N, size=10)
```
**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(M, n, N, loc=0, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pmf(k, M, n, N, loc=0)</code></td>
<td>Probability mass function.</td>
</tr>
<tr>
<td><code>logpmf(k, M, n, N, loc=0)</code></td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td><code>cdf(k, M, n, N, loc=0)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(k, M, n, N, loc=0)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(k, M, n, N, loc=0)</code></td>
<td>Survival function (also defined as $1 - cdf$, but $sf$ is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(k, M, n, N, loc=0)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>pmf(q, M, n, N, loc=0)</code></td>
<td>Percent point function (inverse of $cdf$ — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, M, n, N, loc=0)</code></td>
<td>Inverse survival function (inverse of $sf$).</td>
</tr>
<tr>
<td><code>stats(M, n, N, loc=0, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(M, n, N, loc=0)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>median(M, n, N, loc=0)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(M, n, N, loc=0)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(M, n, N, loc=0)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(M, n, N, loc=0)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, M, n, N, loc=0)</code></td>
<td>Endpoints of the range that contains fraction alpha $[0, 1]$ of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.logser

scipy.stats.logser = <scipy.stats._discrete_distns.logser_gen object>

A Logarithmic (Log-Series, Series) discrete random variable.

As an instance of the `rv_discrete` class, `logser` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

**Notes**

The probability mass function for `logser` is:

$$f(k) = \frac{p^k}{k \log(1 - p)}$$

for $k \geq 1, 0 < p < 1$

`logser` takes $p$ as shape parameter, where $p$ is the probability of a single success and $1 - p$ is the probability of a single failure.

The probability mass function above is defined in the “standardized” form. To shift distribution use the `loc` parameter. Specifically, `logser.pmf(k, p, loc)` is identically equivalent to `logser.pmf(k - loc, p)`.
Examples

```python
>>> from scipy.stats import logser
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> p = 0.6
>>> mean, var, skew, kurt = logser.stats(p, moments='mvsk')
```

Display the probability mass function (pmf):

```python
>>> x = np.arange(logser.ppf(0.01, p),
...                logser.ppf(0.99, p))
>>> ax.plot(x, logser.pmf(x, p), 'bo', ms=8, label='logser pmf')
>>> ax.vlines(x, 0, logser.pmf(x, p), colors='b', lw=5, alpha=0.5)
```

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

```python
>>> rv = logser(p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
...           label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

Check accuracy of cdf and ppf:

```python
>>> prob = logser.cdf(x, p)
>>> np.allclose(x, logser.ppf(prob, p))
True
```

Generate random numbers:
```python
>>> r = logser.rvs(p, size=1000)
```

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(p, loc=0, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pmf(k, p, loc=0)</td>
<td>Probability mass function.</td>
</tr>
<tr>
<td>logpmf(k, p, loc=0)</td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td>cdf(k, p, loc=0)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(k, p, loc=0)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(k, p, loc=0)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(k, p, loc=0)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>pmf(q, p, loc=0)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, p, loc=0)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>stats(p, loc=0, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(p, loc=0)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>expect(func, args=(p,), loc=0, lb=None, ub=None, conditional=False)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(p, loc=0)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(p, loc=0)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(p, loc=0)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(p, loc=0)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, p, loc=0)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.nbinom

`scipy.stats.nbinom = <scipy.stats._discrete_distns.nbinom_gen object>`

A negative binomial discrete random variable.

As an instance of the `rv_discrete` class, `nbinom` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

`hypergeom, binom, nhypergeom`

Notes

Negative binomial distribution describes a sequence of i.i.d. Bernoulli trials, repeated until a predefined, non-random number of successes occurs.

The probability mass function of the number of failures for `nbinom` is:

\[f(k) = \binom{k + n - 1}{n - 1} p^n (1-p)^k \]

for \(k \geq 0, 0 < p \leq 1 \)

`nbinom` takes \(n \) and \(p \) as shape parameters where \(n \) is the number of successes, \(p \) is the probability of a single success, and \(1-p \) is the probability of a single failure.
Another common parameterization of the negative binomial distribution is in terms of the mean number of failures \(\mu \) to achieve \(n \) successes. The mean \(\mu \) is related to the probability of success as

\[
p = \frac{n}{n + \mu}
\]

The number of successes \(n \) may also be specified in terms of a “dispersion”, “heterogeneity”, or “aggregation” parameter \(\alpha \), which relates the mean \(\mu \) to the variance \(\sigma^2 \), e.g. \(\sigma^2 = \mu + \alpha \mu^2 \). Regardless of the convention used for \(\alpha \),

\[
p = \frac{\mu}{\sigma^2} \\
n = \frac{\mu^2}{\sigma^2 - \mu}
\]

The probability mass function above is defined in the “standardized” form. To shift distribution use the \(\text{loc} \) parameter. Specifically, \(\text{nbinom.pmf}(k, n, p, \text{loc}) \) is identically equivalent to \(\text{nbinom.pmf}(k - \text{loc}, n, p) \).

Examples

```python
>>> from scipy.stats import nbinom
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> n, p = 5, 0.5
>>> mean, var, skew, kurt = nbinom.stats(n, p, moments='mvsk')
```

Display the probability mass function (pmf):

```python
>>> x = np.arange(nbinom.ppf(0.01, n, p), ...
                   nbinom.ppf(0.99, n, p))
>>> ax.plot(x, nbinom.pmf(x, n, p), 'bo', ms=8, label='nbinom pmf')
>>> ax.vlines(x, 0, nbinom.pmf(x, n, p), colors='b', lw=5, alpha=0.5)
```

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

```python
>>> rv = nbinom(n, p)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='--', lw=1, ...
             label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

Check accuracy of \(\text{cdf} \) and \(\text{ppf} \):

```python
>>> prob = nbinom.cdf(x, n, p)
>>> np.allclose(x, nbinom.ppf(prob, n, p))
True
```

Generate random numbers:
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(n, p, loc=0, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pmf(k, n, p, loc=0)</code></td>
<td>Probability mass function.</td>
</tr>
<tr>
<td><code>logpmf(k, n, p, loc=0)</code></td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td><code>cdf(k, n, p, loc=0)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(k, n, p, loc=0)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(k, n, p, loc=0)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(k, n, p, loc=0)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, n, p, loc=0)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, n, p, loc=0)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>stats(n, p, loc=0, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(n, p, loc=0)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>expect(func, args=(n, p), loc=0, lb=None, ub=None, conditional=False)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(n, p, loc=0)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(n, p, loc=0)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(n, p, loc=0)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(n, p, loc=0)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, n, p, loc=0)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.nchypergeom_fisher

scipy.stats.nchypergeom_fisher =
<scipy.stats._discrete_distns.nchypergeom_fisher_gen object>

A Fisher’s noncentral hypergeometric discrete random variable.

Fisher’s noncentral hypergeometric distribution models drawing objects of two types from a bin. \(M \) is the total number of objects, \(n \) is the number of Type I objects, and \(\text{odds} \) is the odds ratio: the odds of selecting a Type I object rather than a Type II object when there is only one object of each type. The random variable represents the number of Type I objects drawn if we take a handful of objects from the bin at once and find out afterwards that we took \(N \) objects.

As an instance of the `rv_discrete` class, `nchypergeom_fisher` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

`nchypergeom_wallenius`, `hypergeom`, `nhypergeom`

Notes

Let mathematical symbols \(N, n, \) and \(M \) correspond with parameters \(N, n, \) and \(M \) (respectively) as defined above.

The probability mass function is defined as

\[
p(x; M, n, N, \omega) = \frac{\binom{n}{x} \binom{M-n}{N-x} \omega^x}{P_0},
\]

for \(x \in [x_l, x_u], M \in \mathbb{N}, n \in [0, M], N \in [0, M], \omega > 0, \) where \(x_l = \max(0, N - (M - n)) \), \(x_u = \min(N, n) \), \(P_0 = \sum_{y=x_l}^{x_u} \binom{n}{y} \binom{M-n}{N-y} \omega^y \),

and the binomial coefficients are defined as

\[
\binom{n}{k} \equiv \frac{n!}{k!(n-k)!}.
\]

`nchypergeom_fisher` uses the BiasedUrn package by Agner Fog with permission for it to be distributed under SciPy’s license.

The symbols used to denote the shape parameters \((N, n, \) and \(M) \) are not universally accepted; they are chosen for consistency with `hypergeom`.

Note that Fisher’s noncentral hypergeometric distribution is distinct from Wallenius’ noncentral hypergeometric distribution, which models drawing a pre-determined \(N \) objects from a bin one by one. When the odds ratio is unity, however, both distributions reduce to the ordinary hypergeometric distribution.

The probability mass function above is defined in the “standardized” form. To shift distribution use the \(\text{loc} \) parameter. Specifically, `nchypergeom_fisher.pmf(k, M, n, N, odds, loc)` is identically equivalent to `nchypergeom_fisher.pmf(k - loc, M, n, N, odds)`.

3.3. API definition 2737
References

[1], [2]

Examples

```python
>>> from scipy.stats import nchypergeom_fisher
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> M, n, N, odds = 140, 80, 60, 0.5
>>> mean, var, skew, kurt = nchypergeom_fisher.stats(M, n, N, odds,
... moments='mvsk')
``` 

Display the probability mass function (pmf):

```python
>>> x = np.arange(nchypergeom_fisher.ppf(0.01, M, n, N, odds),
... nchypergeom_fisher.ppf(0.99, M, n, N, odds))
>>> ax.plot(x, nchypergeom_fisher.pmf(x, M, n, N, odds), 'bo', ms=8,
... label='nchypergeom_fisher pmf')
>>> ax.vlines(x, 0, nchypergeom_fisher.pmf(x, M, n, N, odds), colors='b',
... lw=5, alpha=0.5)
``` 

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

```python
>>> rv = nchypergeom_fisher(M, n, N, odds)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

Check accuracy of cdf and ppf:

```python
>>> prob = nchypergeom_fisher.cdf(x, M, n, N, odds)
>>> np.allclose(prob, nchypergeom_fisher.ppf(prob, M, n, N, odds))
True
```

Generate random numbers:

```python
>>> r = nchypergeom_fisher.rvs(M, n, N, odds, size=1000)
```
Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(M, n, N, odds, loc=0, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pmf(k, M, n, N, odds, loc=0)</td>
<td>Probability mass function.</td>
</tr>
<tr>
<td>logpmf(k, M, n, N, odds, loc=0)</td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td>cdf(k, M, n, N, odds, loc=0)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(k, M, n, N, odds, loc=0)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(k, M, n, N, odds, loc=0)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(k, M, n, N, odds, loc=0)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, M, n, N, odds, loc=0)</td>
<td>Percent point function (inverse of cdf --- percentiles).</td>
</tr>
<tr>
<td>isf(q, M, n, N, odds, loc=0)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>stats(M, n, N, odds, loc=0, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(M, n, N, odds, loc=0)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>expect(func, args=(M, n, N, odds), loc=0, lb=None, ub=None, conditional=False)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(M, n, N, odds, loc=0)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(M, n, N, odds, loc=0)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(M, n, N, odds, loc=0)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(M, n, N, odds, loc=0)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, M, n, N, odds, loc=0)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.nchypergeom_wallenius

scipy.stats.nchypergeom_wallenius =
<scipy.stats._discrete_distns.nchypergeom_wallenius_gen object>

A Wallenius’ noncentral hypergeometric discrete random variable.

Wallenius’ noncentral hypergeometric distribution models drawing objects of two types from a bin. \( M \) is the total number of objects, \( n \) is the number of Type I objects, and \( \text{odds} \) is the odds ratio: the odds of selecting a Type I object rather than a Type II object when there is only one object of each type. The random variate represents the number of Type I objects drawn if we draw a pre-determined \( N \) objects from a bin one by one.

As an instance of the \texttt{rv_discrete} class, \texttt{nchypergeom_wallenius} object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

**See also:**

\texttt{nchypergeom_fisher}, \texttt{hypergeom}, \texttt{nhypergeom}

**Notes**

Let mathematical symbols \( N, n, \) and \( M \) correspond with parameters \( N, n, \) and \( M \) (respectively) as defined above.

The probability mass function is defined as

\[
p(x; N, n, M) = \binom{n}{x} \binom{M - n}{N - x} \int_0^1 \left( 1 - \frac{t^\omega}{D} \right)^x \left( 1 - \frac{t^{1/D}}{N - x} \right)^{N-x} dt
\]

for \( x \in [x_l, x_u], M \in \mathbb{N}, n \in [0, M], N \in [0, M], \omega > 0, \) where \( x_l = \max(0, N - (M - n)), x_u = \min(N, n), \)

\[
D = \omega(n - x) + ((M - n) - (N - x)),
\]

and the binomial coefficients are defined as

\[
\binom{n}{k} \equiv \frac{n!}{k!(n-k)!}.
\]

\texttt{nchypergeom_wallenius} uses the BiasedUrn package by Agner Fog with permission for it to be distributed under SciPy’s license.

The symbols used to denote the shape parameters \( (N, n, \) and \( M) \) are not universally accepted; they are chosen for consistency with \texttt{hypergeom}.

Note that Wallenius’ noncentral hypergeometric distribution is distinct from Fisher’s noncentral hypergeometric distribution, which models take a handful of objects from the bin at once, finding out afterwards that \( N \) objects were taken. When the odds ratio is unity, however, both distributions reduce to the ordinary hypergeometric distribution.

The probability mass function above is defined in the “standardized” form. To shift distribution use the \texttt{loc} parameter. Specifically, \texttt{nchypergeom_wallenius.pmf(k, M, n, N, odds, loc)} is identically equivalent to \texttt{nchypergeom_wallenius.pmf(k - loc, M, n, N, odds)}. 


References

[1],[2]

Examples

```python
>>> from scipy.stats import nchypergeom_wallenius
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> M, n, N, odds = 140, 80, 60, 0.5
>>> mean, var, skew, kurt = nchypergeom_wallenius.stats(M, n, N, odds, moments='mvsk')
```

Display the probability mass function (pmf):

```python
>>> x = np.arange(nchypergeom_wallenius.ppf(0.01, M, n, N, odds), ...
               nchypergeom_wallenius.ppf(0.99, M, n, N, odds))
>>> ax.plot(x, nchypergeom_wallenius.pmf(x, M, n, N, odds), 'bo', ms=8, ...
          label='nchypergeom_wallenius pmf')
>>> ax.vlines(x, 0, nchypergeom_wallenius.pmf(x, M, n, N, odds), colors='b', ...
            lw=5, alpha=0.5)
```

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a "frozen" RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

```python
>>> rv = nchypergeom_wallenius(M, n, N, odds)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ...
          label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

Check accuracy of cdf and ppf:

```python
>>> prob = nchypergeom_wallenius.cdf(x, M, n, N, odds)
>>> np.allclose(x, nchypergeom_wallenius.ppf(prob, M, n, N, odds))
True
```

Generate random numbers:

```python
>>> r = nchypergeom_wallenius.rvs(M, n, N, odds, size=1000)
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(M, n, N, odds, loc=0, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pmf(k, M, n, N, odds, loc=0)</code></td>
<td>Probability mass function.</td>
</tr>
<tr>
<td><code>logpmf(k, M, n, N, odds, loc=0)</code></td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td><code>cdf(k, M, n, N, odds, loc=0)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(k, M, n, N, odds, loc=0)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(k, M, n, N, odds, loc=0)</code></td>
<td>Survival function (also defined as $1 - cdf$, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(k, M, n, N, odds, loc=0)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, M, n, N, odds, loc=0)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, M, n, N, odds, loc=0)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>stats(M, n, N, odds, loc=0, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(M, n, N, odds, loc=0)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>expect(func, args=(M, n, N, odds), loc=0, lb=None, ub=None, conditional=False)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(M, n, N, odds, loc=0)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(M, n, N, odds, loc=0)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(M, n, N, odds, loc=0)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(M, n, N, odds, loc=0)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, M, n, N, odds, loc=0)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.nhypergeom

scipy.stats.nhypergeom = <scipy.stats._discrete_distns.nhypergeom_gen object>
A negative hypergeometric discrete random variable.

Consider a box containing M balls: n red and $M-n$ blue. We randomly sample balls from the box, one at a time and without replacement, until we have picked r blue balls. nhypergeom is the distribution of the number of red balls k we have picked.

As an instance of the rv_discrete class, nhypergeom object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:
hypergeom, binom, nbinom

Notes
The symbols used to denote the shape parameters (M, n, and r) are not universally accepted. See the Examples for a clarification of the definitions used here.

The probability mass function is defined as,

$$f(k; M, n, r) = \frac{\binom{k+r-1}{k} \binom{M-r-k}{n-k}}{\binom{M}{n}}$$

for $k \in [0, n]$, $n \in [0, M]$, $r \in [0, M-n]$, and the binomial coefficient is:

$$\binom{n}{k} \equiv \frac{n!}{k!(n-k)!}.$$

It is equivalent to observing k successes in $k + r - 1$ samples with $k + r$'th sample being a failure. The former can be modelled as a hypergeometric distribution. The probability of the latter is simply the number of failures remaining $M - n - (r - 1)$ divided by the size of the remaining population $M - (k + r - 1)$. This relationship can be shown as:

$$NHG(k; M, n, r) = HG(k; M, n, k + r - 1) \frac{(M-n-(r-1))}{(M-(k+r-1))}$$

where NHG is probability mass function (PMF) of the negative hypergeometric distribution and HG is the PMF of the hypergeometric distribution.

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc parameter. Specifically, nhypergeom.pmf(k, M, n, r, loc) is identically equivalent to nhypergeom.pmf(k - loc, M, n, r).

References
[1], [2]
Examples

```python
from scipy.stats import nhypergeom
import matplotlib.pyplot as plt

M, n, r = [20, 7, 12]
rv = nhypergeom(M, n, r)
x = np.arange(0, n+2)
pmf_dogs = rv.pmf(x)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x, pmf_dogs, 'bo')
ax.vlines(x, 0, pmf_dogs, lw=2)
ax.set_xlabel('# of dogs in our group with given 12 failures')
ax.set_ylabel('nhypergeom PMF')
plt.show()
```

Instead of using a frozen distribution we can also use `nhypergeom` methods directly. To for example obtain the probability mass function, use:

```python
prb = nhypergeom.pmf(x, M, n, r)
```

And to generate random numbers:

```python
R = nhypergeom.rvs(M, n, r, size=10)
```

To verify the relationship between `hypergeom` and `nhypergeom`, use:
from scipy.stats import hypergeom, nhypergeom

M, n, r = 45, 13, 8
k = 6

nhypergeom.pmf(k, M, n, r)
0.06180776620271643

hypergeom.pmf(k, M, n, k+r-1) * (M - n - (r-1)) / (M - (k+r-1))
0.06180776620271644

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(M, n, r, loc=0, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pmf(k, M, n, r, loc=0)</td>
<td>Probability mass function.</td>
</tr>
<tr>
<td>logpmf(k, M, n, r, loc=0)</td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td>cdf(k, M, n, r, loc=0)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(k, M, n, r, loc=0)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(k, M, n, r, loc=0)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(k, M, n, r, loc=0)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, M, n, r, loc=0)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, M, n, r, loc=0)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>stats(M, n, r, loc=0, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(M, n, r, loc=0)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>expect(func, args=(M, n, r), loc=0, lb=None, ub=None, conditional=False)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(M, n, r, loc=0)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(M, n, r, loc=0)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(M, n, r, loc=0)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(M, n, r, loc=0)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, M, n, r, loc=0)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.planck

scipy.stats.planck = <scipy.stats._discrete_distns.planck_gen object>
A Planck discrete exponential random variable.

As an instance of the rv_discrete class, planck object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

geom
Notes

The probability mass function for \texttt{planck} is:

\[f(k) = (1 - \exp(-\lambda)) \exp(-\lambda k) \]

for \(k \geq 0 \) and \(\lambda > 0 \).

\texttt{planck} takes \(\lambda \) as shape parameter. The Planck distribution can be written as a geometric distribution (\texttt{geom}) with \(p = 1 - \exp(-\lambda) \) shifted by \(\text{loc} = -1 \).

The probability mass function above is defined in the “standardized” form. To shift distribution use the \texttt{loc} parameter. Specifically, \texttt{planck.pmf(k, lambda_, loc)} is identically equivalent to \texttt{planck.pmf(k - loc, lambda_)}.

Examples

```python
>>> from scipy.stats import planck
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
```

Calculate the first four moments:

```python
>>> lambda_ = 0.51
>>> mean, var, skew, kurt = planck.stats(lambda_, moments='mvsk')
```

Display the probability mass function (pmf):

```python
>>> x = np.arange(planck.ppf(0.01, lambda_), ...
>>> planck.ppf(0.99, lambda_))
>>> ax.plot(x, planck.pdf(x, lambda_), 'bo', ms=8, label='planck pmf')
>>> ax.vlines(x, 0, planck.pdf(x, lambda_), colors='b', lw=5, alpha=0.5)
```

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” \texttt{RV} object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

```python
>>> rv = planck(lambda_)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ...
>>> label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

Check accuracy of \texttt{cdf} and \texttt{ppf}:

```python
>>> prob = planck.cdf(x, lambda_)
>>> np.allclose(x, planck.ppf(prob, lambda_))
True
```

Generate random numbers:

```python
>>> r = planck.rvs(lambda_, size=1000)
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(lambda_, loc=0, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pmf(k, lambda_, loc=0)</td>
<td>Probability mass function.</td>
</tr>
<tr>
<td>logpmf(k, lambda_, loc=0)</td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td>cdf(k, lambda_, loc=0)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(k, lambda_, loc=0)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(k, lambda_, loc=0)</td>
<td>Survival function (also defined as $1 - \text{cdf}$, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(k, lambda_, loc=0)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, lambda_, loc=0)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, lambda_, loc=0)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>stats(lambda_, loc=0, moments=’mv’)</td>
<td>Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).</td>
</tr>
<tr>
<td>entropy(lambda_, loc=0)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>expect(func, args=(lambda_,), loc=0, lb=None, ub=None, conditional=False)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(lambda_, loc=0)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(lambda_, loc=0)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(lambda_, loc=0)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(lambda_, loc=0)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, lambda_, loc=0)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.poisson

scipy.stats.poisson = <scipy.stats._discrete_distns.poisson_gen object>

A Poisson discrete random variable.

As an instance of the rv_discrete class, poisson object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for poisson is:

\[f(k) = \exp(-\mu) \frac{\mu^k}{k!} \]

for \(k \geq 0 \).

poisson takes \(\mu \geq 0 \) as shape parameter. When \(\mu = 0 \), the pmf method returns \(1.0 \) at quantile \(k = 0 \).

The probability mass function above is defined in the "standardized" form. To shift distribution use the loc parameter. Specifically, poisson.pmf(k, \(\mu \), loc) is identically equivalent to poisson.pmf(k - loc, \(\mu \)).

Examples

```python
>>> from scipy.stats import poisson
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mu = 0.6
>>> mean, var, skew, kurt = poisson.stats(mu, moments='mvsk')
```

Display the probability mass function (pmf):

```python
>>> x = np.arange(poisson.ppf(0.01, mu),
... poisson.ppf(0.99, mu))
>>> ax.plot(x, poisson.pmf(x, mu), 'bo', ms=8, label='poisson pmf')
>>> ax.vlines(x, 0, poisson.pmf(x, mu), colors='b', lw=5, alpha=0.5)
```

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

```python
>>> rv = poisson(mu)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

Check accuracy of cdf and ppf:
>>> prob = poisson.cdf(x, mu)
>>> np.allclose(x, poisson.ppf(prob, mu))
True

Generate random numbers:

>>> r = poisson.rvs(mu, size=1000)

Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(mu, loc=0, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pmf(k, mu, loc=0)</td>
<td>Probability mass function.</td>
</tr>
<tr>
<td>logpmf(k, mu, loc=0)</td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td>cdf(k, mu, loc=0)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(k, mu, loc=0)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(k, mu, loc=0)</td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(k, mu, loc=0)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, mu, loc=0)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, mu, loc=0)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>stats(mu, loc=0, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(mu, loc=0)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>expect(func, args=(mu,), loc=0, lb=None, ub=None, conditional=False)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(mu, loc=0)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(mu, loc=0)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(mu, loc=0)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(mu, loc=0)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, mu, loc=0)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

3.3. API definition
scipy.stats.randint

scipy.stats.randint = <scipy.stats._discrete_distns.randint_gen object>
A uniform discrete random variable.

As an instance of the rv_discrete class, randint object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for randint is:

\[ f(k) = \frac{1}{\text{high} - \text{low}} \]

for \( k \in \{\text{low}, \ldots, \text{high} - 1\} \).

randint takes low and high as shape parameters.

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc parameter. Specifically, randint.pmf(k, low, high, loc) is identically equivalent to randint.pmf(k - loc, low, high).

Examples

```python
>>> from scipy.stats import randint
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:
```n
```python
>>> low, high = 7, 31
>>> mean, var, skew, kurt = randint.stats(low, high, moments='mvsk')
```

Display the probability mass function (pmf):
```python
>>> x = np.arange(randint.ppf(0.01, low, high),
... randint.ppf(0.99, low, high))
>>> ax.plot(x, randint.pmf(x, low, high), 'bo', ms=8, label='randint pmf')
>>> ax.vlines(x, 0, randint.pmf(x, low, high), colors='b', lw=5, alpha=0.5)
```

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:
```python
>>> rv = randint(low, high)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

Check accuracy of cdf and ppf:
>>> prob = randint.cdf(x, low, high)
>>> np.allclose(x, randint.ppf(prob, low, high))
True

Generate random numbers:

```python
>>> r = randint.rvs(low, high, size=1000)
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(low, high, loc=0, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pmf(k, low, high, loc=0)</td>
<td>Probability mass function.</td>
</tr>
<tr>
<td>logpmf(k, low, high, loc=0)</td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td>cdf(k, low, high, loc=0)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(k, low, high, loc=0)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(k, low, high, loc=0)</td>
<td>Survival function (also defined as (1 - cdf), but (sf) is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(k, low, high, loc=0)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, low, high, loc=0)</td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td>isf(q, low, high, loc=0)</td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td>stats(low, high, loc=0, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(low, high, loc=0)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>expect(func, args=(low, high), loc=0, lb=None, ub=None, conditional=False)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(low, high, loc=0)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(low, high, loc=0)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(low, high, loc=0)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(low, high, loc=0)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, low, high, loc=0)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

`scipy.stats.skellam`

A Skellam discrete random variable.

As an instance of the `rv_discrete` class, `skellam` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

**Notes**

Probability distribution of the difference of two correlated or uncorrelated Poisson random variables.

Let \(k_1\) and \(k_2\) be two Poisson-distributed r.v. with expected values \(\lambda_1\) and \(\lambda_2\). Then, \(k_1 - k_2\) follows a Skellam distribution with parameters \(\mu_1 = \lambda_1 - \rho \sqrt{\lambda_1 \lambda_2}\) and \(\mu_2 = \lambda_2 - \rho \sqrt{\lambda_1 \lambda_2}\), where \(\rho\) is the correlation coefficient between \(k_1\) and \(k_2\). If the two Poisson-distributed r.v. are independent then \(\rho = 0\).

Parameters \(\mu_1\) and \(\mu_2\) must be strictly positive.

For details see: [https://en.wikipedia.org/wiki/Skellam_distribution](https://en.wikipedia.org/wiki/Skellam_distribution)

`skellam` takes \(\mu_1\) and \(\mu_2\) as shape parameters.

The probability mass function above is defined in the “standardized” form. To shift distribution use the `loc` parameter. Specifically, `skellam.pmf(k, mu1, mu2, loc)` is identically equivalent to `skellam.pmf(k - loc, mu1, mu2)`.
Examples

```python
>>> from scipy.stats import skellam
>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> mu1, mu2 = 15, 8
>>> mean, var, skew, kurt = skellam.stats(mu1, mu2, moments='mvsk')
```  
Display the probability mass function (pmf):

```python
>>> x = np.arange(skellam.ppf(0.01, mu1, mu2),
... skellam.ppf(0.99, mu1, mu2))
>>> ax.plot(x, skellam.pmf(x, mu1, mu2), 'bo', ms=8, label='skellam pmf')
>>> ax.vlines(x, 0, skellam.pmf(x, mu1, mu2), colors='b', lw=5, alpha=0.5)
```

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

```python
>>> rv = skellam(mu1, mu2)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

Check accuracy of cdf and ppf:

```python
>>> prob = skellam.cdf(x, mu1, mu2)
>>> np.allclose(x, skellam.ppf(prob, mu1, mu2))
True
```  
Generate random numbers:
```python
>>> r = skellam.rvs(mu1, mu2, size=1000)
```

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(mu1, mu2, loc=0, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pmf(k, mu1, mu2, loc=0)</td>
<td>Probability mass function.</td>
</tr>
<tr>
<td>logpmf(k, mu1, mu2, loc=0)</td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td>cdf(k, mu1, mu2, loc=0)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(k, mu1, mu2, loc=0)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(k, mu1, mu2, loc=0)</td>
<td>Survival function (also defined as (1 - \text{cdf}), but (\text{sf}) is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(k, mu1, mu2, loc=0)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, mu1, mu2, loc=0)</td>
<td>Percent point function (inverse of (\text{cdf}) — percentiles).</td>
</tr>
<tr>
<td>isf(q, mu1, mu2, loc=0)</td>
<td>Inverse survival function (inverse of (\text{sf})).</td>
</tr>
<tr>
<td>stats(mu1, mu2, loc=0, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(mu1, mu2, loc=0)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>expect(func, args=(mu1, mu2), loc=0, lb=None, ub=None, conditional=False)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(mu1, mu2, loc=0)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(mu1, mu2, loc=0)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(mu1, mu2, loc=0)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(mu1, mu2, loc=0)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, mu1, mu2, loc=0)</td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.yulesimon

scipy.stats.yulesimon = *<scipy.stats._discrete_distns.yulesimon_gen object>*

A Yule-Simon discrete random variable.

As an instance of the *rv_discrete* class, *yulesimon* object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability mass function for the *yulesimon* is:

\[f(k) = \alpha B(k, \alpha + 1) \]

for \(k = 1, 2, 3, \ldots \) where \(\alpha > 0 \). Here \(B \) refers to the *scipy.special.beta* function.

The sampling of random variates is based on pg 553, Section 6.3 of [1]. Our notation maps to the referenced logic via \(\alpha = a - 1 \).

For details see the wikipedia entry [2].
References

The probability mass function above is defined in the "standardized" form. To shift distribution use the loc parameter. Specifically, \(\text{yulesimon.pmf}(k, \alpha, \text{loc}) \) is identically equivalent to \(\text{yulesimon.pmf}(k - \text{loc}, \alpha) \).

[1],[2]

Examples

```python
>>> from scipy.stats import yulesimon
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> alpha = 11
>>> mean, var, skew, kurt = yulesimon.stats(alpha, moments='mvsk')
```

Display the probability mass function (pmf):

```python
>>> x = np.arange(yulesimon.ppf(0.01, alpha),
... yulesimon.ppf(0.99, alpha))
>>> ax.plot(x, yulesimon.pmf(x, alpha), 'bo', ms=8, label='yulesimon pmf')
>>> ax.vlines(x, 0, yulesimon.pmf(x, alpha), colors='b', lw=5, alpha=0.5)
```

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

```python
>>> rv = yulesimon(alpha)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

Check accuracy of cdf and ppf:

```python
>>> prob = yulesimon.cdf(x, alpha)
>>> np.allclose(x, yulesimon.ppf(prob, alpha))
True
```

Generate random numbers:

```python
>>> r = yulesimon.rvs(alpha, size=1000)
```
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(alpha, loc=0, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pmf(k, alpha, loc=0)</code></td>
<td>Probability mass function.</td>
</tr>
<tr>
<td><code>logpmf(k, alpha, loc=0)</code></td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td><code>cdf(k, alpha, loc=0)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(k, alpha, loc=0)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(k, alpha, loc=0)</code></td>
<td>Survival function (also defined as <code>1 - cdf</code>, but <code>sf</code> is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(k, alpha, loc=0)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, alpha, loc=0)</code></td>
<td>Percent point function (inverse of <code>cdf</code> — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, alpha, loc=0)</code></td>
<td>Inverse survival function (inverse of <code>sf</code>).</td>
</tr>
<tr>
<td><code>stats(alpha, loc=0, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(alpha, loc=0)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>expect(func, args=(alpha,), loc=0, lb=None, ub=None, conditional=False)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(alpha, loc=0)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(alpha, loc=0)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(alpha, loc=0)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(alpha, loc=0)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, alpha, loc=0)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>
scipy.stats.zipf

scipy.stats.zipf = <scipy.stats._discrete_distns.zipf_gen object>
A Zipf (Zeta) discrete random variable.

As an instance of the rv_discrete class, zipf object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:
zipfian

Notes

The probability mass function for zipf is:

\[ f(k, a) = \frac{1}{\zeta(a)k^a} \]

for \( k \geq 1, a > 1 \).

zipf takes \( a > 1 \) as shape parameter. \( \zeta \) is the Riemann zeta function (scipy.special.zeta)

The Zipf distribution is also known as the zeta distribution, which is a special case of the Zipfian distribution (zipfian).

The probability mass function above is defined in the “standardized” form. To shift distribution use the loc parameter. Specifically, zipf.pmf(k, a, loc) is identically equivalent to zipf.pmf(k - loc, a).

References

[1]

Examples

```python
>>> from scipy.stats import zipf
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> a = 6.5
>>> mean, var, skew, kurt = zipf.stats(a, moments='mvsk')
```

Display the probability mass function (pmf):

```python
>>> x = np.arange(zipf.ppf(0.01, a), ... zipf.ppf(0.99, a))
>>> ax.plot(x, zipf.pmf(x, a), 'bo', ms=8, label='zipf pmf')
>>> ax.vlines(x, 0, zipf.pmf(x, a), colors='b', lw=5, alpha=0.5)
```

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

```python
```
>>> rv = zipf(a)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
 ... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

Check accuracy of cdf and ppf:

>>> prob = zipf.cdf(x, a)
>>> np.allclose(x, zipf.ppf(prob, a))
True

Generate random numbers:

>>> r = zipf.rvs(a, size=1000)

Confirm that \texttt{zipf} is the large \(n \) limit of \texttt{zipfian}.

>>> from scipy.stats import zipfian
>>> k = np.arange(11)
>>> np.allclose(zipf.pmf(k, a), zipfian.pmf(k, a, n=1000000))
True
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs(a, loc=0, size=1, random_state=None)</code></td>
<td>Random variates.</td>
</tr>
<tr>
<td><code>pmf(k, a, loc=0)</code></td>
<td>Probability mass function.</td>
</tr>
<tr>
<td><code>logpmf(k, a, loc=0)</code></td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td><code>cdf(k, a, loc=0)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>logcdf(k, a, loc=0)</code></td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td><code>sf(k, a, loc=0)</code></td>
<td>Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).</td>
</tr>
<tr>
<td><code>logsf(k, a, loc=0)</code></td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td><code>ppf(q, a, loc=0)</code></td>
<td>Percent point function (inverse of cdf — percentiles).</td>
</tr>
<tr>
<td><code>isf(q, a, loc=0)</code></td>
<td>Inverse survival function (inverse of sf).</td>
</tr>
<tr>
<td><code>stats(a, loc=0, moments='mv')</code></td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td><code>entropy(a, loc=0)</code></td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td><code>expect(func, args=(a,), loc=0, lb=None, ub=None, conditional=False)</code></td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td><code>median(a, loc=0)</code></td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td><code>mean(a, loc=0)</code></td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td><code>var(a, loc=0)</code></td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td><code>std(a, loc=0)</code></td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td><code>interval(alpha, a, loc=0)</code></td>
<td>Endpoints of the range that contains fraction alpha [0, 1] of the distribution</td>
</tr>
</tbody>
</table>

scipy.stats.zipfian

`scipy.stats.zipfian = <scipy.stats._discrete_distns.zipfian_gen object>`

A Zipfian discrete random variable.

As an instance of the `rv_discrete` class, `zipfian` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

zipf

Notes

The probability mass function for `zipfian` is:

\[
f(k, a, n) = \frac{1}{H_{n,a} k^a}
\]

for \(k \in \{1, 2, \ldots, n - 1, n \}, a \geq 0, n \in \{1, 2, 3, \ldots \} \).

`zipfian` takes \(a \) and \(n \) as shape parameters. \(H_{n,a} \) is the \(n \)th generalized harmonic number of order \(a \).

The Zipfian distribution reduces to the Zipf (zeta) distribution as \(n \to \infty \).

The probability mass function above is defined in the “standardized” form. To shift distribution use the `loc` parameter. Specifically, `zipfian.pmf(k, a, n, loc)` is identically equivalent to `zipfian.pmf(k - loc, a, n)`.
References

[1], [2]

Examples

```python
>>> from scipy.stats import zipfian
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

```python
>>> a, n = 1.25, 10
>>> mean, var, skew, kurt = zipfian.stats(a, n, moments='mvsk')
```  
Display the probability mass function (pmf):

```python
>>> x = np.arange(zipfian.ppf(0.01, a, n), ...
... zipfian.ppf(0.99, a, n))
>>> ax.plot(x, zipfian.pmf(x, a, n), 'bo', ms=8, label='zipfian pmf')
>>> ax.vlines(x, 0, zipfian.pmf(x, a, n), colors='b', lw=5, alpha=0.5)
```  
Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

```python
>>> rv = zipfian(a, n)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
```

Check accuracy of cdf and ppf:
>>> prob = zipfian.cdf(x, a, n)
>>> np.allclose(x, zipfian.ppf(prob, a, n))
True

Generate random numbers:

>>> r = zipfian.rvs(a, n, size=1000)

Confirm that \texttt{zipfian} reduces to \texttt{zipf} for large \(n, a > 1\).

>>> from scipy.stats import zipf
>>> k = np.arange(11)
>>> np.allclose(zipfian.pmf(k, a=3.5, n=1000000), zipf.pmf(k, a=3.5))
True

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rvs(a, n, loc=0, size=1, random_state=None)</td>
<td>Random variates.</td>
</tr>
<tr>
<td>pmf(k, a, n, loc=0)</td>
<td>Probability mass function.</td>
</tr>
<tr>
<td>logpmf(k, a, n, loc=0)</td>
<td>Log of the probability mass function.</td>
</tr>
<tr>
<td>cdf(k, a, n, loc=0)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>logcdf(k, a, n, loc=0)</td>
<td>Log of the cumulative distribution function.</td>
</tr>
<tr>
<td>sf(k, a, n, loc=0)</td>
<td>Survival function (also defined as (1 - cdf), but (sf) is sometimes more accurate).</td>
</tr>
<tr>
<td>logsf(k, a, n, loc=0)</td>
<td>Log of the survival function.</td>
</tr>
<tr>
<td>ppf(q, a, n, loc=0)</td>
<td>Percent point function (inverse of (cdf) — percentiles).</td>
</tr>
<tr>
<td>isf(q, a, n, loc=0)</td>
<td>Inverse survival function (inverse of (sf)).</td>
</tr>
<tr>
<td>stats(a, n, loc=0, moments='mv')</td>
<td>Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').</td>
</tr>
<tr>
<td>entropy(a, n, loc=0)</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>expect(func, args=(a, n), loc=0, lb=None, ub=None, conditional=False)</td>
<td>Expected value of a function (of one argument) with respect to the distribution.</td>
</tr>
<tr>
<td>median(a, n, loc=0)</td>
<td>Median of the distribution.</td>
</tr>
<tr>
<td>mean(a, n, loc=0)</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var(a, n, loc=0)</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std(a, n, loc=0)</td>
<td>Standard deviation of the distribution.</td>
</tr>
<tr>
<td>interval(alpha, a, n, loc=0)</td>
<td>Endpoints of the range that contains fraction alpha ([0, 1]) of the distribution.</td>
</tr>
</tbody>
</table>

An overview of statistical functions is given below. Many of these functions have a similar version in \texttt{scipy.stats.mstats} which work for masked arrays.
### Summary statistics

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>describe(a[, axis, ddof, bias, nan_policy])</code></td>
<td>Computes several descriptive statistics of the passed array.</td>
</tr>
<tr>
<td><code>gmean(a[, axis, dtype, weights])</code></td>
<td>Computes the geometric mean along the specified axis.</td>
</tr>
<tr>
<td><code>hmean(a[, axis, dtype])</code></td>
<td>Calculates the harmonic mean along the specified axis.</td>
</tr>
<tr>
<td><code>kurtosis(a[, axis, fisher, bias, nan_policy])</code></td>
<td>Computes the kurtosis (Fisher or Pearson) of a dataset.</td>
</tr>
<tr>
<td><code>mode(a[, axis, nan_policy])</code></td>
<td>Return an array of the modal (most common) value in the passed array.</td>
</tr>
<tr>
<td><code>moment(a[, moment, axis, nan_policy])</code></td>
<td>Calculate the nth moment about the mean for a sample.</td>
</tr>
<tr>
<td><code>skew(a[, axis, bias, nan_policy])</code></td>
<td>Compute the sample skewness of a data set.</td>
</tr>
<tr>
<td><code>kstat(data[, n])</code></td>
<td>Return the nth k-statistic (1&lt;=n&lt;=4 so far).</td>
</tr>
<tr>
<td><code>kstatvar(data[, n])</code></td>
<td>Return an unbiased estimator of the variance of the k-statistic.</td>
</tr>
<tr>
<td><code>tmean(a[, limits, inclusive, axis])</code></td>
<td>Compute the trimmed mean.</td>
</tr>
<tr>
<td><code>tvar(a[, limits, inclusive, axis, ddof])</code></td>
<td>Compute the trimmed variance.</td>
</tr>
<tr>
<td><code>tmin(a[, lowerlimit, axis, inclusive, ...])</code></td>
<td>Compute the trimmed minimum.</td>
</tr>
<tr>
<td><code>tmax(a[, upperlimit, axis, inclusive, ...])</code></td>
<td>Compute the trimmed maximum.</td>
</tr>
<tr>
<td><code>tstd(a[, limits, inclusive, axis, ddof])</code></td>
<td>Compute the trimmed sample standard deviation.</td>
</tr>
<tr>
<td><code>tsem(a[, limits, inclusive, axis, ddof])</code></td>
<td>Compute the trimmed standard error of the mean.</td>
</tr>
<tr>
<td><code>variation(a[, axis, nan_policy, ddof, keepdims])</code></td>
<td>Compute the coefficient of variation.</td>
</tr>
<tr>
<td><code>find_repeats(arr)</code></td>
<td>Find repeats and repeat counts.</td>
</tr>
<tr>
<td><code>trim_mean(a, proportiontocut[, axis])</code></td>
<td>Return mean of array after trimming distribution from both tails.</td>
</tr>
<tr>
<td><code>gstd(a[, axis, ddof])</code></td>
<td>Calculate the geometric standard deviation of an array.</td>
</tr>
<tr>
<td><code>iqr(x[, axis, rng, scale, nan_policy, ...])</code></td>
<td>Compute the interquartile range of the data along the specified axis.</td>
</tr>
<tr>
<td><code>sem(a[, axis, ddof, nan_policy])</code></td>
<td>Compute standard error of the mean.</td>
</tr>
<tr>
<td><code>bayes_mvs(data[, alpha])</code></td>
<td>Bayesian confidence intervals for the mean, var, and std.</td>
</tr>
<tr>
<td><code>mvsdist(data)</code></td>
<td>'Frozen' distributions for mean, variance, and standard deviation of data.</td>
</tr>
<tr>
<td><code>entropy(pk[, qk, base, axis])</code></td>
<td>Calculate the entropy of a distribution for given probability values.</td>
</tr>
<tr>
<td><code>differential_entropy(values, *[,...])</code></td>
<td>Given a sample of a distribution, estimate the differential entropy.</td>
</tr>
<tr>
<td><code>median_absolute_deviation(*args, **kwds)</code></td>
<td><code>median_absolute_deviation</code> is deprecated, use <code>median_abs_deviation</code> instead!</td>
</tr>
<tr>
<td><code>median_abs_deviation(x[, axis, center, ...])</code></td>
<td>Compute the median absolute deviation of the data along the given axis.</td>
</tr>
<tr>
<td><code>bootstrap(data, statistic, *[,...])</code></td>
<td>Compute a two-sided bootstrap confidence interval of a statistic.</td>
</tr>
</tbody>
</table>

**scipy.stats.describe**

`scipy.stats.describe (a, axis=0, ddof=1, bias=True, nan_policy='propagate')`

Compute several descriptive statistics of the passed array.

**Parameters**

- **a** [array_like] Input data.
- **axis** [int or None, optional] Axis along which statistics are calculated. Default is 0. If None, compute over the whole array a.
- **ddof** [int, optional] Delta degrees of freedom (only for variance). Default is 1.
bias     [bool, optional] If False, then the skewness and kurtosis calculations are corrected for statistical bias.

nan_policy
     [{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. The following options are available (default is 'propagate'):
     • 'propagate': returns nan
     • 'raise': throws an error
     • 'omit': performs the calculations ignoring nan values

Returns

nobs     [int or ndarray of ints] Number of observations (length of data along axis). When 'omit' is chosen as nan_policy, the length along each axis slice is counted separately.

minmax: tuple of ndarrays or floats
     Minimum and maximum value of a along the given axis.

mean     [ndarray or float] Arithmetic mean of a along the given axis.

variance [ndarray or float] Unbiased variance of a along the given axis; denominator is number of observations minus one.

skewness [ndarray or float] Skewness of a along the given axis, based on moment calculations with denominator equal to the number of observations, i.e. no degrees of freedom correction.

kurtosis [ndarray or float] Kurtosis (Fisher) of a along the given axis. The kurtosis is normalized so that it is zero for the normal distribution. No degrees of freedom are used.

See also:

skew, kurtosis

Examples

```python
>>> from scipy import stats
>>> a = np.arange(10)
>>> stats.describe(a)
DescribeResult(nobs=10, minmax=(0, 9), mean=4.5,
 variance=9.166666666666666, skewness=0.0,
 kurtosis=-1.2242424242424244)
>>> b = [[1, 2], [3, 4]]
>>> stats.describe(b)
DescribeResult(nobs=2, minmax=(array([1, 2]), array([3, 4])),
 mean=array([2., 3.]), variance=array([2., 2.]),
 skewness=array([0., 0.]), kurtosis=array([-2., -2.]))
```

scipy.stats.gmean

scipy.stats.gmean(a, axis=0, dtype=None, weights=None)

Compute the geometric mean along the specified axis.

Return the geometric average of the array elements. That is: n-th root of (x1 * x2 * ... * xn)

Parameters

a     [array_like] Input array or object that can be converted to an array.
axis  [int or None, optional] Axis along which the geometric mean is computed. Default is 0. If None, compute over the whole array a.
dtype [dtype, optional] Type of the returned array and of the accumulator in which the elements are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
**gmean**

The geometric mean is computed over a single dimension of the input array, axis=0 by default, or all values in the array if axis=None. float64 intermediate and return values are used for integer inputs.

Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity because masked arrays automatically mask any non-finite values.

**Examples**

```python
>>> from scipy.stats import gmean
>>> gmean([1, 4])
2.0
>>> gmean([1, 2, 3, 4, 5, 6, 7])
3.3800151591412964
```

**scipy.stats.hmean**

Calculate the harmonic mean along the specified axis.

That is: \( n / (1/x1 + 1/x2 + \ldots + 1/zn) \)

**Parameters**

- **a** [array_like] Input array, masked array or object that can be converted to an array.
- **axis** [int or None, optional] Axis along which the harmonic mean is computed. Default is 0. If None, compute over the whole array \( a \).
**dtype** [dtype, optional] Type of the returned array and of the accumulator in which the elements are summed. If *dtype* is not specified, it defaults to the dtype of *a*, unless *a* has an integer *dtype* with a precision less than that of the default platform integer. In that case, the default platform integer is used.

**Returns**

- **hmean** [ndarray] See *dtype* parameter above.

**See also:**

- `numpy.mean`
  - Arithmetic average
- `numpy.average`
  - Weighted average
- `gmean`
  - Geometric mean

**Notes**

The harmonic mean is computed over a single dimension of the input array, `axis=0` by default, or all values in the array if `axis=None`. float64 intermediate and return values are used for integer inputs.

Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity.

**Examples**

```python
>>> from scipy.stats import hmean
>>> hmean([1, 4])
1.6000000000000001
>>> hmean([1, 2, 3, 4, 5, 6, 7])
2.6997245179063363
```

**scipy.stats.kurtosis**

`scipy.stats.kurtosis(a, axis=0, fisher=True, bias=True, nan_policy='propagate')`

Compute the kurtosis (Fisher or Pearson) of a dataset.

Kurtosis is the fourth central moment divided by the square of the variance. If Fisher's definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution.

If *bias* is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators.

Use `kurtosistest` to see if result is close enough to normal.

**Parameters**

- **a** [array] Data for which the kurtosis is calculated.
- **axis** [int or None, optional] Axis along which the kurtosis is calculated. Default is 0. If None, compute over the whole array *a*.
- **fisher** [bool, optional] If True, Fisher’s definition is used (normal => 0.0). If False, Pearson’s definition is used (normal => 3.0).
bias  [bool, optional] If False, then the calculations are corrected for statistical bias.

nan_policy  [{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'.

Returns

kurtosis  [array] The kurtosis of values along an axis. If all values are equal, return -3 for Fisher’s definition and 0 for Pearson’s definition.

References

[1]

Examples

In Fisher’s definition, the kurtosis of the normal distribution is zero. In the following example, the kurtosis is close to zero, because it was calculated from the dataset, not from the continuous distribution.

```python
>>> from scipy.stats import norm, kurtosis
>>> data = norm.rvs(size=1000, random_state=3)
>>> kurtosis(data)
-0.06928694200380558
```

The distribution with a higher kurtosis has a heavier tail. The zero valued kurtosis of the normal distribution in Fisher’s definition can serve as a reference point.

```python
>>> import matplotlib.pyplot as plt
>>> import scipy.stats as stats
>>> from scipy.stats import kurtosis

>>> x = np.linspace(-5, 5, 100)
>>> ax = plt.subplot()
>>> distnames = ['laplace', 'norm', 'uniform']

>>> for distname in distnames:
... if distname == 'uniform':
... dist = getattr(stats, distname)(loc=-2, scale=4)
... else:
... dist = getattr(stats, distname)
... data = dist.rvs(size=1000)
... kur = kurtosis(data, fisher=True)
... y = dist.pdf(x)
... ax.plot(x, y, label='{}, {:.3f}'.format(distname, round(kur, 3)))
... ax.legend()
```

The Laplace distribution has a heavier tail than the normal distribution. The uniform distribution (which has negative kurtosis) has the thinnest tail.
scipy.stats.mode

scipy.stats.mode(a, axis=0, nan_policy='propagate')

Return an array of the modal (most common) value in the passed array.

If there is more than one such value, only the smallest is returned. The bin-count for the modal bins is also returned.

Parameters

- **a**: [array_like] n-dimensional array of which to find mode(s).
- **axis**: [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the whole array a.
- **nan_policy**: [{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. The following options are available (default is 'propagate'):
  - 'propagate': returns nan
  - 'raise': throws an error
  - 'omit': performs the calculations ignoring nan values

Returns

- **mode**: [ndarray] Array of modal values.
- **count**: [ndarray] Array of counts for each mode.

Examples

```python
>>> a = np.array([[6, 8, 3, 0],
... [3, 2, 1, 7],
... [8, 1, 8, 4],
... [5, 3, 0, 5],
... [4, 7, 5, 9]])
>>> from scipy import stats
>>> stats.mode(a)
ModeResult(mode=array([[3, 1, 0, 0]]), count=array([[1, 1, 1, 1]]))
```

To get mode of whole array, specify `axis=None`:
scipy.stats.mode

scipy.stats.mode(a, axis=None)

ModeResult(mode=array([3]), count=array([3]))

scipy.stats.moment

scipy.stats.moment(a, moment=1, axis=0, nan_policy='propagate')

Calculate the nth moment about the mean for a sample.

A moment is a specific quantitative measure of the shape of a set of points. It is often used to calculate coefficients of skewness and kurtosis due to its close relationship with them.

**Parameters**

- **a** [array_like] Input array.
- **moment** [int or array_like of ints, optional] Order of central moment that is returned. Default is 1.
- **axis** [int or None, optional] Axis along which the central moment is computed. Default is 0. If None, compute over the whole array a.
- **nan_policy** [{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. The following options are available (default is 'propagate'):
  - 'propagate': returns nan
  - 'raise': throws an error
  - 'omit': performs the calculations ignoring nan values

**Returns**

- **n-th central moment** [ndarray or float] The appropriate moment along the given axis or over all values if axis is None. The denominator for the moment calculation is the number of observations, no degrees of freedom correction is done.

**See also:**

kurtosis, skew, describe

**Notes**

The k-th central moment of a data sample is:

\[ m_k = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^k \]

Where n is the number of samples and x-bar is the mean. This function uses exponentiation by squares \(^{[1]}\) for efficiency.

**References**

[1]
Examples

```python
>>> from scipy.stats import moment
>>> moment([1, 2, 3, 4, 5], moment=1)
0.0
>>> moment([1, 2, 3, 4, 5], moment=2)
2.0
```

**scipy.stats.skew**

`scipy.stats.skew(a, axis=0, bias=True, nan_policy='propagate')`

Compute the sample skewness of a data set.

For normally distributed data, the skewness should be about zero. For unimodal continuous distributions, a skewness value greater than zero means that there is more weight in the right tail of the distribution. The function `skewtest` can be used to determine if the skewness value is close enough to zero, statistically speaking.

**Parameters**

- `a` ([ndarray]) Input array.
- `axis` ([int or None, optional]) Axis along which skewness is calculated. Default is 0. If None, compute over the whole array `a`.
- `bias` ([bool, optional]) If False, then the calculations are corrected for statistical bias.
- `nan_policy` ([{'propagate', 'raise', 'omit'}, optional]) Defines how to handle when input contains nan. The following options are available (default is 'propagate'):
  - 'propagate': returns nan
  - 'raise': throws an error
  - 'omit': performs the calculations ignoring nan values

**Returns**

- `skewness` ([ndarray]) The skewness of values along an axis, returning 0 where all values are equal.

**Notes**

The sample skewness is computed as the Fisher-Pearson coefficient of skewness, i.e.

\[
g_1 = \frac{m_3}{m_2^{3/2}}
\]

where

\[
m_i = \frac{1}{N} \sum_{n=1}^{N} (x[n] - \bar{x})^i
\]

is the biased sample \(i\)th central moment, and \(\bar{x}\) is the sample mean. If `bias` is False, the calculations are corrected for bias and the value computed is the adjusted Fisher-Pearson standardized moment coefficient, i.e.

\[
G_1 = \frac{k_3}{k_2^{3/2}} = \frac{\sqrt{N(N-1)}}{N-2} \frac{m_3}{m_2^{3/2}}.
\]
References

[1]

Examples

```python
>>> from scipy.stats import skew
>>> skew([1, 2, 3, 4, 5])
0.0
>>> skew([2, 8, 0, 4, 1, 9, 9, 0])
0.2650554122698573
```

**scipy.stats.kstat**

scipy.stats.kstat(data, n=2)

- Return the nth k-statistic (1<=n<=4 so far).
- The nth k-statistic $k_n$ is the unique symmetric unbiased estimator of the nth cumulant $\kappa_n$.

**Parameters**

- **data** [array_like] Input array. Note that n-D input gets flattened.
- **n** [int, {1, 2, 3, 4}, optional] Default is equal to 2.

**Returns**

- **kstat** [float] The nth k-statistic.

**See also:**

- **kstatvar**
  - Returns an unbiased estimator of the variance of the k-statistic.
- **moment**
  - Returns the n-th central moment about the mean for a sample.

**Notes**

For a sample size $n$, the first few k-statistics are given by:

$$
\begin{align*}
  k_1 &= \mu k_2 = \frac{n}{n-1} m_2 k_3 = \frac{n^2}{(n-1)(n-2)} m_3 k_4 = \frac{n^2((n+1)m_4 - 3(n-1)m_2^2)}{(n-1)(n-2)(n-3)} \\
  \end{align*}
$$

where $\mu$ is the sample mean, $m_2$ is the sample variance, and $m_i$ is the $i$-th sample central moment.

**References**

- [http://mathworld.wolfram.com/k-Statistic.html](http://mathworld.wolfram.com/k-Statistic.html)
- [http://mathworld.wolfram.com/Cumulant.html](http://mathworld.wolfram.com/Cumulant.html)
Examples

```python
>>> from scipy import stats
>>> from numpy.random import default_rng
>>> rng = default_rng()

As sample size increases, n-th moment and n-th k-statistic converge to the same number (although they aren't identical). In the case of the normal distribution, they converge to zero.

```python
>>> for n in [2, 3, 4, 5, 6, 7]:
...     x = rng.normal(size=10**n)
...     m, k = stats.moment(x, 3), stats.kstat(x, 3)
...     print("%.3g %.3g %.3g % (m, k, m-k))
-0.631 -0.651 0.0194 # random
0.0282 0.0283 -8.49e-05
-0.0454 -0.0454 1.36e-05
7.53e-05 7.53e-05 -2.26e-09
0.00166 0.00166 -4.99e-09
-2.88e-06 -2.88e-06 8.63e-13
```

scipy.stats.kstatvar

`scipy.stats.kstatvar(data, n=2)`

Return an unbiased estimator of the variance of the k-statistic.

See `kstat` for more details of the k-statistic.

Parameters

- **data** ([array_like]) Input array. Note that n-D input gets flattened.
- **n** [int, {1, 2}, optional] Default is equal to 2.

Returns

- **kstatvar** [float] The nth k-statistic variance.

See also:

- **kstat**
 Returns the n-th k-statistic.
- **moment**
 Returns the n-th central moment about the mean for a sample.

Notes

The variances of the first few k-statistics are given by:

\[
\text{var}(k_1) = \frac{\kappa^2}{n} \\
\text{var}(k_2) = \frac{\kappa^4}{n} + \frac{2\kappa^2}{n-1} \\
\text{var}(k_3) = \frac{\kappa^6}{n} + \frac{9\kappa^2\kappa_4}{n-1} + \frac{9\kappa^4}{n-1} + \frac{6n\kappa_2^3}{(n-1)(n-2)} \\
\text{var}(k_4) = \frac{\kappa^8}{n} + \frac{16\kappa_2\kappa_6}{n-1} + \frac{48\kappa_3^2\kappa_5}{n-1}
\]
scipy.stats.tmean

scipy.stats.tmean(a, limits=None, inclusive=(True, True), axis=None)

This function finds the arithmetic mean of given values, ignoring values outside the given limits.

Parameters

 a [array_like] Array of values.
 limits [None or (lower limit, upper limit), optional] Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None (default), then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval.
 inclusive [(bool, bool), optional] A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True).
 axis [int or None, optional] Axis along which to compute test. Default is None.

Returns

 tmean [ndarray] Trimmed mean.

See also:

 trim_mean

 Returns mean after trimming a proportion from both tails.

Examples

```python
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tmean(x)
9.5
>>> stats.tmean(x, (3,17))
10.0
```

scipy.stats.tvar

scipy.stats.tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1)

This function computes the sample variance of an array of values, while ignoring values which are outside of given limits.

Parameters

 a [array_like] Array of values.
 limits [None or (lower limit, upper limit), optional] Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None.
 inclusive [(bool, bool), optional] A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True).
 axis [int or None, optional] Axis along which to compute. Default is 0. If None, compute over the whole array a.
 ddof [int, optional] Number of degrees of freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. Default is 1.
ddof [int, optional] Delta degrees of freedom. Default is 1.

Returns
tvar [float] Trimmed variance.

Notes

tvar computes the unbiased sample variance, i.e. it uses a correction factor \(n / (n - 1) \).

Examples

```python
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tvar(x)
35.0
>>> stats.tvar(x, (3,17))
20.0
```

scipy.stats.tmin

scipy.stats.tmin(a, lowerlimit=None, axis=0, inclusive=True, nan_policy='propagate')

Compute the trimmed minimum.

This function finds the minimum value of an array \(a \) along the specified axis, but only considering values greater than a specified lower limit.

Parameters

- **a** [array_like] Array of values.
- **lowerlimit** [None or float, optional] Values in the input array less than the given limit will be ignored. When lowerlimit is None, then all values are used. The default value is None.
- **axis** [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the whole array \(a \).
- **inclusive** [{True, False}, optional] This flag determines whether values exactly equal to the lower limit are included. The default value is True.
- **nan_policy** [{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. The following options are available (default is ‘propagate’):
 - ‘propagate’: returns nan
 - ‘raise’: throws an error
 - ‘omit’: performs the calculations ignoring nan values

Returns
tmin [float, int or ndarray] Trimmed minimum.
Examples

```python
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tmin(x)
0

>>> stats.tmin(x, 13)
13

>>> stats.tmin(x, 13, inclusive=False)
14
```

scipy.stats.tmax

scipy.stats.tmax*(a, upperlimit=None, axis=0, inclusive=True, nan_policy='propagate')*

Compute the trimmed maximum.

This function computes the maximum value of an array along a given axis, while ignoring values larger than a specified upper limit.

Parameters

- **a** [array_like] Array of values.
- **upperlimit** [None or float, optional] Values in the input array greater than the given limit will be ignored. When upperlimit is None, then all values are used. The default value is None.
- **axis** [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the whole array a.
- **inclusive** [{True, False}, optional] This flag determines whether values exactly equal to the upper limit are included. The default value is True.
- **nan_policy** [{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. The following options are available (default is 'propagate'):
 - 'propagate': returns nan
 - 'raise': throws an error
 - 'omit': performs the calculations ignoring nan values

Returns

- **tmax** [float, int or ndarray] Trimmed maximum.

Examples

```python
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tmax(x)
19

>>> stats.tmax(x, 13)
13

>>> stats.tmax(x, 13, inclusive=False)
12
```
scipy.stats.tstd

scipy.stats.tstd *(a, limits=None, inclusive=(True, True), axis=0, ddof=1)*

Compute the trimmed sample standard deviation.

This function finds the sample standard deviation of given values, ignoring values outside the given *limits*.

Parameters

- **a** [array_like] Array of values.
- **limits** [None or (lower limit, upper limit), optional] Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None.
- **inclusive** [(bool, bool), optional] A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True).
- **axis** [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the whole array *a*.
- **ddof** [int, optional] Delta degrees of freedom. Default is 1.

Returns

- **tstd** [float] Trimmed sample standard deviation.

Notes

`tstd` computes the unbiased sample standard deviation, i.e. it uses a correction factor \(n / (n - 1) \).

Examples

```python
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tstd(x)
5.9160797830996161
>>> stats.tstd(x, (3, 17))
4.4721359549995796
```

scipy.stats.tsem

scipy.stats.tsem *(a, limits=None, inclusive=(True, True), axis=0, ddof=1)*

Compute the trimmed standard error of the mean.

This function finds the standard error of the mean for given values, ignoring values outside the given *limits*.

Parameters

- **a** [array_like] Array of values.
- **limits** [None or (lower limit, upper limit), optional] Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None.
- **inclusive** [(bool, bool), optional] A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True).
- **axis** [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the whole array *a*.
ddof [int, optional] Delta degrees of freedom. Default is 1.

Returns
tsem [float] Trimmed standard error of the mean.

Notes

tsem uses unbiased sample standard deviation, i.e. it uses a correction factor \(\frac{n}{n - 1} \).

Examples

```python
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tsem(x)
1.3228756555322954
>>> stats.tsem(x, (3, 17))
1.1547005383792515
```

scipy.stats.variation

scipy.stats.variation(a, axis=0, nan_policy='propagate', ddof=0, *, keepdims=False)

Compute the coefficient of variation.

The coefficient of variation is the standard deviation divided by the mean. This function is equivalent to:

```python
np.std(x, axis=axis, ddof=ddof) / np.mean(x)
```

The default for ddof is 0, but many definitions of the coefficient of variation use the square root of the unbiased sample variance for the sample standard deviation, which corresponds to \(\text{ddof}=1 \).

The function does not take the absolute value of the mean of the data, so the return value is negative if the mean is negative.

Parameters

- **a** [array_like] Input array.
- **axis** [int or None, optional] Axis along which to calculate the coefficient of variation. Default is 0. If None, compute over the whole array a.
- **nan_policy** [{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. The following options are available:
 - ‘propagate’: return nan
 - ‘raise’: raise an exception
 - ‘omit’: perform the calculation with nan values omitted
 The default is ‘propagate’.
- **ddof** [int, optional] Gives the “Delta Degrees Of Freedom” used when computing the standard deviation. The divisor used in the calculation of the standard deviation is \(N - \text{ddof} \), where \(N \) is the number of elements. \(\text{ddof} \) must be less than \(N \); if it isn’t, the result will be \(\text{nan} \) or \(\text{inf} \), depending on \(N \) and the values in the array. By default \(\text{ddof} \) is zero for backwards compatibility, but it is recommended to use \(\text{ddof}=1 \) to ensure that the sample standard deviation is computed as the square root of the unbiased sample variance.
- **keepdims** [bool, optional] If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.
Returns

variation [ndarray] The calculated variation along the requested axis.

Notes

There are several edge cases that are handled without generating a warning:

• If both the mean and the standard deviation are zero, \(\text{nan} \) is returned.
• If the mean is zero and the standard deviation is nonzero, \(\text{inf} \) is returned.
• If the input has length zero (either because the array has zero length, or all the input values are \(\text{nan} \) and \(\text{nan_policy} \) is 'omit'), \(\text{nan} \) is returned.
• If the input contains \(\text{inf} \), \(\text{nan} \) is returned.

References

[1]

Examples

```python
>>> from scipy.stats import variation
>>> variation([1, 2, 3, 4, 5], ddof=1)
0.5270462766947299
```

Compute the variation along a given dimension of an array that contains a few \(\text{nan} \) values:

```python
>>> x = np.array([[ 10.0, np.nan, 11.0, 19.0, 23.0, 29.0, 98.0],
...                [ 29.0, 30.0, 32.0, 33.0, 35.0, 56.0, 57.0],
...                [np.nan, np.nan, 12.0, 13.0, 16.0, 16.0, 17.0]])
>>> variation(x, axis=1, ddof=1, nan_policy='omit')
array([1.05109361, 0.31428986, 0.14648388])
```

`scipy.stats.find_repeats`

`scipy.stats.find_repeats(arr)`

Find repeats and repeat counts.

Parameters

- **arr** [array_like] Input array. This is cast to float64.

Returns

- **values** [ndarray] The unique values from the (flattened) input that are repeated.
- **counts** [ndarray] Number of times the corresponding ‘value’ is repeated.
Notes

In numpy >= 1.9, `numpy.unique` provides similar functionality. The main difference is that `find_repeats` only returns repeated values.

Examples

```python
>>> from scipy import stats
>>> stats.find_repeats([2, 1, 2, 3, 2, 2, 5])
RepeatedResults(values=array([2.]), counts=array([4]))
```

```python
>>> stats.find_repeats([[10, 20, 1, 2], [5, 5, 4, 4]])
RepeatedResults(values=array([4., 5.]), counts=array([2, 2]))
```

`scipy.stats.trim_mean`

`scipy.stats.trim_mean(a, proportiontocut, axis=0)`

Return mean of array after trimming distribution from both tails.

If `proportiontocut = 0.1`, slices off ‘leftmost’ and ‘rightmost’ 10% of scores. The input is sorted before slicing. Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut`).

Parameters

- `a` [array_like] Input array.
- `proportiontocut` [float] Fraction to cut off of both tails of the distribution.
- `axis` [int or None, optional] Axis along which the trimmed means are computed. Default is 0. If None, compute over the whole array `a`.

Returns

- `trim_mean` [ndarray] Mean of trimmed array.

See also:

- `trimboth`
- `tmean`

Compute the trimmed mean ignoring values outside given limits.

Examples

```python
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.trim_mean(x, 0.1)
9.5
```

```python
>>> x2 = x.reshape(5, 4)
>>> x2
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19]])
```
scipy.stats.gstd

scipy.stats.gstd(*a*, *axis=0, ddof=1)

Calculate the geometric standard deviation of an array.

The geometric standard deviation describes the spread of a set of numbers where the geometric mean is preferred. It is a multiplicative factor, and so a dimensionless quantity.

It is defined as the exponent of the standard deviation of \(\log(a)\). Mathematically the population geometric standard deviation can be evaluated as:

\[
gstd = \exp(\text{std}(\log(a)))
\]

New in version 1.3.0.

Parameters

- **a** : array_like
 An array like object containing the sample data.
- **axis** : int, tuple or None, optional
 Axis along which to operate. Default is 0. If None, compute over the whole array a.
- **ddof** : int, optional
 Degree of freedom correction in the calculation of the geometric standard deviation. Default is 1.

Returns

- **ndarray or float**
 An array of the geometric standard deviation. If axis is None or a is a 1d array a float is returned.

Notes

As the calculation requires the use of logarithms the geometric standard deviation only supports strictly positive values. Any non-positive or infinite values will raise a `ValueError`. The geometric standard deviation is sometimes confused with the exponent of the standard deviation, \(\exp(\text{std}(a))\). Instead the geometric standard deviation is \(\exp(\text{std}(\log(a)))\). The default value for ddof is different to the default value (0) used by other ddof containing functions, such as `np.std` and `np.nanstd`.

Examples

Find the geometric standard deviation of a log-normally distributed sample. Note that the standard deviation of the distribution is one, on a log scale this evaluates to approximately \(\exp(1)\).

```python
>>> from scipy.stats import gstd
>>> rng = np.random.default_rng()
>>> sample = rng.lognormal(mean=0, sigma=1, size=1000)
>>> gstd(sample)
2.810010101624753
```

Compute the geometric standard deviation of a multidimensional array and of a given axis.
```python
>>> a = np.arange(1, 25).reshape(2, 3, 4)
>>> gstd(a, axis=None)
2.2944076136018947
>>> gstd(a, axis=2)
array([[1.82424757, 1.22436866, 1.13183117],
       [1.09348306, 1.07244798, 1.05914985]])
>>> gstd(a, axis=(1,2))
array([2.12939215, 1.22120169])
```

The geometric standard deviation further handles masked arrays.

```python
>>> a = np.arange(1, 25).reshape(2, 3, 4)
>>> ma = np.ma.masked_where(a > 16, a)
>>> ma
masked_array(data=[[1, 2, 3, 4],
                   [5, 6, 7, 8],
                   [9, 10, 11, 12]],
               mask=[[False, False, False, False],
                     [False, False, False, False],
                     [False, False, False, False]],
              fill_value=999999)
>>> gstd(ma, axis=2)
masked_array(data=[[1.8242475707663655, 1.2243686572447428, 1.1318311657788478],
                   [1.0934830582350938, --, --]],
               mask=[[False, False, False],
                     [False, True, True]],
              fill_value=999999)
```

scipy.stats.iqr

`scipy.stats.iqr(x, axis=None, rng=(25, 75), scale=1.0, nan_policy='propagate', interpolation='linear', keepdims=False)`

Compute the interquartile range of the data along the specified axis.

The interquartile range (IQR) is the difference between the 75th and 25th percentile of the data. It is a measure of the dispersion similar to standard deviation or variance, but is much more robust against outliers [2].

The `rng` parameter allows this function to compute other percentile ranges than the actual IQR. For example, setting `rng=(0, 100)` is equivalent to `numpy.ptp`.

The IQR of an empty array is `np.nan`.

New in version 0.18.0.

Parameters

- `x` : array_like Input array or object that can be converted to an array.
- `axis` : [int or sequence of int, optional] Axis along which the range is computed. The default is to compute the IQR for the entire array.
rng [Two-element sequence containing floats in range of [0,100] optional] Percentiles over which to compute the range. Each must be between 0 and 100, inclusive. The default is the true IQR: (25, 75). The order of the elements is not important.

scale [scalar or str, optional] The numerical value of scale will be divided out of the final result. The following string values are recognized:
- 'raw': No scaling, just return the raw IQR. **Deprecated!** Use scale=1 instead.
- 'normal': Scale by $2\sqrt{2\text{erf}^{-1}(1/2)} \approx 1.349$.
The default is 1.0. The use of scale='raw' is deprecated. Array-like scale is also allowed, as long as it broadcasts correctly to the output such that out / scale is a valid operation. The output dimensions depend on the input array, x, the axis argument, and the keepdims flag.

nan_policy [{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. The following options are available (default is 'propagate'):
- 'propagate': returns nan
- 'raise': throws an error
- 'omit': performs the calculations ignoring nan values

interpolation [str, optional] Specifies the interpolation method to use when the percentile boundaries lie between two data points i and j. The following options are available (default is 'linear'):
- 'linear': $i + (j - i)\times\text{fraction}$, where fraction is the fractional part of the index surrounded by i and j.
- 'lower': i.
- 'higher': j.
- 'nearest': i or j whichever is nearest.
- 'midpoint': $(i + j)/2$.
For NumPy >= 1.22.0, the additional options provided by the method keyword of numpy.percentile are also valid.

keepdims [bool, optional] If this is set to True, the reduced axes are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array x.

Returns

iqr [scalar or ndarray] If axis=None, a scalar is returned. If the input contains integers or floats of smaller precision than np.float64, then the output data-type is np.float64. Otherwise, the output data-type is the same as that of the input.

See also:

numpy.std, numpy.var

References

[1], [2], [3]
Examples

```python
>>> from scipy.stats import iqr
>>> x = np.array([[10, 7, 4], [3, 2, 1]])
>>> x
array([[10,  7,  4],
       [ 3,  2,  1]])
>>> iqr(x)
4.0
>>> iqr(x, axis=0)
array([ 3.5,  2.5,  1.5])
>>> iqr(x, axis=1)
array([ 3.,  1.])
>>> iqr(x, axis=1, keepdims=True)
array([[ 3.],
       [ 1.]]
```

scipy.stats.sem

`scipy.stats.sem(a, axis=0, ddof=1, nan_policy='propagate')`

Compute standard error of the mean.

Calculate the standard error of the mean (or standard error of measurement) of the values in the input array.

Parameters

- `a` : array_like An array containing the values for which the standard error is returned.
- `axis` : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`.
- `ddof` : int, optional Delta degrees-of-freedom. How many degrees of freedom to adjust for bias in limited samples relative to the population estimate of variance. Defaults to 1.
- `nan_policy` : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'):
 - 'propagate': returns nan
 - 'raise': throws an error
 - 'omit': performs the calculations ignoring nan values

Returns

- `s` : ndarray or float The standard error of the mean in the sample(s), along the input axis.

Notes

The default value for `ddof` is different to the default (0) used by other ddof containing routines, such as `np.std` and `np.nanstd`.
Examples

Find standard error along the first axis:

```python
>>> from scipy import stats
>>> a = np.arange(20).reshape(5,4)
>>> stats.sem(a)
array([ 2.8284,  2.8284,  2.8284,  2.8284])
```

Find standard error across the whole array, using n degrees of freedom:

```python
>>> stats.sem(a, axis=None, ddof=0)
1.2893796958227628
```

scipy.stats.bayes_mvs

`scipy.stats.bayes_mvs(data, alpha=0.9)`

Bayesian confidence intervals for the mean, var, and std.

Parameters

- **data** [array_like] Input data, if multi-dimensional it is flattened to 1-D by `bayes_mvs`. Requires 2 or more data points.
- **alpha** [float, optional] Probability that the returned confidence interval contains the true parameter.

Returns

- **mean_cntr, var_cntr, std_cntr** [tuple] The three results are for the mean, variance and standard deviation, respectively. Each result is a tuple of the form:

  ```python
  (center, (lower, upper))
  ```

 with `center` the mean of the conditional pdf of the value given the data, and `(lower, upper)` a confidence interval, centered on the median, containing the estimate to a probability `alpha`.

See also:

- `mvsdist`

Notes

Each tuple of mean, variance, and standard deviation estimates represent the `(center, (lower, upper))` with center the mean of the conditional pdf of the value given the data and (lower, upper) is a confidence interval centered on the median, containing the estimate to a probability `alpha`.

Converts data to 1-D and assumes all data has the same mean and variance. Uses Jeffrey’s prior for variance and std.

Equivalent to `tuple((x.mean(), x.interval(alpha)) for x in mvsdist(dat))`
References

Examples

First a basic example to demonstrate the outputs:

```python
>>> from scipy import stats
>>> data = [6, 9, 12, 7, 8, 8, 13]
>>> mean, var, std = stats.bayes_mvs(data)
>>> mean
Mean(statistic=9.0, minmax=(7.103650222612533, 10.896349777387467))
>>> var
Variance(statistic=10.0, minmax=(3.176724206..., 24.45910382...))
>>> std
Std_dev(statistic=2.9724954732045084, minmax=(1.7823367265645143, 4.945614605014631))
```

Now we generate some normally distributed random data, and get estimates of mean and standard deviation with 95% confidence intervals for those estimates:

```python
>>> n_samples = 100000
>>> data = stats.norm.rvs(size=n_samples)
>>> res_mean, res_var, res_std = stats.bayes_mvs(data, alpha=0.95)
```

```python
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.hist(data, bins=100, density=True, label='Histogram of data')
>>> ax.vlines(res_mean.statistic, 0, 0.5, colors='r', label='Estimated mean')
>>> ax.vlines(res_mean.minmax[0], res_mean.minmax[1], facecolor='r', alpha=0.2, label='Estimated mean (95% limits)')
>>> ax.vlines(res_std.statistic, 0, 0.5, colors='g', label='Estimated scale')
>>> ax.vlines(res_std.minmax[0], res_std.minmax[1], facecolor='g', alpha=0.2, label='Estimated scale (95% limits)')
```

```python
>>> ax.legend(fontsize=10)
>>> ax.set_xlim([-4, 4])
>>> ax.set_ylim([0, 0.5])
>>> plt.show()
```
scipy.stats.mvsdist

scipy.stats.mvsdist(data)

‘Frozen’ distributions for mean, variance, and standard deviation of data.

Parameters

- **data** ([array_like]) Input array. Converted to 1-D using ravel. Requires 2 or more data-points.

Returns

- **mdist** [“frozen” distribution object] Distribution object representing the mean of the data.
- **vdist** [“frozen” distribution object] Distribution object representing the variance of the data.
- **sdist** [“frozen” distribution object] Distribution object representing the standard deviation of the data.

See also:

bayes_mvs

Notes

The return values from *bayes_mvs(data)* is equivalent to *tuple((x.mean(), x.interval(0.90)) for x in mvsdist(data)).*

In other words, calling *<dist>.mean()* and *<dist>.interval(0.90)* on the three distribution objects returned from this function will give the same results that are returned from *bayes_mvs*.
References

Examples

```python
>>> from scipy import stats
>>> data = [6, 9, 12, 7, 8, 8, 13]
>>> mean, var, std = stats.mvsdist(data)
We now have frozen distribution objects “mean”, “var” and “std” that we can examine:

```python
>>> mean.mean()
9.0
>>> mean.interval(0.95)
(6.6120585482655692, 11.387941451734431)
>>> mean.std()
1.1952286093343936
```

scipy.stats.entropy

scipy.stats.entropy(pk, qk=None, base=None, axis=0)

Calculate the entropy of a distribution for given probability values.

If only probabilities pk are given, the entropy is calculated as \( S = -\sum (pk \times \log(pk)) \), axis=axis).

If qk is not None, then compute the Kullback-Leibler divergence \( S = \sum (pk \times \log(pk / qk)) \), axis=axis).

This routine will normalize pk and qk if they don’t sum to 1.

Parameters

- **pk**: [array_like] Defines the (discrete) distribution. Along each axis-slice of pk, element i is the (possibly unnormalized) probability of event i.
- **qk**: [array_like, optional] Sequence against which the relative entropy is computed. Should be in the same format as pk.
- **base**: [float, optional] The logarithmic base to use, defaults to \( e \) (natural logarithm).
- **axis**: int, optional
  
The axis along which the entropy is calculated. Default is 0.

Returns

- **S**: [{float, array_like}] The calculated entropy.

Examples

```python
>>> from scipy.stats import entropy
Bernoulli trial with different p. The outcome of a fair coin is the most uncertain:

```python
>>> entropy([[1/2, 1/2], base=2)
1.0
The outcome of a biased coin is less uncertain:
```
>>> entropy([9/10, 1/10], base=2)
0.46899559358928117

Relative entropy:

>>> entropy([1/2, 1/2], qk=[9/10, 1/10])
0.5108256237659907

scipy.stats.differential_entropy

```python
scipy.stats.differential_entropy(values, *, window_length=None, base=None, axis=0, method='auto')
```

Given a sample of a distribution, estimate the differential entropy.

Several estimation methods are available using the `method` parameter. By default, a method is selected based the size of the sample.

Parameters

- `values` ([sequence]): Sample from a continuous distribution.
- `window_length` ([int, optional]): Window length for computing Vasicek estimate. Must be an integer between 1 and half of the sample size. If `None` (the default), it uses the heuristic value $$\lceil \sqrt{n} + 0.5 \rceil$$

 where `n` is the sample size. This heuristic was originally proposed in [2] and has become common in the literature.
- `base` ([float, optional]): The logarithmic base to use, defaults to `e` (natural logarithm).
- `axis` ([int, optional]): The axis along which the differential entropy is calculated. Default is 0.
- `method` ([{'vasicek', 'van es', 'ebrahimi', 'correa', 'auto'}, optional]): The method used to estimate the differential entropy from the sample. Default is `'auto'`. See Notes for more information.

Returns

- `entropy` ([float]): The calculated differential entropy.

Notes

This function will converge to the true differential entropy in the limit

$$n \to \infty, \quad m \to \infty, \quad \frac{m}{n} \to 0$$

The optimal choice of `window_length` for a given sample size depends on the (unknown) distribution. Typically, the smoother the density of the distribution, the larger the optimal value of `window_length` [1].

The following options are available for the `method` parameter.

- `'vasicek'` uses the estimator presented in [1]. This is one of the first and most influential estimators of differential entropy.
- `'van es'` uses the bias-corrected estimator presented in [3], which is not only consistent but, under some conditions, asymptotically normal.
- `'ebrahimi'` uses an estimator presented in [4], which was shown in simulation to have smaller bias and mean squared error than the Vasicek estimator.
- `'correa'` uses the estimator presented in [5] based on local linear regression. In a simulation study, it had consistently smaller mean square error than the Vasicek estimator, but it is more expensive to compute.
• 'auto' selects the method automatically (default). Currently, this selects 'van es' for very small samples (<10), 'ebrahimi' for moderate sample sizes (11-1000), and 'vasicek' for larger samples, but this behavior is subject to change in future versions.

All estimators are implemented as described in [6].

References

[1], [2], [3], [4], [5], [6]

Examples

```python
>>> from scipy.stats import differential_entropy, norm

Entropy of a standard normal distribution:

>>> rng = np.random.default_rng()
>>> values = rng.standard_normal(100)
>>> differential_entropy(values)
1.3407817436640392

Compare with the true entropy:

>>> float(norm.entropy())
1.4189385332046727
```

For several sample sizes between 5 and 1000, compare the accuracy of the 'vasicek', 'van es', and 'ebrahimi' methods. Specifically, compare the root mean squared error (over 1000 trials) between the estimate and the true differential entropy of the distribution.

```python
>>> from scipy import stats
>>> import matplotlib.pyplot as plt

>>> def rmse(res, expected):
...     '''Root mean squared error'''
...     return np.sqrt(np.mean((res - expected)**2))

>>> a, b = np.log10(5), np.log10(1000)
>>> ns = np.round(np.logspace(a, b, 10)).astype(int)
>>> reps = 1000 # number of repetitions for each sample size
>>> expected = stats.expon.entropy()

>>> method_errors = {'vasicek': [], 'van es': [], 'ebrahimi': []}

>>> for method in method_errors:
...     for n in ns:
...         rvs = stats.expon.rvs(size=(reps, n), random_state=rng)
...         res = stats.differential_entropy(rvs, method=method, axis=-1)
...         error = rmse(res, expected)
...         method_errors[method].append(error)
```

(continues on next page)
```python
>>> for method, errors in method_errors.items():
...     plt.loglog(ns, errors, label=method)
>>> plt.legend()
>>> plt.xlabel('sample size')
>>> plt.ylabel('RMSE (1000 trials)')
>>> plt.title('Entropy Estimator Error (Exponential Distribution)')
```

![Entropy Estimator Error (Exponential Distribution)](image)

scipy.stats.median_absolute_deviation

```python
scipy.stats.median_absolute_deviation(*args, **kwds)
```

median_absolute_deviation is deprecated, use *median_abs_deviation* instead!

To preserve the existing default behavior, use `scipy.stats.median_absolute_deviation(..., scale=1/1.4826)`. The value 1.4826 is not numerically precise for scaling with a normal distribution. For a numerically precise value, use `scipy.stats.median_abs_deviation(..., scale='normal')`.

Compute the median absolute deviation of the data along the given axis.

The median absolute deviation (MAD, [1]) computes the median over the absolute deviations from the median. It is a measure of dispersion similar to the standard deviation but more robust to outliers [2].

The MAD of an empty array is *np.nan*.

New in version 1.3.0.

Parameters

- **x** [array_like] Input array or object that can be converted to an array.
- **axis** [int or None, optional] Axis along which the range is computed. Default is 0. If None, compute the MAD over the entire array.
- **center** [callable, optional] A function that will return the central value. The default is to use *np.median*. Any user defined function used will need to have the function signature `func(arr, axis)`.
- **scale** [int, optional] The scaling factor applied to the MAD. The default scale (1.4826) ensures consistency with the standard deviation for normally distributed data.
nan_policy

[{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. The following options are available (default is 'propagate'):

- 'propagate': returns nan
- 'raise': throws an error
- 'omit': performs the calculations ignoring nan values

Returns

mad [scalar or ndarray] If axis=None, a scalar is returned. If the input contains integers or floats of smaller precision than np.float64, then the output data-type is np.float64. Otherwise, the output data-type is the same as that of the input.

See also:

numpy.std, numpy.var, numpy.median, scipy.stats.iqr, scipy.stats.tmean

scipy.stats.tstd, scipy.stats.tvar

Notes

The center argument only affects the calculation of the central value around which the MAD is calculated. That is, passing in center=np.mean will calculate the MAD around the mean - it will not calculate the mean absolute deviation.

References

[1], [2]

Examples

When comparing the behavior of median_absolute_deviation with np.std, the latter is affected when we change a single value of an array to have an outlier value while the MAD hardly changes:

```python
>>> from scipy import stats
>>> x = stats.norm.rvs(size=100, scale=1, random_state=123456)
>>> x.std()
0.9973906394005013
>>> stats.median_absolute_deviation(x)
1.2280762773108278
>>> x[0] = 345.6
>>> x.std()
34.42304872314415
>>> stats.median_absolute_deviation(x)
1.2340335571164334
```

Axis handling example:

```python
>>> x = np.array([[10, 7, 4], [3, 2, 1]])
>>> x
array([[10,  7,  4],
       [ 3,  2,  1]])
>>> stats.median_absolute_deviation(x)
```

(continues on next page)
```python
array([5.1891, 3.7065, 2.2239])
>>> stats.median_absolute_deviation(x, axis=None)
2.9652
```

scipy.stats.median_abs_deviation

`scipy.stats.median_abs_deviation(x, axis=0, center=<function median>, scale=1.0, nan_policy='propagate')`

Compute the median absolute deviation of the data along the given axis.

The median absolute deviation (MAD, [1]) computes the median over the absolute deviations from the median. It is a measure of dispersion similar to the standard deviation but more robust to outliers [2].

The MAD of an empty array is `np.nan`.

New in version 1.5.0.

Parameters

- `x` [array_like] Input array or object that can be converted to an array.
- `axis` [int or None, optional] Axis along which the range is computed. Default is 0. If None, compute the MAD over the entire array.
- `center` [callable, optional] A function that will return the central value. The default is to use `np.median`. Any user defined function used will need to have the function signature `func(arr, axis)`.
- `scale` [scalar or str, optional] The numerical value of scale will be divided out of the final result. The default is 1.0. The string “normal” is also accepted, and results in `scale` being the inverse of the standard normal quantile function at 0.75, which is approximately 0.67449. Array-like scale is also allowed, as long as it broadcasts correctly to the output such that `out / scale` is a valid operation. The output dimensions depend on the input array, `x`, and the `axis` argument.
- `nan_policy` [{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. The following options are available (default is ‘propagate’):
 - ‘propagate’: returns nan
 - ‘raise’: throws an error
 - ‘omit’: performs the calculations ignoring nan values

Returns

- `mad` [scalar or ndarray] If `axis=None`, a scalar is returned. If the input contains integers or floats of smaller precision than `np.float64`, then the output data-type is `np.float64`. Otherwise, the output data-type is the same as that of the input.

See also:

- `numpy.std`, `numpy.var`, `numpy.median`, `scipy.stats.iqr`, `scipy.stats.tmean`
- `scipy.stats.tstd`, `scipy.stats.tvar`
Notes

The `center` argument only affects the calculation of the central value around which the MAD is calculated. That is, passing in `center=np.mean` will calculate the MAD around the mean - it will not calculate the `mean` absolute deviation.

The input array may contain `inf`, but if `center` returns `inf`, the corresponding MAD for that data will be `nan`.

References

[1], [2]

Examples

When comparing the behavior of `median_abs_deviation` with `np.std`, the latter is affected when we change a single value of an array to have an outlier value while the MAD hardly changes:

```python
>>> from scipy import stats
>>> x = stats.norm.rvs(size=100, scale=1, random_state=123456)
>>> x.std()
0.9973906394005013
>>> stats.median_abs_deviation(x)
0.82832610097857
>>> x[0] = 345.6
>>> x.std()
34.42304872314415
>>> stats.median_abs_deviation(x)
0.8323442311590675
```

Axis handling example:

```python
>>> x = np.array([[10, 7, 4], [3, 2, 1]])
>>> x
array([[10,  7,  4],
       [ 3,  2,  1]])
>>> stats.median_abs_deviation(x)
array([3.5, 2.5, 1.5])
>>> stats.median_abs_deviation(x, axis=none)
2.0
```

Scale normal example:

```python
>>> x = stats.norm.rvs(size=1000000, scale=2, random_state=123456)
>>> stats.median_abs_deviation(x)
1.3487398527041636
>>> stats.median_abs_deviation(x, scale='normal')
1.9996446978061115
```
scipy.stats.bootstrap

scipy.stats.bootstrapp(data, statistic, *, vectorized=True, paired=False, axis=0, confidence_level=0.95, n_resamples=9999, batch=None, method='BCa', random_state=None)

Compute a two-sided bootstrap confidence interval of a statistic.

When `method` is 'percentile', a bootstrap confidence interval is computed according to the following procedure.

1. Resample the data: for each sample in `data` and for each of `n_resamples`, take a random sample of the original sample (with replacement) of the same size as the original sample.
2. Compute the bootstrap distribution of the statistic: for each set of resamples, compute the test statistic.
3. Determine the confidence interval: find the interval of the bootstrap distribution that is
 - symmetric about the median and
 - contains `confidence_level` of the resampled statistic values.

While the 'percentile' method is the most intuitive, it is rarely used in practice. Two more common methods are available, 'basic' ('reverse percentile') and 'BCa' ('bias-corrected and accelerated'); they differ in how step 3 is performed.

If the samples in `data` are taken at random from their respective distributions `n` times, the confidence interval returned by `bootstrap` will contain the true value of the statistic for those distributions approximately `confidence_level` × `n` times.

Parameters

- `data` [sequence of array-like] Each element of data is a sample from an underlying distribution.
- `statistic` [callable] Statistic for which the confidence interval is to be calculated. `statistic` must be a callable that accepts `len(data)` samples as separate arguments and returns the resulting statistic. If `vectorized` is set True, `statistic` must also accept a keyword argument `axis` and be vectorized to compute the statistic along the provided `axis`.
- `vectorized` [bool, default: True] If `vectorized` is set False, `statistic` will not be passed keyword argument `axis` and is assumed to calculate the statistic only for 1D samples.
- `paired` [bool, default: False] Whether the statistic treats corresponding elements of the samples in `data` as paired.
- `axis` [int, default: 0] The axis of the samples in `data` along which the `statistic` is calculated.
- `confidence_level` [float, default: 0.95] The confidence level of the confidence interval.
- `n_resamples` [int, default: 9999] The number of resamples performed to form the bootstrap distribution of the statistic.
- `batch` [int, optional] The number of resamples to process in each vectorized call to `statistic`. Memory usage is \(O(batch\times n)\), where `n` is the sample size. Default is None, in which case batch = `n_resamples` (or `batch` = max(`n_resamples`, `n`) for `method`='BCa').
- `method` [{'percentile', 'basic', 'bca'}, default: 'BCa'] Whether to return the 'percentile' bootstrap confidence interval ('percentile'), the 'reverse' or the bias-corrected and accelerated bootstrap confidence interval ('BCa'). Note that only 'percentile' and 'basic' support multi-sample statistics at this time.
- `random_state` [[None, int, numpy.random.Generator], numpy.random.RandomState], optional
 Pseudorandom number generator state used to generate resamples. If `random_state` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `random_state` is an int, a new `RandomState` instance is used, seeded with

3.3. API definition 2793
random_state. If random_state is already a Generator or RandomState instance then that instance is used.

Returns

res [BootstrapResult] An object with attributes:

confidence_interval [ConfidenceInterval] The bootstrap confidence interval as an instance of collections.namedtuple with attributes low and high.

standard_error [float or ndarray] The bootstrap standard error, that is, the sample standard deviation of the bootstrap distribution

Notes

Elements of the confidence interval may be NaN for method='BCa' if the bootstrap distribution is degenerate (e.g. all elements are identical). In this case, consider using another method or inspecting data for indications that other analysis may be more appropriate (e.g. all observations are identical).

Examples

Suppose we have sampled data from an unknown distribution.

```python
>>> import numpy as np
>>> rng = np.random.default_rng()
>>> from scipy.stats import norm
>>> dist = norm(loc=2, scale=4)  # our "unknown" distribution
>>> data = dist.rvs(size=100, random_state=rng)
```

We are interested in the standard deviation of the distribution.

```python
>>> std_true = dist.std()  # the true value of the statistic
>>> print(std_true)
4.0
>>> std_sample = np.std(data)  # the sample statistic
>>> print(std_sample)
3.9460644295563863
```

We can calculate a 90% confidence interval of the statistic using bootstrap.

```python
>>> from scipy.stats import bootstrap
>>> data = (data,)  # samples must be in a sequence
>>> res = bootstrap(data, np.std, confidence_level=0.9, ... random_state=rng)
```

If we sample from the distribution 1000 times and form a bootstrap confidence interval for each sample, the confidence interval contains the true value of the statistic approximately 900 times.
Rather than writing a loop, we can also determine the confidence intervals for all 1000 samples at once.

```python
>>> data = (dist.rvs(size=(n_trials, 100), random_state=rng),)
>>> res = bootstrap(data, np.std, axis=-1, confidence_level=0.9,
...                 n_resamples=1000, random_state=rng)
>>> ci_l, ci_u = res.confidence_interval
```

Here, `ci_l` and `ci_u` contain the confidence interval for each of the `n_trials = 1000` samples.

```python
>>> print(ci_l[995:])
[3.77729695 3.75090233 3.45829131 3.34078217 3.48072829]
>>> print(ci_u[995:])
```

And again, approximately 90% contain the true value, `std_true = 4`.

```python
>>> print(np.sum((ci_l < std_true) & (std_true < ci_u)))
900
```

`bootstrap` can also be used to estimate confidence intervals of multi-sample statistics, including those calculated by hypothesis tests. `scipy.stats.mood` perform's Mood's test for equal scale parameters, and it returns two outputs: a statistic, and a p-value. To get a confidence interval for the test statistic, we first wrap `scipy.stats.mood` in a function that accepts two sample arguments, accepts an `axis` keyword argument, and returns only the statistic.

```python
>>> from scipy.stats import mood
>>> def my_statistic(sample1, sample2, axis):
...     statistic, _ = mood(sample1, sample2, axis=-1)
...     return statistic
```

Here, we use the ‘percentile’ method with the default 95% confidence level.

```python
>>> sample1 = norm.rvs(scale=1, size=100, random_state=rng)
>>> sample2 = norm.rvs(scale=2, size=100, random_state=rng)
>>> data = (sample1, sample2)
>>> res = bootstrap(data, my_statistic, method='basic', random_state=rng)
>>> print(mood(sample1, sample2)[0])  # element 0 is the statistic
-5.521109549096542
>>> print(res.confidence_interval)
ConfidenceInterval(low=-7.25599487314675, high=-4.016202624747605)
```

The bootstrap estimate of the standard error is also available.
Paired-sample statistics work, too. For example, consider the Pearson correlation coefficient.

```
>>> from scipy.stats import pearsonr
>>> n = 100
>>> x = np.linspace(0, 10, n)
>>> y = x + rng.uniform(size=n)
>>> print(pearsonr(x, y)[0])  # element 0 is the statistic
0.9962357936065914
```

We wrap `pearsonr` so that it returns only the statistic.

```
>>> def my_statistic(x, y):
...    return pearsonr(x, y)[0]
```

We call `bootstrap` using `paired=True`. Also, since `my_statistic` isn’t vectorized to calculate the statistic along a given axis, we pass in `vectorized=False`.

```
>>> res = bootstrap((x, y), my_statistic, vectorized=False, paired=True,
...                  random_state=rng)
>>> print(res.confidence_interval)
ConfidenceInterval(low=0.9950085825848624, high=0.9971212407917498)
```

Frequency statistics

- `cumfreq(a[, numbins, defaultreallimits, weights])` Return a cumulative frequency histogram, using the histogram function.
- `itemfreq(*args, **kwds)` *Itemfreq* is deprecated! *Itemfreq* is deprecated and will be removed in a future version.
- `percentileofscore(a, score[, kind])` Compute the percentile rank of a score relative to a list of scores.
- `scoreatpercentile(a, per[, limit, ...])` Calculate the score at a given percentile of the input sequence.
- `relfreq(a[, numbins, defaultreallimits, weights])` Return a relative frequency histogram, using the histogram function.

scipy.stats.cumfreq

```
scipy.stats.cumfreq(a, numbins=10, defaultreallimits=None, weights=None)
```

Return a cumulative frequency histogram, using the histogram function.

A cumulative histogram is a mapping that counts the cumulative number of observations in all of the bins up to the specified bin.

Parameters

- `a` [array_like] Input array.
- `numbins` [int, optional] The number of bins to use for the histogram. Default is 10.
- `defaultreallimits` [tuple (lower, upper), optional] The lower and upper values for the range of the histogram. If no value is given, a range slightly larger than the range of the values in `a` is used. Specifically

(a.min() - s, a.max() + s), where $s = \frac{1}{2}(a.max() - a.min()) /
(numbins - 1).

weights [array_like, optional] The weights for each value in a. Default is None, which gives
each value a weight of 1.0

Returns

cumcount [ndarray] Binned values of cumulative frequency.
lowerlimit [float] Lower real limit
binsize [float] Width of each bin.
extrapoints [int] Extra points.

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from numpy.random import default_rng
>>> from scipy import stats
>>> rng = default_rng()
>>> x = [1, 4, 2, 1, 3, 1]
>>> res = stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5))
>>> res.cumcount
array([ 1.,  2.,  3.,  3.])
>>> res.extrapoints
3

Create a normal distribution with 1000 random values

```python
>>> samples = stats.norm.rvs(size=1000, random_state=rng)
```  
Calculate cumulative frequencies

```python
>>> res = stats.cumfreq(samples, numbins=25)
```  
Calculate space of values for $x$

```python
>>> x = res.lowerlimit + np.linspace(0, res.binsize*res.cumcount.size,
... res.cumcount.size)
```  
Plot histogram and cumulative histogram

```python
>>> fig = plt.figure(figsize=(10, 4))
>>> ax1 = fig.add_subplot(1, 2, 1)
>>> ax2 = fig.add_subplot(1, 2, 2)
>>> ax1.hist(samples, bins=25)
>>> ax1.set_title('Histogram')
>>> ax2.bar(x, res.cumcount, width=res.binsize)
>>> ax2.set_title('Cumulative histogram')
>>> ax2.set_xlim([x.min(), x.max()])
```  
```python
>>> plt.show()
```
scipy.stats.itemfreq

scipy.stats.itemfreq(*args, **kwds)

itemfreq is deprecated! itemfreq is deprecated and will be removed in a future version. Use instead np.unique(..., return_counts=True)

Return a 2-D array of item frequencies.

Parameters

a [(N,) array_like] Input array.

Returns

itemfreq [(K, 2) ndarray] A 2-D frequency table. Column 1 contains sorted, unique values from a, column 2 contains their respective counts.

Examples

```python
>>> from scipy import stats
>>> a = np.array([1, 1, 5, 0, 1, 2, 2, 0, 1, 4])
>>> stats.itemfreq(a)
array([[0., 2.],
 [1., 4.],
 [2., 2.],
 [4., 1.],
 [5., 1.]])
>>> np.bincount(a)
array([2, 4, 2, 0, 1, 1])

>>> stats.itemfreq(a/10.)
array([[0. , 2.],
 [0.1, 4.],
 [0.2, 2.],
 [0.4, 1.],
 [0.5, 1.]])
```
scipy.stats.percentileofscore

scipy.stats.percentileofscore(a, score, kind='rank')

Compute the percentile rank of a score relative to a list of scores.

A percentileofscore of, for example, 80% means that 80% of the scores in a are below the given score. In the case of gaps or ties, the exact definition depends on the optional keyword, kind.

Parameters

- **a** [array_like] Array of scores to which score is compared.
- **score** [int or float] Score that is compared to the elements in a.
- **kind** [{'rank', 'weak', 'strict', 'mean'}, optional] Specifies the interpretation of the resulting score.

The following options are available (default is 'rank'):
- 'rank': Average percentage ranking of score. In case of multiple matches, average the percentage rankings of all matching scores.
- 'weak': This kind corresponds to the definition of a cumulative distribution function. A percentileofscore of 80% means that 80% of values are less than or equal to the provided score.
- 'strict': Similar to “weak”, except that only values that are strictly less than the given score are counted.
- 'mean': The average of the “weak” and “strict” scores, often used in testing. See https://en.wikipedia.org/wiki/Percentile_rank

Returns

- **pcos** [float] Percentile-position of score (0-100) relative to a.

See also:

numpy.percentile

Examples

Three-quarters of the given values lie below a given score:

```python
>>> from scipy import stats
>>> stats.percentileofscore([1, 2, 3, 4], 3)
75.0
```

With multiple matches, note how the scores of the two matches, 0.6 and 0.8 respectively, are averaged:

```python
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3)
70.0
```

Only 2/5 values are strictly less than 3:

```python
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='strict')
40.0
```

But 4/5 values are less than or equal to 3:

```python
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='weak')
80.0
```

The average between the weak and the strict scores is:
scipy.stats.scoreatpercentile

scipy.stats.scoreatpercentile(a, per, limit=(), interpolation_method='fraction', axis=None)

Calculate the score at a given percentile of the input sequence.

For example, the score at per=50 is the median. If the desired quantile lies between two data points, we interpolate between them, according to the value of interpolation. If the parameter limit is provided, it should be a tuple (lower, upper) of two values.

Parameters

- a [array_like] A 1-D array of values from which to extract score.
- per [array_like] Percentile(s) at which to extract score. Values should be in range [0,100].
- limit [tuple, optional] Tuple of two scalars, the lower and upper limits within which to compute the percentile. Values of a outside this (closed) interval will be ignored.
- interpolation_method [ {'fraction', 'lower', 'higher'}, optional ] Specifies the interpolation method to use, when the desired quantile lies between two data points i and j. The following options are available (default is ‘fraction’):
  • ‘fraction’: i + (j − i) * fraction where fraction is the fractional part of the index surrounded by i and j
  • ‘lower’: i
  • ‘higher’: j
- axis [int, optional] Axis along which the percentiles are computed. Default is None. If None, compute over the whole array a.

Returns

- score [float or ndarray] Score at percentile(s).

See also:

percentileofscore, numpy.percentile

Notes

This function will become obsolete in the future. For NumPy 1.9 and higher, numpy.percentile provides all the functionality that scoreatpercentile provides. And it’s significantly faster. Therefore it’s recommended to use numpy.percentile for users that have numpy >= 1.9.

Examples

```python
>>> from scipy import stats
>>> a = np.arange(100)
>>> stats.scoreatpercentile(a, 50)
49.5
```
scipy.stats.relfreq

scipy.stats.relfreq(a, numbins=10, defaultreallimits=None, weights=None)

Return a relative frequency histogram, using the histogram function.

A relative frequency histogram is a mapping of the number of observations in each of the bins relative to the total of observations.

Parameters

- **a** [array_like] Input array.
- **numbins** [int, optional] The number of bins to use for the histogram. Default is 10.
- **defaultreallimits** [tuple (lower, upper), optional] The lower and upper values for the range of the histogram. If no value is given, a range slightly larger than the range of the values in a is used. Specifically (\(a.min() - s, a.max() + s\), where \(s = (1/2)(a.max() - a.min()) / (numbins - 1)\)).
- **weights** [array_like, optional] The weights for each value in a. Default is None, which gives each value a weight of 1.0

Returns

- **frequency** [ndarray] Binned values of relative frequency.
- **lowerlimit** [float] Lower real limit.
- **binsize** [float] Width of each bin.
- **extrapoints** [int] Extra points.

Examples

```python
generate code here
```

Create a normal distribution with 1000 random values

```python
generate code here
```

Calculate relative frequencies

```python
generate code here
```

Calculate space of values for x

```python
generate code here
```

Plot relative frequency histogram

```python
generate code here
```
```python
>>> fig = plt.figure(figsize=(5, 4))
>>> ax = fig.add_subplot(1, 1, 1)
>>> ax.bar(x, res.frequency, width=res.binsize)
>>> ax.set_title('Relative frequency histogram')
>>> ax.set_xlim([x.min(), x.max()])

>>> plt.show()
```

```
binned_statistic(x, values[, statistic, ...])
Compute a binned statistic for one or more sets of data.
binned_statistic_2d(x, y, values[, ...])
Compute a bidimensional binned statistic for one or more sets of data.
binned_statistic_dd(sample, values[, ...])
Compute a multidimensional binned statistic for a set of data.
```

**scipy.stats.binned_statistic**

`scipy.stats.binned_statistic(x, values, statistic='mean', bins=10, range=None)`

Compute a binned statistic for one or more sets of data.

This is a generalization of a histogram function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values (or set of values) within each bin.

**Parameters**

- **x**  
  [(N, ) array_like] A sequence of values to be binned.

- **values**  
  [(N, ) array_like or list of (N, ) array_like] The data on which the statistic will be computed. This must be the same shape as `x`, or a set of sequences - each the same shape as `x`. If `values` is a set of sequences, the statistic will be computed on each independently.
statistic [string or callable, optional] The statistic to compute (default is ‘mean’). The following statistics are available:

- ‘mean’: compute the mean of values for points within each bin. Empty bins will be represented by NaN.
- ‘std’: compute the standard deviation within each bin. This is implicitly calculated with ddof=0.
- ‘median’: compute the median of values for points within each bin. Empty bins will be represented by NaN.
- ‘count’: compute the count of points within each bin. This is identical to an unweighted histogram. values array is not referenced.
- ‘sum’: compute the sum of values for points within each bin. This is identical to a weighted histogram.
- ‘min’: compute the minimum of values for points within each bin. Empty bins will be represented by NaN.
- ‘max’: compute the maximum of values for points within each bin. Empty bins will be represented by NaN.
- function: a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error.

bins [int or sequence of scalars, optional] If bins is an int, it defines the number of equal-width bins in the given range (10 by default). If bins is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. Values in x that are smaller than lowest bin edge are assigned to bin number 0, values beyond the highest bin are assigned to bins[-1]. If the bin edges are specified, the number of bins will be, (nx = len(bins)-1).

range [(float, float) or [(float, float)], optional] The lower and upper range of the bins. If not provided, range is simply (x.min(), x.max()). Values outside the range are ignored.

Returns

statistic [array] The values of the selected statistic in each bin.
bin_edges [array of dtype float] Return the bin edges (length(statistic)+1).
binnumber: 1-D ndarray of ints Indices of the bins (corresponding to bin_edges) in which each value of x belongs. Same length as values. A binnumber of i means the corresponding value is between (bin_edges[i-1], bin_edges[i]).

See also:

numpy.digitize, numpy.histogram, binned_statistic_2d, binned_statistic_dd

Notes

All but the last (righthand-most) bin is half-open. In other words, if bins is [1, 2, 3, 4], then the first bin is [1, 2) (including 1, but excluding 2) and the second [2, 3). The last bin, however, is [3, 4], which includes 4.

New in version 0.11.0.
Examples

```python
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
```

First some basic examples:

Create two evenly spaced bins in the range of the given sample, and sum the corresponding values in each of those bins:

```python
>>> values = [1.0, 1.0, 2.0, 1.5, 3.0]
>>> stats.binned_statistic([1, 1, 2, 5, 7], values, 'sum', bins=2)
BinnedStatisticResult(statistic=array([4. , 4.5]),
 bin_edges=array([1., 4., 7.]),
 binnnumber=array([1, 1, 1, 2, 2]))
```

Multiple arrays of values can also be passed. The statistic is calculated on each set independently:

```python
>>> values = [[1.0, 1.0, 2.0, 1.5, 3.0], [2.0, 2.0, 4.0, 3.0, 6.0]]
>>> stats.binned_statistic([1, 1, 2, 5, 7], values, 'sum', bins=2)
BinnedStatisticResult(statistic=array([[4. , 4.5],
 [8. , 9.]]),
 bin_edges=array([1., 4., 7.]),
 binnnumber=array([1, 1, 1, 2, 2]))
```

```python
>>> stats.binned_statistic([1, 2, 1, 2, 4], np.arange(5), statistic='mean', bins=3)
BinnedStatisticResult(statistic=array([1. , 2. , 4.]),
 bin_edges=array([1., 2., 4.]),
 binnnumber=array([1, 2, 1, 2, 3]))
```

As a second example, we now generate some random data of sailing boat speed as a function of wind speed, and then determine how fast our boat is for certain wind speeds:

```python
>>> rng = np.random.default_rng()
>>> windspeed = 8 * rng.random(500)
>>> boatspeed = .3 * windspeed**.5 + .2 * rng.random(500)
>>> bin_means, bin_edges, binnnumber = stats.binned_statistic(windspeed, boatspeed, statistic='median', bins=[1,2,3,4,5,6,7])
>>> plt.figure()
>>> plt.plot(windspeed, boatspeed, 'b.', label='raw data')
>>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=5, label='binned statistic of data')
>>> plt.legend()
```

Now we can use binnnumber to select all datapoints with a wind speed below 1:

```python
>>> low_boatspeed = boatspeed[binnumber == 0]
```

As a final example, we will use bin_edges and binnnumber to make a plot of a distribution that shows the mean and distribution around that mean per bin, on top of a regular histogram and the probability distribution function:

```python
>>> x = np.linspace(0, 5, num=500)
>>> x_pdf = stats.maxwell.pdf(x)
>>> samples = stats.maxwell.rvs(size=10000)
```
```python
>>> bin_means, bin_edges, binnumber = stats.binned_statistic(x, x_pdf,
... statistic='mean', bins=25)
>>> bin_width = (bin_edges[1] - bin_edges[0])
>>> bin_centers = bin_edges[1:] - bin_width/2

>>> plt.figure()
>>> plt.hist(samples, bins=50, density=True, histtype='stepfilled',
... alpha=0.2, label='histogram of data')
>>> plt.plot(x, x_pdf, 'r-', label='analytical pdf')
>>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=2,
... label='binned statistic of data')
>>> plt.plot((binnumber - 0.5) * bin_width, x_pdf, 'g.', alpha=0.5)
>>> plt.legend(fontsize=10)
>>> plt.show()
```
scipy.stats.binned_statistic_2d

`scipy.stats.binned_statistic_2d(x, y, values, statistic='mean', bins=10, range=None, expand_binnumbers=False)`

Compute a bidimensional binned statistic for one or more sets of data.

This is a generalization of a histogram2d function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values (or set of values) within each bin.

**Parameters**

- **x** : [(N,) array_like] A sequence of values to be binned along the first dimension.
- **y** : [(N,) array_like] A sequence of values to be binned along the second dimension.
- **values** : [(N,) array_like or list of (N,) array_like] The data on which the statistic will be computed. This must be the same shape as x, or a list of sequences - each with the same shape as x. If values is such a list, the statistic will be computed on each independently.
- **statistic** : [string or callable, optional] The statistic to compute (default is 'mean'). The following statistics are available:
  - 'mean': compute the mean of values for points within each bin. Empty bins will be represented by NaN.
  - 'std': compute the standard deviation within each bin. This is implicitly calculated with ddof=0.
  - 'median': compute the median of values for points within each bin. Empty bins will be represented by NaN.
  - 'count': compute the count of points within each bin. This is identical to an unweighted histogram. values array is not referenced.
  - 'sum': compute the sum of values for points within each bin. This is identical to a weighted histogram.
  - 'min': compute the minimum of values for points within each bin. Empty bins will be represented by NaN.
  - 'max': compute the maximum of values for point within each bin. Empty bins will be represented by NaN.
  - function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error.
- **bins** : [int or [int, int] or array_like or [array, array], optional] The bin specification:
  - the number of bins for the two dimensions (nx = ny = bins),
  - the number of bins in each dimension (nx, ny = bins),
  - the bin edges for the two dimensions (x_edge = y_edge = bins),
  - the bin edges in each dimension (x_edge, y_edge = bins).
  If the bin edges are specified, the number of bins will be, (nx = len(x_edge)-1, ny = lent(y_edge)-1).
- **range** : [(2,2) array_like, optional] The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the bins parameters): [[xmin, xmax], [ymin, ymax]]. All values outside of this range will be considered outliers and not tallied in the histogram.
- **expand_binnumbers** : [bool, optional] 'False' (default): the returned binnumber is a shape (N,) array of linearized bin indices. ‘True’: the returned binnumber is 'unraveled' into a shape (2,N) ndarray, where each row gives the bin numbers in the corresponding dimension. See the binnumber returned value, and the Examples section.

New in version 0.17.0.

**Returns**

- **statistic** : [(nx, ny) ndarray] The values of the selected statistic in each two-dimensional bin.
- **x_edge** : [(nx + 1) ndarray] The bin edges along the first dimension.
y_edge

[(ny + 1) ndarray] The bin edges along the second dimension.

binnumber

[(N,) array of ints or (2, N) ndarray of ints] This assigns to each element of sample an integer that represents the bin in which this observation falls. The representation depends on the expand_binnumbers argument. See Notes for details.

See also:

numpy.digitize, numpy.histogram2d, binned_statistic, binned_statistic_dd

Notes

Binedges: All but the last (righthand-most) bin is half-open. In other words, if bins is [1, 2, 3, 4], then the first bin is [1, 2) (including 1, but excluding 2) and the second [2, 3). The last bin, however, is [3, 4], which includes 4.

binnumber: This returned argument assigns to each element of sample an integer that represents the bin in which it belongs. The representation depends on the expand_binnumbers argument. If ‘False’ (default): The returned binnumber is a shape (N,) array of linearized indices mapping each element of sample to its corresponding bin (using row-major ordering). Note that the returned linearized bin indices are used for an array with extra bins on the outer binedges to capture values outside of the defined bin bounds. If ‘True’: The returned binnumber is a shape (2,N) ndarray where each row indicates bin placements for each dimension respectively. In each dimension, a binnumber of i means the corresponding value is between (D_edge[i-1], D_edge[i]), where ‘D’ is either ‘x’ or ‘y’.

New in version 0.11.0.

Examples

```python
>>> from scipy import stats

Calculate the counts with explicit bin-edges:

```python
>>> x = [0.1, 0.1, 0.1, 0.6]
>>> y = [2.1, 2.6, 2.1, 2.1]
>>> binx = [0.0, 0.5, 1.0]
>>> biny = [2.0, 2.5, 3.0]
>>> ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx, _
   biny])
```
```python
type(ret.statistic)
array([[2., 1.],
[1., 0.]])
```

The bin in which each sample is placed is given by the binnumber returned parameter. By default, these are the linearized bin indices:

```python
>>> ret.binnumber
array([5, 6, 5, 9])
```

The bin indices can also be expanded into separate entries for each dimension using the expand_binnumbers parameter:
```python
>>> ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx, ...-
biny], expand_binnumbers=True)  
```  
Which shows that the first three elements belong in the xbin 1, and the fourth into xbin 2; and so on for y.

scipy.stats.binned_statistic_dd

Compute a multidimensional binned statistic for a set of data.

This is a generalization of a histogramdd function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values within each bin.

Parameters

- **sample** [array_like] Data to histogram passed as a sequence of N arrays of length D, or as an (N,D) array.
- **values** [(N,) array_like or list of (N,) array_like] The data on which the statistic will be computed. This must be the same shape as `sample`, or a list of sequences - each with the same shape as `sample`. If `values` is such a list, the statistic will be computed on each independently.
- **statistic** [string or callable, optional] The statistic to compute (default is `mean`). The following statistics are available:
 - ‘mean’ : compute the mean of values for points within each bin. Empty bins will be represented by NaN.
 - ‘median’ : compute the median of values for points within each bin. Empty bins will be represented by NaN.
 - ‘count’ : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced.
 - ‘sum’ : compute the sum of values for points within each bin. This is identical to a weighted histogram.
 - ‘std’ : compute the standard deviation within each bin. This is implicitly calculated with ddof=0. If the number of values within a given bin is 0 or 1, the computed standard deviation value will be 0 for the bin.
 - ‘min’ : compute the minimum of values for points within each bin. Empty bins will be represented by NaN.
 - ‘max’ : compute the maximum of values for point within each bin. Empty bins will be represented by NaN.
 - function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error.
- **bins** [sequence or positive int, optional] The bin specification must be in one of the following forms:
 - A sequence of arrays describing the bin edges along each dimension.
 - The number of bins for each dimension (nx, ny, … = bins).
 - The number of bins for all dimensions (nx = ny = … = bins).
- **range** [sequence, optional] A sequence of lower and upper bin edges to be used if the edges are not given explicitly in `bins`. Defaults to the minimum and maximum values along each dimension.
- **expand_binnumbers**
[bool, optional] ‘False’ (default): the returned \texttt{binnumber} is a shape (N,) array of linearized bin indices. ‘True’: the returned \texttt{binnumber} is ‘unraveled’ into a shape (D,N) ndarray, where each row gives the bin numbers in the corresponding dimension. See the \texttt{binnumber} returned value, and the \texttt{Examples} section of \texttt{binned_statistic_2d}.

\textbf{binned_statistic_result}

[binnedStatisticddResult] Result of a previous call to the function in order to reuse bin edges and bin numbers with new values and/or a different statistic. To reuse bin numbers, \texttt{expand_binnumbers} must have been set to False (the default)

New in version 0.17.0.

\textbf{Returns}

\textbf{statistic} [ndarray, shape(nx1, nx2, nx3,...)] The values of the selected statistic in each two-dimensional bin.

\textbf{bin_edges} [list of ndarrays] A list of D arrays describing the (nx1 + 1) bin edges for each dimension.

\textbf{binnumber} [(N,) array of ints or (D,N) ndarray of ints] This assigns to each element of \texttt{sample} an integer that represents the bin in which this observation falls. The representation depends on the \texttt{expand_binnumbers} argument. See \texttt{Notes} for details.

\textbf{See also:}

\texttt{numpy.digitize}, \texttt{numpy.histogramdd}, \texttt{binned_statistic}, \texttt{binned_statistic_2d}

\textbf{Notes}

Bin edges: All but the last (righthand-most) bin is half-open in each dimension. In other words, if \texttt{bins} is [1, 2, 3, 4], then the first bin is [1, 2) (including 1, but excluding 2) and the second [2, 3). The last bin, however, is [3, 4], which \textit{includes} 4.

\textbf{binnumber}: This returned argument assigns to each element of \texttt{sample} an integer that represents the bin in which it belongs. The representation depends on the \texttt{expand_binnumbers} argument. If ‘False’ (default): The returned \texttt{binnumber} is a shape (N,) array of linearized indices mapping each element of \texttt{sample} to its corresponding bin (using row-major ordering). If ‘True’: The returned \texttt{binnumber} is a shape (D,N) ndarray where each row indicates bin placements for each dimension respectively. In each dimension, a \texttt{binnumber} of \texttt{i} means the corresponding value is between \texttt{(bin_edges[D][i-1], bin_edges[D][i])}, for each dimension ‘D’.

New in version 0.11.0.

\textbf{Examples}

```python
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.mplot3d import Axes3D
```

Take an array of 600 (x, y) coordinates as an example. \texttt{binned_statistic_dd} can handle arrays of higher dimension \texttt{D}. But a plot of dimension \texttt{D+1} is required.

```python
>>> mu = np.array([0., 1.])
>>> sigma = np.array([[1., -0.5], [-0.5, 1.5]])
>>> multinormal = stats.multivariate_normal(mu, sigma)
>>> data = multinormal.rvs(size=600, random_state=235412)
>>> data.shape
(600, 2)
```
Create bins and count how many arrays fall in each bin:

```python
>>> N = 60
>>> x = np.linspace(-3, 3, N)
>>> y = np.linspace(-3, 4, N)
>>> ret = stats.binned_statistic_dd(data, np.arange(600), bins=[x, y], statistic='count')
>>> bincounts = ret.statistic
```

Set the volume and the location of bars:

```python
>>> dx = x[1] - x[0]
>>> dy = y[1] - y[0]
>>> x, y = np.meshgrid(x[:-1] + dx/2, y[:-1] + dy/2)
>>> z = 0
```

```python
>>> bincounts = bincounts.ravel()
>>> x = x.ravel()
>>> y = y.ravel()
```

```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='3d')
>>> with np.errstate(divide='ignore'):  # silence random axes3d warning
...     ax.bar3d(x, y, z, dx, dy, bincounts)
```

Reuse bin numbers and bin edges with new values:

```python
>>> ret2 = stats.binned_statistic_dd(data, -np.arange(600), binned_statistic_result=ret,
...                                   statistic='mean')
```
Correlation functions

- `f_oneway(*args[, axis])` Perform one-way ANOVA.
- `alexandergovern(*args[, nan_policy])` Performs the Alexander Govern test.
- `pearsonr(x, y)` Pearson correlation coefficient and p-value for testing non-correlation.
- `spearmanr(a[, b, axis, nan_policy, alternative])` Calculate a Spearman correlation coefficient with associated p-value.
- `pointbiserialr(x, y)` Calculate a point biserial correlation coefficient and its p-value.
- `kendalltau(x, y[, initial_lexsort, ...])` Calculate Kendall’s tau, a correlation measure for ordinal data.
- `weightedtau(x, y[, rank, weigher, additive])` Compute a weighted version of Kendall’s τ.
- `somersd(x[, y, alternative])` Calculates Somers’ D, an asymmetric measure of ordinal association.
- `linregress(x[, y, alternative])` Calculate a linear least-squares regression for two sets of measurements.
- `siegelslopes(y[, x, method])` Computes the Siegel estimator for a set of points (x, y).
- `theilslopes(y[, x, alpha, method])` Computes the Theil-Sen estimator for a set of points (x, y).
- `multiscale_graphcorr(x, y[, ...])` Computes the Multiscale Graph Correlation (MGC) test statistic.

scipy.stats.f_oneway

`scipy.stats.f_oneway(*args, axis=0)` Perform one-way ANOVA.

The one-way ANOVA tests the null hypothesis that two or more groups have the same population mean. The test is applied to samples from two or more groups, possibly with differing sizes.

Parameters

- `sample1, sample2, ...` [array_like] The sample measurements for each group. There must be at least two arguments. If the arrays are multidimensional, then all the dimensions of the array must be the same except for `axis`.
- `axis` [int, optional] Axis of the input arrays along which the test is applied. Default is 0.

Returns

- `statistic` [float] The computed F statistic of the test.
- `pvalue` [float] The associated p-value from the F distribution.

Warns

- `F_onewayConstantInputWarning` Raised if each of the input arrays is constant array. In this case the F statistic is either infinite or isn’t defined, so `np.inf` or `np.nan` is returned.
- `F_onewayBadInputSizesWarning` Raised if the length of any input array is 0, or if all the input arrays have length 1. `np.nan` is returned for the F statistic and the p-value in these cases.
Notes

The ANOVA test has important assumptions that must be satisfied in order for the associated p-value to be valid.

1. The samples are independent.
2. Each sample is from a normally distributed population.
3. The population standard deviations of the groups are all equal. This property is known as homoscedasticity.

If these assumptions are not true for a given set of data, it may still be possible to use the Kruskal-Wallis H-test (scipy.stats.kruskal) or the Alexander-Govern test (scipy.stats.alexandergovern) although with some loss of power.

The length of each group must be at least one, and there must be at least one group with length greater than one. If these conditions are not satisfied, a warning is generated and (np.nan, np.nan) is returned.

If each group contains constant values, and there exist at least two groups with different values, the function generates a warning and returns (np.inf, 0).

If all values in all groups are the same, function generates a warning and returns (np.nan, np.nan).

The algorithm is from Heiman [2], pp.394-7.

References

[1], [2], [3]

Examples

```python
>>> from scipy.stats import f_oneway
```

Here are some data [3] on a shell measurement (the length of the anterior adductor muscle scar, standardized by dividing by length) in the mussel Mytilus trossulus from five locations: Tillamook, Oregon; Newport, Oregon; Petersburg, Alaska; Magadan, Russia; and Tvarminne, Finland, taken from a much larger data set used in McDonald et al. (1991).

```python
>>> tillamook = [0.0571, 0.0813, 0.0831, 0.0976, 0.0817, 0.0859, 0.0735,
               ... 0.0659, 0.0923, 0.0836]
>>> newport = [0.0873, 0.0662, 0.0672, 0.0819, 0.0749, 0.0649, 0.0835,
               ... 0.0725]
>>> petersburg = [0.0974, 0.1352, 0.0819, 0.1016, 0.0968, 0.1064, 0.105]
>>> magadan = [0.1033, 0.0915, 0.0781, 0.0685, 0.0677, 0.0697, 0.0764,
               ... 0.0689]
>>> tvarminne = [0.0703, 0.1026, 0.0956, 0.0973, 0.1039, 0.1045]
>>> f_oneway(tillamook, newport, petersburg, magadan, tvarminne)
F_onewayResult(statistic=7.121019471642447, pvalue=0.0002812242314534544)
```

f_oneway accepts multidimensional input arrays. When the inputs are multidimensional and axis is not given, the test is performed along the first axis of the input arrays. For the following data, the test is performed three times, once for each column.

```python
>>> a = np.array([[9.87, 9.03, 6.81],
              ... [7.18, 8.35, 7.00],
              ... [8.39, 7.58, 7.68],
              ... [7.45, 6.33, 9.35],
              ...
```

(continues on next page)
```python
>>> b = np.array([[6.35, 7.30, 7.16],
... [6.65, 6.68, 7.63],
... [5.72, 7.73, 6.72],
... [7.01, 9.19, 7.41],
... [7.75, 7.87, 8.30],
... [6.90, 7.97, 6.97]])
>>> c = np.array([[3.31, 8.77, 1.01],
... [8.25, 3.24, 3.62],
... [6.32, 8.81, 5.19],
... [7.48, 8.83, 8.91],
... [8.59, 6.01, 6.07],
... [3.07, 9.72, 7.48]])
>>> F, p = f_oneway(a, b, c)
>>> F
array([1.75676344, 0.03701228, 3.76439349])
>>> p
array([0.20630784, 0.96375203, 0.04733157])
```

scipy.stats.alexandergovern

scipy.stats.alexandergovern(`*args, nan_policy='propagate'`**)***

Performs the Alexander Govern test.

The Alexander-Govern approximation tests the equality of k independent means in the face of heterogeneity of variance. The test is applied to samples from two or more groups, possibly with differing sizes.

Parameters

- `sample1, sample2, ...`
 - [array_like] The sample measurements for each group. There must be at least two samples.

- `nan_policy`
 - [{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. The following options are available (default is 'propagate'):
 - 'propagate': returns nan
 - 'raise': throws an error
 - 'omit': performs the calculations ignoring nan values

Returns

- `statistic` [float] The computed A statistic of the test.
- `pvalue` [float] The associated p-value from the chi-squared distribution.

Warns

- **AlexanderGovernConstantInputWarning**
 - Raised if an input is a constant array. The statistic is not defined in this case, so `np.nan` is returned.

See also:

- **f_oneway**
 - one-way ANOVA
Notes

The use of this test relies on several assumptions.

1. The samples are independent.
2. Each sample is from a normally distributed population.
3. Unlike f_oneway, this test does not assume on homoscedasticity, instead relaxing the assumption of equal variances.

Input samples must be finite, one dimensional, and with size greater than one.

References

[1]

Examples

```python
>>> from scipy.stats import alexandergovern
```

Here are some data on annual percentage rate of interest charged on new car loans at nine of the largest banks in four American cities taken from the National Institute of Standards and Technology's ANOVA dataset.

We use alexandergovern to test the null hypothesis that all cities have the same mean APR against the alternative that the cities do not all have the same mean APR. We decide that a significance level of 5% is required to reject the null hypothesis in favor of the alternative.

```python
>>> atlanta = [13.75, 13.75, 13.5, 13.5, 13.0, 13.0, 12.75, 12.5]
>>> chicago = [14.25, 13.0, 12.75, 12.5, 12.4, 12.3, 11.9, 11.9]
>>> houston = [14.0, 14.0, 13.51, 13.5, 13.5, 13.25, 13.0, 12.5, 12.5]
>>> memphis = [15.0, 14.0, 13.75, 13.59, 13.25, 12.97, 12.5, 12.25, ...
>>> atlanta, chicago, houston, memphis)
```

AlexanderGovernResult (statistic=4.65087071883494,
pvalue=0.19922132490385214)

The p-value is 0.1992, indicating a nearly 20% chance of observing such an extreme value of the test statistic under the null hypothesis. This exceeds 5%, so we do not reject the null hypothesis in favor of the alternative.

scipy.stats.pearsonr

scipy.stats.pearsonr (x, y)

Pearson correlation coefficient and p-value for testing non-correlation.

The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. (See Kowalski for a discussion of the effects of non-normality of the input on the distribution of the correlation coefficient.) Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship.

Parameters

- **x** [(N,) array_like] Input array.
- **y** [(N,) array_like] Input array.

Returns
r [float] Pearson's correlation coefficient.

p-value [float] Two-tailed p-value.

Warns

PearsonRConstantInputWarning
Raised if an input is a constant array. The correlation coefficient is not defined in this case, so np.nan is returned.

PearsonRNearConstantInputWarning
Raised if an input is “nearly” constant. The array x is considered nearly constant if \(\text{norm}(x - \text{mean}(x)) < 1e-13 * \text{abs}(\text{mean}(x)) \). Numerical errors in the calculation \(x - \text{mean}(x) \) in this case might result in an inaccurate calculation of \(r \).

See also:

spearmanr
Spearman rank-order correlation coefficient.

ekendalltau
Kendall’s tau, a correlation measure for ordinal data.

Notes

The correlation coefficient is calculated as follows:

\[
r = \frac{\sum(x - m_x)(y - m_y)}{\sqrt{\sum(x - m_x)^2 \sum(y - m_y)^2}}
\]

where \(m_x \) is the mean of the vector x and \(m_y \) is the mean of the vector y.

Under the assumption that x and y are drawn from independent normal distributions (so the population correlation coefficient is 0), the probability density function of the sample correlation coefficient \(r \) is ([1], [2]):

\[
f(r) = \frac{(1 - r^2)^{n/2-2}}{B(\frac{1}{2}, \frac{n}{2} - 1)}
\]

where \(n \) is the number of samples, and \(B \) is the beta function. This is sometimes referred to as the exact distribution of \(r \). This is the distribution that is used in pearsonr to compute the p-value. The distribution is a beta distribution on the interval [-1, 1], with equal shape parameters \(a = b = n/2 - 1 \). In terms of SciPy’s implementation of the beta distribution, the distribution of \(r \) is:

```python
dist = scipy.stats.beta(n/2 - 1, n/2 - 1, loc=-1, scale=2)
```

The p-value returned by pearsonr is a two-sided p-value. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. More precisely, for a given sample with correlation coefficient \(r \), the p-value is the probability that abs(\(r' \)) of a random sample x' and y' drawn from the population with zero correlation would be greater than or equal to abs(\(r \)). In terms of the object dist shown above, the p-value for a given \(r \) and length \(n \) can be computed as:

```python
p = 2 * dist.cdf(-abs(r))
```

When \(n \) is 2, the above continuous distribution is not well-defined. One can interpret the limit of the beta distribution as the shape parameters a and b approach a = b = 0 as a discrete distribution with equal probability masses at \(r = 1 \) and \(r = -1 \). More directly, one can observe that, given the data x = [x1, x2] and y = [y1, y2], and assuming x1 \(\neq \) x2 and y1 \(\neq \) y2, the only possible values for \(r \) are 1 and -1. Because abs(\(r' \)) for any sample x’ and y’ with length 2 will be 1, the two-sided p-value for a sample of length 2 is always 1.
References

[1], [2], [3]

Examples

```python
>>> from scipy import stats
>>> stats.pearsonr([1, 2, 3, 4, 5], [10, 9, 2.5, 6, 4])
(-0.7426106572325057, 0.1505558088534455)
```

There is a linear dependence between x and y if y = a + b*x + e, where a, b are constants and e is a random error term, assumed to be independent of x. For simplicity, assume that x is standard normal, a=0, b=1 and let e follow a normal distribution with mean zero and standard deviation s>0.

```python
>>> s = 0.5
>>> x = stats.norm.rvs(size=500)
>>> e = stats.norm.rvs(scale=s, size=500)
>>> y = x + e
>>> stats.pearsonr(x, y)
(0.9029601878969703, 8.428978827629898e-185) # may vary
```

This should be close to the exact value given by

```python
>>> 1/np.sqrt(1 + s**2)
0.8944271909999159
```

For s=0.5, we observe a high level of correlation. In general, a large variance of the noise reduces the correlation, while the correlation approaches one as the variance of the error goes to zero.

It is important to keep in mind that no correlation does not imply independence unless (x, y) is jointly normal. Correlation can even be zero when there is a very simple dependence structure: if X follows a standard normal distribution, let y = abs(x). Note that the correlation between x and y is zero. Indeed, since the expectation of x is zero, cov(x, y) = E[x*y]. By definition, this equals E[x*abs(x)] which is zero by symmetry. The following lines of code illustrate this observation:

```python
>>> y = np.abs(x)
>>> stats.pearsonr(x, y)
(-0.016172891856853524, 0.7182823678751942) # may vary
```

A non-zero correlation coefficient can be misleading. For example, if X has a standard normal distribution, define y = x if x < 0 and y = 0 otherwise. A simple calculation shows that corr(x, y) = sqrt(2/Pi) = 0.797…, implying a high level of correlation:

```python
>>> y = np.where(x < 0, x, 0)
>>> stats.pearsonr(x, y)
(0.8537091583771509, 3.183461621422181e-143) # may vary
```

This is unintuitive since there is no dependence of x and y if x is larger than zero which happens in about half of the cases if we sample x and y.
Calculate a Spearman correlation coefficient with associated p-value.

The Spearman rank-order correlation coefficient is a nonparametric measure of the monotonicity of the relationship between two datasets. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact monotonic relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.

The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so.

Parameters

- **a, b** [1D or 2D array_like, b is optional] One or two 1-D or 2-D arrays containing multiple variables and observations. When these are 1-D, each represents a vector of observations of a single variable. For the behavior in the 2-D case, see under axis, below. Both arrays need to have the same length in the axis dimension.
- **axis** [int or None, optional] If axis=0 (default), then each column represents a variable, with observations in the rows. If axis=1, the relationship is transposed: each row represents a variable, while the columns contain observations. If axis=None, then both arrays will be raveled.
- **nan_policy** [‘propagate’, ‘raise’, ‘omit’], optional] Defines how to handle when input contains nan. The following options are available (default is ‘propagate’):
 - ‘propagate’: returns nan
 - ‘raise’: throws an error
 - ‘omit’: performs the calculations ignoring nan values
- **alternative** [‘two-sided’, ‘less’, ‘greater’], optional] Defines the alternative hypothesis. Default is ‘two-sided’. The following options are available:
 - ‘two-sided’: the correlation is nonzero
 - ‘less’: the correlation is negative (less than zero)
 - ‘greater’: the correlation is positive (greater than zero)

New in version 1.7.0.

Returns

- **correlation** [float or ndarray (2-D square)] Spearman correlation matrix or correlation coefficient (if only 2 variables are given as parameters). Correlation matrix is square with length equal to total number of variables (columns or rows) in a and b combined.
- **pvalue** [float] The p-value for a hypothesis test whose null hypothesis is that two sets of data are uncorrelated. See alternative above for alternative hypotheses. pvalue has the same shape as correlation.
Examples

```python
>>> from scipy import stats
>>> stats.spearmanr([1, 2, 3, 4, 5], [5, 6, 7, 8, 7])
SpearmanrResult(correlation=0.82078..., pvalue=0.08858...)
>>> rng = np.random.default_rng()
>>> x2n = rng.standard_normal((100, 2))
>>> y2n = rng.standard_normal((100, 2))
>>> stats.spearmanr(x2n)
SpearmanrResult(correlation=-0.07960396039603959, pvalue=0.4311168705769747)
>>> stats.spearmanr(x2n[:, 0], x2n[:, 1])
SpearmanrResult(correlation=-0.07960396039603959, pvalue=0.4311168705769747)
>>> rho, pval = stats.spearmanr(x2n, y2n)
>>> rho
array([[ 1.     , -0.07960396, -0.08314431, 0.09662166],
       [-0.07960396, 1.     , -0.14448245, 0.16738074],
       [-0.08314431, -0.14448245, 1.     , 0.03234323],
       [ 0.09662166, 0.16738074, 0.03234323, 1.     ]])
>>> pval
array([[0.     , 0.43111687, 0.41084066, 0.33891628],
       [0.43111687, 0.     , 0.15151618, 0.09600687],
       [0.41084066, 0.15151618, 0.     , 0.74938561],
       [0.33891628, 0.09600687, 0.74938561, 0.     ]])
>>> rho, pval = stats.spearmanr(x2n.T, y2n.T, axis=1)
>>> rho
array([[ 1.     , -0.07960396, -0.08314431, 0.09662166],
       [-0.07960396, 1.     , -0.14448245, 0.16738074],
       [-0.08314431, -0.14448245, 1.     , 0.03234323],
       [ 0.09662166, 0.16738074, 0.03234323, 1.     ]])
>>> stats.spearmanr(x2n, y2n, axis=None)
SpearmanrResult(correlation=0.044981624540613524, pvalue=0.5270803651336189)
>>> stats.spearmanr(x2n.ravel(), y2n.ravel())
SpearmanrResult(correlation=0.044981624540613524, pvalue=0.5270803651336189)
>>> rng = np.random.default_rng()
>>> xint = rng.integers(10, size=(100, 2))
>>> stats.spearmanr(xint)
SpearmanrResult(correlation=0.09800224850707953, pvalue=0.3320271757932076)
```
scipy.stats.pointbiserialr

scipy.stats.pointbiserialr(x, y)

Calculate a point biserial correlation coefficient and its p-value.

The point biserial correlation is used to measure the relationship between a binary variable, x, and a continuous variable, y. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply a determinative relationship.

This function uses a shortcut formula but produces the same result as pearsonr.

Parameters

- x [array_like of bools] Input array.
- y [array_like] Input array.

Returns

- correlation [float] R value.

Notes

pointbiserialr uses a t-test with n−1 degrees of freedom. It is equivalent to pearsonr.

The value of the point-biserial correlation can be calculated from:

\[r_{pb} = \frac{Y_1 - Y_0}{s_y} \sqrt{\frac{N_1 N_2}{N(N-1)}} \]

Where \(Y_0 \) and \(Y_1 \) are means of the metric observations coded 0 and 1 respectively; \(N_0 \) and \(N_1 \) are number of observations coded 0 and 1 respectively; \(N \) is the total number of observations and \(s_y \) is the standard deviation of all the metric observations.

A value of \(r_{pb} \) that is significantly different from zero is completely equivalent to a significant difference in means between the two groups. Thus, an independent groups t Test with \(N - 2 \) degrees of freedom may be used to test whether \(r_{pb} \) is nonzero. The relation between the t-statistic for comparing two independent groups and \(r_{pb} \) is given by:

\[t = \sqrt{N - 2} \frac{r_{pb}}{\sqrt{1 - r_{pb}^2}} \]

References

[1], [2], [3]

Examples

```python
>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pointbiserialr(a, b)
(0.8660254037844386, 0.011724811003954652)
>>> stats.pearsonr(a, b)
(continues on next page)
```
```python
>>> np.corrcoef(a, b)
array([[ 1.        , 0.8660254 ],
       [ 0.8660254 , 1.        ]])
```

scipy.stats.kendalltau

`scipy.stats.kendalltau(x, y, initial_lexsort=None, nan_policy='propagate', method='auto', variant='b', alternative='two-sided')`

Calculate Kendall's tau, a correlation measure for ordinal data.

Kendall's tau is a measure of the correspondence between two rankings. Values close to 1 indicate strong agreement, and values close to -1 indicate strong disagreement. This implements two variants of Kendall's tau: tau-b (the default) and tau-c (also known as Stuart's tau-c). These differ only in how they are normalized to lie within the range -1 to 1; the hypothesis tests (their p-values) are identical. Kendall's original tau-a is not implemented separately because both tau-b and tau-c reduce to tau-a in the absence of ties.

Parameters

- `x, y` [array_like] Arrays of rankings, of the same shape. If arrays are not 1-D, they will be flattened to 1-D.
- `initial_lexsort` [bool, optional] Unused (deprecated).
- `nan_policy` [(‘propagate’, ‘raise’, ‘omit’), optional] Defines how to handle when input contains nan. The following options are available (default is ‘propagate’):
 - ‘propagate’: returns nan
 - ‘raise’: throws an error
 - ‘omit’: performs the calculations ignoring nan values
- `method` [(‘auto’, ‘asymptotic’, ‘exact’), optional] Defines which method is used to calculate the p-value [5]. The following options are available (default is ‘auto’):
 - ‘auto’: selects the appropriate method based on a trade-off between speed and accuracy
 - ‘asymptotic’: uses a normal approximation valid for large samples
 - ‘exact’: computes the exact p-value, but can only be used if no ties are present. As the sample size increases, the ‘exact’ computation time may grow and the result may lose some precision.
- `variant`: {‘b’, ‘c’}, optional
 Defines which variant of Kendall's tau is returned. Default is ‘b’.
- `alternative` [(‘two-sided’, ‘less’, ‘greater’), optional] Defines the alternative hypothesis. Default is ‘two-sided’. The following options are available:
 - ‘two-sided’: the rank correlation is nonzero
 - ‘less’: the rank correlation is negative (less than zero)
 - ‘greater’: the rank correlation is positive (greater than zero)

Returns

- `correlation` [float] The tau statistic.
- `pvalue` [float] The p-value for a hypothesis test whose null hypothesis is an absence of association, tau = 0.

See also:

- `spearmanr`
Calculates a Spearman rank-order correlation coefficient.

theilslopes
Computation of the Theil-Sen estimator for a set of points \((x, y)\).

weightedtau
Computes a weighted version of Kendall’s tau.

Notes

The definition of Kendall’s tau that is used is [2]:

\[
\tau_b = (P - Q) / \sqrt{(P + Q + T) \times (P + Q + U)}
\]

\[
\tau_c = 2 \times (P - Q) / (n^2 \times (m - 1) / m)
\]

where \(P\) is the number of concordant pairs, \(Q\) the number of discordant pairs, \(T\) the number of ties only in \(x\), and \(U\) the number of ties only in \(y\). If a tie occurs for the same pair in both \(x\) and \(y\), it is not added to either \(T\) or \(U\). \(n\) is the total number of samples, and \(m\) is the number of unique values in either \(x\) or \(y\), whichever is smaller.

References

[1], [2], [3], [4], [5]

Examples

```python
>>> from scipy import stats
>>> x1 = [12, 2, 1, 12, 2]
>>> x2 = [1, 4, 7, 1, 0]
>>> tau, p_value = stats.kendalltau(x1, x2)
>>> tau
-0.47140452079103173
>>> p_value
0.2827454599327748
```

scipy.stats.weightedtau

\(\text{scipy.stats.weightedtau}(x, y, rank=True, weigher=None, additive=True)\)

Compute a weighted version of Kendall’s \(\tau\).

The weighted \(\tau\) is a weighted version of Kendall’s \(\tau\) in which exchanges of high weight are more influential than exchanges of low weight. The default parameters compute the additive hyperbolic version of the index, \(\tau_h\), which has been shown to provide the best balance between important and unimportant elements [1].

The weighting is defined by means of a rank array, which assigns a nonnegative rank to each element (higher importance ranks being associated with smaller values, e.g., 0 is the highest possible rank), and a weigher function, which assigns a weight based on the rank to each element. The weight of an exchange is then the sum or the product of the weights of the ranks of the exchanged elements. The default parameters compute \(\tau_h\): an exchange between elements with rank \(r\) and \(s\) (starting from zero) has weight \(1/(r+1) + 1/(s+1)\).

Specifying a rank array is meaningful only if you have in mind an external criterion of importance. If, as it usually happens, you do not have in mind a specific rank, the weighted \(\tau\) is defined by averaging the values obtained using the decreasing lexicographical rank by \((x, y)\) and by \((y, x)\). This is the behavior with default parameters. Note that
the convention used here for ranking (lower values imply higher importance) is opposite to that used by other SciPy statistical functions.

Parameters

- `x, y` [array_like] Arrays of scores, of the same shape. If arrays are not 1-D, they will be flattened to 1-D.
- `rank` [array_like of ints or bool, optional] A nonnegative rank assigned to each element. If it is None, the decreasing lexicographical rank by `(x, y)` will be used: elements of higher rank will be those with larger `x`-values, using `y`-values to break ties (in particular, swapping `x` and `y` will give a different result). If it is False, the element indices will be used directly as ranks. The default is True, in which case this function returns the average of the values obtained using the decreasing lexicographical rank by `(x, y)` and by `(y, x)`.
- `weigher` [callable, optional] The weigher function. Must map nonnegative integers (zero representing the most important element) to a nonnegative weight. The default, None, provides hyperbolic weighing, that is, rank `r` is mapped to weight `1/(r + 1)`.
- `additive` [bool, optional] If True, the weight of an exchange is computed by adding the weights of the ranks of the exchanged elements; otherwise, the weights are multiplied. The default is True.

Returns

- `correlation` [float] The weighted \(\tau \) correlation index.
- `pvalue` [float] Presently `np.nan`, as the null statistics is unknown (even in the additive hyperbolic case).

See also:

- `kendalltau` Calculates Kendall’s tau.
- `spearmanr` Calculates a Spearman rank-order correlation coefficient.
- `theilslopes` Computes the Theil-Sen estimator for a set of points \((x, y)\).

Notes

This function uses an \(O(n \log n)\), mergesort-based algorithm [1] that is a weighted extension of Knight’s algorithm for Kendall’s \(\tau \) [2]. It can compute Shieh’s weighted \(\tau \) [3] between rankings without ties (i.e., permutations) by setting `additive` and `rank` to False, as the definition given in [1] is a generalization of Shieh’s.

NaNs are considered the smallest possible score.

New in version 0.19.0.
References

[1], [2], [3]

Examples

```python
>>> from scipy import stats
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, 0]
>>> tau, p_value = stats.weightedtau(x, y)
>>> tau
-0.56694968153682723
>>> p_value
nan
>>> tau, p_value = stats.weightedtau(x, y, additive=False)
>>> tau
-0.62205716951801038
```

NaNs are considered the smallest possible score:

```python
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, np.nan]
>>> tau, _ = stats.weightedtau(x, y)
>>> tau
-0.56694968153682723
```

This is exactly Kendall's tau:

```python
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, 0]
>>> tau, _ = stats.weightedtau(x, y, weigher=lambda x: 1)
>>> tau
-0.47140452079103173
```

```python
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, 0]
>>> stats.weightedtau(x, y, rank=None)
WeightedTauResult(correlation=-0.4157652301037516, pvalue=nan)
>>> stats.weightedtau(y, x, rank=None)
WeightedTauResult(correlation=-0.7181341329699028, pvalue=nan)
```

scipy.stats.somersd

`scipy.stats.somersd(x, y=None, alternative='two-sided')`

Calculates Somers’ D, an asymmetric measure of ordinal association.

Like Kendall’s τ, Somers’ D is a measure of the correspondence between two rankings. Both statistics consider the difference between the number of concordant and discordant pairs in two rankings X and Y, and both are normalized such that values close to 1 indicate strong agreement and values close to -1 indicate strong disagreement. They differ in how they are normalized. To show the relationship, Somers’ D can be defined in terms of Kendall’s τa:

\[
D(Y|X) = \frac{\tau_a(X,Y)}{\tau_a(X,X)}
\]
Suppose the first ranking \(X \) has \(r \) distinct ranks and the second ranking \(Y \) has \(s \) distinct ranks. These two lists of \(n \) rankings can also be viewed as an \(r \times s \) contingency table in which element \(i, j \) is the number of rank pairs with rank \(i \) in ranking \(X \) and rank \(j \) in ranking \(Y \). Accordingly, \(\text{somersd} \) also allows the input data to be supplied as a single, 2D contingency table instead of as two separate, 1D rankings.

Note that the definition of Somers’ \(D \) is asymmetric: in general, \(D(Y|X) \neq D(X|Y) \). \(\text{somersd}(x, y) \) calculates Somers’ \(D(Y|X) \): the “row” variable \(X \) is treated as an independent variable, and the “column” variable \(Y \) is dependent. For Somers’ \(D(X|Y) \), swap the input lists or transpose the input table.

Parameters

- **x**: array_like
 - 1D array of rankings, treated as the (row) independent variable. Alternatively, a 2D contingency table.
- **y**: array_like, optional
 - If \(x \) is a 1D array of rankings, \(y \) is a 1D array of rankings of the same length, treated as the (column) dependent variable. If \(x \) is 2D, \(y \) is ignored.
- **alternative**
 - [{'two-sided', 'less', 'greater'}, optional]
 - Defines the alternative hypothesis. Default is ‘two-sided’. The following options are available: * ‘two-sided’: the rank correlation is nonzero * ‘less’: the rank correlation is negative (less than zero) * ‘greater’: the rank correlation is positive (greater than zero)

Returns

- **res**
 - [SomersDResult] A SomersDResult object with the following fields:
 - **correlation** [float] The Somers’ \(D \) statistic.
 - **pvalue** [float] The p-value for a hypothesis test whose null hypothesis is an absence of association, \(D = 0 \). See notes for more information.
 - **table** [2D array] The contingency table formed from rankings \(x \) and \(y \) (or the provided contingency table, if \(x \) is a 2D array)

See also:

- **kendalltau**
 - Calculates Kendall’s tau, another correlation measure.
- **weightedtau**
 - Computes a weighted version of Kendall’s tau.
- **spearmanr**
 - Calculates a Spearman rank-order correlation coefficient.
- **pearsonr**
 - Calculates a Pearson correlation coefficient.
Notes

This function follows the contingency table approach of [2] and [3]. p-values are computed based on an asymptotic approximation of the test statistic distribution under the null hypothesis $D = 0$.

Theoretically, hypothesis tests based on Kendall’s tau and Somers’ D should be identical. However, the p-values returned by `kendalltau` are based on the null hypothesis of independence between X and Y (i.e. the population from which pairs in X and Y are sampled contains equal numbers of all possible pairs), which is more specific than the null hypothesis $D = 0$ used here. If the null hypothesis of independence is desired, it is acceptable to use the p-value returned by `kendalltau` with the statistic returned by `somersd` and vice versa. For more information, see [2].

Contingency tables are formatted according to the convention used by SAS and R: the first ranking supplied (x) is the “row” variable, and the second ranking supplied (y) is the “column” variable. This is opposite the convention of Somers’ original paper [1].

References

[1], [2], [3], [4]

Examples

We calculate Somers’ D for the example given in [4], in which a hotel chain owner seeks to determine the association between hotel room cleanliness and customer satisfaction. The independent variable, hotel room cleanliness, is ranked on an ordinal scale: “below average (1)”, “average (2)”, or “above average (3)”. The dependent variable, customer satisfaction, is ranked on a second scale: “very dissatisfied (1)”, “moderately dissatisfied (2)”, “neither dissatisfied nor satisfied (3)”, “moderately satisfied (4)”, or “very satisfied (5)”. 189 customers respond to the survey, and the results are cast into a contingency table with the hotel room cleanliness as the “row” variable and customer satisfaction as the “column” variable.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>27</td>
<td>25</td>
<td>14</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>(2)</td>
<td>7</td>
<td>14</td>
<td>18</td>
<td>35</td>
<td>12</td>
</tr>
<tr>
<td>(3)</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>17</td>
</tr>
</tbody>
</table>

For example, 27 customers assigned their room a cleanliness ranking of “below average (1)” and a corresponding satisfaction of “very dissatisfied (1)”. We perform the analysis as follows.

```python
>>> from scipy.stats import somersd
>>> table = [[27, 25, 14, 7, 0], [7, 14, 18, 35, 12], [1, 3, 2, 7, 17]]
>>> res = somersd(table)
>>> res.statistic
0.6032766111513396
```

(continues on next page)
The value of the Somers’ D statistic is approximately 0.6, indicating a positive correlation between room cleanliness and customer satisfaction in the sample. The p-value is very small, indicating a very small probability of observing such an extreme value of the statistic under the null hypothesis that the statistic of the entire population (from which our sample of 189 customers is drawn) is zero. This supports the alternative hypothesis that the true value of Somers’ D for the population is nonzero.

scipy.stats.linregress

`scipy.stats.linregress(x, y=None, alternative='two-sided')`

Calculate a linear least-squares regression for two sets of measurements.

Parameters

- **x, y**

 [array_like] Two sets of measurements. Both arrays should have the same length. If only x is given (and $y=None$), then it must be a two-dimensional array where one dimension has length 2. The two sets of measurements are then found by splitting the array along the length-2 dimension. In the case where $y=None$ and x is a 2x2 array, `linregress(x)` is equivalent to `linregress(x[0], x[1])`.

- **alternative**

 [['two-sided', 'less', 'greater'], optional] Defines the alternative hypothesis. Default is 'two-sided'. The following options are available:
 - 'two-sided': the slope of the regression line is nonzero
 - 'less': the slope of the regression line is less than zero
 - 'greater': the slope of the regression line is greater than zero

 New in version 1.7.0.

Returns

- **result**

 [LinregressResult instance] The return value is an object with the following attributes:

 - **slope**

 [float] Slope of the regression line.

 - **intercept**

 [float] Intercept of the regression line.

 - **rvalue**

 [float] The Pearson correlation coefficient. The square of $rvalue$ is equal to the coefficient of determination.

 - **pvalue**

 [float] The p-value for a hypothesis test whose null hypothesis is that the slope is zero, using Wald Test with t-distribution of the test statistic. See `alternative` above for alternative hypotheses.

 - **stderr**

 [float] Standard error of the estimated slope (gradient), under the assumption of residual normality.

 - **intercept_stderr**

 [float] Standard error of the estimated intercept, under the assumption of residual normality.

See also:

- **scipy.optimize.curve_fit**

 Use non-linear least squares to fit a function to data.

- **scipy.optimize.leastsq**

 Minimize the sum of squares of a set of equations.
Notes

Missing values are considered pair-wise: if a value is missing in \(x \), the corresponding value in \(y \) is masked.

For compatibility with older versions of SciPy, the return value acts like a namedtuple of length 5, with fields `slope`, `intercept`, `rvalue`, `pvalue` and `stderr`, so one can continue to write:

```python
slope, intercept, r, p, se = linregress(x, y)
```

With that style, however, the standard error of the intercept is not available. To have access to all the computed values, including the standard error of the intercept, use the return value as an object with attributes, e.g.:

```python
result = linregress(x, y)
print(result.intercept, result.intercept_stderr)
```

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from scipy import stats
>>> rng = np.random.default_rng()

Generate some data:

```python
>>> x = rng.random(10)
>>> y = 1.6*x + rng.random(10)
```

Perform the linear regression:

```python
>>> res = stats.linregress(x, y)
```

Coefficient of determination (R-squared):

```python
>>> print(f"R-squared: {res.rvalue**2:.6f}")
R-squared: 0.717533
```

Plot the data along with the fitted line:

```python
>>> plt.plot(x, y, 'o', label='original data')
>>> plt.plot(x, res.intercept + res.slope*x, 'r', label='fitted line')
>>> plt.legend()
>>> plt.show()
```

Calculate 95% confidence interval on slope and intercept:

```python
>>> # Two-sided inverse Students t-distribution
>>> # p - probability, df - degrees of freedom
>>> from scipy.stats import t
>>> tinv = lambda p, df: abs(t.ppf(p/2, df))
```

```python
>>> ts = tinv(0.05, len(x)-2)
>>> print(f"slope (95%): {res.slope:.6f} +/- {ts*res.stderr:.6f}")
slope (95%): 1.453392 +/- 0.743465
```

```python
>>> print(f"intercept (95%): {res.intercept:.6f}")
```

(continues on next page)
scipy.stats.siegelslopes

scipy.stats.siegelslopes(y, x=None, method='hierarchical')

Computes the Siegel estimator for a set of points (x, y).

siegelslopes implements a method for robust linear regression using repeated medians (see [1]) to fit a line to the points (x, y). The method is robust to outliers with an asymptotic breakdown point of 50%.

Parameters

- **y** [array_like] Dependent variable.
- **x** [array_like or None, optional] Independent variable. If None, use `arange(len(y))` instead.
- **method** [{'hierarchical', 'separate'}] If 'hierarchical', estimate the intercept using the estimated slope `medslope` (default option). If 'separate', estimate the intercept independent of the estimated slope. See Notes for details.

Returns

- **medslope** [float] Estimate of the slope of the regression line.
- **medintercept** [float] Estimate of the intercept of the regression line.

See also:

theilslopes

a similar technique without repeated medians

... f" +/- (ts*res.intercept_stderr:.6f")"
intercept (95%): 0.616950 +/- 0.544475
Notes

With \( n = \text{len}(y) \), compute \( m_j \) as the median of the slopes from the point \((x[j], y[j])\) to all other \( n-1 \) points. \( \text{medslope} \) is then the median of all slopes \( m_j \). Two ways are given to estimate the intercept in [1] which can be chosen via the parameter method. The hierarchical approach uses the estimated slope \( \text{medslope} \) and computes \( \text{medintercept} \) as the median of \( y - \text{medslope} \cdot x \). The other approach estimates the intercept separately as follows: for each point \((x[j], y[j])\), compute the intercepts of all the \( n-1 \) lines through the remaining points and take the median \( i_j \). \( \text{medintercept} \) is the median of the \( i_j \).

The implementation computes \( n \) times the median of a vector of size \( n \) which can be slow for large vectors. There are more efficient algorithms (see [2]) which are not implemented here.

References

[1], [2]

Examples

```python
>>> from scipy import stats
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-5, 5, num=150)
>>> y = x + np.random.normal(size=x.size)
>>> y[11:15] += 10 # add outliers
>>> y[:-5] -= 7

Compute the slope and intercept. For comparison, also compute the least-squares fit with \texttt{linregress}:

```python
>>> res = stats.siegelslopes(y, x)
>>> lsq_res = stats.linregress(x, y)
```  
Plot the results. The Siegel regression line is shown in red. The green line shows the least-squares fit for comparison.

```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, y, 'b. ')
>>> ax.plot(x, res[1] + res[0] * x, 'r-')
>>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-')
>>> plt.show()
```

\texttt{scipy.stats.theilslopes}

\texttt{scipy.stats.theilslopes}(y, x=None, alpha=0.95, method='separate')

Computes the Theil-Sen estimator for a set of points \((x, y)\).

\texttt{theilslopes} implements a method for robust linear regression. It computes the slope as the median of all slopes between paired values.

Parameters

- \(y \) : [array_like] Dependent variable.
- \(x \) : [array_like or None, optional] Independent variable. If None, use \texttt{arange(len(y))} instead.
alpha

[float, optional] Confidence degree between 0 and 1. Default is 95% confidence. Note that alpha is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as “find the 90% confidence interval”.

method

[{'joint', 'separate'}, optional] Method to be used for computing estimate for intercept. Following methods are supported,

- ‘joint’: Uses np.median(y - medslope * x) as intercept.
- ‘separate’: Uses np.median(y) - medslope * np.median(x) as intercept.

The default is ‘separate’.

New in version 1.8.0.

Returns

medslope [float] Theil slope.
medintercept [float] Intercept of the Theil line.
lo_slope [float] Lower bound of the confidence interval on medslope.
up_slope [float] Upper bound of the confidence interval on medslope.

See also:

siegelslopes

a similar technique using repeated medians

Notes

The implementation of theilslopes follows [1]. The intercept is not defined in [1], and here it is defined as median(y) - medslope*median(x), which is given in [3]. Other definitions of the intercept exist in the literature such as median(y - medslope*x) in [4]. The approach to compute the intercept can be determined by the parameter method. A confidence interval for the intercept is not given as this question is not addressed in [1].
References

[1], [2], [3], [4]

Examples

```python
>>> from scipy import stats
>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-5, 5, num=150)
>>> y = x + np.random.normal(size=x.size)
>>> y[11:15] += 10  # add outliers
>>> y[-5:] -= 7

Compute the slope, intercept and 90% confidence interval. For comparison, also compute the least-squares fit with `linregress`:

```python
>>> res = stats.theilslopes(y, x, 0.90, method='separate')
>>> lsq_res = stats.linregress(x, y)
```

Plot the results. The Theil-Sen regression line is shown in red, with the dashed red lines illustrating the confidence interval of the slope (note that the dashed red lines are not the confidence interval of the regression as the confidence interval of the intercept is not included). The green line shows the least-squares fit for comparison.

```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(x, y, 'b.'
>>> ax.plot(x, res[1] + res[0] * x, 'r-')
>>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-')
>>> plt.show()
```
scipy.stats.multiscale_graphcorr

scipy.stats.multiscale_graphcorr(x, y, compute_distance=<function _euclidean_dist>, reps=1000, workers=1, is_twosamp=False, random_state=None)

Computes the Multiscale Graph Correlation (MGC) test statistic.

Specifically, for each point, MGC finds the $k$-nearest neighbors for one property (e.g. cloud density), and the $l$-nearest neighbors for the other property (e.g. grass wetness) [1]. This pair $(k, l)$ is called the “scale”. A priori, however, it is not known which scales will be most informative. So, MGC computes all distance pairs, and then efficiently computes the distance correlations for all scales. The local correlations illustrate which scales are relatively informative about the relationship. The key, therefore, to successfully discover and decipher relationships between disparate data modalities is to adaptively determine which scales are the most informative, and the geometric implication for the most informative scales. Doing so not only provides an estimate of whether the modalities are related, but also provides insight into how the determination was made. This is especially important in high-dimensional data, where simple visualizations do not reveal relationships to the unaided human eye. Characterizations of this implementation in particular have been derived from and benchmarked within in [2].

Parameters

- **x, y** : [ndarray] If $x$ and $y$ have shapes $(n, p)$ and $(n, q)$ where $n$ is the number of samples and $p$ and $q$ are the number of dimensions, then the MGC independence test will be run. Alternatively, $x$ and $y$ can have shapes $(n, n)$ if they are distance or similarity matrices, and `compute_distance` must be sent to `None`. If $x$ and $y$ have shapes $(n, p)$ and $(m, p)$, an unpaired two-sample MGC test will be run.

- **compute_distance** : [callable, optional] A function that computes the distance or similarity among the samples within each data matrix. Set to `None` if $x$ and $y$ are already distance matrices. The default uses the euclidean norm metric. If you are calling a custom function, either create the distance matrix beforehand or create a function of the form `compute_distance(x)` where x is the data matrix for which pairwise distances are calculated.

- **reps** : [int, optional] The number of replications used to estimate the null when using the permutation test. The default is 1000.

- **workers** : [int or map-like callable, optional] If `workers` is an int the population is subdivided into `workers` sections and evaluated in parallel (uses `multiprocessing.Pool <multiprocessing>`). Supply -1 to use all cores available to the Process. Alternatively, supply a map-like callable, such as `multiprocessing.Pool.map` for evaluating the p-value in parallel. This evaluation is carried out as `workers(func, iterable)`. Requires that `func` be pickleable. The default is 1.

- **is_twosamp** : [bool, optional] If `True`, a two sample test will be run. If $x$ and $y$ have shapes $(n, p)$ and $(m, p)$, this optional will be overridden and set to `True`. Set to `True` if $x$ and $y$ both have shapes $(n, p)$ and a two sample test is desired. The default is `False`. Note that this will not run if inputs are distance matrices.

- **random_state** : [[None, int, numpy.random.Generator],.numpy.random.RandomState], optional
  
  If `seed` is `None` (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new `RandomState` instance is used, seeded with `seed`. If `seed` is already a `Generator` or `RandomState` instance then that instance is used.

Returns

- **stat** : [float] The sample MGC test statistic within $[-1, 1]$.
- **pvalue** : [float] The p-value obtained via permutation.
- **mgc_dict** : [dict] Contains additional useful additional returns containing the following keys:
  - **mgc_map** : [ndarray] A 2D representation of the latent geometry of the relationship.
- **opt_scale**: [(int, int)] The estimated optimal scale as a \((x, y)\) pair.
- **null_dist**: [list] The null distribution derived from the permuted matrices

**See also:**

**pearsonr**

Pearson correlation coefficient and p-value for testing non-correlation.

**kendalltau**

Calculates Kendall’s tau.

**spearmanr**

Calculates a Spearman rank-order correlation coefficient.

**Notes**

A description of the process of MGC and applications on neuroscience data can be found in [1]. It is performed using the following steps:

1. Two distance matrices \(D^X\) and \(D^Y\) are computed and modified to be mean zero columnwise. This results in two \(n \times n\) distance matrices \(A\) and \(B\) (the centering and unbiased modification) [3].
2. For all values \(k\) and \(l\) from \(1, \ldots, n\),
   - The \(k\)-nearest neighbor and \(l\)-nearest neighbor graphs are calculated for each property. Here, \(G_k(i, j)\) indicates the \(k\)-smallest values of the \(i\)-th row of \(A\) and \(H_l(i, j)\) indicates the \(l\) smallest values of the \(i\)-th row of \(B\).
   - Let \(\circ\) denote the entry-wise matrix product, then local correlations are summed and normalized using the following statistic:
     \[
     c^{kl} = \frac{\sum_{ij} A G_k B H_l}{\sqrt{\sum_{ij} A^2 G_k \times \sum_{ij} B^2 H_l}}
     \]
3. The MGC test statistic is the smoothed optimal local correlation of \(\{c^{kl}\}\). Denote the smoothing operation as \(R(\cdot)\) (which essentially set all isolated large correlations) as 0 and connected large correlations the same as before, see [3].) MGC is,

\[
MGC_n(x, y) = \max_{(k,l)} R \left( \{c^{kl}(x_n, y_n)\} \right)
\]

The test statistic returns a value between \((-1, 1)\) since it is normalized.

The p-value returned is calculated using a permutation test. This process is completed by first randomly permuting \(y\) to estimate the null distribution and then calculating the probability of observing a test statistic, under the null, at least as extreme as the observed test statistic.

MGC requires at least 5 samples to run with reliable results. It can also handle high-dimensional data sets. In addition, by manipulating the input data matrices, the two-sample testing problem can be reduced to the independence testing problem [4]. Given sample data \(U\) and \(V\) of sizes \(p \times n\) \(p \times m\), data matrix \(X\) and \(Y\) can be created as follows:

\[
X = [U | V] \in \mathcal{R}^{p \times (n+m)} Y = [0_{1 \times n} | 1_{1 \times m}] \in \mathcal{R}^{(n+m)}
\]

Then, the MGC statistic can be calculated as normal. This methodology can be extended to similar tests such as distance correlation [4].

New in version 1.4.0.
References

[1], [2], [3], [4]

Examples

```python
>>> from scipy.stats import multiscale_graphcorr
>>> x = np.arange(100)
>>> y = x
>>> stat, pvalue, _ = multiscale_graphcorr(x, y, workers=-1)
>>> '%.1f, %.3f' % (stat, pvalue)
'1.0, 0.001'

Alternatively,

```python
>>> x = np.arange(100)
>>> y = x
>>> mgc = multiscale_graphcorr(x, y)
>>> '%.1f, %.3f' % (mgc.stat, mgc.pvalue)
'1.0, 0.001'
```

To run an unpaired two-sample test,

```python
>>> x = np.arange(100)
>>> y = np.arange(79)
>>> mgc = multiscale_graphcorr(x, y)
>>> '%.3f, %.2f' % (mgc.stat, mgc.pvalue)
'0.033, 0.02'
```

or, if shape of the inputs are the same,

```python
>>> x = np.arange(100)
>>> y = x
>>> mgc = multiscale_graphcorr(x, y, is_twosamp=True)
>>> '%.3f, %.1f' % (mgc.stat, mgc.pvalue)
'-0.008, 1.0'
```

Statistical tests

- `ttest_1samp(a, popmean[, axis, nan_policy, ...])` Calculate the T-test for the mean of ONE group of scores.
- `ttest_ind(a, b[, axis, equal_var, ...])` Calculate the T-test for the means of two independent samples of scores.
- `ttest_ind_from_stats(mean1, std1, nobs1, ...)` T-test for means of two independent samples from descriptive statistics.
- `ttest_rel(a, b[, axis, nan_policy, alternative])` Calculate the t-test on TWO RELATED samples of scores, a and b.
- `chisquare(f_obs[, f_exp, ddof, axis])` Calculate a one-way chi-square test.
- `cramervonmises(rvs, cdf[, args])` Perform the one-sample Cramér-von Mises test for goodness of fit.

continues on next page
Table 276 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cramervonmises_2samp(x, y[, method])</code></td>
<td>Perform the two-sample Cramér-von Mises test for goodness of fit.</td>
</tr>
<tr>
<td><code>power_divergence(f_obs, f_exp, ddf, axis, ...)</code></td>
<td>Cressie-Read power divergence statistic and goodness of fit test.</td>
</tr>
<tr>
<td><code>ktest(rvs, cdf[, args, N, alternative, mode])</code></td>
<td>Performs the (one-sample or two-sample) Kolmogorov-Smirnov test for goodness of fit.</td>
</tr>
<tr>
<td><code>ks_1samp(x, cdf[, args, alternative, mode])</code></td>
<td>Performs the one-sample Kolmogorov-Smirnov test for goodness of fit.</td>
</tr>
<tr>
<td><code>ks_2samp(data1, data2[, alternative, mode])</code></td>
<td>Performs the two-sample Kolmogorov-Smirnov test for goodness of fit.</td>
</tr>
<tr>
<td><code>epps_singleton_2samp(x, y[, t])</code></td>
<td>Compute the Epps-Singleton (ES) test statistic.</td>
</tr>
<tr>
<td><code>mannwhitneyu(x, y[, use_continuity, ...])</code></td>
<td>Perform the Mann-Whitney U rank test on two independent samples.</td>
</tr>
<tr>
<td><code>tiecorrect(rankvals)</code></td>
<td>Tie correction factor for Mann-Whitney U and Kruskal-Wallis H tests.</td>
</tr>
<tr>
<td><code>rankdata(a[, method, axis])</code></td>
<td>Assign ranks to data, dealing with ties appropriately.</td>
</tr>
<tr>
<td><code>ranksums(x, y[, alternative, axis, nan_policy])</code></td>
<td>Compute the Wilcoxon rank-sum statistic for two samples.</td>
</tr>
<tr>
<td><code>wilcoxon(x[, y, zero_method, correction, ...])</code></td>
<td>Calculate the Wilcoxon signed-rank test.</td>
</tr>
<tr>
<td><code>kruskal(*args[, nan_policy, axis])</code></td>
<td>Compute the Kruskal-Wallis H-test for independent samples.</td>
</tr>
<tr>
<td><code>friedmanchisquare(*args)</code></td>
<td>Compute the Friedman test for repeated measurements.</td>
</tr>
<tr>
<td><code>brunnermunzel(x, y[, alternative, ...])</code></td>
<td>Compute the Brunner-Munzel test on samples x and y.</td>
</tr>
<tr>
<td><code>combine_pvalues(pvalues[, method, weights])</code></td>
<td>Combine p-values from independent tests bearing upon the same hypothesis.</td>
</tr>
<tr>
<td><code>jarque_bera(x)</code></td>
<td>Perform the Jarque-Bera goodness of fit test on sample data.</td>
</tr>
<tr>
<td><code>page_trend_test(data[, ranked, ...])</code></td>
<td>Perform Page's Test, a measure of trend in observations between treatments.</td>
</tr>
<tr>
<td><code>permutation_test(data, statistic, *[,...])</code></td>
<td>Performs a permutation test of a given statistic on provided data.</td>
</tr>
<tr>
<td><code>tukey_hsd(*args)</code></td>
<td>Perform Tukey’s HSD test for equality of means over multiple treatments.</td>
</tr>
</tbody>
</table>

scipy.stats.ttest_1samp

`scipy.stats.ttest_1samp(a, popmean, axis=0, nan_policy='propagate', alternative='two-sided')`
Calculate the T-test for the mean of ONE group of scores.
This is a test for the null hypothesis that the expected value (mean) of a sample of independent observations `a` is equal to the given population mean, `popmean`.

Parameters

- **a** [array_like] Sample observation.
- **popmean** [float or array_like] Expected value in null hypothesis. If array_like, then it must have the same shape as `a` excluding the axis dimension.
- **axis** [int or None, optional] Axis along which to compute test; default is 0. If None, compute over the whole array `a`.
- **nan_policy** [{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. The following options are available (default is 'propagate'):
 - 'propagate': returns nan
 - 'raise': throws an error
• ‘omit’: performs the calculations ignoring nan values

alternative

[{'two-sided', 'less', 'greater'}, optional] Defines the alternative hypothesis. The following options are available (default is ‘two-sided’):

• ‘two-sided’: the mean of the underlying distribution of the sample is different than the given population mean (popmean)
• ‘less’: the mean of the underlying distribution of the sample is less than the given population mean (popmean)
• ‘greater’: the mean of the underlying distribution of the sample is greater than the given population mean (popmean)

New in version 1.6.0.

Returns

statistic [float or array] t-statistic.
pvalue [float or array] Two-sided p-value.

Examples

```python
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50, 2), random_state=rng)
```

Test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the second case and don’t reject it in the first case.

```python
>>> stats.ttest_1samp(rvs, 5.0)
Ttest_1sampResult(statistic=array([-2.09794637, -1.75977004]),
→pvalue=array([0.04108952, 0.08468867]))
>>> stats.ttest_1samp(rvs, 0.0)
Ttest_1sampResult(statistic=array([1.64495065, 1.62095307]),
→pvalue=array([0.10638103, 0.11144602]))
```

Examples using axis and non-scalar dimension for population mean.

```python
>>> result = stats.ttest_1samp(rvs, [5.0, 0.0])
>>> result.statistic
array([-2.09794637,  1.62095307])
>>> result.pvalue
array([0.04108952, 0.11144602])
```

```python
>>> result = stats.ttest_1samp(rvs.T, [5.0, 0.0], axis=1)
>>> result.statistic
array([-2.09794637,  1.62095307])
>>> result.pvalue
array([0.04108952, 0.11144602])
```

```python
>>> result = stats.ttest_1samp(rvs, [[5.0], [0.0]])
>>> result.statistic
array([[-2.09794637, -1.75977004],
       [ 1.64495065,  1.62095307]])
>>> result.pvalue
```

(continues on next page)
scipy.stats.ttest_ind(a, b, axis=0, equal_var=True, nan_policy='propagate', permutations=None, random_state=None, alternative='two-sided', trim=0)

Calculate the T-test for the means of two independent samples of scores.

This is a test for the null hypothesis that 2 independent samples have identical average (expected) values. This test assumes that the populations have identical variances by default.

Parameters:
- **a, b**: [array_like] The arrays must have the same shape, except in the dimension corresponding to axis (the first, by default).
- **axis**: [int or None, optional] Axis along which to compute test. If None, compute over the whole arrays, `a`, and `b`.
- **equal_var**: [bool, optional] If True (default), perform a standard independent 2 sample test that assumes equal population variances [1]. If False, perform Welch’s t-test, which does not assume equal population variance [2]. New in version 0.11.0.
- **nan_policy**: [{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. The following options are available (default is 'propagate'):
 - 'propagate': returns nan
 - 'raise': throws an error
 - 'omit': performs the calculations ignoring nan values
 The ‘omit’ option is not currently available for permutation tests or one-sided asymptotic tests.
- **permutations**: [non-negative int, np.inf, or None (default), optional] If 0 or None (default), use the t-distribution to calculate p-values. Otherwise, permutations is the number of random permutations that will be used to estimate p-values using a permutation test. If permutations equals or exceeds the number of distinct partitions of the pooled data, an exact test is performed instead (i.e. each distinct partition is used exactly once). See Notes for details. New in version 1.7.0.
- **random_state**: [[None, int, numpy.random.Generator.], numpy.random.RandomState], optional
 If seed is None (or np.random), the numpy.random.RandomState singleton is used. If seed is an int, a new RandomState instance is used, seeded with seed. If seed is already a Generator or RandomState instance then that instance is used. Pseudorandom number generator state used to generate permutations (used only when permutations is not None). New in version 1.7.0.
- **alternative**: [{'two-sided', 'less', 'greater'}, optional] Defines the alternative hypothesis. The following options are available (default is 'two-sided'):
 - 'two-sided': the means of the distributions underlying the samples are unequal.
 - 'less': the mean of the distribution underlying the first sample is less than the mean of the distribution underlying the second sample.
 - 'greater': the mean of the distribution underlying the first sample is greater than the mean of the distribution underlying the second sample.
New in version 1.6.0.

trim [float, optional] If nonzero, performs a trimmed (Yuen’s) t-test. Defines the fraction of elements to be trimmed from each end of the input samples. If 0 (default), no elements will be trimmed from either side. The number of trimmed elements from each tail is the floor of the trim times the number of elements. Valid range is [0, .5). New in version 1.7.

Returns

- **statistic** [float or array] The calculated t-statistic.
- **pvalue** [float or array] The p-value.

Notes

Suppose we observe two independent samples, e.g. flower petal lengths, and we are considering whether the two samples were drawn from the same population (e.g. the same species of flower or two species with similar petal characteristics) or two different populations.

The t-test quantifies the difference between the arithmetic means of the two samples. The p-value quantifies the probability of observing as or more extreme values assuming the null hypothesis, that the samples are drawn from populations with the same population means, is true. A p-value larger than a chosen threshold (e.g. 5% or 1%) indicates that our observation is not so unlikely to have occurred by chance. Therefore, we do not reject the null hypothesis of equal population means. If the p-value is smaller than our threshold, then we have evidence against the null hypothesis of equal population means.

By default, the p-value is determined by comparing the t-statistic of the observed data against a theoretical t-distribution. When \(1 < \text{permutations} < \binom{n}{k} \), where

- \(k \) is the number of observations in \(a \),
- \(n \) is the total number of observations in \(a \) and \(b \), and
- \(\binom{n}{k} \) is the binomial coefficient (\(n \) choose \(k \)),

the data are pooled (concatenated), randomly assigned to either group \(a \) or \(b \), and the t-statistic is calculated. This process is performed repeatedly (\(\text{permutation} \) times), generating a distribution of the t-statistic under the null hypothesis, and the t-statistic of the observed data is compared to this distribution to determine the p-value. When \(\text{permutations} \geq \binom{n}{k} \), an exact test is performed: the data are partitioned between the groups in each distinct way exactly once.

The permutation test can be computationally expensive and not necessarily more accurate than the analytical test, but it does not make strong assumptions about the shape of the underlying distribution.

Use of trimming is commonly referred to as the trimmed t-test. At times called Yuen’s t-test, this is an extension of Welch’s t-test, with the difference being the use of winsorized means in calculation of the variance and the trimmed sample size in calculation of the statistic. Trimming is recommended if the underlying distribution is long-tailed or contaminated with outliers [4].
Examples

```python
from scipy import stats
rng = np.random.default_rng()

Test with sample with identical means:
```nrvs1 = stats.norm.rvs(loc=5, scale=10, size=500, random_state=rng)
```nrvs2 = stats.norm.rvs(loc=5, scale=10, size=500, random_state=rng)
```stats.ttest_ind(rvs1, rvs2)
Ttest_indResult(statistic=-0.4390847099199348, pvalue=0.6606952038870015)
```stats.ttest_ind(rvs1, rvs2, equal_var=False)
Ttest_indResult(statistic=-0.4390847099199348, pvalue=0.6606952553131064)

ttest_ind underestimates p for unequal variances:
```nrvs3 = stats.norm.rvs(loc=5, scale=20, size=500, random_state=rng)
```stats.ttest_ind(rvs1, rvs3)
Ttest_indResult(statistic=-1.6370984482905417, pvalue=0.1019251574705033)
```stats.ttest_ind(rvs1, rvs3, equal_var=False)
Ttest_indResult(statistic=-1.637098448290542, pvalue=0.10202110497954867)

When n1 != n2, the equal variance t-statistic is no longer equal to the unequal variance t-statistic:
```nrvs4 = stats.norm.rvs(loc=5, scale=20, size=100, random_state=rng)
```stats.ttest_ind(rvs1, rvs4)
Ttest_indResult(statistic=-1.9481646859513422, pvalue=0.05186270935842703)
```stats.ttest_ind(rvs1, rvs4, equal_var=False)
Ttest_indResult(statistic=-1.3146566100751664, pvalue=0.1913495266513811)

T-test with different means, variance, and n:
```nrvs5 = stats.norm.rvs(loc=8, scale=20, size=100, random_state=rng)
```stats.ttest_ind(rvs1, rvs5)
Ttest_indResult(statistic=-2.8415950600298774, pvalue=0.004641870756870885)
```stats.ttest_ind(rvs1, rvs5, equal_var=False)
Ttest_indResult(statistic=-1.8686598649188084, pvalue=0.06434714193919686)

When performing a permutation test, more permutations typically yields more accurate results. Use a np.random.Generator to ensure reproducibility:
```stats.ttest_ind(rvs1, rvs5, permutations=10000,
random_state=rng)
Ttest_indResult(statistic=-2.8415950600298774, pvalue=0.0052)
```
Take these two samples, one of which has an extreme tail.
```a = (56, 128.6, 12, 123.8, 64.34, 78, 763.3)
```b = (1.1, 2.9, 4.2)
Use the `trim` keyword to perform a trimmed (Yuen) t-test. For example, using 20% trimming, `trim=.2`, the test will reduce the impact of one \(np.floor(trim*len(a))\) element from each tail of sample `a`. It will have no effect on sample `b` because \(np.floor(trim*len(b))\) is 0.

```python
>>> stats.ttest_ind(a, b, trim=.2)
Ttest_indResult(statistic=3.4463884028073513,
pvalue=0.01369338726499547)
```

`scipy.stats.ttest_ind_from_stats`

`scipy.stats.ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2, equal_var=True,
alternative='two-sided')`

T-test for means of two independent samples from descriptive statistics.

This is a test for the null hypothesis that two independent samples have identical average (expected) values.

Parameters

- `mean1` [array_like] The mean(s) of sample 1.
- `std1` [array_like] The standard deviation(s) of sample 1.
- `nobs1` [array_like] The number(s) of observations of sample 1.
- `mean2` [array_like] The mean(s) of sample 2.
- `std2` [array_like] The standard deviations(s) of sample 2.
- `nobs2` [array_like] The number(s) of observations of sample 2.
- `equal_var` [bool, optional] If True (default), perform a standard independent 2 sample test that assumes equal population variances [1]. If False, perform Welch’s t-test, which does not assume equal population variance [2].
- `alternative` [{'two-sided', 'less', 'greater'}, optional] Defines the alternative hypothesis. The following options are available (default is ‘two-sided’):
 - ‘two-sided’: the means of the distributions are unequal.
 - ‘less’: the mean of the first distribution is less than the mean of the second distribution.
 - ‘greater’: the mean of the first distribution is greater than the mean of the second distribution.

New in version 1.6.0.

Returns

- `statistic` [float or array] The calculated t-statistics.
- `pvalue` [float or array] The two-tailed p-value.

See also:

`scipy.stats.ttest_ind`

Notes

New in version 0.16.0.
References

[1], [2]

Examples

Suppose we have the summary data for two samples, as follows:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Size</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>13</td>
<td>15.0</td>
<td>87.5</td>
</tr>
<tr>
<td>Sample 2</td>
<td>11</td>
<td>12.0</td>
<td>39.0</td>
</tr>
</tbody>
</table>

Apply the t-test to this data (with the assumption that the population variances are equal):

```python
>>> from scipy.stats import ttest_ind_from_stats
>>> ttest_ind_from_stats(mean1=15.0, std1=np.sqrt(87.5), nobs1=13,
... mean2=12.0, std2=np.sqrt(39.0), nobs2=11)
Ttest_indResult(statistic=0.9051358093310269, pvalue=0.3751996797581487)
```

For comparison, here is the data from which those summary statistics were taken. With this data, we can compute the same result using `scipy.stats.ttest_ind`:

```python
>>> a = np.array([1, 3, 4, 6, 11, 13, 15, 19, 22, 24, 25, 26, 26])
>>> b = np.array([2, 4, 6, 9, 11, 13, 14, 15, 18, 19, 21])
>>> from scipy.stats import ttest_ind
>>> ttest_ind(a, b)
Ttest_indResult(statistic=0.905135809331027, pvalue=0.3751996797581486)
```

Suppose we instead have binary data and would like to apply a t-test to compare the proportion of 1s in two independent groups:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Number of ones</th>
<th>Sample Mean</th>
<th>Sample Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>150</td>
<td>30</td>
<td>0.2</td>
</tr>
<tr>
<td>Sample 2</td>
<td>200</td>
<td>45</td>
<td>0.225</td>
</tr>
</tbody>
</table>

The sample mean \hat{p} is the proportion of ones in the sample and the variance for a binary observation is estimated by $\hat{p}(1-\hat{p})$.

```python
>>> ttest_ind_from_stats(mean1=0.2, std1=np.sqrt(0.16), nobs1=150,
... mean2=0.225, std2=np.sqrt(0.17437), nobs2=200)
Ttest_indResult(statistic=-0.564327545549774, pvalue=0.5728947691244874)
```

For comparison, we could compute the t statistic and p-value using arrays of 0s and 1s and `scipy.stats.ttest_ind`, as above.

```python
>>> group1 = np.array([1]*30 + [0]*(150-30))
>>> group2 = np.array([1]*45 + [0]*(200-45))
>>> ttest_ind(group1, group2)
Ttest_indResult(statistic=-0.5627179589855622, pvalue=0.573989277115258)
```
scipy.stats.ttest_rel

scipy.stats.ttest_rel (a, b, axis=0, nan_policy='propagate', alternative='two-sided')

Calculate the t-test on TWO RELATED samples of scores, a and b.

This is a test for the null hypothesis that two related or repeated samples have identical average (expected) values.

Parameters

- **a, b** [array_like] The arrays must have the same shape.
- **axis** [int or None, optional] Axis along which to compute test. If None, compute over the whole arrays, a, and b.
- **nan_policy** [{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. The following options are available (default is 'propagate'):
 - 'propagate': returns nan
 - 'raise': throws an error
 - 'omit': performs the calculations ignoring nan values
- **alternative** [{'two-sided', 'less', 'greater'}, optional] Defines the alternative hypothesis. The following options are available (default is 'two-sided'):
 - 'two-sided': the means of the distributions underlying the samples are unequal.
 - 'less': the mean of the distribution underlying the first sample is less than the mean of the distribution underlying the second sample.
 - 'greater': the mean of the distribution underlying the first sample is greater than the mean of the distribution underlying the second sample.

New in version 1.6.0.

Returns

- **statistic** [float or array] t-statistic.
- **pvalue** [float or array] The p-value.

Notes

Examples for use are scores of the same set of student in different exams, or repeated sampling from the same units. The test measures whether the average score differs significantly across samples (e.g. exams). If we observe a large p-value, for example greater than 0.05 or 0.1 then we cannot reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the null hypothesis of equal averages. Small p-values are associated with large t-statistics.

References

https://en.wikipedia.org/wiki/T-test#Dependent_t-test_for_paired_samples
Examples

```python
>>> from scipy import stats
>>> rng = np.random.default_rng()

>>> rvs1 = stats.norm.rvs(loc=5, scale=10, size=500, random_state=rng)
>>> rvs2 = (stats.norm.rvs(loc=5, scale=10, size=500, random_state=rng)
...       + stats.norm.rvs(scale=0.2, size=500, random_state=rng))
>>> stats.ttest_rel(rvs1, rvs2)
Ttest_relResult(statistic=-0.4549717054410304, pvalue=0.6493274702088672)

>>> rvs3 = (stats.norm.rvs(loc=8, scale=10, size=500, random_state=rng)
...       + stats.norm.rvs(scale=0.2, size=500, random_state=rng))
>>> stats.ttest_rel(rvs1, rvs3)
Ttest_relResult(statistic=-5.879467544540889, pvalue=7.540777129099917e-09)

scipy.stats.chisquare

scipy.stats.chisquare(f_obs, f_exp=None, ddof=0, axis=0)
Calculate a one-way chi-square test.

The chi-square test tests the null hypothesis that the categorical data has the given frequencies.

Parameters

- `f_obs` : array_like Observed frequencies in each category.
- `f_exp` : array_like, optional Expected frequencies in each category. By default the categories are assumed to be equally likely.
- `ddof` : int, optional “Delta degrees of freedom”: adjustment to the degrees of freedom for the p-value. The p-value is computed using a chi-squared distribution with \( k - 1 - ddof \) degrees of freedom, where \( k \) is the number of observed frequencies. The default value of `ddof` is 0.
- `axis` : int or None, optional The axis of the broadcast result of `f_obs` and `f_exp` along which to apply the test. If `axis` is None, all values in `f_obs` are treated as a single dataset. Default is 0.

Returns

- `chisq` : float or ndarray The chi-squared test statistic. The value is a float if `axis` is None or `f_obs` and `f_exp` are 1-D.
- `p` : float or ndarray The p-value of the test. The value is a float if `ddof` and the return value `chisq` are scalars.

See also:

- scipy.stats.power_divergence
- scipy.stats.fisher_exact
  Fisher exact test on a 2x2 contingency table.
- scipy.stats.barnard_exact
  An unconditional exact test. An alternative to chi-squared test for small sample sizes.
Notes

This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5. According to [3], the total number of samples is recommended to be greater than 13, otherwise exact tests (such as Barnard’s Exact test) should be used because they do not overreject.

Also, the sum of the observed and expected frequencies must be the same for the test to be valid; `chisquare` raises an error if the sums do not agree within a relative tolerance of $1e^{-8}$.

The default degrees of freedom, $k-1$, are for the case when no parameters of the distribution are estimated. If $p$ parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are $k-1-p$. If the parameters are estimated in a different way, then the dof can be between $k-1-p$ and $k-1$. However, it is also possible that the asymptotic distribution is not chi-square, in which case this test is not appropriate.

References

[1], [2], [3]

Examples

When just $f_{obs}$ is given, it is assumed that the expected frequencies are uniform and given by the mean of the observed frequencies.

```python
>>> from scipy.stats import chisquare
>>> chisquare([16, 18, 16, 14, 12, 12])
(2.0, 0.8491450360846095)
```

With $f_{exp}$ the expected frequencies can be given.

```python
>>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8])
(3.5, 0.6233876277495822)
```

When $f_{obs}$ is 2-D, by default the test is applied to each column.

```python
>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> chisquare(obs)
(array([2. , 6.66666667]), array([0.84914504, 0.24663415]))
```

By setting axis=None, the test is applied to all data in the array, which is equivalent to applying the test to the flattened array.

```python
>>> chisquare(obs, axis=None)
(23.31034482758621, 0.01597569253412756)
```

`ddof` is the change to make to the default degrees of freedom.

```python
>>> chisquare([16, 18, 16, 14, 12, 12], ddof=1)
(2.0, 0.73575888234288467)
```
The calculation of the p-values is done by broadcasting the chi-squared statistic with ddof.

```python
>>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
(2.0, array([0.84914504, 0.73575888, 0.5724067]))
```

If you want to specify different ddof for each channel, you can do so with the `ddof` parameter.

---

**scipy.stats.cramervonmises**

`scipy.stats.cramervonmises(rvs, cdf, args=())`

Perform the one-sample Cramér-von Mises test for goodness of fit.

This performs a test of the goodness of fit of a cumulative distribution function (cdf) $F$ compared to the empirical distribution function $F_n$ of observed random variates $X_1, \ldots, X_n$ that are assumed to be independent and identically distributed ([1]). The null hypothesis is that the $X_i$ have cumulative distribution $F$.

**Parameters**

- **rvs** [array_like] A 1-D array of observed values of the random variables $X_i$.
- **cdf** [str or callable] The cumulative distribution function $F$ to test the observations against. If a string, it should be the name of a distribution in `scipy.stats`. If a callable, that callable is used to calculate the cdf: `cdf(x, *args) -> float`.
- **args** [tuple, optional] Distribution parameters. These are assumed to be known; see Notes.

**Returns**

- **res** [object with attributes]
  - **statistic** [float] Cramér-von Mises statistic.
  - **pvalue** [float] The p-value.

See also:

`kstest, cramervonmises_2samp`

**Notes**

New in version 1.6.0.

The p-value relies on the approximation given by equation 1.8 in [2]. It is important to keep in mind that the p-value is only accurate if one tests a simple hypothesis, i.e. the parameters of the reference distribution are known. If the parameters are estimated from the data (composite hypothesis), the computed p-value is not reliable.
References

[1], [2]

Examples

Suppose we wish to test whether data generated by `scipy.stats.norm.rvs` were, in fact, drawn from the standard normal distribution. We choose a significance level of alpha=0.05.

```python
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> x = stats.norm.rvs(size=500, random_state=rng)
>>> res = stats.cramervonmises(x, 'norm')
>>> res.statistic, res.pvalue
(0.49121480855028343, 0.04189256516661377)
```

The p-value 0.79 exceeds our chosen significance level, so we do not reject the null hypothesis that the observed sample is drawn from the standard normal distribution.

Now suppose we wish to check whether the same samples shifted by 2.1 is consistent with being drawn from a normal distribution with a mean of 2.

```python
>>> y = x + 2.1
>>> res = stats.cramervonmises(y, 'norm', args=(2,))
>>> res.statistic, res.pvalue
(0.07400330012187435, 0.7274595666160468)
```

Here we have used the `args` keyword to specify the mean (loc) of the normal distribution to test the data against. This is equivalent to the following, in which we create a frozen normal distribution with mean 2.1, then pass its cdf method as an argument.

```python
>>> frozen_dist = stats.norm(loc=2)
>>> res = stats.cramervonmises(y, frozen_dist.cdf)
>>> res.statistic, res.pvalue
(0.07400330012187435, 0.7274595666160468)
```

In either case, we would reject the null hypothesis that the observed sample is drawn from a normal distribution with a mean of 2 (and default variance of 1) because the p-value 0.04 is less than our chosen significance level.

`scipy.stats.cramervonmises_2samp`

`scipy.stats.cramervonmises_2samp(x, y, method='auto')`

Perform the two-sample Cramér-von Mises test for goodness of fit.

This is the two-sample version of the Cramér-von Mises test ([1]): for two independent samples \(X_1, ..., X_n\) and \(Y_1, ..., Y_m\), the null hypothesis is that the samples come from the same (unspecified) continuous distribution.

**Parameters**

- `x` [array_like] A 1-D array of observed values of the random variables \(X_i\).
- `y` [array_like] A 1-D array of observed values of the random variables \(Y_i\).
- `method` [‘auto’, ‘asymptotic’, ‘exact’], optional] The method used to compute the p-value, see Notes for details. The default is ‘auto’.

**Returns**

- `res` [object with attributes]
statistic [float] Cramér-von Mises statistic.

pvalue [float] The p-value.

See also:
cramervonmises, anderson_ksamp, epps_singleton_2samp, ks_2samp

Notes

New in version 1.7.0.

The statistic is computed according to equation 9 in [2]. The calculation of the p-value depends on the keyword method:

• asymptotic: The p-value is approximated by using the limiting distribution of the test statistic.
• exact: The exact p-value is computed by enumerating all possible combinations of the test statistic, see [2].

The exact calculation will be very slow even for moderate sample sizes as the number of combinations increases rapidly with the size of the samples. If method='auto', the exact approach is used if both samples contain less than 10 observations, otherwise the asymptotic distribution is used.

If the underlying distribution is not continuous, the p-value is likely to be conservative (Section 6.2 in [3]). When ranking the data to compute the test statistic, midranks are used if there are ties.

References

[1], [2], [3]

Examples

Suppose we wish to test whether two samples generated by scipy.stats.norm.rvs have the same distribution. We choose a significance level of alpha=0.05.

```python
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> x = stats.norm.rvs(size=100, random_state=rng)
>>> y = stats.norm.rvs(size=70, random_state=rng)
>>> res = stats.cramervonmises_2samp(x, y)
>>> res.statistic, res.pvalue
(0.29376470588235293, 0.1412873014573014)
```

The p-value exceeds our chosen significance level, so we do not reject the null hypothesis that the observed samples are drawn from the same distribution.

For small sample sizes, one can compute the exact p-values:

```python
>>> x = stats.norm.rvs(size=7, random_state=rng)
>>> y = stats.t.rvs(df=2, size=6, random_state=rng)
>>> res = stats.cramervonmises_2samp(x, y, method='exact')
>>> res.statistic, res.pvalue
(0.197802197802198, 0.31643356643356646)
```

The p-value based on the asymptotic distribution is a good approximation even though the sample size is small.
Independent of the method, one would not reject the null hypothesis at the chosen significance level in this example.

```python
>>> res = stats.cramervonmises_2samp(x, y, method='asymptotic')
>>> res.statistic, res.pvalue
(0.197802197802198, 0.2966041181527128)
```

scipy.stats.power_divergence

This function tests the null hypothesis that the categorical data has the given frequencies, using the Cressie-Read power divergence statistic.

**Parameters**

- **f_obs**  [array_like] Observed frequencies in each category.
- **f_exp**  [array_like, optional] Expected frequencies in each category. By default the categories are assumed to be equally likely.
- **ddof**  [int, optional] “Delta degrees of freedom”: adjustment to the degrees of freedom for the p-value. The p-value is computed using a chi-squared distribution with \( k - 1 - ddof \) degrees of freedom, where \( k \) is the number of observed frequencies. The default value of \( ddof \) is 0.
- **axis**  [int or None, optional] The axis of the broadcast result of \( f_{obs} \) and \( f_{exp} \) along which to apply the test. If \( axis \) is None, all values in \( f_{obs} \) are treated as a single data set. Default is 0.
- **lambda_**  [float or str, optional] The power in the Cressie-Read power divergence statistic. The default is 1. For convenience, \( lambda_ \) may be assigned one of the following strings, in which case the corresponding numerical value is used:
  - "pearson" (value 1) Pearson’s chi-squared statistic. In this case, the function is equivalent to `chisquare`.
  - "log-likelihood" (value 0) Log-likelihood ratio. Also known as the G-test [3].
  - "freeman-tukey" (value -1/2) Freeman-Tukey statistic.
  - "mod-log-likelihood" (value -1) Modified log-likelihood ratio.
  - "neyman" (value -2) Neyman’s statistic.
  - "cressie-read" (value 2/3) The power recommended in [5].

**Returns**

- **statistic**  [float or ndarray] The Cressie-Read power divergence test statistic. The value is a float if \( axis \) is None or if \( f_{obs} \) and \( f_{exp} \) are 1-D.
- **pvalue**  [float or ndarray] The p-value of the test. The value is a float if \( ddof \) and the return value \( stat \) are scalars.

See also:

- `chisquare`
Notes

This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5.

Also, the sum of the observed and expected frequencies must be the same for the test to be valid; `power_divergence` raises an error if the sums do not agree within a relative tolerance of $1e^{-8}$.

When `lambda_` is less than zero, the formula for the statistic involves dividing by $f_{obs}$, so a warning or error may be generated if any value in $f_{obs}$ is 0.

Similarly, a warning or error may be generated if any value in $f_{exp}$ is zero when `lambda_` $\geq 0$.

The default degrees of freedom, $k-1$, are for the case when no parameters of the distribution are estimated. If $p$ parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are $k-1-p$. If the parameters are estimated in a different way, then the dof can be between $k-1-p$ and $k-1$. However, it is also possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate.

This function handles masked arrays. If an element of $f_{obs}$ or $f_{exp}$ is masked, then data at that position is ignored, and does not count towards the size of the data set.

New in version 0.13.0.

References

[1], [2], [3], [4], [5]

Examples

(See `chisquare` for more examples.)

When just $f_{obs}$ is given, it is assumed that the expected frequencies are uniform and given by the mean of the observed frequencies. Here we perform a G-test (i.e. use the log-likelihood ratio statistic):

```python
>>> from scipy.stats import power_divergence
>>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood')
(2.006573162632538, 0.84823476779463769)
```

The expected frequencies can be given with the $f_{exp}$ argument:

```python
>>> power_divergence([16, 18, 16, 14, 12, 12],
 ... f_exp=[16, 16, 16, 16, 16, 8],
 ... lambda_='log-likelihood')
(3.3281031458963746, 0.6495419288047497)
```

When $f_{obs}$ is 2-D, by default the test is applied to each column.

```python
>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> power_divergence(obs, lambda_="log-likelihood")
(array([2.00657316, 6.77634498]), array([0.84823477, 0.23781225]))
```

By setting `axis=None`, the test is applied to all data in the array, which is equivalent to applying the test to the flattened array.
```python
>>> power_divergence(obs, axis=None)
(23.31034482758621, 0.015975692534127565)
>>> power_divergence(obs.ravel())
(23.31034482758621, 0.015975692534127565)
```

`ddof` is the change to make to the default degrees of freedom.

```python
>>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1)
(2.0, 0.73575888234288467)
```

The calculation of the p-values is done by broadcasting the test statistic with `ddof`.

```python
>>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0, 1, 2])
(2.0, array([0.84914504, 0.73575888, 0.5724067]))
```

`f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting `f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared statistics, we must use `axis=1`:

```python
>>> power_divergence([16, 18, 16, 14, 12, 12],
... f_exp=[[16, 16, 16, 16, 16, 8],
... [8, 20, 20, 16, 12, 12]],
... axis=1)
(array([3.5 , 9.25]), array([0.62338763, 0.09949846]))
```

### scipy.stats.kstest

`scipy.stats.kstest` (rvs, cdf, args=(), N=20, alternative='two-sided', mode='auto')

Performs the (one-sample or two-sample) Kolmogorov-Smirnov test for goodness of fit.

The one-sample test compares the underlying distribution $F(x)$ of a sample against a given distribution $G(x)$. The two-sample test compares the underlying distributions of two independent samples. Both tests are valid only for continuous distributions.

**Parameters**

- **rvs** [str, array_like, or callable] If an array, it should be a 1-D array of observations of random variables. If a callable, it should be a function to generate random variables; it is required to have a keyword argument `size`. If a string, it should be the name of a distribution in `scipy.stats`, which will be used to generate random variables.

- **cdf** [str, array_like or callable] If `array_like`, it should be a 1-D array of observations of random variables, and the two-sample test is performed (and `rvs` must be `array_like`). If a callable, that callable is used to calculate the cdf. If a string, it should be the name of a distribution in `scipy.stats`, which will be used as the cdf function.

- **args** [tuple, sequence, optional] Distribution parameters, used if `rvs` or `cdf` are strings or callables.

- **N** [int, optional] Sample size if `rvs` is string or callable. Default is 20.


- **mode** [{‘auto’, ‘exact’, ‘approx’, ‘asymp’}, optional] Defines the distribution used for calculating the p-value. The following options are available (default is ‘auto’):
  - ‘auto’: selects one of the other options.
  - ‘exact’: uses the exact distribution of test statistic.
  - ‘approx’: approximates the two-sided probability with twice the one-sided probability
  - ‘asymp’: uses asymptotic distribution of test statistic
Returns

- statistic: [float] KS test statistic, either D, D+ or D-.
- pvalue: [float] One-tailed or two-tailed p-value.

See also:

ks_2samp

Notes

There are three options for the null and corresponding alternative hypothesis that can be selected using the alternative parameter.

- two-sided: The null hypothesis is that the two distributions are identical, \( F(x) = G(x) \) for all \( x \); the alternative is that they are not identical.
- less: The null hypothesis is that \( F(x) \geq G(x) \) for all \( x \); the alternative is that \( F(x) < G(x) \) for at least one \( x \).
- greater: The null hypothesis is that \( F(x) \leq G(x) \) for all \( x \); the alternative is that \( F(x) > G(x) \) for at least one \( x \).

Note that the alternative hypotheses describe the CDFs of the underlying distributions, not the observed values. For example, suppose \( x_1 \sim F \) and \( x_2 \sim G \). If \( F(x) > G(x) \) for all \( x \), the values in \( x_1 \) tend to be less than those in \( x_2 \).

Examples

```python
>>> from scipy import stats
>>> rng = np.random.default_rng()

>>> x = np.linspace(-15, 15, 9)
>>> stats.kstest(x, 'norm')
KstestResult(statistic=0.444356027159..., pvalue=0.038850140086...)

>>> stats.kstest(stats.norm.rvs(size=100, random_state=rng), stats.norm.cdf)
KstestResult(statistic=0.165471391799..., pvalue=0.007331283245...)
```

The above lines are equivalent to:

```python
>>> stats.kstest(stats.norm.rvs, 'norm', N=100)
KstestResult(statistic=0.113810164200..., pvalue=0.138690052319...) # may vary
```

Test against one-sided alternative hypothesis

Shift distribution to larger values, so that \( CDF(x) < \text{norm.cdf}(x) \):

```python
>>> x = stats.norm.rvs(loc=0.2, size=100, random_state=rng)
>>> stats.kstest(x, 'norm', alternative='less')
KstestResult(statistic=0.1002033514..., pvalue=0.1255446444...)
```

Reject null hypothesis in favor of alternative hypothesis: less

```python
>>> stats.kstest(x, 'norm', alternative='greater')
KstestResult(statistic=0.018749806388..., pvalue=0.920581859791...)
```
Don’t reject null hypothesis in favor of alternative hypothesis: greater

```python
>>> stats.ktest(x, 'norm')
KstestResult(statistic=0.100203351482..., pvalue=0.250616879765...)
```

Testing t distributed random variables against normal distribution

With 100 degrees of freedom the t distribution looks close to the normal distribution, and the K-S test does not reject the hypothesis that the sample came from the normal distribution:

```python
>>> stats.ktest(stats.t.rvs(100, size=100, random_state=rng), 'norm')
KstestResult(statistic=0.064273776544..., pvalue=0.778737758305...)
```

With 3 degrees of freedom the t distribution looks sufficiently different from the normal distribution, that we can reject the hypothesis that the sample came from the normal distribution at the 10% level:

```python
>>> stats.ktest(stats.t.rvs(3, size=100, random_state=rng), 'norm')
KstestResult(statistic=0.128678487493..., pvalue=0.066569081515...)
```

**scipy.stats.ks_1samp**

`scipy.stats.ks_1samp(x, cdf, args=(), alternative='two-sided', mode='auto')`

Performs the one-sample Kolmogorov-Smirnov test for goodness of fit.

This test compares the underlying distribution F(x) of a sample against a given continuous distribution G(x). See Notes for a description of the available null and alternative hypotheses.

**Parameters**

- `x` [array_like] a 1-D array of observations of iid random variables.
- `cdf` [callable] callable used to calculate the cdf.
- `args` [tuple, sequence, optional] Distribution parameters, used with `cdf`.
- `mode` [{‘auto’, ‘exact’, ‘approx’, ‘asymp’}, optional] Defines the distribution used for calculating the p-value. The following options are available (default is ‘auto’):
  - ‘auto’: selects one of the other options.
  - ‘exact’: uses the exact distribution of test statistic.
  - ‘approx’: approximates the two-sided probability with twice the one-sided probability
  - ‘asymp’: uses asymptotic distribution of test statistic

**Returns**

- `statistic` [float] KS test statistic, either D, D+ or D- (depending on the value of ‘alternative’)
- `pvalue` [float] One-tailed or two-tailed p-value.

See also:

`ks_2samp`, `ktest`
Notes

There are three options for the null and corresponding alternative hypothesis that can be selected using the `alternative` parameter.

- **two-sided**: The null hypothesis is that the two distributions are identical, \( F(x) = G(x) \) for all \( x \); the alternative is that they are not identical.
- **less**: The null hypothesis is that \( F(x) \geq G(x) \) for all \( x \); the alternative is that \( F(x) < G(x) \) for at least one \( x \).
- **greater**: The null hypothesis is that \( F(x) \leq G(x) \) for all \( x \); the alternative is that \( F(x) > G(x) \) for at least one \( x \).

Note that the alternative hypotheses describe the CDFs of the underlying distributions, not the observed values. For example, suppose \( x1 \sim F \) and \( x2 \sim G \). If \( F(x) > G(x) \) for all \( x \), the values in \( x1 \) tend to be less than those in \( x2 \).

Examples

```python
>>> from scipy import stats
>>> rng = np.random.default_rng()

>>> x = np.linspace(-15, 15, 9)
>>> stats.ks_1samp(x, stats.norm.cdf)
(0.44435602715924361, 0.038850142705171065)

>>> stats.ks_1samp(stats.norm.rvs(size=100, random_state=rng),
... stats.norm.cdf)
KstestResult(statistic=0.165471391799..., pvalue=0.007331283245...)

Test against one-sided alternative hypothesis

Shift distribution to larger values, so that “CDF(x) < norm.cdf(x)”:

```python
>>> x = stats.norm.rvs(loc=0.2, size=100, random_state=rng)
>>> stats.ks_1samp(x, stats.norm.cdf, alternative='less')
KstestResult(statistic=0.100203351482..., pvalue=0.125544644447...)
```  
Reject null hypothesis in favor of alternative hypothesis: less

```python
>>> stats.ks_1samp(x, stats.norm.cdf, alternative='greater')
KstestResult(statistic=0.018749806388..., pvalue=0.920581859791...)
```  
Reject null hypothesis in favor of alternative hypothesis: greater

```python
>>> stats.ks_1samp(x, stats.norm.cdf)
KstestResult(statistic=0.100203351482..., pvalue=0.250616879765...)
```  
Don’t reject null hypothesis in favor of alternative hypothesis: two-sided

Testing \(t \) distributed random variables against normal distribution

With 100 degrees of freedom the \(t \) distribution looks close to the normal distribution, and the K-S test does not reject the hypothesis that the sample came from the normal distribution:

```python
>>> stats.ks_1samp(stats.t.rvs(100, size=100, random_state=rng),
... stats.norm.cdf)
KstestResult(statistic=0.064273776544..., pvalue=0.77873758305...)
```
With 3 degrees of freedom the t distribution looks sufficiently different from the normal distribution, that we can reject the hypothesis that the sample came from the normal distribution at the 10% level:

```python
>>> stats.ks_1samp(stats.t.rvs(3, size=100, random_state=rng),
                    stats.norm.cdf)
KstestResult(statistic=0.128678487493..., pvalue=0.066569081515...)
```

scipy.stats.ks_2samp

`scipy.stats.ks_2samp(data1, data2, alternative='two-sided', mode='auto')`

Performs the two-sample Kolmogorov-Smirnov test for goodness of fit.

This test compares the underlying continuous distributions $F(x)$ and $G(x)$ of two independent samples. See Notes for a description of the available null and alternative hypotheses.

Parameters

- `data1, data2` [array_like, 1-Dimensional] Two arrays of sample observations assumed to be drawn from a continuous distribution, sample sizes can be different.

- `alternative` [{'two-sided', 'less', 'greater'}, optional] Defines the null and alternative hypotheses. Default is 'two-sided'. Please see explanations in the Notes below.

- `mode` [{'auto', 'exact', 'asymp'}, optional] Defines the method used for calculating the p-value. The following options are available (default is 'auto'):
 - 'auto': use 'exact' for small size arrays, 'asymp' for large
 - 'exact': use exact distribution of test statistic
 - 'asymp': use asymptotic distribution of test statistic

Returns

- `statistic` [float] KS statistic.
- `pvalue` [float] One-tailed or two-tailed p-value.

See also:

- `kstest`, `ks_1samp`, `epps_singleton_2samp`, `anderson_ksamp`

Notes

There are three options for the null and corresponding alternative hypothesis that can be selected using the `alternative` parameter.

- **two-sided**: The null hypothesis is that the two distributions are identical, $F(x) = G(x)$ for all x; the alternative is that they are not identical.
- **less**: The null hypothesis is that $F(x) \geq G(x)$ for all x; the alternative is that $F(x) < G(x)$ for at least one x.
- **greater**: The null hypothesis is that $F(x) \leq G(x)$ for all x; the alternative is that $F(x) > G(x)$ for at least one x.

Note that the alternative hypotheses describe the CDFs of the underlying distributions, not the observed values. For example, suppose $x1 \sim F$ and $x2 \sim G$. If $F(x) > G(x)$ for all x, the values in $x1$ tend to be less than those in $x2$.

If the KS statistic is small or the p-value is high, then we cannot reject the null hypothesis in favor of the alternative.

If the mode is 'auto', the computation is exact if the sample sizes are less than 10000. For larger sizes, the computation uses the Kolmogorov-Smirnov distributions to compute an approximate value.

The 'two-sided' 'exact' computation computes the complementary probability and then subtracts from 1. As such, the minimum probability it can return is about 1e-16. While the algorithm itself is exact, numerical errors may

Chapter 3. SciPy API

2854
accumulate for large sample sizes. It is most suited to situations in which one of the sample sizes is only a few thousand.

We generally follow Hodges’ treatment of Drion/Gnedenko/Korolyuk [1].

References

[1]

Examples

```python
>>> from scipy import stats
>>> rng = np.random.default_rng()

>>> n1 = 200  # size of first sample
>>> n2 = 300  # size of second sample

For a different distribution, we can reject the null hypothesis since the p-value is below 1%:

```python
def print_result(result):
 print(f'KstestResult(statistic={result.statistic:.6f}, pvalue={result.pvalue:.6f})')

rvs1 = stats.norm.rvs(size=n1, loc=0., scale=1, random_state=rng)
rvs2 = stats.norm.rvs(size=n2, loc=0.5, scale=1.5, random_state=rng)
result = stats.ks_2samp(rvs1, rvs2)
print_result(result)
```

For a slightly different distribution, we cannot reject the null hypothesis at a 10% or lower alpha since the p-value at 0.144 is higher than 10%:

```python
def print_result(result):
 print(f'KstestResult(statistic={result.statistic:.6f}, pvalue={result.pvalue:.6f})')

rvs3 = stats.norm.rvs(size=n2, loc=0.01, scale=1.0, random_state=rng)
result = stats.ks_2samp(rvs1, rvs3)
print_result(result)
```

For an identical distribution, we cannot reject the null hypothesis since the p-value is high, 41%:

```python
def print_result(result):
 print(f'KstestResult(statistic={result.statistic:.6f}, pvalue={result.pvalue:.6f})')

rvs4 = stats.norm.rvs(size=n2, loc=0.0, scale=1.0, random_state=rng)
result = stats.ks_2samp(rvs1, rvs4)
print_result(result)
```

scipy.stats.epps_singleton_2samp

`scipy.stats.epps_singleton_2samp(x, y, t=(0.4, 0.8))`

Compute the Epps-Singleton (ES) test statistic.

Test the null hypothesis that two samples have the same underlying probability distribution.

**Parameters**

- `x, y` [array-like] The two samples of observations to be tested. Input must not have more than one dimension. Samples can have different lengths.
- `t` [array-like, optional] The points (t1, ..., tn) where the empirical characteristic function is to be evaluated. It should be positive distinct numbers. The default value (0.4, 0.8) is proposed in [1]. Input must not have more than one dimension.

**Returns**

- `statistic` [float] The test statistic.
**pvalue** [float] The associated p-value based on the asymptotic chi2-distribution.

See also:

*ks_2samp*, *anderson_ksamp*

**Notes**

Testing whether two samples are generated by the same underlying distribution is a classical question in statistics. A widely used test is the Kolmogorov-Smirnov (KS) test which relies on the empirical distribution function. Epps and Singleton introduce a test based on the empirical characteristic function in [1].

One advantage of the ES test compared to the KS test is that it does not assume a continuous distribution. In [1], the authors conclude that the test also has a higher power than the KS test in many examples. They recommend the use of the ES test for discrete samples as well as continuous samples with at least 25 observations each, whereas *anderson_ksamp* is recommended for smaller sample sizes in the continuous case.

The p-value is computed from the asymptotic distribution of the test statistic which follows a *chi2* distribution. If the sample size of both *x* and *y* is below 25, the small sample correction proposed in [1] is applied to the test statistic.

The default values of *t* are determined in [1] by considering various distributions and finding good values that lead to a high power of the test in general. Table III in [1] gives the optimal values for the distributions tested in that study. The values of *t* are scaled by the semi-interquartile range in the implementation, see [1].

**References**

[1], [2]

*scipy.stats.mannwhitneyu*

```python
scipy.stats.mannwhitneyu(x, y, use_continuity=True, alternative='two-sided', axis=0, method='auto', *, nan_policy='propagate')
```

Perform the Mann-Whitney U rank test on two independent samples.

The Mann-Whitney U test is a nonparametric test of the null hypothesis that the distribution underlying sample *x* is the same as the distribution underlying sample *y*. It is often used as a test of difference in location between distributions.

**Parameters**

- **x, y** [array-like] N-d arrays of samples. The arrays must be broadcastable except along the dimension given by *axis*.

- **use_continuity** [bool, optional] Whether a continuity correction (1/2) should be applied. Default is True when *method* is 'asymptotic'; has no effect otherwise.

- **alternative** [{‘two-sided’, ‘less’, ‘greater’}, optional] Defines the alternative hypothesis. Default is ‘two-sided’. Let *F(u)* and *G(u)* be the cumulative distribution functions of the distributions underlying *x* and *y*, respectively. Then the following alternative hypotheses are available:
  - ‘two-sided’: the distributions are not equal, i.e. *F(u) ≠ G(u)* for at least one *u*.
  - ‘less’: the distribution underlying *x* is stochastically less than the distribution underlying *y*, i.e. *F(u) > G(u)* for all *u*.
  - ‘greater’: the distribution underlying *x* is stochastically greater than the distribution underlying *y*, i.e. *F(u) < G(u)* for all *u*.

Under a more restrictive set of assumptions, the alternative hypotheses can be expressed in terms of the locations of the distributions; see [5] section 5.1.
axis  [int or None, default: 0] If an int, the axis of the input along which to compute the statistic. The statistic of each axis-slice (e.g., row) of the input will appear in a corresponding element of the output. If None, the input will be raveled before computing the statistic.

method  [(‘auto’, ‘asymptotic’, ‘exact’), optional] Selects the method used to calculate the p-value. Default is ‘auto’. The following options are available.

- ‘asymptotic’: compares the standardized test statistic against the normal distribution, correcting for ties.
- ‘exact’: computes the exact p-value by comparing the observed U statistic against the exact distribution of the U statistic under the null hypothesis. No correction is made for ties.
- ‘auto’: chooses ‘exact’ when the size of one of the samples is less than 8 and there are no ties; chooses ‘asymptotic’ otherwise.

nan_policy  [(‘propagate’, ‘omit’, ‘raise’)] Defines how to handle input NaNs,

- propagate: if a NaN is present in the axis slice (e.g., row) along which the statistic is computed, the corresponding entry of the output will be NaN.
- omit: NaNs will be omitted when performing the calculation. If insufficient data remains in the axis slice along which the statistic is computed, the corresponding entry of the output will be NaN.
- raise: if a NaN is present, a ValueError will be raised.

Returns

res  [MannwhitneyuResult] An object containing attributes:

- statistic  [float] The Mann-Whitney U statistic corresponding with sample x. See Notes for the test statistic corresponding with sample y.
- pvalue  [float] The associated p-value for the chosen alternative.

See also:

scipy.stats.wilcoxon, scipy.stats.ranksums, scipy.stats.ttest_ind

Notes

If U1 is the statistic corresponding with sample x, then the statistic corresponding with sample y is U2 = ‘x.shape[axis] * y.shape[axis] - U1’.

mannwhitneyu is for independent samples. For related / paired samples, consider scipy.stats.wilcoxon.

method ‘exact’ is recommended when there are no ties and when either sample size is less than 8 [1]. The implementation follows the recurrence relation originally proposed in [1] as it is described in [3]. Note that the exact method is not corrected for ties, but mannwhitneyu will not raise errors or warnings if there are ties in the data.

The Mann-Whitney U test is a non-parametric version of the t-test for independent samples. When the means of samples from the populations are normally distributed, consider scipy.stats.ttest_ind.
References

[1], [2], [3], [4], [5]

Examples

We follow the example from [4]: nine randomly sampled young adults were diagnosed with type II diabetes at the ages below.

```python
>>> males = [19, 22, 16, 29, 24]
>>> females = [20, 11, 17, 12]
```

We use the Mann-Whitney U test to assess whether there is a statistically significant difference in the diagnosis age of males and females. The null hypothesis is that the distribution of male diagnosis ages is the same as the distribution of female diagnosis ages. We decide that a confidence level of 95% is required to reject the null hypothesis in favor of the alternative that the distributions are different. Since the number of samples is very small and there are no ties in the data, we can compare the observed test statistic against the exact distribution of the test statistic under the null hypothesis.

```python
>>> from scipy.stats import mannwhitneyu
>>> U1, p = mannwhitneyu(males, females, method="exact")
>>> print(U1)
17.0
```

`mannwhitneyu` always reports the statistic associated with the first sample, which, in this case, is males. This agrees with $U_M = 17$ reported in [4]. The statistic associated with the second statistic can be calculated:

```python
>>> nx, ny = len(males), len(females)
>>> U2 = nx*ny - U1
>>> print(U2)
3.0
```

This agrees with $U_F = 3$ reported in [4]. The two-sided $p$-value can be calculated from either statistic, and the value produced by `mannwhitneyu` agrees with $p = 0.11$ reported in [4].

```python
>>> print(p)
0.1111111111111111
```

The exact distribution of the test statistic is asymptotically normal, so the example continues by comparing the exact $p$-value against the $p$-value produced using the normal approximation.

```python
>>> _, pnorm = mannwhitneyu(males, females, method="asymptotic")
>>> print(pnorm)
0.11134688653314041
```

Here `mannwhitneyu`'s reported $p$-value appears to conflict with the value $p = 0.09$ given in [4]. The reason is that [4] does not apply the continuity correction performed by `mannwhitneyu`; `mannwhitneyu` reduces the distance between the test statistic and the mean $\mu = n_x n_y / 2$ by 0.5 to correct for the fact that the discrete statistic is being compared against a continuous distribution. Here, the $U$ statistic used is less than the mean, so we reduce the distance by adding 0.5 in the numerator.

```python
>>> import numpy as np
>>> from scipy.stats import norm
```
U = \min(U_1, U_2)
N = nx + ny
z = (U - nx*ny/2 + 0.5) / np.sqrt(nx*ny * (N + 1)/12)
p = 2 * norm.cdf(z)  # use CDF to get p-value from smaller statistic
print(p)
0.11134688653314041

If desired, we can disable the continuity correction to get a result that agrees with that reported in [4].

_, pnorm = mannwhitneyu(males, females, use_continuity=False,
... method="asymptotic")
print(pnorm)
0.0864107329737

Regardless of whether we perform an exact or asymptotic test, the probability of the test statistic being as extreme or more extreme by chance exceeds 5%, so we do not consider the results statistically significant.

Suppose that, before seeing the data, we had hypothesized that females would tend to be diagnosed at a younger age than males. In that case, it would be natural to provide the female ages as the first input, and we would have performed a one-sided test using alternative = 'less': females are diagnosed at an age that is stochastically less than that of males.

res = mannwhitneyu(females, males, alternative="less", method="exact")
print(res)
MannwhitneyuResult(statistic=3.0, pvalue=0.05555555555555555)

Again, the probability of getting a sufficiently low value of the test statistic by chance under the null hypothesis is greater than 5%, so we do not reject the null hypothesis in favor of our alternative.

If it is reasonable to assume that the means of samples from the populations are normally distributed, we could have used a t-test to perform the analysis.

from scipy.stats import ttest_ind
res = ttest_ind(females, males, alternative="less")
print(res)
Ttest_indResult(statistic=-2.239334696520584, pvalue=0.030068441095757924)

Under this assumption, the p-value would be low enough to reject the null hypothesis in favor of the alternative.

scipy.stats.tiecorrect

scipy.stats.tiecorrect(rankvals)
Tie correction factor for Mann-Whitney U and Kruskal-Wallis H tests.

Parameters

tiecorrect

rankvals
[array_like] A 1-D sequence of ranks. Typically this will be the array returned by rankdata.

Returns

factor
[float] Correction factor for U or H.

See also:

rankdata
Assign ranks to the data

3.3. API definition 2859
mannwhitneyu

Mann-Whitney rank test

kruskal

Kruskal-Wallis H test

References

[1]

Examples

```python
>>> from scipy.stats import tiecorrect, rankdata
>>> tiecorrect([1, 2.5, 2.5, 4])
0.9
>>> ranks = rankdata([1, 3, 2, 4, 5, 7, 2, 8, 4])
>>> ranks
array([1. , 4. , 2.5, 5.5, 7. , 8. , 2.5, 9. , 5.5])
>>> tiecorrect(ranks)
0.9833333333333333
```

scipy.stats.rankdata

scipy.stats.rankdata(a, method='average', *, axis=None)

Assign ranks to data, dealing with ties appropriately.

By default (axis=None), the data array is first flattened, and a flat array of ranks is returned. Separately reshape the rank array to the shape of the data array if desired (see Examples).

Ranks begin at 1. The method argument controls how ranks are assigned to equal values. See [1] for further discussion of ranking methods.

Parameters

- **a** [array_like] The array of values to be ranked.
- **method** [{‘average’, ‘min’, ‘max’, ‘dense’, ‘ordinal’}, optional] The method used to assign ranks to tied elements. The following methods are available (default is ‘average’):
  - ‘average’: The average of the ranks that would have been assigned to all the tied values is assigned to each value.
  - ‘min’: The minimum of the ranks that would have been assigned to all the tied values is assigned to each value. (This is also referred to as “competition” ranking.)
  - ‘max’: The maximum of the ranks that would have been assigned to all the tied values is assigned to each value.
  - ‘dense’: Like ‘min’, but the rank of the next highest element is assigned the rank immediately after those assigned to the tied elements.
  - ‘ordinal’: All values are given a distinct rank, corresponding to the order that the values occur in a.
- **axis** [{None, int}, optional] Axis along which to perform the ranking. If None, the data array is first flattened.

Returns

- **ranks** [ndarray] An array of size equal to the size of a, containing rank scores.
References

[1]

Examples

```python
>>> from scipy.stats import rankdata
>>> rankdata([0, 2, 3, 2])
array([1. , 2.5, 4. , 2.5])
>>> rankdata([0, 2, 3, 2], method='min')
array([1, 2, 4, 2])
>>> rankdata([0, 2, 3, 2], method='max')
array([1, 3, 4, 3])
>>> rankdata([0, 2, 3, 2], method='dense')
array([1, 2, 3, 2])
>>> rankdata([[0, 2], [3, 2]]).reshape(2,2)
array([[1., 2.5],
 [4., 2.5]])
>>> rankdata([[0, 2, 2], [3, 2, 5]], axis=1)
array([[1. , 2.5, 2.5],
 [2. , 1. , 3.]])
```

**scipy.stats.ranksums**

Scipy.stats.ranksums(x, y, alternative='two-sided', *, axis=0, nan_policy='propagate')

Compute the Wilcoxon rank-sum statistic for two samples.

The Wilcoxon rank-sum test tests the null hypothesis that two sets of measurements are drawn from the same distribution. The alternative hypothesis is that values in one sample are more likely to be larger than the values in the other sample.

This test should be used to compare two samples from continuous distributions. It does not handle ties between measurements in x and y. For tie-handling and an optional continuity correction see scipy.stats.mannwhitneyu.

**Parameters**

- `x, y` [array_like] The data from the two samples.
- `alternative` [{'two-sided', 'less', 'greater'}, optional] Defines the alternative hypothesis. Default is 'two-sided'. The following options are available:
  - 'two-sided': one of the distributions (underlying x or y) is stochastically greater than the other.
  - 'less': the distribution underlying x is stochastically less than the distribution underlying y.
  - 'greater': the distribution underlying x is stochastically greater than the distribution underlying y.

New in version 1.7.0.

- `axis` [int or None, default: 0] If an int, the axis of the input along which to compute the statistic. The statistic of each axis-slice (e.g. row) of the input will appear in a corresponding element of the output. If None, the input will be raveled before computing the statistic.

- `nan_policy` [{'propagate', 'omit', 'raise'}] Defines how to handle input NaNs.
• propagate: if a NaN is present in the axis slice (e.g. row) along which the statistic is computed, the corresponding entry of the output will be NaN.
• omit: NaNs will be omitted when performing the calculation. If insufficient data remains in the axis slice along which the statistic is computed, the corresponding entry of the output will be NaN.
• raise: if a NaN is present, a ValueError will be raised.

Returns

statistic [float] The test statistic under the large-sample approximation that the rank sum statistic is normally distributed.
pvalue [float] The p-value of the test.

References

[1]

Examples

We can test the hypothesis that two independent unequal-sized samples are drawn from the same distribution with computing the Wilcoxon rank-sum statistic.

```python
>>> from scipy.stats import ranksums
>>> rng = np.random.default_rng()
>>> sample1 = rng.uniform(-1, 1, 200)
>>> sample2 = rng.uniform(-0.5, 1.5, 300) # a shifted distribution
>>> ranksums(sample1, sample2)
RanksumsResult(statistic=-7.887059, pvalue=3.09390448e-15) # may vary
>>> ranksums(sample1, sample2, alternative='less')
RanksumsResult(statistic=-7.750585297581713, pvalue=4.573497606342543e-15) # may vary
>>> ranksums(sample1, sample2, alternative='greater')
RanksumsResult(statistic=-7.750585297581713, pvalue=0.9999999999999954) # may vary
```

The p-value of less than 0.05 indicates that this test rejects the hypothesis at the 5% significance level.

`scipy.stats.wilcoxon`

`scipy.stats.wilcoxon(x, y=None, zero_method='wilcox', correction=False, alternative='two-sided', mode='auto', *, axis=0, nan_policy='propagate')`

Calculate the Wilcoxon signed-rank test.

The Wilcoxon signed-rank test tests the null hypothesis that two related paired samples come from the same distribution. In particular, it tests whether the distribution of the differences x - y is symmetric about zero. It is a non-parametric version of the paired T-test.

Parameters

- x [array_like] Either the first set of measurements (in which case y is the second set of measurements), or the differences between two sets of measurements (in which case y is not to be specified.) Must be one-dimensional.
- y [array_like, optional] Either the second set of measurements (if x is the first set of measurements), or not specified (if x is the differences between two sets of measurements.) Must be one-dimensional.
zero_method

["pratt", "wilcox", "zsplit"], optional] The following options are available (default is "wilcox"):

• "pratt": Includes zero-differences in the ranking process, but drops the ranks of the zeros, see [4], (more conservative).
• "wilcox": Discards all zero-differences, the default.
• "zsplit": Includes zero-differences in the ranking process and split the zero rank between positive and negative ones.

correction

[bool, optional] If True, apply continuity correction by adjusting the Wilcoxon rank statistic by 0.5 towards the mean value when computing the z-statistic if a normal approximation is used. Default is False.

alternative

["two-sided", "greater", "less"], optional] The alternative hypothesis to be tested, see Notes. Default is "two-sided".

mode

["auto", "exact", "approx"] Method to calculate the p-value, see Notes. Default is "auto".

axis

[int or None, default: 0] If an int, the axis of the input along which to compute the statistic. The statistic of each axis-slice (e.g. row) of the input will appear in a corresponding element of the output. If None, the input will be raveled before computing the statistic.

nan_policy

["propagate", "omit", "raise"] Defines how to handle input NaNs.

• propagate: if a NaN is present in the axis slice (e.g. row) along which the statistic is computed, the corresponding entry of the output will be NaN.
• omit: NaNs will be omitted when performing the calculation. If insufficient data remains in the axis slice along which the statistic is computed, the corresponding entry of the output will be NaN.
• raise: if a NaN is present, a ValueError will be raised.

Returns

statistic [float] If alternative is “two-sided”, the sum of the ranks of the differences above or below zero, whichever is smaller. Otherwise the sum of the ranks of the differences above zero.

pvalue [float] The p-value for the test depending on alternative and mode.

See also:

kruskal, mannwhitneyu

Notes

The test has been introduced in [4]. Given n independent samples (xi, yi) from a bivariate distribution (i.e. paired samples), it computes the differences di = xi - yi. One assumption of the test is that the differences are symmetric, see [2]. The two-sided test has the null hypothesis that the median of the differences is zero against the alternative that it is different from zero. The one-sided test has the null hypothesis that the median is positive against the alternative that it is negative (alternative == 'less'), or vice versa (alternative == 'greater').

To derive the p-value, the exact distribution (mode == 'exact') can be used for sample sizes of up to 25. The default mode == 'auto' uses the exact distribution if there are at most 25 observations and no ties, otherwise a normal approximation is used (mode == 'approx').

The treatment of ties can be controlled by the parameter zero_method. If zero_method == 'pratt', the normal approximation is adjusted as in [5]. A typical rule is to require that n > 20 ([2], p. 383).
References

[1], [2], [3], [4], [5]

Examples

In [4], the differences in height between cross- and self-fertilized corn plants is given as follows:

```python
>>> d = [6, 8, 14, 16, 23, 24, 28, 29, 41, -48, 49, 56, 60, -67, 75]
```

Cross-fertilized plants appear to be be higher. To test the null hypothesis that there is no height difference, we can apply the two-sided test:

```python
>>> from scipy.stats import wilcoxon
>>> w, p = wilcoxon(d)
```

Hence, we would reject the null hypothesis at a confidence level of 5%, concluding that there is a difference in height between the groups. To confirm that the median of the differences can be assumed to be positive, we use:

```python
>>> w, p = wilcoxon(d, alternative='greater')
```

This shows that the null hypothesis that the median is negative can be rejected at a confidence level of 5% in favor of the alternative that the median is greater than zero. The p-values above are exact. Using the normal approximation gives very similar values:

```python
>>> w, p = wilcoxon(d, mode='approx')
```

Note that the statistic changed to 96 in the one-sided case (the sum of ranks of positive differences) whereas it is 24 in the two-sided case (the minimum of sum of ranks above and below zero).

**scipy.stats.kruskal**

scipy.stats.kruskal(*args, nan_policy='propagate', axis=0)

Compute the Kruskal-Wallis H-test for independent samples.

The Kruskal-Wallis H-test is a non-parametric alternative of ANOVA. The test works on 2 or more independent samples, which may have different sizes. Note that rejecting the null hypothesis does not indicate which of the groups differs. Post hoc comparisons between groups are required to determine which groups are different.

**Parameters**

- sample1, sample2, ...
  
  [array_like] Two or more arrays with the sample measurements can be given as arguments. Samples must be one-dimensional.

- nan_policy
  
  [{‘propagate’, ‘omit’, ‘raise’}] Defines how to handle input NaNs.
  
  - **propagate**: if a NaN is present in the axis slice (e.g. row) along which the statistic is computed, the corresponding entry of the output will be NaN.
omit: NaNs will be omitted when performing the calculation. If insufficient data remains in the axis slice along which the statistic is computed, the corresponding entry of the output will be NaN.

raise: if a NaN is present, a ValueError will be raised.

axis [int or None, default: 0] If an int, the axis of the input along which to compute the statistic. The statistic of each axis-slice (e.g. row) of the input will appear in a corresponding element of the output. If None, the input will be raveled before computing the statistic.

Returns

statistic [float] The Kruskal-Wallis H statistic, corrected for ties.
pvalue [float] The p-value for the test using the assumption that H has a chi square distribution. The p-value returned is the survival function of the chi square distribution evaluated at H.

See also:

f_oneway
1-way ANOVA.
mannwhitneyu
Mann-Whitney rank test on two samples.
friedmanchisquare
Friedman test for repeated measurements.

Notes

Due to the assumption that H has a chi square distribution, the number of samples in each group must not be too small. A typical rule is that each sample must have at least 5 measurements.

References

[1],[2]

Examples

```python
>>> from scipy import stats
>>> x = [1, 3, 5, 7, 9]
>>> y = [2, 4, 6, 8, 10]
>>> stats.kruskal(x, y)
KruskalResult(statistic=0.2727272727272734, pvalue=0.6015081344405895)

>>> x = [1, 1, 1]
>>> y = [2, 2, 2]
>>> z = [2, 2]
>>> stats.kruskal(x, y, z)
KruskalResult(statistic=7.0, pvalue=0.03019738344223185)
```
scipy.stats.friedmanchisquare

scipy.stats.friedmanchisquare(*args)

Compute the Friedman test for repeated measurements.

The Friedman test tests the null hypothesis that repeated measurements of the same individuals have the same
distribution. It is often used to test for consistency among measurements obtained in different ways. For example,
if two measurement techniques are used on the same set of individuals, the Friedman test can be used to determine
if the two measurement techniques are consistent.

Parameters

measurements1, measurements2, measurements3…

[array_like] Arrays of measurements. All of the arrays must have the same number of ele-
ments. At least 3 sets of measurements must be given.

Returns

statistic [float] The test statistic, correcting for ties.
pvalue [float] The associated p-value assuming that the test statistic has a chi squared distribution.

Notes

Due to the assumption that the test statistic has a chi squared distribution, the p-value is only reliable for n > 10
and more than 6 repeated measurements.

References

[1]

scipy.stats.brunnermunzel

scipy.stats.brunnermunzel(x, y, alternative='two-sided', distribution='t', nan_policy='propagate')

Compute the Brunner-Munzel test on samples x and y.

The Brunner-Munzel test is a nonparametric test of the null hypothesis that when values are taken one by one
from each group, the probabilities of getting large values in both groups are equal. Unlike the Wilcoxon-Mann-
Whitney's U test, this does not require the assumption of equivariance of two groups. Note that this does not assume
the distributions are same. This test works on two independent samples, which may have different sizes.

Parameters

x, y [array_like] Array of samples, should be one-dimensional.
alternative [{‘two-sided’, ‘less’, ‘greater’}, optional] Defines the alternative hypothesis. The following
options are available (default is ‘two-sided’):
• ‘two-sided’
• ‘less’: one-sided
• ‘greater’: one-sided
distribution [{‘t’, ‘normal’}, optional] Defines how to get the p-value. The following options are available
(default is ‘t’):
• ‘t’: get the p-value by t-distribution
• ‘normal’: get the p-value by standard normal distribution.
nan_policy [{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input contains nan. The
following options are available (default is ‘propagate’):
• 'propagate': returns nan
• 'raise': throws an error
• 'omit': performs the calculations ignoring nan values

Returns

- **statistic** [float] The Brunner-Munzer W statistic.
- **pvalue** [float] p-value assuming an t distribution. One-sided or two-sided, depending on the choice of alternative and distribution.

See also:

- **mannwhitneyu**

Mann-Whitney rank test on two samples.

Notes

Brunner and Munzel recommended to estimate the p-value by t-distribution when the size of data is 50 or less. If the size is lower than 10, it would be better to use permuted Brunner Munzel test (see [2]).

References

[1], [2]

Examples

```python
>>> from scipy import stats
>>> x1 = [1,2,1,1,1,1,1,1,2,4,1,1]
>>> x2 = [3,3,4,3,1,2,3,1,1,5,4]
>>> w, p_value = stats.brunnermunzel(x1, x2)
>>> w
3.1374674823029505
>>> p_value
0.0057862086661515377
```

**scipy.stats.combine_pvalues**

Scipy.stats.combine_pvalues(pvalues, method='fisher', weights=None)

Combine p-values from independent tests bearing upon the same hypothesis.

Parameters

- **pvalues** [array_like, 1-D] Array of p-values assumed to come from independent tests.
- **method** ['fisher', 'pearson', 'tippett', 'stouffer', 'mudholkar_george'], optional

Name of method to use to combine p-values. The following methods are available (default is 'fisher'):
- 'fisher': Fisher's method (Fisher's combined probability test), the sum of the logarithm of the p-values
- 'pearson': Pearson's method (similar to Fisher's but uses sum of the complement of the p-values inside the logarithms)
- 'tippett': Tippett's method (minimum of p-values)
- 'stouffer': Stouffer's Z-score method
• ‘mudholkar_george’: the difference of Fisher’s and Pearson’s methods divided by 2

weights [array_like, 1-D, optional] Optional array of weights used only for Stouffer’s Z-score method.

Returns

statistic: float
The statistic calculated by the specified method.

pval: float
The combined p-value.

Notes

Fisher’s method (also known as Fisher’s combined probability test) [1] uses a chi-squared statistic to compute a combined p-value. The closely related Stouffer’s Z-score method [2] uses Z-scores rather than p-values. The advantage of Stouffer’s method is that it is straightforward to introduce weights, which can make Stouffer’s method more powerful than Fisher’s method when the p-values are from studies of different size [6] [7]. The Pearson’s method uses \( \log(1 - p_i) \) inside the sum whereas Fisher’s method uses \( \log(p_i) \) [4]. For Fisher’s and Pearson’s method, the sum of the logarithms is multiplied by -2 in the implementation. This quantity has a chi-square distribution that determines the p-value. The mudholkar_george method is the difference of the Fisher’s and Pearson’s test statistics, each of which include the -2 factor [4]. However, the mudholkar_george method does not include these -2 factors. The test statistic of mudholkar_george is the sum of logistic random variables and equation 3.6 in [3] is used to approximate the p-value based on Student’s t-distribution.

Fisher’s method may be extended to combine p-values from dependent tests [5]. Extensions such as Brown’s method and Kost’s method are not currently implemented.

New in version 0.15.0.

References

[1], [2], [3], [4], [5], [6], [7]

scipy.stats.jarque_bera

scipy.stats.jarque_bera(x)
Perform the Jarque-Bera goodness of fit test on sample data.

The Jarque-Bera test tests whether the sample data has the skewness and kurtosis matching a normal distribution.

Note that this test only works for a large enough number of data samples (>2000) as the test statistic asymptotically has a Chi-squared distribution with 2 degrees of freedom.

Parameters

x [array_like] Observations of a random variable.

Returns

jb_value [float] The test statistic.

p [float] The p-value for the hypothesis test.
References

[1]

Examples

```python
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> x = rng.normal(0, 1, 100000)
>>> jarque_bera_test = stats.jarque_bera(x)
>>> jarque_bera_test
Jarque_beraResult(statistic=3.3415184718131554, pvalue=0.18810419594996775)
>>> jarque_bera_test.statistic
3.3415184718131554
>>> jarque_bera_test.pvalue
0.18810419594996775
```

`scipy.stats.page_trend_test`

`scipy.stats.page_trend_test(data, ranked=False, predicted_ranks=None, method='auto')`

Perform Page's Test, a measure of trend in observations between treatments.

Page's Test (also known as Page's L test) is useful when:

- there are \( n \geq 3 \) treatments,
- \( m \geq 2 \) subjects are observed for each treatment, and
- the observations are hypothesized to have a particular order.

Specifically, the test considers the null hypothesis that

\[
m_1 = m_2 = m_3 \cdots = m_n,
\]

where \( m_j \) is the mean of the observed quantity under treatment \( j \), against the alternative hypothesis that

\[
m_1 \leq m_2 \leq m_3 \leq \cdots \leq m_n,
\]

where at least one inequality is strict.

As noted by [4], Page's L test has greater statistical power than the Friedman test against the alternative that there is a difference in trend, as Friedman's test only considers a difference in the means of the observations without considering their order. Whereas Spearman \( \rho \) considers the correlation between the ranked observations of two variables (e.g. the airspeed velocity of a swallow vs. the weight of the coconut it carries), Page's L is concerned with a trend in an observation (e.g. the airspeed velocity of a swallow) across several distinct treatments (e.g. carrying each of five coconuts of different weight) even as the observation is repeated with multiple subjects (e.g. one European swallow and one African swallow).

**Parameters**

- `data` [array-like] A \( m \times n \) array; the element in row \( i \) and column \( j \) is the observation corresponding with subject \( i \) and treatment \( j \). By default, the columns are assumed to be arranged in order of increasing predicted mean.

- `ranked` [boolean, optional] By default, `data` is assumed to be observations rather than ranks; it will be ranked with `scipy.stats.rankdata` along `axis=1`. If `data` is provided in the form of ranks, pass argument `True`.

3.3. API definition 2869
**predicted_ranks**

[array-like, optional] The predicted ranks of the column means. If not specified, the columns are assumed to be arranged in order of increasing predicted mean, so the default predicted_ranks are \([1, 2, \ldots, n - 1, n]\).

**method**

[{'auto', 'asymptotic', 'exact'}, optional] Selects the method used to calculate the p-value. The following options are available.

- 'auto': selects between 'exact' and 'asymptotic' to achieve reasonably accurate results in reasonable time (default)
- 'asymptotic': compares the standardized test statistic against the normal distribution
- 'exact': computes the exact p-value by comparing the observed \(L\) statistic against those realized by all possible permutations of ranks (under the null hypothesis that each permutation is equally likely)

**Returns**

res [PageTrendTestResult] An object containing attributes:

- **statistic** [float] Page’s \(L\) test statistic.
- **pvalue** [float] The associated p-value
- **method** [{'asymptotic', 'exact'}] The method used to compute the p-value

**See also:**

*rankdata, friedmanchisquare, spearmanr*

**Notes**

As noted in [1], “the \(n\) ‘treatments’ could just as well represent \(n\) objects or events or performances or persons or trials ranked.” Similarly, the \(m\) ‘subjects’ could equally stand for \(m\) “groupings by ability or some other control variable, or judges doing the ranking, or random replications of some other sort.”

The procedure for calculating the \(L\) statistic, adapted from [1], is:

1. “Predetermine with careful logic the appropriate hypotheses concerning the predicted ording of the experimental results. If no reasonable basis for ordering any treatments is known, the \(L\) test is not appropriate.”
2. “As in other experiments, determine at what level of confidence you will reject the null hypothesis that there is no agreement of experimental results with the monotonic hypothesis.”
3. “Cast the experimental material into a two-way table of \(n\) columns (treatments, objects ranked, conditions) and \(m\) rows (subjects, replication groups, levels of control variables).”
4. “When experimental observations are recorded, rank them across each row”, e.g. \(\text{ranks} = \text{scipy.stats.rankdata(data, axis=1)}\).
5. “Add the ranks in each column”, e.g. \(\text{colsums} = \text{np.sum(ranks, axis=0)}\).
6. “Multiply each sum of ranks by the predicted rank for that same column”, e.g. \(\text{products} = \text{predicted_ranks} \times \text{colsums}\).
7. “Sum all such products”, e.g. \(L = \text{products.sum()}\).

[1] continues by suggesting use of the standardized statistic

\[
\chi^2_L = \frac{(12L - 3mn(n + 1)^2)^2}{mn^2(n^2 - 1)(n + 1)}
\]

“which is distributed approximately as chi-square with 1 degree of freedom. The ordinary use of \(\chi^2\) tables would be equivalent to a two-sided test of agreement. If a one-sided test is desired, as will almost always be the case, the probability discovered in the chi-square table should be halved.”
However, this standardized statistic does not distinguish between the observed values being well correlated with the predicted ranks and being _anti_-correlated with the predicted ranks. Instead, we follow [2] and calculate the standardized statistic

$$\Lambda = \frac{L - E_0}{\sqrt{V_0}},$$

where $E_0 = \frac{1}{2}mn(n+1)^2$ and $V_0 = \frac{1}{144}mn(n+1)(n^2 - 1)$, "which is asymptotically normal under the null hypothesis".

The p-value for method='exact' is generated by comparing the observed value of $L$ against the $L$ values generated for all $(n!)^m$ possible permutations of ranks. The calculation is performed using the recursive method of [5].

The p-values are not adjusted for the possibility of ties. When ties are present, the reported 'exact' p-values may be somewhat larger (i.e. more conservative) than the true p-value [2]. The 'asymptotic' p-values, however, tend to be smaller (i.e. less conservative) than the 'exact' p-values.

**Examples**

We use the example from [3]: 10 students are asked to rate three teaching methods - tutorial, lecture, and seminar - on a scale of 1-5, with 1 being the lowest and 5 being the highest. We have decided that a confidence level of 99% is required to reject the null hypothesis in favor of our alternative: that the seminar will have the highest ratings and the tutorial will have the lowest. Initially, the data have been tabulated with each row representing an individual student’s ratings of the three methods in the following order: tutorial, lecture, seminar.

```python
>>> table = [[3, 4, 3],
 ... [2, 2, 4],
 ... [3, 3, 5],
 ... [1, 3, 2],
 ... [2, 3, 2],
 ... [2, 4, 5],
 ... [1, 2, 4],
 ... [3, 4, 4],
 ... [2, 4, 5],
 ... [1, 3, 4]]
```

Because the tutorial is hypothesized to have the lowest ratings, the column corresponding with tutorial rankings should be first; the seminar is hypothesized to have the highest ratings, so its column should be last. Since the columns are already arranged in this order of increasing predicted mean, we can pass the table directly into `page_trend_test`.

```python
>>> from scipy.stats import page_trend_test
>>> res = page_trend_test(table)
>>> res
PageTrendTestResult(statistic=133.5, pvalue=0.0018191161948127822, method='exact')
```

This p-value indicates that there is a 0.1819% chance that the $L$ statistic would reach such an extreme value under the null hypothesis. Because 0.1819% is less than 1%, we have evidence to reject the null hypothesis in favor of our alternative at a 99% confidence level.
The value of the $L$ statistic is 133.5. To check this manually, we rank the data such that high scores correspond with high ranks, settling ties with an average rank:

```python
>>> from scipy.stats import rankdata
>>> ranks = rankdata(table, axis=1)
>>> ranks
array([[1.5, 3. , 1.5],
 [1.5, 1.5, 3.],
 [1. , 3. , 2.],
 [1.5, 3. , 1.5],
 [1. , 2. , 3.],
 [1.5, 2.5, 2.5],
 [1. , 2. , 3.],
 [1. , 2. , 3.]])
```

We add the ranks within each column, multiply the sums by the predicted ranks, and sum the products.

```python
>>> import numpy as np
>>> m, n = ranks.shape
>>> predicted_ranks = np.arange(1, n+1)
>>> L = (predicted_ranks * np.sum(ranks, axis=0)).sum()
>>> res.statistic == L
True
```

As presented in [3], the asymptotic approximation of the $p$-value is the survival function of the normal distribution evaluated at the standardized test statistic:

```python
>>> from scipy.stats import norm
>>> E0 = (m*n*(n+1)**2)/4
>>> V0 = (m*n**2*(n+1)*(n**2-1))/144
>>> Lambda = (L-E0)/np.sqrt(V0)
>>> p = norm.sf(Lambda)
>>> p
0.0012693433690751756
```

This does not precisely match the $p$-value reported by `page_trend_test` above. The asymptotic distribution is not very accurate, nor conservative, for $m \leq 12$ and $n \leq 8$, so `page_trend_test` chose to use method='exact' based on the dimensions of the table and the recommendations in Page's original paper [1]. To override `page_trend_test`'s choice, provide the method argument.

```python
>>> res = page_trend_test(table, method="asymptotic")
>>> res
PageTrendTestResult(statistic=133.5, pvalue=0.0012693433690751756,
method='asymptotic')
```

If the data are already ranked, we can pass in the ranks instead of the table to save computation time.

```python
>>> res = page_trend_test(ranks, # ranks of data
... ranked=True, # data is already ranked
...)
>>> res
PageTrendTestResult(statistic=133.5, pvalue=0.0018191161948127822,
method='exact')
```
Suppose the raw data had been tabulated in an order different from the order of predicted means, say lecture, seminar, tutorial.

```python
>>> table = np.asarray(table)[:, [1, 2, 0]]
```

Since the arrangement of this table is not consistent with the assumed ordering, we can either rearrange the table or provide the `predicted_ranks`. Remembering that the lecture is predicted to have the middle rank, the seminar the highest, and tutorial the lowest, we pass:

```python
>>> res = page_trend_test(table,
... # data as originally...,
... tabulated
... predicted_ranks=[2, 3, 1], # our predicted...
... order
...)
>>> res
PageTrendTestResult(statistic=133.5, pvalue=0.0018191161948127822,
 method='exact')
```

**scipy.stats.permutation_test**

Performs a permutation test of a given statistic on provided data.

For independent sample statistics, the null hypothesis is that the data are randomly sampled from the same distribution. For paired sample statistics, two null hypothesis can be tested: that the data are paired at random or that the data are assigned to samples at random.

### Parameters

- **data** ([iterable of array-like]) Contains the samples, each of which is an array of observations. Dimensions of sample arrays must be compatible for broadcasting except along `axis`.

- **statistic** ([callable]) Statistic for which the p-value of the hypothesis test is to be calculated. `statistic` must be a callable that accepts samples as separate arguments (e.g. `statistic(*data)`) and returns the resulting statistic. If `vectorized` is set `True`, `statistic` must also accept a keyword argument `axis` and be vectorized to compute the statistic along the provided `axis` of the sample arrays.

- **permutation_type** ([`{'independent', 'samples', 'pairings'}`, optional]) The type of permutations to be performed, in accordance with the null hypothesis. The first two permutation types are for paired sample statistics, in which all samples contain the same number of observations and observations with corresponding indices along `axis` are considered to be paired; the third is for independent sample statistics.
  - `'samples'`: observations are assigned to different samples but remain paired with the same observations from other samples. This permutation type is appropriate for paired sample hypothesis tests such as the Wilcoxon signed-rank test and the paired t-test.
  - `'pairings'`: observations are paired with different observations, but they remain within the same sample. This permutation type is appropriate for association/correlation tests with statistics such as Spearman’s $\rho$, Kendall’s $\tau$, and Pearson’s $r$.
  - `'independent'` (default): observations are assigned to different samples. Samples may contain different numbers of observations. This permutation type is appropriate for independent sample hypothesis tests such as the Mann-Whitney $U$ test and the independent sample t-test.

Please see the Notes section below for more detailed descriptions of the permutation types.
vectorized [bool, default: False] By default, statistic is assumed to calculate the statistic only for 1D arrays contained in data. If `vectorized` is set True, statistic must also accept a keyword argument `axis` and be vectorized to compute the statistic along the provided `axis` of the ND arrays in data. Use of a vectorized statistic can reduce computation time.

n_resamples [int or np.inf, default: 9999] Number of random permutations (resamples) used to approximate the null distribution. If greater than or equal to the number of distinct permutations, the exact null distribution will be computed. Note that the number of distinct permutations grows very rapidly with the sizes of samples, so exact tests are feasible only for very small data sets.

batch [int, optional] The number of permutations to process in each call to statistic. Memory usage is $O(\text{batch}^{*}n)$, where $n$ is the total size of all samples, regardless of the value of `vectorized`. Default is None, in which case `batch` is the number of permutations.

alternative [\{'two-sided', 'less', 'greater'\}, optional] The alternative hypothesis for which the p-value is calculated. For each alternative, the p-value is defined for exact tests as follows.

- 'greater': the percentage of the null distribution that is greater than or equal to the observed value of the test statistic.
- 'less': the percentage of the null distribution that is less than or equal to the observed value of the test statistic.
- 'two-sided' (default): twice the smaller of the p-values above.

Note that p-values for randomized tests are calculated according to the conservative (over-estimated) approximation suggested in [2] and [3] rather than the unbiased estimator suggested in [4]. That is, when calculating the proportion of the randomized null distribution that is as extreme as the observed value of the test statistic, the values in the numerator and denominator are both increased by one. An interpretation of this adjustment is that the observed value of the test statistic is always included as an element of the randomized null distribution. The convention used for two-sided p-values is not universal; the observed test statistic and null distribution are returned in case a different definition is preferred.

axis [int, default: 0] The axis of the (broadcasted) samples over which to calculate the statistic. If samples have a different number of dimensions, singleton dimensions are prepended to samples with fewer dimensions before `axis` is considered.

random_state [{None, int, numpy.random.Generator, numpy.random.RandomState}, optional] Pseudorandom number generator state used to generate permutations. If `random_state` is None (default), the `numpy.random.RandomState` singleton is used. If `random_state` is an int, a new `RandomState` instance is used, seeded with `random_state`. If `random_state` is already a `Generator` or `RandomState` instance then that instance is used.

Returns

- statistic [float or ndarray] The observed test statistic of the data.
- pvalue [float or ndarray] The p-value for the given alternative.
- null_distribution [ndarray] The values of the test statistic generated under the null hypothesis.
Notes

The three types of permutation tests supported by this function are described below.

**Unpaired statistics** *(permutation_type='independent')*:

The null hypothesis associated with this permutation type is that all observations are sampled from the same underlying distribution and that they have been assigned to one of the samples at random.

Suppose `data` contains two samples; e.g. `a, b = data`. When \(1 < n_{resamples} < \text{binom}(n, k)\), where
- \(k\) is the number of observations in `a`,
- \(n\) is the total number of observations in `a` and `b`, and
- \(\text{binom}(n, k)\) is the binomial coefficient \((n \text{ choose } k)\),

the data are pooled (concatenated), randomly assigned to either the first or second sample, and the statistic is calculated. This process is performed repeatedly, `permutation` times, generating a distribution of the statistic under the null hypothesis. The statistic of the original data is compared to this distribution to determine the p-value.

When \(n_{resamples} \geq \text{binom}(n, k)\), an exact test is performed: the data are partitioned between the samples in each distinct way exactly once, and the exact null distribution is formed. Note that for a given partitioning of the data between the samples, only one ordering/permutation of the data within each sample is considered. For statistics that do not depend on the order of the data within samples, this dramatically reduces computational cost without affecting the shape of the null distribution (because the frequency/count of each value is affected by the same factor).

For `a = [a1, a2, a3, a4]` and `b = [b1, b2, b3]`, an example of this permutation type is `x = [b3, a1, a2, b2]` and `y = [a4, b1, a3]`. Because only one ordering/permutation of the data within each sample is considered in an exact test, a resampling like `x = [b3, a1, a2, a2]` and `y = [a4, a3, b1]` would not be considered distinct from the example above.

`permutation_type='independent'` does not support one-sample statistics, but it can be applied to statistics with more than two samples. In this case, if `n` is an array of the number of observations within each sample, the number of distinct partitions is:

\[
\text{np.product}([\text{binom}(\text{sum}(n[i:]), \text{sum}(n[i+1:])) \text{ for } i \text{ in range(len}(n)-1)])
\]

**Paired statistics, permute pairings** *(permutation_type='pairings')*:

The null hypothesis associated with this permutation type is that observations within each sample are drawn from the same underlying distribution and that pairings with elements of other samples are assigned at random.

Suppose `data` contains only one sample; e.g. `a, = data`, and we wish to consider all possible pairings of elements of `a` with elements of a second sample, `b`. Let `n` be the number of observations in `a`, which must also equal the number of observations in `b`.

When \(1 < n_{resamples} < \text{factorial}(n)\), the elements of `a` are randomly permuted. The user-supplied statistic accepts one data argument, say `a_perm`, and calculates the statistic considering `a_perm` and `b`. This process is performed repeatedly, `permutation` times, generating a distribution of the statistic under the null hypothesis. The statistic of the original data is compared to this distribution to determine the p-value.

When \(n_{resamples} \geq \text{factorial}(n)\), an exact test is performed: `a` is permuted in each distinct way exactly once. Therefore, the statistic is computed for each unique pairing of samples between `a` and `b` exactly once.

For `a = [a1, a2, a3]` and `b = [b1, b2, b3]`, an example of this permutation type is `a_perm = [a3, a1, a2]` while `b` is left in its original order.
permutation_type='pairings' supports data containing any number of samples, each of which must contain the same number of observations. All samples provided in data are permuted independently. Therefore, if \( m \) is the number of samples and \( n \) is the number of observations within each sample, then the number of permutations in an exact test is:

\[
\text{factorial}(n)^x m
\]

Note that if a two-sample statistic, for example, does not inherently depend on the order in which observations are provided - only on the pairings of observations - then only one of the two samples should be provided in data. This dramatically reduces computational cost without affecting the shape of the null distribution (because the frequency/count of each value is affected by the same factor).

**Paired statistics, permute samples** (permutation_type='samples'):

The null hypothesis associated with this permutation type is that observations within each pair are drawn from the same underlying distribution and that the sample to which they are assigned is random.

Suppose data contains two samples; e.g. \( a, b = \text{data} \). Let \( n \) be the number of observations in \( a \), which must also equal the number of observations in \( b \).

When \( 1 < \text{n_resamples} < 2^n \), the elements of \( a \) are randomly swapped between samples (maintaining their pairings) and the statistic is calculated. This process is performed repeatedly, permutation times, generating a distribution of the statistic under the null hypothesis. The statistic of the original data is compared to this distribution to determine the p-value.

When \( \text{n_resamples} \geq 2^n \), an exact test is performed: the observations are assigned to the two samples in each distinct way (while maintaining pairings) exactly once.

For \( a = [a_1, a_2, a_3] \) and \( b = [b_1, b_2, b_3] \), an example of this permutation type is \( x = [b_1, a_2, b_3] \) and \( y = [a_1, b_2, a_3] \).

permutation_type='samples' supports data containing any number of samples, each of which must contain the same number of observations. If data contains more than one sample, paired observations within data are exchanged between samples independently. Therefore, if \( m \) is the number of samples and \( n \) is the number of observations within each sample, then the number of permutations in an exact test is:

\[
\text{factorial}(m)^x n
\]

Several paired-sample statistical tests, such as the Wilcoxon signed rank test and paired-sample t-test, can be performed considering only the difference between two paired elements. Accordingly, if data contains only one sample, then the null distribution is formed by independently changing the sign of each observation.

**References**

[1], [2], [3], [4]

**Examples**

Suppose we wish to test whether two samples are drawn from the same distribution. Assume that the underlying distributions are unknown to us, and that before observing the data, we hypothesized that the mean of the first sample would be less than that of the second sample. We decide that we will use the difference between the sample means as a test statistic, and we will consider a p-value of 0.05 to be statistically significant.

For efficiency, we write the function defining the test statistic in a vectorized fashion: the samples \( x \) and \( y \) can be ND arrays, and the statistic will be calculated for each axis-slice along axis.
After collecting our data, we calculate the observed value of the test statistic.

```python
from scipy.stats import norm
rng = np.random.default_rng()
x = norm.rvs(size=5, random_state=rng)
y = norm.rvs(size=6, loc=3, random_state=rng)
statistic(x, y, 0)
-3.5411688580987266
```

Indeed, the test statistic is negative, suggesting that the true mean of the distribution underlying \( x \) is less than that of the distribution underlying \( y \). To determine the probability of this occurring by chance if the two samples were drawn from the same distribution, we perform a permutation test.

```python
from scipy.stats import permutation_test
because our statistic is vectorized, we pass `vectorized=True`
`n_resamples=np.inf` indicates that an exact test is to be performed
res = permutation_test((x, y), statistic, vectorized=True,
... n_resamples=np.inf, alternative='less')
print(res.statistic)
-3.5411688580987266
print(res.pvalue)
0.004329004329004329
```

The probability of obtaining a test statistic less than or equal to the observed value under the null hypothesis is 0.4329%. This is less than our chosen threshold of 5%, so we consider this to be significant evidence against the null hypothesis in favor of the alternative.

Because the size of the samples above was small, `permutation_test` could perform an exact test. For larger samples, we resort to a randomized permutation test.

```python
x = norm.rvs(size=100, random_state=rng)
y = norm.rvs(size=120, loc=0.3, random_state=rng)
res = permutation_test((x, y), statistic, n_resamples=100000,
... vectorized=True, alternative='less',
... random_state=rng)
print(res.statistic)
-0.5230459671240913
print(res.pvalue)
0.0001699983000169983
```

The approximate probability of obtaining a test statistic less than or equal to the observed value under the null hypothesis is 0.0225%. This is again less than our chosen threshold of 5%, so again we have significant evidence to reject the null hypothesis in favor of the alternative.

For large samples and number of permutations, the result is comparable to that of the corresponding asymptotic test, the independent sample t-test.

```python
from scipy.stats import ttest_ind
res_asymptotic = ttest_ind(x, y, alternative='less')
print(res_asymptotic.pvalue)
0.00012688101537979522
```
The permutation distribution of the test statistic is provided for further investigation.

```python
>>> import matplotlib.pyplot as plt
>>> plt.hist(res.null_distribution, bins=50)
>>> plt.title("Permutation distribution of test statistic")
>>> plt.xlabel("Value of Statistic")
>>> plt.ylabel("Frequency")
```

![Permutation distribution of test statistic](image)

**scipy.stats.tukey_hsd**

`scipy.stats.tukey_hsd(*args)`

Perform Tukey’s HSD test for equality of means over multiple treatments.

Tukey’s honestly significant difference (HSD) test performs pairwise comparison of means for a set of samples. Whereas ANOVA (e.g. `f_oneway`) assesses whether the true means underlying each sample are identical, Tukey’s HSD is a post hoc test used to compare the mean of each sample to the mean of each other sample.

The null hypothesis is that the distributions underlying the samples all have the same mean. The test statistic, which is computed for every possible pairing of samples, is simply the difference between the sample means. For each pair, the p-value is the probability under the null hypothesis (and other assumptions; see notes) of observing such an extreme value of the statistic, considering that many pairwise comparisons are being performed. Confidence intervals for the difference between each pair of means are also available.

**Parameters**

- `sample1, sample2, ...`
  - `[array_like]` The sample measurements for each group. There must be at least two arguments.

**Returns**

- `result`  
  - `[TukeyHSDResult` instance] The return value is an object with the following attributes:
    - `statistic`  
      - `[float ndarray]` The computed statistic of the test for each comparison. The element at index `(i, j)` is the statistic for the comparison between groups `i` and `j`.
    - `pvalue`  
      - `[float ndarray]` The computed p-value of the test for each comparison. The element at index `(i, j)` is the p-value for the comparison between groups `i` and `j`.

The object has the following methods:
confidence_interval(confidence_level=0.95):
Compute the confidence interval for the specified confidence level.

Notes

The use of this test relies on several assumptions.

1. The observations are independent within and among groups.
2. The observations within each group are normally distributed.
3. The distributions from which the samples are drawn have the same finite variance.

The original formulation of the test was for samples of equal size [6]. In case of unequal sample sizes, the test uses the Tukey-Kramer method [4].

References

[1], [2], [3], [4], [5], [6]

Examples

Here are some data comparing the time to relief of three brands of headache medicine, reported in minutes. Data adapted from [3].

```python
>>> from scipy.stats import tukey_hsd
>>> group0 = [24.5, 23.5, 26.4, 27.1, 29.9]
>>> group1 = [28.4, 34.2, 29.5, 32.2, 30.1]
>>> group2 = [26.1, 28.3, 24.3, 26.2, 27.8]
```

We would like to see if the means between any of the groups are significantly different. First, visually examine a box and whisker plot.

```python
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
>>> ax.boxplot([group0, group1, group2])
>>> ax.set_xticklabels(['group0', 'group1', 'group2'])
>>> ax.set_ylabel('mean')
>>> plt.show()
```

From the box and whisker plot, we can see overlap in the interquartile ranges group 1 to group 2 and group 3, but we can apply the `tukey_hsd` test to determine if the difference between means is significant. We set a significance level of .05 to reject the null hypothesis.

```python
>>> res = tukey_hsd(group0, group1, group2)
>>> print(res)
Tukey's HSD Pairwise Group Comparisons (95.0% Confidence Interval)
Comparison statistic p-value Lower CI Upper CI
(0 - 1) -4.600 0.014 -8.249 -0.951
(0 - 2) -0.260 0.980 -3.909 3.389
(1 - 0) 4.600 0.014 0.951 8.249
(1 - 2) 4.340 0.020 0.691 7.989
(2 - 0) 0.260 0.980 -3.389 3.909
(2 - 1) -4.340 0.020 -7.989 -0.691
```
The null hypothesis is that each group has the same mean. The p-value for comparisons between group0 and group1 as well as group1 and group2 do not exceed .05, so we reject the null hypothesis that they have the same means. The p-value of the comparison between group0 and group2 exceeds .05, so we accept the null hypothesis that there is not a significant difference between their means.

We can also compute the confidence interval associated with our chosen confidence level.

```python
>>> group0 = [24.5, 23.5, 26.4, 27.1, 29.9]
>>> group1 = [28.4, 34.2, 29.5, 32.2, 30.1]
>>> group2 = [26.1, 28.3, 24.3, 26.2, 27.8]
>>> result = tukey_hsd(group0, group1, group2)
>>> for ((i, j), l) in np.ndenumerate(result.confidence_interval(confidence_level=.99)):
... if i != j:
... h = result.high[i,j]
... print(f"{(i) - (j)} l:{l:.6f} h:{h:.6f}"))
(0 - 1) -9.480 0.280
(0 - 2) -5.140 4.620
(1 - 0) -0.280 9.480
(1 - 2) -0.540 9.220
(2 - 0) -4.620 5.140
(2 - 1) -9.220 0.540
```

<table>
<thead>
<tr>
<th>ansari(x, y[, alternative])</th>
<th>Perform the Ansari-Bradley test for equal scale parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>bartlett(*args)</td>
<td>Perform Bartlett’s test for equal variances.</td>
</tr>
<tr>
<td>levene(*args[, center, proportiontocut])</td>
<td>Perform Levene test for equal variances.</td>
</tr>
<tr>
<td>shapiro(x)</td>
<td>Perform the Shapiro-Wilk test for normality.</td>
</tr>
<tr>
<td>anderson(x[, dist])</td>
<td>Anderson-Darling test for data coming from a particular distribution.</td>
</tr>
<tr>
<td>anderson_ksamp(samples[, midrank])</td>
<td>The Anderson-Darling test for k-samples.</td>
</tr>
<tr>
<td>binom_test(x[, n, p, alternative])</td>
<td>Perform a test that the probability of success is p.</td>
</tr>
</tbody>
</table>
### Table 277 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>binomtest(k, n[, p, alternative])</code></td>
<td>Perform a test that the probability of success is p.</td>
</tr>
<tr>
<td><code>fligner(*args[, center, proportiontocut])</code></td>
<td>Perform Fligner-Killeen test for equality of variance.</td>
</tr>
<tr>
<td><code>median_test(*args[, ties, correction, ...])</code></td>
<td>Perform a Mood’s median test.</td>
</tr>
<tr>
<td><code>mood(x, y[, axis, alternative])</code></td>
<td>Perform Mood’s test for equal scale parameters.</td>
</tr>
<tr>
<td><code>skewtest(a[, axis, nan_policy, alternative])</code></td>
<td>Test whether the skew is different from the normal distribution.</td>
</tr>
<tr>
<td><code>kurtosistest(a[, axis, nan_policy, alternative])</code></td>
<td>Test whether a dataset has normal kurtosis.</td>
</tr>
<tr>
<td><code>normaltest(a[, axis, nan_policy])</code></td>
<td>Test whether a sample differs from a normal distribution.</td>
</tr>
</tbody>
</table>

#### scipy.stats.ansari

`scipy.stats.ansari(x, y, alternative='two-sided')`

Perform the Ansari-Bradley test for equal scale parameters.

The Ansari-Bradley test ([1], [2]) is a non-parametric test for the equality of the scale parameter of the distributions from which two samples were drawn. The null hypothesis states that the ratio of the scale of the distribution underlying x to the scale of the distribution underlying y is 1.

**Parameters**

- **x, y**: [array_like] Arrays of sample data.
- **alternative**: [{'two-sided', 'less', 'greater'}, optional] Defines the alternative hypothesis. Default is 'two-sided'. The following options are available:
  - 'two-sided': the ratio of scales is not equal to 1.
  - 'less': the ratio of scales is less than 1.
  - 'greater': the ratio of scales is greater than 1.

  New in version 1.7.0.

**Returns**

- **statistic**: [float] The Ansari-Bradley test statistic.
- **pvalue**: [float] The p-value of the hypothesis test.

**See also:**

- `fligner`

  A non-parametric test for the equality of k variances

- `mood`

  A non-parametric test for the equality of two scale parameters

**Notes**

The p-value given is exact when the sample sizes are both less than 55 and there are no ties, otherwise a normal approximation for the p-value is used.
References

[1], [2], [3]

Examples

```python
>>> from scipy.stats import ansari
>>> rng = np.random.default_rng()

For these examples, we'll create three random data sets. The first two, with sizes 35 and 25, are drawn from a normal distribution with mean 0 and standard deviation 2. The third data set has size 25 and is drawn from a normal distribution with standard deviation 1.25.

```python
>>> x1 = rng.normal(loc=0, scale=2, size=35)
>>> x2 = rng.normal(loc=0, scale=2, size=25)
>>> x3 = rng.normal(loc=0, scale=1.25, size=25)
```  
First we apply *ansari* to *x1* and *x2*. These samples are drawn from the same distribution, so we expect the Ansari-Bradley test should not lead us to conclude that the scales of the distributions are different.

```python
>>> ansari(x1, x2)
AnsariResult(statistic=541.0, pvalue=0.9762532927399098)
```  
With a p-value close to 1, we cannot conclude that there is a significant difference in the scales (as expected).

Now apply the test to *x1* and *x3*:

```python
>>> ansari(x1, x3)
AnsariResult(statistic=425.0, pvalue=0.0003087020407974518)
```  
The probability of observing such an extreme value of the statistic under the null hypothesis of equal scales is only 0.03087%. We take this as evidence against the null hypothesis in favor of the alternative: the scales of the distributions from which the samples were drawn are not equal.

We can use the *alternative* parameter to perform a one-tailed test. In the above example, the scale of *x1* is greater than *x3* and so the ratio of scales of *x1* and *x3* is greater than 1. This means that the p-value when *alternative='greater'* should be near 0 and hence we should be able to reject the null hypothesis:

```python
>>> ansari(x1, x3, alternative='greater')
AnsariResult(statistic=425.0, pvalue=0.0001543510203987259)
```  
As we can see, the p-value is indeed quite low. Use of *alternative='less'* should thus yield a large p-value:

```python
>>> ansari(x1, x3, alternative='less')
AnsariResult(statistic=425.0, pvalue=0.9998643258449039)
```
scipy.stats.bartlett

scipy.stats.bartlett(*args)
Perform Bartlett's test for equal variances.

Bartlett's test test the null hypothesis that all input samples are from populations with equal variances. For samples from significantly non-normal populations, Levene's test `levene` is more robust.

Parameters

sample1, sample2,...
[array_like] arrays of sample data. Only 1d arrays are accepted, they may have different lengths.

Returns

statistic [float] The test statistic.
pvalue [float] The p-value of the test.

See also:

fligner
A non-parametric test for the equality of k variances

levene
A robust parametric test for equality of k variances

Notes

Conover et al. (1981) examine many of the existing parametric and nonparametric tests by extensive simulations and they conclude that the tests proposed by Fligner and Killeen (1976) and Levene (1960) appear to be superior in terms of robustness of departures from normality and power ([3]).

References

[1], [2], [3], [4]

Examples

Test whether or not the lists a, b and c come from populations with equal variances.

```python
>>> from scipy.stats import bartlett
>>> a = [8.88, 9.12, 9.04, 8.98, 9.00, 9.08, 9.01, 8.85, 9.06, 8.99]
>>> b = [8.88, 8.95, 9.29, 9.44, 9.15, 9.58, 9.36, 9.18, 8.67, 9.05]
>>> c = [8.95, 9.12, 8.95, 8.85, 9.03, 8.84, 9.07, 8.98, 8.86, 8.98]
>>> stat, p = bartlett(a, b, c)
>>> p
1.1254782518834628e-05
```

The very small p-value suggests that the populations do not have equal variances.

This is not surprising, given that the sample variance of b is much larger than that of a and c:

```python
>>> [np.var(x, ddof=1) for x in [a, b, c]]
[0.00705444444444413, 0.13073888888888888, 0.008890000000000002]
```
scipy.stats.levene

`scipy.stats.levene(*args, center='median', proportiontocut=0.05)`

Perform Levene test for equal variances.

The Levene test tests the null hypothesis that all input samples are from populations with equal variances. Levene’s test is an alternative to Bartlett’s test `bartlett` in the case where there are significant deviations from normality.

Parameters

- **sample1, sample2, …**

 [array_like] The sample data, possibly with different lengths. Only one-dimensional samples are accepted.

- **center**

- **proportiontocut**

 [float, optional] When `center` is ‘trimmed’, this gives the proportion of data points to cut from each end. (See `scipy.stats.trim_mean`.) Default is 0.05.

Returns

- **statistic** [float] The test statistic.

- **pvalue** [float] The p-value for the test.

Notes

Three variations of Levene’s test are possible. The possibilities and their recommended usages are:

- ‘median’: Recommended for skewed (non-normal) distributions.
- ‘mean’: Recommended for symmetric, moderate-tailed distributions.
- ‘trimmed’: Recommended for heavy-tailed distributions.

The test version using the mean was proposed in the original article of Levene ([2]) while the median and trimmed mean have been studied by Brown and Forsythe ([3]), sometimes also referred to as Brown-Forsythe test.

References

[1], [2], [3]

Examples

Test whether or not the lists `a`, `b` and `c` come from populations with equal variances.

```python
>>> from scipy.stats import levene
>>> a = [8.88, 9.12, 9.04, 8.98, 9.00, 9.08, 9.01, 8.85, 9.06, 8.99]
>>> b = [8.88, 8.95, 9.29, 9.44, 9.15, 9.58, 8.36, 9.18, 8.67, 9.05]
>>> c = [8.95, 9.12, 8.95, 8.85, 9.03, 8.84, 9.07, 8.98, 8.86, 8.98]
>>> stat, p = levene(a, b, c)
>>> p
0.002431505967249681
```

The small p-value suggests that the populations do not have equal variances.

This is not surprising, given that the sample variance of `b` is much larger than that of `a` and `c`:
The Shapiro-Wilk test tests the null hypothesis that the data was drawn from a normal distribution.

Parameters

- `x`: [array_like] Array of sample data.

Returns

- `statistic`: [float] The test statistic.
- `p-value`: [float] The p-value for the hypothesis test.

Notes

The algorithm used is described in [4] but censoring parameters as described are not implemented. For $N > 5000$ the W test statistic is accurate but the p-value may not be.

The chance of rejecting the null hypothesis when it is true is close to 5% regardless of sample size.

References

[1], [2], [3], [4]

Examples

```python
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> x = stats.norm.rvs(loc=5, scale=3, size=100, random_state=rng)
>>> shapiro_test = stats.shapiro(x)
>>> shapiro_test
ShapiroResult(statistic=0.9813305735588074, pvalue=0.16855233907699585)
>>> shapiro_test.statistic
0.9813305735588074
>>> shapiro_test.pvalue
0.16855233907699585
```
The Anderson-Darling test tests the null hypothesis that a sample is drawn from a population that follows a particular distribution. For the Anderson-Darling test, the critical values depend on which distribution is being tested against. This function works for normal, exponential, logistic, or Gumbel (Extreme Value Type I) distributions.

Parameters

- **x** [array_like] Array of sample data.

Returns

- **statistic** [float] The Anderson-Darling test statistic.
- **critical_values** [list] The critical values for this distribution.
- **significance_level** [list] The significance levels for the corresponding critical values in percents. The function returns critical values for a differing set of significance levels depending on the distribution that is being tested against.

See also:

- **kstest**

The Kolmogorov-Smirnov test for goodness-of-fit.

Notes

Critical values provided are for the following significance levels:

- **normal/exponential**

 15\%, 10\%, 5\%, 2.5\%, 1\%

- **logistic**

 25\%, 10\%, 5\%, 2.5\%, 1\%, 0.5\%

- **Gumbel**

 25\%, 10\%, 5\%, 2.5\%, 1\%

If the returned statistic is larger than these critical values then for the corresponding significance level, the null hypothesis that the data come from the chosen distribution can be rejected. The returned statistic is referred to as ‘A2’ in the references.
scipy.stats.anderson_ksamp

The Anderson-Darling test for k-samples.

The k-sample Anderson-Darling test is a modification of the one-sample Anderson-Darling test. It tests the null hypothesis that k-samples are drawn from the same population without having to specify the distribution function of that population. The critical values depend on the number of samples.

Parameters

- `samples` [sequence of 1-D array_like] Array of sample data in arrays.
- `midrank` [bool, optional] Type of Anderson-Darling test which is computed. Default (True) is the midrank test applicable to continuous and discrete populations. If False, the right side empirical distribution is used.

Returns

- `statistic` [float] Normalized k-sample Anderson-Darling test statistic.
- `critical_values` [array] The critical values for significance levels 25%, 10%, 5%, 2.5%, 1%, 0.5%, 0.1%.
- `significance_level` [float] An approximate significance level at which the null hypothesis for the provided samples can be rejected. The value is floored / capped at 0.1% / 25%.

Raises

- `ValueError` If less than 2 samples are provided, a sample is empty, or no distinct observations are in the samples.

See also:

- `ks_2samp` 2 sample Kolmogorov-Smirnov test
- `anderson` 1 sample Anderson-Darling test

Notes

[1] defines three versions of the k-sample Anderson-Darling test: one for continuous distributions and two for discrete distributions, in which ties between samples may occur. The default of this routine is to compute the version based on the midrank empirical distribution function. This test is applicable to continuous and discrete data. If midrank is set to False, the right side empirical distribution is used for a test for discrete data. According to [1], the two discrete test statistics differ only slightly if a few collisions due to round-off errors occur in the test not adjusted for ties between samples.

The critical values corresponding to the significance levels from 0.01 to 0.25 are taken from [1]. p-values are floored / capped at 0.1% / 25%. Since the range of critical values might be extended in future releases, it is recommended not to test p == 0.25, but rather p >= 0.25 (analogously for the lower bound).

New in version 0.14.0.
Examples

```python
>>> from scipy import stats
>>> rng = np.random.default_rng()
```

The null hypothesis that the two random samples come from the same distribution can be rejected at the 5% level because the returned test value is greater than the critical value for 5% (1.961) but not at the 2.5% level. The interpolation gives an approximate significance level of 3.2%:

```python
>>> stats.anderson_ksamp([rng.normal(size=50), 1.974403288713695,
... rng.normal(loc=0.5, size=30)])
(array([0.325, 1.226, 1.961, 2.718, 3.752, 4.592, 6.546]),
  0.04991293614572478)
```

The null hypothesis cannot be rejected for three samples from an identical distribution. The reported p-value (25%) has been capped and may not be very accurate (since it corresponds to the value 0.449 whereas the statistic is -0.731):

```python
>>> stats.anderson_ksamp([rng.normal(size=50),
... rng.normal(size=30), rng.normal(size=20)])
(-0.29103725200789504,
  array([ 0.44925884, 1.3052767 , 1.9434184 , 2.57696569, 3.41634856,
          4.07210043, 5.56419101]),
   0.25)
```

scipy.stats.binom_test

`scipy.stats.binom_test(x, n=None, p=0.5, alternative='two-sided')`

Perform a test that the probability of success is p.

Note: `binom_test` is deprecated; it is recommended that `binomtest` be used instead.

This is an exact, two-sided test of the null hypothesis that the probability of success in a Bernoulli experiment is p.

Parameters

- `x` [int or array_like] The number of successes, or if `x` has length 2, it is the number of successes and the number of failures.
- `n` [int] The number of trials. This is ignored if `x` gives both the number of successes and failures.
- `p` [float, optional] The hypothesized probability of success. 0 <= `p` <= 1. The default value is `p = 0.5`.
- `alternative` [{'two-sided', 'greater', 'less'}, optional] Indicates the alternative hypothesis. The default value is 'two-sided'.

Returns

- `p-value` [float] The p-value of the hypothesis test.
References

[1]

Examples

```python
>>> from scipy import stats
```

A car manufacturer claims that no more than 10% of their cars are unsafe. 15 cars are inspected for safety, 3 were found to be unsafe. Test the manufacturer's claim:

```python
>>> stats.binom_test(3, n=15, p=0.1, alternative='greater')
0.18406106910639114
```

The null hypothesis cannot be rejected at the 5% level of significance because the returned p-value is greater than the critical value of 5%.

scipy.stats.binomtest

`scipy.stats.binomtest(k, n, p=0.5, alternative='two-sided')`

Perform a test that the probability of success is p.

The binomial test [1] is a test of the null hypothesis that the probability of success in a Bernoulli experiment is p.

Details of the test can be found in many texts on statistics, such as section 24.5 of [2].

Parameters

- **k** [int] The number of successes.
- **n** [int] The number of trials.
- **p** [float, optional] The hypothesized probability of success, i.e. the expected proportion of successes. The value must be in the interval $0 \leq p \leq 1$. The default value is $p = 0.5$.
- **alternative** [{'two-sided', 'greater', 'less'}, optional] Indicates the alternative hypothesis. The default value is 'two-sided'.

Returns

- **result** [BinomTestResult instance] The return value is an object with the following attributes:
 - **k** [int] The number of successes (copied from `binomtest` input).
 - **n** [int] The number of trials (copied from `binomtest` input).
 - **alternative** [str] Indicates the alternative hypothesis specified in the input to `binomtest`. It will be one of 'two-sided', 'greater', or 'less'.
 - **pvalue** [float] The p-value of the hypothesis test.
 - **proportion_estimate** [float] The estimate of the proportion of successes.

The object has the following methods:

- **proportion_ci(confidence_level=0.95, method='exact')**
 - Compute the confidence interval for `proportion_estimate`.

3.3. API definition
Notes

New in version 1.7.0.

References

[1], [2]

Examples

```python
>>> from scipy.stats import binomtest

A car manufacturer claims that no more than 10% of their cars are unsafe. 15 cars are inspected for safety, 3 were found to be unsafe. Test the manufacturer's claim:

```python
>>> result = binomtest(3, n=15, p=0.1, alternative='greater')
>>> result.pvalue
0.18406106910639114
```

The null hypothesis cannot be rejected at the 5% level of significance because the returned p-value is greater than the critical value of 5%.

The estimated proportion is simply 3/15:

```python
>>> result.proportion_estimate
0.2
```

We can use the `proportion_ci()` method of the result to compute the confidence interval of the estimate:

```python
>>> result.proportion_ci(confidence_level=0.95)
ConfidenceInterval(low=0.05684686759024681, high=1.0)
```

**scipy.stats.fligner**

`scipy.stats.fligner(*args, center='median', proportiontocut=0.05)`

Perform Fligner-Killeen test for equality of variance.

Fligner's test tests the null hypothesis that all input samples are from populations with equal variances. Fligner-Killeen’s test is distribution free when populations are identical [2].

**Parameters**

- `sample1, sample2, ...`
  - `[array_like] Arrays of sample data. Need not be the same length.`
- `center`
  - `['mean', 'median', 'trimmed'], optional] Keyword argument controlling which function of the data is used in computing the test statistic. The default is 'median'.`
- `proportiontocut`
  - `[float, optional] When center is 'trimmed', this gives the proportion of data points to cut from each end. (See `scipy.stats.trim_mean`) Default is 0.05`

**Returns**

- `statistic`
  - `[float] The test statistic.`
- `pvalue`
  - `[float] The p-value for the hypothesis test.`

See also:
**bartlett**

A parametric test for equality of k variances in normal samples

**levene**

A robust parametric test for equality of k variances

**Notes**

As with Levene's test there are three variants of Fligner's test that differ by the measure of central tendency used in the test. See `levene` for more information.

Conover et al. (1981) examine many of the existing parametric and nonparametric tests by extensive simulations and they conclude that the tests proposed by Fligner and Killeen (1976) and Levene (1960) appear to be superior in terms of robustness of departures from normality and power [3].

**References**

[1], [2], [3], [4]

**Examples**

Test whether or not the lists `a`, `b` and `c` come from populations with equal variances.

```python
>>> from scipy.stats import fligner
>>> a = [8.88, 9.12, 9.04, 8.98, 9.00, 9.01, 8.85, 9.06, 8.99]
>>> b = [8.88, 8.95, 9.29, 9.44, 9.15, 9.58, 8.36, 9.18, 8.67, 9.05]
>>> c = [8.95, 9.12, 8.95, 8.85, 9.03, 8.84, 9.07, 8.98, 8.86, 8.98]
>>> stat, p = fligner(a, b, c)
>>> p
0.00450826080004775
```

The small p-value suggests that the populations do not have equal variances.

This is not surprising, given that the sample variance of `b` is much larger than that of `a` and `c`:

```python
>>> [np.var(x, ddof=1) for x in [a, b, c]]
[0.007054444444413, 0.13073888888888888, 0.0088900000000002]
```

**scipy.stats.median_test**

`scipy.stats.median_test (*args, ties='below', correction=True, lambda_=1, nan_policy='propagate')`

Perform a Mood’s median test.

Test that two or more samples come from populations with the same median.

Let `n = len(args)` be the number of samples. The “grand median” of all the data is computed, and a contingency table is formed by classifying the values in each sample as being above or below the grand median. The contingency table, along with `correction` and `lambda_`, are passed to `scipy.stats.chi2_contingency` to compute the test statistic and p-value.

**Parameters**
sample1, sample2, ...

[array_like] The set of samples. There must be at least two samples. Each sample must be
a one-dimensional sequence containing at least one value. The samples are not required to
have the same length.

ties

[str, optional] Determines how values equal to the grand median are classified in the contingency table. The string must be one of:

"below":
  Values equal to the grand median are counted as "below ".
"above":
  Values equal to the grand median are counted as "above ".
"ignore":
  Values equal to the grand median are not counted.

The default is “below”.

correction

[bool, optional] If True, and there are just two samples, apply Yates’ correction for continuity
when computing the test statistic associated with the contingency table. Default is True.

lambda_

[float or str, optional] By default, the statistic computed in this test is Pearson’s chi-squared
statistic. lambda_ allows a statistic from the Cressie-Read power divergence family to be
used instead. See power_divergence for details. Default is 1 (Pearson’s chi-squared
statistic).

nan_policy

[{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values. Default is ‘propagate’.

Returns

stat

[float] The test statistic. The statistic that is returned is determined by lambda_. The default
is Pearson’s chi-squared statistic.

p

[float] The p-value of the test.

m

[float] The grand median.

table

[ndarray] The contingency table. The shape of the table is (2, n), where n is the number of
samples. The first row holds the counts of the values above the grand median, and the sec-
ond row holds the counts of the values below the grand median. The table allows further
analysis with, for example, scipy.stats.chi2_contingency, or with scipy.
stats.fisher_exact if there are two samples, without having to recompute the table.
If nan_policy is “propagate” and there are nans in the input, the return value for table
is None.

See also:

kruskal

Compute the Kruskal-Wallis H-test for independent samples.

mannwhitneyu

Computes the Mann-Whitney rank test on samples x and y.
Notes

New in version 0.15.0.

References

[1], [2]

Examples

A biologist runs an experiment in which there are three groups of plants. Group 1 has 16 plants, group 2 has 15 plants, and group 3 has 17 plants. Each plant produces a number of seeds. The seed counts for each group are:

Group 1:	10 14 14 18 20 22 24 25 31 31 32 39 43 43 48 49
Group 2:	28 30 31 33 34 35 36 40 44 55 57 61 91 92 99
Group 3:	0 3 9 22 23 25 25 33 34 40 45 46 48 62 67 84

The following code applies Mood's median test to these samples.

```python
>>> g1 = [10, 14, 14, 18, 20, 22, 24, 25, 31, 31, 32, 39, 43, 43, 48, 49]
>>> g2 = [28, 30, 31, 33, 34, 35, 36, 40, 44, 55, 57, 61, 91, 92, 99]
>>> g3 = [0, 3, 9, 22, 23, 25, 25, 33, 34, 40, 45, 46, 48, 62, 67, 84]
>>> from scipy.stats import median_test
>>> stat, p, med, tbl = median_test(g1, g2, g3)
```

The median is

```python
>>> med
34.0
```

and the contingency table is

```python
>>> tbl
array([[5, 10, 7],
 [11, 5, 10]])
```

`p` is too large to conclude that the medians are not the same:

```python
>>> p
0.12609082774093244
```

The “G-test” can be performed by passing `lambda_="log-likelihood"` to `median_test`.

```python
>>> g, p, med, tbl = median_test(g1, g2, g3, lambda_="log-likelihood")
>>> p
0.12224779737117837
```

The median occurs several times in the data, so we'll get a different result if, for example, `ties="above"` is used:

```python
>>> stat, p, med, tbl = median_test(g1, g2, g3, ties="above")
>>> p
0.063873276069553273
```
This example demonstrates that if the data set is not large and there are values equal to the median, the p-value can be sensitive to the choice of *ties*.

**scipy.stats.mood**

```python
scipy.stats.mood(x, y, axis=0, alternative='two-sided')
```

Perform Mood's test for equal scale parameters.

Mood's two-sample test for scale parameters is a non-parametric test for the null hypothesis that two samples are drawn from the same distribution with the same scale parameter.

**Parameters**

- `x, y` [array_like] Arrays of sample data.
- `axis` [int, optional] The axis along which the samples are tested. `x` and `y` can be of different length along `axis`. If `axis` is None, `x` and `y` are flattened and the test is done on all values in the flattened arrays.
- `alternative` [{‘two-sided’, ‘less’, ‘greater’}, optional] Defines the alternative hypothesis. Default is ‘two-sided’. The following options are available:
  - ‘two-sided’: the scales of the distributions underlying `x` and `y` are different.
  - ‘less’: the scale of the distribution underlying `x` is less than the scale of the distribution underly
  - ‘greater’: the scale of the distribution underlying `x` is greater than the scale of the distribution underly

**Returns**

- `z` [scalar or ndarray] The z-score for the hypothesis test. For 1-D inputs a scalar is returned.
- `p-value` [scalar or ndarray] The p-value for the hypothesis test.

**See also:**

- `fligner` A non-parametric test for the equality of k variances
- `ansari` A non-parametric test for the equality of 2 variances
- `bartlett` A parametric test for equality of k variances in normal samples
- `levene` A parametric test for equality of k variances

---

```
>>> tbl
array([[5, 11, 9],
 [11, 4, 8]])
```
Notes

The data are assumed to be drawn from probability distributions $f(x)$ and $f(x/s) / s$ respectively, for some probability density function $f$. The null hypothesis is that $s == 1$.

For multi-dimensional arrays, if the inputs are of shapes $(n0, n1, n2, n3)$ and $(n0, m1, n2, n3)$, then if $axis=1$, the resulting $z$ and $p$ values will have shape $(n0, n2, n3)$. Note that $n1$ and $m1$ don’t have to be equal, but the other dimensions do.

Examples

```python
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> x2 = rng.standard_normal((2, 45, 6, 7))
>>> x1 = rng.standard_normal((2, 30, 6, 7))
>>> z, p = stats.mood(x1, x2, axis=1)
>>> p.shape
(2, 6, 7)
```
Find the number of points where the difference in scale is not significant:

```python
>>> (p > 0.1).sum()
78
```
Perform the test with different scales:

```python
>>> x1 = rng.standard_normal((2, 30))
>>> x2 = rng.standard_normal((2, 35)) * 10.0
>>> stats.mood(x1, x2, axis=1)
(array([-5.76174136, -6.12650783]), array([8.32505043e-09, 8.98287869e-10]))
```

scipy.stats.skewtest

```python
scipy.stats.skewtest(a, axis=0, nan_policy='propagate', alternative='two-sided')
```
Test whether the skew is different from the normal distribution.

This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the same as that of a corresponding normal distribution.

**Parameters**

- **a**
  - [array] The data to be tested.
- **axis**
  - [int or None, optional] Axis along which statistics are calculated. Default is 0. If None, compute over the whole array $a$.
- **nan_policy**
  - ['propagate', 'raise', 'omit'], optional] Defines how to handle when input contains nan. The following options are available (default is 'propagate'):
    - 'propagate': returns nan
    - 'raise': throws an error
    - 'omit': performs the calculations ignoring nan values
- **alternative**
  - ['two-sided', 'less', 'greater'], optional] Defines the alternative hypothesis. Default is 'two-sided'. The following options are available:

- ‘two-sided’: the skewness of the distribution underlying the sample is different from that of the normal distribution (i.e. 0)
- ‘less’: the skewness of the distribution underlying the sample is less than that of the normal distribution
- ‘greater’: the skewness of the distribution underlying the sample is greater than that of the normal distribution

New in version 1.7.0.

Returns

- statistic [float] The computed z-score for this test.
- pvalue [float] The p-value for the hypothesis test.

Notes

The sample size must be at least 8.

References

[1]

Examples

```python
>>> from scipy.stats import skewtest
>>> skewtest([1, 2, 3, 4, 5, 6, 7, 8])
SkewtestResult(statistic=1.0108048609177787, pvalue=0.3121098361421897)
>>> skewtest([2, 8, 0, 4, 1, 9, 9, 0])
SkewtestResult(statistic=0.44626385374196975, pvalue=0.6554066631275459)
>>> skewtest([1, 2, 3, 4, 5, 6, 7, 8000])
SkewtestResult(statistic=3.571773510360407, pvalue=0.0003545719905823133)
>>> skewtest([100, 100, 100, 100, 100, 100, 100, 101])
SkewtestResult(statistic=3.5717766638478072, pvalue=0.000354567720281634)
>>> skewtest([1, 2, 3, 4, 5, 6, 7, 8], alternative='less')
SkewtestResult(statistic=1.0108048609177787, pvalue=0.8439450819289052)
>>> skewtest([1, 2, 3, 4, 5, 6, 7, 8], alternative='greater')
SkewtestResult(statistic=1.0108048609177787, pvalue=0.15605491807109484)
```

scipy.stats.kurtosistest

scipy.stats.kurtosistest(a, axis=0, nan_policy='propagate', alternative='two-sided')

Test whether a dataset has normal kurtosis.

This function tests the null hypothesis that the kurtosis of the population from which the sample was drawn is that of the normal distribution.

Parameters

- a [array] Array of the sample data.
- axis [int or None, optional] Axis along which to compute test. Default is 0. If None, compute over the whole array a.
- nan_policy [{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. The following options are available (default is 'propagate'):
  - ‘propagate’: returns nan
• `raise`: throws an error
• `omit`: performs the calculations ignoring nan values

alternatives

[{'two-sided', 'less', 'greater'}, optional] Defines the alternative hypothesis. The following options are available (default is `two-sided`):
• `two-sided`: the kurtosis of the distribution underlying the sample is different from that of the normal distribution
• `less`: the kurtosis of the distribution underlying the sample is less than that of the normal distribution
• `greater`: the kurtosis of the distribution underlying the sample is greater than that of the normal distribution
New in version 1.7.0.

Returns

statistic [float] The computed z-score for this test.
pvalue [float] The p-value for the hypothesis test.

Notes

Valid only for \( n > 20 \). This function uses the method described in [1].

References

[1]

Examples

```python
>>> from scipy.stats import kurtosistest
>>> kurtosistest(list(range(20)))
KurtosistestResult(statistic=-1.7058104152122062, pvalue=0.08804338332528348)
>>> kurtosistest(list(range(20)), alternative='less')
KurtosistestResult(statistic=-1.7058104152122062, pvalue=0.04402169166264174)
>>> kurtosistest(list(range(20)), alternative='greater')
KurtosistestResult(statistic=-1.7058104152122062, pvalue=0.9559783083373583)
```

```python
>>> rng = np.random.default_rng()
>>> s = rng.normal(0, 1, 1000)
>>> kurtosistest(s)
KurtosistestResult(statistic=-1.475047944490622, pvalue=0.14019965402996987)
```
scipy.stats.normaltest

Tests whether a sample differs from a normal distribution.

This function tests the null hypothesis that a sample comes from a normal distribution. It is based on D'Agostino and Pearson's [1], [2] test that combines skew and kurtosis to produce an omnibus test of normality.

Parameters

- **a** (array_like) The array containing the sample to be tested.
- **axis** (int or None, optional) Axis along which to compute test. Default is 0. If None, compute over the whole array `a`.
- **nan_policy** ([‘propagate’, ‘raise’, ‘omit’], optional) Defines how to handle when input contains nan. The following options are available (default is ‘propagate’):
  - ‘propagate’: returns nan
  - ‘raise’: throws an error
  - ‘omit’: performs the calculations ignoring nan values

Returns

- **statistic** [float or array] $s^2 + k^2$, where $s$ is the z-score returned by `skewtest` and $k$ is the z-score returned by `kurtosistest`.
- **pvalue** [float or array] A 2-sided chi squared probability for the hypothesis test.

References

[1], [2]

Examples

```python
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> pts = 1000
>>> a = rng.normal(0, 1, size=pts)
>>> b = rng.normal(2, 1, size=pts)
>>> x = np.concatenate((a, b))
>>> k2, p = stats.normaltest(x)
>>> alpha = 1e-3
>>> print("p = {:.g}".format(p))
p = 8.4713e-19
>>> if p < alpha: # null hypothesis: x comes from a normal distribution
... print("The null hypothesis can be rejected")
... else:
... print("The null hypothesis cannot be rejected")
The null hypothesis can be rejected
```
**Quasi-Monte Carlo**

**Quasi-Monte Carlo submodule** (*scipy.stats.qmc*)

This module provides Quasi-Monte Carlo generators and associated helper functions.

**Engines**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>QMCEngine(d, *, seed)</code></td>
<td>A generic Quasi-Monte Carlo sampler class meant for subclassing.</td>
</tr>
<tr>
<td><code>Sobol(d, *, scramble, seed)</code></td>
<td>Engine for generating (scrambled) Sobol sequences.</td>
</tr>
<tr>
<td><code>Halton(d, *, scramble, seed)</code></td>
<td>Halton sequence.</td>
</tr>
<tr>
<td><code>LatinHypercube(d, *, centered, strength, ...)</code></td>
<td>Latin hypercube sampling (LHS).</td>
</tr>
<tr>
<td><code>MultinomialQMC(pvals, *, [engine, seed])</code></td>
<td>QMC sampling from a multinomial distribution.</td>
</tr>
<tr>
<td><code>MultivariateNormalQMC(mean[, cov, cov_root, ...])</code></td>
<td>QMC sampling from a multivariate Normal $N(\mu, \Sigma)$.</td>
</tr>
</tbody>
</table>

**scipy.stats.qmc.QMCEngine**

```python
class scipy.stats.qmc.QMCEngine(d, *, seed=None):
 A generic Quasi-Monte Carlo sampler class meant for subclassing.
```

**Parameters**

- `d` [int] Dimension of the parameter space.
- `seed` [None, int, `numpy.random.Generator`], optional] If `seed` is None the `numpy.random.Generator` singleton is used. If `seed` is an int, a new Generator instance is used, seeded with `seed`. If `seed` is already a Generator instance then that instance is used.

**Notes**

By convention samples are distributed over the half-open interval $[0, 1)$. Instances of the class can access the attributes: `d` for the dimension; and `rng` for the random number generator (used for the `seed`).

**Subclassing**

When subclassing `QMCEngine` to create a new sampler, `__init__` and `random` must be redefined.

- `__init__(d, seed=None)`: at least fix the dimension. If the sampler does not take advantage of a seed (deterministic methods like Halton), this parameter can be omitted.
- `random(n)`: draw $n$ from the engine and increase the counter `num_generated` by $n$.

Optionally, two other methods can be overwritten by subclasses:

- `reset`: Reset the engine to it's original state.
- `fast_forward(n)` If the sequence is deterministic (like Halton sequence), then `fast_forward(n)` is skipping the $n$ first draw.
Examples

To create a random sampler based on `np.random.random`, we would do the following:

```python
>>> from scipy.stats import qmc
>>> class RandomEngine(qmc.QMCEngine):
... def __init__(self, d, seed=None):
... super().__init__(d=d, seed=seed)
... def random(self, n=1):
... self.num_generated += n
... return self.rng.random((n, self.d))
... def reset(self):
... super().__init__(d=self.d, seed=self.rng_seed)
... return self
... def fast_forward(self, n):
... self.random(n)
... return self
```

After subclassing `QMCEngine` to define the sampling strategy we want to use, we can create an instance to sample from:

```python
>>> engine = RandomEngine(2)
>>> engine.random(5)
array([[0.22733602, 0.31675834], # random
 [0.79736546, 0.67625467],
 [0.39110955, 0.33281393],
 [0.59830875, 0.18673419],
 [0.67275604, 0.94180287]])
```

We can also reset the state of the generator and resample again.

```python
>>> _ = engine.reset()
>>> engine.random(5)
array([[0.22733602, 0.31675834], # random
 [0.79736546, 0.67625467],
 [0.39110955, 0.33281393],
 [0.59830875, 0.18673419],
 [0.67275604, 0.94180287]])
```
scipy.stats.qmc.QMCEngine.fast_forward

QMCEngine.fast_forward(n)
Fast-forward the sequence by n positions.

Parameters
n [int] Number of points to skip in the sequence.

Returns
engine [QMCEngine] Engine reset to its base state.

scipy.stats.qmc.QMCEngine.random

abstract QMCEngine.random(n=1)
Draw n in the half-open interval [0, 1).

Parameters
n [int, optional] Number of samples to generate in the parameter space. Default is 1.

Returns
sample [array_like (n, d)] QMC sample.

scipy.stats.qmc.QMCEngine.reset

QMCEngine.reset()
Reset the engine to base state.

Returns
engine [QMCEngine] Engine reset to its base state.

scipy.stats.qmc.Sobol

class scipy.stats.qmc.Sobol(d, *, scramble=True, seed=None)
Engine for generating (scrambled) Sobol’ sequences.

Sobol’ sequences are low-discrepancy, quasi-random numbers. Points can be drawn using two methods:

• random_base2: safely draw \( n = 2^m \) points. This method guarantees the balance properties of the sequence.
• random: draw an arbitrary number of points from the sequence. See warning below.

Parameters

d [int] Dimensionality of the sequence. Max dimensionality is 21201.
scramble [bool, optional] If True, use Owen scrambling. Otherwise no scrambling is done. Default is True.
seed [[None, int, numpy.random.Generator], optional] If seed is None the numpy.random.Generator singleton is used. If seed is an int, a new Generator instance is used, seeded with seed. If seed is already a Generator instance then that instance is used.

Notes

Sobol' sequences [1] provide \( n = 2^m \) low discrepancy points in \([0,1)^d\). Scrambling them [2] makes them suitable for singular integrands, provides a means of error estimation, and can improve their rate of convergence.

There are many versions of Sobol' sequences depending on their 'direction numbers'. This code uses direction numbers from [3]. Hence, the maximum number of dimension is 21201. The direction numbers have been pre-computed with search criterion 6 and can be retrieved at https://web.maths.unsw.edu.au/~fkuo/sobol/.

Warning: Sobol' sequences are a quadrature rule and they lose their balance properties if one uses a sample size that is not a power of 2, or skips the first point, or thins the sequence [4].

If \( n = 2^m \) points are not enough then one should take \( 2^M \) points for \( M > m \). When scrambling, the number \( R \) of independent replicates does not have to be a power of 2.

Sobol' sequences are generated to some number \( B \) of bits. After \( 2^B \) points have been generated, the sequence will repeat. Currently \( B = 30 \).

References

[1], [2], [3], [4]

Examples

Generate samples from a low discrepancy sequence of Sobol'.

```python
>>> from scipy.stats import qmc
>>> sampler = qmc.Sobol(d=2, scramble=False)
>>> sample = sampler.random_base2(m=3)
>>> sample
array([[0. , 0.],
 [0.5 , 0.5],
 [0.75, 0.25],
 [0.25, 0.75],
 [0.375, 0.375],
 [0.875, 0.875],
 [0.625, 0.125],
 [0.125, 0.625]])
```

Compute the quality of the sample using the discrepancy criterion.

```python
>>> qmc.discrepancy(sample)
0.013882107204860938
```
To continue an existing design, extra points can be obtained by calling again `random_base2`. Alternatively, you can skip some points like:

```python
>>> _ = sampler.reset()
>>> _ = sampler.fast_forward(4)
>>> sample_continued = sampler.random_base2(m=2)
>>> sample_continued
array([[0.375, 0.375],
 [0.875, 0.875],
 [0.625, 0.125],
 [0.125, 0.625]])
```

Finally, samples can be scaled to bounds.

```python
>>> l_bounds = [0, 2]
>>> u_bounds = [10, 5]
>>> qmc.scale(sample_continued, l_bounds, u_bounds)
array([[3.75 , 3.125],
 [8.75 , 4.625],
 [6.25 , 2.375],
 [1.25 , 3.875]])
```

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fast_forward(n)</code></td>
<td>Fast-forward the sequence by ( n ) positions.</td>
</tr>
<tr>
<td><code>random([n])</code></td>
<td>Draw next point(s) in the Sobol’ sequence.</td>
</tr>
<tr>
<td><code>random_base2(m)</code></td>
<td>Draw point(s) from the Sobol’ sequence.</td>
</tr>
<tr>
<td><code>reset()</code></td>
<td>Reset the engine to base state.</td>
</tr>
</tbody>
</table>

**scipy.stats.qmc.Sobol.fast_forward**

Sobol . `fast_forward(n)`

Fast-forward the sequence by \( n \) positions.

**Parameters**

- \( n \) [int] Number of points to skip in the sequence.

**Returns**


**scipy.stats.qmc.Sobol.random**

Sobol . `random([n=1])`

Draw next point(s) in the Sobol’ sequence.

**Parameters**

- \( n \) [int, optional] Number of samples to generate in the parameter space. Default is 1.

**Returns**

- sample [array_like (n, d)] Sobol’ sample.
scipy.stats.qmc.Sobol.random_base2

Sobol.random_base2(m)

Draw point(s) from the Sobol' sequence.

This function draws $n = 2^m$ points in the parameter space ensuring the balance properties of the sequence.

**Parameters**

- **m** [int] Logarithm in base 2 of the number of samples; i.e., $n = 2^m$.

**Returns**

- **sample** [array_like (n, d)] Sobol' sample.

scipy.stats.qmc.Sobol.reset

Sobol.reset()

Reset the engine to base state.

**Returns**

- **engine** [Sobol] Engine reset to its base state.

scipy.stats.qmc.Halton

class scipy.stats.qmc.Halton(d, *, scramble=True, seed=None)

Halton sequence.

Pseudo-random number generator that generalizes the Van der Corput sequence for multiple dimensions. The Halton sequence uses the base-two Van der Corput sequence for the first dimension, base-three for its second and base-$n$ for its n-dimension.

**Parameters**

- **d** [int] Dimension of the parameter space.
- **scramble** [bool, optional] If True, use Owen scrambling. Otherwise no scrambling is done. Default is True.
- **seed** [{None, int, numpy.random.Generator}, optional] If `seed` is None the `numpy.random.Generator` singleton is used. If `seed` is an int, a new `Generator` instance is used, seeded with `seed`. If `seed` is already a `Generator` instance then that instance is used.

**Notes**

The Halton sequence has severe striping artifacts for even modestly large dimensions. These can be ameliorated by scrambling. Scrambling also supports replication-based error estimates and extends applicability to unbounded integrands.
References

[1], [2]

Examples

Generate samples from a low discrepancy sequence of Halton.

```python
>>> from scipy.stats import qmc
>>> sampler = qmc.Halton(d=2, scramble=False)
>>> sample = sampler.random(n=5)
>>> sample
array([[0. , 0.],
 [0.5 , 0.33333333],
 [0.25 , 0.66666667],
 [0.75 , 0.11111111],
 [0.125 , 0.44444444]])
```

Compute the quality of the sample using the discrepancy criterion.

```python
>>> qmc.discrepancy(sample)
0.088893711419753
```

If some wants to continue an existing design, extra points can be obtained by calling again `random`. Alternatively, you can skip some points like:

```python
>>> _ = sampler.fast_forward(5)
>>> sample_continued = sampler.random(n=5)
>>> sample_continued
array([[0.3125 , 0.37037037],
 [0.8125 , 0.7037037],
 [0.1875 , 0.14814815],
 [0.6875 , 0.48148148],
 [0.4375 , 0.81481481]])
```

Finally, samples can be scaled to bounds.

```python
>>> l_bounds = [0, 2]
>>> u_bounds = [10, 5]
>>> qmc.scale(sample_continued, l_bounds, u_bounds)
array([[3.125 , 3.11111111],
 [8.125 , 4.11111111],
 [1.875 , 2.44444444],
 [6.875 , 3.44444444],
 [4.375 , 4.44444444]])
```
Methods

- `fast_forward(n)`: Fast-forward the sequence by \( n \) positions.

- `random([n, workers])`: Draw \( n \) in the half-open interval \([0, 1)\).

- `reset()`: Reset the engine to base state.

**scipy.stats.qmc.Halton.fast_forward**

Halton\._fast_forward\( (n)\)

Fast-forward the sequence by \( n \) positions.

**Parameters**

- \( n \) [int] Number of points to skip in the sequence.

**Returns**

- engine [QMCEngine] Engine reset to its base state.

**scipy.stats.qmc.Halton.random**

Halton\._random\( (n=1, *, workers=1)\)

Draw \( n \) in the half-open interval \([0, 1)\).

**Parameters**

- \( n \) [int, optional] Number of samples to generate in the parameter space. Default is 1.
- workers [int, optional] Number of workers to use for parallel processing. If -1 is given all CPU threads are used. Default is 1. It becomes faster than one worker for \( n \) greater than \( 10^5 \).

**Returns**

- sample [array_like (n, d)] QMC sample.

**scipy.stats.qmc.Halton.reset**

Halton\._reset\()

Reset the engine to base state.

**Returns**

- engine [QMCEngine] Engine reset to its base state.

**scipy.stats.qmc.LatinHypercube**

class scipy.stats.qmc.LatinHypercube \( (d, *, centered=False, strength=1, optimization=None, seed=None)\)

Latin hypercube sampling (LHS).

A Latin hypercube sample [1] generates \( n \) points in \([0, 1)^d\). Each univariate marginal distribution is stratified, placing exactly one point in \([j/n, (j + 1)/n)\) for \( j = 0, 1, ..., n - 1 \). They are still applicable when \( n << d \).

**Parameters**

- \( d \) [int] Dimension of the parameter space.
centered [bool, optional] Center the point within the multi-dimensional grid. Default is False.

optimization

[None, “random-cd”), optional] Whether to use an optimization scheme to construct a LHS. Default is None.

- random-cd: random permutations of coordinates to lower the centered discrepancy [5]. The best design based on the centered discrepancy is constantly updated. Centered discrepancy-based design shows better space filling robustness toward 2D and 3D subprojections compared to using other discrepancy measures [6].

New in version 1.8.0.

strength [{1, 2}, optional] Strength of the LHS. strength=1 produces a plain LHS while strength=2 produces an orthogonal array based LHS of strength 2 [7], [8]. In that case, only \( n=p^2 \) points can be sampled, with \( p \) a prime number. It also constrains \( d \leq p + 1 \). Default is 1.

New in version 1.8.0.

seed [{None, int, numpy.random.Generator}, optional] If seed is None the numpy.random.Generator singleton is used. If seed is an int, a new Generator instance is used, seeded with seed. If seed is already a Generator instance then that instance is used.

Notes

When LHS is used for integrating a function \( f \) over \( n \), LHS is extremely effective on integrands that are nearly additive [2]. With a LHS of \( n \) points, the variance of the integral is always lower than plain MC on \( n-1 \) points [3]. There is a central limit theorem for LHS on the mean and variance of the integral [4], but not necessarily for optimized LHS due to the randomization.

A is called an orthogonal array of strength \( t \) if in each \( n \)-row-by-\( t \)-column submatrix of \( A \): all \( p^t \) possible distinct rows occur the same number of times. The elements of \( A \) are in the set \( \{0, 1, \ldots, p-1\} \), also called symbols. The constraint that \( p \) must be a prime number is to allow modular arithmetic.

Strength 1 (plain LHS) brings an advantage over strength 0 (MC) and strength 2 is a useful increment over strength 1. Going to strength 3 is a smaller increment and scrambled QMC like Sobol’, Halton are more performant [7].

To create a LHS of strength 2, the orthogonal array \( A \) is randomized by applying a random, bijective map of the set of symbols onto itself. For example, in column 0, all 0s might become 2; in column 1, all 0s might become 1, etc. Then, for each column \( i \) and symbol \( j \), we add a plain, one-dimensional LHS of size \( p \) to the subarray where \( A_i = j \). The resulting matrix is finally divided by \( p \).

References

[1], [2], [3], [4], [5], [6], [7], [8]

Examples

Generate samples from a Latin hypercube generator.

```python
>>> from scipy.stats import qmc
>>> sampler = qmc.LatinHypercube(d=2)
>>> sample = sampler.random(n=5)
>>> sample
array([[0.1545328 , 0.53664833],
 [0.84052691, 0.06474907]],
 dtype=float32)
```

(continues on next page)
Compute the quality of the sample using the discrepancy criterion.

```python
>>> qmc.discrepancy(sample)
0.0196... # random
```

Samples can be scaled to bounds.

```python
>>> l_bounds = [0, 2]
>>> u_bounds = [10, 5]
>>> qmc.scale(sample, l_bounds, u_bounds)
array([[1.54532796, 3.609945],
 [8.40526909, 2.1942472],
 [5.2177809, 4.80031164],
 [6.80338249, 3.08795949],
 [2.65448791, 3.83491828]])
```

Use the `optimization` keyword argument to produce a LHS with lower discrepancy at higher computational cost.

```python
>>> sampler = qmc.LatinHypercube(d=2, optimization="random-cd")
>>> sample = sampler.random(n=5)
>>> qmc.discrepancy(sample)
0.0176... # random
```

Use the `strength` keyword argument to produce an orthogonal array based LHS of strength 2. In this case, the number of sample points must be the square of a prime number.

```python
>>> sampler = qmc.LatinHypercube(d=2, strength=2)
>>> sample = sampler.random(n=9)
>>> qmc.discrepancy(sample)
0.00526... # random
```

Options could be combined to produce an optimized centered orthogonal array based LHS. After optimization, the result would not be guaranteed to be of strength 2.

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fast_forward(n)</code></td>
<td>Fast-forward the sequence by $n$ positions.</td>
</tr>
<tr>
<td><code>random([n])</code></td>
<td>Draw $n$ in the half-open interval $[0, 1)$.</td>
</tr>
<tr>
<td><code>reset()</code></td>
<td>Reset the engine to base state.</td>
</tr>
</tbody>
</table>
scipy.stats.qmc.LatinHypercube.fast_forward

LatinHypercube.fast_forward(n)

Fast-forward the sequence by n positions.

Parameters
   n [int] Number of points to skip in the sequence.

Returns
   engine [QMCEngine] Engine reset to its base state.

scipy.stats.qmc.LatinHypercube.random

LatinHypercube.random(n=1)

Draw n in the half-open interval [0, 1).

Parameters
   n [int, optional] Number of samples to generate in the parameter space. Default is 1.

Returns
   sample [array_like (n, d)] LHS sample.

scipy.stats.qmc.LatinHypercube.reset

LatinHypercube.reset()

Reset the engine to base state.

Returns
   engine [QMCEngine] Engine reset to its base state.

scipy.stats.qmc.MultinomialQMC

class scipy.stats.qmc.MultinomialQMC(pvals, *, engine=None, seed=None)

QMC sampling from a multinomial distribution.

Parameters
   pvals [array_like (k,)] Vector of probabilities of size k, where k is the number of categories. Elements must be non-negative and sum to 1.
   engine [QMCEngine, optional] Quasi-Monte Carlo engine sampler. If None, Sobol is used.
   seed [[None, int, numpy.random.Generator], optional] If seed is None the numpy.random.Generator singleton is used. If seed is an int, a new Generator instance is used, seeded with seed. If seed is already a Generator instance then that instance is used.
Examples

```python
>>> from scipy.stats import qmc
>>> engine = qmc.MultinomialQMC(pvals=[0.2, 0.4, 0.4])
>>> sample = engine.random(10)
```

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fast_forward(n)</code></td>
<td>Fast-forward the sequence by $n$ positions.</td>
</tr>
<tr>
<td><code>random([n])</code></td>
<td>Draw $n$ QMC samples from the multinomial distribution.</td>
</tr>
<tr>
<td><code>reset()</code></td>
<td>Reset the engine to base state.</td>
</tr>
</tbody>
</table>

`scipy.stats.qmc.MultinomialQMC.fast_forward`

MultinomialQMC.fast_forward($n$)  
Fast-forward the sequence by $n$ positions.

- Parameters
  - $n$ [int] Number of points to skip in the sequence.
- Returns
  - $engine$ [QMC Engine] Engine reset to its base state.

`scipy.stats.qmc.MultinomialQMC.random`

MultinomialQMC.random($n=1$)  
Draw $n$ QMC samples from the multinomial distribution.

- Parameters
  - $n$ [int, optional] Number of samples to generate in the parameter space. Default is 1.
- Returns
  - $samples$ [array_like (pvals,)] Vector of size $p$ summing to $n$.

`scipy.stats.qmc.MultinomialQMC.reset`

MultinomialQMC.reset()  
Reset the engine to base state.

- Returns
  - $engine$ [MultinomialQMC] Engine reset to its base state.
**scipy.stats.qmc.MultivariateNormalQMC**

```python
class scipy.stats.qmc.MultivariateNormalQMC(mean, cov=None, *, cov_root=None, inv_transform=True, engine=None, seed=None)
```

QMC sampling from a multivariate Normal $N(\mu, \Sigma)$.

**Parameters**

- **mean** [array_like(d,)] The mean vector. Where $d$ is the dimension.
- **cov** [array_like(d, d), optional] The covariance matrix. If omitted, use `cov_root` instead. If both `cov` and `cov_root` are omitted, use the identity matrix.
- **cov_root** [array_like(d, d'), optional] A root decomposition of the covariance matrix, where $d'$ may be less than $d$ if the covariance is not full rank. If omitted, use `cov`.
- **inv_transform** [bool, optional] If True, use inverse transform instead of Box-Muller. Default is True.
- **engine** [QMCEngine, optional] Quasi-Monte Carlo engine sampler. If None, Sobol is used.
- **seed** [{None, int, numpy.random.Generator}, optional] If seed is None the numpy.random.Generator singleton is used. If seed is an int, a new Generator instance is used, seeded with seed. If seed is already a Generator instance then that instance is used.

**Examples**

```python
>>> import matplotlib.pyplot as plt
>>> from scipy.stats import qmc
>>> engine = qmc.MultivariateNormalQMC(mean=[0, 5], cov=[[1, 0], [0, 1]])
>>> sample = engine.random(512)
>>> _ = plt.scatter(sample[:, 0], sample[:, 1])
>>> plt.show()
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fast_forward(n)</code></td>
<td>Fast-forward the sequence by n positions.</td>
</tr>
<tr>
<td><code>random([n])</code></td>
<td>Draw n QMC samples from the multivariate Normal.</td>
</tr>
<tr>
<td><code>reset()</code></td>
<td>Reset the engine to base state.</td>
</tr>
</tbody>
</table>

scipy.stats.qmc.MultivariateNormalQMC.fast_forward

MultivariateNormalQMC.fast_forward(n)
Fast-forward the sequence by n positions.

Parameters

- **n** [int] Number of points to skip in the sequence.

Returns

- **engine** [QMCEngine] Engine reset to its base state.

scipy.stats.qmc.MultivariateNormalQMC.random

MultivariateNormalQMC.random(n=1)
Draw n QMC samples from the multivariate Normal.

Parameters

- **n** [int, optional] Number of samples to generate in the parameter space. Default is 1.

Returns

- **sample** [array_like (n, d)] Sample.

scipy.stats.qmc.MultivariateNormalQMC.reset

MultivariateNormalQMC.reset()
Reset the engine to base state.

Returns

- **engine** [MultivariateNormalQMC] Engine reset to its base state.

Helpers

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>discrepancy(sample, *[iterative, method, ...])</code></td>
<td>Discrepancy of a given sample.</td>
</tr>
<tr>
<td><code>update_discrepancy(x_new, sample, initial_disc)</code></td>
<td>Update the centered discrepancy with a new sample.</td>
</tr>
<tr>
<td><code>scale(sample, l_bounds, u_bounds, *[reverse])</code></td>
<td>Sample scaling from unit hypercube to different bounds.</td>
</tr>
</tbody>
</table>
scipy.stats.qmc.discrepancy

`scipy.stats.qmc.discrepancy(sample, *, iterative=False, method='CD', workers=1)`

Discrepancy of a given sample.

**Parameters**

- `sample` [array_like (n, d)] The sample to compute the discrepancy from.
- `iterative` [bool, optional] Must be False if not using it for updating the discrepancy. Default is False. Refer to the notes for more details.
- `method` [str, optional] Type of discrepancy, can be CD, WD, MD or L2-star. Refer to the notes for more details. Default is CD.
- `workers` [int, optional] Number of workerst to use for parallel processing. If -1 is given all CPU threads are used. Default is 1.

**Returns**

- `discrepancy` [float] Discrepancy.

**Notes**

The discrepancy is a uniformity criterion used to assess the space filling of a number of samples in a hypercube. A discrepancy quantifies the distance between the continuous uniform distribution on a hypercube and the discrete uniform distribution on n distinct sample points.

The lower the value is, the better the coverage of the parameter space is.

For a collection of subsets of the hypercube, the discrepancy is the difference between the fraction of sample points in one of those subsets and the volume of that subset. There are different definitions of discrepancy corresponding to different collections of subsets. Some versions take a root mean square difference over subsets instead of a maximum.

A measure of uniformity is reasonable if it satisfies the following criteria [1]:

1. It is invariant under permuting factors and/or runs.
2. It is invariant under rotation of the coordinates.
3. It can measure not only uniformity of the sample over the hypercube, but also the projection uniformity of the sample over non-empty subset of lower dimension hypercubes.
4. There is some reasonable geometric meaning.
5. It is easy to compute.
6. It satisfies the Koksma-Hlawka-like inequality.
7. It is consistent with other criteria in experimental design.

Four methods are available:

- **CD**: Centered Discrepancy - subspace involves a corner of the hypercube
- **WD**: Wrap-around Discrepancy - subspace can wrap around bounds
- **MD**: Mixture Discrepancy - mix between CD/WD covering more criteria
- **L2-star**: L2-star discrepancy - like CD BUT variant to rotation
See [2] for precise definitions of each method.

Lastly, using \texttt{iterative=True}, it is possible to compute the discrepancy as if we had \( n + 1 \) samples. This is useful if we want to add a point to a sampling and check the candidate which would give the lowest discrepancy. Then you could just update the discrepancy with each candidate using \texttt{update_discrepancy}. This method is faster than computing the discrepancy for a large number of candidates.

\section*{References}

[1], [2], [3]

\section*{Examples}

Calculate the quality of the sample using the discrepancy:

```python
>>> from scipy.stats import qmc
>>> space = np.array([[1, 3], [2, 6], [3, 2], [4, 5], [5, 1], [6, 4]])
>>> l_bounds = [0.5, 0.5]
>>> u_bounds = [6.5, 6.5]
>>> space = qmc.scale(space, l_bounds, u_bounds, reverse=True)
>>> space
array([[0.08333333, 0.41666667],
 [0.25 , 0.91666667],
 [0.41666667, 0.25],
 [0.58333333, 0.75],
 [0.75 , 0.08333333],
 [0.91666667, 0.58333333]])
>>> qmc.discrepancy(space)
0.008142039609053464
```

We can also compute iteratively the CD discrepancy by using \texttt{iterative=True}.

```python
>>> disc_init = qmc.discrepancy(space[:-1], iterative=True)
>>> disc_init
0.04769081147119336
>>> qmc.update_discrepancy(space[-1], space[:-1], disc_init)
0.008142039609053513
```

\texttt{scipy.stats.qmc.update_discrepancy}

\texttt{scipy.stats.qmc.update_discrepancy} (\texttt{x_new, sample, initial_disc})

Update the centered discrepancy with a new sample.

\textbf{Parameters}

- \texttt{x_new} [array_like (1, d)] The new sample to add in \texttt{sample}.
- \texttt{sample} [array_like (n, d)] The initial sample.
- \texttt{initial_disc} [float] Centered discrepancy of the \texttt{sample}.

\textbf{Returns}

- \texttt{discrepancy} [float] Centered discrepancy of the sample composed of \texttt{x_new} and \texttt{sample}.
Examples

We can also compute iteratively the discrepancy by using `iterative=True`.

```python
>>> from scipy.stats import qmc
>>> space = np.array([[1, 3], [2, 6], [3, 2], [4, 5], [5, 1], [6, 4]])
>>> l_bounds = [0.5, 0.5]
>>> u_bounds = [6.5, 6.5]
>>> space = qmc.scale(space, l_bounds, u_bounds, reverse=True)
>>> disc_init = qmc.discrepancy(space[1:], iterative=True)
>>> disc_init
0.04769081147119336
>>> qmc.update_discrepancy(space[1:], space[1:], disc_init)
0.008142039609053513
```

**scipy.stats.qmc.scale**

`scipy.stats.qmc.scale(sample, l_bounds, u_bounds, *, reverse=False)`

Sample scaling from unit hypercube to different bounds.

To convert a sample from $[0, 1)$ to $[a, b]$, $b > a$, with $a$ the lower bounds and $b$ the upper bounds. The following transformation is used:

$$(b - a) \cdot \text{sample} + a$$

**Parameters**

- `sample` [array_like (n, d)] Sample to scale.
- `l_bounds, u_bounds` [array_like (d,)] Lower and upper bounds (resp. $a$, $b$) of transformed data. If `reverse` is True, range of the original data to transform to the unit hypercube.
- `reverse` [bool, optional] Reverse the transformation from different bounds to the unit hypercube. Default is False.

**Returns**

- `sample` [array_like (n, d)] Scaled sample.

**Examples**

Transform 3 samples in the unit hypercube to bounds:

```python
>>> from scipy.stats import qmc
>>> l_bounds = [-2, 0]
>>> u_bounds = [6, 5]
>>> sample = [[0.5, 0.75],
... [0.5, 0.5],
... [0.75, 0.25]]
>>> sample_scaled = qmc.scale(sample, l_bounds, u_bounds)
>>> sample_scaled
array([[2. , 3.75],
 [2. , 2.5],
 [4. , 1.25]])
```
And convert back to the unit hypercube:

```python
>>> sample_ = qmc.scale(sample_scaled, l_bounds, u_bounds, reverse=True)
>>> sample_array([[0.5, 0.75],
 [0.5, 0.5],
 [0.75, 0.25]])
```

Introduction to Quasi-Monte Carlo

Quasi-Monte Carlo (QMC) methods [1], [2], [3] provide an $n \times d$ array of numbers in $[0, 1]$. They can be used in place of $n$ points from the $U[0,1]^d$ distribution. Compared to random points, QMC points are designed to have fewer gaps and clumps. This is quantified by discrepancy measures [4]. From the Koksma-Hlawka inequality [5] we know that low discrepancy reduces a bound on integration error. Averaging a function $f$ over $n$ QMC points can achieve an integration error close to $O(n^{-1})$ for well behaved functions [2].

Most QMC constructions are designed for special values of $n$ such as powers of 2 or large primes. Changing the sample size by even one can degrade their performance, even their rate of convergence [6]. For instance $n = 100$ points may give less accuracy than $n = 64$ if the method was designed for $n = 2^m$. Some QMC constructions are extensible in $n$: we can find another special sample size $n' > n$ and often an infinite sequence of increasing special sample sizes. Some QMC constructions are extensible in $d$: we can increase the dimension, possibly to some upper bound, and typically without requiring special values of $d$. Some QMC methods are extensible in both $n$ and $d$.

QMC points are deterministic. That makes it hard to estimate the accuracy of integrals estimated by averages over QMC points. Randomized QMC (RQMC) [7] points are constructed so that each point is individually $U[0,1]^d$ while collectively the $n$ points retain their low discrepancy. One can make $R$ independent replications of RQMC points to see how stable a computation is. From $R$ independent values, a t-test (or bootstrap t-test [8]) then gives approximate confidence intervals on the mean value. Some RQMC methods produce a root mean squared error that is actually $o(1/n)$ and smaller than the rate seen in unrandomized QMC. An intuitive explanation is that the error is a sum of many small ones and random errors cancel in a way that deterministic ones do not. RQMC also has advantages on integrands that are singular or, for other reasons, fail to be Riemann integrable.

(R)QMC cannot beat Bahkvalov’s curse of dimension (see [9]). For any random or deterministic method, there are worst case functions that will give it poor performance in high dimensions. A worst case function for QMC might be 0 at all $n$ points but very large elsewhere. Worst case analyses get very pessimistic in high dimensions. (R)QMC can bring a great improvement over MC when the functions on which it is used are not worst case. For instance (R)QMC can be especially effective on integrands that are well approximated by sums of functions of some small number of their input variables at a time [10], [11]. That property is often a surprising finding about those functions.

Also, to see an improvement over IID MC, (R)QMC requires a bit of smoothness of the integrand, roughly the mixed first order derivative in each direction, $\partial^d f / \partial x_1 \cdots \partial x_d$, must be integral. For instance, a function that is 1 inside the hypersphere and 0 outside of it has infinite variation in the sense of Hardy and Krause for any dimension $d = 2$.

Scrambled nets are a kind of RQMC that have some valuable robustness properties [12]. If the integrand is square integrable, they give variance $\text{var}_{\text{SNET}} = o(1/n)$. There is a finite upper bound on $\text{var}_{\text{SNET}}/\text{var}_{\text{MC}}$ that holds simultaneously for every square integrable integrand. Scrambled nets satisfy a strong law of large numbers for $f$ in $L^p$ when $p > 1$. In some special cases there is a central limit theorem [13]. For smooth enough integrands they can achieve RMSE nearly $O(n^{-\frac{3}{2}})$. See [12] for references about these properties.

The main kinds of QMC methods are lattice rules [14] and digital nets and sequences [2], [15]. The theories meet up in polynomial lattice rules [16] which can produce digital nets. Lattice rules require some form of search for good constructions. For digital nets there are widely used default constructions.

The most widely used QMC methods are Sobol’ sequences [17]. These are digital nets. They are extensible in both $n$ and $d$. They can be scrambled. The special sample sizes are powers of 2. Another popular method are Halton sequences [18].
The constructions resemble those of digital nets. The earlier dimensions have much better equidistribution properties than later ones. There are essentially no special sample sizes. They are not thought to be as accurate as Sobol’ sequences. They can be scrambled. The nets of Faure [19] are also widely used. All dimensions are equally good, but the special sample sizes grow rapidly with dimension $d$. They can be scrambled. The nets of Niederreiter and Xing [20] have the best asymptotic properties but have not shown good empirical performance [21].

Higher order digital nets are formed by a digit interleaving process in the digits of the constructed points. They can achieve higher levels of asymptotic accuracy given higher smoothness conditions on $f$ and they can be scrambled [22]. There is little or no empirical work showing the improved rate to be attained.

Using QMC is like using the entire period of a small random number generator. The constructions are similar and so therefore are the computational costs [23].

(R)QMC is sometimes improved by passing the points through a baker’s transformation (tent function) prior to using them. That function has the form $1 - 2|x - 1/2|$. As $x$ goes from 0 to 1, this function goes from 0 to 1 and then back. It is very useful to produce a periodic function for lattice rules [14], and sometimes it improves the convergence rate [24].

It is not straightforward to apply QMC methods to Markov chain Monte Carlo (MCMC). We can think of MCMC as using $n = 1$ point in $[0, 1]^d$ for very large $d$, with ergodic results corresponding to $d \to \infty$. One proposal is in [25] and under strong conditions an improved rate of convergence has been shown [26].

Returning to Sobol’ points: there are many versions depending on what are called direction numbers. Those are the result of searches and are tabulated. A very widely used set of direction numbers come from [27]. It is extensible in dimension up to $d = 2^{1201}$.

References

Masked statistics functions

Statistical functions for masked arrays (scipy.stats.mstats)

This module contains a large number of statistical functions that can be used with masked arrays.

Most of these functions are similar to those in scipy.stats but might have small differences in the API or in the algorithm used. Since this is a relatively new package, some API changes are still possible.

Summary statistics

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>describe</code></td>
<td>Computes several descriptive statistics of the passed array.</td>
</tr>
<tr>
<td><code>gmean</code></td>
<td>Compute the geometric mean along the specified axis.</td>
</tr>
<tr>
<td><code>hmean</code></td>
<td>Calculate the harmonic mean along the specified axis.</td>
</tr>
<tr>
<td><code>kurtosis</code></td>
<td>Computes the kurtosis (Fisher or Pearson) of a dataset.</td>
</tr>
<tr>
<td><code>mode</code></td>
<td>Returns an array of the modal (most common) value in the passed array.</td>
</tr>
<tr>
<td><code>mquantiles</code></td>
<td>Computes empirical quantiles for a data array.</td>
</tr>
<tr>
<td><code>hdmedian</code></td>
<td>Returns the Harrell-Davis estimate of the median along the given axis.</td>
</tr>
<tr>
<td><code>hdquantiles</code></td>
<td>Computes quantile estimates with the Harrell-Davis method.</td>
</tr>
<tr>
<td><code>hdquantiles_sd</code></td>
<td>The standard error of the Harrell-Davis quantile estimates by jackknife.</td>
</tr>
<tr>
<td><code>idealfourths</code></td>
<td>Returns an estimate of the lower and upper quartiles.</td>
</tr>
</tbody>
</table>

continues on next page
Table 286 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>plotting_positions</code></td>
<td>Returns plotting positions (or empirical percentile points) for the data.</td>
</tr>
<tr>
<td><code>meppf</code></td>
<td>Calculates the nth moment about the mean for a sample.</td>
</tr>
<tr>
<td><code>skew</code></td>
<td>Computes the skewness of a dataset.</td>
</tr>
<tr>
<td><code>moment</code></td>
<td>Computes the nth moment about the mean for a sample.</td>
</tr>
<tr>
<td><code>tmean</code></td>
<td>Compute the trimmed mean.</td>
</tr>
<tr>
<td><code>tvar</code></td>
<td>Compute the trimmed variance.</td>
</tr>
<tr>
<td><code>tmin</code></td>
<td>Compute the trimmed minimum.</td>
</tr>
<tr>
<td><code>tmax</code></td>
<td>Compute the trimmed maximum.</td>
</tr>
<tr>
<td><code>tsem</code></td>
<td>Compute the trimmed standard error of the mean.</td>
</tr>
<tr>
<td><code>variation</code></td>
<td>Compute the coefficient of variation.</td>
</tr>
<tr>
<td><code>find_repeats</code></td>
<td>Find repeats in arr and return a tuple (repeats, repeat_count).</td>
</tr>
<tr>
<td><code>sem</code></td>
<td>Calculates the standard error of the mean of the input array.</td>
</tr>
<tr>
<td><code>trimmed_mean</code></td>
<td>Returns the trimmed mean of the data along the given axis.</td>
</tr>
<tr>
<td><code>trimmed_mean_ci</code></td>
<td>Selected confidence interval of the trimmed mean along the given axis.</td>
</tr>
<tr>
<td><code>trimmed_std</code></td>
<td>Returns the trimmed standard deviation of the data along the given axis.</td>
</tr>
<tr>
<td><code>trimmed_var</code></td>
<td>Returns the trimmed variance of the data along the given axis.</td>
</tr>
</tbody>
</table>

**scipy.stats.mstats.describe**

`scipy.stats.mstats.describe(a, axis=0, ddof=0, bias=True)`

Computes several descriptive statistics of the passed array.

**Parameters**

- `a` [array_like] Data array
- `axis` [int or None, optional] Axis along which to calculate statistics. Default 0. If None, compute over the whole array `a`.
- `ddof` [int, optional] degree of freedom (default 0); note that default ddof is different from the same routine in stats.describe
- `bias` [bool, optional] If False, then the skewness and kurtosis calculations are corrected for statistical bias.

**Returns**

- `nobs` [int] (size of the data (discarding missing values)
- `minmax` [int, int] min, max
- `mean` [float] arithmetic mean
- `variance` [float] unbiased variance
- `skewness` [float] biased skewness
- `kurtosis` [float] biased kurtosis
Examples

```python
>>> from scipy.stats.mstats import describe
>>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1])
>>> describe(ma)
DescribeResult(nobs=3, minmax=(masked_array(data=0, mask=False, fill_value=999999), masked_array(data=2, mask=False, fill_value=999999)), mean=1.0, variance=0.6666666666666666, skewness=masked_array(data=0., mask=False, fill_value=1e+20), kurtosis=-1.5)
```

**scipy.stats.mstats.gmean**

`scipy.stats.mstats.gmean(a, axis=0, dtype=None, weights=None)`

Compute the geometric mean along the specified axis.

Return the geometric average of the array elements. That is: n-th root of (x1 * x2 * ... * xn)

**Parameters**

- `a`: [array_like] Input array or object that can be converted to an array.
- `axis`: [int or None, optional] Axis along which the geometric mean is computed. Default is 0. If None, compute over the whole array `a`.
- `dtype`: [dtype, optional] Type of the returned array and of the accumulator in which the elements are summed. If `dtype` is not specified, it defaults to the `dtype` of `a`, unless `a` has an integer `dtype` with a precision less than that of the default platform integer. In that case, the default platform integer is used.
- `weights`: [array_like, optional] The weights array can either be 1-D (in which case its length must be the size of `a` along the given `axis`) or of the same shape as `a`. Default is None, which gives each value a weight of 1.0.

**Returns**

- `gmean`: [ndarray] See `dtype` parameter above.

See also:

- `numpy.mean`
  - Arithmetic average
- `numpy.average`
  - Weighted average
- `hmean`
  - Harmonic mean
Notes

The geometric average is computed over a single dimension of the input array, axis=0 by default, or all values in the array if axis=None. float64 intermediate and return values are used for integer inputs.

Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity because masked arrays automatically mask any non-finite values.

References

[1]

Examples

```python
>>> from scipy.stats import gmean
>>> gmean([1, 4])
2.0
>>> gmean([1, 2, 3, 4, 5, 6, 7])
3.3800151591412964
```

scipy.stats.mstats.hmean

scipy.stats.mstats.hmean(a, axis=0, dtype=None)

Calculate the harmonic mean along the specified axis.
That is: \( n / (1/x_1 + 1/x_2 + \ldots + 1/x_n) \)

Parameters

- **a** [array_like] Input array, masked array or object that can be converted to an array.
- **axis** [int or None, optional] Axis along which the harmonic mean is computed. Default is 0. If None, compute over the whole array a.
- **dtype** [dtype, optional] Type of the returned array and of the accumulator in which the elements are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used.

Returns

- **hmean** [ndarray] See dtype parameter above.

See also:

- **numpy.mean**
  Arithmetic average
- **numpy.average**
  Weighted average
- **gmean**
  Geometric mean
Notes

The harmonic mean is computed over a single dimension of the input array, axis=0 by default, or all values in the array if axis=None. float64 intermediate and return values are used for integer inputs.

Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity.

Examples

```python
>>> from scipy.stats import hmean
>>> hmean([1, 4])
1.6000000000000001
>>> hmean([1, 2, 3, 4, 5, 6, 7])
2.6997245179063363
```

scipy.stats.mstats.kurtosis

`scipy.stats.mstats.kurtosis(a, axis=0, fisher=True, bias=True)`

Computes the kurtosis (Fisher or Pearson) of a dataset.

Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution.

If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators

Use kurtosistest to see if result is close enough to normal.

Parameters

- `a` [array] data for which the kurtosis is calculated
- `axis` [int or None, optional] Axis along which the kurtosis is calculated. Default is 0. If None, compute over the whole array `a`.
- `fisher` [bool, optional] If True, Fisher’s definition is used (normal ==> 0.0). If False, Pearson’s definition is used (normal ==> 3.0).
- `bias` [bool, optional] If False, then the calculations are corrected for statistical bias.

Returns

- `kurtosis` [array] The kurtosis of values along an axis. If all values are equal, return -3 for Fisher’s definition and 0 for Pearson’s definition.

Notes

For more details about kurtosis, see stats.kurtosis.
scipy.stats.mstats.mode

scipy.stats.mstats.mode(a, axis=0)

Returns an array of the modal (most common) value in the passed array.

Parameters

- **a** [array_like] n-dimensional array of which to find mode(s).
- **axis** [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the whole array a.

Returns

- **mode** [ndarray] Array of modal values.
- **count** [ndarray] Array of counts for each mode.

Notes

For more details, see stats.mode.

Examples

```python
>>> from scipy import stats
>>> from scipy.stats import mstats
>>> m_arr = np.ma.array([1, 1, 0, 0, 0], mask=[0, 0, 1, 1, 0])
>>> stats.mode(m_arr)
ModeResult(mode=array([0]), count=array([4]))
>>> mstats.mode(m_arr)
ModeResult(mode=array([1.]), count=array([2.]))
```

scipy.stats.mstats.mquantiles

scipy.stats.mstats.mquantiles(a, prob=[0.25, 0.5, 0.75], alphap=0.4, betap=0.4, axis=None, limit=())

Computes empirical quantiles for a data array.

Samples quantile are defined by $Q(p) = (1-gamma)*x[j] + gamma*x[j+1]$, where $x[j]$ is the j-th order statistic, and gamma is a function of $j = floor(n*p + m), m = alphap + p*(1 - alphap - betap)$ and $g = n*p + m - j$.

Reinterpreting the above equations to compare to R lead to the equation: $p(k) = (k - alphap)/(n + 1 - alphap - betap)$

Typical values of (alphap,betap) are:

- (0,1): $p(k) = k/n$: linear interpolation of cdf (R type 4)
- (.5,.5): $p(k) = (k - 1/2.)/n$: piecewise linear function (R type 5)
- (0,0): $p(k) = k/(n+1)$: (R type 6)
- (1,1): $p(k) = (k-1)/(n-1)$: $p(k) = mode[F(x[k])]$. (R type 7, R default)
- (1/3,1/3): $p(k) = (k-1/3)/(n+1/3)$: Then $p(k) \sim$ median[$F(x[k])]$. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8)
• (3/8,3/8): \( p(k) = (k-3/8)/(n+1/4) \): Blom. The resulting quantile estimates are approximately unbiased if \( x \) is normally distributed (\( R \) type 9)
• (.4,.4): approximately quantile unbiased (Cunnane)
• (.35,.35): APL, used with PWM

**Parameters**
- \( a \) [array_like] Input data, as a sequence or array of dimension at most 2.
- \( \text{prob} \) [array_like, optional] List of quantiles to compute.
- \( \text{alphap} \) [float, optional] Plotting positions parameter, default is 0.4.
- \( \text{betap} \) [float, optional] Plotting positions parameter, default is 0.4.
- \( \text{axis} \) [int, optional] Axis along which to perform the trimming. If None (default), the input array is first flattened.
- \( \text{limit} \) [tuple, optional] Tuple of (lower, upper) values. Values of \( a \) outside this open interval are ignored.

**Returns**
- \( \text{mquantiles} \) [MaskedArray] An array containing the calculated quantiles.

**Notes**
This formulation is very similar to \( R \) except the calculation of \( m \) from \( \text{alphap} \) and \( \text{betap} \), where in \( R \) \( m \) is defined with each type.

**References**
[1],[2]

**Examples**
```python
def mquantiles(data, axis=0, limit=(0, 50))
```
Using a 2D array, specifying axis and limit.
```python
>>> data = np.array([[6., 7., 1.],
 [47., 15., 2.],
 [49., 36., 3.],
 [15., 39., 4.],
 [42., 40., -999.],
 [41., 41., -999.],
 [7., -999., -999.],
 [39., -999., -999.],
 [43., -999., -999.],
 [40., -999., -999.],
 [36., -999., -999.]]
```
```python
>>> print(mquantiles(data, axis=0, limit=(0, 50)))
```
(continues on next page)
>>> data[:, 2] = -999.
>>> print(mquantiles(data, axis=0, limit=(0, 50)))
[[19.200000000000003 14.6 --]
 [40.0 37.5 --]
 [42.800000000000004 40.05 --]]

scipy.stats.mstats.hdmedian

`scipy.stats.mstats.hdmedian` (data=0, var=False)

Returns the Harrell-Davis estimate of the median along the given axis.

**Parameters**

- **data** [ndarray] Data array.
- **axis** [int, optional] Axis along which to compute the quantiles. If None, use a flattened array.
- **var** [bool, optional] Whether to return the variance of the estimate.

**Returns**

- **hdmedian** [MaskedArray] The median values. If var=True, the variance is returned inside the masked array. E.g. for a 1-D array the shape change from (1,) to (2,).

scipy.stats.mstats.hdquantiles

`scipy.stats.mstats.hdquantiles` (data, prob=[0.25, 0.5, 0.75], axis=None, var=False)

Computes quantile estimates with the Harrell-Davis method.

The quantile estimates are calculated as a weighted linear combination of order statistics.

**Parameters**

- **data** [array_like] Data array.
- **prob** [sequence, optional] Sequence of quantiles to compute.
- **axis** [int or None, optional] Axis along which to compute the quantiles. If None, use a flattened array.
- **var** [bool, optional] Whether to return the variance of the estimate.

**Returns**

- **hdquantiles** [MaskedArray] A (p,) array of quantiles (if var is False), or a (2,p) array of quantiles and variances (if var is True), where p is the number of quantiles.

See also:

- **hdquantiles_sd**
scipy.stats.mstats.hdquantiles_sd

scipy.stats.mstats.hdquantiles_sd(data, prob=[0.25, 0.5, 0.75], axis=None)
The standard error of the Harrell-Davis quantile estimates by jackknife.

Parameters

- **data**: array_like
  Data array.

- **prob**: sequence, optional
  Sequence of quantiles to compute.

- **axis**: int, optional
  Axis along which to compute the quantiles. If None, use a flattened array.

Returns

- **hdquantiles_sd**: MaskedArray
  Standard error of the Harrell-Davis quantile estimates.

See also:

hdquantiles

scipy.stats.mstats.idealfourths

scipy.stats.mstats.idealfourths(data, axis=None)
Returns an estimate of the lower and upper quartiles.
Uses the ideal fourths algorithm.

Parameters

- **data**: array_like
  Input array.

- **axis**: int, optional
  Axis along which the quartiles are estimated. If None, the arrays are flattened.

Returns

- **idealfourths**: [list of floats, masked array]
  Returns the two internal values that divide data into four parts using the ideal fourths algorithm either along the flattened array (if axis is None) or along axis of data.

scipy.stats.mstats.plotting_positions

scipy.stats.mstats.plotting_positions(data, alpha=0.4, beta=0.4)
Returns plotting positions (or empirical percentile points) for the data.

*Plotting positions are defined as \((i - \alpha) / (n + 1 - \alpha - \beta)\), where:*

- **i** is the rank order statistics
- **n** is the number of unmasked values along the given axis
- **\(\alpha\)** and **\(\beta\)** are two parameters.

**Typical values for \(\alpha\) and \(\beta\) are:**

- \((0, 1)\) : \(p(k) = k/n\), linear interpolation of cdf (R, type 4)
- \((0.5, 0.5)\) : \(p(k) = (k-1/2.) / n\), piecewise linear function (R, type 5)
- \((0, 0)\) : \(p(k) = k/(n+1)\), Weibull (R type 6)
• (1,1): \( p(k) = (k-1)/(n-1) \), in this case, \( p(k) = \text{mode}[F(x[k])] \). That’s R default (R type 7)
• (1/3,1/3): \( p(k) = (k-1/3)/(n+1/3) \), then \( p(k) \sim \text{median}[F(x[k])] \). The resulting quantile estimates are approximately median-unbiased regardless of the distribution of \( x \). (R type 8)
• (3/8,3/8): \( p(k) = (k-3/8)/(n+1/4) \), Blom. The resulting quantile estimates are approximately unbiased if \( x \) is normally distributed (R type 9)
• (.4,.4): approximately quantile unbiased (Cunnane)
• (.35,.35): APL, used with PWM
• (.3175,.3175): used in scipy.stats.probplot

Parameters

- **data** [array_like] Input data, as a sequence or array of dimension at most 2.
- **alpha** [float, optional] Plotting positions parameter. Default is 0.4.
- **beta** [float, optional] Plotting positions parameter. Default is 0.4.

Returns

- **positions** [MaskedArray] The calculated plotting positions.

**scipy.stats.mstats.meppf**

 Returns plotting positions (or empirical percentile points) for the data.

*Plotting positions are defined as \((i-alpha)/(n+1-alpha-beta)\), where:*

- \( i \) is the rank order statistics
- \( n \) is the number of unmasked values along the given axis
- \( alpha \) and \( beta \) are two parameters.

*Typical values for alpha and beta are:*

- (0,1): \( p(k) = k/n \), linear interpolation of cdf (R, type 4)
- (.5,.5): \( p(k) = (k-1/2)/n \), piecewise linear function (R, type 5)
- (0,0): \( p(k) = k/(n+1) \), Weibull (R type 6)
- (1,1): \( p(k) = (k-1)/(n-1) \), in this case, \( p(k) = \text{mode}[F(x[k])] \). That’s R default (R type 7)
- (1/3,1/3): \( p(k) = (k-1/3)/(n+1/3) \), then \( p(k) \sim \text{median}[F(x[k])] \). The resulting quantile estimates are approximately median-unbiased regardless of the distribution of \( x \). (R type 8)
- (3/8,3/8): \( p(k) = (k-3/8)/(n+1/4) \), Blom. The resulting quantile estimates are approximately unbiased if \( x \) is normally distributed (R type 9)
- (.4,.4): approximately quantile unbiased (Cunnane)
- (.35,.35): APL, used with PWM
- (.3175,.3175): used in scipy.stats.probplot

*Parameters*
data [array_like] Input data, as a sequence or array of dimension at most 2.

alpha [float, optional] Plotting positions parameter. Default is 0.4.

beta [float, optional] Plotting positions parameter. Default is 0.4.

Returns

positions [MaskedArray] The calculated plotting positions.

scipy.stats.mstats.moment

scipy.stats.mstats.moment \((a, \text{moment}=1, \text{axis}=0)\)
Calculates the nth moment about the mean for a sample.

Parameters

\(a\) [array_like] data

\(\text{moment}\) [int, optional] order of central moment that is returned

\(\text{axis}\) [int or None, optional] Axis along which the central moment is computed. Default is 0. If None, compute over the whole array \(a\).

Returns

n-th central moment

[ndarray or float] The appropriate moment along the given axis or over all values if axis is None. The denominator for the moment calculation is the number of observations, no degrees of freedom correction is done.

Notes

For more details about \(\text{moment}\), see \textit{stats.moment}.

scipy.stats.mstats.skew

scipy.stats.mstats.skew \((a, \text{axis}=0, \text{bias}=\text{True})\)
Computes the skewness of a data set.

Parameters

\(a\) [ndarray] data

\(\text{axis}\) [int or None, optional] Axis along which skewness is calculated. Default is 0. If None, compute over the whole array \(a\).

\(\text{bias}\) [bool, optional] If False, then the calculations are corrected for statistical bias.

Returns

skewness [ndarray] The skewness of values along an axis, returning 0 where all values are equal.
Notes

For more details about `skew`, see `stats.skew`.

**scipy.stats.mstats.tmean**

`scipy.stats.mstats.tmean(a, limits=None, inclusive=(True, True), axis=None)`

Compute the trimmed mean.

Parameters

- `a` [array_like] Array of values.
- `limits` [None or (lower limit, upper limit), optional] Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None (default), then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval.
- `inclusive` [(bool, bool), optional] A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True).
- `axis` [int or None, optional] Axis along which to operate. If None, compute over the whole array. Default is None.

Returns

- `tmean` [float]

Notes

For more details on `tmean`, see `stats.tmean`.

Examples

```python
>>> from scipy.stats import mstats
>>> a = np.array([[6, 8, 3, 0],
... [3, 9, 1, 2],
... [8, 7, 8, 2],
... [5, 6, 0, 2],
... [4, 5, 5, 2]])
...
>>> mstats.tmean(a, (2,5))
3.3
>>> mstats.tmean(a, (2,5), axis=0)
masked_array(data=[4.0, 5.0, 4.0, 2.0],
 mask=[False, False, False, False],
 fill_value=1e+20)
```
scipy.stats.mstats.tvar

Compute the trimmed variance

This function computes the sample variance of an array of values, while ignoring values which are outside of given limits.

Parameters

- `a` [array_like] Array of values.
- `limits` [None or (lower limit, upper limit), optional] Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None.
- `inclusive` [(bool, bool), optional] A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True).
- `axis` [int or None, optional] Axis along which to operate. If None, compute over the whole array. Default is 0.

Returns

- `tvar` [float] Trimmed variance.

Notes

For more details on `tvar`, see `stats.tvar`.

scipy.stats.mstats.tmin

Compute the trimmed minimum

Parameters

- `a` [array_like] array of values
- `lowerlimit` [None or float, optional] Values in the input array less than the given limit will be ignored. When lowerlimit is None, then all values are used. The default value is None.
- `axis` [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the whole array `a`.
- `inclusive` [{True, False}, optional] This flag determines whether values exactly equal to the lower limit are included. The default value is True.

Returns

- `tmin` [float, int or ndarray]
Notes

For more details on \texttt{tmin}, see \texttt{stats.tmin}.

Examples

```python
>>> from scipy.stats import mstats
>>> a = np.array([[6, 8, 3, 0],
... [3, 2, 1, 2],
... [8, 1, 8, 2],
... [5, 3, 0, 2],
... [4, 7, 5, 2]])
...>>> mstats.tmin(a, 5)
masked_array(data=[5, 7, 5, --],
 mask=[False, False, False, True],
 fill_value=999999)
```

\texttt{scipy.stats.mstats.tmax}

\texttt{scipy.stats.mstats.tmax} \texttt{(a, upperlimit=None, axis=0, inclusive=True)}

This function computes the maximum value of an array along a given axis, while ignoring values larger than a specified upper limit.

\textit{Parameters}

- \texttt{a} \texttt{[array_like]} array of values
- \texttt{upperlimit} \texttt{[None or float, optional]} Values in the input array greater than the given limit will be ignored. When upperlimit is None, then all values are used. The default value is None.
- \texttt{axis} \texttt{[int or None, optional]} Axis along which to operate. Default is 0. If None, compute over the whole array \texttt{a}.
- \texttt{inclusive} \texttt{[\{True, False\}, optional]} This flag determines whether values exactly equal to the upper limit are included. The default value is True.

\textit{Returns}

- \texttt{tmax} \texttt{[float, int or ndarray]}

Notes

For more details on \texttt{tmax}, see \texttt{stats.tmax}. 
Examples

```python
>>> from scipy.stats import mstats
>>> a = np.array([[6, 8, 3, 0],
.... [3, 9, 1, 2],
.... [8, 7, 8, 2],
.... [5, 6, 0, 2],
.... [4, 5, 5, 2]])
...
>>> mstats.tmax(a, 4)
masked_array(data=[4, --, 3, 2],
 mask=[False, True, False, False],
 fill_value=999999)
```

**scipy.stats.mstats.tsem**

`scipy.stats.mstats.tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1)`

Compute the trimmed standard error of the mean.

This function finds the standard error of the mean for given values, ignoring values outside the given `limits`.

**Parameters**

- `a` [array_like] array of values
- `limits` [None or (lower limit, upper limit), optional] Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None.
- `inclusive` [(bool, bool), optional] A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True).
- `axis` [int or None, optional] Axis along which to operate. If None, compute over the whole array. Default is zero.

**Returns**

- `tsem` [float]

**Notes**

For more details on `tsem`, see `stats.tsem`.
scipy.stats.mstats.variation

scipy.stats.mstats.variation(a, axis=0, ddof=0)

Compute the coefficient of variation.

The coefficient of variation is the standard deviation divided by the mean. This function is equivalent to:

\[
\text{np.std}(x, \text{axis=axis}, \text{ddof=ddof}) / \text{np.mean}(x)
\]

The default for ddof is 0, but many definitions of the coefficient of variation use the square root of the unbiased sample variance for the sample standard deviation, which corresponds to ddof=1.

Parameters

- **a**: [array_like] Input array.
- **axis**: [int or None, optional] Axis along which to calculate the coefficient of variation. Default is 0. If None, compute over the whole array a.
- **ddof**: [int, optional] Delta degrees of freedom. Default is 0.

Returns

- **variation**: [ndarray] The calculated variation along the requested axis.

Notes

For more details about variation, see stats.variation.

Examples

```python
>>> from scipy.stats.mstats import variation
>>> a = np.array([2, 8, 4])
>>> variation(a)
0.5345224838248487
>>> b = np.array([2, 8, 3, 4])
>>> c = np.ma.masked_array(b, mask=[0, 0, 1, 0])
>>> variation(c)
0.5345224838248487
```

In the example above, it can be seen that this works the same as stats.variation except ‘stats.mstats.variation’ ignores masked array elements.

scipy.stats.mstats.find_repeats

scipy.stats.mstats.find_repeats(arr)

Find repeats in arr and return a tuple (repeats, repeat_count).

The input is cast to float64. Masked values are discarded.

Parameters

- **arr**: [sequence] Input array. The array is flattened if it is not 1D.

Returns

- **repeats**: [ndarray] Array of repeated values.
- **counts**: [ndarray] Array of counts.
scipy.stats.mstats.sem

Calculates the standard error of the mean of the input array.
Also sometimes called standard error of measurement.

Parameters

- **a** [array_like] An array containing the values for which the standard error is returned.
- **axis** [int or None, optional] If axis is None, ravel a first. If axis is an integer, this will be the axis over which to operate. Defaults to 0.
- **ddof** [int, optional] Delta degrees-of-freedom. How many degrees of freedom to adjust for bias in limited samples relative to the population estimate of variance. Defaults to 1.

Returns

- **s** [ndarray or float] The standard error of the mean in the sample(s), along the input axis.

Notes

The default value for *ddof* changed in scipy 0.15.0 to be consistent with *stats.sem* as well as with the most common definition used (like in the R documentation).

Examples

Find standard error along the first axis:

```python
>>> from scipy import stats
>>> a = np.arange(20).reshape(5, 4)
>>> print(stats.mstats.sem(a))
[2.8284271247461903 2.8284271247461903 2.8284271247461903 2.8284271247461903]
```

Find standard error across the whole array, using n degrees of freedom:

```python
>>> print(stats.mstats.sem(a, axis=None))
1.2893796958227628
```

scipy.stats.mstats.trimmed_mean

Returns the trimmed mean of the data along the given axis.

Parameters

- **a** [sequence] Input array
- **limits** ([None, tuple], optional) If *relative* is False, tuple (lower limit, upper limit) in absolute values. Values of the input array lower (greater) than the lower (upper) limit are masked. If *relative* is True, tuple (lower percentage, upper percentage) to cut on each side of the array, with respect to the number of unmasked data.

Noting *n* the number of unmasked data before trimming, the (*n*\*limits[0])th smallest data and the (*n*\*limits[1])th largest data are masked, and the total number of unmasked data after
trimming is \( n \times (1 - \text{sum(limits)}) \) In each case, the value of one limit can be set to None to indicate an open interval.

If limits is None, no trimming is performed

**inclusive** [(bool, bool) tuple, optional] If relative is False, tuple indicating whether values exactly equal to the absolute limits are allowed. If relative is True, tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False).

**relative** [bool, optional] Whether to consider the limits as absolute values (False) or proportions to cut (True).

**axis** [int, optional] Axis along which to trim.

### scipy.stats.mstats.trimmed_mean_ci

**scipy.stats.mstats.trimmed_mean_ci**

\[ \text{scipy.stats.mstats.trimmed_mean_ci} \text{(data, limits=(0.2, 0.2), inclusive=(True, True), alpha=0.05, axis=None)} \]

Selected confidence interval of the trimmed mean along the given axis.

**Parameters**

- **data** [array_like] Input data.
- **limits** [{None, tuple}, optional] None or a two item tuple. Tuple of the percentages to cut on each side of the array, with respect to the number of unmasked data, as floats between 0. and 1.
  
  If \( n \) is the number of unmasked data before trimming, then \((n \times \text{limits}[0])\)th smallest data and \((n \times \text{limits}[1])\)th largest data are masked. The total number of unmasked data after trimming is \( n \times (1 - \text{sum(limits)}) \). The value of one limit can be set to None to indicate an open interval.
  
  Defaults to (0.2, 0.2).
- **inclusive** [(2,) tuple of boolean, optional] If relative==False, tuple indicating whether values exactly equal to the absolute limits are allowed. If relative==True, tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False).
  
  Defaults to (True, True).
- **alpha** [float, optional] Confidence level of the intervals.
  
  Defaults to 0.05.
- **axis** [int, optional] Axis along which to cut. If None, uses a flattened version of data.
  
  Defaults to None.

**Returns**

- **trimmed_mean_ci** [(2,) ndarray] The lower and upper confidence intervals of the trimmed data.

### scipy.stats.mstats.trimmed_std

**scipy.stats.mstats.trimmed_std**

\[ \text{scipy.stats.mstats.trimmed_std} \text{(a, limits=(0.1, 0.1), inclusive=(1, 1), relative=True, axis=None, ddof=0)} \]

Returns the trimmed standard deviation of the data along the given axis.

**Parameters**

- **a** [sequence] Input array
- **limits** [{None, tuple}, optional] If relative is False, tuple (lower limit, upper limit) in absolute values. Values of the input array lower (greater) than the lower (upper) limit are masked.
  
  If relative is True, tuple (lower percentage, upper percentage) to cut on each side of the array, with respect to the number of unmasked data.
  
  Noting \( n \) the number of unmasked data before trimming, the \((n \times \text{limits}[0])\)th smallest data and the \((n \times \text{limits}[1])\)th largest data are masked, and the total number of unmasked data after trimming is \( n \times (1 - \text{sum(limits)}) \). The value of one limit can be set to None to indicate an open interval.
  
  Defaults to None.
- **inclusive** [(2,) tuple of boolean, optional] If relative==False, tuple indicating whether values exactly equal to the absolute limits are allowed. If relative==True, tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False).
  
  Defaults to (True, True).
- **relative** [bool, optional] Whether to consider the limits as absolute values (False) or proportions to cut (True).
  
  Defaults to False.
- **axis** [int, optional] Axis along which to cut. If None, uses a flattened version of data.
  
  Defaults to None.
- **ddof** [int, optional] Degrees of freedom correction.
  
  Defaults to 0.
trimming is $n^*(1.-\text{sum(limits)})$ In each case, the value of one limit can be set to None to indicate an open interval. If limits is None, no trimming is performed

```
inclusive [(bool, bool) tuple], optional] If relative is False, tuple indicating whether values exactly equal to the absolute limits are allowed. If relative is True, tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False).
```

```
relative [bool, optional] Whether to consider the limits as absolute values (False) or proportions to cut (True).
```

```
axis [int, optional] Axis along which to trim.
```

```
ddof [{0, integer}, optional] Means Delta Degrees of Freedom. The denominator used during computations is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an unbiased estimate of the variance.
```

scipy.stats.mstats.trimmed_var

```
scipy.stats.mstats.trimmed_var (a, limits=(0.1, 0.1), inclusive=(1, 1), relative=True, axis=None, ddof=0)
```

Returns the trimmed variance of the data along the given axis.

**Parameters**

```
a [sequence] Input array
limits [{None, tuple}, optional] If relative is False, tuple (lower limit, upper limit) in absolute values. Values of the input array lower (greater) than the lower (upper) limit are masked. If relative is True, tuple (lower percentage, upper percentage) to cut on each side of the array, with respect to the number of unmasked data. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is $n^*(1.-\text{sum(limits)})$ In each case, the value of one limit can be set to None to indicate an open interval. If limits is None, no trimming is performed
inclusive [(bool, bool) tuple], optional] If relative is False, tuple indicating whether values exactly equal to the absolute limits are allowed. If relative is True, tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False).
relative [bool, optional] Whether to consider the limits as absolute values (False) or proportions to cut (True).
axis [int, optional] Axis along which to trim.
```

```
ddof [{0, integer}, optional] Means Delta Degrees of Freedom. The denominator used during computations is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an unbiased estimate of the variance.
```

**Frequency statistics**

```
scoreatpercentile (data, per[, limit, ...]) Calculate the score at the given 'per' percentile of the sequence a.
```

3.3. API definition 2935
scipy.stats.mstats.scoreatpercentile

scipy.stats.mstats.scoreatpercentile(data, per, limit=(), alphap=0.4, betap=0.4)

Calculate the score at the given 'per' percentile of the sequence a. For example, the score at per=50 is the median.

This function is a shortcut to mquantile

Correlation functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_oneway(*args)</td>
<td>Performs a 1-way ANOVA, returning an F-value and probability given any number of groups.</td>
</tr>
<tr>
<td>pearsonr(x, y)</td>
<td>Pearson correlation coefficient and p-value for testing non-correlation.</td>
</tr>
<tr>
<td>spearmanr(x, y, use_ties, axis, ...)</td>
<td>Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation.</td>
</tr>
<tr>
<td>pointbiserialr(x, y)</td>
<td>Calculates a point biserial correlation coefficient and its p-value.</td>
</tr>
<tr>
<td>kendalltau(x, y, use_ties, use_missing, ...)</td>
<td>Computes Kendall's rank correlation tau on two variables x and y.</td>
</tr>
<tr>
<td>kendalltau_seasonal(x)</td>
<td>Computes a multivariate Kendall’s rank correlation tau, for seasonal data.</td>
</tr>
<tr>
<td>linregress(x, y)</td>
<td>Linear regression calculation</td>
</tr>
<tr>
<td>siegelslopes(y, x, method)</td>
<td>Computes the Siegel estimator for a set of points (x, y).</td>
</tr>
<tr>
<td>theilslopes(y, x, alpha, method)</td>
<td>Computes the Theil-Sen estimator for a set of points (x, y).</td>
</tr>
</tbody>
</table>

scipy.stats.mstats.f_oneway

scipy.stats.mstats.f_oneway(*args)

Performs a 1-way ANOVA, returning an F-value and probability given any number of groups. From Heiman, pp.394-7.

Usage: f_oneway(*args), where *args is 2 or more arrays, one per treatment group.

Returns

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>statistic</td>
<td>[float] The computed F-value of the test.</td>
</tr>
<tr>
<td>pvalue</td>
<td>[float] The associated p-value from the F-distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.mstats.pearsonr

**scipy.stats.mstats.pearsonr(x, y)**

Pearson correlation coefficient and p-value for testing non-correlation.

The Pearson correlation coefficient [1] measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. (See Kowalski [3] for a discussion of the effects of non-normality of the input on the distribution of the correlation coefficient.) Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship.

**Parameters**

- x  
  [(N,) array_like] Input array.
- y  
  [(N,) array_like] Input array.

**Returns**

- r  
  [float] Pearson’s correlation coefficient.
- p-value  
  [float] Two-tailed p-value.

**Warnings**

- **PearsonRConstantInputWarning**
  Raised if an input is a constant array. The correlation coefficient is not defined in this case, so np.nan is returned.

- **PearsonRNearConstantInputWarning**
  Raised if an input is “nearly” constant. The array x is considered nearly constant if \( \text{norm}(x - \text{mean}(x)) < 1e-13 \times \text{abs(mean(x))} \). Numerical errors in the calculation \( x - \text{mean}(x) \) in this case might result in an inaccurate calculation of \( r \).

**See also:**

- **spearmanr**
  Spearman rank-order correlation coefficient.

- **kendalltau**
  Kendall’s tau, a correlation measure for ordinal data.

**Notes**

The correlation coefficient is calculated as follows:

\[
 r = \frac{\sum(x - m_x)(y - m_y)}{\sqrt{\sum(x - m_x)^2 \sum(y - m_y)^2}}
\]

where \( m_x \) is the mean of the vector \( x \) and \( m_y \) is the mean of the vector \( y \).

Under the assumption that \( x \) and \( y \) are drawn from independent normal distributions (so the population correlation coefficient is 0), the probability density function of the sample correlation coefficient \( r \) is ([1], [2]):

\[
 f(r) = \frac{(1 - r^2)^{n/2 - 2}}{B\left(\frac{1}{2}, \frac{n}{2} - 1\right)}
\]

where \( n \) is the number of samples, and \( B \) is the beta function. This is sometimes referred to as the exact distribution of \( r \). This is the distribution that is used in **pearsonr** to compute the p-value. The distribution is a beta distribution on the interval [-1, 1], with equal shape parameters \( a = b = n/2 - 1 \). In terms of SciPy’s implementation of the beta distribution, the distribution of \( r \) is:
dist = scipy.stats.beta(n/2 - 1, n/2 - 1, loc=-1, scale=2)

The p-value returned by `pearsonr` is a two-sided p-value. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. More precisely, for a given sample with correlation coefficient \( r \), the p-value is the probability that \( |r'| \) of a random sample \( x' \) and \( y' \) drawn from the population with zero correlation would be greater than or equal to \( |r| \). In terms of the object `dist` shown above, the p-value for a given \( r \) and length \( n \) can be computed as:

\[
p = 2 \times \text{dist.cdf}(-|r|)
\]

When \( n \) is 2, the above continuous distribution is not well-defined. One can interpret the limit of the beta distribution as the shape parameters \( a \) and \( b \) approach \( a = b = 0 \) as a discrete distribution with equal probability masses at \( r = 1 \) and \( r = -1 \). More directly, one can observe that, given the data \( x = [x_1, x_2] \) and \( y = [y_1, y_2] \), and assuming \( x_1 \neq x_2 \) and \( y_1 \neq y_2 \), the only possible values for \( r \) are 1 and -1. Because \( |r'| \) for any sample \( x' \) and \( y' \) with length 2 will be 1, the two-sided p-value for a sample of length 2 is always 1.

References

[1], [2], [3]

Examples

```python
>>> from scipy import stats
>>> from scipy.stats import mstats
>>> mstats.pearsonr([1, 2, 3, 4, 5], [10, 9, 2.5, 6, 4])
(-0.7426106572325057, 0.1505558088534455)
```

There is a linear dependence between \( x \) and \( y \) if \( y = a + b*x + e \), where \( a, b \) are constants and \( e \) is a random error term, assumed to be independent of \( x \). For simplicity, assume that \( x \) is standard normal, \( a=0, b=1 \) and let \( e \) follow a normal distribution with mean zero and standard deviation \( s>0 \).

```python
>>> s = 0.5
>>> x = stats.norm.rvs(size=500)
>>> e = stats.norm.rvs(scale=s, size=500)
>>> y = x + e
>>> mstats.pearsonr(x, y)
(0.9029601878969703, 8.428978827629898e-185) # may vary
```

This should be close to the exact value given by

```python
>>> 1/np.sqrt(1 + s**2)
0.8944271909999159
```

For \( s=0.5 \), we observe a high level of correlation. In general, a large variance of the noise reduces the correlation, while the correlation approaches one as the variance of the error goes to zero.

It is important to keep in mind that no correlation does not imply independence unless \( (x, y) \) is jointly normal. Correlation can even be zero when there is a very simple dependence structure: if \( X \) follows a standard normal distribution, let \( y = \text{abs}(x) \). Note that the correlation between \( x \) and \( y \) is zero. Indeed, since the expectation of \( x \) is zero, \( \text{cov}(x, y) = E[x*y] \). By definition, this equals \( E[x*\text{abs}(x)] \) which is zero by symmetry. The following lines of code illustrate this observation:
A non-zero correlation coefficient can be misleading. For example, if X has a standard normal distribution, define y = x if x < 0 and y = 0 otherwise. A simple calculation shows that \( \text{corr}(x, y) = \sqrt{2/\pi} = 0.797\ldots \), implying a high level of correlation:

```python
>>> y = np.abs(x)
>>> mstats.pearsonr(x, y)
(-0.016172891856853524, 0.7182823678751942) # may vary
```

This is unintuitive since there is no dependence of x and y if x is larger than zero which happens in about half of the cases if we sample x and y.

### scipy.stats.mstats.spearmanr

**scipy.stats.mstats.spearmanr**

**Parameters**

- **x, y**
  [1D or 2D array_like, y is optional] One or two 1-D or 2-D arrays containing multiple variables and observations. If these are 1-D, each represents a vector of observations of a single variable. For the behavior in the 2-D case, see under **axis**, below.

- **use_ties**
  [bool, optional] DO NOT USE. Does not do anything, keyword is only left in place for backwards compatibility reasons.

- **axis**
  [int or None, optional] If axis=0 (default), then each column represents a variable, with observations in the rows. If axis=1, the relationship is transposed: each row represents a variable, while the columns contain observations. If axis=None, then both arrays will be raveled.

- **nan_policy**

- **alternative**
  [‘two-sided’, ‘less’, ‘greater’], optional] Defines the alternative hypothesis. Default is ‘two-sided’. The following options are available:
  - ‘two-sided’: the correlation is nonzero
  - ‘less’: the correlation is negative (less than zero)
  - ‘greater’: the correlation is positive (greater than zero)

New in version 1.7.0.
**Returns**

- correlation [float] Spearman correlation coefficient
- pvalue [float] 2-tailed p-value.

**References**


**scipy.stats.mstats.pointbiserialr**

**scipy.stats.mstats.pointbiserialr**(x, y)

Calculates a point biserial correlation coefficient and its p-value.

**Parameters**

- x [array_like of bools] Input array.
- y [array_like] Input array.

**Returns**

- correlation [float] R value
- pvalue [float] 2-tailed p-value

**Notes**

Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked.

For more details on pointbiserialr, see stats.pointbiserialr.

**scipy.stats.mstats.kendalltau**

**scipy.stats.mstats.kendalltau**(x, y, use_ties=True, use_missing=False, method='auto', alternative='two-sided')

Computes Kendall’s rank correlation tau on two variables x and y.

**Parameters**

- x [sequence] First data list (for example, time).
- y [sequence] Second data list.
- use_ties [{True, False}, optional] Whether ties correction should be performed.
- use_missing [{False, True}, optional] Whether missing data should be allocated a rank of 0 (False) or the average rank (True)
- method: {'auto', 'asymptotic', 'exact'}, optional
  Defines which method is used to calculate the p-value [1]. ‘asymptotic’ uses a normal approximation valid for large samples. ‘exact’ computes the exact p-value, but can only be used if no ties are present. As the sample size increases, the ‘exact’ computation time may grow and the result may lose some precision. ‘auto’ is the default and selects the appropriate method based on a trade-off between speed and accuracy.
alternative

[\{'two-sided', 'less', 'greater'\}, optional] Defines the alternative hypothesis. Default is ‘two-sided’. The following options are available:

- ‘two-sided’: the rank correlation is nonzero
- ‘less’: the rank correlation is negative (less than zero)
- ‘greater’: the rank correlation is positive (greater than zero)

**Returns**

- **correlation** [float] The Kendall tau statistic
- **pvalue** [float] The p-value

**References**

[1]

**scipy.stats.mstats.kendalltau_seasonal**

**scipy.stats.mstats.kendalltau_seasonal**(x)

Computes a multivariate Kendall’s rank correlation tau, for seasonal data.

**Parameters**

- **x** [2-D ndarray] Array of seasonal data, with seasons in columns.

**scipy.stats.mstats.linregress**

**scipy.stats.mstats.linregress**(x, y=None)

Linear regression calculation

Note that the non-masked version is used, and that this docstring is replaced by the non-masked docstring + some info on missing data.

**scipy.stats.mstats.siegelslopes**

**scipy.stats.mstats.siegelslopes**(y, x=None, method=’hierarchical’)

Computes the Siegel estimator for a set of points (x, y).

**siegelslopes** implements a method for robust linear regression using repeated medians to fit a line to the points (x, y). The method is robust to outliers with an asymptotic breakdown point of 50%.

**Parameters**

- **y** [array_like] Dependent variable.
- **x** [array_like or None, optional] Independent variable. If None, use arange(len(y)) instead.
- **method** [\{'hierarchical', 'separate'\}] If ‘hierarchical’, estimate the intercept using the estimated slope medslope (default option). If ‘separate’, estimate the intercept independent of the estimated slope. See Notes for details.

**Returns**

- **medslope** [float] Estimate of the slope of the regression line.
medintercept

[Float] Estimate of the intercept of the regression line.

See also:

theilslopes

A similar technique without repeated medians

Notes

For more details on siegelslopes, see scipy.stats.siegelslopes.

scipy.stats.mstats.theilslopes

scipy.stats.mstats.theilslopes(y=x=None, alpha=0.95, method='separate')
Computes the Theil-Sen estimator for a set of points (x, y).

theilslopes implements a method for robust linear regression. It computes the slope as the median of all slopes between paired values.

Parameters

y [array-like] Dependent variable.
x [array-like or None, optional] Independent variable. If None, use arange(len(y)) instead.
alpha [float, optional] Confidence degree between 0 and 1. Default is 95% confidence. Note that alpha is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as “find the 90% confidence interval”.
method [{'joint', 'separate'}, optional] Method to be used for computing estimate for intercept. Following methods are supported,
- ‘joint’: Uses np.median(y - medslope * x) as intercept.
- ‘separate’: Uses np.median(y) - medslope * np.median(x) as intercept.

The default is ‘separate’.
New in version 1.8.0.

Returns

medslope [float] Theil slope.
medintercept [float] Intercept of the Theil line, as median(y) - medslope*median(x).
lo_slope [float] Lower bound of the confidence interval on medslope.
up_slope [float] Upper bound of the confidence interval on medslope.

See also:

siegelslopes

A similar technique with repeated medians
Notes

For more details on `theilslopes`, see `stats.theilslopes`.

**scipy.stats.mstats.sen_seasonal_slopes**

scipy.stats.mstats.sen_seasonal_slopes(x)

### Statistical tests

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ttest_1samp(a, popmean[, axis, alternative])</code></td>
<td>Calculates the T-test for the mean of ONE group of scores.</td>
</tr>
<tr>
<td><code>ttest_onesamp(a, popmean[, axis, alternative])</code></td>
<td>Calculates the T-test for the mean of ONE group of scores.</td>
</tr>
<tr>
<td><code>ttest_ind(a, b[, axis, equal_var, alternative])</code></td>
<td>Calculates the T-test for the means of TWO INDEPENDENT samples of scores.</td>
</tr>
<tr>
<td><code>ttest_rel(a, b[, axis, alternative])</code></td>
<td>Calculates the T-test on TWO RELATED samples of scores, a and b.</td>
</tr>
<tr>
<td><code>chisquare(f_obs[, f_exp, ddof, axis])</code></td>
<td>Calculates a one-way chi-square test.</td>
</tr>
<tr>
<td><code>ks_2samp(data1, data2[, alternative, mode])</code></td>
<td>Computes the Kolmogorov-Smirnov test on two samples.</td>
</tr>
<tr>
<td><code>ks_1samp(x, cdf[, args, alternative, mode])</code></td>
<td>Computes the Kolmogorov-Smirnov test on one sample of masked values.</td>
</tr>
<tr>
<td><code>ks_twosamp(data1, data2[, alternative, mode])</code></td>
<td>Computes the Kolmogorov-Smirnov test on two samples.</td>
</tr>
<tr>
<td><code>mannwhitneyu(x, y[, use_continuity])</code></td>
<td>Computes the Mann-Whitney statistic.</td>
</tr>
<tr>
<td><code>rankdata(data[, axis, use_missing])</code></td>
<td>Returns the rank (also known as order statistics) of each data point along the given axis.</td>
</tr>
<tr>
<td><code>kruskal(*args)</code></td>
<td>Computes the Kruskal-Wallis H-test for independent samples.</td>
</tr>
<tr>
<td><code>kruskalwallis(*args)</code></td>
<td>Computes the Kruskal-Wallis H-test for independent samples.</td>
</tr>
<tr>
<td><code>friedmanchisquare(*args)</code></td>
<td>Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA.</td>
</tr>
<tr>
<td><code>brunnermunzel(x, y[, alternative, distribution])</code></td>
<td>Computes the Brunner-Munzel test on samples x and y.</td>
</tr>
<tr>
<td><code>skewtest(a[, axis, alternative])</code></td>
<td>Tests whether the skew is different from the normal distribution.</td>
</tr>
<tr>
<td><code>kurtosistest(a[, axis, alternative])</code></td>
<td>Tests whether a dataset has normal kurtosis.</td>
</tr>
<tr>
<td><code>normaltest(a[, axis])</code></td>
<td>Tests whether a sample differs from a normal distribution.</td>
</tr>
</tbody>
</table>
scipy.stats.mstats.ttest_1samp

Calculates the T-test for the mean of ONE group of scores.

Parameters

- `a` : array_like sample observation
- `popmean` : float or array_like expected value in null hypothesis, if array_like than it must have the same shape as `a` excluding the axis dimension
- `axis` : int or None, optional Axis along which to compute test. If None, compute over the whole array `a`.
- `alternative` : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is 'two-sided'):
  - 'two-sided': the mean of the underlying distribution of the sample is different than the given population mean (`popmean`)
  - 'less': the mean of the underlying distribution of the sample is less than the given population mean (`popmean`)
  - 'greater': the mean of the underlying distribution of the sample is greater than the given population mean (`popmean`)

New in version 1.7.0.

Returns

- `statistic` : float or array t-statistic
- `pvalue` : float or array The p-value

Notes

For more details on `ttest_1samp`, see `stats.ttest_1samp`.

scipy.stats.mstats.ttest_onessamp

Calculates the T-test for the mean of ONE group of scores.

Parameters

- `a` : array_like sample observation
- `popmean` : float or array_like expected value in null hypothesis, if array_like than it must have the same shape as `a` excluding the axis dimension
- `axis` : int or None, optional Axis along which to compute test. If None, compute over the whole array `a`.
- `alternative` : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is 'two-sided'):
  - 'two-sided': the mean of the underlying distribution of the sample is different than the given population mean (`popmean`)
  - 'less': the mean of the underlying distribution of the sample is less than the given population mean (`popmean`)
  - 'greater': the mean of the underlying distribution of the sample is greater than the given population mean (`popmean`)

New in version 1.7.0.
Returns

- **statistic** [float or array] t-statistic
- **pvalue** [float or array] The p-value

Notes

For more details on `ttest_1samp`, see `stats.ttest_1samp`.

scipy.stats.mstats.ttest_ind

```python
scipy.stats.mstats.ttest_ind(a, b, axis=0, equal_var=True, alternative='two-sided')
```

Calculates the T-test for the means of TWO INDEPENDENT samples of scores.

Parameters

- **a, b** [array_like] The arrays must have the same shape, except in the dimension corresponding to `axis` (the first, by default).
- **axis** [int or None, optional] Axis along which to compute test. If None, compute over the whole arrays, a, and b.
- **equal_var** [bool, optional] If True, perform a standard independent 2 sample test that assumes equal population variances. If False, perform Welch’s t-test, which does not assume equal population variance.
  New in version 0.17.0.
- **alternative** [{'two-sided', 'less', 'greater'}, optional] Defines the alternative hypothesis. The following options are available (default is ‘two-sided’):
  - ‘two-sided’: the means of the distributions underlying the samples are unequal.
  - ‘less’: the mean of the distribution underlying the first sample is less than the mean of the distribution underlying the second sample.
  - ‘greater’: the mean of the distribution underlying the first sample is greater than the mean of the distribution underlying the second sample.
  New in version 1.7.0.

Returns

- **statistic** [float or array] The calculated t-statistic.
- **pvalue** [float or array] The p-value.

Notes

For more details on `ttest_ind`, see `stats.ttest_ind`.

scipy.stats.mstats.ttest_rel

```python
scipy.stats.mstats.ttest_rel(a, b, axis=0, alternative='two-sided')
```

Calculates the T-test on TWO RELATED samples of scores, a and b.

Parameters

- **a, b** [array_like] The arrays must have the same shape.
- **axis** [int or None, optional] Axis along which to compute test. If None, compute over the whole arrays, a, and b.
alternative

[{'two-sided', 'less', 'greater'}, optional] Defines the alternative hypothesis. The following options are available (default is 'two-sided'):
• 'two-sided': the means of the distributions underlying the samples are unequal.
• 'less': the mean of the distribution underlying the first sample is less than the mean of the distribution underlying the second sample.
• 'greater': the mean of the distribution underlying the first sample is greater than the mean of the distribution underlying the second sample.

Returns

statistic  [float or array] t-statistic
pvalue     [float or array] two-tailed p-value

Notes

For more details on ttest_rel, see stats.ttest_rel.

scipy.stats.mstats.chisquare

scipy.stats.mstats.chisquare (f_obs, f_exp=None, ddof=0, axis=0)

Calculate a one-way chi-square test.

The chi-square test tests the null hypothesis that the categorical data has the given frequencies.

Parameters

f_obs          [array_like] Observed frequencies in each category.
f_exp          [array_like, optional] Expected frequencies in each category. By default the categories are assumed to be equally likely.

ddof           [int, optional] “Delta degrees of freedom”: adjustment to the degrees of freedom for the p-value. The p-value is computed using a chi-squared distribution with \( k - 1 - \text{ddof} \) degrees of freedom, where \( k \) is the number of observed frequencies. The default value of \( \text{ddof} \) is 0.

axis           [int or None, optional] The axis of the broadcast result of \( f_{\text{obs}} \) and \( f_{\text{exp}} \) along which to apply the test. If axis is None, all values in \( f_{\text{obs}} \) are treated as a single data set. Default is 0.

Returns

chisq          [float or ndarray] The chi-squared test statistic. The value is a float if axis is None or \( f_{\text{obs}} \) and \( f_{\exp} \) are 1-D.
p             [float or ndarray] The p-value of the test. The value is a float if \( \text{ddof} \) and the return value chisq are scalars.

See also:

scipy.stats.power_divergence
scipy.stats.fisher_exact

Fisher exact test on a 2x2 contingency table.

scipy.stats.barnard_exact

An unconditional exact test. An alternative to chi-squared test for small sample sizes.
Notes

This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5. According to [3], the total number of samples is recommended to be greater than 13, otherwise exact tests (such as Barnard’s Exact test) should be used because they do not overreject.

Also, the sum of the observed and expected frequencies must be the same for the test to be valid; `chisquare` raises an error if the sums do not agree within a relative tolerance of $1\text{e}-8$.

The default degrees of freedom, $k-1$, are for the case when no parameters of the distribution are estimated. If $p$ parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are $k-1-p$. If the parameters are estimated in a different way, then the dof can be between $k-1-p$ and $k-1$. However, it is also possible that the asymptotic distribution is not chi-square, in which case this test is not appropriate.

References

[1], [2], [3]

Examples

When just $f_{obs}$ is given, it is assumed that the expected frequencies are uniform and given by the mean of the observed frequencies.

```python
>>> from scipy.stats import chisquare
>>> chisquare([16, 18, 16, 14, 12, 12])
(2.0, 0.84914503608460956)
```

With $f_{exp}$ the expected frequencies can be given.

```python
>>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8])
(3.5, 0.62338762774958223)
```

When $f_{obs}$ is 2-D, by default the test is applied to each column.

```python
>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> chisquare(obs)
(array([2. , 6.66666667]), array([0.84914504, 0.24663415]))
```

By setting `axis=None`, the test is applied to all data in the array, which is equivalent to applying the test to the flattened array.

```python
>>> chisquare(obs, axis=None)
(23.31034482758621, 0.015975692534127565)
>>> chisquare(obs.ravel())
(23.31034482758621, 0.015975692534127565)
```

`ddof` is the change to make to the default degrees of freedom.

```python
>>> chisquare([16, 18, 16, 14, 12, 12], ddof=1)
(2.0, 0.73575888234288467)
```
The calculation of the p-values is done by broadcasting the chi-squared statistic with `ddof`.

```python
>>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
(2.0, array([0.84914504, 0.73575888, 0.5724067]))
```

`f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting `f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared statistics, we use `axis=1`:

```python
>>> chisquare([16, 18, 16, 14, 12, 12],
 ... f_exp=[[16, 16, 16, 16, 16, 8],
 ... [8, 20, 20, 16, 12, 12]],
 ... axis=1)
(array([3.5 , 9.25]), array([0.62338763, 0.09949846]))
```

### scipy.stats.mstats.kstest

**scipy.stats.mstats.kstest** *(data1, data2, args=(), alternative='two-sided', mode='auto')*

**Parameters**

- **data1** [array_like]
- **data2** [str, callable or array_like]
- **args** [tuple, sequence, optional] Distribution parameters, used if `data1` or `data2` are strings.
- **alternative** [str, as documented in stats.kstest]
- **mode** [str, as documented in stats.kstest]

**Returns**

tuple of (K-S statistic, probability)

### scipy.stats.mstats.ks_2samp

**scipy.stats.mstats.ks_2samp** *(data1, data2, alternative='two-sided', mode='auto')*

Computes the Kolmogorov-Smirnov test on two samples.

Missing values in `x` and/or `y` are discarded.

**Parameters**

- **data1** [array_like] First data set
- **data2** [array_like] Second data set
- **alternative** [‘two-sided’, ‘less’, ‘greater’], optional] Indicates the alternative hypothesis. Default is ‘two-sided’.
- **mode** [‘auto’, ‘exact’, ‘asymp’], optional] Defines the method used for calculating the p-value. The following options are available (default is ‘auto’):
  - ‘auto’: use ‘exact’ for small size arrays, ‘asymp’ for large
  - ‘exact’: use approximation to exact distribution of test statistic
  - ‘asymp’: use asymptotic distribution of test statistic

**Returns**

- **d** [float] Value of the Kolmogorov Smirnov test
- **p** [float] Corresponding p-value.
scipy.stats.mstats.ks_1samp

Computes the Kolmogorov-Smirnov test on one sample of masked values.

Parameters

- **x**: [array_like] a 1-D array of observations of random variables.
- **cdf**: [str or callable] If a string, it should be the name of a distribution in `scipy.stats`. If a callable, that callable is used to calculate the cdf.
- **args**: [tuple, sequence, optional] Distribution parameters, used if `cdf` is a string.
- **alternative**: [{‘two-sided’, ‘less’, ‘greater’}, optional] Indicates the alternative hypothesis. Default is ‘two-sided’.
- **mode**: [{‘auto’, ‘exact’, ‘asymp’}, optional] Defines the method used for calculating the p-value. The following options are available (default is ‘auto’):
  - ‘auto’: use ‘exact’ for small size arrays, ‘asymp’ for large
  - ‘exact’: use approximation to exact distribution of test statistic
  - ‘asymp’: use asymptotic distribution of test statistic

Returns

- **d**: [float] Value of the Kolmogorov Smirnov test
- **p**: [float] Corresponding p-value.

scipy.stats.mstats.ks_twosamp

Computes the Kolmogorov-Smirnov test on two samples.

Parameters

- **data1**: [array_like] First data set
- **data2**: [array_like] Second data set
- **alternative**: [{‘two-sided’, ‘less’, ‘greater’}, optional] Indicates the alternative hypothesis. Default is ‘two-sided’.
- **mode**: [{‘auto’, ‘exact’, ‘asymp’}, optional] Defines the method used for calculating the p-value. The following options are available (default is ‘auto’):
  - ‘auto’: use ‘exact’ for small size arrays, ‘asymp’ for large
  - ‘exact’: use approximation to exact distribution of test statistic
  - ‘asymp’: use asymptotic distribution of test statistic

Returns

- **d**: [float] Value of the Kolmogorov Smirnov test
- **p**: [float] Corresponding p-value.
scipy.stats.mstats.mannwhitneyu

**scipy.stats.mstats.mannwhitneyu** *(x, y, use_continuity=True)*

Computes the Mann-Whitney statistic

Missing values in x and/or y are discarded.

**Parameters**

- **x** [sequence] Input
- **y** [sequence] Input
- **use_continuity** [{True, False}, optional] Whether a continuity correction (1/2.) should be taken into account.

**Returns**

- **statistic** [float] The minimum of the Mann-Whitney statistics
- **pvalue** [float] Approximate two-sided p-value assuming a normal distribution.

scipy.stats.mstats.rankdata

**scipy.stats.mstats.rankdata** *(data, axis=None, use_missing=False)*

Returns the rank (also known as order statistics) of each data point along the given axis.

If some values are tied, their rank is averaged. If some values are masked, their rank is set to 0 if use_missing is False, or set to the average rank of the unmasked values if use_missing is True.

**Parameters**

- **data** [sequence] Input data. The data is transformed to a masked array
- **axis** [{None, int}, optional] Axis along which to perform the ranking. If None, the array is first flattened. An exception is raised if the axis is specified for arrays with a dimension larger than 2
- **use_missing** [bool, optional] Whether the masked values have a rank of 0 (False) or equal to the average rank of the unmasked values (True).

scipy.stats.mstats.kruskal

**scipy.stats.mstats.kruskal** *(*args)*

Compute the Kruskal-Wallis H-test for independent samples

**Parameters**

- **sample1, sample2, …** [array_like] Two or more arrays with the sample measurements can be given as arguments.

**Returns**

- **statistic** [float] The Kruskal-Wallis H statistic, corrected for ties
- **pvalue** [float] The p-value for the test using the assumption that H has a chi square distribution
Notes

For more details on `kruskal`, see `stats.kruskal`.

Examples

```python
>>> from scipy.stats.mstats import kruskal
```

Random samples from three different brands of batteries were tested to see how long the charge lasted. Results were as follows:

```python
>>> a = [6.3, 5.4, 5.7, 5.2, 5.0]
>>> b = [6.9, 7.0, 6.1, 7.9]
>>> c = [7.2, 6.9, 6.1, 6.5]
```

Test the hypothesis that the distribution functions for all of the brands’ durations are identical. Use 5% level of significance.

```python
>>> kruskal(a, b, c)
KruskalResult(statistic=7.113812154696133, pvalue=0.028526948491942164)
```

The null hypothesis is rejected at the 5% level of significance because the returned p-value is less than the critical value of 5%.

`scipy.stats.mstats.kruskalwallis`

`scipy.stats.mstats.kruskalwallis(*args)`

Compute the Kruskal-Wallis H-test for independent samples

Parameters

- `sample1, sample2, ...`
  - [array_like] Two or more arrays with the sample measurements can be given as arguments.

Returns

- `statistic` [float] The Kruskal-Wallis H statistic, corrected for ties
- `pvalue` [float] The p-value for the test using the assumption that H has a chi square distribution

Notes

For more details on `kruskal`, see `stats.kruskal`.

Examples

```python
>>> from scipy.stats.mstats import kruskal
```

Random samples from three different brands of batteries were tested to see how long the charge lasted. Results were as follows:
Test the hypothesis that the distribution functions for all of the brands’ durations are identical. Use 5% level of significance.

```python
>>> a = [6.3, 5.4, 5.7, 5.2, 5.0]
>>> b = [6.9, 7.0, 6.1, 7.9]
>>> c = [7.2, 6.9, 6.1, 6.5]
```

```python
>>> kruskal(a, b, c)
KruskalResult(statistic=7.113812154696133, pvalue=0.028526948491942164)
```

The null hypothesis is rejected at the 5% level of significance because the returned p-value is less than the critical value of 5%.

**scipy.stats.mstats.friedmanchisquare**

```python
scipy.stats.mstats.friedmanchisquare(*args)
```

Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA. This function calculates the Friedman Chi-square test for repeated measures and returns the result, along with the associated probability value.

Each input is considered a given group. Ideally, the number of treatments among each group should be equal. If this is not the case, only the first n treatments are taken into account, where n is the number of treatments of the smallest group. If a group has some missing values, the corresponding treatments are masked in the other groups. The test statistic is corrected for ties.

Masked values in one group are propagated to the other groups.

*Returns*

- **statistic**: [float] the test statistic.
- **pvalue**: [float] the associated p-value.

**scipy.stats.mstats.brunnermunzel**

```python
scipy.stats.mstats.brunnermunzel(x, y, alternative='two-sided', distribution='t')
```

Computes the Brunner-Munzel test on samples x and y

Missing values in x and/or y are discarded.

*Parameters*

- **x, y**: [array_like] Array of samples, should be one-dimensional.
- **alternative**: ['less', 'two-sided', or 'greater', optional] Whether to get the p-value for the one-sided hypothesis (‘less’ or ‘greater’) or for the two-sided hypothesis (‘two-sided’). Defaults value is ‘two-sided’.
- **distribution**: ‘t’ or ‘normal’, optional
  Whether to get the p-value by t-distribution or by standard normal distribution. Defaults value is ‘t’.

*Returns*

- **statistic**: [float] The Brunner-Munzer W statistic.
- **pvalue**: [float] p-value assuming an t distribution. One-sided or two-sided, depending on the choice of alternative and distribution.

See also:
mannwhitneyu

Mann-Whitney rank test on two samples.

Notes

For more details on brunnermunzel, see stats.brunnermunzel.

scipy.stats.mstats.skewtest

scipy.stats.mstats.skewtest(a, axis=0, alternative='two-sided')

Tests whether the skew is different from the normal distribution.

Parameters

- **a** [array_like] The data to be tested
- **axis** [int or None, optional] Axis along which statistics are calculated. Default is 0. If None, compute over the whole array a.
- **alternative** [{‘two-sided’, ‘less’, ‘greater’}, optional] Defines the alternative hypothesis. Default is ‘two-sided’. The following options are available:
  • ‘two-sided’: the skewness of the distribution underlying the sample is different from that of the normal distribution (i.e. 0)
  • ‘less’: the skewness of the distribution underlying the sample is less than that of the normal distribution
  • ‘greater’: the skewness of the distribution underlying the sample is greater than that of the normal distribution

New in version 1.7.0.

Returns

- **statistic** [array_like] The computed z-score for this test.
- **pvalue** [array_like] A p-value for the hypothesis test

Notes

For more details about skewtest, see stats.skewtest.

scipy.stats.mstats.kurtosistest

scipy.stats.mstats.kurtosistest(a, axis=0, alternative='two-sided')

Tests whether a dataset has normal kurtosis

Parameters

- **a** [array_like] array of the sample data
- **axis** [int or None, optional] Axis along which to compute test. Default is 0. If None, compute over the whole array a.
- **alternative** [{‘two-sided’, ‘less’, ‘greater’}, optional] Defines the alternative hypothesis. The following options are available (default is ‘two-sided’):
  • ‘two-sided’: the kurtosis of the distribution underlying the sample is different from that of the normal distribution
• ‘less’: the kurtosis of the distribution underlying the sample is less than that of the normal distribution
• ‘greater’: the kurtosis of the distribution underlying the sample is greater than that of the normal distribution

New in version 1.7.0.

Returns

statistic [array_like] The computed z-score for this test.
pvalue [array_like] The p-value for the hypothesis test

Notes

For more details about kurtosistest, see stats.kurtosistest.

scipy.stats.mstats.normaltest

scipy.stats.mstats.normaltest(a, axis=0)
Tests whether a sample differs from a normal distribution.

Parameters

a [array_like] The array containing the data to be tested.
axis [int or None, optional] Axis along which to compute test. Default is 0. If None, compute over the whole array a.

Returns

statistic [float or array] \( s^2 + k^2 \), where \( s \) is the z-score returned by skewtest and \( k \) is the z-score returned by kurtosistest.
pvalue [float or array] A 2-sided chi squared probability for the hypothesis test.

Notes

For more details about normaltest, see stats.normaltest.

Transformations

obrientransform(*args) Computes a transform on input data (any number of columns).
trim(a[, limits, inclusive, relative, axis]) Trims an array by masking the data outside some given limits.
trima(a[, limits, inclusive]) Trims an array by masking the data outside some given limits.
trimmed_stde(a[, limits, inclusive, axis]) Returns the standard error of the trimmed mean along the given axis.
trimr(a[, limits, inclusive, axis]) Trims an array by masking some proportion of the data on each end.
trimtail(data[, proportiontocut, tail, ...]) Trims the data by masking values from one tail.
trimboth(data[, proportiontocut, inclusive, ...]) Trims the smallest and largest data values.
winsorize(a[, limits, inclusive, inplace, ...]) Returns a Winsorized version of the input array.

continues on next page
Table 290 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{zmap(scores, compare[, axis, ddof, nan_policy])}</td>
<td>Calculate the relative z-scores.</td>
</tr>
<tr>
<td>\texttt{zscore(a[, axis, ddof, nan_policy])}</td>
<td>Compute the z score.</td>
</tr>
</tbody>
</table>

\texttt{scipy.stats.mstats.obrientransform}

\texttt{scipy.stats.mstats.obrientransform(*args)}

Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior to running one-way stats. Each array in *args is one level of a factor. If an \texttt{f_oneway()} run on the transformed data and found significant, variances are unequal. From Maxwell and Delaney, p.112.

Returns: transformed data for use in an ANOVA

\texttt{scipy.stats.mstats.trim}

\texttt{scipy.stats.mstats.trim(a, limits=None, inclusive=(True, True), relative=False, axis=None)}

Trims an array by masking the data outside some given limits.

Returns a masked version of the input array.

**Parameters**

- \texttt{a} [sequence] Input array
- \texttt{limits} [[None, tuple], optional] If relative is False, tuple (lower limit, upper limit) in absolute values. Values of the input array lower (greater) than the lower (upper) limit are masked. If relative is True, tuple (lower percentage, upper percentage) to cut on each side of the array, with respect to the number of unmasked data. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)) In each case, the value of one limit can be set to None to indicate an open interval. If limits is None, no trimming is performed
- \texttt{inclusive} [[(bool, bool) tuple], optional] If relative is False, tuple indicating whether values exactly equal to the absolute limits are allowed. If relative is True, tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False).
- \texttt{relative} [bool, optional] Whether to consider the limits as absolute values (False) or proportions to cut (True).
- \texttt{axis} [int, optional] Axis along which to trim.

**Examples**

```python
>>> from scipy.stats.mstats import trim
>>> z = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> print(trim(z,(3,8)))
[-- -- 3 4 5 6 7 8 -- --]
>>> print(trim(z,(0.1,0.2),relative=True))
[-- 2 3 4 5 6 7 8 -- --]
```
scipy.stats.mstats.trim

scipy.stats.mstats.trim(a, limits=None, inclusive=(True, True))
Trims an array by masking the data outside some given limits.
Returns a masked version of the input array.

Parameters

- a [array_like] Input array.
- limits [{None, tuple}, optional] Tuple of (lower limit, upper limit) in absolute values. Values of the input array lower (greater) than the lower (upper) limit will be masked. A limit is None indicates an open interval.
- inclusive [{bool, bool} tuple, optional] Tuple of (lower flag, upper flag), indicating whether values exactly equal to the lower (upper) limit are allowed.

Examples

```python
>>> from scipy.stats.mstats import trim

>>> a = np.arange(10)

The interval is left-closed and right-open, i.e., [2, 8). Trim the array by keeping only values in the interval.

```python
>>> trima(a, limits=(2, 8), inclusive=(True, False))
masked_array(data=[--,-,-,2,3,4,5,6,7,--],
mask=[ True, True, False, False, False, False, False, False, True, True],
fill_value=999999)
```
scipy.stats.mstats.trim

scipy.stats.mstats.trim(r, limits=None, inclusive=(True, True), axis=None)

Trims an array by masking some proportion of the data on each end. Returns a masked version of the input array.

Parameters

a [sequence] Input array.
limits [{None, tuple}, optional] Tuple of the percentages to cut on each side of the array, with respect to the number of unmasked data, as floats between 0. and 1. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)). The value of one limit can be set to None to indicate an open interval.
inclusive [{(True,True) tuple}, optional] Tuple of flags indicating whether the number of data being masked on the left (right) end should be truncated (True) or rounded (False) to integers.
axis [{None,int}, optional] Axis along which to trim. If None, the whole array is trimmed, but its shape is maintained.

scipy.stats.mstats.trimtail

scipy.stats.mstats.trimtail(data, proportiontocut=0.2, tail='left', inclusive=(True, True), axis=None)

Trims the data by masking values from one tail.

Parameters

data [array_like] Data to trim.
proportiontocut [float, optional] Percentage of trimming. If n is the number of unmasked values before trimming, the number of values after trimming is (1 - proportiontocut) * n. Default is 0.2.
tail [{‘left’,’right’}, optional] If ‘left’ the proportiontocut lowest values will be masked. If ‘right’ the proportiontocut highest values will be masked. Default is ‘left’.
inclusive [{(bool, bool) tuple}, optional] Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). Default is (True, True).
axis [int, optional] Axis along which to perform the trimming. If None, the input array is first flattened. Default is None.

Returns

trimtail [ndarray] Returned array of same shape as data with masked tail values.

scipy.stats.mstats.trimboth

scipy.stats.mstats.trimboth(data, proportiontocut=0.2, inclusive=(True, True), axis=None)

Trims the smallest and largest data values.

Trims the data by masking the int(proportiontocut * n) smallest and int(proportiontocut * n) largest values of data along the given axis, where n is the number of unmasked values before trimming.

Parameters

data [ndarray] Data to trim.
proportiontocut [float, optional] Percentage of trimming (as a float between 0 and 1). If n is the number of unmasked values before trimming, the number of values after trimming is (1 - 2*proportiontocut) * n. Default is 0.2.
inclusive {{(bool, bool) tuple}, optional} Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False).

axis [int, optional] Axis along which to perform the trimming. If None, the input array is first flattened.

scipy.stats.mstats.winsorize

scipy.stats.mstats.winsorize (a, limits=None, inclusive=(True, True), inplace=False, axis=None, nan_policy='propagate')

Returns a Winsorized version of the input array.

The (limits[0])th lowest values are set to the (limits[0])th percentile, and the (limits[1])th highest values are set to the (1 - limits[1])th percentile. Masked values are skipped.

Parameters

a [sequence] Input array.

limits [{None, tuple of float}, optional] Tuple of the percentages to cut on each side of the array, with respect to the number of unmasked data, as floats between 0. and 1. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)) The value of one limit can be set to None to indicate an open interval.

inclusive {{(True, True) tuple}, optional} Tuple indicating whether the number of data being masked on each side should be truncated (True) or rounded (False).

inplace [{False, True}, optional] Whether to winsorize in place (True) or to use a copy (False)

axis [{None, int}, optional] Axis along which to trim. If None, the whole array is trimmed, but its shape is maintained.

nan_policy [{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. The following options are available (default is 'propagate'):

• 'propagate': allows nan values and may overwrite or propagate them
• 'raise': throws an error
• 'omit': performs the calculations ignoring nan values

Notes

This function is applied to reduce the effect of possibly spurious outliers by limiting the extreme values.

Examples

```python
>>> from scipy.stats.mstats import winsorize

A shuffled array contains integers from 1 to 10.

>>> a = np.array([10, 4, 9, 8, 5, 3, 7, 2, 1, 6])

The 10% of the lowest value (i.e., 1) and the 20% of the highest values (i.e., 9 and 10) are replaced.

>>> winsorize(a, limits=[0.1, 0.2])
masked_array(data=[8, 4, 8, 8, 5, 3, 7, 2, 2, 6],
    mask=False,
    fill_value=999999)```
scipy.stats.mstats.zmap

scipy.stats.mstats.zmap(scores, compare, axis=0, ddof=0, nan_policy='propagate')

Calculate the relative z-scores.

Return an array of z-scores, i.e., scores that are standardized to zero mean and unit variance, where mean and variance are calculated from the comparison array.

Parameters

scores [array_like] The input for which z-scores are calculated.
compare [array_like] The input from which the mean and standard deviation of the normalization are taken; assumed to have the same dimension as scores.
axis [int or None, optional] Axis over which mean and variance of compare are calculated. Default is 0. If None, compute over the whole array scores.
ddof [int, optional] Degrees of freedom correction in the calculation of the standard deviation. Default is 0.
nan_policy [{'propagate', 'raise', 'omit'}, optional] Defines how to handle the occurrence of nans in compare. 'propagate' returns nan, 'raise' raises an exception, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Note that when the value is 'omit', nans in scores also propagate to the output, but they do not affect the z-scores computed for the non-nan values.

Returns

zscore [array_like] Z-scores, in the same shape as scores.

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray instead of asarray for parameters).

Examples

```python
>>> from scipy.stats import zmap
>>> a = [0.5, 2.0, 2.5, 3]
>>> b = [0, 1, 2, 3, 4]
>>> zmap(a, b)
array([-1.06066017, 0. , 0.35355339, 0.70710678])
```

scipy.stats.mstats.zscore

scipy.stats.mstats.zscore(a, axis=0, ddof=0, nan_policy='propagate')

Compute the z score.

Compute the z score of each value in the sample, relative to the sample mean and standard deviation.

Parameters

a [array_like] An array like object containing the sample data.
axis [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the whole array a.
**ddof**

[int, optional] Degrees of freedom correction in the calculation of the standard deviation.
Default is 0.

**nan_policy**

[{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Note that when the value is 'omit', nans in the input also propagate to the output, but they do not affect the z-scores computed for the non-nan values.

**Returns**

**zscore**

[array_like] The z-scores, standardized by mean and standard deviation of input array a.

**Notes**

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray instead of asarray for parameters).

**Examples**

```python
>>> a = np.array([0.7972, 0.0767, 0.4383, 0.7866, 0.8091,
... 0.1954, 0.6307, 0.6599, 0.1065, 0.0508])
>>> from scipy import stats
>>> stats.zscore(a)
array([-1.0865, -1.3359, -0.2484, -0.1757, -1.1297, 1.4565, 0.7373,
... 1.3466, 0.3343, 0.8485])
```

Computing along a specified axis, using n-1 degrees of freedom (ddof=1) to calculate the standard deviation:

```python
>>> b = np.array([[0.3148, 0.0478, 0.6243, 0.4608],
... [0.7149, 0.0775, 0.6072, 0.9656],
... [0.6341, 0.1403, 0.9759, 0.4064],
... [0.5918, 0.6948, 0.904, 0.3721],
... [0.0921, 0.2481, 0.1188, 0.1366]])
>>> stats.zscore(b, axis=1, ddof=1)
array([[0.22776787, -0.4389014 , -0.99305078, 0.60698406, 0.91798688, 1.06797784],
... [-0.00658484, -1.29208619, -1.38400689, 0.59628364, -1.1198157 , -0.82616843],
... [1.37451273, -1.12269302, -0.11014247, 0.41397298, -1.00054734, 1.34412843],
... [1.084122 , -0.27156374, 0.50062886, -0.28313232, -1.27877711, -0.12966104],
... [0.56685613, -0.45007652, -0.33210332, 1.26494749, 0.11238348, 0.8455314]])
```

An example with nan_policy='omit':

```python
>>> x = np.array([[25.11, 30.10, np.nan, 32.02, 43.15],
... [14.95, 16.06, 121.25, 94.35, 29.81]])
>>> stats.zscore(x, axis=1, nan_policy='omit')
array([-1.13490897, -0.37830299, nan, -0.08718406, 1.60039602, 1.4983032, 0.88731639, -0.5785977])
```
### Other

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>argstoarray(*args)</code></td>
<td>Constructs a 2D array from a group of sequences.</td>
</tr>
<tr>
<td><code>count_tied_groups(x[, use_missing])</code></td>
<td>Counts the number of tied values.</td>
</tr>
<tr>
<td><code>msign(x)</code></td>
<td>Returns the sign of x, or 0 if x is masked.</td>
</tr>
<tr>
<td><code>compare_medians_ms(group_1, group_2[, axis])</code></td>
<td>Compares the medians from two independent groups along the given axis.</td>
</tr>
<tr>
<td><code>median_cihs(data[, alpha, axis])</code></td>
<td>Computes the alpha-level confidence interval for the median of the data.</td>
</tr>
<tr>
<td><code>mjci(data[, prob, axis])</code></td>
<td>Returns the Maritz-Jarrett estimators of the standard error of selected experimental quantiles of the data.</td>
</tr>
<tr>
<td><code>mquantiles_cimj(data[, prob, alpha, axis])</code></td>
<td>Computes the alpha confidence interval for the selected quantiles of the data, with Maritz-Jarrett estimators.</td>
</tr>
<tr>
<td><code>rsh(data[, points])</code></td>
<td>Evaluates Rosenblatt’s shifted histogram estimators for each data point.</td>
</tr>
</tbody>
</table>

### scipy.stats.mstats.argstoarray

**scipy.stats.mstats.argstoarray(*args)**

Constructs a 2D array from a group of sequences.

Sequences are filled with missing values to match the length of the longest sequence.

**Parameters**

- **args**: [sequences] Group of sequences.

**Returns**

- **argstoarray**: [MaskedArray] A \((m \times n)\) masked array, where \(m\) is the number of arguments and \(n\) the length of the longest argument.

**Notes**

`numpy.ma.row_stack` has identical behavior, but is called with a sequence of sequences.

**Examples**

A 2D masked array constructed from a group of sequences is returned.

```python
>>> from scipy.stats.mstats import argstoarray
>>> argstoarray([1, 2, 3], [4, 5, 6])
masked_array(
 data=[[1.0, 2.0, 3.0],
 [4.0, 5.0, 6.0]],
 mask=[[False, False, False],
 [False, False, False]],
 fill_value=1e+20)
```

The returned masked array filled with missing values when the lengths of sequences are different.
```python
>>> argstoarray([[1], [4]])
array([[1], [4]])
```

### scipy.stats.mstats.count_tied_groups

**scipy.stats.mstats.count_tied_groups**

Counts the number of tied values.

**Parameters**

- `x` : [sequence] Sequence of data on which to count the ties.
- `use_missing` : [bool, optional] Whether to consider missing values as tied.

**Returns**

- `count_tied_groups` : [dict] Returns a dictionary (nb of ties: nb of groups).

**Examples**

```python
>>> from scipy.stats import mstats
>>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6]
>>> mstats.count_tied_groups(z)
{2: 1, 3: 2}
```

In the above example, the ties were 0 (3x), 2 (3x) and 3 (2x).

```python
>>> z = np.ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6])
>>> mstats.count_tied_groups(z)
{2: 2, 3: 1}
>>> z[[1,-1]] = np.ma.masked
>>> mstats.count_tied_groups(z, use_missing=True)
{2: 2, 3: 1}
```

### scipy.stats.mstats.msign

**scipy.stats.mstats.msign**

Returns the sign of x, or 0 if x is masked.
scipy.stats.mstats.compare_medians_ms

**scipy.stats.mstats.compare_medians_ms (group_1, group_2, axis=None)**

Compares the medians from two independent groups along the given axis.

The comparison is performed using the McKean-Schrader estimate of the standard error of the medians.

**Parameters**

- **group_1** [array_like] First dataset. Has to be of size >=7.
- **group_2** [array_like] Second dataset. Has to be of size >=7.
- **axis** [int, optional] Axis along which the medians are estimated. If None, the arrays are flattened. If `axis` is not None, then `group_1` and `group_2` should have the same shape.

**Returns**

- **compare_medians_ms** [{float, ndarray}] If `axis` is None, then returns a float, otherwise returns a 1-D ndarray of floats with a length equal to the length of `group_1` along `axis`.

scipy.stats.mstats.median_cihs

**scipy.stats.mstats.median_cihs (data, alpha=0.05, axis=None)**

Computes the alpha-level confidence interval for the median of the data.

Uses the Hettmasperger-Sheather method.

**Parameters**

- **data** [array_like] Input data. Masked values are discarded. The input should be 1D only, or `axis` should be set to None.
- **alpha** [float, optional] Confidence level of the intervals.
- **axis** [int or None, optional] Axis along which to compute the quantiles. If None, use a flattened array.

**Returns**

- **median_cihs** Alpha level confidence interval.

scipy.stats.mstats.mjci

**scipy.stats.mstats.mjci (data, prob=[0.25, 0.5, 0.75], axis=None)**

Returns the Maritz-Jarrett estimators of the standard error of selected experimental quantiles of the data.

**Parameters**

- **data** [ndarray] Data array.
- **prob** [sequence, optional] Sequence of quantiles to compute.
- **axis** [int or None, optional] Axis along which to compute the quantiles. If None, use a flattened array.
**scipy.stats.mstats.mquantiles_cimj**

**scipy.stats.mstats.mquantiles_cimj**(*data*, *prob=[0.25, 0.5, 0.75], *alpha=0.05, axis=None*)

Computes the alpha confidence interval for the selected quantiles of the data, with Maritz-Jarrett estimators.

**Parameters**

- **data**: [ndarray] Data array.
- **prob**: [sequence, optional] Sequence of quantiles to compute.
- **alpha**: [float, optional] Confidence level of the intervals.
- **axis**: [int or None, optional] Axis along which to compute the quantiles. If None, use a flattened array.

**Returns**

- **ci_lower**: [ndarray] The lower boundaries of the confidence interval. Of the same length as prob.
- **ci_upper**: [ndarray] The upper boundaries of the confidence interval. Of the same length as prob.

**scipy.stats.mstats.rsh**

**scipy.stats.mstats.rsh**(*data*, *points=None*)

Evaluates Rosenblatt’s shifted histogram estimators for each data point.

Rosenblatt’s estimator is a centered finite-difference approximation to the derivative of the empirical cumulative distribution function.

**Parameters**

- **data**: [sequence] Input data, should be 1-D. Masked values are ignored.
- **points**: [sequence or None, optional] Sequence of points where to evaluate Rosenblatt shifted histogram. If None, use the data.

**Other statistical functionality**

**Transformations**

- **boxcox(x[, lmbda, alpha, optimizer])**: Return a dataset transformed by a Box-Cox power transformation.
- **boxcox_normmax(x[, brack, method, optimizer])**: Compute optimal Box-Cox transform parameter for input data.
- **boxcox llf(lmb, data)**: The boxcox log-likelihood function.
- **yeojohnson(x[, lmbda])**: Return a dataset transformed by a Yeo-Johnson power transformation.
- **yeojohnson normmax(x[, brack])**: Compute optimal Yeo-Johnson transform parameter.
- **yeojohnson llf(lmb, data)**: The yeojohnson log-likelihood function.
- **obrientransform(*args)**: Compute the O’Brien transform on input data (any number of arrays).
- **sigmaclip(a[, low, high])**: Perform iterative sigma-clipping of array elements.
- **trimboth(a, proportiontocut[, axis])**: Slice off a proportion of items from both ends of an array.
- **trim1(a, proportiontocut[, tail, axis])**: Slice off a proportion from ONE end of the passed array distribution.
- **zmap(scores, compare[, axis, ddof, nan_policy])**: Calculate the relative z-scores.
- **zscore(a[, axis, ddof, nan_policy])**: Compute the z score.
- **gzscore(a, *[a, axis, ddof, nan_policy])**: Compute the geometric standard score.
scipy.stats.boxcox

scipy.stats.boxcox(x, lmbda=None, alpha=None, optimizer=None)
Return a dataset transformed by a Box-Cox power transformation.

Parameters

**x**
- [ndarray] Input array. Must be positive 1-dimensional. Must not be constant.

**lmbda**
- [[None, scalar], optional] If `lmbda` is not None, do the transformation for that value. If `lmbda` is None, find the lambda that maximizes the log-likelihood function and return it as the second output argument.

**alpha**
- [[None, float], optional] If `alpha` is not None, return the 100 * (1-alpha) % confidence interval for `lmbda` as the third output argument. Must be between 0.0 and 1.0.

**optimizer**
- [callable, optional] If `lmbda` is None, `optimizer` is the scalar optimizer used to find the value of `lmbda` that minimizes the negative log-likelihood function. `optimizer` is a callable that accepts one argument:

  **fun**
  - [callable] The objective function, which evaluates the negative log-likelihood function at a provided value of `lmbda` and returns an object, such as an instance of `scipy.optimize.OptimizeResult`, which holds the optimal value of `lmbda` in an attribute `x`.

See the example in `boxcox_normmax` or the documentation of `scipy.optimize.minimize_scalar` for more information.
If `lmbda` is not None, `optimizer` is ignored.

Returns

**boxcox**
- [ndarray] Box-Cox power transformed array.

**maxlog**
- [float, optional] If the `lmbda` parameter is None, the second returned argument is the lambda that maximizes the log-likelihood function.

*(min_ci, max_ci)*
- [tuple of float, optional] If `lmbda` parameter is None and `alpha` is not None, this returned tuple of floats represents the minimum and maximum confidence limits given `alpha`.

See also:

probplot, boxcox_normplot, boxcox_normmax, boxcox_llf

Notes

The Box-Cox transform is given by:

\[
y = \begin{cases} 
    (x^{**lmbda} - 1) / lmbda, & \text{for } lmbda \neq 0 \\
    \log(x), & \text{for } lmbda = 0 
\end{cases}
\]

`boxcox` requires the input data to be positive. Sometimes a Box-Cox transformation provides a shift parameter to achieve this; `boxcox` does not. Such a shift parameter is equivalent to adding a positive constant to `x` before calling `boxcox`.

The confidence limits returned when `alpha` is provided give the interval where:

\[
llf(\hat{\lambda}) - llf(\lambda) < \frac{1}{2} \chi^2(1 - \alpha, 1),
\]

with `llf` the log-likelihood function and `\chi^2` the chi-squared function.
References


Examples

```python
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
```

We generate some random variates from a non-normal distribution and make a probability plot for it, to show it is non-normal in the tails:

```python
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(211)
>>> x = stats.loggamma.rvs(5, size=500) + 5
>>> prob = stats.probplot(x, dist=stats.norm, plot=ax1)
>>> ax1.set_xlabel('')
>>> ax1.set_title('
Probplot against normal distribution
')
```

We now use `boxcox` to transform the data so it’s closest to normal:

```python
>>> ax2 = fig.add_subplot(212)
>>> xt, _ = stats.boxcox(x)
>>> prob = stats.probplot(xt, dist=stats.norm, plot=ax2)
>>> ax2.set_title('
Probplot after Box-Cox transformation
')
```

```python
>>> plt.show()
```
scipy.stats.boxcox_normmax

scipy.stats.boxcox_normmax (x, brack=None, method='pearsonr', optimizer=None)

Compute optimal Box-Cox transform parameter for input data.

Parameters

- **x**: [array_like] Input array.
- **brack**: [2-tuple, optional, default (-2.0, 2.0)] The starting interval for a downhill bracket search for the default optimize.brent solver. Note that this is in most cases not critical; the final result is allowed to be outside this bracket. If optimizer is passed, brack must be None.
- **method**: [str, optional] The method to determine the optimal transform parameter (boxcox lambda parameter). Options are:
  - 'pearsonr' (default)
    - Maximizes the Pearson correlation coefficient between \( y = \text{boxcox}(x) \) and the expected values for \( y \) if \( x \) would be normally-distributed.
  - 'mle'
    - Minimizes the log-likelihood boxcox_llf. This is the method used in boxcox.
  - 'all'
    - Use all optimization methods available, and return all results. Useful to compare different methods.
- **optimizer**: [callable, optional] optimizer is a callable that accepts one argument:
  - **fun**: [callable] The objective function to be optimized. fun accepts one argument, the Box-Cox transform parameter \( \lambda \), and returns the negative log-likelihood function at the provided value. The job of optimizer is to find the value of \( \lambda \) that minimizes fun.
  
  and returns an object, such as an instance of scipy.optimize.OptimizeResult, which holds the optimal value of \( \lambda \) in an attribute \( x \).

See the example below or the documentation of scipy.optimize.minimize_scalar for more information.

Returns

- **maxlog**: [float or ndarray] The optimal transform parameter found. An array instead of a scalar for method='all'.

See also:

boxcox, boxcox_llf, boxcox_normplot, scipy.optimize.minimize_scalar

Examples

```python
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
```

We can generate some data and determine the optimal \( \lambda \) in various ways:

```python
>>> rng = np.random.default_rng()
>>> x = stats.loggamma.rvs(5, size=30, random_state=rng) + 5
>>> y, lmax_mle = stats.boxcox(x)
>>> lmax_pearsonr = stats.boxcox_normmax(x)

>>> lmax_mle
1.4613865614008015
>>> lmax_pearsonr

(continues on next page)```
Alternatively, we can define our own optimizer function. Suppose we are only interested in values of λ on the interval $[6, 7]$, we want to use `scipy.optimize.minimize_scalar` with `method='bounded'`, and we want to use tighter tolerances when optimizing the log-likelihood function. To do this, we define a function that accepts positional argument `fun` and uses `scipy.optimize.minimize_scalar` to minimize `fun` subject to the provided bounds and tolerances:

```python
>>> from scipy import optimize
>>> options = {'xatol': 1e-12}  # absolute tolerance on `x`
>>> def optimizer(fun):
...     return optimize.minimize_scalar(fun, bounds=(6, 7),
...                                       method="bounded", options=options)
>>> stats.boxcox_normmax(x, optimizer=optimizer)
6.000...
```
scipy.stats.boxcox_llf

scipy.stats.boxcox_llf(lmb, data)
 The boxcox log-likelihood function.

 Parameters

 lmb : [scalar] Parameter for Box-Cox transformation. See boxcox for
details.
 data : [array_like] Data to calculate Box-Cox log-likelihood for. If
data is multi-dimensional, the
 log-likelihood is calculated along the first axis.

 Returns

 llf : [float or ndarray] Box-Cox log-likelihood of
data given lmb. A float for 1-D data, an array
otherwise.

 See also:

 boxcox, probplot, boxcox_normplot, boxcox_normmax

 Notes

 The Box-Cox log-likelihood function is defined here as

 \[llf = (\lambda - 1) \sum_i (\log(x_i)) - N/2 \log(\sum_i (y_i - \bar{y})^2/N), \]

 where y is the Box-Cox transformed input data x.

 Examples

 >>> from scipy import stats
 >>> import matplotlib.pyplot as plt
 >>> from mpl_toolkits.axes_grid1.inset_locator import inset_axes

 Generate some random variates and calculate Box-Cox log-likelihood values for
them for a range of lmbda values:

 >>> rng = np.random.default_rng()
 >>> x = stats.loggamma.rvs(5, loc=10, size=1000, random_state=rng)
 >>> lmbdas = np.linspace(-2, 10)
 >>> llf = np.zeros(lmbdas.shape, dtype=float)
 >>> for ii, lmbda in enumerate(lmbdas):
 ... llf[ii] = stats.boxcox_llf(lmbda, x)

 Also find the optimal lmbda value with boxcox:

 >>> x_most_normal, lmbda_optimal = stats.boxcox(x)

 Plot the log-likelihood as function of lmbda. Add the optimal lmbda as a
horizontal line to check that that’s really
the optimum:

 >>> fig = plt.figure()
 >>> ax = fig.add_subplot(111)
 >>> ax.plot(lmbdas, llf, 'b-')
 >>> ax.axhline(stats.boxcox_llf(lmbda_optimal, x), color='r')

 (continues on next page)
Now add some probability plots to show that where the log-likelihood is maximized the data transformed with *boxcox* looks closest to normal:

```python
>>> locs = [3, 10, 4] # 'lower left', 'center', 'lower right'
>>> for lmbda, loc in zip([-1, lmbda_optimal, 9], locs):
...     xt = stats.boxcox(x, lmbda=lmbda)
...     (osm, osr), (slope, intercept, r_sq) = stats.probplot(xt)
...     ax_inset = inset_axes(ax, width="20\%", height="20\%", loc=loc)
...     ax_inset.plot(osm, osr, 'c.', osm, slope*osm + intercept, 'k-')
...     ax_inset.set_xticklabels([])
...     ax_inset.set_yticklabels([])
...     ax_inset.set_title(r'$\lambda={1.2f}$' % lmbda)
```

```plaintext
>>> plt.show()
```

scipy.stats.yeojohnson

scipy.stats. `.yeojohnson(x, lmbda=None)`

Return a dataset transformed by a Yeo-Johnson power transformation.

Parameters

- **x** : [ndarray] Input array. Should be 1-dimensional.
- **lmbda** : [float, optional] If `lmbda` is `None`, find the lambda that maximizes the log-likelihood function and return it as the second output argument. Otherwise the transformation is done for the given value.

Returns

- **yeojohnson** : ndarray
 Yeo-Johnson power transformed array.
maxlog [float, optional] If the lmbda parameter is None, the second returned argument is the lambda that maximizes the log-likelihood function.

See also:

probplot, yeojohnson_normplot, yeojohnson_normmax, yeojohnson_llf, boxcox

Notes

The Yeo-Johnson transform is given by:

\[
\begin{align*}
y &= ((x + 1)^{\text{lmbda}} - 1) / \text{lmbda}, & \text{for } x \geq 0, \text{lmbda} \neq 0 \\
\log(x + 1), & \text{for } x = 0, \text{lmbda} = 0 \\
-(\text{-}x + 1)^{\text{2 - lmbda}} - 1) / (2 - \text{lmbda}), & \text{for } x < 0, \text{lmbda} \neq 2 \\
-\log(-x + 1), & \text{for } x < 0, \text{lmbda} = 2
\end{align*}
\]

Unlike boxcox, yeojohnson does not require the input data to be positive.

New in version 1.2.0.

References

Examples

```python
>>> from scipy import stats
>>> import matplotlib.pyplot as plt

We generate some random variates from a non-normal distribution and make a probability plot for it, to show it is non-normal in the tails:

```python
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(211)
>>> x = stats.loggamma.rvs(5, size=500) + 5
>>> prob = stats.probplot(x, dist=stats.norm, plot=ax1)
>>> ax1.set_xlabel('')
>>> ax1.set_title('Probplot against normal distribution')
```

We now use yeojohnson to transform the data so it's closest to normal:

```python
>>> ax2 = fig.add_subplot(212)
>>> xt, lmbda = stats.yeojohnson(x)
>>> prob = stats.probplot(xt, dist=stats.norm, plot=ax2)
>>> ax2.set_title('Probplot after Yeo-Johnson transformation')
```

```bash
>>> plt.show()
```
scipy.stats.yeojohnson_normmax

scipy.stats.yeojohnson_normmax(x, brack=(-2, 2))

Compute optimal Yeo-Johnson transform parameter.

Compute optimal Yeo-Johnson transform parameter for input data, using maximum likelihood estimation.

Parameters

- **x** [array_like] Input array.
- **brack** [2-tuple, optional] The starting interval for a downhill bracket search with optimize.brent. Note that this is in most cases not critical; the final result is allowed to be outside this bracket.

Returns

- **maxlog** [float] The optimal transform parameter found.

See also:

- yeojohnson, yeojohnson_1lf, yeojohnson_normplot

Notes

New in version 1.2.0.

Examples

```python
>>> from scipy import stats
>>> import matplotlib.pyplot as plt

Generate some data and determine optimal \(\lambda \)
```
```python
>>> rng = np.random.default_rng()
>>> x = stats.loggamma.rvs(5, size=30, random_state=rng) + 5
>>> lmax = stats.yeojohnson_normmax(x)
```
```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> prob = stats.yeojohnson_normplot(x, -10, 10, plot=ax)
>>> ax.axvline(lmax, color='r')

>>> plt.show()
```

**scipy.stats.yeojohnson_llf**

The yeojohnson log-likelihood function.

**Parameters**

- **lmb** [scalar] Parameter for Yeo-Johnson transformation. See `yeojohnson` for details.
- **data** [array_like] Data to calculate Yeo-Johnson log-likelihood for. If `data` is multi-dimensional, the log-likelihood is calculated along the first axis.

**Returns**

- **llf** [float] Yeo-Johnson log-likelihood of `data` given `lmb`.

See also:

- `yeojohnson`, `probplot`, `yeojohnson_normplot`, `yeojohnson_normmax`
Notes

The Yeo-Johnson log-likelihood function is defined here as

\[ llf = -N/2 \log(\hat{\sigma}^2) + (\lambda - 1) \sum \text{sign}(x_i) \log(|x_i| + 1) \]

where \( \hat{\sigma}^2 \) is estimated variance of the Yeo-Johnson transformed input data \( x \).
New in version 1.2.0.

Examples

```python
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.axes_grid1.inset_locator import inset_axes

Generate some random variates and calculate Yeo-Johnson log-likelihood values for them for a range of \(\lambda \) values:

```python
>>> x = stats.loggamma.rvs(5, loc=10, size=1000)
>>> lmbdas = np.linspace(-2, 10)
>>> llf = np.zeros(lmbdas.shape, dtype=float)
>>> for ii, lmbda in enumerate(lmbdas):
...    llf[ii] = stats.yeojohnson_llf(lmbda, x)
```

Also find the optimal \(\lambda \) value with `yeojohnson`:

```python
>>> x_most_normal, lmbda_optimal = stats.yeojohnson(x)
```

Plot the log-likelihood as function of \(\lambda \). Add the optimal \(\lambda \) as a horizontal line to check that that’s really the optimum:

```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(lmbdas, llf, 'b-')
>>> ax.axhline(stats.yeojohnson_llf(lmbda_optimal, x), color='r')
>>> ax.set_xlabel(\'\lambda parameter\')
>>> ax.set_ylabel(\'Yeo-Johnson log-likelihood\')
```

Now add some probability plots to show that where the log-likelihood is maximized the data transformed with `yeojohnson` looks closest to normal:

```python
>>> locs = [3, 10, 4]  # 'lower left', 'center', 'lower right'
>>> for lmbda, loc in zip([-1, lmbda_optimal, 9], locs):
...    xt = stats.yeojohnson(x, lmbda=lmbda)
...    (osm, osr), (slope, intercept, r_sq) = stats.probplot(xt)
...    ax_inset = inset_axes(ax, width="20\%", height="20\%", loc=loc)
...    ax_inset.plot(osm, osr, 'c.', osm, slope*osm + intercept, 'k-')
...    ax_inset.set_xticklabels([])
...    ax_inset.set_yticklabels([])
...    ax_inset.set_title(r'$\lambda=%1.2f$' % lmbda)
```
>>> plt.show()

scipy.stats.obrientransform

scipy.stats.obrientransform(*args)

Compute the O’Brien transform on input data (any number of arrays).

Used to test for homogeneity of variance prior to running one-way stats. Each array in *args is one level of a factor. If f_oneway is run on the transformed data and found significant, the variances are unequal. From Maxwell and Delaney [1], p.112.

Parameters

args [tuple of array_like] Any number of arrays.

Returns

obrientransform [ndarray] Transformed data for use in an ANOVA. The first dimension of the result corresponds to the sequence of transformed arrays. If the arrays given are all 1-D of the same length, the return value is a 2-D array; otherwise it is a 1-D array of type object, with each element being an ndarray.

References

[1]
Examples

We’ll test the following data sets for differences in their variance.

```python
>>> x = [10, 11, 13, 9, 7, 12, 12, 9, 10]
>>> y = [13, 21, 5, 10, 8, 14, 10, 12, 7, 15]
```

Apply the O’Brien transform to the data.

```python
>>> from scipy.stats import obrientransform
>>> tx, ty = obrientransform(x, y)
```

Use `scipy.stats.f_oneway` to apply a one-way ANOVA test to the transformed data.

```python
>>> from scipy.stats import f_oneway
>>> F, p = f_oneway(tx, ty)
>>> p
0.1314139477040335
```

If we require that $p < 0.05$ for significance, we cannot conclude that the variances are different.

scipy.stats.sigmaclip

`scipy.stats.sigmaclip(a, low=4.0, high=4.0)`

Perform iterative sigma-clipping of array elements.

Starting from the full sample, all elements outside the critical range are removed, i.e. all elements of the input array c that satisfy either of the following conditions:

- $c < \text{mean}(c) - \text{std}(c) \times \text{low}$
- $c > \text{mean}(c) + \text{std}(c) \times \text{high}$

The iteration continues with the updated sample until no elements are outside the (updated) range.

Parameters

- `a` : [array_like] Data array, will be raveled if not 1-D.
- `low` : [float, optional] Lower bound factor of sigma clipping. Default is 4.
- `high` : [float, optional] Upper bound factor of sigma clipping. Default is 4.

Returns

- `clipped` : [ndarray] Input array with clipped elements removed.
- `lower` : [float] Lower threshold value use for clipping.
- `upper` : [float] Upper threshold value use for clipping.
Examples

```python
>>> from scipy.stats import sigmaclip
>>> a = np.concatenate((np.linspace(9.5, 10.5, 31), np.linspace(0, 20, 5)))
>>> fact = 1.5
>>> c, low, upp = sigmaclip(a, fact, fact)
>>> c
array([ 9.96666667, 10. , 10.03333333, 10. ])
>>> c.var(), c.std()
(0.00055555555555555165, 0.023570226039551501)
>>> low, c.mean() - fact*c.std(), c.min()
(9.9646446609406727, 9.9646446609406727, 9.9666666666666668)
>>> upp, c.mean() + fact*c.std(), c.max()
(10.035355339059327, 10.035355339059327, 10.033333333333333)
```

```python
>>> a = np.concatenate((np.linspace(9.5, 10.5, 11), np.linspace(-100, -50, 3)))
>>> c, low, upp = sigmaclip(a, 1.8, 1.8)
>>> (c == np.linspace(9.5, 10.5, 11)).all()
True
```

scipy.stats.trimboth

```python
c scipy.stats.trimboth(a, proportiontocut, axis=0)
Slice off a proportion of items from both ends of an array.
```

Slice off the passed proportion of items from both ends of the passed array (i.e., with proportiontocut = 0.1, slices leftmost 10% and rightmost 10% of scores). The trimmed values are the lowest and highest ones. Slice off less if proportion results in a non-integer slice index (i.e. conservatively slices off proportiontocut).

Parameters

- `a` [array_like] Data to trim.
- `proportiontocut` [float] Proportion (in range 0-1) of total data set to trim of each end.
- `axis` [int or None, optional] Axis along which to trim data. Default is 0. If None, compute over the whole array `a`.

Returns

- `out` [ndarray] Trimmed version of array `a`. The order of the trimmed content is undefined.

See also:

- `trim_mean`
Examples

```python
>>> from scipy import stats
>>> a = np.arange(20)
>>> b = stats.trimboth(a, 0.1)
>>> b.shape
(16,)
```

scipy.stats.trim1

scipy.stats.trim1(a, proportiontocut, tail='right', axis=0)
Slice off a proportion from ONE end of the passed array distribution.

If `proportiontocut` = 0.1, slices off ‘leftmost’ or ‘rightmost’ 10% of scores. The lowest or highest values are trimmed (depending on the tail). Slice off less if proportion results in a non-integer slice index (i.e. conservatively slices off `proportiontocut`).

Parameters
- `a`: [array_like] Input array.
- `proportiontocut`: [float] Fraction to cut off of ‘left’ or ‘right’ of distribution.
- `tail`: [‘left’, ‘right’], optional] Defaults to ‘right’.
- `axis`: [int or None, optional] Axis along which to trim data. Default is 0. If None, compute over the whole array `a`.

Returns
- `trim1`: [ndarray] Trimmed version of array `a`. The order of the trimmed content is undefined.

Examples

```python
>>> from scipy import stats
>>> a = np.arange(20)
>>> b = stats.trim1(a, 0.5, 'left')
>>> b
array([10, 11, 12, 13, 14, 16, 15, 17, 18, 19])
```

scipy.stats.zmap

scipy.stats.zmap(scores, compare, axis=0, ddof=0, nan_policy='propagate')
Calculate the relative z-scores.

Return an array of z-scores, i.e., scores that are standardized to zero mean and unit variance, where mean and variance are calculated from the comparison array.

Parameters
- `scores`: [array_like] The input for which z-scores are calculated.
- `compare`: [array_like] The input from which the mean and standard deviation of the normalization are taken; assumed to have the same dimension as `scores`.
- `axis`: [int or None, optional] Axis over which mean and variance of `compare` are calculated. Default is 0. If None, compute over the whole array `scores`.
ddof
[int, optional] Degrees of freedom correction in the calculation of the standard deviation. Default is 0.

nan_policy
[{'propagate', 'raise', 'omit'}, optional] Defines how to handle the occurrence of nans in compare. 'propagate' returns nan, 'raise' raises an exception, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Note that when the value is 'omit', nans in scores also propagate to the output, but they do not affect the z-scores computed for the non-nan values.

Returns

zscore [array_like] Z-scores, in the same shape as scores.

Notes
This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray instead of asarray for parameters).

Examples

```python
>>> from scipy.stats import zmap
>>> a = [0.5, 2.0, 2.5, 3]
>>> b = [0, 1, 2, 3, 4]
>>> zmap(a, b)
array([-1.06066017, 0. , 0.35355339, 0.70710678])
```

scipy.stats.zscore

`scipy.stats.zscore(a, axis=0, ddof=0, nan_policy='propagate')`

Compute the z score.

Compute the z score of each value in the sample, relative to the sample mean and standard deviation.

Parameters

- **a** [array_like] An array like object containing the sample data.
- **axis** [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the whole array a.
- **ddof** [int, optional] Degrees of freedom correction in the calculation of the standard deviation. Default is 0.
- **nan_policy** [{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Note that when the value is 'omit', nans in the input also propagate to the output, but they do not affect the z-scores computed for the non-nan values.

Returns

- **zscore** [array_like] The z-scores, standardized by mean and standard deviation of input array a.
Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses `asanyarray` instead of `asarray` for parameters).

Examples

```python
>>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091,
... 0.1954, 0.6307, 0.6599, 0.1065, 0.0508])
```

```python
>>> stats.zscore(a)
array([ 1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786,
... 0.6748, -1.1488, -1.3324])
```

Computing along a specified axis, using n-1 degrees of freedom (ddof=1) to calculate the standard deviation:

```python
>>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608],
... [ 0.7149, 0.0775, 0.6072, 0.9656],
... [ 0.6341, 0.1403, 0.9759, 0.4064],
... [ 0.5918, 0.6948, 0.904 , 0.3721],
... [ 0.0921, 0.2481, 0.1188, 0.1366]])
```

```python
>>> stats.zscore(b, axis=1, ddof=1)
array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358],
... [ 0.33048416, -1.37380874, 0.04251374, 1.00081084],
... [ 0.26796377, -1.12598418, 1.23283094, -0.37481053],
... [-0.22095197, 0.24468594, 1.19042819, -1.21416216],
... [-0.82780366, 1.4457416 , -0.43867764, -0.1792603 ]])
```

An example with `nan_policy='omit'`:

```python
>>> x = np.array([[25.11, 30.10, np.nan, 32.02, 43.15],
... [14.95, 16.06, 121.25, 94.35, 29.81]])
```

```python
>>> stats.zscore(x, axis=1, nan_policy='omit')
array([[-1.13490897, -0.37830299, nan, -0.08718406, 1.60039602],
... [-0.91611681, -0.89090508, 1.4983032 , 0.88731639, -0.5785977 ]])
```

scipy.stats.gzscore

```python
scipy.stats.gzscore(a, *, axis=0, ddof=0, nan_policy='propagate')
```

Compute the geometric standard score.

Compute the geometric z score of each strictly positive value in the sample, relative to the geometric mean and standard deviation. Mathematically the geometric z score can be evaluated as:

$$gzscore = \log(a/gmu) / \log(gsigma)$$

where gmu (resp. gsigma) is the geometric mean (resp. standard deviation).

Parameters

- `a` : [array_like] Sample data.
- `axis` : [int or None, optional] Axis along which to operate. Default is 0. If None, compute over the whole array `a`.
ddof
[int, optional] Degrees of freedom correction in the calculation of the standard deviation. Default is 0.

nan_policy
[{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Note that when the value is 'omit', nans in the input also propagate to the output, but they do not affect the geometric z scores computed for the non-nan values.

Returns

gzscore
[array_like] The geometric z scores, standardized by geometric mean and geometric standard deviation of input array \(a \).

See also:

gmean
Geometric mean

gstd
Geometric standard deviation

zscore
Standard score

Notes

This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray instead of asarray for parameters).

New in version 1.8.

Examples

Draw samples from a log-normal distribution:

```python
>>> from scipy.stats import zscore, gzscore
>>> import matplotlib.pyplot as plt

>>> rng = np.random.default_rng()
>>> mu, sigma = 3., 1.  # mean and standard deviation
>>> x = rng.lognormal(mu, sigma, size=500)
```

Display the histogram of the samples:

```python
>>> fig, ax = plt.subplots()
>>> ax.hist(x, 50)
>>> plt.show()
```

Display the histogram of the samples standardized by the classical zscore. Distribution is rescaled but its shape is unchanged.

```python
>>> fig, ax = plt.subplots()
>>> ax.hist(zscore(x), 50)
>>> plt.show()
```
Demonstrate that the distribution of geometric zscores is rescaled and quasinormal:

```python
>>> fig, ax = plt.subplots()
>>> ax.hist(gzscore(x), 50)
>>> plt.show()
```

Statistical distances

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wasserstein_distance</code></td>
<td>Computes the first Wasserstein distance between two 1D distributions.</td>
</tr>
<tr>
<td><code>energy_distance</code></td>
<td>Computes the energy distance between two 1D distributions.</td>
</tr>
</tbody>
</table>

scipy.stats.wasserstein_distance

`scipy.stats.wasserstein_distance(u_values, v_values, u_weights=None, v_weights=None)`

Computes the first Wasserstein distance between two 1D distributions.

This distance is also known as the earth mover's distance, since it can be seen as the minimum amount of “work” required to transform u into v, where “work” is measured as the amount of distribution weight that must be moved, multiplied by the distance it has to be moved.

New in version 1.0.0.

Parameters

- **u_values, v_values**
 - `[array_like]` Values observed in the (empirical) distribution.

- **u_weights, v_weights**
 - `[array_like, optional]` Weight for each value. If unspecified, each value is assigned the same weight. $u_weights$ (resp. $v_weights$) must have the same length as u_values (resp. v_values). If the weight sum differs from 1, it must still be positive and finite so that the weights can be normalized to sum to 1.

Returns
distance [float] The computed distance between the distributions.

Notes

The first Wasserstein distance between the distributions u and v is:

$$l_1(u, v) = \inf_{\pi \in \Gamma(u, v)} \int_{\mathbb{R} \times \mathbb{R}} |x - y| d\pi(x, y)$$

where $\Gamma(u, v)$ is the set of (probability) distributions on $\mathbb{R} \times \mathbb{R}$ whose marginals are u and v on the first and second factors respectively.

If U and V are the respective CDFs of u and v, this distance also equals to:

$$l_1(u, v) = \int_{-\infty}^{+\infty} |U - V|$$

See [2] for a proof of the equivalence of both definitions.

The input distributions can be empirical, therefore coming from samples whose values are effectively inputs of the function, or they can be seen as generalized functions, in which case they are weighted sums of Dirac delta functions located at the specified values.

References

[1], [2]

Examples

```python
>>> from scipy.stats import wasserstein_distance
>>> wasserstein_distance([0, 1, 3], [5, 6, 8])
5.0
>>> wasserstein_distance([0, 1], [0, 1], [3, 1], [2, 2])
0.25
>>> wasserstein_distance([3.4, 3.9, 7.5, 7.8], [4.5, 1.4], ...
  [1.4, 0.9, 3.1, 7.2], [3.2, 3.5])
4.0781331438047861
```

scipy.stats.energy_distance

`scipy.stats.energy_distance(u_values, v_values, u_weights=None, v_weights=None)`

Compute the energy distance between two 1D distributions.

New in version 1.0.0.

Parameters

- **u_values, v_values**
 [array_like] Values observed in the (empirical) distribution.

- **u_weights, v_weights**
 [array_like, optional] Weight for each value. If unspecified, each value is assigned the same weight. $u_weights$ (resp. $v_weights$) must have the same length as u_values (resp. v_values). If the weight sum differs from 1, it must still be positive and finite so that the weights can be normalized to sum to 1.
Returns

distance [float] The computed distance between the distributions.

Notes

The energy distance between two distributions u and v, whose respective CDFs are U and V, equals to:

$$ D(u, v) = \left(2\mathbb{E}|X - Y| - \mathbb{E}|X - X'| - \mathbb{E}|Y - Y'|\right)^{1/2} $$

where X and X' (resp. Y and Y') are independent random variables whose probability distribution is u (resp. v).

As shown in [2], for one-dimensional real-valued variables, the energy distance is linked to the non-distribution-free version of the Cramér-von Mises distance:

$$ D(u, v) = \sqrt{2l_2(u, v)} = \left(2\int_{-\infty}^{+\infty} (U - V)^2\right)^{1/2} $$

Note that the common Cramér-von Mises criterion uses the distribution-free version of the distance. See [2] (section 2), for more details about both versions of the distance.

The input distributions can be empirical, therefore coming from samples whose values are effectively inputs of the function, or they can be seen as generalized functions, in which case they are weighted sums of Dirac delta functions located at the specified values.

References

[1], [2], [3], [4]

Examples

```python
>>> from scipy.stats import energy_distance
>>> energy_distance([0], [2])
2.0000000000000004
>>> energy_distance([0, 8], [0, 8], [3, 1], [2, 2])
1.0000000000000002
>>> energy_distance([0.7, 7.4, 2.4, 6.8], [1.4, 8.],
... [2.1, 4.2, 7.4, 8.], [7.6, 8.8])
0.88003340976158217
```

Sampling

Random Number Generators (scipy.stats.sampling)

This module contains a collection of random number generators to sample from univariate continuous and discrete distributions. It uses the implementation of a C library called “UNU.RAN”.
Generators Wrapped

For continuous distributions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>NumericalInverseHermite</code></td>
<td>Hermite interpolation based INversion of CDF (HINV).</td>
</tr>
<tr>
<td><code>NumericalInversePolynomial</code></td>
<td>Polynomial interpolation based INversion of CDF (PINV).</td>
</tr>
<tr>
<td><code>TransformedDensityRejection</code></td>
<td>Transformed Density Rejection (TDR) Method.</td>
</tr>
</tbody>
</table>

scipy.stats.sampling.NumericalInverseHermite

```python
class scipy.stats.sampling.NumericalInverseHermite(dist, *, domain=None, order=3,
                                                  u_resolution=1e-12,
                                                  construction_points=None,
                                                  random_state=None)
```

Hermite interpolation based INversion of CDF (HINV).

HINV is a variant of numerical inversion, where the inverse CDF is approximated using Hermite interpolation, i.e., the interval [0,1] is split into several intervals and in each interval the inverse CDF is approximated by polynomials constructed by means of values of the CDF and PDF at interval boundaries. This makes it possible to improve the accuracy by splitting a particular interval without recomputations in unaffected intervals. Three types of splines are implemented: linear, cubic, and quintic interpolation. For linear interpolation only the CDF is required. Cubic interpolation also requires PDF and quintic interpolation PDF and its derivative.

These splines have to be computed in a setup step. However, it only works for distributions with bounded domain; for distributions with unbounded domain the tails are chopped off such that the probability for the tail regions is small compared to the given u-resolution.

The method is not exact, as it only produces random variates of the approximated distribution. Nevertheless, the maximal numerical error in “u-direction” (i.e. |U - CDF(X)| where X is the approximate percentile corresponding to the quantile U i.e. X = approx_ppf(U)) can be set to the required resolution (within machine precision). Notice that very small values of the u-resolution are possible but may increase the cost for the setup step.

Parameters

- **dist**
 - [object] An instance of a class with a `cdf` and optionally a `pdf` and `dpdf` method.
 - `cdf`: CDF of the distribution. The signature of the CDF is expected to be: `def cdf(self, x: float) -> float`. i.e. the CDF should accept a Python float and return a Python float.
 - `pdf`: PDF of the distribution. This method is optional when `order=1`. Must have the same signature as the PDF.
 - `dpdf`: Derivative of the PDF w.r.t the variate (i.e. `x`). This method is optional with `order=1` or `order=3`. Must have the same signature as the CDF.

- **domain**
 - [list or tuple of length 2, optional] The support of the distribution. Default is `None`. When `None`:
 - If a `support` method is provided by the distribution object `dist`, it is used to set the domain of the distribution.
 - Otherwise the support is assumed to be $(-\infty, \infty)$.

- **order**
 - [int, default: 3] Set order of Hermite interpolation. Valid orders are 1, 3, and 5. Valid orders are 1, 3, and 5. Notice that order greater than 1 requires the density of the distribution, and
order greater than 3 even requires the derivative of the density. Using order 1 results for most distributions in a huge number of intervals and is therefore not recommended. If the maximal error in u-direction is very small (say smaller than 1.e-10), order 5 is recommended as it leads to considerably fewer design points, as long there are no poles or heavy tails.

u_resolution

[Float, default: 1e-12] Set maximal tolerated u-error. Notice that the resolution of most uniform random number sources is 2-32=2.3e-10. Thus a value of 1.e-10 leads to an inversion algorithm that could be called exact. For most simulations slightly bigger values for the maximal error are enough as well. Default is 1e-12.

construction_points

[array_like, optional] Set starting construction points (nodes) for Hermite interpolation. As the possible maximal error is only estimated in the setup it may be necessary to set some special design points for computing the Hermite interpolation to guarantee that the maximal u-error can not be bigger than desired. Such points are points where the density is not differentiable or has a local extremum.

random_state

[['None', int, numpy.random.Generator],
numpy.random.RandomState], optional

A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If random_state is None (or np.random), the numpy.random.RandomState singleton is used. If random_state is an int, a new RandomState instance is used, seeded with random_state. If random_state is already a Generator or RandomState instance then that instance is used.

Notes

`NumericalInverseHermite` approximates the inverse of a continuous statistical distribution’s CDF with a Hermite spline. Order of the hermite spline can be specified by passing the order parameter.

As described in [1], it begins by evaluating the distribution’s PDF and CDF at a mesh of quantiles x within the distribution’s support. It uses the results to fit a Hermite spline H such that \(H(p) = x \), where \(p \) is the array of percentiles corresponding with the quantiles \(x \). Therefore, the spline approximates the inverse of the distribution’s CDF to machine precision at the percentiles \(p \), but typically, the spline will not be as accurate at the midpoints between the percentile points:

\[
p_{\text{mid}} = \frac{(p[:-1] + p[1:])}{2}
\]

so the mesh of quantiles is refined as needed to reduce the maximum “u-error”:

\[
u_{\text{error}} = \text{np.max} \left(\text{np.abs} \left(\text{dist.cdf}(H(p_{\text{mid}})) - p_{\text{mid}} \right) \right)
\]

below the specified tolerance u_resolution. Refinement stops when the required tolerance is achieved or when the number of mesh intervals after the next refinement could exceed the maximum allowed number of intervals, which is 100000.

This method accepted a tol parameter to specify the maximum tolerable u-error but it has now been deprecated in the favor of u_resolution. tol will be removed completely in a future release.
References

[1],[2]

Examples

```python
>>> from scipy.stats.sampling import NumericalInverseHermite
>>> from scipy.stats import norm, genexpon
>>> from scipy.special import ndtr

to create a generator to sample from the standard normal distribution, do:

```python
>>> class StandardNormal:
... def pdf(self, x):
... return 1/np.sqrt(2*np.pi) * np.exp(-x**2 / 2)
... def cdf(self, x):
... return ndtr(x)
...
>>> dist = StandardNormal()
>>> urng = np.random.default_rng()
>>> rng = NumericalInverseHermite(dist, random_state=urng)

the NumericalInverseHermite has a method that approximates the PPF of the distribution.

```python
>>> rng = NumericalInverseHermite(dist)
>>> p = np.linspace(0.01, 0.99, 99) # percentiles from 1% to 99%
>>> np.allclose(rng.ppf(p), norm.ppf(p))
True

depending on the implementation of the distribution’s random sampling method, the random variates generated may be nearly identical, given the same random state.

```python
>>> dist = genexpon(9, 16, 3)
>>> rng = NumericalInverseHermite(dist)
>>> # `seed` ensures identical random streams are used by each `rvs`
>>> seed = 500072020
>>> rvs1 = dist.rvs(size=100, random_state=np.random.default_rng(seed))
>>> rvs2 = rng.rvs(size=100, random_state=np.random.default_rng(seed))
>>> np.allclose(rvs1, rvs2)
True

To check that the random variates closely follow the given distribution, we can look at its histogram:

```python
>>> import matplotlib.pyplot as plt
>>> dist = StandardNormal()
>>> rng = NumericalInverseHermite(dist)
>>> rvs = rng.rvs(10000)
>>> x = np.linspace(rvs.min()-0.1, rvs.max()+0.1, 1000)
>>> fx = norm.pdf(x)
>>> plt.plot(x, fx, 'r-', lw=2, label='true distribution')
>>> plt.hist(rvs, bins=20, density=True, alpha=0.8, label='random variates')
(continues on next page)```
Given the derivative of the PDF w.r.t the variate (i.e. $x$), we can use quintic Hermite interpolation to approximate the PPF by passing the order parameter:

```python
>>> class StandardNormal:
... def pdf(self, x):
... return 1/np.sqrt(2*np.pi) * np.exp(-x**2 / 2)
... def dpdf(self, x):
... return -1/np.sqrt(2*np.pi) * x * np.exp(-x**2 / 2)
... def cdf(self, x):
... return ndtr(x)
...
>>> dist = StandardNormal()
>>> urng = np.random.default_rng()
>>> rng = NumericalInverseHermite(dist, order=5, random_state=urng)
```

Higher orders result in a fewer number of intervals:

```python
>>> rng3 = NumericalInverseHermite(dist, order=3)
>>> rng5 = NumericalInverseHermite(dist, order=5)
>>> rng3.intervals, rng5.intervals
(3000, 522)
```

The u-error can be estimated by calling the u_error method. It runs a small Monte-Carlo simulation to estimate the u-error. By default, 100,000 samples are used. This can be changed by passing the sample_size argument:

```python
>>> rng1 = NumericalInverseHermite(dist, u_resolution=1e-10)
>>> rng1.u_error(sample_size=1000000) # uses one million samples
```
This returns a namedtuple which contains the maximum u-error and the mean absolute u-error.

The u-error can be reduced by decreasing the u-resolution (maximum allowed u-error):

```python
>>> rng2 = NumericalInverseHermite(dist, u_resolution=1e-13)
>>> rng2.u_error(sample_size=1000000)
UError(max_error=9.32027892364129e-14, mean_absolute_error=1.5194172675685075e-14)
```

Note that this comes at the cost of increased setup time and number of intervals.

```python
>>> rng1.intervals
1022
>>> rng2.intervals
5687
>>> from timeit import timeit
>>> f = lambda: NumericalInverseHermite(dist, u_resolution=1e-10)
>>> timeit(f, number=1)
0.017409582 # may vary
>>> f = lambda: NumericalInverseHermite(dist, u_resolution=1e-13)
>>> timeit(f, number=1)
0.086712021 # may vary
```

Since the PPF of the normal distribution is available as a special function, we can also check the x-error, i.e. the difference between the approximated PPF and exact PPF:

```python
>>> import matplotlib.pyplot as plt
>>> u = np.linspace(0.01, 0.99, 1000)
>>> approxppf = rng.ppf(u)
>>> exactppf = norm.ppf(u)
>>> error = np.abs(exactppf - approxppf)
>>> plt.plot(u, error)
>>> plt.xlabel('u')
>>> plt.ylabel('error')
>>> plt.title('Error between exact and approximated PPF (x-error)')
>>> plt.show()
```

**Attributes**

- `intervals`
  
  Get number of nodes (design points) used for Hermite interpolation in the generator object.

- `midpoint_error`
### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ppf(u)</code></td>
<td>Approximated PPF of the given distribution.</td>
</tr>
<tr>
<td><code>qrvs([size, d, qmc_engine])</code></td>
<td>Quasi-random variates of the given RV.</td>
</tr>
<tr>
<td><code>rvs([size, random_state])</code></td>
<td>Sample from the distribution.</td>
</tr>
<tr>
<td><code>set_random_state([random_state])</code></td>
<td>Set the underlying uniform random number generator.</td>
</tr>
<tr>
<td><code>u_error([sample_size])</code></td>
<td>Estimate the u-error of the approximation using Monte Carlo simulation.</td>
</tr>
</tbody>
</table>

**scipy.stats.sampling.NumericalInverseHermite.ppf**

Approximated PPF of the given distribution.

**Parameters**

- `u` : [array_like] Quantiles.

**Returns**

- `ppf` : [array_like] Percentiles corresponding to given quantiles `u`.

**scipy.stats.sampling.NumericalInverseHermite.qrvs**

Quasi-random variates of the given RV.

The `qmc_engine` is used to draw uniform quasi-random variates, and these are converted to quasi-random variates of the given RV using inverse transform sampling.

**Parameters**

- `size` : [int, tuple of ints, or None; optional] Defines shape of random variates array. Default is None.

d [int or None, optional] Defines dimension of uniform quasi-random variates to be transformed. Default is None.

qmc_engine
[scipy.stats.qmc.QMCEngine(d=1), optional] Defines the object to use for drawing quasi-random variates. Default is None, which uses scipy.stats.qmc.Halton(1).

Returns

rvs [ndarray or scalar] Quasi-random variates. See Notes for shape information.

Notes

The shape of the output array depends on size, d, and qmc_engine. The intent is for the interface to be natural, but the detailed rules to achieve this are complicated.

- If qmc_engine is None, a scipy.stats.qmc.Halton instance is created with dimension d. If d is not provided, d=1.
- If qmc_engine is not None and d is None, d is determined from the dimension of the qmc_engine.
- If qmc_engine is not None and d is not None but the dimensions are inconsistent, a ValueError is raised.
- After d is determined according to the rules above, the output shape is tuple_shape + d_shape, where:
  - tuple_shape = tuple() if size is None,
  - tuple_shape = (size,) if size is an int,
  - tuple_shape = size if size is a sequence,
  - d_shape = tuple() if d is None or d is 1, and
  - d_shape = (d,) if d is greater than 1.

The elements of the returned array are part of a low-discrepancy sequence. If d is 1, this means that none of the samples are truly independent. If d > 1, each slice rvs[..., i] will be of a quasi-independent sequence; see scipy.stats.qmc.QMCEngine for details. Note that when d > 1, the samples returned are still those of the provided univariate distribution, not a multivariate generalization of that distribution.

scipy.stats.sampling.NumericalInverseHermite.rvs

NumericalInverseHermite.rvs(size=None, random_state=None)
Sample from the distribution.

Parameters

size [int or tuple, optional] The shape of samples. Default is None in which case a scalar sample is returned.

random_state
[None, int, numpy.random.Generator, numpy.random.RandomState], optional
A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If random_state is None (or np.random), random_state provided during initialization is used. If random_state is an int, a new RandomState instance is used, seeded with random_state. If random_state is already a Generator or RandomState instance then that instance is used.
Returns

rvs [array_like] A NumPy array of random variates.

scipy.stats.sampling.NumericalInverseHermite.set_random_state

NumericalInverseHermite.set_random_state(random_state=None)

Set the underlying uniform random number generator.

Parameters

random_state

{[None, int, numpy.random.Generator,]
 numpy.random.RandomState}, optional

A NumPy random number generator or seed for the underlying NumPy random
number generator used to generate the stream of uniform random numbers. If random_state
is None (or np.random), the numpy.random.RandomState singleton is used.
If random_state is an int, a new RandomState instance is used, seeded with random_state.
If random_state is already a Generator or RandomState instance then that instance is used.

scipy.stats.sampling.NumericalInverseHermite.u_error

NumericalInverseHermite.u_error(sample_size=100000)

Estimate the u-error of the approximation using Monte Carlo simulation. This is only available if the generator
was initialized with a dist object containing the implementation of the exact CDF under cdf method.

Parameters

sample_size

[int, optional] Number of samples to use for the estimation. It must be greater than or
equal to 1000.

Returns

max_error [float] Maximum u-error.

mean_absolute_error [float] Mean absolute u-error.

scipy.stats.sampling.NumericalInversePolynomial

class scipy.stats.sampling.NumericalInversePolynomial(dist, *, mode=None, center=None,
domain=None, order=5, u_resolution=1e-10, random_state=None)

Polynomial interpolation based INVersion of CDF (PINV).

PINV is a variant of numerical inversion, where the inverse CDF is approximated using Newton’s interpolating
formula. The interval $[0, 1]$ is split into several subintervals. In each of these, the inverse CDF is constructed
at nodes $(CDF(x), x)$ for some points $x$ in this subinterval. If the PDF is given, then the CDF is computed
numerically from the given PDF using adaptive Gauss-Lobatto integration with 5 points. Subintervals are split
until the requested accuracy goal is reached.
The method is not exact, as it only produces random variates of the approximated distribution. Nevertheless, the maximal tolerated approximation error can be set to be the resolution (but, of course, is bounded by the machine precision). We use the u-error \( |U - \text{CDF}(X)| \) to measure the error where \( X \) is the approximate percentile corresponding to the quantile \( U \). i.e. \( X = \text{approx_ppf}(U) \). We call the maximal tolerated u-error the u-resolution of the algorithm.

Both the order of the interpolating polynomial and the u-resolution can be selected. Note that very small values of the u-resolution are possible but increase the cost for the setup step.

The interpolating polynomials have to be computed in a setup step. However, it only works for distributions with bounded domain; for distributions with unbounded domain the tails are cut off such that the probability for the tail regions is small compared to the given u-resolution.

The construction of the interpolation polynomial only works when the PDF is unimodal or when the PDF does not vanish between two modes.

There are some restrictions for the given distribution:

- The support of the distribution (i.e., the region where the PDF is strictly positive) must be connected. In practice this means, that the region where PDF is “not too small” must be connected. Unimodal densities satisfy this condition. If this condition is violated then the domain of the distribution might be truncated.
- When the PDF is integrated numerically, then the given PDF must be continuous and should be smooth.
- The PDF must be bounded.
- The algorithm has problems when the distribution has heavy tails (as then the inverse CDF becomes very steep at 0 or 1) and the requested u-resolution is very small. E.g., the Cauchy distribution is likely to show this problem when the requested u-resolution is less than 1.e-12.

**Parameters**

- **dist** [object] An instance of a class with a pdf and optionally a cdf method.
  - pdf: PDF of the distribution. The signature of the PDF is expected to be: def pdf(self, x: float) -> float, i.e., the PDF should accept a Python float and return a Python float. It doesn’t need to integrate to 1, i.e., the PDF doesn’t need to be normalized.
  - cdf: CDF of the distribution. This method is optional. If provided, it enables the calculation of “u-error”. See u_error. Must have the same signature as the PDF.
- **mode** [float, optional] (Exact) Mode of the distribution. Default is None.
- **center** [float, optional] Approximate location of the mode or the mean of the distribution. This location provides some information about the main part of the PDF and is used to avoid numerical problems. Default is None.
- **domain** [list or tuple of length 2, optional] The support of the distribution. Default is None. When None:
  - If a support method is provided by the distribution object dist, it is used to set the domain of the distribution.
  - Otherwise the support is assumed to be \((-\infty, \infty)\).
- **order** [int, optional] Order of the interpolating polynomial. Valid orders are between 3 and 17. Higher orders result in fewer intervals for the approximations. Default is 5.
- **u_resolution** [float, optional] Set maximal tolerated u-error. Values of u_resolution must at least 1.e-15 and 1.e-5 at most. Notice that the resolution of most uniform random number sources is 2^-32≈ 2.3e-10. Thus a value of 1.e-10 leads to an inversion algorithm that could be called exact. For most simulations slightly bigger values for the maximal error are enough as well. Default is 1e-10.
- **random_state** [[None, int, numpy.random.Generator]]
A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If `random_state` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `random_state` is an int, a new `RandomState` instance is used, seeded with `random_state`. If `random_state` is already a `Generator` or `RandomState` instance then that instance is used.

Notes

This method does not work for densities with constant parts (e.g. `uniform` distribution) and segmentation faults if such a density is passed to the constructor. It is recommended to use the composition method to sample from such distributions.

References

[1], [2]

Examples

```python
>>> from scipy.stats.sampling import NumericalInversePolynomial
>>> from scipy.stats import norm

To create a generator to sample from the standard normal distribution, do:

```python
>>> class StandardNormal:
...     def pdf(self, x):
...         return np.exp(-0.5 * x**2)
...
>>> dist = StandardNormal()
>>> urng = np.random.default_rng()
>>> rng = NumericalInversePolynomial(dist, random_state=urng)
```

Once a generator is created, samples can be drawn from the distribution by calling the `rvs` method:

```python
>>> rng.rvs()
-1.524499627636318
```

To check that the random variates closely follow the given distribution, we can look at it's histogram:

```python
>>> import matplotlib.pyplot as plt
>>> rvs = rng.rvs(10000)
>>> x = np.linspace(rvs.min()-0.1, rvs.max()+0.1, 1000)
>>> fx = norm.pdf(x)
>>> plt.plot(x, fx, 'r-', lw=2, label='true distribution')
>>> plt.hist(rvs, bins=20, density=True, alpha=0.8, label='random variates')
>>> plt.xlabel('x')
>>> plt.ylabel('PDF(x)')
>>> plt.title('Numerical Inverse Polynomial Samples')
>>> plt.legend()
>>> plt.show()
```
It is possible to estimate the u-error of the approximated PPF if the exact CDF is available during setup. To do so, pass a dist object with exact CDF of the distribution during initialization:

```python
>>> from scipy.special import ndtr
>>> class StandardNormal:
...     def pdf(self, x):
...         return np.exp(-0.5 * x*x)
...     def cdf(self, x):
...         return ndtr(x)
... >>> dist = StandardNormal()
>>> urng = np.random.default_rng()
>>> rng = NumericalInversePolynomial(dist, random_state=urng)
```

Now, the u-error can be estimated by calling the u_error method. It runs a Monte-Carlo simulation to estimate the u-error. By default, 100000 samples are used. To change this, you can pass the number of samples as an argument:

```python
>>> rng.u_error(sample_size=1000000)  # uses one million samples
UError(max_error=8.78599415436594e-11, mean_absolute_error=2.930890027826552e-11)
```

This returns a namedtuple which contains the maximum u-error and the mean absolute u-error.

The u-error can be reduced by decreasing the u-resolution (maximum allowed u-error):

```python
>>> urng = np.random.default_rng()
>>> rng = NumericalInversePolynomial(dist, u_resolution=1.e-12, random_state=urng)
>>> rng.u_error(sample_size=1000000)
UError(max_error=9.07496300328603e-13, mean_absolute_error=3.525564451725716e-13)
```

Note that this comes at the cost of increased setup time.

The approximated PPF can be evaluated by calling the ppf method:
Since the PPF of the normal distribution is available as a special function, we can also check the x-error, i.e. the difference between the approximated PPF and exact PPF:

```python
>>> import matplotlib.pyplot as plt
>>> u = np.linspace(0.01, 0.99, 1000)
>>> approxppf = rng.ppf(u)
>>> exactppf = norm.ppf(u)
>>> error = np.abs(exactppf - approxppf)
>>> plt.plot(u, error)
>>> plt.xlabel('u')
>>> plt.ylabel('error')
>>> plt.title('Error between exact and approximated PPF (x-error)')
>>> plt.show()
```

![Graph showing the error between exact and approximated PPF (x-error)]()
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdf(x)</td>
<td>Approximated cumulative distribution function of the given distribution.</td>
</tr>
<tr>
<td>ppf(u)</td>
<td>Approximated PPF of the given distribution.</td>
</tr>
<tr>
<td>rvs(size, random_state)</td>
<td>Sample from the distribution.</td>
</tr>
<tr>
<td>set_random_state(random_state)</td>
<td>Set the underlying uniform random number generator.</td>
</tr>
<tr>
<td>u_error(sample_size)</td>
<td>Estimate the u-error of the approximation using Monte Carlo simulation.</td>
</tr>
</tbody>
</table>

scipy.stats.sampling.NumericalInversePolynomial.cdf

NumericalInversePolynomial.cdf(x)
Approximated cumulative distribution function of the given distribution.

Parameters

- x [array_like] Quantiles, with the last axis of x denoting the components.

Returns

cdf [array_like] Approximated cumulative distribution function evaluated at x.

scipy.stats.sampling.NumericalInversePolynomial.ppf

NumericalInversePolynomial.ppf(u)
Approximated PPF of the given distribution.

Parameters

- u [array_like] Quantiles.

Returns

ppf [array_like] Percentiles corresponding to given quantiles u.

scipy.stats.sampling.NumericalInversePolynomial.rvs

NumericalInversePolynomial.rvs(size=none, random_state=none)
Sample from the distribution.

Parameters

- size [int or tuple, optional] The shape of samples. Default is None in which case a scalar sample is returned.
- random_state [{None, int, numpy.random.Generator, numpy.random.RandomState}, optional]
 A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If random_state is None (or np.random), random_state provided during initialization is used. If random_state is an int, a new RandomState instance is used, seeded with random_state. If random_state is already a Generator or RandomState instance then that instance is used.
Returns

rvs
[array_like] A NumPy array of random variates.

scipy.stats.sampling.NumericalInversePolynomial.set_random_state

NumericalInversePolynomial.set_random_state(random_state=None)

Set the underlying uniform random number generator.

Parameters

random_state
{[None, int, numpy.random.Generator,]
 numpy.random.RandomState], optional
A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If random_state is None (or np.random), the numpy.random.RandomState singleton is used. If random_state is an int, a new RandomState instance is used, seeded with random_state. If random_state is already a Generator or RandomState instance then that instance is used.

scipy.stats.sampling.NumericalInversePolynomial.u_error

NumericalInversePolynomial.u_error(sample_size=100000)

Estimate the u-error of the approximation using Monte Carlo simulation. This is only available if the generator was initialized with a dist object containing the implementation of the exact CDF under cdf method.

Parameters

sample_size
[int, optional] Number of samples to use for the estimation. It must be greater than or equal to 1000.

Returns

max_error
[float] Maximum u-error.

mean_absolute_error
[float] Mean absolute u-error.

scipy.stats.sampling.TransformedDensityRejection

class scipy.stats.sampling.TransformedDensityRejection(dist, *, mode=None, center=None, domain=None, c=- 0.5, construction_points=30, use_dars=True, max_squeeze_hat_ratio=0.99, random_state=None)

Transformed Density Rejection (TDR) Method.

TDR is an acceptance/rejection method that uses the concavity of a transformed density to construct hat function and squeezes automatically. Most universal algorithms are very slow compared to algorithms that are specialized to that distribution. Algorithms that are fast have a slow setup and require large tables. The aim of this universal method is to provide an algorithm that is not too slow and needs only a short setup. This method can be applied to univariate and unimodal continuous distributions with T-concave density function. See [1] and [2] for more details.
Parameters

dist

[object] An instance of a class with *pdf* and *dpdf* methods.
- *pdf*: PDF of the distribution. The signature of the PDF is expected to be: `def pdf(self, x: float) -> float`. i.e. the PDF should accept a Python float and return a Python float. It doesn’t need to integrate to 1 i.e. the PDF doesn’t need to be normalized.
- *dpdf*: Derivative of the PDF w.r.t *x* (i.e. the variate). Must have the same signature as the PDF.

mode

[float, optional] (Exact) Mode of the distribution. Default is `None`.

center

[float, optional] Approximate location of the mode or the mean of the distribution. This location provides some information about the main part of the PDF and is used to avoid numerical problems. Default is `None`.

domain

[list or tuple of length 2, optional] The support of the distribution. Default is `None`. When `None`:
- If a *support* method is provided by the distribution object *dist*, it is used to set the domain of the distribution.
- Otherwise the support is assumed to be `(-∞, ∞)`.

c

[{-0.5, 0.}, optional] Set parameter *c* for the transformation function *T*. The default is -0.5. The transformation of the PDF must be concave in order to construct the hat function. Such a PDF is called T-concave. Currently the following transformations are supported:

\[
c = 0 : T(x) = \log(x) \\
c = -0.5 : T(x) = \frac{1}{\sqrt{x}} \quad \text{(Default)}
\]

construction_points

[int or array_like, optional] If an integer, it defines the number of construction points. If it is array-like, the elements of the array are used as construction points. Default is 30.

use_dars

[bool, optional] If True, “derandomized adaptive rejection sampling” (DARS) is used in setup. See [1] for the details of the DARS algorithm. Default is True.

max.squeeze.hat_ratio

[float, optional] Set upper bound for the ratio (area below squeeze) / (area below hat). It must be a number between 0 and 1. Default is 0.99.

random_state

[[None, int, numpy.random.Generator],
 numpy.random.RandomState], optional
A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If *random_state* is None (or *np.random*), the *numpy.random.RandomState* singleton is used. If *random_state* is an int, a new *RandomState* instance is used, seeded with *random_state*. If *random_state* is already a *Generator* or *RandomState* instance then that instance is used.

References

[1], [2], [3]
Examples

```python
>>> from scipy.stats.sampling import TransformedDensityRejection
```

Suppose we have a density:

\[
f(x) = \begin{cases}
1 - x^2, & -1 \leq x \leq 1 \\
0, & \text{otherwise}
\end{cases}
\]

The derivative of this density function is:

\[
\frac{df(x)}{dx} = \begin{cases}
-2x, & -1 \leq x \leq 1 \\
0, & \text{otherwise}
\end{cases}
\]

Notice that the PDF doesn’t integrate to 1. As this is a rejection based method, we need not have a normalized PDF. To initialize the generator, we can use:

```python
>>> urng = np.random.default_rng()

>>> class MyDist:
...     def pdf(self, x):
...         return 1-x**2
...     def dpdf(self, x):
...         return -2*x

>>> dist = MyDist()

>>> rng = TransformedDensityRejection(dist, domain=(-1, 1), random_state=urng)
```

Domain can be very useful to truncate the distribution but to avoid passing it everytime to the constructor, a default domain can be set by providing a `support` method in the distribution object (`dist`):

```python
>>> class MyDist:
...     def pdf(self, x):
...         return 1-x**2
...     def dpdf(self, x):
...         return -2*x

>>> def support(self):
...     return (-1, 1)

>>> dist = MyDist()

>>> rng = TransformedDensityRejection(dist, random_state=urng)
```

Now, we can use the `rvs` method to generate samples from the distribution:

```python
>>> rvs = rng.rvs(1000)
```

We can check that the samples are from the given distribution by visualizing its histogram:

```python
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-1, 1, 1000)
>>> fx = 3/4 * dist.pdf(x) # 3/4 is the normalizing constant
>>> plt.plot(x, fx, 'r-', lw=2, label='true distribution')
>>> plt.hist(rvs, bins=20, density=True, alpha=0.8, label='random variates')
```

(continues on next page)
Attributes

- **hat_area**: Get the area below the hat for the generator.
- **squeeze_area**: Get the area below the squeeze for the generator.
- **squeeze_hat_ratio**: Get the current ratio (area below squeeze) / (area below hat) for the generator.

Methods

- [**ppf_hat(u)**](#ppf_hat) Evaluate the inverse of the CDF of the hat distribution at u.
- [**rvs([size, random_state])**](#rvs) Sample from the distribution.
- [**set_random_state([random_state])**](#set_random_state) Set the underlying uniform random number generator.
scipy.stats.sampling.TransformedDensityRejection.ppf_hat

TransformedDensityRejection.ppf_hat(u)
Evaluate the inverse of the CDF of the hat distribution at u.

Parameters
- u [array_like] An array of percentiles

Returns
- ppf_hat [array_like] Array of quantiles corresponding to the given percentiles.

Examples

```python
>>> from scipy.stats.sampling import TransformedDensityRejection
>>> from scipy.stats import norm
>>> from math import exp

>>> class MyDist:
...     def pdf(self, x):
...         return exp(-0.5 * x**2)
...     def dpdf(self, x):
...         return -x * exp(-0.5 * x**2)
...
>>> dist = MyDist()
>>> rng = TransformedDensityRejection(dist)

>>> rng.ppf_hat(0.5)
-0.00018050266342393984
>>> norm.ppf(0.5)
0.0
>>> u = np.linspace(0, 1, num=1000)
>>> ppf_hat = rng.ppf_hat(u)
```

scipy.stats.sampling.TransformedDensityRejection.rvs

TransformedDensityRejection.rvs(size=None, random_state=None)
Sample from the distribution.

Parameters
- size [int or tuple, optional] The shape of samples. Default is None in which case a scalar sample is returned.
- random_state [{None, int, numpy.random.Generator, numpy.random.RandomState}, optional]
 A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If random_state is None (or np.random), random_state provided during initialization is used. If random_state is an int, a new RandomState instance is used, seeded with random_state. If random_state is already a Generator or RandomState instance then that instance is used.
Returns

rvs : [array_like] A NumPy array of random variates.

scipy.stats.sampling.TransformedDensityRejection.set_random_state

```python
class TransformedDensityRejection:
    def set_random_state(self, random_state=None):
        ...
```

Set the underlying uniform random number generator.

Parameters

random_state : [None, int, numpy.random.Generator, numpy.random.RandomState], optional
 A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If random_state is None (or np.random), the numpy.random.RandomState singleton is used. If random_state is an int, a new RandomState instance is used, seeded with random_state. If random_state is already a Generator or RandomState instance then that instance is used.

scipy.stats.sampling.SimpleRatioUniforms

```python
class SimpleRatioUniforms:
    def __init__(self, dist, *, mode=None, pdf_area=1, domain=None, cdf_at_mode=None, random_state=None):
        ...
```

Simple Ratio-of-Uniforms (SROU) Method.

SROU is based on the ratio-of-uniforms method that uses universal inequalities for constructing a (universal) bounding rectangle. It works for T-concave distributions with $T(x) = -1/\sqrt{x}$. The main advantage of the method is a fast setup. This can be beneficial if one repeatedly needs to generate small to moderate samples of a distribution with different shape parameters. In such a situation, the setup step of NumericalInverseHermite or NumericalInversePolynomial will lead to poor performance.

Parameters

dist : [object] An instance of a class with pdf method.
 - pdf: PDF of the distribution. The signature of the PDF is expected to be: def pdf(self, x: float) -> float. i.e. the PDF should accept a Python float and return a Python float. It doesn’t need to integrate to 1 i.e. the PDF doesn’t need to be normalized. If not normalized, pdf_area should be set to the area under the PDF.

mode : [float, optional] (Exact) Mode of the distribution. When the mode is None, a slow numerical routine is used to approximate it. Default is None.

pdf_area : [float, optional] Area under the PDF. Optionally, an upper bound to the area under the PDF can be passed at the cost of increased rejection constant. Default is 1.

domain : [list or tuple of length 2, optional] The support of the distribution. Default is None. When None:
 - If a support method is provided by the distribution object dist, it is used to set the domain of the distribution.
 - Otherwise the support is assumed to be $(-\infty, \infty)$.

cdf_at_mode : [float, optional] CDF at the mode. It can be given to increase the performance of the algorithm. The rejection constant is halved when CDF at mode is given. Default is None.

random_state : [None, int, numpy.random.Generator, numpy.random.RandomState], optional
A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If `random_state` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `random_state` is an int, a new RandomState instance is used, seeded with `random_state`. If `random_state` is already a `Generator` or `RandomState` instance then that instance is used.

References

[1], [2], [3]

Examples

```python
>>> from scipy.stats.sampling import SimpleRatioUniforms

Suppose we have the normal distribution:

```python
>>> class StdNorm:
... def pdf(self, x):
... return np.exp(-0.5 * x**2)
```  

Notice that the PDF doesn’t integrate to 1. We can either pass the exact area under the PDF during initialization of the generator or an upper bound to the exact area under the PDF. Also, it is recommended to pass the mode of the distribution to speed up the setup:

```python
>>> urng = np.random.default_rng()
>>> dist = StdNorm()
>>> rng = SimpleRatioUniforms(dist, mode=0,
... pdf_area=np.sqrt(2*np.pi),
... random_state=urng)
```

Now, we can use the `rvs` method to generate samples from the distribution:

```python
>>> rvs = rng.rvs(10)
```

If the CDF at mode is available, it can be set to improve the performance of `rvs`:

```python
>>> from scipy.stats import norm
>>> rng = SimpleRatioUniforms(dist, mode=0,
... pdf_area=np.sqrt(2*np.pi),
... cdf_at_mode=norm.cdf(0),
... random_state=urng)
>>> rvs = rng.rvs(1000)
```

We can check that the samples are from the given distribution by visualizing its histogram:

```python
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(rvs.min()-0.1, rvs.max()+0.1, 1000)
>>> fx = 1/np.sqrt(2*np.pi) * dist.pdf(x)
>>> fig, ax = plt.subplots()
>>> ax.plot(x, fx, 'r-', lw=2, label='true distribution')
>>> ax.hist(rvs, bins=10, density=True, alpha=0.8, label='random variates', ...
```

(continues on next page)
```python
>>> ax.set_xlabel('x')
>>> ax.set_ylabel('PDF(x)')
>>> ax.set_title('Simple Ratio-of-Uniforms Samples')
>>> ax.legend()
>>> plt.show()
```

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>.rvs(size, random_state)</code></td>
<td>Sample from the distribution.</td>
</tr>
<tr>
<td><code>.set_random_state(random_state)</code></td>
<td>Set the underlying uniform random number generator.</td>
</tr>
</tbody>
</table>

### scipy.stats.sampling.SimpleRatioUniforms.rvs

Sample from the distribution.

**Parameters**

- **size** ([int or tuple, optional]) The shape of samples. Default is `None` in which case a scalar sample is returned.
- **random_state** ([None, int, numpy.random.Generator, numpy.random.RandomState], optional)
  A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If `random_state` is `None` (or `np.random`), `random_state` provided during initialization is used. If `random_state` is an int, a new `RandomState` instance is used, seeded with `random_state`. If `random_state` is already a `Generator` or `RandomState` instance then that instance is used.

**Returns**
rvs: [array_like] A NumPy array of random variates.

**scipy.stats.sampling.SimpleRatioUniforms.set_random_state**

`SimpleRatioUniforms.set_random_state(random_state=None)`

Set the underlying uniform random number generator.

**Parameters**

- **random_state**
  - [(None, int, numpy.random.Generator, numpy.random.RandomState), optional]
  - A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If `random_state` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `random_state` is an int, a new `RandomState` instance is used, seeded with `random_state`. If `random_state` is already a `Generator` or `RandomState` instance then that instance is used.

**For discrete distributions**

- `DiscreteAliasUrn(dist, *[, domain,...])` Discrete Alias-Urn Method.
- `DiscreteGuideTable(dist, *[, domain,...])` Discrete Guide Table method.

**scipy.stats.sampling.DiscreteAliasUrn**

**class scipy.stats.sampling.DiscreteAliasUrn**

`DiscreteAliasUrn(dist, *[, domain,...])`

Discrete Alias-Urn Method.

This method is used to sample from univariate discrete distributions with a finite domain. It uses the probability vector of size \( N \) or a probability mass function with a finite support to generate random numbers from the distribution.

**Parameters**

- **dist**
  - [array_like or object, optional] Probability vector (PV) of the distribution. If PV isn’t available, an instance of a class with a pmf method is expected. The signature of the PMF is expected to be: `def pmf(self, k: int) -> float`. i.e. it should accept a Python integer and return a Python float.

- **domain**
  - [int, optional] Support of the PMF. If a probability vector (pv) is not available, a finite domain must be given. i.e. the PMF must have a finite support. Default is None. When None:
    - If a support method is provided by the distribution object `dist`, it is used to set the domain of the distribution.
    - Otherwise, the support is assumed to be \((0, \text{len(pv)})\). When this parameter is passed in combination with a probability vector, `domain[0]` is used to relocate the distribution from \((0, \text{len(pv)})\) to \((\text{domain[0]}, \text{domain[0]}+\text{len(pv)})\) and `domain[1]` is ignored. See Notes and tutorial for a more detailed explanation.
urn_factor
[float, optional] Size of the urn table relative to the size of the probability vector. It must not be less than 1. Larger tables result in faster generation times but require a more expensive setup. Default is 1.

random_state
[[None, int, numpy.random.Generator], numpy.random.RandomState], optional
A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If random_state is None (or np.random), the numpy.random.RandomState singleton is used. If random_state is an int, a new RandomState instance is used, seeded with random_state. If random_state is already a Generator or RandomState instance then that instance is used.

Notes
This method works when either a finite probability vector is available or the PMF of the distribution is available. In case a PMF is only available, the finite support (domain) of the PMF must also be given. It is recommended to first obtain the probability vector by evaluating the PMF at each point in the support and then using it instead.

If a probability vector is given, it must be a 1-dimensional array of non-negative floats without any inf or nan values. Also, there must be at least one non-zero entry otherwise an exception is raised.

By default, the probability vector is indexed starting at 0. However, this can be changed by passing a domain parameter. When domain is given in combination with the PV, it has the effect of relocating the distribution from (0, len(pv)) to (domain[0], domain[0] + len(pv)). domain[1] is ignored in this case.

The parameter urn_factor can be increased for faster generation at the cost of increased setup time. This method uses a table for random variate generation. urn_factor controls the size of this table relative to the size of the probability vector (or width of the support, in case a PV is not available). As this table is computed during setup time, increasing this parameter linearly increases the time required to setup. It is recommended to keep this parameter under 2.

References
[1],[2]

Examples

```python
>>> from scipy.stats.sampling import DiscreteAliasUrn
```

To create a random number generator using a probability vector, use:

```python
>>> pv = [0.1, 0.3, 0.6]
>>> urrng = np.random.default_rng()
>>> rng = DiscreteAliasUrn(pv, random_state=urrng)
```

The RNG has been setup. Now, we can now use the rvs method to generate samples from the distribution:

```python
>>> rvs = rng.rvs(size=1000)
```

To verify that the random variates follow the given distribution, we can use the chi-squared test (as a measure of goodness-of-fit):
from scipy.stats import chisquare
>>> _, freqs = np.unique(rvs, return_counts=True)
>>> freqs = freqs / np.sum(freqs)
>>> freqs
array([0.092, 0.292, 0.616])
>>> chisquare(freqs, pv).pvalue
0.9993602047563164

As the p-value is very high, we fail to reject the null hypothesis that the observed frequencies are the same as the expected frequencies. Hence, we can safely assume that the variates have been generated from the given distribution. Note that this just gives the correctness of the algorithm and not the quality of the samples.

If a PV is not available, an instance of a class with a PMF method and a finite domain can also be passed.

urng = np.random.default_rng()
class Binomial:
  def __init__(self, n, p):
    self.n = n
    self.p = p
  def pmf(self, x):
    # note that the pmf doesn't need to be normalized.
    return self.p**x * (1-self.p)**(self.n-x)
  def support(self):
    return (0, self.n)

n, p = 10, 0.2
dist = Binomial(n, p)
rng = DiscreteAliasUrn(dist, random_state=urng)

Now, we can sample from the distribution using the rvs method and also measure the goodness-of-fit of the samples:

rvs = rng.rvs(1000)
>>> _, freqs = np.unique(rvs, return_counts=True)
>>> freqs = freqs / np.sum(freqs)
>>> obs_freqs = np.zeros(11)  # some frequencies may be zero.
>>> obs_freqs[:freqs.size] = freqs
>>> pv = [dist.pmf(i) for i in range(0, 11)]
>>> pv = np.asarray(pv) / np.sum(pv)
>>> chisquare(obs_freqs, pv).pvalue
0.9999999999999999

To check that the samples have been drawn from the correct distribution, we can visualize the histogram of the samples:

import matplotlib.pyplot as plt
rvs = rng.rvs(1000)
fig = plt.figure()
ax = fig.add_subplot(111)
x = np.arange(0, n+1)
fx = dist.pmf(x)
fx = fx / fx.sum()
ax.plot(x, fx, 'bo', label='true distribution')
ax.vlines(x, 0, fx, lw=2)
To set the `urn_factor`, use:

```python
>>> rng = DiscreteAliasUrn(pv, urn_factor=2, random_state=urng)
```

This uses a table twice the size of the probability vector to generate random variates from the distribution.

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rvs([size, random_state])</code></td>
<td>Sample from the distribution.</td>
</tr>
<tr>
<td><code>set_random_state(random_state)</code></td>
<td>Set the underlying uniform random number generator.</td>
</tr>
</tbody>
</table>

`scipy.stats.sampling.DiscreteAliasUrn.rvs`

DiscreteAliasUrn.rvs(size=None, random_state=None)

Sample from the distribution.

**Parameters**

- `size` [int or tuple, optional] The shape of samples. Default is None in which case a scalar sample is returned.
- `random_state` [[None, int, numpy.random.Generator], numpy.random.RandomState], optional
A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If random_state is None (or np.random), random_state provided during initialization is used. If random_state is an int, a new RandomState instance is used, seeded with random_state. If random_state is already a Generator or RandomState instance then that instance is used.

**Returns**

rvs 
[array_like] A NumPy array of random variates.

---

**scipy.stats.sampling.DiscreteAliasUrn.set_random_state**

DiscreteAliasUrn.set_random_state(random_state=None)

Set the underlying uniform random number generator.

**Parameters**

random_state

[[None, int, numpy.random.Generator], 
numpy.random.RandomState], optional

A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If random_state is None (or np.random), the numpy.random.RandomState singleton is used. If random_state is an int, a new RandomState instance is used, seeded with random_state. If random_state is already a Generator or RandomState instance then that instance is used.

---

**scipy.stats.sampling.DiscreteGuideTable**

class scipy.stats.sampling.DiscreteGuideTable(dist, *, domain=None, guide_factor=1, 
random_state=None)

Discrete Guide Table method.

The Discrete Guide Table method samples from arbitrary, but finite, probability vectors. It uses the probability vector of size $N$ or a probability mass function with a finite support to generate random numbers from the distribution. Discrete Guide Table has a very slow set up (linear with the vector length) but provides very fast sampling.

**Parameters**

dist 
[array_like or object, optional] Probability vector (PV) of the distribution. If PV isn’t available, an instance of a class with a pmf method is expected. The signature of the PMF is expected to be: def pmf(self, k: int) -> float, i.e. it should accept a Python integer and return a Python float.

domain 
[int, optional] Support of the PMF. If a probability vector (pv) is not available, a finite domain must be given, i.e. the PMF must have a finite support. Default is None. When None:

- If a support method is provided by the distribution object dist, it is used to set the domain of the distribution.
- Otherwise, the support is assumed to be (0, len(pv)). When this parameter is passed in combination with a probability vector, domain[0] is used to relocate the distribution from (0, len(pv)) to (domain[0], domain[0]+len(pv)) and domain[1] is ignored. See Notes and tutorial for a more detailed explanation.
guide_factor: int, optional
Size of the guide table relative to length of PV. Larger guide tables result in faster generation time but require a more expensive setup. Sizes larger than 3 are not recommended. If the relative size is set to 0, sequential search is used. Default is 1.

random_state
[[None, int, numpy.random.Generator],
numpy.random.RandomState], optional
A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If random_state is None (or np.random), the numpy.random.RandomState singleton is used. If random_state is an int, a new RandomState instance is used, seeded with random_state. If random_state is already a Generator or RandomState instance then that instance is used.

Notes
This method works when either a finite probability vector is available or the PMF of the distribution is available. In case a PMF is only available, the finite support (domain) of the PMF must also be given. It is recommended to first obtain the probability vector by evaluating the PMF at each point in the support and then using it instead.

DGT samples from arbitrary but finite probability vectors. Random numbers are generated by the inversion method, i.e.

1. Generate a random number $U \sim U(0,1)$.
2. Find smallest integer $I$ such that $F(I) = P(X \leq I) \geq U$.

Step (2) is the crucial step. Using sequential search requires $O(E(X))$ comparisons, where $E(X)$ is the expectation of the distribution. Indexed search, however, uses a guide table to jump to some $I' \leq I$ near $I$ to find $X$ in constant time. Indeed the expected number of comparisons is reduced to 2, when the guide table has the same size as the probability vector (this is the default). For larger guide tables this number becomes smaller (but is always larger than 1), for smaller tables it becomes larger. For the limit case of table size 1 the algorithm simply does sequential search.

On the other hand the setup time for guide table is $O(N)$, where $N$ denotes the length of the probability vector (for size 1 no preprocessing is required). Moreover, for very large guide tables memory effects might even reduce the speed of the algorithm. So we do not recommend to use guide tables that are more than three times larger than the given probability vector. If only a few random numbers have to be generated, (much) smaller table sizes are better. The size of the guide table relative to the length of the given probability vector can be set by the guide_factor parameter.

If a probability vector is given, it must be a 1-dimensional array of non-negative floats without any inf or nan values. Also, there must be at least one non-zero entry otherwise an exception is raised.

By default, the probability vector is indexed starting at 0. However, this can be changed by passing a domain parameter. When domain is given in combination with the PV, it has the effect of relocating the distribution from $(0, len(pv))$ to $(domain[0], domain[0] + len(pv))$. domain[1] is ignored in this case.

3012 Chapter 3. SciPy API
Examples

```python
>>> from scipy.stats.sampling import DiscreteGuideTable

To create a random number generator using a probability vector, use:

```python
>>> pv = [0.1, 0.3, 0.6]
>>> urng = np.random.default_rng()
>>> rng = DiscreteGuideTable(pv, random_state=urng)

```The RNG has been set up. Now, we can now use the `rvs` method to generate samples from the distribution:

```python
>>> rvs = rng.rvs(size=1000)
```

To verify that the random variates follow the given distribution, we can use the chi-squared test (as a measure of goodness-of-fit):

```python
>>> from scipy.stats import chisquare
>>> _, freqs = np.unique(rvs, return_counts=True)
>>> freqs = freqs / np.sum(freqs)
>>> freqs
array([0.092, 0.355, 0.553])
>>> chisquare(freqs, pv).pvalue
0.9987382966178464
```

As the p-value is very high, we fail to reject the null hypothesis that the observed frequencies are the same as the expected frequencies. Hence, we can safely assume that the variates have been generated from the given distribution. Note that this just gives the correctness of the algorithm and not the quality of the samples.

If a PV is not available, an instance of a class with a PMF method and a finite domain can also be passed.

```python
>>> urng = np.random.default_rng()
>>> from scipy.stats import binom
>>> n, p = 10, 0.2
>>> dist = binom(n, p)
>>> rng = DiscreteGuideTable(dist, random_state=urng)
```

Now, we can sample from the distribution using the `rvs` method and also measure the goodness-of-fit of the samples:

```python
>>> rvs = rng.rvs(1000)
>>> _, freqs = np.unique(rvs, return_counts=True)
>>> freqs = freqs / np.sum(freqs)
>>> obs_freqs = np.zeros(11)  # some frequencies may be zero.
>>> obs_freqs[:freqs.size] = freqs
>>> pv = [dist.pmf(i) for i in range(0, 11)]
>>> pv = np.asarray(pv) / np.sum(pv)
>>> chisquare(obs_freqs, pv).pvalue
0.9999999999999989
```
To check that the samples have been drawn from the correct distribution, we can visualize the histogram of the samples:

```python
>>> import matplotlib.pyplot as plt
>>> rvs = rng.rvs(1000)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> x = np.arange(0, n+1)
>>> fx = dist.pmf(x)
>>> fx = fx / fx.sum()
>>> ax.plot(x, fx, 'bo', label='true distribution')
>>> ax.vlines(x, 0, fx, lw=2)
>>> ax.hist(rvs, bins=np.r_[x, n+1]-0.5, density=True, alpha=0.5, ... color='r', label='samples')
>>> ax.set_xlabel('x')
>>> ax.set_ylabel('PMF(x)')
>>> ax.set_title('Discrete Guide Table Samples')
>>> plt.legend()
>>> plt.show()
```

To set the size of the guide table use the `guide_factor` keyword argument. This sets the size of the guide table relative to the probability vector:

```python
>>> rng = DiscreteGuideTable(pv, guide_factor=1, random_state=urng)
```

To calculate the PPF of a binomial distribution with $n = 4$ and $p = 0.1$: we can set up a guide table as follows:

```python
>>> n, p = 4, 0.1
>>> dist = binom(n, p)
>>> rng = DiscreteGuideTable(dist, random_state=42)
>>> rng.ppf(0.5)
0.0
```
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ppf(u)</code></td>
<td>PPF of the given distribution.</td>
</tr>
<tr>
<td><code>rvs([size, random_state])</code></td>
<td>Sample from the distribution.</td>
</tr>
<tr>
<td><code>set_random_state([random_state])</code></td>
<td>Set the underlying uniform random number generator.</td>
</tr>
</tbody>
</table>

`scipy.stats.sampling.DiscreteGuideTable.ppf`

DiscreteGuideTable.ppf(u)

PPF of the given distribution.

Parameters

- `u` [array_like] Quantiles.

Returns

- `ppf` [array_like] Percentiles corresponding to given quantiles u.

`scipy.stats.sampling.DiscreteGuideTable.rvs`

DiscreteGuideTable.rvs(size=None, random_state=None)

Sample from the distribution.

Parameters

- `size` [int or tuple, optional] The shape of samples. Default is None in which case a scalar sample is returned.
- `random_state` [None, int, `numpy.random.Generator`, `numpy.random.RandomState`], optional
 A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If random_state is None (or `np.random`), random_state provided during initialization is used. If random_state is an int, a new RandomState instance is used, seeded with random_state. If random_state is already a Generator or RandomState instance then that instance is used.

Returns

- `rvs` [array_like] A NumPy array of random variates.

`scipy.stats.sampling.DiscreteGuideTable.set_random_state`

DiscreteGuideTable.set_random_state(random_state=None)

Set the underlying uniform random number generator.

Parameters

- `random_state` [None, int, `numpy.random.Generator`, `numpy.random.RandomState`], optional
A NumPy random number generator or seed for the underlying NumPy random number generator used to generate the stream of uniform random numbers. If `random_state` is `None` (or `np.random`), the `numpy.random.RandomState` singleton is used. If `random_state` is an int, a new `RandomState` instance is used, seeded with `random_state`. If `random_state` is already a `Generator` or `RandomState` instance then that instance is used.

Warnings / Errors used in scipy.stats.sampling

UNURANError

Raised when an error occurs in the UNURAN library.

scipy.stats.sampling.UNURANError

exception `scipy.stats.sampling.UNURANError`

Raised when an error occurs in the UNURAN library.

```python
with_traceback()  # Exception.with_traceback(tb) -- set self.__traceback__ to tb and return self.
```

Random variate generation / CDF Inversion

rvs_ratio_uniforms(pdf, umax, vmin, vmax[, ...])

Generate random samples from a probability density function using the ratio-of-uniforms method.

NumericalInverseHermite(*args, **kwargs)

Methods

scipy.stats.rvs_ratio_uniforms

scipy.stats.rvs_ratio_uniforms *(pdf, umax, vmin, vmax, size=1, c=0, random_state=None)*

Generate random samples from a probability density function using the ratio-of-uniforms method.

Parameters

- **pdf** *(callable)*: A function with signature \(pdf(x) \) that is proportional to the probability density function of the distribution.
- **umax** *(float)*: The upper bound of the bounding rectangle in the u-direction.
- **vmin** *(float)*: The lower bound of the bounding rectangle in the v-direction.
- **vmax** *(float)*: The upper bound of the bounding rectangle in the v-direction.
- **size** *(int or tuple of ints, optional)*: Defining number of random variates (default is 1).
- **c** *(float, optional)*: Shift parameter of ratio-of-uniforms method, see Notes. Default is 0.
- **random_state** *(None, int, numpy.random.Generator, numpy.random.RandomState), optional)*

 If `seed` is `None` (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new `RandomState` instance is used, seeded with `seed`. If `seed` is already a `Generator` or `RandomState` instance then that instance is used.

Returns
rvs [ndarray] The random variates distributed according to the probability distribution defined by the pdf.

Notes

Given a univariate probability density function pdf and a constant c, define the set $A = \{(u, v) : 0 < u \leq \sqrt{pdf(v/u + c)}\}$. If (U, V) is a random vector uniformly distributed over A, then $V/U + c$ follows a distribution according to pdf.

The above result (see [1], [2]) can be used to sample random variables using only the pdf, i.e. no inversion of the cdf is required. Typical choices of c are zero or the mode of pdf. The set A is a subset of the rectangle $R = [0, umax] \times [vmin, vmax]$ where

- $umax = \sup \sqrt{pdf(x)}$
- $vmin = \inf (x - c) \sqrt{pdf(x)}$
- $vmax = \sup (x - c) \sqrt{pdf(x)}$

In particular, these values are finite if pdf is bounded and $x^2 * pdf(x)$ is bounded (i.e. subquadratic tails). One can generate (U, V) uniformly on R and return $V/U + c$ if (U, V) are also in A which can be directly verified.

The algorithm is not changed if one replaces pdf by $k * pdf$ for any constant $k > 0$. Thus, it is often convenient to work with a function that is proportional to the probability density function by dropping unnecessary normalization factors.

Intuitively, the method works well if A fills up most of the enclosing rectangle such that the probability is high that (U, V) lies in A whenever it lies in R as the number of required iterations becomes too large otherwise. To be more precise, note that the expected number of iterations to draw (U, V) uniformly distributed on R such that (U, V) is also in A is given by the ratio $\text{area}(R) / \text{area}(A) = 2 * umax * (vmax - vmin) / \text{area}(pdf)$, where $\text{area}(pdf)$ is the integral of pdf (which is equal to one if the probability density function is used but can take on other values if a function proportional to the density is used). The equality holds since the area of A is equal to $0.5 * \text{area}(pdf)$ (Theorem 7.1 in [1]). If the sampling fails to generate a single random variate after 50000 iterations (i.e. not a single draw is in A), an exception is raised.

If the bounding rectangle is not correctly specified (i.e. if it does not contain A), the algorithm samples from a distribution different from the one given by pdf. It is therefore recommended to perform a test such as $kstest$ as a check.

References

[1], [2], [3]

Examples

```python
>>> from scipy import stats
>>> rng = np.random.default_rng()
```

Simulate normally distributed random variables. It is easy to compute the bounding rectangle explicitly in that case. For simplicity, we drop the normalization factor of the density.

```python
>>> f = lambda x: np.exp(-x**2 / 2)
>>> v_bound = np.sqrt(f(np.sqrt(2))) * np.sqrt(2)
>>> umax, vmin, vmax = np.sqrt(f(0)), -v_bound, v_bound
```

(continues on next page)
The K-S test confirms that the random variates are indeed normally distributed (normality is not rejected at 5% significance level):

```python
>>> stats.kstest(rvs, 'norm')[1]
0.250634764150542
```

The exponential distribution provides another example where the bounding rectangle can be determined explicitly.

```python
>>> rvs = stats.rvs_ratio_uniforms(lambda x: np.exp(-x), umax=1, vmin=0, vmax=2*np.exp(-1), size=1000, random_state=rng)
>>> stats.kstest(rvs, 'expon')[1]
0.21121052054580314
```

scipy.stats.NumericalInverseHermite

class `scipy.stats.NumericalInverseHermite(*args, **kwargs)`

Methods

```python
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppdf</td>
<td></td>
</tr>
<tr>
<td>qrvs</td>
<td></td>
</tr>
<tr>
<td>rvs</td>
<td></td>
</tr>
</tbody>
</table>
```

Circular statistical functions

scipy.stats.circmean

scipy.stats.circmean(samples, high=6.283185307179586, low=0, axis=None, nan_policy='propagate')

Compute the circular mean for samples in a range.

Parameters

- **samples** [array_like] Input array.
- **high** [float or int, optional] High boundary for circular mean range. Default is 2π.
- **low** [float or int, optional] Low boundary for circular mean range. Default is 0.
- **axis** [int, optional] Axis along which means are computed. The default is to compute the mean of the flattened array.
nan_policy

[{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'.

Returns

circmean [float] Circular mean.

Examples

```python
>>> from scipy.stats import circmean
>>> circmean([0.1, 2*np.pi+0.2, 6*np.pi+0.3])
0.2
```

```python
>>> from scipy.stats import circmean
>>> circmean([0.2, 1.4, 2.6], high=1, low=0)
0.4
```

scipy.stats.circvar

scipy.stats.circvar(samples, high=6.283185307179586, low=0, axis=None, nan_policy='propagate')

Compute the circular variance for samples assumed to be in a range.

Parameters

- samples [array_like] Input array.
- high [float or int, optional] High boundary for circular variance range. Default is 2*pi.
- low [float or int, optional] Low boundary for circular variance range. Default is 0.
- axis [int, optional] Axis along which variances are computed. The default is to compute the variance of the flattened array.
- nan_policy

[{'propagate', 'raise', 'omit'}, optional] Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'.

Returns

circvar [float] Circular variance.

Notes

This uses a definition of circular variance that in the limit of small angles returns a number close to the 'linear' variance.
Examples

```python
>>> from scipy.stats import circvar
>>> circvar([0, 2*np.pi/3, 5*np.pi/3])
2.19722457734
```

scipy.stats.circstd

scipy.stats.circstd(samples, high=6.283185307179586, low=0, axis=None, nan_policy='propagate')

Compute the circular standard deviation for samples assumed to be in the range [low to high].

Parameters

- **samples** [array_like] Input array.
- **high** [float or int, optional] High boundary for circular standard deviation range. Default is 2*pi.
- **low** [float or int, optional] Low boundary for circular standard deviation range. Default is 0.
- **axis** [int, optional] Axis along which standard deviations are computed. The default is to compute the standard deviation of the flattened array.
- **nan_policy** ['propagate', 'raise', 'omit', optional] Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'.

Returns

- **circstd** [float] Circular standard deviation.

Notes

This uses a definition of circular standard deviation that in the limit of small angles returns a number close to the 'linear' standard deviation.

Examples

```python
>>> from scipy.stats import circstd
>>> circstd([0, 0.1*np.pi/2, 0.001*np.pi, 0.03*np.pi/2])
0.063564063306
```

Contingency table functions

- **chi2_contingency(observe[, correction, lambda_])** Chi-square test of independence of variables in a contingency table.
- **contingency.crosstab(*args[, levels, sparse])** Return table of counts for each possible unique combination in *args.
- **contingency.expected_freq(observe)** Compute the expected frequencies from a contingency table.
- **contingency.margins(a)** Return a list of the marginal sums of the array a.
- **contingency.relative_risk(exposed_cases, ...)** Compute the relative risk (also known as the risk ratio).
Table 305 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>contingency.association</code></td>
<td>Calculates degree of association between two nominal variables.</td>
</tr>
<tr>
<td><code>fisher_exact</code></td>
<td>Perform a Fisher exact test on a 2x2 contingency table.</td>
</tr>
<tr>
<td><code>barnard_exact</code></td>
<td>Perform a Barnard exact test on a 2x2 contingency table.</td>
</tr>
<tr>
<td><code>boschloo_exact</code></td>
<td>Perform Boschloo's exact test on a 2x2 contingency table.</td>
</tr>
</tbody>
</table>

scipy.stats.chi2_contingency

scipy.stats.chi2_contingency *(observed, correction=True, lambda_=None)*

Chi-square test of independence of variables in a contingency table.

This function computes the chi-square statistic and p-value for the hypothesis test of independence of the observed frequencies in the contingency table [1] observed. The expected frequencies are computed based on the marginal sums under the assumption of independence; see `scipy.stats.contingency.expected_freq`. The number of degrees of freedom is (expressed using numpy functions and attributes):

\[
dof = \text{observed.size} - \text{sum(observed.shape)} + \text{observed.ndim} - 1
\]

Parameters

- **observed** [array_like] The contingency table. The table contains the observed frequencies (i.e. number of occurrences) in each category. In the two-dimensional case, the table is often described as an “R x C table”.
- **correction** [bool, optional] If True, and the degrees of freedom is 1, apply Yates' correction for continuity. The effect of the correction is to adjust each observed value by 0.5 towards the corresponding expected value.
- **lambda_** [float or str, optional] By default, the statistic computed in this test is Pearson's chi-squared statistic [2]. lambda_ allows a statistic from the Cressie-Read power divergence family [3] to be used instead. See `scipy.stats.power_divergence` for details.

Returns

- **chi2** [float] The test statistic.
- **p** [float] The p-value of the test
- **dof** [int] Degrees of freedom
- **expected** [ndarray, same shape as observed] The expected frequencies, based on the marginal sums of the table.

See also:

- `scipy.stats.contingency.expected_freq`
- `scipy.stats.fisher_exact`
- `scipy.stats.chisquare`
- `scipy.stats.power_divergence`
- `scipy.stats.barnard_exact`
- `scipy.stats.boschloo_exact`
Notes

An often quoted guideline for the validity of this calculation is that the test should be used only if the observed and expected frequencies in each cell are at least 5.

This is a test for the independence of different categories of a population. The test is only meaningful when the dimension of observed is two or more. Applying the test to a one-dimensional table will always result in expected equal to observed and a chi-square statistic equal to 0.

This function does not handle masked arrays, because the calculation does not make sense with missing values.

Like stats.chisquare, this function computes a chi-square statistic; the convenience this function provides is to figure out the expected frequencies and degrees of freedom from the given contingency table. If these were already known, and if the Yates’ correction was not required, one could use stats.chisquare. That is, if one calls:

```python
chi2, p, dof, ex = chi2_contingency(obs, correction=False)
```

then the following is true:

```python
(chi2, p) == stats.chisquare(obs.ravel(), f_exp=ex.ravel(),
                             ddof=obs.size - 1 - dof)
```

The lambda_ argument was added in version 0.13.0 of scipy.

References

[1], [2], [3]

Examples

A two-way example (2 x 3):

```python
>>> from scipy.stats import chi2_contingency
>>> obs = np.array([[10, 10, 20], [20, 20, 20]])
>>> chi2_contingency(obs)
(2.7777777777777777, 0.24935220877729619, 2,
 array([[ 12., 12., 16.],
        [ 18., 18., 24.]]))
```

Perform the test using the log-likelihood ratio (i.e. the “G-test”) instead of Pearson’s chi-squared statistic.

```python
>>> g, p, dof, expctd = chi2_contingency(obs, lambda_="log-likelihood")
>>> g, p
(2.7688587616781319, 0.25046668010954165)
```

A four-way example (2 x 2 x 2 x 2):

```python
>>> obs = np.array(
...                 [[[12, 17],
...                 [11, 16]],
...                 [[11, 12],
...                 [15, 16]]],
```

(continues on next page)
scipy.stats.contingency.crosstab

scipy.stats.contingency.crosstab (*args, levels=None, sparse=False)

Return table of counts for each possible unique combination in *args.

When len(args) > 1, the array computed by this function is often referred to as a contingency table [1].

The arguments must be sequences with the same length. The second return value, count, is an integer array with len(args) dimensions. If levels is None, the shape of count is (n0, n1, ...), where nk is the number of unique elements in args[k].

Parameters

- **args**: [sequences] A sequence of sequences whose unique aligned elements are to be counted. The sequences in args must all be the same length.
- **levels**: [sequence, optional] If levels is given, it must be a sequence that is the same length as args. Each element in levels is either a sequence or None. If it is a sequence, it gives the values in the corresponding sequence in args that are to be counted. If any value in the sequences in args does not occur in the corresponding sequence in levels, that value is ignored and not counted in the returned array count. The default value of levels for args[i] is np.unique(args[i])
- **sparse**: [bool, optional] If True, return a sparse matrix. The matrix will be an instance of the scipy.sparse.coo_matrix class. Because SciPy's sparse matrices must be 2-d, only two input sequences are allowed when sparse is True. Default is False.

Returns

- **elements**: [tuple of numpy.ndarrays.] Tuple of length len(args) containing the arrays of elements that are counted in count. These can be interpreted as the labels of the corresponding dimensions of count. If levels was given, then if levels[i] is not None, elements[i] will hold the values given in levels[i].
- **count**: [numpy.ndarray or scipy.sparse.coo_matrix] Counts of the unique elements in zip(*args), stored in an array. Also known as a contingency table when len(args) > 1.

See also:

- numpy.unique

3.3. API definition
Notes

New in version 1.7.0.

References

[1]

Examples

```python
>>> from scipy.stats.contingency import crosstab
```

Given the lists `a` and `x`, create a contingency table that counts the frequencies of the corresponding pairs.

```python
>>> a = ['A', 'B', 'A', 'A', 'B', 'A', 'B', 'B']
>>> x = ['X', 'X', 'X', 'Y', 'Z', 'Y', 'Z', 'Z']
>>> (avals, xvals), count = crosstab(a, x)
>>> avals
array(['A', 'B'], dtype='<U1')
>>> xvals
array(['X', 'Y', 'Z'], dtype='<U1')
>>> count
array([[2, 3, 0],
       [1, 0, 4]])
```

So ('A', 'X') occurs twice, ('A', 'Y') occurs three times, etc.

Higher dimensional contingency tables can be created.

```python
>>> p = [0, 0, 0, 0, 1, 1, 1, 0, 0, 1]
>>> (avals, xvals, pvals), count = crosstab(a, x, p)
>>> count
array([[[2, 3, 0],
        [2, 1],
        [0, 0]],
       [[[1, 0],
         [0, 0],
         [1, 3]]])
>>> count.shape
(2, 3, 2)
```

The values to be counted can be set by using the `levels` argument. It allows the elements of interest in each input sequence to be given explicitly instead finding the unique elements of the sequence.

For example, suppose one of the arguments is an array containing the answers to a survey question, with integer values 1 to 4. Even if the value 1 does not occur in the data, we want an entry for it in the table.

```python
>>> q1 = [2, 3, 3, 2, 4, 4, 2, 3, 4, 4, 3, 3, 4]  # 1 does not occur.
>>> q2 = [4, 4, 2, 2, 2, 4, 1, 1, 2, 2, 4, 2, 2, 4]  # 3 does not occur.
>>> options = [1, 2, 3, 4]
>>> vals, count = crosstab(q1, q2, levels=(options, options))
```

(continues on next page)
```python
>>> count
array([[0, 0, 0, 0],
       [1, 1, 0, 1],
       [1, 4, 0, 1],
       [0, 3, 0, 3]])
```

If `levels` is given, but an element of `levels` is None, the unique values of the corresponding argument are used. For example,

```python
>>> vals, count = crosstab(q1, q2, levels=(None, options))
>>> vals
array([[2, 3, 4], [1, 2, 3, 4]])
>>> count
array([[1, 1, 0, 1],
       [1, 4, 0, 1],
       [0, 3, 0, 3]])
```

If we want to ignore the pairs where 4 occurs in `q2`, we can give just the values [1, 2] to `levels`, and the 4 will be ignored:

```python
>>> vals, count = crosstab(q1, q2, levels=(None, [1, 2]))
>>> vals
array([[2, 3, 4], [1, 2]])
>>> count
array([[1, 1],
       [1, 4],
       [0, 3]])
```

Finally, let’s repeat the first example, but return a sparse matrix:

```python
>>> (avals, xvals), count = crosstab(a, x, sparse=True)
>>> count
<2x3 sparse matrix of type '<class 'numpy.int64'>'
with 4 stored elements in COOrdinate format>
>>> count.A
array([[2, 3, 0],
       [1, 0, 4]])
```

scipy.stats.contingency.expected_freq

`scipy.stats.contingency.expected_freq(\texttt{observed})`

Compute the expected frequencies from a contingency table.

Given an n-dimensional contingency table of observed frequencies, compute the expected frequencies for the table based on the marginal sums under the assumption that the groups associated with each dimension are independent.

Parameters

- **\texttt{observed}** [array_like] The table of observed frequencies. (While this function can handle a 1-D array, that case is trivial. Generally \texttt{observed} is at least 2-D.)

Returns
expected [ndarray of float64] The expected frequencies, based on the marginal sums of the table. Same shape as `observed`.

Examples

```python
>>> from scipy.stats.contingency import expected_freq
>>> observed = np.array([[10, 10, 20], [20, 20, 20]])
>>> expected_freq(observed)
array([[ 12.,  12.,  16.],
       [ 18.,  18.,  24.]])
```

scipy.stats.contingency.margins

`scipy.stats.contingency.margins(a)`

Return a list of the marginal sums of the array `a`.

Parameters

- **a** [ndarray] The array for which to compute the marginal sums.

Returns

- **margsums** [list of ndarrays] A list of length `a.ndim`. `margsums[k]` is the result of summing `a` over all axes except `k`; it has the same number of dimensions as `a`, but the length of each axis except axis `k` will be 1.

Examples

```python
>>> a = np.arange(12).reshape(2, 6)
>>> a
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11]])
>>> from scipy.stats.contingency import margins
>>> m0, m1 = margins(a)
>>> m0
array([[15],
       [51]])
>>> m1
array([[ 6,  8, 10, 12, 14, 16]])

>>> b = np.arange(24).reshape(2, 3, 4)
>>> m0, m1, m2 = margins(b)
>>> m0
array([[[ 66],
        [210]]])
>>> m1
array([[[60],
        [92],
        [124]]])
>>> m2
array([[[60, 66, 72, 78]]])
```
scipy.stats.contingency.relative_risk

scipy.stats.contingency.relative_risk (exposed_cases, exposed_total, control_cases, control_total)

Compute the relative risk (also known as the risk ratio).

This function computes the relative risk associated with a 2x2 contingency table ([1], section 2.2.3; [2], section 3.1.2). Instead of accepting a table as an argument, the individual numbers that are used to compute the relative risk are given as separate parameters. This is to avoid the ambiguity of which row or column of the contingency table corresponds to the “exposed” cases and which corresponds to the “control” cases. Unlike, say, the odds ratio, the relative risk is not invariant under an interchange of the rows or columns.

Parameters

- exposed_cases
 - [nonnegative int] The number of “cases” (i.e. occurrence of disease or other event of interest) among the sample of “exposed” individuals.
- exposed_total
 - [positive int] The total number of “exposed” individuals in the sample.
- control_cases
 - [nonnegative int] The number of “cases” among the sample of “control” or non-exposed individuals.
- control_total
 - [positive int] The total number of “control” individuals in the sample.

Returns

- result
 - [instance of RelativeRiskResult] The object has the float attribute relative_risk, which is:

$$
rr = \frac{\text{exposed_cases}/\text{exposed_total}}{\text{control_cases}/\text{control_total}}
$$

The object also has the method confidence_interval to compute the confidence interval of the relative risk for a given confidence level.

Notes

The R package epitools has the function `riskratio`, which accepts a table with the following layout:

<table>
<thead>
<tr>
<th>disease=0</th>
<th>disease=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>exposed=0</td>
<td>n00</td>
</tr>
<tr>
<td></td>
<td>n01</td>
</tr>
<tr>
<td>exposed=1</td>
<td>n10</td>
</tr>
<tr>
<td></td>
<td>n11</td>
</tr>
</tbody>
</table>

With a 2x2 table in the above format, the estimate of the CI is computed by `riskratio` when the argument method="wald" is given, or with the function `riskratio.wald`.

For example, in a test of the incidence of lung cancer among a sample of smokers and nonsmokers, the “exposed” category would correspond to “is a smoker” and the “disease” category would correspond to “has or had lung cancer”.

To pass the same data to `relative_risk`, use:

```python
relative_risk(n11, n10 + n11, n01, n00 + n01)
```

New in version 1.7.0.
References

[1], [2]

Examples

```python
>>> from scipy.stats.contingency import relative_risk
```

This example is from Example 3.1 of [2]. The results of a heart disease study are summarized in the following table:

<table>
<thead>
<tr>
<th></th>
<th>High CAT</th>
<th>Low CAT</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHD</td>
<td>27</td>
<td>44</td>
<td>71</td>
</tr>
<tr>
<td>No CHD</td>
<td>95</td>
<td>443</td>
<td>538</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>487</td>
<td>609</td>
</tr>
</tbody>
</table>

CHD is coronary heart disease, and CAT refers to the level of circulating catecholamine. CAT is the “exposure” variable, and high CAT is the “exposed” category. So the data from the table to be passed to `relative_risk` is:

```python
exposed_cases = 27
exposed_total = 122
control_cases = 44
control_total = 487
```

```python
>>> result = relative_risk(27, 122, 44, 487)
>>> result.relative_risk
2.4495156482861398
```

Find the confidence interval for the relative risk.

```python
>>> result.confidence_interval(confidence_level=0.95)
ConfidenceInterval(low=1.5836990926700116, high=3.7886786315466354)
```

The interval does not contain 1, so the data supports the statement that high CAT is associated with greater risk of CHD.

`scipy.stats.contingency.association`

`scipy.stats.contingency.association(\textit{observed}, \textit{method}='cramer', \textit{correction}=False, \textit{lambda_}=None)`

Calculates degree of association between two nominal variables.

The function provides the option for computing one of three measures of association between two nominal variables from the data given in a 2d contingency table: Tschuprow’s T, Pearson’s Contingency Coefficient and Cramer’s V.

Parameters

- **\textit{observed}** [array-like] The array of observed values
- **\textit{method}** [\{“cramer”, “tschuprow”, “pearson”\} (default = “cramer”)] The association test statistic.
- **\textit{correction}** [bool, optional] Inherited from `scipy.stats.contingency.chi2_contingency()`
- **\textit{lambda_}** [float or str, optional] Inherited from `scipy.stats.contingency.chi2_contingency()`
Returns

- **statistic** [float] Value of the test statistic

Notes

Cramer’s V, Tschuprow’s T and Pearson’s Contingency Coefficient, all measure the degree to which two nominal or ordinal variables are related, or the level of their association. This differs from correlation, although many often mistakenly consider them equivalent. Correlation measures in what way two variables are related, whereas, association measures how related the variables are. As such, association does not subsume independent variables, and is rather a test of independence. A value of 1.0 indicates perfect association, and 0.0 means the variables have no association.

Both the Cramer’s V and Tschuprow’s T are extensions of the phi coefficient. Moreover, due to the close relationship between the Cramer’s V and Tschuprow’s T the returned values can often be similar or even equivalent. They are likely to diverge more as the array shape diverges from a 2x2.

References

[1], [2], [3], [4], [5]

Examples

An example with a 4x2 contingency table:

```python
>>> from scipy.stats.contingency import association
>>> obs4x2 = np.array([[100, 150], [203, 322], [420, 700], [320, 210]])
```

Pearson's contingency coefficient

```python
>>> association(obs4x2, method="pearson")
0.18303298140595667
```

Cramer's V

```python
>>> association(obs4x2, method="cramer")
0.18617813077483678
```

Tschuprow's T

```python
>>> association(obs4x2, method="tschuprow")
0.14146478765062995
```

scipy.stats.fisher_exact

`scipy.stats.fisher_exact(table, alternative='two-sided')`

Perform a Fisher exact test on a 2x2 contingency table.

Parameters

- **table** [array_like of ints] A 2x2 contingency table. Elements must be non-negative integers.
- **alternative** [{'two-sided', 'less', 'greater'}, optional] Defines the alternative hypothesis. The following options are available (default is 'two-sided'):
 - 'two-sided'
 - 'less': one-sided
• ‘greater’: one-sided
See the Notes for more details.

Returns

oddsratio [float] This is prior odds ratio and not a posterior estimate.
p_value [float] P-value, the probability of obtaining a distribution at least as extreme as the one that was actually observed, assuming that the null hypothesis is true.

See also:

chi2_contingency
Chi-square test of independence of variables in a contingency table. This can be used as an alternative to fisher_exact when the numbers in the table are large.
barnard_exact
Barnard’s exact test, which is a more powerful alternative than Fisher’s exact test for 2x2 contingency tables.
boschloo_exact
Boschloo’s exact test, which is a more powerful alternative than Fisher’s exact test for 2x2 contingency tables.

Notes

Null hypothesis and p-values

The null hypothesis is that the input table is from the hypergeometric distribution with parameters (as used in hypergeom) \(M = a + b + c + d, n = a + b \) and \(N = a + c \), where the input table is \([[a, b], [c, d]]\). This distribution has support \(\max(0, N + n - M) \leq x \leq \min(N, n) \), or, in terms of the values in the input table, \(\min(0, a - d) \leq x \leq a + \min(b, c) \). \(x \) can be interpreted as the upper-left element of a 2x2 table, so the tables in the distribution have form:

\[
\begin{array}{cc}
x & n - x \\
N - x & M - (n + N) + x \\
\end{array}
\]

For example, if:

```python
table = np.array([[6, 2], [1, 4]])
```

then the support is \(2 \leq x \leq 7 \), and the tables in the distribution are:

\[
\begin{array}{ccccccc}
2 & 6 & 3 & 5 & 4 & 4 & 5 & 3 & 6 & 2 & 7 & 1 \\
5 & 0 & 4 & 1 & 3 & 2 & 2 & 3 & 1 & 4 & 0 & 5 \\
\end{array}
\]

The probability of each table is given by the hypergeometric distribution `hypergeom.pmf(x, M, n, N)`. For this example, these are (rounded to three significant digits):

\[
\begin{array}{cccccccc}
x & 2 & 3 & 4 & 5 & 6 & 7 \\
p & 0.0163 & 0.163 & 0.408 & 0.326 & 0.0816 & 0.00466 \\
\end{array}
\]

These can be computed with:

```python
>>> from scipy.stats import hypergeom
>>> table = np.array([[6, 2], [1, 4]])
>>> M = table.sum()
```
The two-sided p-value is the probability that, under the null hypothesis, a random table would have a probability equal to or less than the probability of the input table. For our example, the probability of the input table (where $x = 6$) is 0.0816. The x values where the probability does not exceed this are 2, 6 and 7, so the two-sided p-value is $0.0163 + 0.0816 + 0.00466 \approx 0.10256$:

```python
>>> from scipy.stats import fisher_exact
>>> oddsr, p = fisher_exact(table, alternative='two-sided')
>>> p
0.10256410256410257
```

The one-sided p-value for alternative='greater' is the probability that a random table has $x \geq a$, which in our example is $x \geq 6$, or $0.0816 + 0.00466 \approx 0.08626$:

```python
>>> oddsr, p = fisher_exact(table, alternative='greater')
>>> p
0.08624708624708627
```

This is equivalent to computing the survival function of the distribution at $x = 5$ (one less than x from the input table, because we want to include the probability of $x = 6$ in the sum):

```python
>>> hypergeom.sf(5, M, n, N)
0.08624708624708627
```

For alternative='less', the one-sided p-value is the probability that a random table has $x \leq a$, (i.e. $x \leq 6$ in our example), or $0.0163 + 0.163 + 0.408 + 0.326 + 0.0816 \approx 0.9949$:

```python
>>> oddsr, p = fisher_exact(table, alternative='less')
>>> p
0.9953379953379957
```

This is equivalent to computing the cumulative distribution function of the distribution at $x = 6$:

```python
>>> hypergeom.cdf(6, M, n, N)
0.9953379953379957
```

Odds ratio

The calculated odds ratio is different from the one R uses. This SciPy implementation returns the (more common) “unconditional Maximum Likelihood Estimate”, while R uses the “conditional Maximum Likelihood Estimate”.
Examples

Say we spend a few days counting whales and sharks in the Atlantic and Indian oceans. In the Atlantic ocean we find 8 whales and 1 shark, in the Indian ocean 2 whales and 5 sharks. Then our contingency table is:

<table>
<thead>
<tr>
<th></th>
<th>Atlantic</th>
<th>Indian</th>
</tr>
</thead>
<tbody>
<tr>
<td>whales</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>sharks</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

We use this table to find the p-value:

```python
>>> from scipy.stats import fisher_exact
>>> oddsratio, pvalue = fisher_exact([[8, 2], [1, 5]])
>>> pvalue
0.0349...
```

The probability that we would observe this or an even more imbalanced ratio by chance is about 3.5%. A commonly used significance level is 5%--if we adopt that, we can therefore conclude that our observed imbalance is statistically significant; whales prefer the Atlantic while sharks prefer the Indian ocean.

scipy.stats.barnard_exact

scipy.stats.barnard_exact(table, alternative='two-sided', pooled=True, n=32)

Perform a Barnard exact test on a 2x2 contingency table.

Parameters

- `table` [array_like of ints] A 2x2 contingency table. Elements should be non-negative integers.
- `alternative` [{'two-sided', 'less', 'greater'}, optional] Defines the null and alternative hypotheses. Default is 'two-sided'. Please see explanations in the Notes section below.
- `pooled` [bool, optional] Whether to compute score statistic with pooled variance (as in Student’s t-test, for example) or un pooled variance (as in Welch’s t-test). Default is True.
- `n` [int, optional] Number of sampling points used in the construction of the sampling method. Note that this argument will automatically be converted to the next higher power of 2 since *scipy.stats.qmc.Sobol* is used to select sample points. Default is 32. Must be positive. In most cases, 32 points is enough to reach good precision. More points comes at performance cost.

Returns

- `ber` [BarnardExactResult] A result object with the following attributes.
- `statistic` [float] The Wald statistic with pooled or unpooled variance, depending on the user choice of `pooled`.
- `pvalue` [float] P-value, the probability of obtaining a distribution at least as extreme as the one that was actually observed, assuming that the null hypothesis is true.

See also:

- **chi2_contingency**
 Chi-square test of independence of variables in a contingency table.
- **fisher_exact**
 Fisher exact test on a 2x2 contingency table.
Boschloo’s exact test on a 2x2 contingency table, which is an uniformly more powerful alternative to Fisher’s exact test.

Notes

Barnard’s test is an exact test used in the analysis of contingency tables. It examines the association of two categorical variables, and is a more powerful alternative than Fisher’s exact test for 2x2 contingency tables.

Let’s define X_0 a 2x2 matrix representing the observed sample, where each column stores the binomial experiment, as in the example below. Let’s also define p_1, p_2 the theoretical binomial probabilities for x_{11} and x_{12}. When using Barnard exact test, we can assert three different null hypotheses:

- $H_0 : p_1 \geq p_2$ versus $H_1 : p_1 < p_2$, with `alternative = “less”`
- $H_0 : p_1 \leq p_2$ versus $H_1 : p_1 > p_2$, with `alternative = “greater”`
- $H_0 : p_1 = p_2$ versus $H_1 : p_1 \neq p_2$, with `alternative = “two-sided”` (default one)

In order to compute Barnard’s exact test, we are using the Wald statistic [3] with pooled or unpooled variance. Under the default assumption that both variances are equal (`pooled = True`), the statistic is computed as:

$$ T(X) = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})(\frac{1}{c_1} + \frac{1}{c_2})}} $$

with \hat{p}_1, \hat{p}_2 and \hat{p} the estimator of p_1, p_2 and p, the latter being the combined probability, given the assumption that $p_1 = p_2$.

If this assumption is invalid (`pooled = False`), the statistic is:

$$ T(X) = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{p_1(1-p_1)}{c_1} + \frac{p_2(1-p_2)}{c_2}}} $$

The p-value is then computed as:

$$ \sum \binom{c_1}{x_{11}} \binom{c_2}{x_{12}} \pi^{x_{11} + x_{12}} (1 - \pi)^{t - x_{11} - x_{12}} $$

where the sum is over all 2x2 contingency tables X such that: * $T(X) \leq T(X_0)$ when alternative = “less”, * $T(X) \geq T(X_0)$ when alternative = “greater”, or * $T(X) \geq |T(X_0)|$ when alternative = “two-sided”. Above, c_1, c_2 are the sum of the columns 1 and 2, and t the total (sum of the 4 sample’s element).

The returned p-value is the maximum p-value taken over the nuisance parameter π, where $0 \leq \pi \leq 1$.

This function’s complexity is $O(nc_1c_2)$, where n is the number of sample points.

References

[1], [2], [3]
Examples

An example use of Barnard’s test is presented in [2].

Consider the following example of a vaccine efficacy study (Chan, 1998). In a randomized clinical trial of 30 subjects, 15 were inoculated with a recombinant DNA influenza vaccine and the 15 were inoculated with a placebo. Twelve of the 15 subjects in the placebo group (80%) eventually became infected with influenza whereas for the vaccine group, only 7 of the 15 subjects (47%) became infected. The data are tabulated as a 2 x 2 table:

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>7</td>
</tr>
<tr>
<td>No</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

When working with statistical hypothesis testing, we usually use a threshold probability or significance level upon which we decide to reject the null hypothesis \(H_0 \). Suppose we choose the common significance level of 5%.

Our alternative hypothesis is that the vaccine will lower the chance of becoming infected with the virus; that is, the probability \(p_1 \) of catching the virus with the vaccine will be less than the probability \(p_2 \) of catching the virus without the vaccine. Therefore, we call `barnard_exact` with the `alternative="less"` option:

```python
>>> import scipy.stats as stats
>>> res = stats.barnard_exact([[7, 12], [8, 3]], alternative="less")
>>> res.statistic
-1.894...
>>> res.pvalue
0.03407...
```

Under the null hypothesis that the vaccine will not lower the chance of becoming infected, the probability of obtaining test results at least as extreme as the observed data is approximately 3.4%. Since this p-value is less than our chosen significance level, we have evidence to reject \(H_0 \) in favor of the alternative.

Suppose we had used Fisher’s exact test instead:

```python
>>> __, pvalue = stats.fisher_exact([[7, 12], [8, 3]], alternative="less")
>>> pvalue
0.0640...
```

With the same threshold significance of 5%, we would not have been able to reject the null hypothesis in favor of the alternative. As stated in [2], Barnard’s test is uniformly more powerful than Fisher’s exact test because Barnard’s test does not condition on any margin. Fisher’s test should only be used when both sets of marginals are fixed.

scipy.stats.boschloo_exact

`scipy.stats.boschloo_exact` (table, alternative='two-sided', n=32)
Perform Boschloo’s exact test on a 2x2 contingency table.

Parameters

- **table**
 [array_like of ints] A 2x2 contingency table. Elements should be non-negative integers.

- **alternative**

- **n**
 [int, optional] Number of sampling points used in the construction of the sampling method. Note that this argument will automatically be converted to the next higher power of 2 since `scipy.stats.qmc.Sobol` is used to select sample points. Default is 32. Must be
positive. In most cases, 32 points is enough to reach good precision. More points comes at performance cost.

Returns

[BoschlooExactResult] A result object with the following attributes.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>statistic</td>
<td>[float] The statistic used in Boschloo’s test; that is, the p-value from Fisher’s exact test.</td>
</tr>
<tr>
<td>pvalue</td>
<td>[float] P-value, the probability of obtaining a distribution at least as extreme as the one that was actually observed, assuming that the null hypothesis is true.</td>
</tr>
</tbody>
</table>

See also:

chi2_contingency

Chi-square test of independence of variables in a contingency table.

fisher_exact

Fisher exact test on a 2x2 contingency table.

barnard_exact

Barnard’s exact test, which is a more powerful alternative than Fisher’s exact test for 2x2 contingency tables.

Notes

Boschloo’s test is an exact test used in the analysis of contingency tables. It examines the association of two categorical variables, and is a uniformly more powerful alternative to Fisher’s exact test for 2x2 contingency tables. Let’s define X_0 a 2x2 matrix representing the observed sample, where each column stores the binomial experiment, as in the example below. Let’s also define p_1, p_2 the theoretical binomial probabilities for x_{11} and x_{12}. When using Boschloo exact test, we can assert three different null hypotheses:

- $H_0 : p_1 = p_2$ versus $H_1 : p_1 < p_2$, with alternative = “less”
- $H_0 : p_1 = p_2$ versus $H_1 : p_1 > p_2$, with alternative = “greater”
- $H_0 : p_1 = p_2$ versus $H_1 : p_1 \neq p_2$, with alternative = “two-sided” (default one)

Boschloo’s exact test uses the p-value of Fisher’s exact test as a statistic, and Boschloo’s p-value is the probability under the null hypothesis of observing such an extreme value of this statistic.

Boschloo’s and Barnard’s are both more powerful than Fisher’s exact test.

New in inversion 1.7.0.

References

[1], [2], [3]
Examples

In the following example, we consider the article “Employee attitudes and job satisfaction” [3] which reports the results of a survey from 63 scientists and 117 college professors. Of the 63 scientists, 31 said they were very satisfied with their jobs, whereas 74 of the college professors were very satisfied with their work. Is this significant evidence that college professors are happier with their work than scientists? The following table summarizes the data mentioned above:

<table>
<thead>
<tr>
<th></th>
<th>college professors</th>
<th>scientists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Satisfied</td>
<td>74</td>
<td>31</td>
</tr>
<tr>
<td>Dissatisfied</td>
<td>43</td>
<td>32</td>
</tr>
</tbody>
</table>

When working with statistical hypothesis testing, we usually use a threshold probability or significance level upon which we decide to reject the null hypothesis \(H_0 \). Suppose we choose the common significance level of 5%.

Our alternative hypothesis is that college professors are truly more satisfied with their work than scientists. Therefore, we expect \(p_1 \) the proportion of very satisfied college professors to be greater than \(p_2 \), the proportion of very satisfied scientists. We thus call `boschloo_exact` with the alternative="greater" option:

```python
>>> import scipy.stats as stats
>>> res = stats.boschloo_exact([[74, 31], [43, 32]], alternative="greater")
>>> res.statistic
0.0483...
>>> res.pvalue
0.0355...
```

Under the null hypothesis that scientists are happier in their work than college professors, the probability of obtaining test results at least as extreme as the observed data is approximately 3.55%. Since this p-value is less than our chosen significance level, we have evidence to reject \(H_0 \) in favor of the alternative hypothesis.

Plot-tests

- `ppcc_max(x[, brack, dist])` Calculate the shape parameter that maximizes the PPCC.
- `ppcc_plot(x, a, b[, dist, plot, N])` Calculate and optionally plot probability plot correlation coefficient.
- `probplot(x[, spars, dist, fit, plot, rvalue])` Calculate quantiles for a probability plot, and optionally show the plot.
- `boxcox_normplot(x, la, lb[, plot, N])` Compute parameters for a Box-Cox normality plot, optionally show it.
- `yeojohnson_normplot(x, la, lb[, plot, N])` Compute parameters for a Yeo-Johnson normality plot, optionally show it.

scipy.stats.ppcc_max

`scipy.stats.ppcc_max(x, brack=(0.0, 1.0), dist='tukeylambda')` Calculate the shape parameter that maximizes the PPCC.

The probability plot correlation coefficient (PPCC) plot can be used to determine the optimal shape parameter for a one-parameter family of distributions. `ppcc_max` returns the shape parameter that would maximize the probability plot correlation coefficient for the given data to a one-parameter family of distributions.

Parameters

- `x` [array_like] Input array.
brack [tuple, optional] Triple (a,b,c) where (a<b<c). If bracket consists of two numbers (a, c) then they are assumed to be a starting interval for a downhill bracket search (see scipy.optimize.brent).

dist [str or stats.distributions instance, optional] Distribution or distribution function name. Objects that look enough like a stats.distributions instance (i.e. they have a ppf method) are also accepted. The default is 'tukeylambda'.

Returns

shape_value
[float] The shape parameter at which the probability plot correlation coefficient reaches its max value.

See also:

ppcc_plot, probplot, boxcox

Notes

The brack keyword serves as a starting point which is useful in corner cases. One can use a plot to obtain a rough visual estimate of the location for the maximum to start the search near it.

References

[1], [2]

Examples

First we generate some random data from a Weibull distribution with shape parameter 2.5:

```python
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> c = 2.5
>>> x = stats.weibull_min.rvs(c, scale=4, size=2000, random_state=rng)
```

Generate the PPCC plot for this data with the Weibull distribution.

```python
>>> fig, ax = plt.subplots(figsize=(8, 6))
>>> res = stats.ppcc_plot(x, c/2, 2*c, dist='weibull_min', plot=ax)
```

We calculate the value where the shape should reach its maximum and a red line is drawn there. The line should coincide with the highest point in the PPCC graph.

```python
>>> cmax = stats.ppcc_max(x, brack=(c/2, 2*c), dist='weibull_min')
>>> ax.axvline(cmax, color='r')
>>> plt.show()
```

Chapter 3. SciPy API
scipy.stats.ppcc_plot

scipy.stats.*ppcc_plot*(x, a, b, dist='tukeylambda', plot=None, N=80)

Calculate and optionally plot probability plot correlation coefficient.

The probability plot correlation coefficient (PPCC) plot can be used to determine the optimal shape parameter for a one-parameter family of distributions. It cannot be used for distributions without shape parameters (like the normal distribution) or with multiple shape parameters.

By default a Tukey-Lambda distribution (stats.tukeylambda) is used. A Tukey-Lambda PPCC plot interpolates from long-tailed to short-tailed distributions via an approximately normal one, and is therefore particularly useful in practice.

Parameters

- **x** [array_like] Input array.
- **a, b** [scalar] Lower and upper bounds of the shape parameter to use.
- **dist** [str or stats.distributions instance, optional] Distribution or distribution function name. Objects that look enough like a stats.distributions instance (i.e. they have a ppf method) are also accepted. The default is 'tukeylambda'.
- **plot** [object, optional] If given, plots PPCC against the shape parameter. plot is an object that has to have methods “plot” and “text”. The matplotlib.pyplot module or a Matplotlib Axes object can be used, or a custom object with the same methods. Default is None, which means that no plot is created.
- **N** [int, optional] Number of points on the horizontal axis (equally distributed from a to b).

Returns

- **svals** [ndarray] The shape values for which ppcc was calculated.
- **ppcc** [ndarray] The calculated probability plot correlation coefficient values.

See also:

ppcc_max, probplot, boxcox_normplot, tukeylambda

References

Examples

First we generate some random data from a Weibull distribution with shape parameter 2.5, and plot the histogram of the data:

```python
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> c = 2.5
>>> x = stats.weibull_min.rvs(c, scale=4, size=2000, random_state=rng)
```

Take a look at the histogram of the data.
Now we explore this data with a PPCC plot as well as the related probability plot and Box-Cox normplot. A red line is drawn where we expect the PPCC value to be maximal (at the shape parameter c used above):

```python
>>> fig2 = plt.figure(figsize=(12, 4))
>>> ax1 = fig2.add_subplot(1, 3, 1)
>>> ax2 = fig2.add_subplot(1, 3, 2)
>>> ax3 = fig2.add_subplot(1, 3, 3)
>>> res = stats.probplot(x, plot=ax1)
>>> res = stats.boxcox_normplot(x, -4, 4, plot=ax2)
>>> res = stats.ppcc_plot(x, c/2, 2*c, dist='weibull_min', plot=ax3)
>>> ax3.axvline(c, color='r')
>>> plt.show()
```
scipy.stats.probplot

scipy.stats.probplot(x, sparams=(), dist='norm', fit=True, plot=None, rvalue=False)
Calculate quantiles for a probability plot, and optionally show the plot.
Generates a probability plot of sample data against the quantiles of a specified theoretical distribution (the normal distribution by default). probplot optionally calculates a best-fit line for the data and plots the results using Matplotlib or a given plot function.

Parameters

x [array_like] Sample/response data from which probplot creates the plot.
sparams [tuple, optional] Distribution-specific shape parameters (shape parameters plus location and scale).
dist [str or stats.distributions instance, optional] Distribution or distribution function name. The default is ‘norm’ for a normal probability plot. Objects that look enough like a stats.distributions instance (i.e. they have a ppf method) are also accepted.
fit [bool, optional] Fit a least-squares regression (best-fit) line to the sample data if True (default).
plot [object, optional] If given, plots the quantiles. If given and fit is True, also plots the least squares fit. plot is an object that has to have methods “plot” and “text”. The matplotlib.pyplot module or a Matplotlib Axes object can be used, or a custom object with the same methods. Default is None, which means that no plot is created.

Returns

((osm, osr) [tuple of ndarrays] Tuple of theoretical quantiles (osm, or order statistic medians) and ordered responses (osr). osr is simply sorted input x. For details on how osm is calculated see the Notes section.
(slope, intercept, r) [tuple of floats, optional] Tuple containing the result of the least-squares fit, if that is performed by probplot. r is the square root of the coefficient of determination. If fit=False and plot=None, this tuple is not returned.

Notes

Even if plot is given, the figure is not shown or saved by probplot; plt.show() or plt.savefig('figname.png') should be used after calling probplot.
probplot generates a probability plot, which should not be confused with a Q-Q or a P-P plot. Statsmodels has more extensive functionality of this type, see statsmodels.api.ProbPlot.
The formula used for the theoretical quantiles (horizontal axis of the probability plot) is Filliben’s estimate:

<table>
<thead>
<tr>
<th>quantiles = dist.ppf(val), for</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5**(1/n), for i = n</td>
</tr>
<tr>
<td>val = (i - 0.3175) / (n + 0.365) for i = 2, ..., n-1</td>
</tr>
<tr>
<td>1 - 0.5**(1/n), for i = 1</td>
</tr>
</tbody>
</table>

where i indicates the i-th ordered value and n is the total number of values.
Examples

```python
>>> from scipy import stats
>>> import matplotlib.pyplot as plt

from scipy import stats

>>> nsample = 100
>>> rng = np.random.default_rng()

A t distribution with small degrees of freedom:

```python
>>> ax1 = plt.subplot(221)
>>> x = stats.t.rvs(3, size=nsample, random_state=rng)
>>> res = stats.probplot(x, plot=plt)
```  
A t distribution with larger degrees of freedom:

```python
>>> ax2 = plt.subplot(222)
>>> x = stats.t.rvs(25, size=nsample, random_state=rng)
>>> res = stats.probplot(x, plot=plt)
```  
A mixture of two normal distributions with broadcasting:

```python
>>> ax3 = plt.subplot(223)
>>> x = stats.norm.rvs(loc=[0, 5], scale=[1, 1.5],
... size=(nsample//2, 2), random_state=rng).ravel()
>>> res = stats.probplot(x, plot=plt)
```  
A standard normal distribution:

```python
>>> ax4 = plt.subplot(224)
>>> x = stats.norm.rvs(loc=0, scale=1, size=nsample, random_state=rng)
>>> res = stats.probplot(x, plot=plt)
```  
Produce a new figure with a loggamma distribution, using the dist and sparams keywords:

```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> x = stats.loggamma.rvs(c=2.5, size=500, random_state=rng)
>>> res = stats.probplot(x, dist=stats.loggamma, sparams=(2.5,), plot=ax)
>>> ax.set_title("Probplot for loggamma dist with shape parameter 2.5")
```  
Show the results with Matplotlib:

```python
>>> plt.show()
```  
scipy.stats.boxcox_normplot

scipy.stats.**boxcox_normplot** *(x, la, lb, plot=None, N=80)*  
Compute parameters for a Box-Cox normality plot, optionally show it.

A Box-Cox normality plot shows graphically what the best transformation parameter is to use in **boxcox** to obtain a distribution that is close to normal.

**Parameters**

- **x**  
  [array_like] Input array.
Theoretical quantiles
Ordered Values
Probability Plot

Probplot for loggamma dist with shape parameter 2.5

[scalar] The lower and upper bounds for the \( \lambda \) values to pass to \texttt{boxcox} for Box-Cox transformations. These are also the limits of the horizontal axis of the plot if that is generated.

\texttt{plot} [object, optional] If given, plots the quantiles and least squares fit. \texttt{plot} is an object that has to have methods “plot” and “text”. The \texttt{matplotlib.pyplot} module or a Matplotlib Axes object can be used, or a custom object with the same methods. Default is None, which means that no plot is created.

\texttt{N} [int, optional] Number of points on the horizontal axis (equally distributed from \texttt{la} to \texttt{lb}).

\textbf{Returns}

- \texttt{lmbdas} [ndarray] The \( \lambda \) values for which a Box-Cox transform was done.
- \texttt{ppcc} [ndarray] Probability Plot Correlation Coefficient, as obtained from \texttt{probplot} when fitting the Box-Cox transformed input \( x \) against a normal distribution.

\textbf{See also:}

\texttt{probplot, boxcox, boxcox_normmax, boxcox_llf, ppcc_max}

\textbf{Notes}

Even if \texttt{plot} is given, the figure is not shown or saved by \texttt{boxcox_normplot}; \texttt{plt.show()} or \texttt{plt.savefig('figname.png')} should be used after calling \texttt{probplot}.

\textbf{Examples}

```python
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
```

Generate some non-normally distributed data, and create a Box-Cox plot:

```python
>>> x = stats.loggamma.rvs(5, size=500) + 5
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> prob = stats.boxcox_normplot(x, -20, 20, plot=ax)
```

Determine and plot the optimal \( \lambda \) to transform \( x \) and plot it in the same plot:

```python
>>> __, maxlog = stats.boxcox(x)
>>> ax.axvline(maxlog, color='r')

>>> plt.show()
```

\texttt{scipy.stats.yeojohnson_normplot}

\texttt{scipy.stats.yeojohnson_normplot} \( (x, la, lb, plot=\texttt{None}, N=80) \)

Compute parameters for a Yeo-Johnson normality plot, optionally show it.

A Yeo-Johnson normality plot shows graphically what the best transformation parameter is to use in \texttt{yeojohnson} to obtain a distribution that is close to normal.

\textbf{Parameters}

- \texttt{x} [array_like] Input array.
la, lb  [scalar] The lower and upper bounds for the \( \lambda \) values to pass to `yeojohnson` for Yeo-Johnson transformations. These are also the limits of the horizontal axis of the plot if that is generated.

plot  [object, optional] If given, plots the quantiles and least squares fit. `plot` is an object that has to have methods “plot” and “text”. The `matplotlib.pyplot` module or a Matplotlib Axes object can be used, or a custom object with the same methods. Default is None, which means that no plot is created.

N  [int, optional] Number of points on the horizontal axis (equally distributed from \( la \) to \( lb \)).

Returns

- \( \lambda \)  [ndarray] The \( \lambda \) values for which a Yeo-Johnson transform was done.
- ppcc  [ndarray] Probability Plot Correlation Coefficient, as obtained from `probplot` when fitting the Box-Cox transformed input \( x \) against a normal distribution.

See also:

- `probplot`, `yeojohnson`, `yeojohnson_normmax`, `yeojohnson_llf`, `ppcc_max`
Notes

Even if `plot` is given, the figure is not shown or saved by `boxcox_normplot`; `plt.show()` or `plt.savefig('figname.png')` should be used after calling `probpplot`.

New in version 1.2.0.

Examples

```python
from scipy import stats
import matplotlib.pyplot as plt

Generates some non-normally distributed data, and create a Yeo-Johnson plot:

```python
>>> x = stats.loggamma.rvs(5, size=500) + 5
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> prob = stats.yeojohnson_normplot(x, -20, 20, plot=ax)
```

Determine and plot the optimal lmbda to transform x and plot it in the same plot:

```python
>>> _, maxlog = stats.yeojohnson(x)
>>> ax.axvline(maxlog, color='r')
```

```python
>>> plt.show()
```
Univariate and multivariate kernel density estimation

\texttt{gaussian_kde}(\texttt{dataset[, bw_method, weights]}) \quad \text{Representation of a kernel-density estimate using Gaussian kernels.}

\texttt{scipy.stats.gaussian_kde}

class \texttt{scipy.stats.gaussian_kde}(\texttt{dataset, bw_method=\texttt{None}, weights=\texttt{None}})

Representation of a kernel-density estimate using Gaussian kernels.

Kernel density estimation is a way to estimate the probability density function (PDF) of a random variable in a non-parametric way. \texttt{gaussian_kde} works for both uni-variate and multi-variate data. It includes automatic bandwidth determination. The estimation works best for a unimodal distribution; bimodal or multi-modal distributions tend to be oversmoothed.

Parameters

- \texttt{dataset} [array_like] Datapoints to estimate from. In case of univariate data this is a 1-D array, otherwise a 2-D array with shape (# of dims, # of data).
- \texttt{bw_method} [str, scalar or callable, optional] The method used to calculate the estimator bandwidth. This can be `scott`, `silverman`, a scalar constant or a callable. If a scalar, this will be used directly as \texttt{kde.factor}. If a callable, it should take a \texttt{gaussian_kde} instance as only parameter and return a scalar. If None (default), `scott` is used. See Notes for more details.
- \texttt{weights} [array_like, optional] weights of datapoints. This must be the same shape as dataset. If None (default), the samples are assumed to be equally weighted.

Notes

Bandwidth selection strongly influences the estimate obtained from the KDE (much more so than the actual shape of the kernel). Bandwidth selection can be done by a “rule of thumb”, by cross-validation, by “plug-in methods” or by other means; see [3], [4] for reviews. \texttt{gaussian_kde} uses a rule of thumb, the default is Scott’s Rule.

Scott’s Rule [1], implemented as \texttt{scotts_factor}, is:

\[
n^{\ast\ast}(\ast-1.)/(d+4))
\]

with \(n\) the number of data points and \(d\) the number of dimensions. In the case of unequally weighted points, \texttt{scotts_factor} becomes:

\[
\texttt{neff}^{\ast\ast}(\ast-1.)/(d+4))
\]

with \texttt{neff} the effective number of datapoints. Silverman’s Rule [2], implemented as \texttt{silverman_factor}, is:

\[
(n \ast (d + 2) / 4.)**(-1. / (d + 4)).
\]

or in the case of unequally weighted points:

\[
(neff \ast (d + 2) / 4.)**(-1. / (d + 4)).
\]

Good general descriptions of kernel density estimation can be found in [1] and [2], the mathematics for this multi-dimensional implementation can be found in [1].

With a set of weighted samples, the effective number of datapoints \texttt{neff} is defined by:
neff = \(\sum(\text{weights})^2 / \sum(\text{weights}^2) \)

as detailed in [5].

References

[1], [2], [3], [4], [5]

Examples

Generate some random two-dimensional data:

```python
>>> from scipy import stats
>>> def measure(n):
...     "Measurement model, return two coupled measurements."
...     m1 = np.random.normal(size=n)
...     m2 = np.random.normal(scale=0.5, size=n)
...     return m1+m2, m1-m2
```

```python
>>> m1, m2 = measure(2000)
>>> xmin = m1.min()
>>> xmax = m1.max()
>>> ymin = m2.min()
>>> ymax = m2.max()
```

Perform a kernel density estimate on the data:

```python
>>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
>>> positions = np.vstack([X.ravel(), Y.ravel()])
>>> values = np.vstack([m1, m2])
>>> kernel = stats.gaussian_kde(values)
>>> Z = np.reshape(kernel(positions).T, X.shape)
```

Plot the results:

```python
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
...     extent=[xmin, xmax, ymin, ymax])
>>> ax.plot(m1, m2, 'k.', markersize=2)
>>> ax.set_xlim([xmin, xmax])
>>> ax.set_ylim([ymin, ymax])
>>> plt.show()
```

Attributes

- **dataset** [ndarray] The dataset with which `gaussian_kde` was initialized.
- **d** [int] Number of dimensions.
- **n** [int] Number of datapoints.
- **neff** [int] Effective number of datapoints.
 New in version 1.2.0.
factor [float] The bandwidth factor, obtained from \(kde.covariance_factor \). The square of \(kde.factor \) multiplies the covariance matrix of the data in the kde estimation.

covariance [ndarray] The covariance matrix of dataset, scaled by the calculated bandwidth (\(kde.factor \)).

inv_cov [ndarray] The inverse of covariance.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>evaluate(points)</td>
<td>Evaluate the estimated pdf on a set of points.</td>
</tr>
<tr>
<td>call(points)</td>
<td>Evaluate the estimated pdf on a set of points.</td>
</tr>
<tr>
<td>integrate_gaussian(mean, cov)</td>
<td>Multiply estimated density by a multivariate Gaussian and integrate over the whole space.</td>
</tr>
<tr>
<td>integrate_box_1d(low, high)</td>
<td>Computes the integral of a 1D pdf between two bounds.</td>
</tr>
<tr>
<td>integrate_box([low_bounds, high_bounds[, maxpts]])</td>
<td>Computes the integral of a pdf over a rectangular interval.</td>
</tr>
<tr>
<td>integrate_kde(other)</td>
<td>Computes the integral of the product of this kernel density estimate with another.</td>
</tr>
<tr>
<td>pdf(x)</td>
<td>Evaluate the estimated pdf on a provided set of points.</td>
</tr>
<tr>
<td>logpdf(x)</td>
<td>Evaluate the log of the estimated pdf on a provided set of points.</td>
</tr>
<tr>
<td>resample([size, seed])</td>
<td>Randomly sample a dataset from the estimated pdf.</td>
</tr>
<tr>
<td>set_bandwidth([bw_method])</td>
<td>Compute the estimator bandwidth with given method.</td>
</tr>
<tr>
<td>covariance_factor()</td>
<td>Computes the coefficient ((kde.factor)) that multiplies the data covariance matrix to obtain the kernel covariance matrix.</td>
</tr>
</tbody>
</table>
scipy.stats.gaussian_kde.evaluate

gaussian_kde.evaluate(points)
Evaluate the estimated pdf on a set of points.

Parameters
points
[(# of dimensions, # of points)-array] Alternatively, a (# of dimensions,) vector can be passed in and treated as a single point.

Returns
values
[(# of points,)-array] The values at each point.

Raises
ValueError
if the dimensionality of the input points is different than the dimensionality of the KDE.

scipy.stats.gaussian_kde.__call__

gaussian_kde.__call__(points)
Evaluate the estimated pdf on a set of points.

Parameters
points
[(# of dimensions, # of points)-array] Alternatively, a (# of dimensions,) vector can be passed in and treated as a single point.

Returns
values
[(# of points,)-array] The values at each point.

Raises
ValueError
if the dimensionality of the input points is different than the dimensionality of the KDE.

scipy.stats.gaussian_kde.integrate_gaussian

gaussian_kde.integrate_gaussian(mean, cov)
Multiply estimated density by a multivariate Gaussian and integrate over the whole space.

Parameters
mean
cov
[array_like] A 2-D array, specifying the covariance matrix of the Gaussian.

Returns
result
[scalar] The value of the integral.

Raises
ValueError
If the mean or covariance of the input Gaussian differs from the KDE’s dimensionality.
scipy.stats.gaussian_kde.integrate_box_1d

`gaussian_kde.integrate_box_1d(low, high)`
Computes the integral of a 1D pdf between two bounds.

Parameters
- `low` [scalar] Lower bound of integration.
- `high` [scalar] Upper bound of integration.

Returns
- `value` [scalar] The result of the integral.

Raises
- `ValueError` If the KDE is over more than one dimension.

scipy.stats.gaussian_kde.integrate_box

`gaussian_kde.integrate_box(low_bounds, high_bounds, maxpts=None)`
Computes the integral of a pdf over a rectangular interval.

Parameters
- `maxpts` [int, optional] The maximum number of points to use for integration.

Returns
- `value` [scalar] The result of the integral.

scipy.stats.gaussian_kde.integrate_kde

`gaussian_kde.integrate_kde(other)`
Computes the integral of the product of this kernel density estimate with another.

Parameters
- `other` [gaussian_kde instance] The other kde.

Returns
- `value` [scalar] The result of the integral.

Raises
- `ValueError` If the KDEs have different dimensionality.
scipy.stats.gaussian_kde.pdf

`gaussian_kde.pdf(x)`
Evaluate the estimated pdf on a provided set of points.

Notes

This is an alias for `gaussian_kde.evaluate`. See the `evaluate` docstring for more details.

scipy.stats.gaussian_kde.logpdf

`gaussian_kde.logpdf(x)`
Evaluate the log of the estimated pdf on a provided set of points.

scipy.stats.gaussian_kde.resample

`gaussian_kde.resample(size=None, seed=None)`
Randomly sample a dataset from the estimated pdf.

Parameters

- `size` [int, optional] The number of samples to draw. If not provided, then the size is the same as the effective number of samples in the underlying dataset.
- `seed` [{None, int, numpy.random.Generator, numpy.random.RandomState}, optional]
 If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new `RandomState` instance is used, seeded with `seed`. If `seed` is already a `Generator` or `RandomState` instance then that instance is used.

Returns

scipy.stats.gaussian_kde.set_bandwidth

`gaussian_kde.set_bandwidth(bw_method=None)`
Compute the estimator bandwidth with given method.
The new bandwidth calculated after a call to `set_bandwidth` is used for subsequent evaluations of the estimated density.

Parameters

- `bw_method` [str, scalar or callable, optional] The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), nothing happens; the current `kde.covariance_factor` method is kept.
Notes

New in version 0.11.

Examples

```python
>>> import scipy.stats as stats
>>> x1 = np.array([-7, -5, 1, 4, 5.])
>>> kde = stats.gaussian_kde(x1)
>>> xs = np.linspace(-10, 10, num=50)
>>> y1 = kde(xs)
>>> kde.set_bandwidth(bw_method='silverman')
>>> y2 = kde(xs)
>>> kde.set_bandwidth(bw_method=kde.factor / 3.)
>>> y3 = kde(xs)

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.plot(x1, np.full(x1.shape, 1 / (4. * x1.size)), 'bo',
...          label='Data points (rescaled)')
>>> ax.plot(xs, y1, label='Scott (default)')
>>> ax.plot(xs, y2, label='Silverman')
>>> ax.plot(xs, y3, label='Const (1/3 * Silverman)')
>>> ax.legend()
>>> plt.show()
```

![Graph showing examples of kernel density estimation with different bandwidths and a legend for the data points (rescaled), Scott (default), Silverman, and Const (1/3 * Silverman).]
scipy.stats.gaussian_kde.covariance_factor

`gaussian_kde.covariance_factor()`
Computes the coefficient (kde.factor) that multiplies the data covariance matrix to obtain the kernel covariance matrix. The default is `scotts_factor`. A subclass can overwrite this method to provide a different method, or set it through a call to `kde.set_bandwidth`.

Warnings / Errors used in scipy.stats

<table>
<thead>
<tr>
<th>Warning Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>F_onewayConstantInputWarning</code></td>
<td>Warning generated by <code>f_oneway</code> when an input is constant, e.g. each of the samples provided is a constant array.</td>
</tr>
<tr>
<td><code>F_onewayBadInputSizesWarning</code></td>
<td>Warning generated by <code>f_oneway</code> when an input has length 0, or if all the inputs have length 1.</td>
</tr>
<tr>
<td><code>PearsonRConstantInputWarning</code></td>
<td>Warning generated by <code>pearsonr</code> when an input is constant.</td>
</tr>
<tr>
<td><code>PearsonRNearConstantInputWarning</code></td>
<td>Warning generated by <code>pearsonr</code> when an input is nearly constant.</td>
</tr>
<tr>
<td><code>SpearmanRConstantInputWarning</code></td>
<td>Warning generated by <code>spearmanr</code> when an input is constant.</td>
</tr>
<tr>
<td><code>BootstrapDegenerateDistributionWarning</code></td>
<td>Warning generated by <code>bootstrap</code> when BCa method is used and the bootstrap distribution is degenerate.</td>
</tr>
</tbody>
</table>

scipy.stats.F_onewayConstantInputWarning

```python
except scipy.stats.F_onewayConstantInputWarning (msg=None)
    Warning generated by `f_oneway` when an input is constant, e.g. each of the samples provided is a constant array.

    with_traceback()
        Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

scipy.stats.F_onewayBadInputSizesWarning

```python
except scipy.stats.F_onewayBadInputSizesWarning
    Warning generated by `f_oneway` when an input has length 0, or if all the inputs have length 1.

    with_traceback()
        Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

scipy.stats.PearsonRConstantInputWarning

```python
except scipy.stats.PearsonRConstantInputWarning (msg=None)
    Warning generated by `pearsonr` when an input is constant.

    with_traceback()
        Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

scipy.stats.PearsonRNearConstantInputWarning

```python
except scipy.stats.PearsonRNearConstantInputWarning
    Warning generated by `pearsonr` when an input is nearly constant.

    with_traceback()
        Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

scipy.stats.BootstrapDegenerateDistributionWarning

```python
except scipy.stats.BootstrapDegenerateDistributionWarning (msg=None)
    Warning generated by `bootstrap` when BCa method is used and the bootstrap distribution is degenerate.

    with_traceback()
        Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```
scipy.stats.PearsonRNearConstantInputWarning

```python
exception scipy.stats.PearsonRNearConstantInputWarning (msg=None)
    Warning generated by `pearsonr` when an input is nearly constant.
    with_traceback()
        Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

scipy.stats.SpearmanRConstantInputWarning

```python
exception scipy.stats.SpearmanRConstantInputWarning (msg=None)
    Warning generated by `spearmanr` when an input is constant.
    with_traceback()
        Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

scipy.stats.BootstrapDegenerateDistributionWarning

```python
exception scipy.stats.BootstrapDegenerateDistributionWarning (msg=None)
    Warning generated by `bootstrap` when BCa method is used and the bootstrap distribution is degenerate.
    with_traceback()
        Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
```

3.3.29 Result classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>RelativeRiskResult</code></td>
<td>Result of <code>scipy.stats.contingency.relative_risk</code></td>
</tr>
<tr>
<td><code>BinomTestResult</code></td>
<td>Result of <code>scipy.stats.binomtest</code></td>
</tr>
<tr>
<td><code>TukeyHSDResult</code></td>
<td>Result of <code>scipy.stats.tukey_hsd</code></td>
</tr>
</tbody>
</table>

scipy.stats._result_classes.RelativeRiskResult

```python
class scipy.stats._result_classes.RelativeRiskResult (relative_risk, ...)
    Result of `scipy.stats.contingency.relative_risk`.
```

Attributes

- `relative_risk` [float] This is:

  ```
  (exposed_cases/exposed_total) / (control_cases/control_total)
  ```

- `exposed_cases` [int] The number of “cases” (i.e. occurrence of disease or other event of interest) among the sample of “exposed” individuals.

- `exposed_total` [int] The total number of “exposed” individuals in the sample.
control_cases
[int] The number of “cases” among the sample of “control” or non-exposed individuals.

control_total
[int] The total number of “control” individuals in the sample.

Methods

confidence_interval :
Compute the confidence interval for the relative risk estimate.

scipy.stats._result_classes.BinomTestResult

class scipy.stats._result_classes.BinomTestResult (k, n, alternative, pvalue,
proportion_estimate)
Result of scipy.stats.binomtest.

Attributes

k [int] The number of successes (copied from binomtest input).

n [int] The number of trials (copied from binomtest input).

alternative [str] Indicates the alternative hypothesis specified in the input to binomtest. It will be one of 'two-sided', 'greater', or 'less'.

pvalue [float] The p-value of the hypothesis test.

proportion_estimate [float] The estimate of the proportion of successes.

Methods

proportion_ci([confidence_level, method])
Compute the confidence interval for the estimated proportion.

scipy.stats._result_classes.BinomTestResult.proportion_ci

BinomTestResult.proportion_ci (confidence_level=0.95, method='exact')
Compute the confidence interval for the estimated proportion.

Parameters

confidence_level
[float, optional] Confidence level for the computed confidence interval of the estimated proportion. Default is 0.95.

method [{'exact', 'wilson', 'wilsoncc'}, optional] Selects the method used to compute the confidence interval for the estimate of the proportion:
'exact' : Use the Clopper-Pearson exact method [1].
'wilson' : Wilson's method, without continuity correction ([2], [3]).
'wilsoncc' : Wilson's method, with continuity correction ([2], [3]).

Default is 'exact'.

Returns

ci [ConfidenceInterval object] The object has attributes low and high that hold the lower and upper bounds of the confidence interval.
References

[1], [2], [3]

Examples

```python
>>> from scipy.stats import binomtest
>>> result = binomtest(k=7, n=50, p=0.1)
```

```python
>>> result.proportion_estimate
0.14
```

```python
>>> result.proportion_ci()
ConfidenceInterval(low=0.05819170033997342, high=0.26739600249700846)
```

scipy.stats._result_classes.TukeyHSDResult

```python
class scipy.stats._result_classes.TukeyHSDResult(statistic, pvalue, _nobs, _ntreatments, _stand_err)
```

Result of `scipy.stats.tukey_hsd`.

Notes

The string representation of this object displays the most recently calculated confidence interval, and if none have been previously calculated, it will evaluate `confidence_interval()`.

References

[1]

Attributes

- `statistic` [float ndarray] The computed statistic of the test for each comparison. The element at index `(i, j)` is the statistic for the comparison between groups `i` and `j`.

- `pvalue` [float ndarray] The associated p-value from the studentized range distribution. The element at index `(i, j)` is the p-value for the comparison between groups `i` and `j`.

Methods

- `confidence_interval([confidence_level])` Compute the confidence interval for the specified confidence level.
scipy.stats._result_classes.TukeyHSDResult.confidence_interval

TukeyHSDResult.confidence_interval(confidence_level=0.95)
Compute the confidence interval for the specified confidence level.

Parameters

confidence_level
[float, optional] Confidence level for the computed confidence interval of the estimated proportion. Default is .95.

Returns

ci
[ConfidenceInterval object] The object has attributes low and high that hold the lower and upper bounds of the confidence intervals for each comparison. The high and low values are accessible for each comparison at index (i, j) between groups i and j.

References

[1]

Examples

```python
>>> from scipy.stats import tukey_hsd
>>> group0 = [24.5, 23.5, 26.4, 27.1, 29.9]
>>> group1 = [28.4, 34.2, 29.5, 32.2, 30.1]
>>> group2 = [26.1, 28.3, 24.3, 26.2, 27.8]
>>> result = tukey_hsd(group0, group1, group2)
>>> ci = result.confidence_interval()
>>> ci.low
array([[-3.649159, -8.249159, -3.909159],
       [ 0.950841, -3.649159, 0.690841],
       [-3.389159, -7.989159, -3.649159]])
>>> ci.high
array([[ 3.649159, -0.950841, 3.389159],
       [ 8.249159, 3.649159, 7.989159],
       [ 3.909159, -0.690841, 3.649159]])
```

3.3.30 Contingency table functions (scipy.stats.contingency)

Functions for creating and analyzing contingency tables.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chi2_contingency(observed[, lambda_])</td>
<td>Chi-square test of independence of variables in a contingency table.</td>
</tr>
<tr>
<td>relative_risk(exposed_cases, exposed_total,...)</td>
<td>Compute the relative risk (also known as the risk ratio).</td>
</tr>
<tr>
<td>crosstab(*args[, levels, sparse])</td>
<td>Return table of counts for each possible unique combination in *args.</td>
</tr>
<tr>
<td>association(observed[, method, correction, ...])</td>
<td>Calculates degree of association between two nominal variables.</td>
</tr>
<tr>
<td>expected_freq(observed)</td>
<td>Compute the expected frequencies from a contingency table.</td>
</tr>
</tbody>
</table>

continues on next page
scipy.stats.contingency.chi2_contingency

scipy.stats.contingency.chi2_contingency(\texttt{observed, correction=True, lambda_=None})

Chi-square test of independence of variables in a contingency table.

This function computes the chi-square statistic and p-value for the hypothesis test of independence of the observed frequencies in the contingency table \cite{chi2_contingency}. The expected frequencies are computed based on the marginal sums under the assumption of independence; see \texttt{scipy.stats.contingency.expected_freq}. The number of degrees of freedom is (expressed using \texttt{numpy} functions and attributes):

\[
dof = \text{\texttt{observed.size}} - \text{\texttt{sum(\texttt{observed.shape})}} + \text{\texttt{observed.ndim}} - 1
\]

\textbf{Parameters}

- \texttt{observed} [array_like] The contingency table. The table contains the observed frequencies (i.e. number of occurrences) in each category. In the two-dimensional case, the table is often described as an “R x C table”.
- \texttt{correction} [bool, optional] If True, and the degrees of freedom is 1, apply Yates’ correction for continuity. The effect of the correction is to adjust each observed value by 0.5 towards the corresponding expected value.
- \texttt{lambda_} [float or str, optional] By default, the statistic computed in this test is Pearson’s chi-squared statistic \cite{chi2_contingency}. \texttt{lambda_} allows a statistic from the Cressie-Read power divergence family \cite{cressie_read} to be used instead. See \texttt{scipy.stats.power_divergence} for details.

\textbf{Returns}

- \texttt{chi2} [float] The test statistic.
- \texttt{p} [float] The p-value of the test
- \texttt{dof} [int] Degrees of freedom
- \texttt{expected} [ndarray, same shape as \texttt{observed}] The expected frequencies, based on the marginal sums of the table.

\textbf{See also:}

- \texttt{scipy.stats.contingency.expected_freq}
- \texttt{scipy.stats.fisher_exact}
- \texttt{scipy.stats.chisquare}
- \texttt{scipy.stats.power_divergence}
- \texttt{scipy.stats.barnard_exact}
- \texttt{scipy.stats.boschloo_exact}
Notes

An often quoted guideline for the validity of this calculation is that the test should be used only if the observed and expected frequencies in each cell are at least 5.

This is a test for the independence of different categories of a population. The test is only meaningful when the dimension of observed is two or more. Applying the test to a one-dimensional table will always result in expected equal to observed and a chi-square statistic equal to 0.

This function does not handle masked arrays, because the calculation does not make sense with missing values.

Like stats.chisquare, this function computes a chi-square statistic; the convenience this function provides is to figure out the expected frequencies and degrees of freedom from the given contingency table. If these were already known, and if the Yates’ correction was not required, one could use stats.chisquare. That is, if one calls:

```python
chi2, p, dof, ex = chi2_contingency(obs, correction=False)
```

then the following is true:

```python
(chi2, p) == stats.chisquare(obs.ravel(), f_exp=ex.ravel(),
                           ddof=obs.size - 1 - dof)
```

The lambda_ argument was added in version 0.13.0 of scipy.

References

[1], [2], [3]

Examples

A two-way example (2 x 3):

```python
>>> from scipy.stats import chi2_contingency
>>> obs = np.array([[10, 10, 20], [20, 20, 20]])
>>> chi2_contingency(obs)
(2.7777777777777777, 0.24935220877729619, 2, array([[ 12., 12., 16.], [ 18., 18., 24.]]))
```

Perform the test using the log-likelihood ratio (i.e. the “G-test”) instead of Pearson’s chi-squared statistic.

```python
>>> g, p, dof, expctd = chi2_contingency(obs, lambda_="log-likelihood")
>>> g, p
(2.7688587616781319, 0.25046668010954165)
```

A four-way example (2 x 2 x 2 x 2):

```python
>>> obs = np.array(  
...     [[[[12, 17],  
...         [11, 16]],  
...         [[11, 12],  
...         [15, 16]]],  
...     ...
... )
```

(continues on next page)
3.3.31 Low-level callback functions

Some functions in SciPy take as arguments callback functions, which can either be python callables or low-level compiled functions. Using compiled callback functions can improve performance somewhat by avoiding wrapping data in Python objects.

Such low-level functions in SciPy are wrapped in `LowLevelCallable` objects, which can be constructed from function pointers obtained from ctypes, cffi, Cython, or contained in Python `PyCapsule` objects.

```python
LowLevelCallable(function[, user_data,...]) Low-level callback function.
```

```python
class scipy.LowLevelCallable (function, user_data=None, signature=None)
    Low-level callback function.
```

Parameters

- **function** : [{PyCapsule, ctypes function pointer, cffi function pointer}] Low-level callback function.
- **user_data** : [{PyCapsule, ctypes void pointer, cffi void pointer}] User data to pass on to the callback function.
- **signature** : [str, optional] Signature of the function. If omitted, determined from `function`, if possible.

Notes

The argument `function` can be one of:

- PyCapsule, whose name contains the C function signature
- ctypes function pointer
- cffi function pointer

```python
[[[23, 15],
  [30, 22]],
...[[[14, 17],
  [15, 16]]]]
```

```python
>>> chi2_contingency(obs)
(8.7584514426741897,
 0.64417725029295503,
 11,
  array([[ 14.15462386, 14.15462386],
          [ 16.49423111, 16.49423111],
          [ 11.2461395 , 11.2461395 ],
          [ 13.10500554, 13.10500554]],
         [[ 19.5591166 , 19.5591166 ],
          [ 22.79202844, 22.79202844]],
         [[ 15.54012004, 15.54012004],
          [ 18.10873492, 18.10873492]])))
```
The signature of the low-level callback must match one of those expected by the routine it is passed to.

If constructing low-level functions from a PyCapsule, the name of the capsule must be the corresponding signature, in the format:

```
return_type (arg1_type, arg2_type, ...)  
```

For example:

```
"void (double)"
"double (double, int *, void *)"
```

The context of a PyCapsule passed in as function is used as user_data, if an explicit value for user_data was not given.

Attributes

- `function` Callback function given.
- `user_data` User data given.
- `signature` Signature of the function.

Methods

```python
classmethod LowLevelCallable.from_cython(module, name[, user_data, signature])
```

Create a low-level callback function from an exported Cython function.

Parameters

- `module` [module] Cython module where the exported function resides
- `name` [str] Name of the exported function
- `user_data` [{PyCapsule, ctypes void pointer, cffi void pointer}, optional] User data to pass on to the callback function.
- `signature` [str, optional] Signature of the function. If omitted, determined from function.

See also:

Functions accepting low-level callables:

- `scipy.integrate.quad`
- `scipy.ndimage.generic_filter`
- `scipy.ndimage.generic_filter1d`
- `scipy.ndimage.geometric_transform`

Usage examples:

Extending scipy.ndimage in C, Faster integration using low-level callback functions
3.4 SciPy structure

All SciPy modules should follow the following conventions. In the following, a SciPy module is defined as a Python package, say `yyy`, that is located in the `scipy/` directory.

- Ideally, each SciPy module should be as self-contained as possible. That is, it should have minimal dependencies on other packages or modules. Even dependencies on other SciPy modules should be kept to a minimum. A dependency on NumPy is of course assumed.

- Directory `yyy/` contains:
 - A file `setup.py` that defines `configuration(parent_package='',top_path=None)` function for `numpy.distutils`.
 - A directory `tests/` that contains files `test_<name>.py` corresponding to modules `yyy/<name>{.py,.so,/}`.

- Private modules should be prefixed with an underscore `_`, for instance `yyy/_somemodule.py`.

- User-visible functions should have good documentation following the NumPy documentation style.

- The `__init__.py` of the module should contain the main reference documentation in its docstring. This is connected to the Sphinx documentation under `doc/` via Sphinx's automodule directive.

 The reference documentation should first give a categorized list of the contents of the module using `autosummary:` directives, and after that explain points essential for understanding the use of the module.

 Tutorial-style documentation with extensive examples should be separate and put under `doc/source/tutorial/`.

See the existing SciPy submodules for guidance.

For further details on NumPy distutils, see NumPy Distutils - User's Guide.
Bellow you will find general information about contributing. For an overview of where help or new features are desired or planned, see the roadmap. And for a more detailed look at how the SciPy project works, see the organization section.

4.1 SciPy Code of Conduct

4.1.1 Introduction

This code of conduct applies to all spaces managed by the SciPy project, including all public and private mailing lists, issue trackers, wikis, blogs, Twitter, and any other communication channel used by our community. The SciPy project does not organize in-person events, however, events related to our community should have a code of conduct similar in spirit to this one.

This code of conduct should be honored by everyone who participates in the SciPy community formally or informally, or claims any affiliation with the project, in any project-related activities, and, especially, when representing the project, in any role.

This code is neither exhaustive nor complete. It serves to distill our common understanding of a collaborative, shared environment and goals. Please try to follow this code in spirit as much as in letter, to create a friendly and productive environment that enriches the surrounding community.

4.1.2 Specific guidelines

We strive to:

1. **Be open.** We invite anyone to participate in our community. We prefer to use public methods of communication for project-related messages, unless discussing something sensitive. This applies to messages for help or project-related support, too; not only is a public-support request much more likely to result in an answer to a question, it also ensures that any inadvertent mistakes in answering are more easily detected and corrected.

2. **Be empathetic, welcoming, friendly, and patient.** We work together to resolve conflict, and assume good intentions. We may all experience some frustration from time to time, but we do not allow frustration to turn into a personal attack. A community where people feel uncomfortable or threatened is not a productive one.

3. **Be collaborative.** Our work will be used by other people, and in turn we will depend on the work of others. When we make something for the benefit of the project, we are willing to explain to others how it works, so that they can build on the work to make it even better. Any decision we make will affect users and colleagues, and we take those consequences seriously when making decisions.

4. **Be inquisitive.** Nobody knows everything! Asking questions early avoids many problems later, so we encourage questions, although we may direct them to the appropriate forum. We will try hard to be responsive and helpful.
5. Be careful in the words that we choose. We are careful and respectful in our communication and we take responsibility for our own speech. Be kind to others. Do not insult or put down other participants. We will not accept harassment or other exclusionary behavior, such as:

- Violent threats or language directed against another person.
- Sexist, racist, or otherwise discriminatory jokes and language.
- Posting sexually explicit or violent material.
- Posting (or threatening to post) other people’s personally identifying information (“doxing”).
- Sharing private content, such as emails sent privately or non-publicly, or unlogged forums, such as IRC channel history, without the sender’s consent.
- Personal insults, especially those using racist or sexist terms.
- Unwelcome sexual attention.
- Excessive profanity. Please avoid swearwords; people differ greatly in their sensitivity to swearing.
- Repeated harassment of others. In general, if someone asks you to stop, then stop.
- Advocating for, or encouraging, any of the above behavior.

4.1.3 Diversity statement

The SciPy project welcomes and encourages participation by everyone. We are committed to being a community that everyone enjoys being part of. Although we may not always be able to accommodate each individual’s preferences, we try our best to treat everyone kindly.

No matter how you identify yourself or how others perceive you: we welcome you. Though no list can hope to be comprehensive, we explicitly honor diversity in: age, culture, ethnicity, genotype, gender identity or expression, language, national origin, neurotype, phenotype, political beliefs, profession, race, religion, sexual orientation, socioeconomic status, subculture and technical ability, to the extent that these do not conflict with this code of conduct.

Though we welcome people fluent in all languages, SciPy development is conducted in English.

Standards for behavior in the SciPy community are detailed in the Code of Conduct above. Participants in our community should uphold these standards in all their interactions and help others to do so as well (see next section).

4.1.4 Reporting guidelines

We know that it is painfully common for internet communication to start at or devolve into obvious and flagrant abuse. We also recognize that sometimes people may have a bad day, or be unaware of some of the guidelines in this Code of Conduct. Please keep this in mind when deciding on how to respond to a breach of this Code.

For clearly intentional breaches, report those to the Code of Conduct committee (see below). For possibly unintentional breaches, you may reply to the person and point out this Code of Conduct (either in public or in private, whatever is most appropriate). If you would prefer not to do that, please feel free to report to the Code of Conduct committee directly, or ask the committee for advice, in confidence.

You can report issues to the SciPy Code of Conduct Committee, at scipy-conduct@googlegroups.com. Currently, the committee consists of:

- Stefan van der Walt
- Nathaniel J. Smith
- Ralf Gommers
If your report involves any members of the committee, or if they feel they have a conflict of interest in handling it, then they will recuse themselves from considering your report. Alternatively, if, for any reason, you feel uncomfortable making a report to the committee, then you can also contact:

- Chair of the SciPy Steering Committee: Ralf Gommers, or
- Senior NumFOCUS staff: conduct@numfocus.org

4.1.5 Incident reporting resolution & Code of Conduct enforcement

This section summarizes the most important points, more details can be found in CoC_reporting_manual.

We will investigate and respond to all complaints. The SciPy Code of Conduct Committee and the SciPy Steering Committee (if involved) will protect the identity of the reporter, and treat the content of complaints as confidential (unless the reporter agrees otherwise).

In case of severe and obvious breaches, e.g., personal threat or violent, sexist or racist language, we will immediately disconnect the originator from SciPy communication channels; please see the manual for details.

In cases not involving clear severe and obvious breaches of this code of conduct, the process for acting on any received code of conduct violation report will be:

1. acknowledgement that the report has been received
2. reasonable discussion/feedback
3. mediation (if feedback didn't help, and only if both reporter and reportee agree to this)
4. enforcement via transparent decision (see CoC_resolutions) by the Code of Conduct Committee

The committee will respond to any report as soon as possible, and at most within 72 hours.

4.1.6 Endnotes

We are thankful to the groups behind the following documents, from which we drew content and inspiration:

- The Apache Foundation Code of Conduct
- The Contributor Covenant
- Jupyter Code of Conduct
- Open Source Guides - Code of Conduct

4.2 Ways to Contribute

This document aims to give an overview of the ways to contribute to SciPy. It tries to answer commonly asked questions and provide some insight into how the community process works in practice. Readers who are familiar with the SciPy community and are experienced Python coders may want to jump straight to the SciPy contributor guide.

There are a lot of ways you can contribute:

- Contributing new code
- Fixing bugs, improving documentation, and other maintenance work
- Reviewing open pull requests
- Triaging issues
4.2.1 Contributing new code

If you have been working with the scientific Python toolstack for a while, you probably have some code lying around of which you think “this could be useful for others too”. Perhaps it’s a good idea then to contribute it to SciPy or another open source project. The first question to ask is then, where does this code belong? That question is hard to answer here, so we start with a more specific one: what code is suitable for putting into SciPy? Almost all of the new code added to SciPy has in common that it’s potentially useful in multiple scientific domains and it fits in the scope of existing SciPy subpackages (see Deciding on new features). In principle new subpackages can be added too, but this is far less common. For code that is specific to a single application, there may be an existing project that can use the code. Some SciKits (scikit-learn, scikit-image, statsmodels, etc.) are good examples here; they have a narrower focus and because of that more domain-specific code than SciPy.

Now if you have code that you would like to see included in SciPy, how do you go about it? After checking that your code can be distributed in SciPy under a compatible license (see License Considerations), the first step is to discuss on the scipy-dev mailing list. All new features, as well as changes to existing code, are discussed and decided on there. You can, and probably should, already start this discussion before your code is finished. Remember that in order to be added to SciPy your code will need to be reviewed by someone else, so try to find someone willing to review your work while you’re at it.

Assuming the outcome of the discussion on the mailing list is positive and you have a function or piece of code that does what you need it to do, what next? Before code is added to SciPy, it at least has to have good documentation, unit tests, benchmarks, and correct code style.

1. Unit tests
 In principle you should aim to create unit tests that exercise all the code that you are adding. This gives some degree of confidence that your code runs correctly, also on Python versions and hardware or OSes that you don’t have available yourself. An extensive description of how to write unit tests is given in Testing Guidelines, and Running SciPy Tests Locally documents how to run them.

2. Benchmarks
 Unit tests check for correct functionality; benchmarks measure code performance. Not all existing SciPy code has benchmarks, but it should: as SciPy grows it is increasingly important to monitor execution times in order to catch unexpected regressions. More information about writing and running benchmarks is available in Benchmarking SciPy with airspeed velocity.

3. Documentation
 Clear and complete documentation is essential in order for users to be able to find and understand the code. Documentation for individual functions and classes – which includes at least a basic description, type and meaning of all parameters and returns values, and usage examples in doctest format – is put in docstrings. Those docstrings can be read within the interpreter, and are compiled into a reference guide in html and pdf format. Higher-level documentation for key (areas of) functionality is provided in tutorial format and/or in module docstrings. A guide on how to write documentation is given in Documentation style, and Rendering Documentation with Sphinx explains how to preview the documentation as it will appear online.

4. Code style
 Uniformity of style in which code is written is important to others trying to understand the code. SciPy follows the standard Python guidelines for code style, PEP8. In order to check that your code conforms to PEP8, you can use the pep8 package style checker. Most IDEs and text editors have settings that can help you follow PEP8, for example by translating tabs by four spaces. Using pyflakes to check your code is also a good idea. More information is available in PEP8 and SciPy.
A checklist, including these and other requirements, is available at the end of the example Development workflow.

Another question you may have is: where exactly do I put my code? To answer this, it is useful to understand how the SciPy public API (application programming interface) is defined. For most modules the API is two levels deep, which means your new function should appear as `scipy.subpackage.my_new_func`. `my_new_func` can be put in an existing or new file under `/scipy/<subpackage>/`, its name is added to the `__all__` list in that file (which lists all public functions in the file), and those public functions are then imported in `/scipy/<subpackage>/__init__.py`. Any private functions/classes should have a leading underscore `_` in their name. A more detailed description of what the public API of SciPy is, is given in SciPy API.

Once you think your code is ready for inclusion in SciPy, you can send a pull request (PR) on Github. We won’t go into the details of how to work with git here, this is described well in git-development and on the Github help pages. When you send the PR for a new feature, be sure to also mention this on the scipy-dev mailing list. This can prompt interested people to help review your PR. Assuming that you already got positive feedback before on the general idea of your code/feature, the purpose of the code review is to ensure that the code is correct, efficient and meets the requirements outlined above. In many cases the code review happens relatively quickly, but it’s possible that it stalls. If you have addressed all feedback already given, it’s perfectly fine to ask on the mailing list again for review (after a reasonable amount of time, say a couple of weeks, has passed). Once the review is completed, the PR is merged into the “master” branch of SciPy.

The above describes the requirements and process for adding code to SciPy. It doesn’t yet answer the question though how decisions are made exactly. The basic answer is: decisions are made by consensus, by everyone who chooses to participate in the discussion on the mailing list. This includes developers, other users and yourself. Aiming for consensus in the discussion is important – SciPy is a project by and for the scientific Python community. In those rare cases that agreement cannot be reached, the maintainers of the module in question can decide the issue.

License Considerations

I based my code on existing Matlab/R/... code I found online, is this OK?

It depends. SciPy is distributed under a BSD license, so if the code that you based your code on is also BSD licensed or has a BSD-compatible license (e.g. MIT, PSF) then it’s OK. Code which is GPL or Apache licensed, has no clear license, requires citation or is free for academic use only can’t be included in SciPy. Therefore if you copied existing code with such a license or made a direct translation to Python of it, your code can’t be included. If you're unsure, please ask on the scipy-dev mailing list.

Why is SciPy under the BSD license and not, say, the GPL?

Like Python, SciPy uses a “permissive” open source license, which allows proprietary re-use. While this allows companies to use and modify the software without giving anything back, it is felt that the larger user base results in more contributions overall, and companies often publish their modifications anyway, without being required to. See John Hunter’s BSD pitch.

For more information about SciPy’s license, see Licensing.

4.2.2 Maintaining existing code

The previous section talked specifically about adding new functionality to SciPy. A large part of that discussion also applies to maintenance of existing code. Maintenance means fixing bugs, improving code quality, documenting existing functionality better, adding missing unit tests, adding performance benchmarks, keeping build scripts up-to-date, etc. The SciPy issue list contains all reported bugs, build/documentation issues, etc. Fixing issues helps improve the overall quality of SciPy, and is also a good way of getting familiar with the project. You may also want to fix a bug because you ran into it and need the function in question to work correctly.

The discussion on code style and unit testing above applies equally to bug fixes. It is usually best to start by writing a unit test that shows the problem, i.e. it should pass but doesn’t. Once you have that, you can fix the code so that the test does pass. That should be enough to send a PR for this issue. Unlike when adding new code, discussing this on the mailing list may not be necessary - if the old behavior of the code is clearly incorrect, no one will object to having it fixed. It may
be necessary to add some warning or deprecation message for the changed behavior. This should be part of the review process.

Note: Pull requests that only change code style, e.g. fixing some PEP8 issues in a file, are discouraged. Such PRs are often not worth cluttering the git annotate history, and take reviewer time that may be better spent in other ways. Code style cleanups of code that is touched as part of a functional change are fine however.

4.2.3 Reviewing pull requests

Reviewing open pull requests (PRs) is very welcome, and a valuable way to help increase the speed at which the project moves forward. If you have specific knowledge/experience in a particular area (say “optimization algorithms” or “special functions”) then reviewing PRs in that area is especially valuable - sometimes PRs with technical code have to wait for a long time to get merged due to a shortage of appropriate reviewers.

We encourage everyone to get involved in the review process; it’s also a great way to get familiar with the code base. Reviewers should ask themselves some or all of the following questions:

- Was this change adequately discussed (relevant for new features and changes in existing behavior)?
- Is the feature scientifically sound? Algorithms may be known to work based on literature; otherwise, closer look at correctness is valuable.
- Is the intended behavior clear under all conditions (e.g. unexpected inputs like empty arrays or nan/inf values)?
- Does the code meet the quality, test and documentation expectation outline under [Contributing new code](#)?

If we do not know you yet, consider introducing yourself.

4.2.4 Other ways to contribute

There are many ways to contribute other than writing code.

Triaging issues (investigating bug reports for validity and possible actions to take) is also a useful activity. SciPy has many hundreds of open issues; closing invalid ones and correctly labeling valid ones (ideally with some first thoughts in a comment) allows prioritizing maintenance work and finding related issues easily when working on an existing function or subpackage.

Participating in discussions on the scipy-user and scipy-dev mailing lists is a contribution in itself. Everyone who writes to those lists with a problem or an idea would like to get responses, and writing such responses makes the project and community function better and appear more welcoming.

The [scipy.org](https://github.com/scipy/scipy.org) website contains a lot of information on both SciPy the project and SciPy the community, and it can always use a new pair of hands. The sources for the website live in their own separate repo: https://github.com/scipy/scipy.org

4.2.5 Getting started

Thanks for your interest in contributing to SciPy! If you're interested in contributing code, we hope you'll continue on to the [SciPy contributor guide](#) for details on how to set up your development environment, implement your improvements, and submit your first PR!
4.3 Development environment quickerstart guide (Linux and Mac)

With conda installed (through Miniforge or Mambaforge, Miniconda or Anaconda), execute the following commands at the terminal from the base directory of your SciPy clone:

```bash
# Create an environment with all development dependencies
conda env create -f environment.yml  # works with `mamba` too
conda activate scipy-dev

# Initialize git submodules
git submodule update --init

# Build SciPy for development work plus run tests
python runtests.py
```

For more detailed instructions, see the other Development environment guides.

4.4 SciPy contributor guide

This guide is designed to help you quickly find the information you need about SciPy development after you've reviewed the introductory material in Ways to Contribute. If you're new to this and want to start coding ASAP, you've found the right place.

- **Development environment** - how to set up and maintain a development environment, including installing compilers and SciPy dependencies, creating a personal fork of the SciPy repository on GitHub, using git to manage a local repository with development branches, performing an in-place build of SciPy, and creating a virtual environment that adds this development version of SciPy to the Python path
- **Editing SciPy** - how to edit SciPy Python code, with tips on finding which module contains SciPy functionality to be edited, adding new modules to SciPy, and complying with PEP8 style standards
- **Unit tests** - how to write and run unit tests for SciPy with the pytest framework
- **Documentation** - how to write reStructuredText documentation that complies with docstring standards, build documentation locally with Sphinx, and view documentation built during continuous integration checks
- **Benchmarks** - how to benchmark code with airspeed velocity
- **Compiled code** - how to add fast, compiled code to SciPy
- **Continuous Integration** - how does our continuous integration system works and how to debug your PR

4.4.1 Development environment

- **Development environment quickerstart guide (Linux and Mac)** contains just the commands you need to get started on Mac and Linux
- quickstart-pip presents an overview of setting up the development environment using pip on Linux
- **Development environment quickerstart guide (macOS)** presents a step-by-step process for setting up a convenient SciPy development environment in macOS
- **Development environment quickerstart guide (Ubuntu)** presents a step-by-step process for setting up a convenient SciPy development environment in Ubuntu
- build-windows presents a step-by-step process for building SciPy on Windows
• quickstart-docker presents a step-by-step process for building SciPy using Docker; if you have trouble with the instructions above, this may be your best option

• quickstart-gitpod presents a step-by-step process for using Gitpod for SciPy development; this process requires minimal setup and is newcomer friendly

• building may have some helpful hints if you need to deviate from the guides above

• recommended-development-setup includes additional notes about the development setup; all of this information is contained elsewhere, but it is retained as a legacy document

4.4.2 Editing SciPy

• Development workflow lays out what to do after your development environment is set up

• SciPy Development Workflow is a five-minute video example of fixing a bug and submitting a pull request

• PEP8 and SciPy gives some tips for ensuring that your code is PEP8 compliant

• git-development is a guide to using git, the distributed version-control system used to manage the changes made to SciPy code from around the world

• SciPy API contains some important notes about how SciPy code is organized and documents the structure of the SciPy API; if you are going to import other SciPy code, read this first

• reviewing-prs explains how to review another author’s SciPy code locally

• NumPy Distutils - Users Guide - check this out before adding any new files to SciPy

• Adding New Methods, Functions, and Classes has information on how to add new methods, functions and classes

• SciPy Core Developer Guide has background information including how decisions are made and how a release is prepared; it’s geared toward Core Developers, but contains useful information for all contributors

4.4.3 Unit tests

• Testing Guidelines is the definitive guide to writing unit tests of SciPy code

• Running SciPy Tests Locally documents runtests.py, a convenient script for building SciPy and running tests locally

4.4.4 Documentation

• Documentation style contains everything you need to know about writing docstrings, which are rendered to produce HTML documentation using Sphinx

• Rendering Documentation with Sphinx it’s important to check how changes to the documentation render before merging a PR; this document explains how you can do that
4.4.5 Benchmarks

- *Benchmarking SciPy with airspeed velocity* explains how to add benchmarks to SciPy using airspeed velocity.

4.4.6 Compiled code

- *Adding Cython to SciPy* extending and compiling Python code with Cython can significantly improve its performance; this document helps you get started.
- Other-languages discusses the use of C, C++, and Fortran code in SciPy.
- *Public Cython APIs* on guidelines on exposing public Cython APIs.

4.5 SciPy Roadmap

This roadmap page contains only the most important ideas and needs for SciPy going forward. For a more detailed roadmap, including per-subpackage status, many more ideas, API stability and more, see *Detailed SciPy Roadmap*.

4.5.1 Support for distributed arrays and GPU arrays

NumPy has split its API from its execution engine with *__array_function__* and *__array_ufunc__*. This will enable parts of SciPy to accept distributed arrays (e.g. dask.array.Array) and GPU arrays (e.g. cupy.ndarray) that implement the *ndarray* interface. At the moment it is not yet clear which algorithms will work out of the box, and if there are significant performance gains when they do. We want to create a map of which parts of the SciPy API work, and improve support over time.

In addition to making use of NumPy protocols like *__array_function__*, we can make use of these protocols in SciPy as well. That will make it possible to (re)implement SciPy functions like, e.g., those in *scipy.signal* for Dask or GPU arrays (see NEP 18 - use outside of NumPy). NumPy's features in this areas are still evolving, see e.g. NEP 37 - A dispatch protocol for NumPy-like modules, and SciPy is an important “client” for those features.

4.5.2 Performance improvements

Speed improvements, lower memory usage and the ability to parallelize algorithms are beneficial to most science domains and use cases. We have established an API design pattern for multiprocessing - using the *workers* keyword - that can be adopted in many more functions.

Enabling the use of an accelerator like Pythran, possibly via Transonic, and making it easier for users to use Numba's *@njit* in their code that relies on SciPy functionality would unlock a lot of performance gain. That needs a strategy though, all solutions are still maturing (see for example this overview).

Finally, many individual functions can be optimized for performance. *scipy.optimize* and *scipy.interpolate* functions are particularly often requested in this respect.
4.5.3 Statistics enhancements

The `scipy.stats` enhancements listed in the *Detailed SciPy Roadmap* are of particularly high importance to the project.

- Improve the options for fitting a probability distribution to data.
- Expand the set of hypothesis tests. In particular, include all the basic variations of analysis of variance.
- Add confidence intervals for all statistical tests.

4.5.4 Support for more hardware platforms

SciPy now has continuous integration for ARM64 (or `aarch64`) and POWER8/9 (or `ppc64le`), and binaries are available via Miniforge. Wheels on PyPI for these platforms are now also possible (with the `manylinux2014` standard), and requests for those are becoming more frequent.

Additionally, having IBM Z (or `s390x`) in CI is now possible with TravisCI but not yet done - and `manylinux2014` wheels for that platform are also possible then. Finally, resolving open AIX build issues would help users.

4.5.5 Implement sparse arrays in addition to sparse matrices

The sparse matrix formats are mostly feature-complete, however the main issue is that they act like `numpy.matrix` (which will be deprecated in NumPy at some point). What we want is sparse *arrays* that act like `numpy.ndarray`. This is being worked on in https://github.com/pydata/sparse, which is quite far along. The tentative plan is:

- Start depending on `pydata/sparse` once it's feature-complete enough (it still needs a CSC/CSR equivalent) and okay performance-wise.
- Indicate in the documentation that for new code users should prefer `pydata/sparse` over sparse matrices.
- When NumPy deprecates `numpy.matrix`, vendor that or maintain it as a stand-alone package.

4.6 Detailed SciPy Roadmap

Most of this roadmap is intended to provide a high-level view on what is most needed per SciPy submodule in terms of new functionality, bug fixes, etc. Besides important "business as usual" changes, it contains ideas for major new features - those are marked as such, and are expected to take significant dedicated effort. Things not mentioned in this roadmap are not necessarily unimportant or out of scope, however we (the SciPy developers) want to provide to our users and contributors a clear picture of where SciPy is going and where help is needed most.

Note: This is the detailed roadmap. A very high-level overview with only the most important ideas is *SciPy Roadmap*.
4.6.1 General

This roadmap will be evolving together with SciPy. Updates can be submitted as pull requests. For large or disruptive changes you may want to discuss those first on the scipy-dev mailing list.

API changes

In general, we want to evolve the API to remove known warts as much as possible, *however as much as possible without breaking backwards compatibility*.

Also, it should be made (even) more clear what is public and what is private in SciPy. Everything private should be named starting with an underscore as much as possible.

Test coverage

Test coverage of code added in the last few years is quite good, and we aim for a high coverage for all new code that is added. However, there is still a significant amount of old code for which coverage is poor. Bringing that up to the current standard is probably not realistic, but we should plug the biggest holes.

Besides coverage there is also the issue of correctness - older code may have a few tests that provide decent statement coverage, but that doesn't necessarily say much about whether the code does what it says on the box. Therefore code review of some parts of the code (stats, signal and ndimage in particular) is necessary.

Documentation

The main website, scipy.org, needs to be rewritten. As discussed in the mail list, the SciPy stack is not relevant anymore and this website should be made about SciPy only following the example of numpy.org. There is a lot of new content to write.

Otherwise, the documentation is in good shape. Expanding of current docstrings and putting them in the standard NumPy format should continue, so the number of reST errors and glitches in the html docs decreases. Most modules also have a tutorial in the reference guide that is a good introduction, however there are a few missing or incomplete tutorials - this should be fixed.

Benchmarks

The asv-based benchmark system is in reasonable shape. It is quite easy to add new benchmarks, however running the benchmarks is not very intuitive. Making this easier is a priority.

Use of Cython

Regarding Cython code:

- It's not clear how much functionality can be Cythonized without making the .so files too large. This needs measuring.
- Cython's old syntax for using NumPy arrays should be removed and replaced with Cython memoryviews.
Windows build issues

SciPy critically relies on Fortran code. This is still problematic on Windows. There are currently only two options: using Intel Fortran, or using MSVC + gfortran. The former is expensive, while the latter works (it’s what we use for releases) but is quite hard to do correctly. For allowing contributors and end users to reliably build SciPy on Windows, using the Flang compiler looks like the best way forward long-term.

Continuous integration

Continuous integration is in good shape, it currently covers the Windows, macOS and Linux, ARM64 and ppc64le platforms, as well as a range of versions of our dependencies and building release quality wheels.

Size of binaries

SciPy binaries are quite large (e.g. an unzipped manylinux wheel for 1.4.1 is 91 MB), and this can be problematic - for example for use in AWS Lambda, which has a 250 MB size limit. We aim to keep binary size as low as possible; when adding new compiled extensions, this needs checking. Stripping of debug symbols in multibuild can likely be improved (see this issue).

4.6.2 Modules

cluster

This module is in good shape.

constants

This module is basically done, low-maintenance and without open issues.

fft

This module is in good shape.

integrate

Needed for ODE solvers:

• Documentation is pretty bad, needs fixing
• A new ODE solver interface (solve_ivp) was added in SciPy 1.0.0. In the future we can consider (soft-)deprecating the older API.

The numerical integration functions are in good shape. Support for integrating complex-valued functions and integrating multiple intervals (see gh-3325) could be added.
interpolate

Ideas for new features:

- Spline fitting routines with better user control.
- Transparent tensor-product splines.
- NURBS support.
- Mesh refinement and coarsening of B-splines and corresponding tensor products.

io

wavfile:

- PCM float will be supported, for anything else use audiolab or other specialized libraries.
- Raise errors instead of warnings if data not understood.

Other sub-modules (matlab, netcdf, idl, harwell-boeing, arff, matrix market) are in good shape.

linalg

scipy.linalg is in good shape.

Needed:

- Reduce duplication of functions with numpy.linalg, make APIs consistent.
- get_lapack_funcs should always use flapack
- Wrap more LAPACK functions
- One too many funcs for LU decomposition, remove one

Ideas for new features:

- Add type-generic wrappers in the Cython BLAS and LAPACK
- Make many of the linear algebra routines into gufuncs

BLAS and LAPACK

The Python and Cython interfaces to BLAS and LAPACK in scipy.linalg are one of the most important things that SciPy provides. In general scipy.linalg is in good shape, however we can make a number of improvements:

1. Library support. Our released wheels now ship with OpenBLAS, which is currently the only feasible performant option (ATLAS is too slow, MKL cannot be the default due to licensing issues, Accelerate support is dropped because Apple doesn’t update Accelerate anymore). OpenBLAS isn’t very stable though, sometimes its releases break things and it has issues with threading (currently the only issue for using SciPy with PyPy3). We need at the very least better support for debugging OpenBLAS issues, and better documentation on how to build SciPy with it. An option is to use BLIS for a BLAS interface (see numpy gh-7372).

2. Support for newer LAPACK features. In SciPy 1.2.0 we increased the minimum supported version of LAPACK to 3.4.0. Now that we dropped Python 2.7, we can increase that version further (MKL + Python 2.7 was the blocker for >3.4.0 previously) and start adding support for new features in LAPACK.
misc

`scipy.misc` will be removed as a public module. Most functions in it have been moved to another submodule or deprecated. The few that are left:

- `derivative, central_diff_weight`: remove, possibly replacing them with more extensive functionality for numerical differentiation.
- `ascent, face, electrocardiogram`: remove or move to the appropriate subpackages (e.g. `scipy.ndimage, scipy.signal`).

ndimage

Underlying `ndimage` is a powerful interpolation engine. Users come with an expectation of one of two models: a pixel model with \((1, 1)\) elements having centers \((0.5, 0.5)\), or a data point model, where values are defined at points on a grid. Over time, we’ve become convinced that the data point model is better defined and easier to implement, but this should be clearly communicated in the documentation.

More importantly, still, SciPy implements one variant of this data point model, where datapoints at any two extremes of an axis share a spatial location under periodic wrapping mode. E.g., in a 1D array, you would have \(x[0]\) and \(x[-1]\) co-located. A very common use-case, however, is for signals to be periodic, with equal spacing between the first and last element along an axis (instead of zero spacing). Wrapping modes for this use-case were added in gh-8537, next the interpolation routines should be updated to use those modes. This should address several issues, including gh-1323, gh-1903, gh-2045 and gh-2640.

The morphology interface needs to be standardized:

- binary dilation/erosion/opening/closing take a “structure” argument, whereas their grey equivalent take size (has to be a tuple, not a scalar), footprint, or structure.
- a scalar should be acceptable for size, equivalent to providing that same value for each axis.
- for binary dilation/erosion/opening/closing, the structuring element is optional, whereas it’s mandatory for grey. Grey morphology operations should get the same default.
- other filters should also take that default value where possible.

odr

This module is in reasonable shape, although it could use a bit more maintenance. No major plans or wishes here.

optimize

Overall this module is in good shape. Two good global optimizers were added in 1.2.0; large-scale optimizers is still a gap that could be filled. Other things that are needed:

- Many ideas for additional functionality (e.g. integer constraints) in `linprog`, see gh-9269.
- Add functionality to the benchmark suite to compare results more easily (e.g. with summary plots).
- deprecate the `fmin_*` functions in the documentation, `minimize` is preferred.
- `scipy.optimize` has an extensive set of benchmarks for accuracy and speed of the global optimizers. That has allowed adding new optimizers (`shgo` and `dual_annealing`) with significantly better performance than the existing ones. The `optimize` benchmark system itself is slow and hard to use however; we need to make it faster and make it easier to compare performance of optimizers via plotting performance profiles.
signal

Convolution and correlation: (Relevant functions are convolve, correlate, fftconvolve, convolve2d, correlate2d, and sepfir2d.) Eliminate the overlap with ndimage (and elsewhere). From numpy, scipy.signal and scipy.ndimage (and anywhere else we find them), pick the “best of class” for 1-D, 2-D and n-d convolution and correlation, put the implementation somewhere, and use that consistently throughout SciPy.

B-splines: (Relevant functions are bspline, cubic, quadratic, gauss_spline, cspline1d, qspline1d, cspline2d, qspline2d, cspline1d_eval, and spline_filter.) Move the good stuff to interpolate (with appropriate API changes to match how things are done in interpolate), and eliminate any duplication.

Filter design: merge firwin and firwin2 so firwin2 can be removed.

Continuous-Time Linear Systems: remove lsim2, impulse2, step2. The lsim, impulse and step functions now “just work” for any input system. Further improve the performance of ltisys (fewer internal transformations between different representations). Fill gaps in lti system conversion functions.

Second Order Sections: Make SOS filtering equally capable as existing methods. This includes ltisys objects, an lfilter equivalent, and numerically stable conversions to and from other filter representations. SOS filters could be considered as the default filtering method for ltisys objects, for their numerical stability.

Wavelets: what’s there now doesn’t make much sense. Continuous wavelets only at the moment - decide whether to completely rewrite or remove them. Discrete wavelet transforms are out of scope (PyWavelets does a good job for those).

sparse

The sparse matrix formats are mostly feature-complete, however the main issue is that they act like numpy.matrix (which will be deprecated in NumPy at some point). What we want is sparse arrays, that act like numpy.ndarray. This is being worked on in https://github.com/pydata/sparse, which is quite far along. The tentative plan is:

• Start depending on pydata/sparse once it’s feature-complete enough (it still needs a CSC/CSR equivalent) and okay performance-wise.

• Add support for pydata/sparse to scipy.sparse.linalg and perhaps to scipy.sparse.csgraph after that.

• Indicate in the documentation that for new code users should prefer pydata/sparse over sparse matrices.

• When NumPy deprecates numpy.matrix, vendor that or maintain it as a stand-alone package.

Regarding the different sparse matrix formats: there are a lot of them. These should be kept, but improvements/optimizations should go into CSR/CSC, which are the preferred formats. LIL may be the exception, it’s inherently inefficient. It could be dropped if DOK is extended to support all the operations LIL currently provides.

sparse.csgraph

This module is in good shape.
sparse.linalg

ARPACK is in good shape.

isolve:

• callback keyword is inconsistent
• tol keyword is broken, should be relative tol
• Fortran code not re-entrant (but we don’t solve, maybe re-use from PyKrillo)

dsolve:

• add license-compatible sparse Cholesky or incomplete Cholesky
• add license-compatible sparse QR
• improve interface to SuiteSparse UMFPACK
• add interfaces to SuiteSparse CHOLMOD and SPQR

spatial

QHull wrappers are in good shape, as is KDTree.

Needed:

• distance_wrap.c needs to be cleaned up (maybe rewrite in Cython).

special

Though there are still a lot of functions that need improvements in precision, probably the only show-stoppers are hypergeometric functions, parabolic cylinder functions, and spheroidal wave functions. Three possible ways to handle this:

1. Get good double-precision implementations. This is doable for parabolic cylinder functions (in progress). I think it’s possible for hypergeometric functions, though maybe not in time. For spheroidal wavefunctions this is not possible with current theory.

2. Port Boost’s arbitrary precision library and use it under the hood to get double precision accuracy. This might be necessary as a stopgap measure for hypergeometric functions; the idea of using arbitrary precision has been suggested before by @nmayorov and in gh-5349. Likely necessary for spheroidal wave functions, this could be reused: https://github.com/radelman/scattering.

3. Add clear warnings to the documentation about the limits of the existing implementations.

stats

The scipy.stats subpackage aims to provide fundamental statistical methods as might be covered in standard statistics texts such as Johnson’s “Miller & Freund’s Probability and Statistics for Engineers”, Sokal & Rohlf’s “Biometry”, or Zar’s “Biostatistical Analysis”. It does not seek to duplicate the advanced functionality of downstream packages (e.g. StatsModels, LinearModels, PyMC3); instead, it can provide a solid foundation on which they can build. (Note that these are rough guidelines, not strict rules. “Advanced” is an ill-defined and subjective term, and “advanced” methods may also be included in SciPy, especially if no other widely used and well-supported package covers the topic. Also note that some duplication with downstream projects is inevitable and not necessarily a bad thing.)

The following improvements will help SciPy better serve this role:

• Add fundamental and widely used hypothesis tests:
– Tukey-Kramer test
– Dunnett’s test
– the various types of analysis of variance (ANOVA):
 * two-way ANOVA (single replicate, uniform number of replicates, variable number of replicates)
 * multiway ANOVA (i.e. generalize two-way ANOVA)
 * nested ANOVA
 * analysis of covariance (ANCOVA)

• Add additional tools for meta-analysis; currently we have just combine_pvalues.

• Enhance the fit method of the continuous probability distributions:
 – Expand the options for fitting to include:
 * maximal product spacings
 * method of L-moments / probability weighted moments
 – Include measures of goodness-of-fit in the results
 – Handle censored data (e.g. merge gh-13699)

• Implement additional widely used continuous and discrete probability distributions, e.g. mixture distributions.

• Improve the core calculations provided by SciPy’s probability distributions so they can robustly handle wide ranges of parameter values. Specifically, replace many of the PDF and CDF methods from the Fortran library CDFLIB used in scipy.special with Boost implementations as in gh-13328.

In addition, we should:

• Consistently handle nan_policy and axis arguments in all stats functions (where appropriate).

• Continue work on making the function signatures of stats and stats.mstats more consistent, and add tests to ensure that that remains the case.

• Improve statistical tests: return confidence intervals for the test statistic, and implement exact p-value calculations - considering the possibility of ties - where computationally feasible.

4.7 Toolchain Roadmap

The use of the SciPy library requires (or optionally depends upon) several other libraries in order to operate, the main dependencies being Python and NumPy. It requires a larger collection of libraries and tools in order to build the library or to build the documentation.

Of course, the tooling and libraries are themselves not static. This document aims to provide a guide as to how SciPy’s use of these dynamic dependencies will proceed over time.

SciPy aims to be compatible with a number of releases of its dependent libraries and tools. Forcing the user base to other components for upgrade for every release would greatly diminish the value of SciPy. However, maintaining backwards compatibility with very old tooling/libraries imposes limitations on which newer functionalities and capabilities can be incorporated. SciPy takes a somewhat conservative approach, maintaining compatibility with several major releases of Python and NumPy on the major platforms. (That may in and of itself impose further restrictions. See the C Compilers section for an example.)

• First and foremost, SciPy is a Python project, hence it requires a Python environment.

• BLAS and LAPACK numerical libraries need to be installed.
• Compilers for C, C++, Fortran code are needed, as well as for Cython & Pythran (the latter is opt-out currently)
• The Python environment needs the NumPy package to be installed.
• Testing requires the pytest Python package.
• Building the documentation requires the matplotlib, Sphinx packages along with PyData theme, as well as a LaTeX installation.

The tooling used to build CPython has some implications for the tooling used in building SciPy. It also has implications for the examples used in the documentation (e.g., docstrings for functions), as these examples can only use functionality present in all supported configurations.

4.7.1 Building SciPy

Python Versions

SciPy is compatible with several versions of Python. When dropping support for older Python versions, SciPy takes guidance from NEP 29\(^1\). Python 2.7 support was dropped starting from SciPy 1.3.

<table>
<thead>
<tr>
<th>Date</th>
<th>Py2.7, Py3.4+ (SciPy 1.2.x is the last release to support Python 2.7)</th>
<th>Py3.5+ (but Py2.7-specific code not removed)</th>
<th>Py3.6+ (removal of Py2.7-specific code permitted)</th>
<th>Py3.7+</th>
<th>Py3.8+</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>Py2.7, Py3.4+</td>
<td>Py3.5+</td>
<td>Py3.6+</td>
<td>Py3.7+</td>
<td>Py3.8+</td>
</tr>
<tr>
<td>2019</td>
<td>Py3.5+ (but Py2.7-specific code not removed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Py3.6+ (removal of Py2.7-specific code permitted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>Py3.7+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>Py3.8+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NumPy

SciPy depends on NumPy but releases of SciPy are not tied to releases of NumPy. SciPy attempts to be compatible with at least the 4 previous releases of NumPy. In particular, SciPy cannot rely on features of just the latest NumPy, but needs to be written using what is common in all of those 4 releases\(^2\).

The table shows the NumPy versions suitable for each major Python version.

<table>
<thead>
<tr>
<th>SciPy version</th>
<th>Python versions</th>
<th>NumPy versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>2.7, >3.4, <=3.7</td>
<td>>=1.8.2, <=1.16.x</td>
</tr>
<tr>
<td>1.4</td>
<td>>3.5, <=3.8</td>
<td>>=1.13.3, <=1.17.3</td>
</tr>
<tr>
<td>1.5</td>
<td>>3.6, <=3.9</td>
<td>>=1.14.5, <=1.19.3</td>
</tr>
<tr>
<td>1.6</td>
<td>>3.7, <=3.9</td>
<td>>=1.16.5, <=1.20.x</td>
</tr>
<tr>
<td>1.7.0/1</td>
<td>>3.7, <3.10</td>
<td>>=1.16.5, <1.23.0</td>
</tr>
<tr>
<td>1.7.2-x</td>
<td>>3.7, <3.11</td>
<td>>=1.16.5, <1.24.0</td>
</tr>
<tr>
<td>1.8</td>
<td>>3.8, <3.11</td>
<td>>=1.17.3, <1.24.0</td>
</tr>
</tbody>
</table>

In specific cases, such as a particular architecture, these requirements could vary. Please check the release notes\(^3\) and the meta-package oldest-supported-numpy for more info\(^4\).

\(^1\) https://numpy.org/neps/nep-0029-deprecation_policy.html

\(^3\) https://scipy.github.io/devdocs/release.html

\(^4\) https://github.com/scipy/oldest-supported-numpy
Compilers

Building SciPy requires compilers for C, C++, Fortran, as well as the python transpilers Cython and Pythran (the latter is an opt-out dependency starting from version 1.7.0).

To maintain compatibility with a large number of platforms & setups, especially where using the official wheels (or other distribution channels like Anaconda or conda-forge) is not possible, SciPy keeps compatibility with old compilers.

Official Builds

Currently, SciPy wheels are being built as follows:

<table>
<thead>
<tr>
<th>Platform</th>
<th>Azure Base Image</th>
<th>Compilers</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux (nightly)</td>
<td>ubuntu-18.04</td>
<td>GCC 6.5</td>
<td>See azure-pipelines.yml</td>
</tr>
<tr>
<td>Linux (release)</td>
<td>ubuntu-18.04</td>
<td>GCC 7.5</td>
<td></td>
</tr>
<tr>
<td>OSX</td>
<td>macOS-10.15</td>
<td>LLVM 12.0.0</td>
<td>Built in separate repo6</td>
</tr>
</tbody>
</table>

Note that the OSX wheels additionally vendor gfortran 4.9, see submodule gfortran-install in6.

C Compilers

SciPy is compatible with most modern C compilers (in particular clang). In addition to concerns about compatibility with non-standard platforms, there was a long-standing restriction that Windows builds of SciPy had to use the same version of the Microsoft Visual C++ compiler as were used for CPython itself, for reasons of ABI-compatibility7,8.

With the introduction of the “Universal C Runtime”9 since the release of Visual Studio 2015, this restriction has been lifted. For more context, see the explanations by Steve Dower (member of the CPython-on-Windows core developers) on this topic10.

The use of MS Visual Studio 9.0 (which doesn’t have support for C99) to build Python 2.7 has meant that C code in SciPy has had to conform to the earlier C90 standard for the language and standard library. With the dropping of Python 2.7 for SciPy 1.3.x, the C90 restriction is no longer imposed by compilers.

In terms of C language standards, it’s relevant to note that C11 has optional features11 (e.g. atomics, threading), some of which (VLAs & complex types) were mandatory in the C99 standard. C17 (occasionally called C18) can be considered a bug fix for C11, so generally, C11 may be skipped entirely.

SciPy has been restricted in the use of more advanced language features by the available compiler support, and Microsoft in particular has taken very long to achieve conformance to C99/C11/C17, however starting from MS Visual Studio 16.8, C11/C17 is supported12 (though without the C11 optional features). C99 <complex.h> would be particularly interesting for SciPy; MSVC conformance for this is being tracked here13.

Therefore, using C features beyond C90 was only possible insofar there was support on windows; however, as of as of the end of 2021, a sufficiently recent compiler is used. This is because GCC & LLVM support all relevant C11 features with the oldest currently used versions, and C17 is just a bugfix for C11, as mentioned above. In short:

5 https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/hosted
6 https://github.com/MacPython/scipy-wheels
7 https://pythondev.readthedocs.io/windows.html#python-and-visual-studio-version-matrix
10 https://discuss.python.org/t/toolchain-upgrade-on-windows/63774
11 https://en.wikipedia.org/wiki/C11_%28C_standard_revision%29#Optional_features
C++ Language Standards

C++ language standards for SciPy are generally guidelines rather than official decisions. This is particularly true of attempting to predict adoption timelines for newer standards.

<table>
<thead>
<tr>
<th>Date</th>
<th>C Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td><= 2018</td>
<td>C90</td>
</tr>
<tr>
<td>2019</td>
<td>C90 for old code, may consider C99 for new</td>
</tr>
<tr>
<td>2020</td>
<td>C99 (no `<complex.h>,<stdatomic.h>,<threads.h> & VLAs)</td>
</tr>
<tr>
<td>2021</td>
<td>C17 (no `<complex.h>,<stdatomic.h>,<threads.h> & VLAs)</td>
</tr>
<tr>
<td>?</td>
<td>C23, `<complex.h>,<stdatomic.h>,...</td>
</tr>
</tbody>
</table>

Since dropping support for Python 2.7, C++11 can be used universally, and since dropping Python 3.6, the Visual Studio version (that had previously been stuck with 14.0 due to ABI compatibility with CPython) has been recent enough to support even C++17.

Since the official builds (see above) use a pretty recent version of LLVM, the bottleneck for C++ support is therefore the oldest supported GCC version, where SciPy has been constrained mainly by the version in the oldest supported manylinux versions & images\(^\text{14}\).

At the end of 2021 (with the final removal of manylinux1 wheels), SciPy now has a minimum GCC requirement of GCC 6.3, which has full C++14 support\(^\text{15}\). This corresponds to the lowest present GCC version in relevant manylinux versions - somewhat surprisingly, it is not the oldest remaining manylinux2010 that is the most restrictive (due to the ABI-compatible “RHEL Dev Toolset” backports, it has GCC 8.3), but actually manylinux_2_24 that only comes with GCC 6.3\(^\text{16}\).

C++17 _language_ support will require GCC >= 7 (released May 2017). As of the end of 2021, support for the entirety of the C++17 standard library has not yet been completed across all compilers; similarly, support for C++20 and C++23 is still under heavy development.\(^\text{7}\)

Fortran Compilers

Generally, any well-maintained compiler is likely suitable and can be used to build SciPy.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>gfortran</td>
<td>>= 4.8.0</td>
</tr>
<tr>
<td>ifort</td>
<td>A recent version</td>
</tr>
<tr>
<td>flang</td>
<td>A recent version</td>
</tr>
</tbody>
</table>

\(^{14}\) https://github.com/mayeut/pep600_compliance
\(^{15}\) https://en.cppreference.com/w/cpp/compiler_support
\(^{16}\) https://github.com/pypa/manylinux/issues/1012
Cython & Pythran

SciPy always requires a recent Cython compiler. Since 1.7, Pythran is a build dependency (currently with the possibility to opt out).

OpenMP support

For various reasons\(^\text{17}\), SciPy cannot be distributed with built-in OpenMP support. When using the optional Pythran support, OpenMP-enabled parallel code can be generated when building from source.

Other Libraries

Any library conforming to the BLAS/LAPACK interface may be used. OpenBLAS, ATLAS, MKL, BLIS, and reference Netlib libraries are known to work.

<table>
<thead>
<tr>
<th>Library</th>
<th>Minimum version</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAPACK</td>
<td>3.4.1</td>
</tr>
<tr>
<td>BLAS</td>
<td>A recent version of OpenBLAS, MKL or ATLAS. The Accelerate BLAS library is no longer supported.</td>
</tr>
</tbody>
</table>

There are some additional optional dependencies.

<table>
<thead>
<tr>
<th>Library</th>
<th>Version</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpmath</td>
<td>Recent</td>
<td>http://mpmath.org/</td>
</tr>
<tr>
<td>scikit-umfpack</td>
<td>Recent</td>
<td>https://pypi.org/project/scikit-umfpack/</td>
</tr>
</tbody>
</table>

Moreover, Scipy supports interaction with other libraries. The test suite has additional compatibility tests that are run when these are installed:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Version</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>pydata/sparse</td>
<td>Recent</td>
<td>https://github.com/pydata/sparse/</td>
</tr>
</tbody>
</table>

4.7.2 Testing and Benchmarking

Testing and benchmarking require recent versions of:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Version</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>pytest</td>
<td>Recent</td>
<td>https://docs.pytest.org/en/latest/</td>
</tr>
<tr>
<td>asv (airspeed velocity)</td>
<td>Recent</td>
<td>https://asv.readthedocs.io/</td>
</tr>
</tbody>
</table>

\(^\text{17}\) https://github.com/scipy/scipy/issues/10239
4.7.3 Building the Documentation

<table>
<thead>
<tr>
<th>Tool</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphinx</td>
<td>Whatever recent versions work. >= 2.0.</td>
</tr>
<tr>
<td>PyData Sphinx theme</td>
<td>Whatever recent versions work. >= 0.6.1.</td>
</tr>
<tr>
<td>Sphinx-Panels</td>
<td>Whatever recent versions work. >= 0.5.2.</td>
</tr>
<tr>
<td>numpydoc</td>
<td>Whatever recent versions work. >= 0.8.0.</td>
</tr>
<tr>
<td>matplotlib</td>
<td>Generally suggest >= 2.0.</td>
</tr>
<tr>
<td>LaTeX</td>
<td>A recent distribution, such as TeX Live 2016.</td>
</tr>
</tbody>
</table>

[The numpydoc package is also used, but that is currently packaged in doc/sphinxext.]

Note: Developer Note: The versions of numpy and matplotlib required have implications for the examples in Python docstrings. Examples must be able to be executed both in the environment used to build the documentation, as well as with any supported versions of numpy/matplotlib that a user may use with this release of SciPy.

4.7.4 Packaging

A Recent version of:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Version</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>setuptools</td>
<td>Recent</td>
<td>https://pypi.org/project/setuptools/</td>
</tr>
<tr>
<td>wheel</td>
<td>Recent</td>
<td>https://pythonwheels.com</td>
</tr>
<tr>
<td>multibuild</td>
<td>Recent</td>
<td>https://github.com/matthew-brett/multibuild</td>
</tr>
</tbody>
</table>

Making a SciPy release and *Distributing* contain information on making and distributing a SciPy release.

4.7.5 References

4.8 SciPy Core Developer Guide

4.8.1 Decision making process

SciPy has a formal governance model, documented in *SciPy Project Governance*. The section below documents in an informal way what happens in practice for decision making about code and commit rights. The formal governance model is leading, the below is only provided for context.

Code

Any significant decisions on adding (or not adding) new features, breaking backwards compatibility or making other significant changes to the codebase should be made on the scipy-dev mailing list after a discussion (preferably with full consensus).

Any non-trivial change (where trivial means a typo, or a one-liner maintenance commit) has to go in through a pull request (PR). It has to be reviewed by another developer. In case review doesn't happen quickly enough and it is important that the PR is merged quickly, the submitter of the PR should send a message to mailing list saying he/she intends to merge that PR without review at time X for reason Y unless someone reviews it before then.
Changes and new additions should be tested. Untested code is broken code.

Commit rights

Who gets commit rights is decided by the SciPy Steering Council; changes in commit rights will then be announced on the scipy-dev mailing list.

4.9 Deciding on new features

The general decision rule to accept a proposed new feature has so far been conditional on:

1. The method is applicable in many fields and “generally agreed” to be useful,

2. It fits the topic of the submodule, and does not require extensive support frameworks to operate,

3. The implementation looks sound and unlikely to need much tweaking in the future (e.g., limited expected maintenance burden),

4. Someone wants to contribute it, and

5. Someone wants to review it.

The last criterion is often a sticking point for proposed features. Code cannot be merged until it has been thoroughly reviewed, and there is always a backlog of maintenance tasks that compete for reviewers’ time. Ideally, contributors should line up a reviewer with suitable domain expertise before beginning work.

Although it’s difficult to give hard rules on what “generally useful and generally agreed to work” means, it may help to weigh the following against each other:

- Is the method used/useful in different domains in practice? How much domain-specific background knowledge is needed to use it properly?

- Consider the code already in the module. Is what you are adding an omission? Does it solve a problem that you’d expect the module be able to solve? Does it supplement an existing feature in a significant way?

- Consider the equivalence class of similar methods / features usually expected. Among them, what would in principle be the minimal set so that there’s not a glaring omission in the offered features remaining? How much stuff would that be? Does including a representative one of them cover most use cases? Would it in principle sound reasonable to include everything from the minimal set in the module?

- Is what you are adding something that is well understood in the literature? If not, how sure are you that it will turn out well? Does the method perform well compared to other similar ones?

- Note that the twice-a-year release cycle and backward-compatibility policy makes correcting things later on more difficult.

The scopes of the submodules also vary, so it’s probably best to consider each as if it’s a separate project - “numerical evaluation of special functions” is relatively well-defined, but “commonly needed optimization algorithms” less so.
4.9.1 Development on GitHub

SciPy development largely takes place on GitHub; this section describes the expected way of working for issues, pull requests and managing the main scipy repository.

Labels and Milestones

Each issue and pull request normally gets at least two labels: one for the topic or component (scipy.stats, Documentation, etc.), and one for the nature of the issue or pull request (enhancement, maintenance, defect, etc.). Other labels that may be added depending on the situation:

- **easy-fix**: for issues suitable to be tackled by new contributors.
- **needs-work**: for pull requests that have review comments that haven’t been addressed.
- **needs-decision**: for issues or pull requests that need a decision.
- **needs-champion**: for pull requests that were not finished by the original author, but are worth resurrecting.
- **backport-candidate**: bug fixes that should be considered for backporting by the release manager.

A milestone is created for each version number for which a release is planned. Issues that need to be addressed and pull requests that need to be merged for a particular release should be set to the corresponding milestone. After a pull request is merged, its milestone (and that of the issue it closes) should be set to the next upcoming release - this makes it easy to get an overview of changes and to add a complete list of those to the release notes.

Pull request review workflow

When reviewing pull requests, please make use of pull request workflow features, see pull-request-workflow-features.

Dealing with pull requests

- When merging contributions, a committer is responsible for ensuring that those meet the requirements outlined in Contributing to SciPy. Also check that new features and backwards compatibility breaks were discussed on the scipy-dev mailing list.
- New code goes in via a pull request (PR).
- Merge new code with the green button. In case of merge conflicts, ask the PR submitter to rebase (this may require providing some git instructions).
- Backports and trivial additions to finish a PR (really trivial, like a typo or PEP8 fix) can be pushed directly.
- For PRs that add new features or are in some way complex, wait at least a day or two before merging it. That way, others get a chance to comment before the code goes in.
- Squashing commits or cleaning up commit messages of a PR that you consider too messy is OK. Make sure though to retain the original author name when doing this.
- Make sure that the labels and milestone on a merged PR are set correctly.
- When you want to reject a PR: if it’s very obvious you can just close it and explain why, if not obvious then it’s a good idea to first explain why you think the PR is not suitable for inclusion in SciPy and then let a second committer comment or close.
Backporting

All pull requests (whether they contain enhancements, bug fixes or something else), should be made against master. Only bug fixes are candidates for backporting to a maintenance branch. The backport strategy for SciPy is to (a) only backport fixes that are important, and (b) to only backport when it’s reasonably sure that a new bugfix release on the relevant maintenance branch will be made. Typically, the developer who merges an important bugfix adds the `backport-candidate` label and pings the release manager, who decides on whether and when the backport is done. After the backport is completed, the `backport-candidate` label has to be removed again.

A good strategy for a backport pull request is to combine several master branch pull requests, to reduce the burden on continuous integration tests and to reduce the merge commit cluttering of maintenance branch history. It is generally best to have a single commit for each of the master branch pull requests represented in the backport pull request. This way, history is clear and can be reverted in a straightforward manner if needed.

Release notes

When a PR gets merged, consider if the changes need to be mentioned in the release notes. What needs mentioning: new features, backwards incompatible changes, deprecations, and “other changes” (anything else noteworthy enough, see older release notes for the kinds of things worth mentioning).

Release note entries are maintained on the wiki, (e.g. https://github.com/scipy/scipy/wiki/Release-note-entries-for-SciPy-1.2.0). The release manager will gather content from there and integrate it into the html docs. We use this mechanism to avoid merge conflicts that would happen if every PR touched the same file under `doc/release/` directly.

Changes can be monitored (Atom feed) and pulled (the wiki is a git repo: https://github.com/scipy/scipy/wiki.git).

Other

PR status page: When new commits get added to a pull request, GitHub doesn’t send out any notifications. The `needs-work` label may not be justified anymore though. This page gives an overview of PRs that were updated, need review, need a decision, etc.

Cross-referencing: Cross-referencing issues and pull requests on GitHub is often useful. GitHub allows doing that by using `gh-xxxx` or `#xxxx` with `xxxx` the issue/PR number. The `gh-xxxx` format is strongly preferred, because it’s clear that that is a GitHub link. Older issues contain `#xxxx` which is about Trac (what we used pre-GitHub) tickets.

PR naming convention: Pull requests, issues and commit messages usually start with a three-letter abbreviation like `ENH:` or `BUG:`. This is useful to quickly see what the nature of the commit/PR/issue is. For the full list of abbreviations, see writing the commit message.

4.9.2 Licensing

SciPy is distributed under the [modified (3-clause) BSD license](https://github.com/scipy/scipy). All code, documentation and other files added to SciPy by contributors is licensed under this license, unless another license is explicitly specified in the source code. Contributors keep the copyright for code they wrote and submit for inclusion to SciPy.

Other licenses that are compatible with the modified BSD license that SciPy uses are 2-clause BSD, MIT and PSF. Incompatible licenses are GPL, Apache and custom licenses that require attribution/citation or prohibit use for commercial purposes.

PRs are often submitted with content copied or derived from unlicensed code or code from a default license that is not compatible with SciPy's license. For instance, code published on StackOverflow is covered by a CC-BY-SA license, which is not compatible due to the share-alike clause. These contributions cannot be accepted for inclusion in SciPy.
unless the original code author is willing to (re)license his/her code under the modified BSD (or compatible) license. If
the original author agrees, add a comment saying so to the source files and forward the relevant communication to the
scipy-dev mailing list.

Another common occurrence is for code to be translated or derived from code in R, Octave (both GPL-licensed) or a
commercial application. Such code also cannot be included in SciPy. Simply implementing functionality with the same
API as found in R/Octave/... is fine though, as long as the author doesn’t look at the original incompatibly-licensed source
code.

4.9.3 Version numbering

SciPy version numbering complies to PEP 440. Released final versions, which are the only versions appearing on PyPI,
are numbered MAJOR.MINOR.MICRO where:

- MAJOR is an integer indicating the major version. It changes very rarely; a change in MAJOR indicates large
 (possibly backwards-incompatible) changes.
- MINOR is an integer indicating the minor version. Minor versions are typically released twice a year and can contain
 new features, deprecations and bug-fixes.
- MICRO is an integer indicating a bug-fix version. Bug-fix versions are released when needed, typically one or two
 per minor version. They cannot contain new features or deprecations.

Released alpha, beta and rc (release candidate) versions are numbered like final versions but with postfixes a#, b# and
rc# respectively, with # an integer. Development versions are postfixed with .dev0+<git-commit-hash>.

Examples of valid SciPy version strings are:

```
0.16.0
0.15.1
0.14.0a1
0.14.0b2
0.14.0rc1
0.17.0.dev0+ac53f09
```

An installed SciPy version contains these version identifiers:

```
scipy.__version__  # complete version string, including git commit_
->hash for dev versions
scipy.version.short_version  # string, only major.minor.micro
scipy.version         # string, same as scipy.__version__
scipy.version.full_version  # string, same as scipy.__version__
scipy.version.release  # bool, development or (alpha/beta/rc/final)_
->released version
scipy.version.git_revision  # string, git commit hash from which scipy was_
->built
```
4.9.4 Deprecations

There are various reasons for wanting to remove existing functionality: it's buggy, the API isn't understandable, it's superseded by functionality with better performance, it needs to be moved to another SciPy submodule, etc.

In general it's not a good idea to remove something without warning users about that removal first. Therefore this is what should be done before removing something from the public API:

1. Propose to deprecate the functionality on the scipy-dev mailing list and get agreement that that’s OK.
2. Add a DeprecationWarning for it, which states that the functionality was deprecated, and in which release. For Cython APIs, see Deprecating public Cython APIs for the practical steps.
3. Mention the deprecation in the release notes for that release.
4. Wait till at least 6 months after the release date of the release that introduced the DeprecationWarning before removing the functionality.
5. Mention the removal of the functionality in the release notes.

The 6 months waiting period in practice usually means waiting two releases. When introducing the warning, also ensure that those warnings are filtered out when running the test suite so they don’t pollute the output.

It's possible that there is reason to want to ignore this deprecation policy for a particular deprecation; this can always be discussed on the scipy-dev mailing list.

4.9.5 Distributing

Distributing Python packages is nontrivial - especially for a package with complex build requirements like SciPy - and subject to change. For an up-to-date overview of recommended tools and techniques, see the Python Packaging User Guide. This document discusses some of the main issues and considerations for SciPy.

Dependencies

Dependencies are things that a user has to install in order to use (or build/test) a package. They usually cause trouble, especially if they’re not optional. SciPy tries to keep its dependencies to a minimum; currently they are:

Unconditional run-time dependencies:

- Numpy

Conditional run-time dependencies:

- pytest (to run the test suite)
- asv (to run the benchmarks)
- matplotlib (for some functions that can produce plots)
- Pillow (for image loading/saving)
- scikit.umfpack (optionally used in sparse.linalg)
- mpmath (for more extended tests in special)
- pydata/sparse (compatibility support in scipy.sparse)
- threadpoolctl (to control BLAS/LAPACK threading in test suite)

Unconditional build-time dependencies:

- Numpy
• A BLAS and LAPACK implementation (reference BLAS/LAPACK, ATLAS, OpenBLAS, MKL are all known to work)
• Cython
• setuptools
• pybind11

Conditional build-time dependencies:
• wheel (python setup.py bdist_wheel)
• Sphinx (docs)
• PyData Sphinx theme (docs)
• Sphinx-Panels (docs)
• matplotlib (docs)
• LaTeX (pdf docs)
• Pillow (docs)

Furthermore of course one needs C, C++ and Fortran compilers to build SciPy, but those we don’t consider to be dependencies and are therefore not discussed here. For details, see https://scipy.github.io/devdocs/building/.

When a package provides useful functionality and it’s proposed as a new dependency, consider also if it makes sense to vendor (i.e. ship a copy of it with scipy) the package instead. For example, decorator is vended in scipy._lib.

The only dependency that is reported to pip is NumPy, see install_requires in SciPy’s main setup.py. The other dependencies aren’t needed for SciPy to function correctly

Issues with dependency handling

There are some issues with how Python packaging tools handle dependencies reported by projects. Because SciPy gets regular bug reports about this, we go in a bit of detail here.

SciPy only reports its dependency on NumPy via install_requires if NumPy isn’t installed at all on a system, or when building wheels with bdist_wheel. SciPy no longer uses setup_requires (which in the past invoked easy_install); build dependencies are now handled only via pyproject.toml. pyproject.toml relies on PEP 517; pip has --no-use-pep517 and --no-build-isolation flags that may ignore pyproject.toml or treat it differently - if users use those flags, they are responsible for installing the correct build dependencies themselves.

Version ranges for NumPy and other dependencies

For dependencies it’s important to set lower and upper bounds on their versions. For build-time dependencies, they are specified in pyproject.toml and the versions will only apply to the SciPy build itself. It’s fine to specify either a range or a specific version for a dependency like wheel or setuptools. For NumPy we have to worry about ABI compatibility too, hence we specify the version with == to the lowest supported version (because NumPy’s ABI is backward but not forward compatible).

For run-time dependencies (currently only numpy), we specify the range of versions in pyproject.toml and in install_requires in setup.py. Getting the upper bound right is slightly tricky. If we don’t set any bound, a too-new version will be pulled in a few years down the line, and NumPy may have deprecated and removed some API that SciPy depended on by then. On the other hand if we set the upper bound to the newest already-released version, then as soon as a new NumPy version is released there will be no matching SciPy version that works with it. Given that NumPy and SciPy both release in a 6-monthly cadence and that features that get deprecated in NumPy should stay around for another two releases, we specify the upper bound as <1.xx+3.0 (where xx is the minor version of the latest already-released NumPy).
Supported Python and NumPy versions

The Python versions that SciPy supports are listed in the list of PyPI classifiers in `setup.py`, and mentioned in the release notes for each release. All newly released Python versions will be supported as soon as possible. For the general policy on dropping support for a Python or NumPy version, see NEP 29. The final decision on dropping support is always taken on the scipy-dev mailing list.

The lowest supported NumPy version for a SciPy version is mentioned in the release notes and is encoded in `pyproject.toml`, `scipy/__init__.py` and the `install_requires` field of `setup.py`. Typically the latest SciPy release supports ~5-7 minor versions of NumPy: up to 2.5 years’ old NumPy versions, (given that the frequency of NumPy releases is about 2x/year at the time of writing) plus two versions into the future.

Supported versions of optional dependencies and compilers is documented in Toolchain Roadmap. Note that not all versions of optional dependencies that are supported are tested well or at all by SciPy’s Continuous Integration setup. Issues regarding this are dealt with as they come up in the issue tracker or mailing list.

Building binary installers

Note: This section is only about building SciPy binary installers to distribute. For info on building SciPy on the same machine as where it will be used, see this scipy.org page.

There are a number of things to take into consideration when building binaries and distributing them on PyPI or elsewhere.

General

- A binary is specific for a single Python version (because different Python versions aren’t ABI-compatible, at least up to Python 3.4).
- Build against the lowest NumPy version that you need to support, then it will work for all NumPy versions with the same major version number (NumPy does maintain backwards ABI compatibility).

Windows

- The currently most easily available toolchain for building Python.org compatible binaries for SciPy is installing MSVC (see https://wiki.python.org/moin/WindowsCompilers and mingw64-gfortran. Support for this configuration requires numpy.distutils from NumPy >= 1.14.dev and a gcc/gfortran-compiled static openblas.a. This configuration is currently used in the Appveyor configuration for https://github.com/MacPython/scipy-wheels.
- For 64-bit Windows installers built with a free toolchain, use the method documented at https://github.com/numpy/numpy/wiki/Mingw-static-toolchain. That method will likely be used for SciPy itself once it’s clear that the maintenance of that toolchain is sustainable long-term. See the MingwPy project and this thread for details.
- The other way to produce 64-bit Windows installers is with `icc`, `ifort` plus MKL (or MSVC instead of ICC). For Intel toolchain instructions see this article and for (partial) MSVC instructions see this wiki page.
- Older SciPy releases contained a `.exe “superpack” installer. Those contain 3 complete builds (no SSE, SSE2, SSE3), and were built with https://github.com/numpy/numpy-vendor. That build setup is known to not work well anymore and is no longer supported. It used `g77` instead of `gfortran`, due to complex DLL distribution issues (see gh-2829). Because the toolchain is no longer supported, `g77` support isn’t needed anymore and SciPy can now include Fortran 90/95 code.

OS X

- To produce OS X wheels that work with various Python versions (from python.org, Homebrew, MacPython), use the build method provided by https://github.com/MacPython/scipy-wheels.
• DMG installers for the Python from python.org on OS X can still be produced by tools/scipy-macosx-installer/. SciPy doesn't distribute those installers anymore though, now that there are binary wheels on PyPi.

Linux

• PyPi-compatible Linux wheels can be produced via the manylinux project. The corresponding build setup for TravisCI for SciPy is set up in https://github.com/MacPython/scipy-wheels.

Other Linux build-setups result to PyPi incompatible wheels, which would need to be distributed via custom channels, e.g. in a Wheelhouse, see at the wheel and Wheelhouse docs.

4.9.6 Making a SciPy release

At the highest level, this is what the release manager does to release a new SciPy version:

1. Propose a release schedule on the scipy-dev mailing list.
2. Create the maintenance branch for the release.
3. Tag the release.
4. Build all release artifacts (sources, installers, docs).
5. Upload the release artifacts.
6. Announce the release.
7. Port relevant changes to release notes and build scripts to master.

In this guide we attempt to describe in detail how to perform each of the above steps. In addition to those steps, which have to be performed by the release manager, here are descriptions of release-related activities and conventions of interest:

• Backporting
• Labels and Milestones
• Version numbering
• Supported Python and NumPy versions
• Deprecations

Proposing a release schedule

A typical release cycle looks like:

• Create the maintenance branch
• Release a beta version
• Release a “release candidate” (RC)
• If needed, release one or more new RCs
• Release the final version once there are no issues with the last release candidate

There’s usually at least one week between each of the above steps. Experience shows that a cycle takes between 4 and 8 weeks for a new minor version. Bug-fix versions don’t need a beta or RC, and can be done much quicker.

Ideally the final release is identical to the last RC, however there may be minor difference - it’s up to the release manager to judge the risk of that. Typically, if compiled code or complex pure Python code changes then a new RC is needed, while a simple bug-fix that’s backported from master doesn’t require a new RC.
To propose a schedule, send a list with estimated dates for branching and beta/rc/final releases to scipy-dev. In the same email, ask everyone to check if there are important issues/PRs that need to be included and aren’t tagged with the Milestone for the release or the “backport-candidate” label.

Creating the maintenance branch

Before branching, ensure that the release notes are updated as far as possible. Include the output of tools/gh_lists.py and tools/authors.py in the release notes.

Maintenance branches are named maintenance/<major>.<minor>.x (e.g. 0.19.x). To create one, simply push a branch with the correct name to the scipy repo. Immediately after, push a commit where you increment the version number on the master branch and add release notes for that new version. Send an email to scipy-dev to let people know that you’ve done this.

Updating upper bounds of dependencies

In master we do not set upper bounds, because we want to test new releases or development versions of dependencies there. In a maintenance branch however, the goal is to be able to create releases that stay working for years. Hence correct upper bounds must be set. The following places must be updated after creating a maintenance branch:

• pyproject.toml: all build-time dependencies, as well as supported Python and NumPy versions
• setup.py: supported Python and NumPy versions
• scipy/__init__.py: for NumPy version check

Each file has comments describing how to set the correct upper bounds.

Tagging a release

First ensure that you have set up GPG correctly. See https://github.com/scipy/scipy/issues/4919 for a discussion of signing release tags, and https://keyring.debian.org/creating-key.html for instructions on creating a GPG key if you do not have one. Note that on some platforms it may be more suitable to use gpg2 instead of gpg so that passwords may be stored by gpg-agent as discussed in https://github.com/scipy/scipy/issues/10189. When preparing a release remotely, it may be necessary to set pinentry-mode loopback in ~/.gnupg/gpg-agent.conf because use of gpg2 will otherwise proceed via an inaccessible graphical password prompt.

To make your key more readily identifiable as you, consider sending your key to public keyservers, with a command such as:

```
gpg --send-keys <yourkeyid>
```

Check that all relevant commits are in the branch. In particular, check issues and PRs under the Milestone for the release (https://github.com/scipy/scipy/milestones), PRs labeled “backport-candidate”, and that the release notes are up-to-date and included in the html docs.

Then edit setup.py to get the correct version number (set ISRELEASED = True) and commit it with a message like REL: set version to <version-number>. Don’t push this commit to the SciPy repo yet.

Finally tag the release locally with git tag -s <v1.x.y> (the -s ensures the tag is signed). If gpg2 is preferred, then git config --global gpg.program gpg2 may be appropriate. Continue with building release artifacts (next section). Only push the release commit to the scipy repo once you have built the sdists and docs successfully. Then continue with building wheels. Only push the release tag to the repo once all wheels have been built successfully on TravisCI and Appveyor (if it fails, you have to move the tag otherwise - which is bad practice). Finally, after pushing...
the tag, also push a second commit which increments the version number and sets ISRELEASED to False again. This also applies with new release candidates, and for removing the rc affix when switching from release candidate to release proper.

Building release artifacts

Here is a complete list of artifacts created for a release:

- source archives (.tar.gz, .zip and .tar.xz for GitHub Releases, only .tar.gz is uploaded to PyPI)
- Binary wheels for Windows, Linx and OS X
- Documentation (html, pdf)
- A README file
- A Changelog file

Source archives, Changelog and README are built by running `paver release` in the repo root, and end up in REPO_ROOT/release/. Do this after you've created the signed tag locally. `paver release` will be sensitive to the version of Cython available in your build environment, so make sure your version matches the minimum requirements for the release. If this completes without issues, push the release commit (not the tag, see section above) to the scipy repo. If `pavement.py` is causing issues, it is also possible to simply use `python setup.py sdist` and perform the release notes task from `pavement.py` by hand.

To build wheels, push a commit to a branch used for the current release at https://github.com/MacPython/scipy-wheels. This triggers builds for all needed Python versions on TravisCI. Update and check the `.travis.yml` and `appveyor.yml` config files what commit to build, and what Python and NumPy are used for the builds (it needs to be the lowest supported NumPy version for each Python version). See the README file in the scipy-wheels repo for more details. Note that because several months may pass between SciPy releases, it is sometimes necessary to update the versions of the gfortran-install and multibuild submodules used for wheel builds. If the wheels builds reveal issues that need to be fixed with backports on the maintenance branch, you may remove the local tags (for example `git tag -d v1.2.0rc1`) and restart with tagging above on the new candidate commit.

The TravisCI and Appveyor builds run the tests from the built wheels and if they pass, upload the wheels to a container pointed to at https://github.com/MacPython/scipy-wheels. Once there are successful wheel builds, it is recommended to create a versioned branch in the scipy-wheels repo, which will for example be adjusted to point to different maintenance branch commits if there are multiple release candidates.

From there you can download them for uploading to PyPI. This can be done in an automated fashion using `tools/download-wheels.py`:

```
$ python tools/download-wheels.py 1.5.0rc1 -w REPO_ROOT/release/installers
```

The correct URL to use is shown in https://github.com/MacPython/scipy-wheels and should agree with the above one. After this, we want to regenerate the README file, in order to have the MD5 and SHA256 checksums of the just downloaded wheels in it. Run:

```
$ paver write_release_and_log
```
Uploading release artifacts

For a release there are currently five places on the web to upload things to:

- PyPI (tarballs, wheels)
- Github releases (tarballs, release notes, Changelog)
- scipy.org (an announcement of the release)
- docs.scipy.org (html/pdf docs)

PyPI:

Upload first the wheels and then the sdist:

```
    twine upload -s REPO_ROOT/release/installers/*.whl
    twine upload -s REPO_ROOT/release/installers/scipy-1.x.y.tar.gz
```

If gpg2 is preferred, then the above commands may also include `--sign-with gpg2`

Github Releases:

Use GUI on https://github.com/scipy/scipy/releases to create release and upload all release artifacts. At this stage, it is appropriate to push the tag and associate the new release (candidate) with this tag in the GUI. For example, `git push upstream v1.2.0rc1`, where upstream represents scipy/scipy. It is useful to check a previous release to determine exactly which artifacts should be included in the GUI upload process. Also, note that the release notes are not automatically populated into the release description on GitHub, and some manual reformatting to markdown can be quite helpful to match the formatting of previous releases on the site. We generally do not include Issue and Pull Request lists in these GUI descriptions.

scipy.org:

Sources for the site are in https://github.com/scipy/scipy.org. Update the News section in `www/index.rst` and then do `make upload USERNAME=yourusername`. This is only for proper releases, not release candidates.

docs.scipy.org:

First build the scipy docs, by running `make dist` in `scipy/doc/`. Verify that they look OK, then upload them to the doc server with `make upload USERNAME=rgommers RELEASE=0.19.0`. Note that SSH access to the doc server is needed; ask @pv (server admin) or @rgommers (can upload) if you don’t have that.

The sources for the website itself are maintained in https://github.com/scipy/docs.scipy.org/. Add the new SciPy version in the table of releases in `index.rst`. Push that commit, then do `make upload USERNAME=yourusername`. This is only for proper releases, not release candidates.

Wrapping up

Send an email announcing the release to the following mailing lists:

- scipy-dev
- numpy-discussion
- python-announce (not for beta/rc releases)

For beta and rc versions, ask people in the email to test (run the scipy tests and test against their own code) and report issues on Github or scipy-dev.

After the final release is done, port relevant changes to release notes, build scripts, author name mapping in `tools/authors.py` and any other changes that were only made on the maintenance branch to master.
4.10 SciPy API Development Guide

4.10.1 A Design Specification for nan_policy

Many functions in `scipy.stats` have a parameter called `nan_policy` that determines how the function handles data that contains `nan`. In this section, we provide SciPy developer guidelines for how `nan_policy` is intended to be used, to ensure that as this parameter is added to new functions, we maintain a consistent API.

The basic API

The parameter `nan_policy` accepts three possible strings: 'omit', 'raise' and 'propagate'. The meanings are:

- `nan_policy='omit'`: Ignore occurrences of `nan` in the input. Do not generate a warning if the input contains `nan` (unless the equivalent input with the `nan` values removed would generate a warning). For example, for the simple case of a function that accepts a single array and returns a scalar (and ignoring the possible use of `axis` for the moment):

```python
func([1.0, 3.0, np.nan, 5.0], nan_policy='omit')
```

should behave the same as:

```python
func([1.0, 3.0, 5.0])
```

More generally, for functions that return a scalar, `func(a, nan_policy='omit')` should behave the same as `func(a[~np.isnan(a)])`.

For functions that transform a vector to a new vector of the same size and for which each entry in the output array depends on more than just the corresponding value in the input array\(^1\) (e.g. `scipy.stats.zscore`, `scipy.stats.boxcox` when `lmbda` is `None`):

```python
y = func(a, nan_policy='omit')
```

should behave the same as:

```python
nan_mask = np.isnan(a)
y = np.empty(a.shape, dtype=np.float64)
y[~nan_mask] = func(a[~nan_mask])
y[nan_mask] = np.nan
```

(In general, the dtype of `y` might depend on `a` and on the expected behavior of `func`). In other words, a `nan` in the input gives a corresponding `nan` in the output, but the presence of that `nan` does not affect the calculation of the non-`nan` values.

Unit tests for this property should be used to test functions that handle `nan_policy`.

For functions that return a scalar and that accept two or more arguments but whose values are not related (e.g. `scipy.stats.ansari`, `scipy.stats.f_oneway`), the same idea applies to each input array. So:

```python
func(a, b, nan_policy='omit')
```

should behave the same as:

\(^1\) If an element of the output depends only on the corresponding element of the input (e.g. `numpy.sin`, `scipy.special.gamma`), then there is no need for a `nan_policy` parameter.
For inputs with related or paired values (e.g. `scipy.stats.pearsonr`, `scipy.stats.ttest_rel`) the recommended behavior is to omit all the values for which any of the related values are nan. For a function with two related array inputs, this means:

```
y = func(a, b, nan_policy='omit')
```

should behave the same as:

```
hasnan = np.isnan(a) | np.isnan(b)  # Union of the isnan masks.
y = func(a[~hasnan], b[~hasnan])
```

The docstring for such a function should clearly state this behavior.

- `nan_policy='raise'`: Raise a ValueError.
- `nan_policy='propagate'`: Propagate the nan value to the output. Typically, this means just execute the function without checking for nan, but see https://github.com/scipy/scipy/issues/7818 for an example where that might lead to unexpected output.

nan_policy combined with an axis parameter

There is nothing surprising here—the principle mentioned above still applies when the function has an axis parameter. Suppose, for example, `func` reduces a 1-d array to a scalar, and handles n-d arrays as a collection of 1-d arrays, with the axis parameter specifying the axis along which the reduction is to be applied. If, say:

```
func([[1, 3, 4]],    -> 10.0
func([[2, -3, 8, 2]], -> 4.2
func([[7, 8]]),     -> 9.5
func([]),           -> -inf
```

then:

```
func([[ 1, nan, 3, 4],
      [ 2, -3, 8, 2],
      [nan,  7, nan, 8],
      [nan, nan, nan, nan]], nan_policy='omit', axis=-1)
```

must give the result:

```
np.array([10.0, 4.2, 9.5, -inf])
```
Edge cases

A function that implements the `nan_policy` parameter should gracefully handle the case where all the values in the input array(s) are `nan`. The basic principle described above still applies:

```python
func([nan, nan, nan], nan_policy='omit')
```

should behave the same as:

```python
func([])
```

In practice, when adding `nan_policy` to an existing function, it is not unusual to find that the function doesn’t already handle this case in a well-defined manner, and some thought and design may have to be applied to ensure that it works. The correct behavior (whether that be to return `nan`, return some other value, raise an exception, or something else) will be determined on a case-by-case basis.

Why doesn't `nan_policy` also apply to `inf`?

Although we learn in grade school that “infinity is not a number”, the floating point values `nan` and `inf` are qualitatively different. The values `inf` and `-inf` act much more like regular floating point values than `nan`.

- One can compare `inf` to other floating point values and it behaves as expected, e.g. `3 < inf` is True.
- For the most part, arithmetic works “as expected” with `inf`, e.g. `inf + inf = inf`, `-2*inf = -inf`, `1/inf = 0`, etc.
- Many existing functions work “as expected” with `inf`: `np.log(inf) = inf`, `np.exp(-inf) = 0`, `np.array([1.0, -1.0, np.inf]).min() = -1.0`, etc.

So while `nan` almost always means “something went wrong” or “something is missing”, `inf` can in many cases be treated as a useful floating point value.

It is also consistent with the NumPy `nan` functions to not ignore `inf`:

```python
>>> np.nanmax([1, 2, 3, np.inf, np.nan])
inf
>>> np.nansum([1, 2, 3, np.inf, np.nan])
inf
>>> np.nanmean([8, -np.inf, 9, 1, np.nan])
-inf
```

How not to implement `nan_policy`

In the past (and possibly currently), some `stats` functions handled `nan_policy` by using a masked array to mask the `nan` values, and then computing the result using the functions in the `mstats` subpackage. The problem with this approach is that the masked array code might convert `inf` to a masked value, which we don’t want to do (see above). It also means that, if care is not taken, the return value will be a masked array, which will likely be a surprise to the user if they passed in regular arrays.
4.10.2 Adding vectorized ufuncs in scipy.special

Many of the functions in `special` are vectorized versions of scalar functions. The scalar functions are written by hand and the necessary loops for vectorization are generated automatically. This section discusses the steps necessary to add a new vectorized special function.

The first step in adding a new vectorized function is writing the corresponding scalar function. This can be done in Cython, C, C++, or Fortran. If starting from scratch then Cython should be preferred because the code is easier to maintain for developers only familiar with Python. If the primary code is in Fortran then it is necessary to write a C wrapper around the code; for examples of such wrappers see specfun_wrappers.c.

After implementing the scalar function, register the new function by adding an entry to `functions.json`. The doc-string in `generate_ufuncs.py` explains the format. Also add documentation for the new function by adding an entry to `add_newdocs.py`; look in the file for examples.

When writing the parameters section of the documentation for ufuncs, the type of an argument should be `array_like`. Discussion of whether an argument can be e.g. real or complex-valued should be saved for the description. So for example, if we were to document the parameters for the Gamma function then it should look like this:

```
Parameters
----------
z : array_like
    Real or complex valued argument
```

When documenting the returns section, the type of the returned value should be `scalar` or `ndarray` since ufuncs return scalars when given scalars as arguments. Also keep in mind that providing a `name` for the return value is optional, and indeed is often not helpful for special functions. So for the Gamma function we might have something like this:

```
Returns
-------
scalar or ndarray
    Values of the Gamma function
```

4.11 SciPy Project Governance

The purpose of this document is to formalize the governance process used by the SciPy project in both ordinary and extraordinary situations, and to clarify how decisions are made and how the various elements of our community interact, including the relationship between open source collaborative development and work that may be funded by for-profit or non-profit entities.

4.11.1 The Project

The SciPy Project (The Project) is an open source software project. The goal of The Project is to develop open source software for scientific computing in Python, and, in particular, the `scipy` package. The Software developed by The Project is released under the BSD (or similar) open source license, developed openly and hosted on public GitHub repositories under the `scipy` GitHub organization.

The Project is developed by a team of distributed developers, called Contributors. Contributors are individuals who have contributed code, documentation, designs, or other work to the Project. Anyone can be a Contributor. Contributors can be affiliated with any legal entity or none. Contributors participate in the project by submitting, reviewing, and discussing GitHub Pull Requests and Issues and participating in open and public Project discussions on GitHub, mailing lists, and other channels. The foundation of Project participation is openness and transparency.
The Project Community consists of all Contributors and Users of the Project. Contributors work on behalf of and are responsible to the larger Project Community and we strive to keep the barrier between Contributors and Users as low as possible.

The Project is not a legal entity, nor does it currently have any formal relationships with legal entities.

4.11.2 Governance

This section describes the governance and leadership model of The Project.

The foundations of Project governance are:

- openness and transparency
- active contribution
- institutional neutrality

Traditionally, Project leadership was provided by a subset of Contributors, called Core Developers, whose active and consistent contributions have been recognized by their receiving “commit rights” to the Project GitHub repositories. In general, all Project decisions are made through consensus among the Core Developers with input from the Community.

While this approach has served us well, as the Project grows, we see a need for a more formal governance model. The SciPy Core Developers expressed a preference for a leadership model which includes a BDFL (Benevolent Dictator for Life). Therefore, moving forward The Project leadership will consist of a BDFL and Steering Council.

BDFL

The Project will have a BDFL (Benevolent Dictator for Life), who is currently Pauli Virtanen. As Dictator, the BDFL has the authority to make all final decisions for The Project. As Benevolent, the BDFL, in practice, chooses to defer that authority to the consensus of the community discussion channels and the Steering Council (see below). It is expected, and in the past has been the case, that the BDFL will only rarely assert his/her final authority. Because rarely used, we refer to BDFL’s final authority as a “special” or “overriding” vote. When it does occur, the BDFL override typically happens in situations where there is a deadlock in the Steering Council or if the Steering Council asks the BDFL to make a decision on a specific matter. To ensure the benevolence of the BDFL, The Project encourages others to fork the project if they disagree with the overall direction the BDFL is taking. The BDFL may delegate his/her authority on a particular decision or set of decisions to any other Council member at his/her discretion.

The BDFL can appoint his/her successor, but it is expected that the Steering Council would be consulted on this decision. If the BDFL is unable to appoint a successor, the Steering Council will make this decision - preferably by consensus, but if needed, by a majority vote.

Note that the BDFL can step down at any time, and acting in good faith, will also listen to serious calls to do so. Also note that the BDFL is more a role for fallback decision making rather than that of a director/CEO.

Steering Council

The Project will have a Steering Council that consists of Project Contributors who have produced contributions that are substantial in quality and quantity, and sustained over at least one year. The overall role of the Council is to ensure, through working with the BDFL and taking input from the Community, the long-term well-being of the project, both technically and as a community.

The Council will have a Chair, who is tasked with keeping the organizational aspects of the functioning of the Council and the Project on track. The Council will also appoint a Release Manager for the Project, who has final responsibility for one or more releases.
During the everyday project activities, Council Members participate in all discussions, code review, and other project activities as peers with all other Contributers and the Community. In these everyday activities, Council Members do not have any special power or privilege through their membership on the Council. However, it is expected that because of the quality and quantity of their contributions and their expert knowledge of the Project Software and Services, Council Members will provide useful guidance, both technical and in terms of project direction, to potentially less experienced contributors.

The Steering Council and its Members play a special role in certain situations. In particular, the Council may:

- Make decisions about the overall scope, vision, and direction of the project.
- Make decisions about strategic collaborations with other organizations or individuals.
- Make decisions about specific technical issues, features, bugs, and pull requests. They are the primary mechanism of guiding the code review process and merging pull requests.
- Make decisions about the Services that are run by The Project and manage those Services for the benefit of the Project and Community.
- Make decisions when regular community discussion does not produce consensus on an issue in a reasonable time frame.
- Update policy documents, such as this one.

Council membership

To become eligible for being a Steering Council Member, an individual must be a Project Contributor who has produced contributions that are substantial in quality and quantity, and sustained over at least one year. Potential Council Members are nominated by existing Council members and voted upon by the existing Council after asking if the potential Member is interested and willing to serve in that capacity. The Council will be initially formed from the set of existing Core Developers who, as of January 2017, have been significantly active over the last two years.

When considering potential Members, the Council will look at candidates with a comprehensive view of their contributions. This will include, but is not limited to, code, code review, infrastructure work, mailing list and chat participation, community help/building, education and outreach, design work, etc. We are deliberately not setting arbitrary quantitative metrics (like “100 commits in this repo”) to avoid encouraging behavior that plays to the metrics rather than the project’s overall well-being. We want to encourage a diverse array of backgrounds, viewpoints, and talents in our team, which is why we explicitly do not define code as the sole metric on which council membership will be evaluated.

If a Council Member becomes inactive in the project for a period of one year, they will be considered for removal from the Council. Before removal, inactive Member will be approached to see if they plan on returning to active participation. If not, they will be removed immediately upon a Council vote. If they plan on returning to active participation soon, they will be given a grace period of one year. If they don't return to active participation within that time period they will be removed by vote of the Council without further grace period. All former Council Members can be considered for membership again at any time in the future, like any other Project Contributor. Retired Council Members will be listed on the project website, acknowledging the period during which they were active in the Council.

The Council reserves the right to eject current Members, other than the BDFL, if they are deemed to be actively harmful to the project’s well-being, and attempts at communication and conflict resolution have failed.

A list of current Steering Council Members is maintained at the page governance-people.
Council Chair

The Chair will be appointed by the Steering Council. The Chair can stay on as long as he/she wants, but may step down at any time and will listen to serious calls to do so (similar to the BDFL role). The Chair will be responsible for:

- Starting a review of the technical direction of the project (as captured by the SciPy Roadmap) bi-yearly, around mid-April and mid-October.
- At the same times of the year, summarizing any relevant organizational updates and issues in the preceding period, and asking for feedback/suggestions on the mailing list.
- Ensuring the composition of the Steering Council stays current.
- Ensuring matters discussed in private by the Steering Council get summarized on the mailing list to keep the Community informed.
- Ensuring other important organizational documents (e.g., Code of Conduct, Fiscal Sponsorship Agreement) stay current after they are added.

Release Manager

The Release Manager has final responsibility for making a release. This includes:

- Proposing of and deciding on the timing of a release.
- Determining the content of a release in case there is no consensus on a particular change or feature.
- Creating the release and announcing it on the relevant public channels.

For more details on what those responsibilities look like in practice, see Making a SciPy release.

Conflict of interest

It is expected that the BDFL and Council Members will be employed at a wide range of companies, universities, and non-profit organizations. Because of this, it is possible that Members will have a conflict of interest. Such conflicts of interest include, but are not limited to:

- Financial interest, such as investments, employment or contracting work, outside of The Project that may influence their work on The Project.
- Access to proprietary information of their employer that could potentially leak into their work with the Project.

All members of the Council, BDFL included, shall disclose to the rest of the Council any conflict of interest they may have. Members with a conflict of interest in a particular issue may participate in Council discussions on that issue, but must recuse themselves from voting on the issue. If the BDFL has recused his/herself for a particular decision, the Council will appoint a substitute BDFL for that decision.

Private communications of the Council

Unless specifically required, all Council discussions and activities will be public and done in collaboration and discussion with the Project Contributors and Community. The Council will have a private mailing list that will be used sparingly and only when a specific matter requires privacy. When private communications and decisions are needed, the Council will do its best to summarize those to the Community after removing personal/private/sensitive information that should not be posted to the public internet.
Council decision making

If it becomes necessary for the Steering Council to produce a formal decision, then they will use a form of the Apache Foundation voting process. This is a formalized version of consensus, in which +1 votes indicate agreement, -1 votes are vetoes (and must be accompanied with a rationale, as above), and one can also vote fractionally (e.g. -0.5, +0.5) if one wishes to express an opinion without registering a full veto. These numeric votes are also often used informally as a way of getting a general sense of people’s feelings on some issue, and should not normally be taken as formal votes. A formal vote only occurs if explicitly declared, and if this does occur, then the vote should be held open for long enough to give all interested Council Members a chance to respond – at least one week.

In practice, we anticipate that for most Steering Council decisions (e.g., voting in new members) a more informal process will suffice.

4.11.3 Institutional Partners and funding

The Steering Council is the primary leadership for the project. No outside institution, individual, or legal entity has the ability to own, control, usurp, or influence the project other than by participating in the Project as Contributors and Council Members. However, because institutions can be an important funding mechanism for the project, it is important to formally acknowledge institutional participation in the project. These are Institutional Partners.

An Institutional Contributor is any individual Project Contributor who contributes to the project as part of their official duties at an Institutional Partner. Likewise, an Institutional Council Member is any Project Steering Council Member who contributes to the project as part of their official duties at an Institutional Partner.

With these definitions, an Institutional Partner is any recognized legal entity in any country that employs at least 1 Institutional Contributor or Institutional Council Member. Institutional Partners can be for-profit or non-profit entities.

Institutions become eligible to become an Institutional Partner by employing individuals who actively contribute to The Project as part of their official duties. To state this another way, the only way for a Partner to influence the project is by actively contributing to the open development of the project, in equal terms to any other member of the community of Contributors and Council Members. Merely using Project Software in institutional context does not allow an entity to become an Institutional Partner. Financial gifts do not enable an entity to become an Institutional Partner. Once an institution becomes eligible for Institutional Partnership, the Steering Council must nominate and approve the Partnership.

If, at some point, an existing Institutional Partner stops having any contributing employees, then a one year grace period commences. If, at the end of this one-year period, they continue not to have any contributing employees, then their Institutional Partnership will lapse, and resuming it will require going through the normal process for new Partnerships.

An Institutional Partner is free to pursue funding for their work on The Project through any legal means. This could involve a non-profit organization raising money from private foundations and donors or a for-profit company building proprietary products and services that leverage Project Software and Services. Funding acquired by Institutional Partners to work on The Project is called Institutional Funding. However, no funding obtained by an Institutional Partner can override the Steering Council. If a Partner has funding to do SciPy work and the Council decides not to pursue that work as a project, the Partner is free to pursue it on their own. However, in this situation, that part of the Partner’s work will not be under the SciPy umbrella and cannot use the Project trademarks in any way that suggests a formal relationship.

Institutional Partner benefits are:

- acknowledgement on the SciPy website and in talks
- ability to acknowledge their own funding sources on the SciPy website and in talks
- ability to influence the project through the participation of their Council Member
- invitation of the Council Members to SciPy Developer Meetings

A list of current Institutional Partners is maintained at the page governance-people.
4.11.4 Document history

https://github.com/scipy/scipy/commits/master/doc/source/dev/governance/governance.rst

4.11.5 Acknowledgements

Substantial portions of this document were adapted from the Jupyter/IPython project’s governance document and NumPy’s governance document.

4.11.6 License

To the extent possible under law, the authors have waived all copyright and related or neighboring rights to the SciPy project governance document, as per the CC-0 public domain dedication / license.

4.12 Development environment quickstart guide (macOS)

This quickstart guide will cover:

• setting up and maintaining a development environment, including installing compilers and SciPy build dependencies;
• creating a personal fork of the SciPy repository on GitHub;
• using git to manage a local repository with development branches;
• performing an in-place build of SciPy; and
• creating a virtual environment that adds this development version of SciPy to the Python path in macOS (Tested on 11.1).

Note: This guide does not present the only way to set up a development environment; there are many valid choices of Python distribution, C/Fortran compiler, and installation options. The steps here can often be adapted for other choices, but we cannot provide documentation tailored for them.

This guide assumes that you are starting without an existing Python 3 installation. If you already have Python 3, you might want to uninstall it first to avoid ambiguity over which Python version is being used at the command line.

4.12.1 Building SciPy

1. Install Apple Developer Tools. An easy way to do this is to open a terminal window, enter the command `xcode-select --install`, and follow the prompts. Apple Developer Tools includes git, the software we need to download and manage the SciPy source code.

2. Download, install, and test the latest release of the Anaconda Distribution of Python. In addition to the latest version of Python 3, the Anaconda Distribution includes dozens of the most popular Python packages for scientific computing, the conda package manager, and tools for managing virtual environments.

 If you’re installing using the terminal, be sure to follow the “Next Steps” listed after the installer finishes. You might also need to restart your terminal window or enter `source ~/.bash_profile` for all the changes to take effect.
3. (Optional) In a terminal window, enter `conda list`. This shows a list of all the Python packages that came with the Anaconda Distribution of Python. Note the latest released version of SciPy is among them; this is not the development version you are going to build and will be able to modify.

Ideally, we'd like to have both versions, and we'd like to be able to switch between the two as needed. Virtual environments can do just that. With a few keystrokes in the terminal or even the click of an icon, we can enable or disable our development version. Let's set that up.

Note: If `conda` is not a recognized command, try restarting your terminal. If it is still not recognized, please see “Should I add Anaconda to the macOS or Linux PATH?” in the Anaconda FAQ.

4. Enter `conda create --name scipydev` to create an empty virtual environment named `scipydev` (or another name that you prefer). This tells `conda` to create a new, empty environment for our packages. Activate the environment with `conda activate scipydev`. Note that you'll need to have this virtual environment active whenever you want to work with the development version of SciPy.

5. Enter `conda config --env --add channels conda-forge` to tell Anaconda the source we want for our packages. Then enter `conda install python=3.8 numpy pybind11 cython pythran pytest compilers sphinx pydata-sphinx-theme sphinx-panels matplotlib mypy` to install the following packages:
 - `numpy`, `pybind11`, `cython`, `pythran` are four packages that SciPy depends on.
 - `compilers` holds compilers used to build SciPy’s Fortran, C, and C++ source code.
 - `pytest` is needed for running the test suite.
 - `sphinx`, `pydata-sphinx-theme`, `sphinx-panels` and `matplotlib` are required to render the SciPy documentation.
 - `mypy` is a static type checker for Python. Consider using it.

 Note that we're installing SciPy's build dependencies and some other software, but not SciPy itself.

6. Browse to the SciPy repository on GitHub and create your own fork. You'll need to create a GitHub account if you don't already have one.

7. Browse to your fork. Your fork will have a URL like `https://github.com/mdhaber/scipy`, except with your GitHub username in place of “mdhaber”.

8. Click the big, green “Clone or download” button, and copy the “.git” URL to the clipboard. The URL will be the same as your fork’s URL, except it will end in “.git”.

9. Create a folder for the SciPy source code in a convenient place on your computer. Navigate to it in the terminal.

10. Enter the command `git clone` followed by your fork's `.git` URL. Note that this creates in the terminal’s working directory a `scipy` folder containing the SciPy source code.

11. In the terminal, navigate into the `scipy` root directory (e.g. `cd scipy`).

12. Initialize git submodules: `git submodule update --init`.

13. Do an in-place build: `enter python3 setup.py build_ext --inplace`. This will compile the C, C++, and Fortran code that comes with SciPy. We installed `python3` with Anaconda. `setup.py` is a script in the root directory of SciPy, which is why you have to be in the SciPy root directory to call it. `build_ext` is a command defined in `setup.py`, and `--inplace` is an option we’ll use to ensure that the compiling happens in the SciPy directory you already have rather than the default location for Python packages. By building in-place, you avoid having to re-build SciPy before you can test changes to the Python code.

14. Test the build: `enter python3 runtests.py -v`.

• `runtests.py` is another script in the SciPy root directory. It runs a suite of tests that make sure SciPy is working as it should, and `-v` activates the `--verbose` option to show all the test output. If the tests are successful, you now have a working development build of SciPy! You could stop here, but you would only be able to use this development build when the Python working directory is the SciPy root directory.

15. Enter `conda develop .`, where `.` refers to the present directory. This will allow us to import the development version of SciPy in Python regardless of Python's working directory.

16. In a new terminal window, test your setup. If you activate your virtual environment (e.g. `conda activate scipydev`) and run Python code that imports from SciPy, any changes you make to the SciPy code should be reflected when the code runs. After deactivating the virtual environment (`conda deactivate`), Python imports from the version of SciPy installed by Anaconda. You can also check which version of SciPy you're using by executing in Python:

```python
import scipy
print(scipy.__version__)
```

If you have successfully imported a development version of SciPy, the word `dev` will appear in the output, e.g.:

```
1.6.0.dev0+be97f1a
```

4.13 Development environment quickstart guide (Ubuntu)

This quickstart guide will cover:

- setting up and maintaining a development environment, including installing compilers and SciPy build dependencies;
- creating a personal fork of the SciPy repository on GitHub;
- using git to manage a local repository with development branches;
- performing an in-place build of SciPy; and
- creating a virtual environment that adds this development version of SciPy to the Python path

in Ubuntu. (Tested on 16.04, 18.04, and 20.04). `Users running Windows can follow these instructions after setting up Windows Subsystem for Linux or an Amazon EC2 instance with Ubuntu 20.04. However, the instructions for setting up a development environment with Docker may be more reliable.`

Note: This guide does not present the only way to set up a development environment; there are many valid choices of Python distribution, C/Fortran compiler, and installation options. The steps here can often be adapted for other choices, but we cannot provide documentation tailored for them.

This guide assumes that you are starting without an existing Python 3 installation. If you already have Python 3, you might want to uninstall it first to avoid ambiguity over which Python version is being used at the command line.
4.13.1 Building SciPy

1. Download, install, and test the latest release of the Anaconda Distribution of Python. In addition to the latest version of Python 3, the Anaconda Distribution includes dozens of the most popular Python packages for scientific computing, the conda package manager, and tools for managing virtual environments.

 If you’re installing using the terminal, be sure to follow the “Next Steps” listed after the installer finishes. You might also need to restart your terminal window or enter `source ~/.bashrc` for all the changes to take effect.

2. (Optional) In a terminal window, enter `conda list`. This shows a list of all the Python packages that came with the Anaconda Distribution of Python. Note the latest released version of SciPy is among them; this is not the development version you are going to build and will be able to modify.

 Ideally, we’d like to have both versions, and we’d like to be able to switch between the two as needed. Virtual environments can do just that. With a few keystrokes in the terminal or even the click of an icon, we can enable or disable our development version. Let’s set that up.

 Note: If conda is not a recognized command, try restarting your terminal. If it is still not recognized, please see “Should I add Anaconda to the macOS or Linux PATH?” in the Anaconda FAQ.

3. Enter `conda config --env --add channels conda-forge` to tell Anaconda the source we want for our packages. Then enter `conda create --name scipydev python=3.8 numpy pybind11 cython pythran pytest gfortran_linux-64 gxx_linux-64 sphinx pydata-sphinx-theme sphinx-panels matplotlib mypy git`. This tells conda to create a virtual environment named scipydev (or another name that you prefer) with several packages.

 • `numpy` `pybind11` `cython` `pythran` are four packages that SciPy depends on.
 • `gfortran_linux-64` `gxx_linux-64` are compilers used to build SciPy’s Fortran, C, and C++ source code.
 • `pytest` is needed for running the test suite.
 • `sphinx`, `pydata-sphinx-theme`, `sphinx-panels` and `matplotlib` are required to render the SciPy documentation.
 • `mypy` is a static type checker for Python. Consider using it.
 • `git` is a version control system used to download and manage the SciPy source code.

 Note that we’re installing SciPy’s build dependencies and some other software, but not SciPy itself.

 Note: You could `conda create` an empty virtual environment first, then `conda install` the packages, but creating the virtual environment with all the packages you need is preferable to installing packages individually because it makes it easier for conda to solve the package dependencies optimally.

4. You’re still in the base environment. Activate your new virtual environment by entering `conda activate scipydev`. If you’re working with an old version of conda, you might need to type `source activate scipydev` instead (see here). Note that you’ll need to have this virtual environment active whenever you want to work with the development version of SciPy.

5. Browse to the SciPy repository on GitHub and create your own fork. You’ll need to create a GitHub account if you don’t already have one.

6. Browse to your fork. Your fork will have a URL like `https://github.com/mdhaber/scipy`, except with your GitHub username in place of “mdhaber”.

4.13. Development environment quickstart guide (Ubuntu)
7. Click the big, green “Clone or download” button, and copy the “.git” URL to the clipboard. The URL will be the same as your fork’s URL, except it will end in “.git”.

8. Create a folder for the SciPy source code in a convenient place on your computer. Navigate to it in the terminal.

9. Enter the command `git clone` followed by your fork’s .git URL. Note that this creates in the terminal’s working directory a `scipy` folder containing the SciPy source code.

10. In the terminal, navigate into the `scipy` root directory (e.g. `cd scipy`).

11. Initialize git submodules: `git submodule update --init`.

12. Do an in-place build: enter `python3 setup.py build_ext --inplace`. This will compile the C, C++, and Fortran code that comes with SciPy. We installed `python3` with Anaconda. `setup.py` is a script in the root directory of SciPy, which is why you have to be in the SciPy root directory to call it. `build_ext` is a command defined in `setup.py`, and `--inplace` is an option we’ll use to ensure that the compiling happens in the SciPy directory you already have rather than the default location for Python packages. By building in-place, you avoid having to re-build SciPy before you can test changes to the Python code.

13. Test the build: enter `python3 runtests.py -v`. `runtests.py` is another script in the SciPy root directory. It runs a suite of tests that make sure SciPy is working as it should, and `-v` activates the `--verbose` option to show all the test output. If the tests are successful, you now have a working development build of SciPy! You could stop here, but you would only be able to use this development build when the Python working directory is the SciPy root directory.

14. Enter `conda develop .`, where `.` refers to the present directory. This will allow us to import the development version of SciPy in Python regardless of Python’s working directory.

15. In a new terminal window, test your setup. If you activate your virtual environment (e.g. `conda activate scipydev`) and run Python code that imports from SciPy, any changes you make to the SciPy code should be reflected when the code runs. After deactivating the virtual environment (`conda deactivate`), Python imports from the version of SciPy installed by Anaconda. You can also check which version of SciPy you’re using by executing in Python:

   ```python
   import scipy
   print(scipy.__version__)
   ```

 If you have successfully imported a development version of SciPy, the word `dev` will appear in the output, e.g.:

   ```
   1.6.0.dev0+be97f1a
   ```

4.14 Development workflow

Note: consider watching SciPy Development Workflow before or after reading to see an example of fixing a bug and submitting a pull request.

In `Development environment quickstart guide (macOS)` or `Development environment quickstart guide (Ubuntu)`, you created your own fork (copy) of the SciPy repository, cloned the repository on your own machine, and built SciPy from this source code. Before getting started here, there are two other things you need to do just once before you start modifying SciPy.

1. In a terminal, introduce yourself to Git:

   ```bash
   git config --global user.email you@yourdomain.com
   git config --global user.name "Your Name"
   ```
This information credits you for your work, but note that it will become publicly available if you “push” your work to GitHub. See Setting your commit email address in Git for more information.

2. Navigate to the root directory of your local SciPy repository and enter:

```
git remote add upstream https://github.com/scipy/scipy.git
```

This associates the name `upstream` with the official SciPy repository located at https://github.com/scipy/scipy.git. Note that when you cloned your fork of the SciPy repository, Git already associated the name `origin` with your fork. The reason you need both of these “remotes” is that you will typically start with the latest version of SciPy from the official repository `upstream`, make changes, “push” your changes to your fork of the repository `origin`, and then submit a “pull request” asking SciPy to “pull” your changes from your fork into the official repository.

3. Initialize git submodules:

```
git submodule update --init
```

This fetches and updates any submodules that SciPy needs (such as `Boost`).

4.14.1 Basic workflow

In short:

1. Start a new feature branch for each set of edits that you do. See below.
2. Hack away! See below.
3. When finished:
 - **Contributors**: push your feature branch to your own Github repo, and create a pull request.
 - **Core developers** If you want to push changes without further review, see the notes below.

This way of working helps to keep work well organized and the history as clear as possible.

See also:

There are many online tutorials to help you learn git. For discussions of specific git workflows, see these discussions on [linux git workflow](#) and [ipython git workflow](#).

Making a new feature branch

First, navigate to the SciPy root directory in your terminal and fetch new commits from the `upstream` repository:

```
git fetch upstream
```

Then, create a new branch based on the master branch of the upstream repository:

```
git checkout -b my-new-feature upstream/master
```

Equivalently, you might want to keep the master branch of your own repository up to date and create a new branch based on that:

```
git checkout master
git rebase upstream/master
git checkout -b my-new-feature
```
In order, these commands

1. ensure that the master branch of your local repository is checked out,

2. apply all the latest changes from the upstream/master (main SciPy repository master branch) to your local master branch, and

3. create and check out a new branch (-b) based on your local master branch.

In any case, it's important that your feature branch include the latest changes from the upstream master to help avoid merge conflicts when it's time to submit a pull request.

It's also a good idea to build this branch and run tests before continuing. Assuming you've followed Development environment quickstart guide (macOS) or Development environment quickstart guide (Ubuntu) to set up your development environment, you'll need to activate your development virtual environment, perform an in-place build, and run tests:

```
conda activate name-of-your-virtual-environment
python setup.py build_ext --inplace
python runtests.py -v
```

Otherwise, see building, Running SciPy Tests Locally for more information.

The editing workflow

Overview

```
# hack hack
git status # Optional
git diff # Optional
git add modified_file
git commit
# push the branch to your own Github repo
git push origin my-new-feature
```

In more detail

1. Make some changes. When you feel that you've made a complete, working set of related changes, move on to the next steps.

2. Optional: Check which files have changed with git status (see git status). You'll see a listing like this one:

```
# On branch my-new-feature
# Changed but not updated:
#   (use "git add <file>..." to update what will be committed)
#   (use "git checkout -- <file>..." to discard changes in working-
#       directory)
#
# modified: README
#
# Untracked files:
#   (use "git add <file>..." to include in what will be committed)
#
# INSTALL
no changes added to commit (use "git add" and/or "git commit -a")
```

3. Optional: Compare the changes with the previous version using with git diff (git diff). This brings up a simple text browser interface that highlights the difference between your files and the previous version.
4. Add any relevant modified or new files using `git add modified_file` (see `git add`). This puts the files into a staging area, which is a queue of files that will be added to your next commit. Only add files that have related, complete changes. Leave files with unfinished changes for later commits.

5. To commit the staged files into the local copy of your repo, do `git commit`. At this point, a text editor will open up to allow you to write a commit message. Read the commit message section to be sure that you are writing a properly formatted and sufficiently detailed commit message. After saving your message and closing the editor, your commit will be saved. For trivial commits, a short commit message can be passed in through the command line using the `-m` flag. For example, `git commit -am "ENH: Some message"`.

In some cases, you will see this form of the commit command: `git commit -a`. The extra `-a` flag automatically commits all modified files and removes all deleted files. This can save you some typing of numerous `git add` commands; however, it can add unwanted changes to a commit if you're not careful. For more information, see why the `-a` flag? and the helpful use-case description in the tangled working copy problem.

6. Push the changes to your forked repo on GitHub:

```
git push origin my-new-feature
```

For more information, see `git push`.

Note: Assuming you have followed the instructions in these pages, `git` will create a default link to your GitHub repo called origin. In `git >= 1.7`, you can ensure that the link to origin is permanently set by using the `--set-upstream` option:

```
git push --set-upstream origin my-new-feature
```

From now on, `git` will know that `my-new-feature` is related to the `my-new-feature` branch in your own GitHub repo. Subsequent push calls are then simplified to the following:

```
git push
```

You have to use `--set-upstream` for each new branch that you create.

It may be the case that while you were working on your edits, new commits have been added to `upstream` that affect your work. In this case, follow the rebasing-on-master instructions to apply those changes to your branch.

Writing the commit message

Commit messages should be clear and follow a few basic rules. Example:

```
ENH: add functionality X to SciPy.<submodule>.
```

The first line of the commit message starts with a capitalized acronym (options listed below) indicating what type of commit this is. Then a blank line, then more text if needed. Lines shouldn't be longer than 72 characters. If the commit is related to a ticket, indicate that with "See #3456", "See ticket 3456", "Closes #3456", or similar.

Describing the motivation for a change, the nature of a bug for bug fixes or some details on what an enhancement does are also good to include in a commit message. Messages should be understandable without looking at the code changes. A commit message like MAINT: fixed another one is an example of what not to do; the reader has to go look for context elsewhere.

Standard acronyms to start the commit message with are:
API: an (incompatible) API change
BENCH: changes to the benchmark suite
BLD: change related to building SciPy
BUG: bug fix
DEP: deprecate something, or remove a deprecated object
DEV: development tool or utility
DOC: documentation
ENH: enhancement
MAINT: maintenance commit (refactoring, typos, etc.)
REV: revert an earlier commit
STY: style fix (whitespace, PEP8)
TST: addition or modification of tests
REL: related to releasing SciPy

Note: You can add some markers to skip part of the continuous integration. See Continuous Integration.

Asking for your changes to be merged with the main repo

When you feel your work is finished, you can create a pull request (PR). Github has a nice help page that outlines the process for filing pull requests.

If your changes involve modifications to the API or addition/modification of a function, you should initiate a code review. This involves sending an email to the SciPy mailing list with a link to your PR along with a description of and a motivation for your changes.

Checklist before submitting a PR

• Did you check that the code can be distributed under a BSD license? See License Considerations.
• Are there unit tests with good code coverage? See NumPy/SciPy Testing Guidelines.
• Do all unit tests pass locally? See Running SciPy Tests Locally.
• Do all public function have docstrings including examples? See the numpydoc docstring guide.
• Does the documentation render correctly? See Rendering Documentation with Sphinx.
• Is the code style correct? See PEP8 and SciPy.
• Are there benchmarks? See Benchmarking SciPy with airspeed velocity.
• Is the commit message formatted correctly?
• Is the docstring of the new functionality tagged with .. versionadded:: X.Y.Z (where X.Y.Z is the version number of the next release? See the updating, workers, and constraints documentation of differential_evolution, for example. You can get the next version number from the most recent release notes on the wiki or from the MAJOR and MINOR version number variables in setup.py.
• In case of larger additions, is there a tutorial or more extensive module-level description? Tutorial files are in doc/source/tutorial.
• If compiled code is added, is it integrated correctly via setup.py? See Compiled code for more information.
4.15 PEP8 and SciPy

All SciPy Python code should adhere to PEP8 style guidelines. It’s so important that some continuous integration tests on GitHub will fail due to certain PEP8 violations. Here are a few tips for ensuring PEP8 compliance before pushing your code:

- Many integrated development environments (IDEs) have options that automatically check for PEP8 compliance. In Spyder, for example, enable Real-time code style analysis in Tools → Preferences → Editor → Code Introspection/Analysis and “Automatically remove trailing spaces when saving files” in Tools → Preferences → Editor → Advanced Settings. This can help you fix PEP8 issues as you write your code.

- SciPy makes use of special configuration files for linting with the flake8 tool.

- It is typically recommended to leave any existing style issues alone unless they are part of the code you’re already modifying. This practice ensures that the codebase is gradually cleaned up without dedicating precious review time to style-only cleanups. Before sending a Pull Request, we suggest running the lint tests only for the changes you’ve made in your feature branch. This will mimic the continuous integration linting checks setup on GitHub. After installing flake8, you can run the following check locally in the SciPy root directory to ensure your Pull Request doesn’t break the Continuous Integration linting tests.

```bash
python tools/lint_diff.py
```

If you want to run the diff based lint tests only for specific files or directories, please consider using the --files option.

```bash
python tools/lint_diff.py --files scipy/odr/models.py scipy/ndimage
```

- If you have existing code with a lot of PEP8 issues, consider using autopep8 to automatically fix them before incorporating the code into SciPy.

4.16 Rendering Documentation with Sphinx

SciPy docstrings are rendered to HTML using Sphinx and the PyData Sphinx theme. Writing docstrings is covered in the Documentation style; this document explains how to check that docstrings render properly.

For a video walkthrough, please see Rendering SciPy Documentation with Sphinx.

4.16.1 Rendering Documentation Locally

To render the documentation on your own machine:

0. Ensure that you have a working SciPy Development environment active. You need to be able to import scipy regardless of Python’s working directory; the python setup.py develop and conda develop commands from the quickstart guides make this possible.

1. Install Sphinx, PyData Sphinx theme, Sphinx-Panels and matplotlib. For example, if you’re using the Anaconda distribution of Python, enter in a terminal window conda install sphinx pydata-sphinx-theme sphinx-panels matplotlib --channel conda-forge. The list of requirements is in scipy/doc_requirements.txt.

2. In a terminal window, browse to the scipy/doc directory. Note the presence of the file Makefile.

3. Execute git submodule update --init. Some of the documentation theme files are not distributed with the main scipy repository; this keeps them up to date using git submodules.
4. Enter `make html-scipyorg`. If you have multiple versions of Python on your path, you can choose which version to use by appending `PYTHON=python3.9` to this command, where `python3.9` is to be replaced with the name of the Python you use for SciPy development. This uses the Make build automation tool to execute the documentation build instructions from the Makefile. This can take a while the first time, but subsequent documentation builds are typically much faster.

5. View the documentation in `scipy/doc/build/html-scipyorg`. You can start with `index.html` and browse, or you can jump straight to the file you're interested in.

Note: Changes to certain documents do not take effect when Sphinx documentation is rebuilt. In this case, you can build from scratch by deleting the `scipy/doc/build` directory, then building again.

4.16.2 Checking Documentation on the Cloud

Once a PR is opened, you can check that documentation renders correctly on the cloud.

1. Log in to GitHub.
2. Log in CircleCI using your GitHub account.
3. Back in GitHub, at the bottom of the PR, select “Show all Checks”.
4. Next to “ci/circleci: build_docs artifact”, select “Details”.

4.17 Running SciPy Tests Locally

Basic test writing and execution from within the Python interpreter is documented in the NumPy/SciPy Testing Guidelines. This page includes information about running tests from the command line using SciPy's `runtests.py`, which permits greater control. **Note:** Before beginning, ensure that `pytest` is installed.

To run all tests, navigate to the root SciPy directory at the command line and execute

```bash
python runtests.py -v
```

where `-v` activates the `--verbose` option. This builds SciPy (or updates an existing build) and runs the tests.

To run tests on a particular submodule, such as `optimize`, use the `--submodule` option:

```bash
python runtests.py -v -s optimize
```

To run a particular test module, use the `--test` option:

```bash
python runtests.py -v -t scipy.<module>.tests.<test_file>
```

Example for `scipy/optimize/tests/test_linprog.py` file tests, run:

```bash
python runtests.py -v -t scipy.optimize.tests.test_linprog
```

To run a test class:

```bash
python runtests.py -v -t scipy.<module>.tests.<test_file>::<TestClass>
```

Example for `TestLinprogRSCommon` class from `test_linprog.py`:
To run a particular test:

```
python runtests.py -v -t scipy.<module>.tests.<test_file>::<test_name>
```

Example for `test_unknown_solvers_and_options` from `test_linprog.py`:

```
python runtests.py -v -t scipy.optimize.tests.test_linprog::test_unknown_solvers_and_options
```

For tests within a class, you need to specify the class name and the test name:

```
python runtests.py -v -t scipy.<module>.tests.<test_file>::<TestClass>::<test_name>
```

Example:

```
python runtests.py -v -t scipy.optimize.tests.test_linprog::TestLinprogRSCommon::test_nontrivial_problem_with_guess
```

Other useful options include:

- `--coverage` to generate a test coverage report in `scipy/build/coverage/index.html`. Note: `pytest-cov` must be installed.
- `--doc` to build the docs in `scipy/doc/build`. By default, docs are built only in the html-scipyorg format, but you can change this by appending the name of the desired format (e.g. `--doc latex`).
- `--refguide-check` to check whether the objects in a Scipy submodule's `__all__` dict correspond to the objects included in the reference guide. It also checks the validity of code samples in docstrings.
- `--bench` to run all benchmarks. See *Benchmarking SciPy with airspeed velocity*.
- `--pep8` to perform pep8 check.
- `--mypy` to run `mypy` on the codebase.
- `-n` or `--no-build` to prevent SciPy from updating the build before testing.
- `-j` or `--parallel n` to engage `n` cores when building SciPy; e.g. `python runtests.py -j 4` engages four cores. As of #10172 this also runs the tests on four cores if `pytest-xdist` is installed.
- `-m` or `--mode full` to run the full test suite, including slow tests. For example, `python runtests.py -m full`.
- `--` to send remaining command line arguments to `pytest` instead of `runtests.py`. For instance, while `-n` sent to `pytest` activates the `--no-build` option, `-n` sent to `pytest` runs the tests on multiple cores; e.g. `python runtests.py -- -n 4` runs tests using four cores. Note: `pytest-xdist` must be installed for testing on multiple cores.

Other options not documented here are listed in the `main` function of the source code for `runtests.py`. For much more information about `pytest`, see the `pytest` documentation.
4.17.1 Tips:

If you built SciPy from source but are having trouble running tests after a change to the codebase, try deleting the scipy/build directory. This forces runtest.py to completely rebuild SciPy before performing tests.

There is an additional level of very slow tests (several minutes), which are disabled even when calling python runtests.py -m full. They can be enabled by setting the environment variable SCIPY_XSLOW=1 before running the test suite.

4.18 Benchmarking SciPy with airspeed velocity

This document introduces benchmarking, including reviewing SciPy benchmark test results online, writing a benchmark test, and running it locally. For a video run-through of writing a test and running it locally, see Benchmarking SciPy.

As written in the airspeed velocity (asv) documentation:

Airspeed velocity (asv) is a tool for benchmarking Python packages over their lifetime. Runtime, memory consumption, and even custom-computed values may be tracked. The results are displayed in an interactive web frontend that requires only a basic static webserver to host.

To see what this means, take a look at airspeed velocity of an unladen scipy. Each plot summarizes the execution time of a particular test over the commit history of the project; that is, as each commit is merged, the benchmark test is run, its execution time is measured, and the elapsed time is plotted. In addition to tracking the performance of the code, a commit is intended to affect, running all benchmarks for each commit is helpful for identifying unintentional regressions: significant increases in the execution time of one or more benchmark tests. As SciPy is a web of interconnected code, the repercussions of a small change may not be immediately obvious to a contributor, so this benchmark suite makes it easier to detect regressions and identify the commit that caused them. When you contribute a substantial new feature - or notice a feature that doesn't already have a benchmark test - please consider writing benchmarks.

4.18.1 Writing benchmarks

The Writing benchmarks section of the airspeed velocity documentation is the definitive guide to writing benchmarks. Please see also the SciPy benchmarks readme.

To see how benchmarks are written, take a look at scipy/benchmarks/benchmarks/optimize_linprog.py. Each subclass of Benchmark defines a benchmark test. For example, the KleeMinty class defines a benchmark test based on the Klee-Minty hypercube problem, a diabolical test of the simplex algorithm for linear programming. The class has four parts:

- setup prepares the benchmark to run. The execution time of this function is not counted in the benchmark results, so this is a good place to set up all variables that define the problem. In the KleeMinty example, this involves generating arrays c, A_ub, and b_ub corresponding with a Klee-Minty hypercube in dims dimensions and storing them as instance variables.

- time_klee_minty actually runs the benchmark test. This function executes after a KleeMinty object has been instantiated and setup has run, so it gets the arrays defining the problem from self. Note that the prefix time in the function name indicates to asv that the execution time of this function is to be counted in the benchmark results.

- params is a list of lists defining parameters of the test. Benchmarks are run for all possible combinations of these parameters. For example, the first time the benchmark is run, the first element of methods(simplex) is passed into setup and time_klee_minty as the first argument, meth, and the first element of [3, 6, 9](3) is passed into setup and time_klee_minty as the second argument, dims. The next time the benchmark is run, setup and time_klee_minty are passed revised simplex and 6 as arguments, and so this continues until all combinations of parameters have been used.
• `param_names` is a list of human-readable names for each element of the `params` list. These are used for presenting results.

Results of this benchmark over the past few years are available by clicking on the `KleeMinty.time_klee_minty` link at `airspeed velocity of an unladen scipy`. Note that each trace of the plot corresponds with a combination of benchmark parameters and environment settings (e.g., the Cython version), and that the visibility of the traces can be toggled using the control panel on the left.

4.18.2 Running benchmarks locally

Before beginning, ensure that `airspeed velocity` is installed.

After contributing new benchmarks, you should test them locally before submitting a pull request.

To run all benchmarks, navigate to the root SciPy directory at the command line and execute:

```
python runtests.py --bench
```

where `--bench` activates the benchmark suite instead of the test suite. This builds SciPy and runs the benchmarks. *(Note: this could take a while. Benchmarks often take longer to run than unit tests, and each benchmark is run multiple times to measure the distribution in execution times.)*

To run benchmarks from a particular benchmark module, such as `optimize_linprog.py`, simply append the filename without the extension:

```
python runtests.py --bench optimize_linprog
```

To run a benchmark defined in a class, such as `KleeMinty` from `optimize_linprog.py`:

```
python runtests.py --bench optimize_linprog.KleeMinty
```

To compare benchmark results between the active branch and another, such as `master`:

```
python runtests.py --bench-compare master optimize_linprog.KleeMinty
```

All of the commands above display the results in plain text in the console, and the results are not saved for comparison with future commits. For greater control, a graphical view, and to have results saved for future comparison, you can use the `asv` terminal command directly.

To use it, navigate to `scipy/benchmarks` in the console and then execute:

```
asv run
```

This command runs the whole benchmark suite and saves the results for comparison against future commits.

To run only a single benchmark, such as `KleeMinty` from `optimize_linprog.py`:

```
asv run --bench optimize_linprog.KleeMinty
```

One great feature of `asv` is that it can automatically run a benchmark not just for the current commit, but for every commit in a range. `linprog method='interior-point'` was merged into SciPy with commit `7fa17f2369e0e5ad055b23cc1a5ee079f9e8ca32`, so let's run the `KleeMinty` benchmark for 10 commits between then and now to track its performance over time:

```
asv run --bench optimize_linprog.KleeMinty --steps 10 7fa17f..
```
Note: This will take a while, because SciPy has to be rebuilt for each commit! For more information about specifying ranges of commits, see the git revisions documentation.

To “publish” the results (prepare them to be viewed) and “preview” them in an interactive console:

```
  asv publish
  asv preview
```

ASV will report that it is running a server. Using any browser, you can review the results by navigating to http://127.0.0.1:8080 (local machine, port 8080).

For much more information about the `asv` commands, see the airspeed velocity Commands documentation. (Tip: check out the `asv find` command and the `--quick`, `--skip-existing-commits`, and `--profile` options for `asv run`.)

4.19 Adding Cython to SciPy

As written on the Cython website:

> Cython is an optimising static compiler for both the Python programming language and the extended Cython programming language (based on Pyrex). It makes writing C extensions for Python as easy as Python itself.

If your code currently performs a lot of loops in Python, it might benefit from compilation with Cython. This document is intended to be a very brief introduction: just enough to see how to use Cython with SciPy. Once you have your code compiling, you can learn more about how to optimize it by reviewing the Cython documentation.

There are only two things you need to do in order for SciPy compile your code with Cython:

1. Include your code in a file with a `.pyx` extension rather than a `.py` extension. All files with a `.pyx` extension are automatically converted by Cython to `.c` files when SciPy is built.

2. Add an extension from this `.c` file to the configuration of the subpackage in which your code lives. Typically, this is very easy: add a single, formulaic line to the subpackage's `setup.py` file. Once added as an extension, the `.c` code will be compiled by your C compiler to machine code when SciPy is built.

4.19.1 Example

`scipy.optimize._linprog_rs.py` contains the implementation of the revised simplex method for `scipy.optimize.linprog`. The revised simplex method performs many elementary row operations on matrices, and so it was a natural candidate to be Cythonized.

Note that `scipy/optimize/_linprog_rs.py` imports the BGLU and LU classes from `._bglu_dense` exactly as if they were regular Python classes. But they’re not. BGLU and LU are Cython classes defined in `/scipy/optimize/_bglu_dense.pyx`. There is nothing about the way they are imported or used that suggests that they are written in Cython; the only way so far that we can tell they are Cython classes is that they are defined in a file with a `.pyx` extension.

Even in `/scipy/optimize/_bglu_dense.pyx`, most of the code resembles Python. The most notable differences are the presence of `cimport`, `cdef`, and Cython decorators. None of these are strictly necessary. Without them, the pure Python code can still be compiled by Cython. The Cython language extensions are *just* tweaks to improve performance. This `.pyx` file is automatically converted to a `.c` file by Cython when SciPy is built.

The only thing left is to add an extension from this `.c` file using `numpy.distutils`. This takes just a single line in `scipy/optimize/setup.py`:

```
  config.add_extension('_bglu_dense',
```


3120 Chapter 4. Developer Documentation
sources=['_bglu_dense.c']), _bglu_dense.c is the source and _bglu_dense is the name of the extension (for consistency). When SciPy is built, _bglu_dense.c will be compiled to machine code, and we will be able to import the LU and BGLU classes from the extension _bglu_dense.

4.19.2 Exercise

See a video run-through of this exercise: Cythonizing SciPy Code

1. Update Cython and create a new branch (e.g., `git checkout -b cython_test`) in which to make some experimental changes to SciPy.

2. Add some simple Python code in a .py file in the /scipy/optimize directory, say /scipy/optimize/mypython.py. For example:

   ```python
def myfun():
    i = 1
    while i < 1000000:
        i += 1
    return i
```

3. Let's see how long this pure-Python loop takes so we can compare the performance of Cython. For example, in an IPython console in Spyder:

   ```python
   from scipy.optimize.mypython import myfun
   %timeit myfun()
   ``

   I get something like:

   ```
 715 ms ± 10.7 ms per loop
   ```

4. Save your .py file to a .pyx file, e.g. mycython.pyx.

5. Build SciPy. Note that a .c file has been added to the /scipy/optimize directory.

6. Somewhere near similar lines, add an extension from your .c file to /scipy/optimize/setup.py, e.g.:

   ```python
 config.add_extension('_group_columns', sources=['_group_columns.c'],) # was already here
 config.add_extension('mycython', sources=['mycython.c'],) # this was new
 config.add_extension('_bglu_dense', sources=['_bglu_dense.c']) # was…
 ``

7. Rebuild SciPy. Note that a .so file has been added to the /scipy/optimize directory.

8. Time it:

   ```python
   from scipy.optimize.mycython import myfun
   %timeit myfun()
   ``

   I get something like:

   ```
 359 ms ± 6.98 ms per loop
   ```

   Cython sped up the pure Python code by a factor of ~2.

9. That's not much of an improvement in the scheme of things. To see why, it helps to have Cython create an “annotated” version of our code to show bottlenecks. In a terminal window, call Cython on your .pyx file with the -a flag:
cython -a scipy/optimize/mycython.pyx

Note that this creates a new .html file in the /scipy/optimize directory. Open the .html file in any browser.

10. The yellow-highlighted lines in the file indicate potential interaction between the compiled code and Python, which slows things down considerably. The intensity of the highlighting indicates the estimated severity of the interaction. In this case, much of the interaction can be avoided if we define the variable \( i \) as an integer so that Cython doesn't have to consider the possibility of it being a general Python object:

```python
def myfun():
 cdef int i = 1 # our first line of Cython code
 while i < 10000000:
 i += 1
 return i
```

Recreating the annotated .html file shows that most of the Python interaction has disappeared.

11. Rebuild SciPy, open an fresh IPython console, and %timeit:

```bash
from scipy.optimize.mycython import myfun
%timeit myfun()
```

I get something like: 68.6 ns ± 1.95 ns per loop. The Cython code ran about 10 million times faster than the original Python code.

In this case, the compiler probably optimized away the loop, simply returning the final result. This sort of speedup is not typical for real code, but this exercise certainly illustrates the power of Cython when the alternative is many low-level operations in Python.

### 4.20 Public Cython APIs

As of Apr 2020, the following modules in SciPy expose functionality via a public `cdef` Cython API declarations:

- scipy.linalg.cython_blas
- scipy.linalg.cython_lapack
- scipy.optimize.cython_optimize
- scipy.special.cython_special

This uses Cython's declaration sharing features, where shared `cdef` items are declared in *.pxd files that are distributed together with the corresponding DLL/SO files in binary SciPy installations.

#### 4.20.1 Application Binary Interface

Using these features in SciPy however requires SciPy contributors to take additional care with regard to maintaining Application Binary Interface (ABI) stability. This is similar to developing libraries in C, and different from how backward compatibility works in pure Python.

The main difference to Python originates from the fact that the declarations in the header *.pxd files are used when code written by users is compiled, but they must also match with what is available in SciPy when the user code is imported.
User code may be compiled with one version of SciPy, and the compiled binary (which uses the binary interface declared in the `.pxd` files) can be used with a different SciPy version installed on the system. If the interfaces are not compatible, either an exception is raised or runtime memory corruption and crash ensue.

At import time, Cython checks that signatures of functions in the installed SciPy SO/DLL file match the one in the `.pxd` file used by the user during compilation, and raises a Python exception if there is a mismatch. If the SciPy code is structured correctly (see below), this check is performed only for functions that are actually imported in the user code.

We rely on this feature to provide a runtime safety check, which makes it easier for the users to detect incompatible SciPy versions via Python exceptions, instead of hard-to-trace runtime crashes.

### 4.20.2 ABI stability aim

SciPy aims to maintain ABI stability in Cython code, in the following sense:

- Binaries produced by compiling user source with one version of SciPy, are compatible with any other SciPy version with which the source code can be compiled.
- Trying to use an incompatible version of SciPy at runtime will result in a Python exception at user module import time.
- Trying to use an incompatible version of SciPy at compile time will result in a Cython error.

This means that users can use any compatible version of SciPy to compile binaries without having to pay attention to ABI, i.e.,

\[
\text{ABI compatibility} = \text{API compatibility}
\]

Cython API backward/forward compatibility will be handled with a similar deprecation/removal policy as for the Python API, see Deprecations.

### 4.20.3 Implementing ABI stability in SciPy

The following rules in development of Cython APIs in SciPy are necessary to maintain the ABI stability aim above:

- Adding new `cdef` declarations (functions, structs, types, etc.) is allowed.
- Removing `cdef` declarations is allowed, but should follow general deprecation/removal policy.
- `cdef` declarations of functions may be changed. However, changes result in a backward incompatible API change which breaks any code using the changed signature, and should follow general deprecation/removal policy.
- `cdef` declarations of anything else (e.g. struct, enum, and types) are final. Once a declaration is exposed in the public Cython API in a released SciPy version, it must not be changed.

If changes are necessary, they need to be carried out by adding new declarations with different names, and removing old ones.

- `cdef` classes are not allowed in the public APIs (TBD: backward compatibility of `cdef` classes needs more research, but must not be allowed when we are not sure)

- For each public API module (as in `scipy.linalg.cython_blas`), use a single interface `.pxd` declaration file.

The public interface declaration file should not contain `cimport` statements. If it does, Cython’s signature check will check all of the `cimported` functions, not only the ones that are used by user code, so that changing one of them breaks the whole API.
• If data structures are necessary, prefer opaque structs in the public API. The interface declarations should not contain any declarations of struct members. Allocation, freeing, and attribute access of data structures should be done with functions.

4.20.4 Deprecating public Cython APIs

To deprecate a public Cython API function, for example:

```
scipy/something/foo.pxd

cdef public int somefunc()
```

```
scipy/something/foo.pyx

cdef public int somefunc():
 return 42
```

you can add use the `scipy._lib.deprecation.deprecate_cython_api` function to do the deprecations at the end of the corresponding .pyx file:

```
scipy/something/foo.pyx

cdef public int somefunc():
 return 42
```

```
from scipy._lib.deprecation import deprecate_cython_api
import scipy.something.foo as mod

deprecate_cython_api(mod, "somefunc", new_name="scipy.something.newfunc",
 message="Deprecated in Scipy 1.5.0")

del deprecate_cython_api, mod
```

After this, Cython modules that `cimport somefunc`, will emit a `DeprecationWarning` at import time.

There is no way to deprecate Cython data structures and types. They can be however removed after all functions using them in the API are removed, having gone through the deprecation cycle.

Whole Cython modules can be deprecated similarly as Python modules, by emitting a `DeprecationWarning` on the toplevel.

4.21 Adding New Methods, Functions, and Classes

While adding code to SciPy is in most cases quite straight forward, there are a few places where that is not the case. This document contains detailed information on some specific situations where it may not be clear from the outset what is involved in the task.

4.21.1 Adding A New Statistics Distribution

For hundreds of years statisticians, mathematicians and scientists have needed to understand, analyze and model data. This has led to a plethora of statistics distributions, many of which are related to others. Modeling of new types of data continues to give rise to new distributions, as does theoretical considerations being applied to new disciplines. SciPy models about a dozen discrete distributions *Discrete Statistical Distributions* and 100 continuous distributions *Continuous Statistical Distributions*.

To add a new distribution, a good reference is needed. Scipy typically uses [JKB] as its gold standard, with Wikipedia articles often providing some extra details and/or graphical plots.
How to create a new continuous distribution

There are a few steps to be done to add a continuous distribution to SciPy. (Adding a discrete distribution is similar). We’ll use the fictitious “Squirrel” distribution in the instructions below.

Before Implementation

1. See if Squirrel has already been implemented—that saves a lot of effort!
   - It may have been implemented with a different name.
   - It may have been implemented with a different parameterization (shape parameters).
   - It may be a specialization of a more general family of distributions.

   It is very common for multiple disciplines to discover/rediscover a distribution (or a specialization or different parameterization). There are a few existing SciPy distributions which are specializations of other distributions. E.g. The \texttt{scipy.stats.arcsine} distribution is a specialization of the \texttt{scipy.stats.beta} distribution. These duplications exist for (very!) historical and widespread usage reasons. At this time, adding new specializations/reparametrizations of existing distributions to SciPy is not supported, mainly due to the increase in user confusion resulting from such additions.

2. Create a SciPy Issue on github, listing the distribution, references and reasons for its inclusion.

Implementation

1. Find an already existing distribution similar to Squirrel. Use its code as a template for Squirrel.
2. Read the docstring for class \texttt{rv_continuous} in \texttt{scipy/stats/_distn_infrastructure.py}.
3. Write the new code for class \texttt{squirrel_gen} and insert it into \texttt{scipy/stats/_continuous_distns.py}, which is in (mostly) alphabetical order by distribution name.
4. Does the distribution have infinite support? If not, left and/or right endpoints \texttt{a}, \texttt{b} need to be specified in the call to \texttt{squirrel_gen(name='squirrel', a=?, b=?)}.
5. If the support depends upon the shape parameters, \texttt{squirrel_gen._get_support()} needs to be implemented.
6. The default inherited \texttt{_argcheck()} implementation checks that the shape parameters are positive. Create a more appropriate implementation.
7. If \texttt{squirrel_gen.ppf()} is expensive to compute relative to \texttt{squirrel_gen.pdf()}, consider setting the \texttt{momtype} in the call to \texttt{squirrel_gen()}.
8. If \texttt{squirrel_gen.rvs()} is expensive to compute, consider implementing a specific \texttt{squirrel_gen._rvs()}.
9. Add the name to the listing in the docstring of \texttt{scipy/stats/__init__.py}.
10. Add the name and a good set of example shape parameters to the \texttt{distcont} list in \texttt{scipy/stats/_distr_params.py}. These shape parameters are used both for testing and automatic documentation generation.
11. Add the name and an \texttt{invalid} set of example shape parameters to the list in \texttt{invdistcont}, also in \texttt{_distr_params.py}. These shape parameters are also used for testing.
12. Add a TestSquirrel class and any specific tests to \texttt{scipy/stats/tests/test_distributions.py}.
13. Run and pass(!) the tests.
After Implementation

1. Add a tutorial `doc/source/tutorial/stats/continuous_squirrel.rst`
2. Add it to the listing of continuous distributions in `doc/source/tutorial/stats/continuous.rst`.
3. Update the number of continuous distributions in the example code in `doc/source/tutorial/stats.rst`.
4. Build the documentation successfully.
5. Submit a PR.

References

4.22 Continuous Integration

Continuous integration is part of our development process and ensure that every piece of code or documentation which is contributed to SciPy is working and does not have unforeseen effects.

Note: Before submitting or updating your PR, please ensure that you tested your changes locally. See Checklist before submitting a PR and Running SciPy Tests Locally.

4.22.1 Workflows

We run more than 20 different workflows with different versions of the dependencies, different architectures, etc. A PR must pass all these checks before it can be merged as to ensure a sustainable state of the project.

Apart from the unit tests, the documentation and examples in the docstrings are also checked. These are common failing workflows as Sphinx and doctests have very strict rules. These aspects are very important as documentation and examples are user facing elements. Ensures that these elements are properly rendered.

The logs can be long, but you will always find out why your build/test did not pass a check. Simply click on Details to access the logs.

Following is a list of all the different workflows in use. They are grouped by CI resources providers.

GitHub Actions

- Linux Tests: test suite runs for Linux (x86_64)
- macOS Tests: test suite runs for macOS (x86_64)

Test suite runs on GitHub Actions and other platforms cover a range of test/environment conditions: Python and NumPy versions (lowest-supported to nightly builds), 32-bit vs. 64-bit, different compilers, and more - for details, see the `.yml` configuration files.
Azure

- **Lint**: PEP8 and code style
- **Windows Python**: test suite runs for Windows
- **Linux_Python_37_32bit_full**
- **wheel_optimized_gcc48**
- **source_distribution**: install via `sdist`, then run the test suite
- **refguide_asv_check**: doctests from examples and benchmarks

CircleCI

- **build_docs**: build the documentation
- **build_docs artifact**: live preview of the documentation
- **build_scipy**
- **run_benchmarks**: verify how the changes impact performance

Codecov

- **patch**: the impact on code coverage due to your changes
- **project**: the coverage of the whole project

### 4.22.2 Skipping

Being an open-source project, we have access to a quota of CI resources. Ultimately, resources are limited and we should use them with care. This is why we ask you to verify your changes locally before pushing them.

Depending on the proposed change, you might want to skip part of the checks. It will be at the discretion of a maintainer to re-run some tests before integration.

Skipping CI can be achieved by adding a special text in the commit message:

- `[skip azp]`: will skip Azure
- `[skip actions]`: will skip GitHub Actions
- `[skip ci]`: will skip *all* CI

Of course, you can combine these to skip multiple workflows.

This skip information should be placed on a new line. In this example, we just updated a `.rst` file in the documentation and ask to skip Azure and GitHub Actions’ workflows:

```markdown
DOC: improve QMCEngine examples.

[skip azp] [skip actions]
```
This is the list of changes to SciPy between each release. For full details, see the commit logs.

5.1 SciPy 1.8.0 Release Notes

Contents

- SciPy 1.8.0 Release Notes
  - Highlights of this release
  - New features
    - scipy.fft improvements
    - scipy.integrate improvements
    - scipy.interpolate improvements
    - scipy.linalg improvements
    - scipy.optimize improvements
    - scipy.signal improvements
    - scipy.sparse improvements
    - scipy.spatial improvements
    - scipy.special improvements
    - scipy.stats improvements
  - Deprecated features
    - Clear split between public and private API
    - Other deprecations
  - Backwards incompatible changes
  - Other changes
  - Authors
  - Issues closed for 1.8.0
  - Pull requests for 1.8.0
SciPy 1.8.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Before upgrading, we recommend that users check that their own code does not use deprecated SciPy functionality (to do so, run your code with `python -Wd and check for DeprecationWarnings`). Our development attention will now shift to bug-fix releases on the 1.8.x branch, and on adding new features on the master branch.

This release requires Python 3.8+ and NumPy 1.17.3 or greater.

For running on PyPy, PyPy 3.6.0+ is required.

5.1.1 Highlights of this release

- A sparse array API has been added for early testing and feedback; this work is ongoing, and users should expect minor API refinements over the next few releases.
- The sparse SVD library PROPACK is now vendored with SciPy, and an interface is exposed via `scipy.sparse.svds` with `solver='PROPACK'`. It is currently default-off due to potential issues on Windows that we aim to resolve in the next release, but can be optionally enabled at runtime for friendly testing with an environment variable setting of `USE_PROPACK=1`.
- A new `scipy.stats.sampling` submodule that leverages the UNU.RAN C library to sample from arbitrary univariate non-uniform continuous and discrete distributions
- All namespaces that were private but happened to miss underscores in their names have been deprecated.

5.1.2 New features

`scipy.fft` improvements

Added an `orthogonalize=None` parameter to the real transforms in `scipy.fft` which controls whether the modified definition of DCT/DST is used without changing the overall scaling.

`scipy.fft` backend registration is now smoother, operating with a single registration call and no longer requiring a context manager.

`scipy.integrate` improvements

`scipy.integrate.quad_vec` introduces a new optional keyword-only argument, `args`. `args` takes in a tuple of extra arguments if any (default is `args=()`), which is then internally used to pass into the callable function (needing these extra arguments) which we wish to integrate.

`scipy.interpolate` improvements

`scipy.interpolate.BSpline` has a new method, `design_matrix`, which constructs a design matrix of b-splines in the sparse CSR format.

A new method `from_cubic` in `BSpline` class allows to convert a `CubicSpline` object to `BSpline` object.
**scipy.linalg improvements**

`scipy.linalg` gained three new public array structure investigation functions. `scipy.linalg.bandwidth` returns information about the bandedness of an array and can be used to test for triangular structure discovery, while `scipy.linalg.issymmetric` and `scipy.linalg.ishermitian` test the array for exact and approximate symmetric/Hermitian structure.

**scipy.optimize improvements**

`scipy.optimize.check_grad` introduces two new optional keyword only arguments, `direction` and `seed`. `direction` can take values, 'all' (default), in which case all the one hot direction vectors will be used for verifying the input analytical gradient function and 'random', in which case a random direction vector will be used for the same purpose. `seed` (default is None) can be used for reproducing the return value of `check_grad` function. It will be used only when `direction='random'`.

The `scipy.optimize.minimize` TNC method has been rewritten to use Cython bindings. This also fixes an issue with the callback altering the state of the optimization.

Added optional parameters `target_accept_rate` and `stepwise_factor` for adaptive step size adjustment in basinhopping.

The `epsilon` argument to `approx_fprime` is now optional so that it may have a default value consistent with most other functions in `scipy.optimize`.

**scipy.signal improvements**

Add analog argument, default False, to zpk2sos, and add new pairing option 'minimal' to construct analog and minimal discrete SOS arrays. tf2sos uses zpk2sos; add analog argument here as well, and pass it on to zpk2sos.

`savgol_coeffs` and `savgol_filter` now work for even window lengths.

Added the Chirp Z-transform and Zoom FFT available as `scipy.signal.CZT` and `scipy.signal.ZoomFFT`.

**scipy.sparse improvements**

An array API has been added for early testing and feedback; this work is ongoing, and users should expect minor API refinements over the next few releases. Please refer to the `scipy.sparse` docstring for more information.

`maximum_flow` introduces optional keyword only argument, `method` which accepts either, 'edmonds-karp' (Edmonds Karp algorithm) or 'dinic' (Dinic’s algorithm). Moreover, 'dinic' is used as default value for `method` which means that Dinic’s algorithm is used for computing maximum flow unless specified. See, the comparison between the supported algorithms in this comment.

Parameters `atol`, `btol` now default to 1e-6 in `scipy.sparse.linalg.lsqr` to match with default values in `scipy.sparse.linalg.lsmr`.

Add the Transpose-Free Quasi-Minimal Residual algorithm (TFQMR) for general nonsingular non-Hermitian linear systems in `scipy.sparse.linalg.tfqmr`.

The sparse SVD library PROPACK is now vendored with SciPy, and an interface is exposed via `scipy.sparse.svds` with solver='PROPACK'. For some problems, this may be faster and/or more accurate than the default, ARPACK.

PROPACK functionality is currently opt-in–you must specify `USE_PROPACK=1` at runtime to use it due to potential issues on Windows that we aim to resolve in the next release.

`sparse.linalg` iterative solvers now have a nonzero initial guess option, which may be specified as `x0 = 'Mb'`. The `trace` method has been added for sparse matrices.
```markdown
scipy.spatial improvements

`scipy.spatial.transform.Rotation` now supports item assignment and has a new `concatenate` method.

Add `scipy.spatial.distance.kulczynski1` in favour of `scipy.spatial.distance.kulsinski` which will be deprecated in the next release.

`scipy.spatial.distance.minkowski` now also supports $0 < p < 1$.

scipy.special improvements

The new function `scipy.special.log_expit` computes the logarithm of the logistic sigmoid function. The function is formulated to provide accurate results for large positive and negative inputs, so it avoids the problems that would occur in the naive implementation $\log(\expit(x))$.

A suite of five new functions for elliptic integrals: `scipy.special.ellipr{c,d,f,g,j}`. These are the Carlson symmetric elliptic integrals, which have computational advantages over the classical Legendre integrals. Previous versions included some elliptic integrals from the Cephes library (`scipy.special.ellip{k,km1,kinc,e,einc}`) but was missing the integral of third kind (Legendre's Pi), which can be evaluated using the new Carlson functions. The new Carlson elliptic integral functions can be evaluated in the complex plane, whereas the Cephes library's functions are only defined for real inputs.

Several defects in `scipy.special.hyp2f1` have been corrected. Approximately correct values are now returned for z near $\exp(+i*\pi/3)$, fixing #8054. Evaluation for such z is now calculated through a series derived by López and Temme (2013) that converges in these regions. In addition, degenerate cases with one or more of a, b, c a non-positive integer are now handled in a manner consistent with `mpmath`'s `hyp2f1` implementation, which fixes #7340. These fixes were made as part of an effort to rewrite the Fortran 77 implementation of `hyp2f1` in Cython piece by piece. This rewriting is now roughly 50% complete.

scipy.stats improvements

`scipy.stats.qmc.LatinHypercube` introduces two new optional keyword-only arguments, `optimization` and `strength`. `optimization` is either `None` or `random-cd`. In the latter, random permutations are performed to improve the centered discrepancy. `strength` is either 1 or 2. 1 corresponds to the classical LHS while 2 has better sub-projection properties. This construction is referred to as an orthogonal array based LHS of strength 2. In both cases, the output is still a LHS.

`scipy.stats.qmc.Halton` is faster as the underlying Van der Corput sequence was ported to Cython.

The `alternative` parameter was added to the `kendalltau` and `somersd` functions to allow one-sided hypothesis testing. Similarly, the masked versions of `skewtest`, `kurtosistest`, `ttest_1samp`, `ttest_ind`, and `ttest_rel` now also have an `alternative` parameter.

Add `scipy.stats.gzscore` to calculate the geometrical z score.

Random variate generators to sample from arbitrary univariate non-uniform continuous and discrete distributions have been added to the new `scipy.stats.sampling` submodule. Implementations of a C library `UNURAN` are used for performance. The generators added are:

- TransformedDensityRejection
- DiscreteAliasUrn
- NumericalInversePolynomial
- DiscreteGuideTable
- SimpleRatioUniforms
```
The `binned_statistic` set of functions now have improved performance for the `std`, `min`, `max`, and `median` statistic calculations.

`somersd` and `_tau_b` now have faster Pythran-based implementations.

Some general efficiency improvements to handling of `nan` values in several `stats` functions.

Added the Tukey-Kramer test as `scipy.stats.tukey_hsd`.

Improved performance of `scipy.stats.argus rvs` method.

Added the parameter `keepdims` to `scipy.stats.variation` and prevent the undesirable return of a masked array from the function in some cases.

`permutation_test` performs an exact or randomized permutation test of a given statistic on provided data.

### 5.1.3 Deprecated features

#### Clear split between public and private API

SciPy has always documented what its public API consisted of in its API reference docs, however there never was a clear split between public and private namespaces in the code base. In this release, all namespaces that were private but happened to miss underscores in their names have been deprecated. These include (as examples, there are many more):

- `scipy.signal.spline`
- `scipy.ndimage.filters`
- `scipy.ndimage.fourier`
- `scipy.ndimage.measurements`
- `scipy.ndimage.morphology`
- `scipy.ndimage.interpolation`
- `scipy.sparse.linalg.solve`
- `scipy.sparse.linalg.eigen`
- `scipy.sparse.linalg.isolve`

All functions and other objects in these namespaces that were meant to be public are accessible from their respective public namespace (e.g. `scipy.signal`). The design principle is that any public object must be accessible from a single namespace only; there are a few exceptions, mostly for historical reasons (e.g., `stats` and `stats.distributions` overlap). For other libraries aiming to provide a SciPy-compatible API, it is now unambiguous what namespace structure to follow. See gh-14360 for more details.

#### Other deprecations

`NumericalInverseHermite` has been deprecated from `scipy.stats` and moved to the `scipy.stats.sampling` submodule. It now uses the C implementation of the UNU.RAN library so the result of methods like `ppf` may vary slightly. Parameter `tol` has been deprecated and renamed to `u_resolution`. The parameter `max_intervals` has also been deprecated and will be removed in a future release of SciPy.
5.1.4 Backwards incompatible changes

- SciPy has raised the minimum compiler versions to GCC 6.3 on linux and VS2019 on windows. In particular, this means that SciPy may now use C99 and C++14 features. For more details see here.
- The result for empty bins for `scipy.stats.binned_statistic` with the builtin `std` metric is now `nan`, for consistency with `np.std`.
- The function `scipy.spatial.distance.wminkowski` has been removed. To achieve the same results as before, please use the `minkowski` distance function with the (optional) `w= keyword-argument for the given weight`.

5.1.5 Other changes

Some Fortran 77 code was modernized to be compatible with NAG's nagfor Fortran compiler (see, e.g., PR 13229). `threadpoolctl` may now be used by our test suite to substantially improve the efficiency of parallel test suite runs.

5.1.6 Authors

- @endolith
- adamadanandy +
- akeemlh +
- Anton Akhmerov
- Marvin Albert +
- alegresor +
- Andrew Annex +
- Pantelis Antonoudiou +
- Ross Barnowski +
- Christoph Baumgarten
- Stephen Becker +
- Nickolai Belakovski
- Peter Bell
- berberto +
- Georgii Bocharov +
- Evgeni Burovski
- Matthias Bussonnier
- CJ Carey
- Justin Charlong +
- Hood Chatham +
- Dennis Collaris +
- David Cottrell +
- cruuyffturn +
• da-woods +
• Anirudh Dagar
• Tiger Du +
• Thomas Duvernay
• Dani El-Ayyass +
• Castedo Ellerman +
• Donnie Erb +
• Andreas Esders-Kopecky +
• Livio F +
• Isuru Fernando
• Evelyn Fitzgerald +
• Sara Fridovich-Keil +
• Mark E Fuller +
• Ralf Gommers
• Kevin Richard Green +
• guiweber +
• Nitish Gupta +
• h-vetinari
• Matt Haberland
• J. Harisharan +
• Charles Harris
• Jonathan Helgert +
• Trever Hines
• Nadav Horesh
• Ian Hunt-Isaak +
• ich +
• Itrimel +
• Jan-Hendrik Müller +
• Jebby993 +
• Yikun Jiang +
• Evan W Jones +
• Nathaniel Jones +
• Jeffrey Kelling +
• Malik Idreess Hasan Khan +
• Paul Kienzle
• Sergey B Kirpichev
• Kadatatu Kishore +
• Andrew Knyazev
• Ravin Kumar +
• Peter Mahler Larsen
• Eric Larson
• Antony Lee
• Gregory R. Lee
• Tim Leslie
• lezcano +
• Xingyu Liu
• Christian Lorentzen
• Lorenzo +
• Smit Lunagariya +
• Lv101Magikarp +
• Yair M +
• Cong Ma
• Lorenzo Maffioli +
• majiang +
• Brian McFee +
• Nicholas McKibben
• John Speed Meyers +
• millivolt9 +
• Jarrod Millman
• Harsh Mishra +
• Boaz Mohar +
• naelsondouglas +
• Andrew Nelson
• Nico Schlömer
• Thomas Nowotny +
• nullptr +
• Teddy Ort +
• Nick Papior
• ParticularMiner +
• Dima Pasechnik
• Tirth Patel
• Matti Picus
• Ilhan Polat
• Adrian Price-Whelan +
• Quentin Barthélémy +
• Sundar R +
• Judah Rand +
• Tyler Reddy
• Renal-Of-Loon +
• Frederic Renner +
• Pamphile Roy
• Bharath Saiguhlan +
• Atsushi Sakai
• Eric Schanet +
• Sebastian Wallkötter
• serge-sans-paille
• Reshama Shaikh +
• Namami Shanker
• siddhantwahal +
• Walter Simson +
• Gagandeep Singh +
• Leo C. Stein +
• Albert Steppi
• Kai Striega
• Diana Sukhoverkhova
• Søren Fuglede Jørgensen
• Masayuki Takagi +
• Mike Taves
• Ben Thompson +
• Bas van Beek
• Jacob Vanderplas
• Dhruv Vats +
• H. Vetinari +
• Thomas Viehmann +
• Pauli Virtanen
• Vlad +
• Arthur Volant
• Samuel Wallan
A total of 139 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

### 5.1.7 Issues closed for 1.8.0

- [#592]: Statistics Review: variation (Trac #65)
- [#857]: A Wrapper for PROPACK (Trac #330)
- [#2009]: “Kulsinski” dissimilarity seems wrong (Trac #1484)
- [#2063]: callback functions for COBYLA and TNC (Trac #1538)
- [#2358]: ndimage.center_of_mass doesn’t return all for all labelled objects…
- [#5668]: Need zpk2sos for analog filters
- [#7340]: SciPy Hypergeometric function hyp2f1 producing infinities
- [#8774]: In ‘optimize.basinhopping’, the target acceptance rate should…
- [#10497]: scipy.sparse.csc_matrix.toarray docstring is wrong
- [#10888]: Check finite difference gradient approximation in a random direction
- [#10974]: Non explicit error message in lobpcg
- [#11452]: Normalisation requirement for ‘Wn’ unclear in ‘scipy.signal.butter’
- [#11700]: solve_ivp errors out instead of simply quitting after the solve…
- [#12006]: newton: Shouldn’t it take a Jacobian for multivariate problems…
- [#12100]: solve_ivp: custom t_eval list and the terminating event
- [#12106]: ‘axis’ option for ‘stats.mean’ do not appear to be working…
- [#12192]: ‘scipy.stats.rv_continuous.moment’ does not accept array input
- [#12502]: Divide by zero in Jacobian numerical differentiation when equality…
- [#12981]: SLSQP constrained minimization error in 1.5.2
- [#12999]: Bug in scipy.stats.ks_2samp for two-sided auto and exact modes…
- [#13402]: ENH: Faster Max Flow algorithm in scipy.sparse.csgraph
- [#13580]: truncnorm gives incorrect means and variances
- [#13642]: stats.tvariance works incorrectly when input is an array.
- [#13659]: Orthogonal Array for Latin hypercube in ‘scipy.stats.qmc’
• #13737: brentq can overflow / underflow
• #13745: different default atol, btol for lsqr, lsmr
• #13898: Savitzky-Golay filter for even number data
• #13902: Different solvers of 'svds' return quite different results
• #13922: Need Exception / Error for Incorrect and/or misleading analog…
• #14122: Item assignment for spatial.transform.Rotation objects
• #14140: Likely unnecessary invalid value warning from PchipInterpolator
• #14152: zpk2sos not working correctly when butterworth band-pass filter…
• #14165: scipy.optimize.minimize method='Nelder-Mead': 'maxfev' is not…
• #14168: Missing “inverse” word in the multidimensional Discrete Cosine/Sine…
• #14189: Incorrect shape handling in `scipy.stat.multivariate_t.rvs`…
• #14190: Links in documentation of Dirichlet distribution are a mess
• #14193: Implementation of scrambled Van der Corput sequence differs from…
• #14217: Error in documentation for `scipy.stats.gaussian_kde.factor`
• #14235: Should this be $y$ only, instead of $m_y$?
• #14236: BUG: discrete if is wrong at boundary if loc != 0
• #14277: Broken reference in docstring of scipy.stats.power_divergence
• #14324: BUG: scipy.stats.theilslopes intercept calculation can produce…
• #14332: Strange output of `binned_statistic_dd` with `statistic=sum`
• #14340: Initialize Rotation using list or array of Rotations
• #14346: scipy.stats.rv_continuous.fit returns wrapper instead of fit…
• #14360: Making clearer what namespaces are public by use of underscores
• #14385: csgraph.maximum_flow can cause Python crash for large but very…
• #14409: Lagrange polynomials and numpy Polynomials
• #14412: Extra function arguments to `scipy.integrate.quad_vec`
• #14416: Is the r-value outputted by scipy.stats.linregress always the…
• #14420: BUG: RBFInterpolator fails when calling it with a slice of a…
• #14425: Running tests in parallel is not any faster than without pytest-xdist…
• #14445: BUG: out of bounds indexing issue in `prini.f`
• #14482: Azure CI jobs do not set exit status for build stage correctly
• #14491: MAINT: Replace np.rollaxis with np.moveaxis
• #14501: runtests.py overrides '$PYTHONPATH'
• #14514: linprog kwargs not recognised
• #14529: CI: Azure pipelines don't appear to be running
• #14535: hess option does not work in minimize function
• #14551: Cannot create Compressed sparse column matrix of shape N x N-2
• #14568: 'stats.norminvgauss' incorrect implementation?
• #14585: DOC: toolchain updates and max Python
• #14607: scipy.sparse.linalg.inv cannot take ndarray as argument despite…
• #14608: BUG: scipy.stats.multivariate_t distribution math documentation
• #14623: BUG: Error constructing sparse matrix with indices larger than…
• #14654: DOC: Linux Devdocs workflow requires installing packages that…
• #14680: BUG: misleading documentation in scipy.stats.entropy
• #14683: DOC: OptimizeResult Notes are placed before attribute section,…
• #14733: BUG: resample_poly does not preserve dtype
• #14746: site.cfg: [ALL] or [DEFAULT]?
• #14770: BUG: lpmn ref broken link
• #14807: BUG: wrong weights of the 7-point gauss rule in QUADPACK: dqk15w.f
• #14830: do CDF inversion methods have to be public?
• #14859: BUG: constraint function is overwritten when equal bounds are…
• #14873: ENH: get the driver used in scipy.linalg.eigh
• #14879: BUG: TNC output is different if a callback is used.
• #14891: DOC: 'directed_hausdorff' expects 2D array despite docs stating…
• #14910: 'stats.contingency' not listed as public API
• #14911: MAINT, DOC: CI failure for doc building
• #14942: DOC: Ambiguous command instruction for running tests in Mac docs
• #14968: Debug build CI job crashes on 'stats._unuran' threading test
• #14984: BUG: scipy.sparse.linalg.spsolve: runtime memory error caused…
• #14987: ENH: The knot interval lookup for BSpline.design_matrix is inefficient
• #15025: Might be j<=i+k?
• #15033: BUG: scipy.fft.det type I with norm = "ortho" leads to wrong…
• #15051: BUG: test failures on aarch in wheel builder repo
• #15064: MAINT: 'interpolation' keyword is renamed to 'method' in…
• #15103: BUG: scipy.stats.chi.mean returns nan for large df due to use…
• #15186: Fix use of 'pytest.warns(None)' for pytest 7.0.0
• #15206: BUG: Minor issue with suggestions in scipy.sparse DeprecationWarnings…
• #15224: BUG: 0th power of sparse array/matrix always returns the identity…
• #15228: BUG: bounded L-BFGS-B doesn’t work with a scalar.
• #15254: BUG: 'DeprecationWarning: distutils Version classes are deprecated'
• #15267: Windows CI jobs have a build issue with Pythran 0.11
• #15276: Boost and PROPACK git submodules are too easy to commit changes…
• #15316: BUG: Failed to install scipy 1.7.x with pypy 3.7 in aarch64
• #15339: BUG: ‘highs-ds’ returns memoryviews instead of np.arrays for…
• #15375: BUG: axis argument to scipy.stats.mode does not accept negative…
• #15517: BUG: Link to mailing list seems broken

5.1.8 Pull requests for 1.8.0

• #4607: Add Chirp Z-transform, zoom FFT
• #10504: ENH: Carlson symmetric elliptic integrals.
• #11263: MAINT: optimize: Comply with user-specified rel_step
• #11754: ENH: stats: Updates to `variation`.
• #11954: ENH: improve ARGUS rv generation in scipy.stats
• #12143: BUG: Correctly use ‘axis’ in ‘scipy.stats.tmean’
• #12146: DOC: add docs to explain behaviour of newton’s method on arrays
• #12197: BUG: fix moments method to support arrays and list
• #12889: MAINT: deal with cases in ’minimize’ for `(bounds.lb == bounds.ub).any()`
• #13002: ENH: stats: Tukey’s honestly significant difference test
• #13096: BUG: optimize: alternative fix for minimize issues with lb==ub
• #13143: MAINT: deal with cases in ’minimize’ for `(bounds.lb == bounds.ub).any()`…
• #13229: ENH: modernise some Fortran code, needed for nagfor compiler
• #13312: ENH: stats: add `axis` and `nan_policy` parameters to functions…
• #13347: CI: bump gcc from 4.8 to 5.x
• #13392: MAINT: streamlined kwargs for minimizer in dual_annealing
• #13419: BUG: Fix group delay singularity check
• #13471: ENH: LHS based OptimalDesign (scipy.stats.qmc)
• #13581: MAINT: stats: fix truncnorm stats with array shapes
• #13839: MAINT: set same tolerance between LSMR and LSQR
• #13864: Array scalar conversion deprecation
• #13883: MAINT: move LSAP maximization handling into solver code
• #13899: ENH: stats: add general permutation hypothesis test
• #13921: BUG: optimize: fix max function call validation for ‘minimize’…
• #13958: ENH: stats: add ‘alternative’ to masked version of T-Tests
• #13960: ENH: stats: add `alternative` to masked normality tests
• #14007: BUG: Fix root bracketing logic in Brent’s method (issue #13737)
• #14024: ENH: Add annotations for `scipy.spatial.cKDTree`’
• #14049: MAINT: Change special.orthogonal.orthopoly1d type hints to ArrayLike
• #14132: DOC: badge with version of the doc in the navbar
• #14144: REL: set version to 1.8.0.dev0
• #14151: BLD: update pyproject.toml - add macOS M1, drop py36
• #14153: BUG: stats: Implementing boost's hypergeometric distribution...
• #14160: ENH: sparse.linalg: Add TFQMR algorithm for non-Hermitian sparse...
• #14163: BENCH: add benchmark for energy_distance and wasserstein_distance
• #14173: BUG: Fixed an issue where in 'geometric_slerp' would return...
• #14174: ENH: Add annotations to `scipy.spatial.geometric_slerp`
• #14183: DOC: add examples/ update mstats doc of pearsonr in scipy.stats
• #14186: TST, MAINT: hausdorff test cleanups
• #14187: DOC: interpolate: rbf has kwargs too.
• #14191: MAINT:TST: linalg modernize the test assertions
• #14192: BUG: stats: fix shape handing in multivariate_t.rvs
• #14197: CI: azure: Fix handling of 'skip azp'.
• #14200: DOC: Remove link to alpha in scipy.stats.dirichlet
• #14201: TST: cleanup in lsqr and lsmr tests
• #14204: Improve error message for index dimension
• #14208: MAINT: add invalid='ignore' to np.errstate block in PchipInterpolator
• #14209: ENH: stats: kendalltau: add alternative parameter
• #14210: BUG: Fix Nelder-Mead logic when using a non-1D x0 and adaptative
• #14211: Fixed doc for gaussian_kde (kde.factor description)
• #14213: ENH: stats: somersd: add alternative parameter
• #14214: ENH: Improve the 'scipy.spatial.qhull' annotations
• #14215: ENH: stats: Integrate library UNU.RAN in `scipy.stats` [GSoC…
• #14218: DOC: clarify `ndimage.center_of_mass` docstring
• #14219: ENH: sparse.linalg: Use the faster “sqrt” from “math” and be…
• #14222: MAINT: stats: remove unused 'type: ignore' comment
• #14224: MAINT: Modify to use new random API in benchmarks
• #14225: MAINT: fix missing LowLevelCallable in `dir(scipy)`
• #14226: BLD: fix warning for missing dependency, and dev version number
• #14227: MAINT: fix maybe-uninitialized warnings in lbfgsb.f
• #14228: BENCH: add more benchmarks for inferential statistics tests
• #14237: Removes unused variable
• #14240: ENH: sparse.linalg: Normalize type descriptions
• #14242: BUG: stats: fix discrete `.isf` to work at boundaries when…
• #14250: Error in parameter checking in cdffbin.f
• #14254: BUG: Fixed an issue wherein 'SphericalVoronoi' could raise…
• #14255: BUG: Numerical stability for large N BarycentricInterpolator
5.1. SciPy 1.8.0 Release Notes

- #14257: MAINT: Fixed deprecated API calls in scipy.optimize
- #14258: DOC: fix stats.pearsonr example that was failing in CI
- #14259: CI: pin mpy to 0.902 and fix one CI failure
- #14260: BLD: optimize: fix some warnings in module TNC and minpack.h
- #14261: BLD: fix include order and build warnings for `optimize/_trlib`
- #14263: DOC: forward port 1.7.0 relnotes
- #14268: MAINT: Replaced direct field access in PyArrayObject* with wrapper…
- #14274: MAINT: more scalar array conversion fixes for optimize
- #14275: MAINT: Update vendored uarray, required for auto-dispatching
- #14278: MAINT: two small fixes for implicit scalar-array-conversions
- #14281: ENH: Annotate the array dtypes of `scipy.spatial.qhull`
- #14285: DEV: remove scikit-umfpack from environment.yml
- #14287: TST: Add testing for hyp2f1 for complex values in anticipation…
- #14291: TST: split combined LSAP input validation tests up
- #14293: MAINT: remove the last deprecated `PyEval_*` usages
- #14294: ENH: Annotate array dtypes in `scipy.spatial.ckdtree` and `distance`
- #14295: MAINT: move LSAP input validation into lsap_module
- #14297: DOC: Make code block an Item List
- #14301: MAINT: fix the last build warning in `optimize/_trlib`
- #14302: BLD: fix build warnings for `stats/biasedurn`
- #14305: MAINT: silence warning in odepackmodule.c
- #14308: ENH: use Pythran to speedup somersd and _tau_b
- #14309: BLD: fix build warnings for scipy.special
- #14310: ENH: make epsilon optional in optimize.approx_fprime.
- #14311: MAINT: Corrected NumPy API usage in scipy.spatial
- #14312: ENH: Using random directional derivative to check grad
- #14326: MAINT: Removed redefinition of trace1 in spatial/qhull
- #14328: MAINT: __lib: add __dealloc__ to MessageStream
- #14331: ENH: Complement 'trace' method of sparse matrices like `csr_matrix/csc_matrix/coo_matrix`
- #14338: BUG: fix 'stats.binned_statistic_dd' issue with values close…
- #14339: TST: fix 'sparse.linalg.spsolve' test with singular input
- #14341: MAINT: Add missing parenthesis in _nmls.py
- #14342: ENH: make `savgol_coeffs`, `savgol_filter` work for even…
- #14344: ENH: scipy.interpolate b-splines (design_matrix)
- #14350: MAINT: make fit method of rv_continuous pickleable
- #14358: ENH: Dinic's algorithm for maximum_flow
• #14359: ENH: Set fft backend with try_last=True
• #14362: Use list comprehension
• #14367: BUG: Check for NULL pointer in `memmove`
• #14377: Fix behavior of binary morphology with output=input when iterations=1
• #14378: MAINT: Removing deprecated NumPy C API from `interpolate`
• #14380: ENH: Fixed intercept computation in theilslopes
• #14381: BENCH: add benchmark for somersd
• #14387: MAINT: Removed deprecated NumPy C api from `sparse`
• #14392: BUG/ENH: rework maximum flow preprocessing
• #14393: CI: Lint checks failures are reporting success
• #14403: Fix off by one error in doc string.
• #14404: DOC: docstring fix for default of n param of interpolate.pade
• #14406: MAINT: Use numpy-nodepr_api in `spatial`
• #14411: MAINT: minor cleanups in usage of `compute_uv` keyword of `svd`
• #14413: DOC:interpolate: Fix the docstring example of “lagrange”
• #14419: DEP: deprecate private but non-underscored `signal.spline`…
• #14422: MAINT: csgraph: change Dinic algorithm to iterative implementation
• #14423: CI: remove printing of skipped and xfailed tests from Azure test…
• #14426: ENH: Add args argument for callable in quad_vec
• #14427: MAINT: extra pythran annotation for i686 support
• #14432: BUG/ENH: more stable recursion for 2-sample ks test exact p-values
• #14433: ENH: add PROPACK wrapper for improved sparse SVD
• #14440: MAINT: stats: silence mypy complaints
• #14441: ENH: TST: add a threadpoolctl hook to limit OpenBLAS parallelism
• #14442: MAINT: Fix uninitialized warnings in `sparse/linalg/dsolve` 
• #14447: MAINT: rename scipy.ndimage modules
• #14449: ENH: Cythonize van der corput
• #14454: MAINT: Begin translation of hyp2f1 for complex numbers into Cython
• #14456: CI: Lint with flake8 instead of pyflakes + pycodestyle
• #14458: DOC: clarify meaning of rvalue in stats.linregress
• #14459: MAINT: Fix uninitialized warnings in `interpolate` and `cluster`
• #14463: Fix typo in doc overview: “pandas” to “SciPy”
• #14474: DEP: Deprecate private but non-underscored ndimage.<module> namespace
• #14477: MAINT: Using Tempita file for bspline (signal)
• #14479: Added `Inverse` word in `idstn` and `idctn` docstrings
• #14487: TST: modify flaky test for constrained minimization
5.1. SciPy 1.8.0 Release Notes

- #14489: MAINT: cleanup of some line_search code
- #14492: CI: make sure Azure job step fails when building a SciPy wheel…
- #14496: MAINT: switch to using spmatrix.tocarray instead of .todense
- #14499: DOC: fix toarray/todense docstring
- #14507: CI: Add lint_diff docs & option to run only on specified files/dirs
- #14513: DOC: added reference and example in jacobi docstring
- #14520: BUG: diffev maxfun can be reached partway through population
- #14524: ENH: Rotation.concatenate
- #14532: ENH: sparse.linalg: The solution is zero when R.H.S. is zero
- #14538: CI: Revert “CI: make sure Azure job step fails when building…
- #14539: DOC: added chebyt and chebyu docstring examples in scipy.special
- #14546: ENH: Orthogonal Latin Hypercube Sampling to QMC
- #14547: ENH: __setitem__ method for Rotation class
- #14549: Small test fixes for pypy + win + mmap
- #14554: ENH: scipy.interpolate.BSpline from_power_basis
- #14555: BUG: sparse: fix a DIA.tocsc bug
- #14556: Fix the link to details of the strongly connected components…
- #14559: WIP: TST: add tests for Pythran somersd
- #14561: DOC: added reference and examples in (gen)laguerre docstring…
- #14564: ENH: Add threaded Van Der Corput
- #14571: Fix repeated word in _mannwhitneyu.py example
- #14572: Set min length of the knot array for BSpline.desing_matrix
- #14578: DOC: added examples in spherical Bessel docstrings
- #14581: MAINT: Refactor `linalg.tests.test_interpolate::TestInterpolativeDecomposition::test_id`
- #14588: ENH: Added “kulczynski1” to “scipy.spatial.distance”
- #14592: DOC: clarify parameters of norminvgauss in scipy.stats
- #14595: Removing unused subroutines in “scipy/linalg/src/id_dist/src/prini.f”
- #14601: Fixed inconsistencies between numpy and scipy interp
- #14602: MAINT: Fix `-Wunused-result` warnings in `sparse/linalg/dsolve`
- #14603: DEV: initialize all submodules in Gitpod Dockerfile
- #14609: MAINT: Fix `-Wmaybe-uninitialized` warnings in `optimize/_highs`
- #14610: MAINT: Ignored “scipy/signal/bspline_util.c”
- #14613: MAINT: interpolate: Declare type for a Cython indexing variable.
- #14619: ENH: stats.unuran: add Polynomial interpolation based numerical…
- #14620: CI: fix Azure job which uses pre-release wheels + Python 3.7
- #14625: ENH: optimize min max and median scipy.stats.binned_statistic
• #14626: MAINT: fix type-narrowing addition in sparse.construct.bmat
• #14627: MAINT: Bumped tolerances to pass ``special.tests`` on Apple…
• #14628: DOC: clarify usage of options param in scipy.optimize.linprog
• #14629: ENH: optimize std in scipy.stats.binned_statistic
• #14630: DOC: add citation file
• #14631: Fix unuran builds for older compilers
• #14633: BUG: scipy.stats._unran: send only strings to include_dirs
• #14634: DOC: Fix Wikipedia bootstrap link
• #14635: DOC: stats: fix multivariate_t docs pdf eqn
• #14637: MAINT: copy discrete dist dict
• #14643: MAINT: address gh6019, disp for minimize_scalar
• #14644: DOC: stats: add UNU.RAN references in the tutorial
• #14649: DOC: clarify SciPy compatibility with Python and NumPy.
• #14655: MAINT: remove support for Python 3.7 (hence NumPy 1.16)
• #14656: MAINT: replacing assert_ with assert
• #14658: DOC: use conda-forge in Ubuntu quickstart
• #14660: MAINT: refactor “for … in range(len(“) statements
• #14663: MAINT: update leftover Python and NumPy version from pyproject.toml
• #14665: BLD: fix confusing “import pip” failure that should be caught
• #14666: MAINT: remove unnecessary seeding and update `check_random_state`
• #14669: ENH: Refactor GitHub Issue form templates
• #14673: BLD: fix include order, Python.h before standard headers
• #14676: BUG: Fixes failing benchmark tests optimize_qap.QuadraticAssignment.track_score
• #14677: MAINT: github labeler on file paths
• #14682: DOC: Fix typo in mannwhitneyu docteststring
• #14684: DOC: optimize: fix sporadic linprog doctest failure
• #14685: MAINT: static typing of entropy
• #14686: BUG: fix issue in lsqr.py introduced in a recent commit
• #14689: MAINT: replace IOError alias with OSError or other appropriate…
• #14692: MAINT: Translation of hyp2f1 for complex numbers into Cython,…
• #14693: DOC: update OptimizeResult notes
• #14694: Simplify PythranBuildExt usage
• #14695: BLD: bump Pythran version to 0.9.12
• #14697: CI: add `cffi` in the benchmark CI job, and in environment.yml
• #14699: BUG: Fix TypeError in `stats._discrete_distn`
- #14701: ENH:linalg: Add Cythonized get_array_bandwidth, issymmetric,…
- #14706: BUG: Fix hyp2f1 to return correct values in regions near exp(±iπ/3).
- #14707: Update constants.py
- #14708: BENCH: shorten svds benchmark that is timing out in CI
- #14712: MAINT: special: Updates for _cosine.c.
- #14720: DOC: optimize hess and consistency
- #14721: MAINT: correct PR template link
- #14723: DOC: add note on padding to `stats.binned_statistic_2d` docs
- #14727: ENH: sparse.linalg: Add an useful nonzero initial guess option
- #14729: DOC: fix documentation for scipy.optimize.brenth
- #14737: BUG:signal: matching window dtype to input
- #14739: TST: sparse.linalg: Add test case with 2-D Poisson equations
- #14743: TST:sparse.linalg: Use the more convenient “assert_normclose”…
- #14748: DOC: fix matrix representation in scipy.sparse.csgraph
- #14751: ENH: numpy masked_arrays in refguide-check
- #14755: BUG: Avoid ‘solve_ivp’ failure when ‘ts’ is empty
- #14756: MAINT: LinAlgError from public numpy.linalg
- #14759: BLD: change section name in site.cfg.example from ALL to DEFAULT
- #14760: TST: suppress jinja2 deprecation warning
- #14761: CI: remove ‘pre_release_deps_source_dist’ job from Azure CI…
- #14762: TST: add a seed to the pickling test of RBFInterpolator
- #14763: MAINT: Make solve_ivp slightly more strict wrt. t_span.
- #14772: DOC:special: Fix broken links to jburkardt
- #14787: MAINT: Increase tolerance values to avoid test failures
- #14789: MAINT: fix a tiny typo in signal/spectral.py
- #14790: [MRG] BUG: Avoid lobpcg failure when iterations can’t continue
- #14794: Fix typos in bspline docs (and comments)
- #14796: MAINT: Allow F401 and F403 in module init files
- #14798: BUG: correct the test loop in test_arpack.eval_evec
- #14801: CI, MAINT: pin Cython for azure pre-rel
- #14805: BUG: optimize: fix max function call validation for minimize…
- #14808: Fix Bug #14807
- #14814: MAINT:integrate: add upstream quadpack changes
- #14817: ENH: stats: add geometric zscore
- #14820: MAINT: Remove `np.rollaxis` usage with `np.moveaxis` and…
• #14821: DOC: Updated documentation for interp1d
• #14822: Add an array API to scipy.sparse
• #14832: MAINT: py3.10 in more jobs and bump some 3.8 to 3.9
• #14833: FIX: raise Python OverflowError exception on Boost.Math error
• #14836: Bug fix: dqc25f.f
• #14837: DOC: sparse.linalg: Fixed incorrect comments when the initial...
• #14838: TST: seed a stats test
• #14841: MAINT: Increase tolerances in tests to avoid Nightly CPython3.10...
• #14844: DOC: Add refguide_check option details to runtests.rst
• #14845: DOC: update a type specifier in a docstring in `radau.py`
• #14848: Typo “copmlex”
• #14852: DOC: Fix documentation bugs in `lstsq`
• #14860: minimize: copy user constraints if parameter is factored out….
• #14865: BUG: stats: Fix a crash in stats.skew
• #14868: [MRG] BUG: Update lobpcg.py to validate the accuracy and issue…
• #14871: MAINT: removed a pitfall where a built-in name was being shadowed
• #14872: DEP: Deprecate private namespaces in `scipy.linalg`
• #14878: TST: bump rtol for equal_bounds
• #14881: DEP: Deprecate private namespaces in `scipy.special`
• #14882: BUG: Convert TNC C module to cython
• #14883: DOC: linalg: Clarify driver defaults in eigh
• #14884: BUG: optimize: add missing attributes of `OptimizeResult` for…
• #14892: DOC: Correct docs for Hausdorff distance
• #14898: DEP: Deprecate private namespace in `scipy.stats`
• #14902: MAINT: linalg: Rename func to “bandwidth”
• #14906: DEP: Deprecate private namespace in `scipy.constants`
• #14913: DEP: Deprecate private namespace in `scipy.fftpack`
• #14916: DEP: Deprecate `stats.biasedurn` and make it private
• #14918: DEP: Deprecate private namespaces in ``scipy.interpolate``
• #14919: DEP: Deprecate private namespaces in `scipy.integrate`
• #14920: Fix for complex Fresnel
• #14923: DEP: Deprecate private namespaces in `scipy.spatial`
• #14924: Fix extent for scipy.signal.cwt example
• #14925: MAINT: Ignore build generated files in `scipy.stats`
• #14927: DEP: Deprecate private namespaces in `scipy.misc`
• #14928: MAINT: fix runtest.py overriding `PYTHONPATH`: prepend instead
5.1. SciPy 1.8.0 Release Notes

• #14934: BUG: optimize: add a missing attribute of OptimizeResult in `basinhopping`
• #14939: DEP: Deprecate private namespaces in `scipy.sparse`
• #14941: ENH: optimize: add optional parameters of adaptive step size…
• #14943: DOC: clarify mac pytest; add blank line
• #14944: BUG: MultivariateNormalQMC with specific QMCEngine remove unneeded…
• #14947: DOC: adding example to decimate function
• #14950: MAINT: Use matmul binary operator in scipy.sparse.linalg
• #14954: DOC: Add missing params to minres docstring.
• #14955: BUG: stats: fix broadcasting behavior of argsreduce
• #14960: Update links for new site
• #14961: CI: use https protocol for git in CircleCI
• #14962: DEP: Deprecate private namespaces in `scipy.signal`
• #14963: MAINT: ‘integrate.lsoda’ missing in .gitignore
• #14965: DOC: update logo and add favicon.
• #14966: DEP: Deprecate private namespaces in `scipy.optimize``
• #14969: CI: Fixes pyparsing version in doc build
• #14972: Don’t put space after directive name.
• #14979: BUG: scipy.sparse.linalg.spsolve: fix memory error caused from…
• #14988: BLD: update pyproject.toml for Python 3.10
• #14989: ENH: Speed up knot interval lookup for BSpline.design_matrix
• #14992: Pythranized version of _matfuncs_sqrtm
• #14993: MAINT: forward port 1.7.2 relnotes
• #15004: ENH: Make ‘get_matfile_version’ and other ‘io.matlab’ objects…
• #15007: DOC: add missing “regularized” to ‘gammainccinv’ documentation
• #15008: MAINT: restore access to deprecated private namespaces
• #15010: TST: remove fragile test which checks if g77 is linked
• #15013: MAINT: Fix use-after-free bug in Py_FindObjects
• #15018: CI: Work around Sphinx bug
• #15019: Finite Difference Hessian in Scipy Optimize Solvers (Newton-CG)
• #15020: ENH: sparse.linalg: Fixed the issue that the initial guess “x0”…
• #15022: DOC: mitigate newton optimization not converging.
• #15023: CI: Unpin Sphinx
• #15027: DOC: linalg: Fix a small condition doc error
• #15029: DEP: Deprecate private namespaces in `scipy.sparse.linalg`
• #15034: DOC: use numydoc format for C function in `\_superlumodule.c`
• #15035: MAINT: simplify UNU.RAN api in stats
• #15037: New example for gaussian_filter
• #15040: MAINT: Add test for public API
• #15041: DOC: Add warning to dct documentation about norm='ortho'
• #15045: DOC: update toolchain.rst
• #15053: TST: Add some test skips to get wheel builder CI green again
• #15054: MAINT: Remove wminkowski
• #15055: ENH: allow p>0 for Minkowski distance
• #15061: MAINT:sparse: expm() fix redundant imports
• #15062: MAINT:BLD: Open file in text mode for tempita
• #15066: CI: bump gcc from 4.8 to 6
• #15067: DOC: Update broken link to SuperLU library.
• #15078: MAINT: update `stats.iqr` for deprecated `np.percentile`…
• #15083: MAINT: stats: separate UNU.RAN functionality to its own submodule
• #15084: MAINT: Include `scipy.io.matlab` in public API
• #15085: ENH: support creation of analog SOS outputs
• #15087: TST: Review `~.assert_within_tol` positional arguments
• #15095: MAINT: update gitignore to ignore private directories
• #15099: MAINT: ScalarFunction remember best_x
• #15100: MAINT: Include `stats.contingency` in public API
• #15102: ENH: Add orthogonalize argument to DCT/DST
• #15105: MAINT: Add missing imports in deprecated modules
• #15107: BUG: Update chi_gen to use scipy.special.gammaln
• #15109: MAINT: remove NaiveRatioUniforms from scipy.stats
• #15111: ENH: Add special.log_expit and use it in stats.logistic
• #15112: DOC: update ‘Wn’ definition in signal.butter
• #15114: DOC: added Fermi-Dirac distribution by name
• #15119: DOC: fix symlink to ‘logistic.sf’ in ‘ stats.logistic’
• #15120: MAINT: Install ‘sparse.linalg._eigen’ tests and fix test failures
• #15123: MAINT: interpolate: move the ‘sparse’ dependency from cython…
• #15127: DOC: update linux build instructions to mention C++
• #15134: DOC: Improve Lomb-Scargle example
• #15135: ENH: Carlson symmetric elliptic integrals.
• #15137: DOC: special: Add ‘Examples’ to multigammaln and roots_legendre…
• #15139: Use constrained_layout in Lomb-Scargle example
• #15142: ENH: stats.sampling: add SROU method
• #15143: MAINT: Remove some unused imports.
- #15144: BUG: Add missing import of ‘errno’ to runtests.py
- #15157: ENH: rebased version of gh-14279
- #15159: DOC: stats: fix a header in ‘stats.sampling’ tutorial
- #15161: DOC: 1.8.0 relnotes update
- #15175: MAINT: 1.8.0 backports for relnotes and .gitignore
- #15181: BUG: The pytest decorator for conditional skipping is ‘skipif’
- #15191: MAINT: version bounds before 1.8.0rc1
- #15192: MAINT: Replace use of `pytest.warns(None)` with `warnings.catch_warnings`
- #15194: BUG: stats: Fix numerical issues of recipinvgauss
- #15214: TST: sparse.linalg: store only PROPACK test matrices; generate…
- #15225: Make 0th power of a sparse array/matrix return the identity with…
- #15229: BUG: minimize should work with a scalar closes #15228
- #15232: BUG: Add rmul for sparse arrays
- #15236: BLD: update setup.py for Python 3.10
- #15248: MAINT: 1.8.0rc2 backports
- #15249: FIX: PROPACK MKL compatibility
- #15253: BUG: special: fix `stdtr` and `stdtrit` for infinite df
- #15256: MAINT: use PEP440 vs. distutils
- #15268: CI: pin setuptools to 59.6.0 and Pythran to 0.10.0 for Windows…
- #15270: MAINT: rename `moduleTNC` extension back to `_moduleTNC``
- #15271: TST: slightly bump test tolerance for a new lobpcg test
- #15275: MAINT: Fix imports in `signal._signaltools`‘
- #15278: MAINT: remove non-default settings (except ‘shallow’) in `.gitmodules`‘
- #15288: BLD Respect the ~skip-build flag in setup.py
- #15293: BUG: fix Hausdorff int overflow
- #15301: TST: update `sparse.linalg` tests for failures due to tolerances
- #15318: BLD: update pyproject.toml to not pin numpy for aarch64 + PyPy
- #15322: BLD: update minimum Pythran version to 0.10.0 for SciPy 1.8.0
- #15323: MAINT: filter RuntimeWarnings in stats functions
- #15328: MAINT: interpolate: csr_matrix -> csr_array
- #15331: BUG: stats._unuran: fix invalid attribute lookups
- #15332: CI: pin numpy to 1.21.5 for the doc build on CircleCI
- #15334: BUG: stats._unuran: fix remaining attribute lookup errors
- #15335: CI: pin numpy to 1.21.5 in the Azure refguide check job
- #15341: BUG: ‘highs-ds’ returns memoryviews instead of np.arrays for…
SciPy 1.7.3 is a bug-fix release that provides binary wheels for MacOS arm64 with Python 3.8, 3.9, and 3.10. The MacOS arm64 wheels are only available for MacOS version 12.0 and greater, as explained in Issue 14688, linked below.

5.2.1 Authors

• Anirudh Dagar
• Ralf Gommers
• Tyler Reddy
• Pamphile Roy
• Olivier Grisel
• Isuru Fernando

A total of 6 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.7.3

• #13364: Segmentation fault on import of scipy.integrate on Apple M1 ARM…
• #14688: BUG: ARPACK’s eigsh & OpenBLAS from Apple Silicon M1 (arm64)…
• #14991: four CI failures on pre-release job
• #15077: Remaining test failures for macOS arm64 wheel
• #15081: BUG: Segmentation fault caused by scipy.stats.qmc.qmc.update_discrepancy
Pull requests for 1.7.3

- #14990: BLD: update pyproject.toml for Python 3.10 changes
- #15086: BUG: out of bounds indexing in stats.qmc.update_discrepancy
- #15090: MAINT: skip a few failing tests in `1.7.x` for macOS arm64

5.3 SciPy 1.7.2 Release Notes

SciPy 1.7.2 is a bug-fix release with no new features compared to 1.7.1. Notably, the release includes wheels for Python 3.10, and wheels are now built with a newer version of OpenBLAS, 0.3.17. Python 3.10 wheels are provided for MacOS x86_64 (thin, not universal2 or arm64 at this time), and Windows/Linux 64-bit. Many wheels are now built with newer versions of manylinux, which may require newer versions of pip.

5.3.1 Authors

- Peter Bell
- da-woods +
- Isuru Fernando
- Ralf Gommers
- Matt Haberland
- Nicholas McKibben
- Ilhan Polat
- Judah Rand +
- Tyler Reddy
- Pamphile Roy
- Charles Harris
- Matti Picus
- Hugo van Kemenade
- Jacob Vanderplas

A total of 14 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.
Issues closed for 1.7.2

- #6019: minimize_scalar doesn’t seem to honor “disp” option
- #14321: BUG: Indexing of CSR matrices with many rows is much slower than…
- #14465: BUG: n-d interpolation parameter provided to geometric_slerp
- #14599: SciPy 1.7 builds as zipped egg, ruining imports
- #14606: BUG: crash / core dump when calling scipy.stats.beta.ppf with…
- #14732: CI, TST: pre-release failures for scipy/interpolate/tests/test_rbfinterp.py
- #14802: CI: Azure Main coverage job failure
- #14829: macOS CI failing with ’ld: library not found for -lSystem’
- #14887: BUG: scipy.stats.multivariate_normal.logpdf mutates some inputs

Pull requests for 1.7.2

- #14207: DOC: stats: remove ‘Methods’ section from ‘binomtest’ docstring…
- #14316: MAINT: Update `openblas_support.py` to support Apple Silicon
- #14323: BUG: Speed up sparse compressed indexing with very many rows
- #14333: MAINT: Use /usr/bin/linux32 so that sysconfig.get_platform()…
- #14478: BUG: geometric_slerp t ndim guard
- #14605: MAINT: Skip some interpolative decomposition tests
- #14616: REL: update build dependency versions in pyproject.toml for 1.7.2
- #14618: FIX: raise RuntimeWarning when Boost evaluation_error is encountered
- #14672: BLD: add ‘zip_safe=False’ to the ‘setup()’ call
- #14791: MAINT: SciPy 1.7.2 prep/backports
- #14803: MAINT: disable include/source coverage warning.
- #14813: Added missing np.import_array()
- #14831: CI: Add stldir to LD_LIBRARY_PATH
- #14893: BUG: Fix alignment errors due to relaxed stride checking
- #14897: BUG: avoid mutating inputs in multivariate distributions
- #14921: MAINT: “backport” 3.10 support
- #14937: MAINT: backports for 1.7.2, plus update Pythran min version to…
- #14938: TST: silence test failures on macOS for `beta.ppf` overflow
5.4 SciPy 1.7.1 Release Notes

SciPy 1.7.1 is a bug-fix release with no new features compared to 1.7.0.

5.4.1 Authors

- Peter Bell
- Evgeni Burovski
- Justin Charlong +
- Ralf Gommers
- Matti Picus
- Tyler Reddy
- Pamphile Roy
- Sebastian Wallkötter
- Arthur Volant

A total of 9 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.7.1

- #14074: Segmentation fault when building cKDTree with Scipy 1.6.3.
- #14271: scipy.io.loadmat failure in 1.7.0
- #14273: `scipy.signal.{medfilt,medfilt2d}` hit “Windows fatal exception:…”
- #14282: DOC, CI: stats skewtest refguide failure
- #14363: Huge stack allocation in _sobol.pyx may cause stack overflow
- #14382: Memory leak in `scipy.spatial.distance` for `cdist`
- #14396: BUG: Sphinx 4.1 breaks the banner’s logo
- #14444: DOC/FEAT Rotation.from_rotvec documents a degrees argument which…
Pull requests for 1.7.1

- #14178: DEV: Update Boschloo Exact test
- #14264: REL: prepare for SciPy 1.7.1
- #14283: BUG: fix refguide-check namedtuple handling
- #14303: FIX: Check for None before calling str methods
- #14327: BUG: medfilt can access beyond the end of an array
- #14355: BUG: KDTree balanced_tree is unbalanced for degenerate data
- #14368: BUG: avoid large cython global variable in function
- #14384: BUG: Reference count leak in distance_pybind
- #14397: DOC/CI: do not allow sphinx 4.1.
- #14417: DOC/CI: pin sphinx to !=4.1.0
- #14460: DOC: add required scipy version to kwarg
- #14466: MAINT: 1.7.1 backports (round 1)
- #14508: MAINT: bump scipy-mathjax
- #14509: MAINT: 1.7.1 backports (round 2)

5.5 SciPy 1.7.0 Release Notes
SciPy 1.7.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Before upgrading, we recommend that users check that their own code does not use deprecated SciPy functionality (to do so, run your code with `python -Wd` and check for `DeprecationWarning`s). Our development attention will now shift to bug-fix releases on the 1.7.x branch, and on adding new features on the master branch.

This release requires Python 3.7+ and NumPy 1.16.5 or greater.

For running on PyPy, PyPy 6.0+ is required.

### 5.5.1 Highlights of this release

- A new submodule for quasi-Monte Carlo, `scipy.stats.qmc`, was added
- The documentation design was updated to use the same PyData-Sphinx theme as NumPy and other ecosystem libraries.
- We now vendor and leverage the Boost C++ library to enable numerous improvements for long-standing weaknesses in `scipy.stats`
- `scipy.stats` has six new distributions, eight new (or overhauled) hypothesis tests, a new function for bootstrapping, a class that enables fast random variate sampling and percentile point function evaluation, and many other enhancements.
- `cdist` and `pdist` distance calculations are faster for several metrics, especially weighted cases, thanks to a rewrite to a new C++ backend framework
- A new class for radial basis function interpolation, `RBFInterpolator`, was added to address issues with the `Rbf` class.

We gratefully acknowledge the Chan-Zuckerberg Initiative Essential Open Source Software for Science program for supporting many of the improvements to `scipy.stats`. 
5.5.2 New features

**scipy.cluster improvements**

An optional argument, `seed`, has been added to `kmeans` and `kmeans2` to set the random generator and random state.

**scipy.interpolate improvements**

Improved input validation and error messages for `fitpack.bispev` and `fitpack.parder` for scenarios that previously caused substantial confusion for users.

The class `RBFInterpolator` was added to supersede the `Rbf` class. The new class has usage that more closely follows other interpolator classes, corrects sign errors that caused unexpected smoothing behavior, includes polynomial terms in the interpolant (which are necessary for some RBF choices), and supports interpolation using only the k-nearest neighbors for memory efficiency.

**scipy.linalg improvements**

An LAPACK wrapper was added for access to the `tgexc` subroutine.

**scipy.ndimage improvements**

`scipy.ndimage.affine_transform` is now able to infer the `output_shape` from the `out` array.

**scipy.optimize improvements**

The optional parameter `bounds` was added to `_minimize_neldermead` to support bounds constraints for the Nelder-Mead solver.

`trustregion` methods `trust-krylov`, `doleg` and `trust-ncg` can now estimate `hess` by finite difference using one of `["2-point", "3-point", "cs"]`.

`halton` was added as a `sampling_method` in `scipy.optimize.shgo`. `sobol` was fixed and is now using `scipy.stats.qmc.Sobol`.

`halton` and `sobol` were added as `init` methods in `scipy.optimize.differential_evolution`.

`differential_evolution` now accepts an `x0` parameter to provide an initial guess for the minimization.

`least_squares` has a modest performance improvement when SciPy is built with Pythran transpiler enabled.

When `linprog` is used with method `'highs'`, `'highs-ipm'`, or `'highs-ds'`, the result object now reports the marginals (AKA shadow prices, dual values) and residuals associated with each constraint.
**scipy.signal improvements**

`get_window` supports `general_cosine` and `general_hamming` window functions.

`scipy.signal.medfilt2d` now releases the GIL where appropriate to enable performance gains via multithreaded calculations.

**scipy.sparse improvements**

Addition of `dia_matrix` sparse matrices is now faster.

**scipy.spatial improvements**

`distance.cdist` and `distance.pdist` performance has greatly improved for certain weighted metrics. Namely: minkowski, euclidean, chebyshev, canberra, and cityblock.

Modest performance improvements for many of the unweighted `cdist` and `pdist` metrics noted above.

The parameter `seed` was added to `scipy.spatial.vq.kmeans` and `scipy.spatial.vq.kmeans2`.

The parameters `axis` and `keepdims` where added to `scipy.spatial.distance.jensenshannon`.

The rotation methods `from_rotvec` and `as_rotvec` now accept a `degrees` argument to specify usage of degrees instead of radians.

**scipy.special improvements**

Wright’s generalized Bessel function for positive arguments was added as `scipy.special.wright_bessel`.

An implementation of the inverse of the Log CDF of the Normal Distribution is now available via `scipy.special.ndtri_exp`.

**scipy.stats improvements**

**Hypothesis Tests**

The Mann-Whitney-Wilcoxon test, `mannwhitneyu`, has been rewritten. It now supports n-dimensional input, an exact test method when there are no ties, and improved documentation. Please see “Other changes” for adjustments to default behavior.

The new function `scipy.stats.binomtest` replaces `scipy.stats.binom_test`. The new function returns an object that calculates a confidence intervals of the proportion parameter. Also, performance was improved from $O(n)$ to $O(\log(n))$ by using binary search.

The two-sample version of the Cramer-von Mises test is implemented in `scipy.stats.cramervonmises_2samp`.

The Alexander-Govern test is implemented in the new function `scipy.stats.alexandergovern`.

The new functions `scipy.stats.barnard_exact` and `scipy.stats.boschloo_exact` respectively perform Barnard’s exact test and Boschloo’s exact test for 2x2 contingency tables.

The new function `scipy.stats.page_trend_test` performs Page’s test for ordered alternatives.

The new function `scipy.stats.somersd` performs Somers’ D test for ordinal association between two variables.

An option, `permutations`, has been added in `scipy.stats.ttest_ind` to perform permutation t-tests. A `trim` option was also added to perform a trimmed (Yuen’s) t-test.
The alternative parameter was added to the skewtest, kurtosistest, ranksums, mood, ansari, linregress, and spearmanr functions to allow one-sided hypothesis testing.

Sample statistics

The new function scipy.stats.differential_entropy estimates the differential entropy of a continuous distribution from a sample.

The boxcox and boxcox_normmax now allow the user to control the optimizer used to minimize the negative log-likelihood function.

A new function scipy.stats.contingency.relative_risk calculates the relative risk, or risk ratio, of a 2x2 contingency table. The object returned has a method to compute the confidence interval of the relative risk.

Performance improvements in the skew and kurtosis functions achieved by removal of repeated/redundant calculations.

Substantial performance improvements in scipy.stats.mstats.hdquantiles_sd.

The new function scipy.stats.contingency.association computes several measures of association for a contingency table: Pearson's contingency coefficient, Cramer's V, and Tschuprow's T.

The parameter nan_policy was added to scipy.stats.zmap to provide options for handling the occurrence of nan in the input data.

The parameter ddof was added to scipy.stats.variation and scipy.stats.mstats.variation.

The parameter weights was added to scipy.stats.gmean.

Statistical Distributions

We now vendor and leverage the Boost C++ library to address a number of previously reported issues in stats. Notably, beta, binom, nbinom now have Boost backends, and it is straightforward to leverage the backend for additional functions.

The skew Cauchy probability distribution has been implemented as scipy.stats.skewcauchy.

The Zipfian probability distribution has been implemented as scipy.stats.zipfian.

The new distributions nchypergeom_fisher and nchypergeom_wallenius implement the Fisher and Wallenius versions of the noncentral hypergeometric distribution, respectively.

The generalized hyperbolic distribution was added in scipy.stats.genhyperbolic.

The studentized range distribution was added in scipy.stats.studentized_range.

scipy.stats.argus now has improved handling for small parameter values.

Better argument handling/preparation has resulted in performance improvements for many distributions.

The cosine distribution has added ufuncs for ppf, cdf, sf, and isf methods including numerical precision improvements at the edges of the support of the distribution.

An option to fit the distribution to data by the method of moments has been added to the fit method of the univariate continuous distributions.
Other

`scipy.stats.bootstrap` has been added to allow estimation of the confidence interval and standard error of a statistic.

The new function `scipy.stats.contingency.crosstab` computes a contingency table (i.e. a table of counts of unique entries) for the given data.

`scipy.stats.NumericalInverseHermite` enables fast random variate sampling and percentile point function evaluation of an arbitrary univariate statistical distribution.

New `scipy.stats.qmc` module

This new module provides Quasi-Monte Carlo (QMC) generators and associated helper functions.

It provides a generic class `scipy.stats.qmc.QMCEngine` which defines a QMC engine/sampler. An engine is state aware: it can be continued, advanced and reset. 3 base samplers are available:

- `scipy.stats.qmc.Sobol`: the well known Sobol low discrepancy sequence. Several warnings have been added to guide the user into properly using this sampler. The sequence is scrambled by default.
- `scipy.stats.qmc.Halton`: Halton low discrepancy sequence. The sequence is scrambled by default.

And 2 special samplers are available:


The module also provides the following helpers:

- `scipy.stats.qmc.discrepancy`: assess the quality of a set of points in terms of space coverage.
- `scipy.stats.qmc.update_discrepancy`: can be used in an optimization loop to construct a good set of points.
- `scipy.stats.qmc.scale`: easily scale a set of points from (to) the unit interval to (from) a given range.

5.5.3 Deprecated features

`scipy.linalg` deprecations

- `scipy.linalg.pinv2` is deprecated and its functionality is completely subsumed into `scipy.linalg.pinv`

- Both `rcond`, `cond` keywords of `scipy.linalg.pinv` and `scipy.linalg.pinvh` were not working and now are deprecated. They are now replaced with functioning `atol` and `rtol` keywords with clear usage.
scipy.spatial deprecations

- *scipy.spatial.distance* metrics expect 1d input vectors but will call `np.squeeze` on their inputs to accept any extra length-1 dimensions. That behaviour is now deprecated.

5.5.4 Backwards incompatible changes

5.5.5 Other changes

We now accept and leverage performance improvements from the ahead-of-time Python-to-C++ transpiler, Pythran, which can be optionally disabled (via `export SCIPY_USE_PYTHRA N=0`) but is enabled by default at build time.

There are two changes to the default behavior of *scipy.stats.mannwhitneyu*:

- For years, use of the default `alternative=None` was deprecated; explicit `alternative` specification was required. Use of the new default value of `alternative`, “two-sided”, is now permitted.
- Previously, all p-values were based on an asymptotic approximation. Now, for small samples without ties, the p-values returned are exact by default.

Support has been added for PEP 621 (project metadata in `pyproject.toml`)

We now support a Gitpod environment to reduce the barrier to entry for SciPy development; for more details see quickstart-gitpod.

5.5.6 Authors

- @endolith
- Jelle Aalbers +
- Adam +
- Tania Allard +
- Sven Baars +
- Max Balandat +
- baumgarc +
- Christoph Baumgarten
- Peter Bell
- Lilian Besson
- Robinson Besson +
- Max Bolingbroke
- Blair Bonnett +
- Jordão Bragantini
- Harm Buisman +
- Evgeni Burovski
- Matthias Bussonnier
- Dominic C
• CJ Carey
• Ramón Casero +
• Chachay +
• charlotte12I +
• Benjamin Curtice Corbett +
• Falcon Dai +
• Ian Dall +
• Terry Davis
• drousssea2001 +
• DWesl +
• dwight200 +
• Thomas J. Fan +
• Joseph Fox-Rabinovitz
• Max Frei +
• Laura Gutierrez Funderburk +
• gbonomib +
• Matthias Geier +
• Pradipta Ghosh +
• Ralf Gommers
• Evan H +
• h-vetinari
• Matt Haberland
• Anselm Hahn +
• Alex Henrie
• Piet Hessenius +
• Trever Hines +
• Elisha Hollander +
• Stephan Hoyer
• Tom Hu +
• Kei Ishikawa +
• Julien Jerphanion
• Robert Kern
• Shashank KS +
• Peter Mahler Larsen
• Eric Larson
• Cheng H. Lee +
• Gregory R. Lee
• Jean-Benoist Leger +
• lgfunderburk +
• liam-o-marsh +
• Xingyu Liu +
• Alex Loftus +
• Christian Lorentzen +
• Cong Ma
• Marc +
• MarkPundurs +
• Markus Löning +
• Liam Marsh +
• Nicholas McKibben
• melissawm +
• Jamie Morton
• Andrew Nelson
• Nikola Forró
• Tor Nordam +
• Olivier Gauthé +
• Rohit Pandey +
• Avanindra Kumar Pandeya +
• Tirth Patel
• paugier +
• Alex H. Wagner, PhD +
• Jeff Plourde +
• Ilhan Polat
• pranavrajpal +
• Vladyslav Rachek
• Bharat Raghunathan
• Recursing +
• Tyler Reddy
• Lucas Roberts
• Gregor Robinson +
• Pamphile Roy +
• Atsushi Sakai
• Benjamin Santos
• Martin K. Scherer +
• Thomas Schmelzer +
• Daniel Scott +
• Sebastian Wallkötter +
• serge-sans-paille +
• Namami Shanker +
• Masashi Shibata +
• Alexandre de Siqueira +
• Albert Steppi +
• Adam J. Stewart +
• Kai Striega
• Diana Sukhoverkhova
• Søren Fuglede Jørgensen
• Mike Taves
• Dan Temkin +
• Nicolas Tessore +
• tsubota20 +
• Robert Uhl
• christos val +
• Bas van Beek +
• Ashutosh Varma +
• Jose Vazquez +
• Sebastiano Vigna
• Aditya Vijaykumar
• VNMa bus
• Arthur Volant +
• Samuel Wallan
• Stefan van der Walt
• Warren Weckesser
• Andreas Weh
• Josh Wilson
• Rory Yorke
• Egor Zemlyanoy
• Marc Zoeller +
• zoj613 +
• PEP +
A total of 126 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

## 5.5.7 Issues closed for 1.7.0

- #636: Statistics Review: mannwhitneyu (Trac #109)
- #1346: signal.medfilt2d should fall back on signal.medfilt for types…
- #2118: Mann-Whitney statistic returns incorrect results (Trac #1593)
- #2158: special.chndtrix (ncx2.ppf) gives wrong results (Trac #1633)
- #3284: build_sphinx weirdness
- #3352: beta distribution sf
- #4067: Mannwhitneyu with arrays full of nan still reports significance
- #4080: entropy in Scipy
- #4641: mstats.mannwhitneyu and stats.mannwhitneyu return inconsistent…
- #5122: scipy.stats.binom.ppf Incorrect for p=0
- #5180: Rbf interpolation - use only K nearest neighbors
- #5258: affine_transform complains about output_shape when output array…
- #5562: Wishart degrees of freedom should be $\nu > p-1$ instead of $\nu…
- #5933: mstats_basic.py - mannwhitneyu [scipy/scipy/stats/mstats_basic.py]
- #6409: _unequal_var_ttest_denom causes ZeroDivisionError in early samples
- #6682: negative binomial survival function is imprecise
- #6897: scipy.stats.mannwhitneyu of empty sets gives p=0.0 and does not…
- #7303: stats.describe with nan_policy=omit returns matrix-wide minmax…
- #7406: scipy.stats.binom.ppf returns nan for q between 0 and 1 if n…
- #7437: ENH: add skewed Cauchy distribution to stats
- #7542: DOC: stats tutorials: Questions on arcsine and Student t formulae
- #7593: Meaning of ‘tol’ argument in ‘scipy.optimize.minimize’ is…
- #8565: Error in SmoothSphereBivariateSpline(): “ValueError: Error code…
- #8665: ‘scipy.ncx2.sf’ should be monotone decreasing
- #8836: scipy.optimize.linprog(method=’simplex’) needs to return duals
- #9184: Mann-Whitney implementation wrong?
- #9450: allow seeding of init methods in vq.kmeans2
- #9704: RectSphereBivariateSpline fails for negative longitude
- #9836: scipy.stats.rice gives incorrect results when s is very low compared…
- #9904: Request/Proposal: Greatly improve scipy.interpolate.Rbf
- #9981: stats.kruskal : add a warning for an input with 2 or more columns
- #10358: DOC: linprog and linear_sum_assignment tutorials needed
• #10908: Nakami fitting doesn’t converge (scipy.stats)
• #10933: Add scaled inverse chi2 distribution
• #11014: Barnard’s Test for More Powerful Hypothesis Testing of 2x2 Contingency…
• #11050: Feature request: Nelder-Mead with bounds
• #11086: scipy.stats.skew doesn’t work correctly for float point numbers
• #11113: inconsistent result from ttest_ind and mannwhitneyu when used…
• #11134: Wrong confidence interval for binomial distribution with p=0
• #11325: Add axis parameter for scipy.spatial.distance.jensenshannon
• #11474: scipy.stats.skellam.cdf(0) returns 0 for large mu1 = mu2
• #11523: scipy.stats.zipf doesn’t implement zipf distribution
• #11848: How to get Lagrange / lambda multipliers out of ‘linprog’ optimize…
• #11909: Enable bounds for lambda in boxcox
• #12118: Docstring missing defaults
• #12132: Slow tests to be trimmed or moved to test(‘full’)  
• #12230: Dendrogram: enable leaves labelling with ‘labels’ when using…
• #12282: scipy.stats.chisquare test does not check that observed and expected…
• #12298: BUG: fmin_powell missing squeeze in 1.5.0rc
• #12403: Add nan_policy to stats.zmap
• #12518: Null hypothesis of Kolmogorov Smirnov test is not correctly described
• #12534: Feature request: scipy.linalg.norm to deal with 0-size array
• #12622: scipy.interpolate.interpn docstring example
• #12635: scipy.stats.beta.ppf gives unexpected results
• #12669: Median-averaging of complex CSDs
• #12731: stats.ncx2.cdf fails for nc >> x >> 1
• #12778: Confusing documentation of scipy.stats.weightedtau
• #12794: [Bug] The result of stats.beta.isf is inconsistent with stats.beta.sf
• #12837: stats.mannwhitneyu could support arrays
• #12868: Vector-valued interpolation in ‘interp2d’
• #12922: Minimize with trust-constr method leads to TypeError if option…
• #12929: The use of starred expressions to create data detracts from understanding…
• #12965: domain of argument of scipy.interpolate.RectSphereBivariateSpline(u,…
• #13025: Generalized Hyperbolic Distribution
• #13090: Broken link in doc for signal.max_len_seq
• #13101: MAINT: Upgrade python version in docker file
• #13158: ‘signal.get_window()’ has a missing doc link and cannot get…
• #13173: Uninformative error message from bisplev function
• #13234: BUG: stats: Wrong shape of burr.moment() and fisk.moment() when…
• #13242: Does kmeans “drop” clusters?
• #13243: tgsen uses an output argument for computing a default argument
• #13245: Kurtosis returning 1 for array of same elements
• #13257: GitHub Actions test failures for MacOS
• #13272: scipy.stats.yeojohnson_llf doc mistake
• #13280: Wrong results with hypergeom cdf
• #13285: description correction in scipy.stats.t
• #13287: Generate binomial CDF with mu instead of prob
• #13294: BUG: stats: wrong bounds returned by ‘support’ method for distributions…
• #13299: Typing for scipy.spatial
• #13300: Add a single individual to a latinhypercube initial population…
• #13311: MAINT: pavement.py PYVER is outdated
• #13339: savemat discards dimension information if any dimension is zero
• #13341: add scipy.stats.variation with an ddof parameter
• #13353: Documentation: in scipy.stats.johnsonsu, parameter ‘a’ can…
• #13405: TST: add a few tests for sparse BSR ctor
• #13410: BUG: skew for empty array raises
• #13417: 10,000 times speedup for generating random numbers from the cosine…
• #13440: python runtest.py -t path-to-test.py failed
• #13454: Scipy cosine distance can be greater than 2
• #13459: Broken link in cramervonmises documentation
• #13494: One-word typo in the documentation of optimize.linprog_simplex
• #13501: minimize using Powell methods with Bounds leads to “TypeError:…
• #13509: signal.medfilt2d vs ndimage.median_filter
• #13511: DOC: error in description of “direc” parameter of “fmin_powell”
• #13526: TST: stats: intermittent `test_ttest_ind_randperm_alternative2…
• #13536: `_within_tolerance` seems an unnecessary repetition of `numpy.isclose`’
• #13540: missing python 3.8 manynlinux wheels on scipy-wheels-nightly
• #13559: shape error in linprog with revised simplex
• #13587: binned_statistic unreliable with single precision
• #13589: Better argument preparation for distributions in stats package.
• #13602: The crystallball distribution entropy is sometimes minus infinity
• #13606: MAINT: mypy: some typing errors while running mypy + adding mypy…
• #13608: Why does stats.binned_statistic_2d convert its values argument…
• #13609: BUG: SciPy pip install -e gets unusable version spec
• #13610: Highs solver did not provide a solution nor did it report a failure
• #13614: BUG: invgauss.cdf should return the correct value when `mu`…
• #13628: 1-letter typo in the definition of scipy.special.spence function…
• #13634: mmwrite fails on dense, skew-symmetric array
• #13646: Sparse matrix argmax() integer overflow on Windows 10
• #13647: 'scipy.stats.qmc.LatinHypercube' cannot sample single sample…
• #13651: Documentation wrong in scipy.linalg.eigvalsh
• #13664: BUG: gamma distribution’s inverse survival function overflows…
• #13693: BUG: sokalmichener appears to incorrectly apply weights
• #13697: BUG: stats: Spurious warning generated by arcsine.pdf at the…
• #13704: Make it possible to pass a rank cut-off value relatively to the…
• #13707: Kullback Leibler Divergence broadcasting no longer works
• #13740: Scipy.optimize x0 out of bounds when it is within bounds.
• #13744: scipy.interpolate.interp1d has inconsistent behavior for non-unique…
• #13754: optimize.minimize ‘trust’ methods and finite difference Hessian…
• #13762: MAINT, TST: aarch64 stats test failures showing up in wheels…
• #13769: probplot draws fit line even when fit=False
• #13791: BUG: stats: brentq(cdf) does not broadcast the shape parameter…
• #13793: CI: CircleCI doc build failure
• #13840: manylinux1 builds are failing because of C99 usage in `special/_cosine.c`  
• #13850: CI: Homebrew is failing due to bintray
• #13875: BUG: chi2_contingency with Yates correction
• #13878: BUG: ‘signal.get_window’ argument handling issue
• #13880: Remove all usages of numpy.compat
• #13896: Boschloo’s Test for More Powerful Hypothesis Testing of 2x2 Contingency…
• #13923: Inverse of Log CDF of Normal Distribution
• #13933: 'signal.get_window' does not support `general_cosine` and…
• #13950: DOC: scipy.spatial.KDTree.query
• #13969: N=4 must not exceed M=3
• #13970: Pearson's original paper on chi-square test could be referenced.
• #13984: Faster addition of sparse diagonal matrices
• #13988: An error occurred when using scipy.io.wavfile of scipy 1.6 version…
• #13997: BUG: sparse: Incorrect result from `dia_matrix.diagonal()`
• #14005: MAINT: optimize: `curve_fit` input error msg can be improved.
• #14038: MAINT: add type annotations for _sobol.pyx
• #14048: DOC: missing git submodule information
5.5.8 Pull requests for 1.7.0

- #4824: Permutation Test (new PR)
- #4933: ENH: Update the Mann-Whitney-Wilcoxon test
- #7702: ENH: stats: Add Skewed Cauchy Distribution
- #8306: Optional Python support for scipy.signal.max_len_seq_inner
- #10170: MAINT: stats: Implement cdf and ppf as ufuncs for the cosine…
- #10454: ENH: Extend find_peaks_cwt to take numbers and iterables for…
- #10844: ENH: add stats.qmc module with quasi Monte Carlo functionality
- #11313: ENH: add Wright’s generalized Bessel function
- #11352: ENH: stats: Add crosstab function.
- #11477: FIX: bounded parameter in cdfchn.f gives bad results
- #11695: ENH: stats: add method of moments to `rv_continuous.fit`
- #11911: ENH: Added bounds to boxcox and boxcox_normmax
- #12438: BUG: use ellipkm1 in elliptical filter design to prevent numerical…
- #12531: ENH: stats: add Page’s L test
- #12603: ENH: stats: Add ‘binomtest’ to replace ‘binom_test’.
- #12653: ENH: stats: add Somers’ D test
- #12676: BUG: update median averaging in signal.csd
- #12760: BUG: special: erfinv(x<<1) loses precision
- #12801: ENH: Add single-sided p-values to remaining spearmanr and linregress
- #12873: ENH: Stats: add Alexander Govern Test
- #13008: ENH: Add ‘alternative’ to functions using normal CDF for p-value
- #13040: BUG: Allow RectSphereBivariateSpline to accept negative longitude
- #13048: ENH: stats: Add a function that computes the relative risk.
- #13067: ENH: Add weights parameter to stats.gmean
- #13084: ENH: fast Hankel transform
- #13104: MAINT: upgrade python version (drop python 3.6) for docker dev…
- #13153: ENH: added association measurements Pearsons Contingency Coefficient,…
- #13166: ENH: stats: Add nan_policy to zmap.
- #13175: MAINT: tests for tall cost matrices in 'linear_sum_assignment'
- #13177: BUG: raise NotImplementedError in fourier_ellipsoid when ndim...
- #13184: BUG: stats: Fix min and max calculation of mstats.describe with...
- #13188: DOC: stats: make null and alternative hypotheses of ktest more...
- #13193: MAINT: stats: chisquare check sum of observed/expected frequencies
- #13197: ENH/MAINT: HiGHS upstream enhancements and bug fixes
- #13198: ENH: allow inference of output_shape from out array in affine_transform
- #13204: ENH: stats: add Zipfian (different from Zipf/zeta) distribution
- #13208: REL: set version to 1.7.0.dev0
- #13216: TST: stats: break up and mark slow tests
- #13224: Update docs for the weighted τ
- #13230: ENH: linalg: Add LAPACK wrapper for tgevc.
- #13232: MAINT: stats: raise error when input to kruskal has >1 dim
- #13233: DOC: stats: fix MGF of arcsine and entropy of t in tutorial
- #13236: MAINT: reorganize shared linear assignment tests
- #13237: BENCH: Refactor stats.Distribution to easily add new distributions
- #13238: BUG: stats: fix wrong shape output of burr and fisk distributions
- #13240: MAINT: add tests of trivial cost matrices for linear sum assignment
- #13254: BUG: Fix precision issues for constant input in skew and kurtosis
- #13262: BUG: scipy.medfilt and .medfilt2d fixes
- #13263: ENH: add Cramer-von Mises test for two samples
- #13264: fix a minor typo in `stats.anderson` doc
- #13268: ENH: stats: Add implementation of _entropy for the t distr.
- #13273: DOC: stats: fix typo in Yeo-Johnson LL function documentation
- #13275: MAINT: stats: Correct a comment in the _fitstart method of gamma.
- #13283: BUG: stats: fix the cdf method of rv_discrete class
- #13286: DOC: stats: clarify rv_continuous/discrete.stats example
- #13288: DOC: stats: discrete distribution shape parameter restrictions
- #13289: MAINT: fix a build warning in sigtoolsmodule.c
- #13290: DOC: Expand the discussion of the nan_policy API.
- #13291: MAINT: signal, stats: Use keepdims where appropriate.
- #13292: DOC: stats: note another common parameterization of nbinom
- #13293: DOC: Change broken link for default values to archived link
- #13295: BUG: stats: fix the support method to return correct bounds
- #13296: DOC: stats: Fix latex markup in the kstwo docstring.
• #13297: TST: mark kde.logpdf overflow test as xslow
• #13298: Generalized Hyperbolic Distribution
• #13301: DOC: cluster: Add cluster number note to the docstring of cluster.vq.kmeans
• #13302: BUG: Fix ndimage.morphology.distance_transform_* argument handling
• #13303: CI: prevent Codecov giving false CI failures and wrong PR annotations
• #13313: ENH: static typing for qhull
• #13316: Pythran implementation of scipy.signal._spectral
• #13317: DOC: forward port 1.6.0 relnotes
• #13319: ENH: stats: add fast numerical inversion of distribution CDF
• #13320: ENH: x0 for differential_evolution
• #13324: DOC correct linprog highs version added to 1.6
• #13326: MAINT: update numpydoc to v1.1.0
• #13327: DOC: interpolate: improved docstring examples of `interpolate.interpn()`…
• #13328: ENH: Boost stats distributions
• #13330: ENH: stats: add noncentral hypergeometric distributions (Fisher’s…
• #13331: MAINT/ENH: resolve mypy warnings/errsors
• #13332: DOC: interpolate: improved docstring of `interpolate.interp2d`…
• #13333: ENH: stats: Some more _sf and _isf implementations.
• #13334: MAINT: stats: Clean up a few defunct comments in _continuous_distns.py
• #13336: Pythran version of scipy.optimize._group_columns
• #13337: DOC/ENH: type hinting in scipy.integrate.simpson
• #13346: ENH: stats: add 'ddof' parameter to the 'variation' function
• #13355: ENH: stats: implement _logpdf, _sf and _isf for loggamma.
• #13360: ENH/DOC: fix docstring and input validation in interpolate.RectSphereBivariateSpline
• #13366: BUG: stats: Don't raise ZeroDivisionError in _unequal_var_ttest_denom
• #13370: ENH: fix ARGUS distribution for small parameters in stats
• #13371: ENH: stats: add 'bootstrap' for estimating confidence interval…
• #13373: BUG: io/matlab: preserve dimensions of empty >=2D arrays
• #13374: ENH: stats: add skewed Cauchy distribution
• #13379: BUG: sparse: fix verbosity in sparse lsqr
• #13383: TST: stats: mark many dimension permutation t-test slow
• #13384: MAINT: Make keywords array static
• #13388: PERF: Avoid duplicate mean calculations in skew and kurtosis
• #13389: DOC: Fix deprecated directive syntax
• #13390: DOC: Correct line length for Parameter Section underline
• #13393: MAINT: stats: allow wishart dim - 1 < df < dim
• #13395: DOC: fix typo in setup.py warning message
• #13396: BUG: Fix MLE for Nakagami `nakagami_gen.fit`
• #13397: MAINT: linalg: Fix tgsen family wrapper and ordqz
• #13406: TST: add error handling tests for sparse BSR ctor
• #13413: DOC: ultra-quickstart guide
• #13418: BUG: Fix moment returning inconsistent types and shapes
• #13423: DOC: Update example for leaf_label_func/dendrogram
• #13431: ENH: stats: override _rvs for nhypergeom
• #13432: Add indicator in NDInterpolator docstring that N must be > 1
• #13434: DOC: stats: note relationship between scaled-inv-chi2 and invgamma
• #13436: ENH: interpolate: add input validation to check input x-y is…
• #13441: ENH: add functionality ’barnard_exact’ test to scipy.stats.
• #13443: MAINT: stats: Updates for skewcauchy
• #13444: DOC: clarify range of `a` parameter for johnsonsu/johnsonsb
• #13445: DOC: fix runtests guidelines.
• #13446: MAINT: stats: Add _fitstart method to wrapcauchy.
• #13447: DEV: Update development Docker image
• #13448: ENH: Add annotations for `scipy.spatial.distance`
• #13451: DOC: minor formatting.
• #13458: DOC: indent see also.
• #13460: DOC: stats: Fix link to Cramer-von Mises wikipedia article.
• #13461: DOC: reorganize scipy.stats overview docs page
• #13463: DOC: misc formatting fixes
• #13466: DOC: Typo in see also s/SmoothUni/SmoothBi/g
• #13467: DOC: optimize: add description about ’tol’ argument for `minimize`.
• #13469: MAINT: Refactor optimization methods to use scipy.stats.qmc
• #13477: CI: pin numpy to 1.19.5 for the three macOS CI jobs
• #13478: DOC: fix typos where double :: for Sphinx directives were missing
• #13481: CI: pin numpy to 1.19.5 in the 4 parallel Windows builds on Azure
• #13482: CI: use numpy 1.20.0 again in macOS CI
• #13483: DOC: Multiple documentation syntax fixes.
• #13484: Move some pythran config from CI to setup
• #13487: DOC: add a tutorial about scipy.stats.qmc
• #13492: ENH: GH actions should not run on forks
• #13493: DEV: Enable gitpod for SciPy
• #13495: DOC One-word typo in the documentation of optimize.linprog_simplex
• #13499: DOC: describe LSAP implementation
• #13502: BUG: Bounds created with lists weren’t working for Powell
• #13507: MAINT, TST: stats: centralize invalid parameters list for all…
• #13510: DOC: stats: fix small doc errors in ‘multivariate_hypergeom’
• #13513: DOC: Added math notation in examples in litisys.py
• #13514: ENH: simplify low_0_bit function for Sobol
• #13515: ENH: optimize: add bound constraint support for nelder-mead solver
• #13516: DOC: reduce LaTeX usage for johnsonb docstring
• #13519: BLD: remove build_sphinx support from setup.py
• #13527: TST: stats: xfail test_ind_randperm_alternative2 on 32 bit
• #13530: DOC: correct comparisons between median filter functions
• #13532: ENH: release the GIL inside medfilt2d
• #13538: DOC: optimize: fix minor doc error in ‘fmin_powell’ (#13511)
• #13546: DOC: fix list of “mode” options for ndimage
• #13549: ENH: stats: add ‘alternative’ keyword to some normality tests.
• #13551: MAINT: add git to docker env
• #13552: MAINT: stats: remove float_power shim
• #13553: DOC: use support rather than a/b in stats tutorial
• #13560: MAINT: optimize: improve linprog error message for sparse input…
• #13562: MAINT: optimize: using np.isclose instead of _within_tolerance.
• #13566: ENH: Speed up hdquantiles_sd()
• #13569: BENCH: optimize: benchmark only HiGHS methods; add bigger linprog…
• #13574: DOC: In description of cluster.hierarchy.dendrogram ‘level’ parameter,…
• #13576: ENH: improve discrepancy performance
• #13579: TST: Add pybind11 to tox environments
• #13583: BUG: Fix Dockerfile apt-get installs
• #13588: MAINT: forward port 1.6.1 relnotes.
• #13593: BUG: stats: preserve sample dtype for bin edges
• #13595: ENH: interpolate: add RBFInterpolator
• #13596: DOC: Fix indentation in new_stats_distribution.rst.inc
• #13601: Add dpss for get_window function
• #13604: DOC: Correct dual annealing visiting param range.
• #13605: Add Codecov badge to README
• #13607: MAINT: stats: fix crystalball entropy
• #13611: Better argument preparation for distributions in stats package.
• #13612: Add docker run command for Windows cmd
- #13613: MAINT, CI: mypy: fix typing errors + add mypy to CI
- #13616: FIX: Return correct output for invgauss.cdf when mu is very small
- #13617: MAINT: accept numbers and iterables for width in find_peaks_cwt
- #13620: CI: disable the mypy CI job (partial revert of gh-13613)
- #13621: DOC: signal: use array_like for input types
- #13622: MAINT: clean up some unused files, make `mypy scipy` pass
- #13623: CI: enable Mypy CI job again
- #13624: TST: test more values for `visiting_param` input to `dual_annealing`
- #13625: Rename integrate.simps to integrate.simps in documentation…
- #13631: ENH: add `stats.differential_entropy` function
- #13633: BUG: stats.binned_statistic_2d user function expecting arrays
- #13641: ENH: Added degrees parameter to rotvec
- #13645: MAINT: mypy: don't install numpy-stubs
- #13649: BUG: sparse: csc_matrix.argmax() integer overflow
- #13650: ENH: stats: add `alternative` parameter to ansari
- #13652: DOC: fix eigvalsh documentation (#13651)
- #13654: BUG: Fix LatinHypercubes
- #13656: DOC: Fix PCHIP references
- #13657: TST: remove IPython warning in debug session
- #13658: Remove spurious quotes in docstring
- #13661: ENH: stats: improve efficiency of / fix bug in exact permutation…
- #13667: MAINT: Make latest Docker image default
- #13668: MAINT: add .theia/ to .gitignore
- #13669: BLD: change SCIPY_USE_PYTHRAN default to `1`?
- #13676: ENH Small improvements for LSQR with damp
- #13678: MAINT: add Pythran-generated files to .gitignore
- #13679: MAINT: move the `conda develop` in the Gitpod config
- #13680: DOC: Add cKDTree note comparing it with KDTree
- #13681: DOC: build doc updates on Pythran, compiled code, and cleanups
- #13683: BUG: mmwrite correctly serializes non skew-symmetric arrays
- #13684: FIX: fix numerical overflow in gamma.isf method
- #13685: BUG: fix cosine distance range to 0-2
- #13694: MAINT: fix warning emitted when NumPy version is incorrect
- #13696: ENH: support trimming in test_ind
- #13701: DEV: scipy.interpolate b-splines (periodic case)
• #13702: DEP: Clean up spent deprecations in spatial.distance
• #13703: MAINT: fix issues found by static code analysis
• #13706: ENH: stats: Implement sf and isf for the laplace distribution.
• #13711: MAINT: stats: fix broadcasting for scipy.stats.entropy
• #13712: BUG: stats: Override _fitstart for the invweibull distribution.
• #13713: DOC: update toolchain.rst to reflect windows universal C runtime
• #13714: MAINT: stats: Remove an unused list from test_continuous_basic.py.
• #13715: MAINT: stats: No need to suppress frechet deprecation warnings.
• #13716: MAINT: use super() as described by PEP 3135
• #13718: MAINT: new-style class, removing inheritance to object
• #13721: MAINT: add a type-ignore for mpmath (#13721)
• #13723: MAINT: mypy: ignore mpmath imports in mypy.ini
• #13724: DOC: pydata sphinx theme
• #13725: BENCH: add benchmark for Kendalltau
• #13727: CI: simplify Pythran configuration setup for Azure
• #13731: MAINT: stats: Some flake8-driven clean up.
• #13732: ENH: stats: Studentized Range Distribution
• #13735: DOC: correct Voronoi docstring
• #13738: DOC: add example to wright_bessel
• #13739: ENH: stats: Implement _sf and _isf for the chi distribution.
• #13741: MAINT: prevent overwriting of x in minimize
• #13747: DOC: Add note for interp1d for non-unique x-values
• #13749: MAINT: forward port 1.6.2 relnotes
• #13759: MAINT: simpson small performance speedups
• #13765: FIX: npymath missing causing npy_log1p to be unknown
• #13768: BENCH: Add missing pythran dependency
• #13770: ENH: stats.contingency: Add the sparse option to crosstab.
• #13774: DEP: Deprecate squeezing input vectors in spatial.distance
• #13775: Enable trust region methods to use a finite difference Hessian…
• #13777: DOC: Fix Ubuntu/Debian installation instructions
• #13778: DOC: remove references to RandomState
• #13782: MAINT: LBFGSB err msg on MAXLS changed closes #11718
• #13785: BENCH: Add benchmark for cdist/pdist with weights
• #13786: MAINT: Prepare cdist/pdist for C++ rework
• #13787: MAINT: stats: move entropy and differential_entropy functions…
• #13790: DOC: Add some dependencies for Dockerfile doc of scipy development.
• #13792: BUG: stats: Fix broadcasting in wrapcauhy.cdf
• #13795: MAINT: stats: add hypotests to __all__ in init.py, not stats.py
• #13797: MAINT: stats: probplot: don’t plot least-squares fit line unless…
• #13798: MAINT: fix incorrect code comment in ‘hierarchy.to_tree’
• #13802: DEV: add environment.yml file for development with conda/mamba
• #13803: DOC: fix doc build warning about arxiv role already being registered
• #13804: DOC+MAINT: optimize: lb and ub in the Bounds constructor are…
• #13807: MAINT: Don’t use parallel Sphinx
• #13808: MAINT: cluster.to_tree: more idiomatic looping over rows of matrix…
• #13810: MAINT: add a CODEOWNERS file
• #13811: MAINT: Add ci skip to azp
• #13814: ENH/DOC: pydata sphinx theme polishing
• #13817: DOC: Misc parameter typo and casing in scipy/linalg/_decomp_ldl.py
• #13818: MAINT: stats: keep `entropy` importable from `scipy.stats.distributions`
• #13820: BUG: update _kendall_p_exact ValueError to f-string
• #13831: FIX:DEP: Allow better tolerance control for pinv and pinvher and…
• #13832: BUG: stats: Fix rvs for levy_stable when alpha=1
• #13833: MAINT: Add inline type hintsing for stats.qmc
• #13836: MAINT: Fix a couple compiler warnings.
• #13838: TST: relax test tolerances for BinomTest
• #13841: BLD: add “-std=c99” flag to scipy.special extensions using…
• #13845: ENH: stats: add ‘method’ parameter to ‘differential_entropy’…
• #13847: TST: skip on optimize failure on macOS, mark one as xfail
• #13848: DOC: optimize: move Nelder Mead doc from Unconstrained minimization…
• #13849: DOC: Roadmap update
• #13852: CI: fix temporary wrong brew version from GitHub
• #13854: ENH: Update Scipy Gitpod
• #13859: TST: fix ultra-slow ttest permutations test
• #13860: MAINT: clean up LSAP error checking
• #13863: DOC: remove seed in examples
• #13865: DOC: optimize: The bounds param of differential_evolution is…
• #13866: MAINT: special: Remove an unused variable from _poly_approx in…
• #13867: DOC: stats: Explain meaning of alternatives for fisher_exact.
• #13868: CI: fix the failing job on linux.
• #13870: MAINT: move LSAP rectangular matrix handling into solver code
• #13871: DOC: Add Gitpod documentation
• #13876: Workflow: Add nightly release of NumPy in linux workflows
• #13877: DOC: Conform to numpydoc + uniformity.
• #13879: BUG: signal: fix get_window argument handling and add tests.
• #13881: CI: remove .travis.yml, remove codecov from CircleCI
• #13882: BLD: ensure incrementing dev version strings
• #13886: TST: optimize: skip test_network_flow_limited_capacity w/ UMFPACK…
• #13888: MAINT: Fix issues involving `elif` conditions
• #13891: Rename `InivariateSpline` to `UnivariateSpline`
• #13893: ENH: linprog HiGHS margins/sensitivity analysis
• #13894: DOC: Add blank line before `Return` section.
• #13897: DOC: BLD: fix doc build version check, and improve build time
• #13903: MAINT: Gitpod fixes
• #13907: ENH: Rewrite minkowski metric in C++ with pybind11
• #13909: Revert "Workflow: Add nightly release of NumPy in linux workflows"
• #13910: DOC: update Readme
• #13911: MAINT: use dict built-in rather than OrderedDict
• #13920: BUG: Reactivate conda environment in init
• #13925: BUG: stats: magnitude of Yates’ correction <= abs(observed-expected)…
• #13926: DOC: correct return type in `disjoint_set` subsets docstring
• #13927: DOC/MAINT: Add copyright notice to `qmc.primes_from_2_to`
• #13928: BUG: DOC: signal: fix need argument config and add missing doc…
• #13929: REL: add PEP 621 (project metadata in `pyproject.toml`) support
• #13931: MAINT: special: get rid of `_logit.c.src`
• #13934: ENH: signal: make `get_window` supports `general_cosine`…
• #13940: MAINT: QMCEngine d input validation
• #13941: MAINT: forward port 1.6.3 relnotes
• #13944: BUG: spatial: fix weight handling of `distance.sokalmichener`.
• #13947: MAINT: Remove duplicate calculations in sokalmichener
• #13949: DOC: minor grammar fixes in minimize and KDTree.query
• #13951: ENH: Add Boschloo exact test to stats
• #13956: ENH: spatial: add `axis` and `keepdims` optional argument…
• #13963: MAINT: stats: Fix unused imports and a few other issues related…
• #13971: DOC: Add Karl Pearson’s reference to chi-square test
• #13972: ENH: cluster: add an optional argument `seed` for `kmeans`…
• #13973: BLD: fix build warnings for causal/anticausal pointers in ndimage
• #13975: ENH: set empty array norm to zero.
• #13977: MAINT: signal: replace distutils templating with tempita
• #13978: MAINT: improve validations and keyword only arguments for some…
• #13979: ENH: Add Inverse of Log CDF of Normal Distribution
• #13983: Fixing 'ndimage.watershed_ift' tutorial's documentation
• #13987: DOC: Adding examples to docstrings in morphology: white_tophat,…
• #13989: DOC: interpolate: improve examples of `RegularGridInterpolator`…
• #13990: MAINT, DOC: optimize: Make the input validation explanation clear…
• #13992: Workflow : Add nightly release of NumPy in linux workflows
• #13995: Doc: Continuous integration information
• #14000: BUG: sparse: Fix DIA.diagonal bug and add a regression test
• #14004: ENH: Fast addition dia matrix
• #14006: MAINT: optimize: add validation to check func parameter number…
• #14008: BUG: Raise exception for inconsistent WAV header
• #14009: DEP: Remove usage of numpy.compat
• #14010: MAINT: add support for wheel DL proxy
• #14012: DOC: Broaden Exact Test Reference
• #14015: MAINT: remove brew update
• #14017: BENCH: Add more formats for sparse arithmetic
• #14018: BENCH: add benchmark for f_oneway
• #14020: MAINT: modify np.int_ to np.int32 to make it the same for 32/64…
• #14023: MAINT: Fix clang build and remove some unicode characters
• #14025: BUG: sparse: fix DIA.setdiag issue
• #14026: TST: optimize: xfail part of test_powell
• #14029: CI: github macos fix
• #14030: MAINT: use ‘yield from <expr>’ (PEP 380)
• #14031: MAINT: new-style class, removing inheritance to object
• #14032: MAINT: CXXFLAGS for Pythran
• #14033: ENH: Port squeclidean and braycurtis to _distance_pybind
• #14034: MAINT: Clean-up 'next = __next__'
• #14045: MAINT: bump PYVER pavement.py
• #14047: DEV: initialize boost submodule in Gitpod Dockerfile
• #14051: BLD: if boost submodule content is missing, error out early
• #14052: DOC: missing submodule init information
• #14057: DOC: special: Add Examples to `psi` docstring
• #14058: BUG: fixed a dtype bug in linalg.solve.
• #14060: Doc: Fix typo in documentation of spence function.
• #14061: MAINT: stats: Type annotations for _sobol.pyx
• #14062: DOC: A few small fixes in quickstart_gitpod.rst
• #14063: DOC: signal: add Add Examples to `cont2discrete` docstring
• #14064: DOC: optimize: Add Examples to fmin_bfgs docstring
• #14065: Add example for scipy.stats.trim1 under docstring
• #14066: DOC add example to scipy.special.hermite
• #14067: DOC add alpha docstring description, add example to docstring
• #14070: DOC add parameters, return, and example to docstring
• #14072: MAINT/TST: Fix tests failing with the nightly build of numpy.
• #14075: DOC Improve the code snippet in signal.hilbert docstring.
• #14076: DOC: Document Jensen-Shannon distance being accepted by cdist/pdist
• #14079: BLD: Avoid importing scipy.stats during cythonize stage
• #14082: MAINT: Remove old, commented extract_diagonal
• #14083: MAINT: sparse: Remove defunct function extract_diagonal
• #14085: ENH: Implement canberra distance in _distance_pybind
• #14086: MAINT: Clear scipy namespace of entries better imported from…
• #14088: Install Pythran from sources for python 3.10
• #14092: BUG: Fixes issue with clang.
• #14094: DOC: Correct the inconsistency definition of Default in class…
• #14105: TST: stats: mannwhitneyu: check that mstats and stats mannwhitneyu…
• #14106: DOC: stats.mstats: mannwhitneyu: the returned statistic is the…
• #14107: ENH: stats: bootstrap: add ‘vectorized’ parameter; automatically…
• #14109: BUG: fix two issues in the fblas signature files
• #14110: DOC: mailmap update
• #14113: ENH: stats: bootstrap: add ‘paired’ parameter
• #14116: MAINT: fix deprecated Python C API usage in odr
• #14118: DOC: 1.7.0 release notes
• #14125: DOC: fix typo
• #14126: ENH: stats: bootstrap: add ‘batch’ parameter to control batch…
• #14127: CI: upgrade pip in benchmarks CI run
• #14130: BUG: Fix trust-constr report TypeError if verbose is set to 2…
• #14133: MAINT: interpolate: raise NotImplementedError not ValueError
• #14139: FIX/DOC: lsqr doctests print failure
• #14145: MAINT: 1.7.x version pins (“backport”)
• #14146: MAINT: commit count if no tag
• #14164: TST, BUG: fix rbf matrix value
• #14166: CI, MAINT: restrictions on pre-release CI
• #14171: TST: signal: Bump tolerances for a test of Gustafsson’s…
• #14175: TST: stats: Loosen tolerance in some binomtest tests.
• #14182: MAINT: stats: Update ppcc_plot and ppcc_max docstring.
• #14195: MAINT: download-wheels missing import
• #14230: REL: stop shipping generated Cython sources in sdist

5.6 SciPy 1.6.3 Release Notes

SciPy 1.6.3 is a bug-fix release with no new features compared to 1.6.2.

5.6.1 Authors

• Peter Bell
• Ralf Gommers
• Matt Haberland
• Peter Mahler Larsen
• Tirth Patel
• Tyler Reddy
• Pamphile ROY +
• Xingyu Liu +

A total of 8 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.6.3

• #13772: Divide by zero in distance.yule
• #13796: CI: prerelease_deps failures
• #13890: TST: spatial rotation failure in (1.6.3) wheels repo (ARM64)
Pull requests for 1.6.3

- #13755: CI: fix the matplotlib warning emitted during building docs
- #13773: BUG: Divide by zero in yule dissimilarity of constant vectors
- #13799: CI/MAINT: deprecated np.typeDict
- #13819: substitute np.math.factorial with math.factorial
- #13895: TST: add random seeds in Rotation module

5.7 SciPy 1.6.2 Release Notes

SciPy 1.6.2 is a bug-fix release with no new features compared to 1.6.1. This is also the first SciPy release to place upper bounds on some dependencies to improve the long-term repeatability of source builds.

5.7.1 Authors

- Pradipta Ghosh +
- Tyler Reddy
- Ralf Gommers
- Martin K. Scherer +
- Robert Uhl
- Warren Weckesser

A total of 6 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.6.2

- #13512: `stats.gaussian_kde.evaluate` broken on S390X
- #13584: rotation._compute_euler_from_matrix() creates an array with negative…
- #13585: Behavior change in coo_matrix when dtype=None
- #13686: delta0 argument of scipy.odr.ODR() ignored
Pull requests for 1.6.2

• #12862: REL: put upper bounds on versions of dependencies
• #13575: BUG: fix `gaussian_kernel_estimate` on S390X
• #13586: BUG: sparse: Create a utility function `getdata`
• #13598: MAINT, BUG: enforce contiguous layout for output array in Rotation.as_euler
• #13687: BUG: fix scipy.odr to consider given delta0 argument

5.8 SciPy 1.6.1 Release Notes

SciPy 1.6.1 is a bug-fix release with no new features compared to 1.6.0.

Please note that for SciPy wheels to correctly install with Pip on macOS 11, Pip >= 20.3.3 is needed.

5.8.1 Authors

• Peter Bell
• Evgeni Burovski
• CJ Carey
• Ralf Gommers
• Peter Mahler Larsen
• Cheng H. Lee +
• Cong Ma
• Nicholas McKibben
• Nikola Forró
• Tyler Reddy
• Warren Weckesser

A total of 11 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.
Issues closed for 1.6.1

- #13072: BLD: Quadpack undefined references
- #13241: Not enough values to unpack when passing tuple to `blocksize`…
- #13329: Large sparse matrices of big integers lose information
- #13342: fftn crashes if shape arguments are supplied as ndarrays
- #13356: LSQBivariateSpline segmentation fault when quitting the Python…
- #13358: scipy.spatial.transform.Rotation object can not be deepcopied…
- #13408: Type of `has_sorted_indices` property
- #13412: Sorting spherical Voronoi vertices leads to crash in area calculation
- #13421: linear_sum_assignment - support for matrices with more than 2^31…
- #13428: `stats.exponnorm.cdf` returns `nan` for small values of `K`…
- #13465: KDTree.count_neighbors: 0xC0000005 error for tuple of different…
- #13468: directed_hausdorff issue with shuffle
- #13472: Failures on FutureWarnings with numpy 1.20.0 for lfilter, sosfilt…
- #13565: BUG: 32-bit wheels repo test failure in optimize

Pull requests for 1.6.1

- #13318: REL: prepare for SciPy 1.6.1
- #13344: BUG: fftpack doesn’t work with ndarray shape argument
- #13345: MAINT: Replace scipy.take with numpy.take in FFT function docstrings.
- #13354: BUG: optimize: rename private functions to include leading underscore
- #13387: BUG: Support big-endian platforms and big-endian WAVs
- #13394: BUG: Fix Python crash by allocating larger array in LSQBivariateSpline
- #13400: BUG: sparse: Better validation for BSR ctor
- #13403: BUG: sparse: Propagate dtype through CSR/CSC constructors
- #13414: BUG: maintain dtype of SphericalVoronoii regions
- #13422: FIX: optimize: use npy_intp to store array dims for lsap
- #13425: BUG: spatial: make Rotation picklable
- #13426: BUG: `has_sorted_indices` and `has_canonical_format` should…
- #13430: BUG: stats: Fix exponnorm.cdf and exponnorm.sf for small K
- #13470: MAINT: silence warning generated by `spatial.directed_hausdorff`
- #13473: TST: fix failures due to new FutureWarnings in NumPy 1.21.dev0
- #13479: MAINT: update directed_hausdorff Cython code
- #13485: BUG: KDTree weighted count_neighbors doesn’t work between two…
- #13503: TST: fix 'test_fortranfile_read_mixed_record' on big-endian…
- #13518: DOC: document that pip >= 20.3.3 is needed for macOS 11
- #13520: BLD: update reqs based on oldest-supported-numpy in pyproject.toml
- #13567: TST, BUG: adjust tol on test_equivalence

5.9 SciPy 1.6.0 Release Notes

Contents

- SciPy 1.6.0 Release Notes
  - Highlights of this release
    * New features
      - scipy.special improvements
      - scipy.odr improvements
      - scipy.integrate improvements
      - scipy.cluster improvements
      - scipy.interpolate improvements
      - scipy.io improvements
      - scipy.linalg improvements
      - scipy.ndimage improvements
      - scipy.optimize improvements
      - scipy.signal improvements
      - scipy.sparse improvements
      - scipy.sparse.linalg improvements
      - scipy.fft improvements
      - scipy.spatial improvements
      - scipy.stats improvements
    * Deprecated features
      - scipy.spatial changes
    * Backwards incompatible changes
      - scipy changes
      - scipy.interpolate changes
      - scipy.linalg changes
      - scipy.signal changes
      - scipy.spatial changes
      - scipy.stats changes
    * Other changes
  * Authors
SciPy 1.6.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Before upgrading, we recommend that users check that their own code does not use deprecated SciPy functionality (to do so, run your code with python -Wd and check for DeprecationWarning). Our development attention will now shift to bug-fix releases on the 1.6.x branch, and on adding new features on the master branch.

This release requires Python 3.7+ and NumPy 1.16.5 or greater.

For running on PyPy, PyPy3 6.0+ is required.

5.9.1 Highlights of this release

- **scipy.ndimage** improvements: Fixes and enhancements to boundary extension modes for interpolation functions. Support for complex-valued inputs in many filtering and interpolation functions. New grid_mode option for `scipy.ndimage.zoom` to enable results consistent with scikit-image's rescale.
- **scipy.optimize.linprog** has fast, new methods for large, sparse problems from the HiGHS library.
- **scipy.stats** improvements including new distributions, a new test, and enhancements to existing distributions and tests

New features

5.9.2 scipy.special improvements

`scipy.special` now has improved support for 64-bit LAPACK backend

5.9.3 scipy.odr improvements

`scipy.odr` now has support for 64-bit integer BLAS

`scipy.odr.ODR` has gained an optional overwrite argument so that existing files may be overwritten.

5.9.4 scipy.integrate improvements

Some renames of functions with poor names were done, with the old names retained without being in the reference guide for backwards compatibility reasons: - `integrate.simps` was renamed to `integrate.simpson` - `integrate.trapz` was renamed to `integrate.trapezoid` - `integrate.cumtrapz` was renamed to `integrate.cumulative_trapezoid`
5.9.5 **scipy.cluster improvements**

`scipy.cluster.hierarchy.DisjointSet` has been added for incremental connectivity queries.

`scipy.cluster.hierarchy.dendrogram` return value now also includes leaf color information in `leaves_color_list`.

5.9.6 **scipy.interpolate improvements**

`scipy.interpolate.interp1d` has a new method `nearest-up`, similar to the existing method `nearest` but rounds half-integers up instead of down.

5.9.7 **scipy.io improvements**

Support has been added for reading arbitrary bit depth integer PCM WAV files from 1- to 32-bit, including the commonly-requested 24-bit depth.

5.9.8 **scipy.linalg improvements**

The new function `scipy.linalg.matmul_toeplitz` uses the FFT to compute the product of a Toeplitz matrix with another matrix.

`scipy.linalg.sqrtm` and `scipy.linalg.logm` have performance improvements thanks to additional Cython code.

Python LAPACK wrappers have been added for `pptrf`, `pptrs`, `ppsv`, `pptri`, and `ppcon`.

`scipy.linalg.norm` and the `svd` family of functions will now use 64-bit integer backends when available.

5.9.9 **scipy.ndimage improvements**

`scipy.ndimage.convolve`, `scipy.ndimage.correlate` and their 1d counterparts now accept both complex-valued images and/or complex-valued filter kernels. All convolution-based filters also now accept complex-valued inputs (e.g. `gaussian_filter`, `uniform_filter`, etc.).

Multiple fixes and enhancements to boundary handling were introduced to `scipy.ndimage` interpolation functions (i.e. `affine_transform`, `geometric_transform`, `map_coordinates`, `rotate`, `shift`, `zoom`).

A new boundary mode, `grid-wrap` was added which wraps images periodically, using a period equal to the shape of the input image grid. This is in contrast to the existing `wrap` mode which uses a period that is one sample smaller than the original signal extent along each dimension.

A long-standing bug in the `reflect` boundary condition has been fixed and the mode `grid-mirror` was introduced as a synonym for `reflect`.

A new boundary mode, `grid-constant` is now available. This is similar to the existing `ndimage` constant mode, but interpolation will still performed at coordinate values outside of the original image extent. This `grid-constant` mode is consistent with OpenCV’s `BORDER_CONSTANT` mode and scikit-image’s `constant` mode.

Spline pre-filtering (used internally by `ndimage` interpolation functions when `order >= 2`), now supports all boundary modes rather than always defaulting to mirror boundary conditions. The standalone functions `spline_filter` and `spline_filter1d` have analytical boundary conditions that match modes `mirror`, `grid-wrap` and `reflect`.

`scipy.ndimage` interpolation functions now accept complex-valued inputs. In this case, the interpolation is applied independently to the real and imaginary components.
The ndimage tutorials (https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html) have been updated with new figures to better clarify the exact behavior of all of the interpolation boundary modes.

`scipy.ndimage.zoom` now has a `grid_mode` option that changes the coordinate of the center of the first pixel along an axis from 0 to 0.5. This allows resizing in a manner that is consistent with the behavior of scikit-image’s `resize` and `rescale` functions (and OpenCV’s `cv2.resize`).

### 5.9.10 scipy.optimize improvements

`sckipy.optimize.linprog` has fast, new methods for large, sparse problems from the HiGHS C++ library. `method='highs-ds'` uses a high performance dual revised simplex implementation (HSOL), `method='highs-ipm'` uses an interior-point method with crossover, and `method='highs'` chooses between the two automatically. These methods are typically much faster and often exceed the accuracy of other `linprog` methods, so we recommend explicitly specifying one of these three method values when using `linprog`.

`sckipy.optimize.quadratic_assignment` has been added for approximate solution of the quadratic assignment problem.

`sckipy.optimize.linear_sum_assignment` now has a substantially reduced overhead for small cost matrix sizes

`sckipy.optimize.least_squares` has improved performance when the user provides the jacobian as a sparse jacobian already in `csr_matrix` format

`sckipy.optimize.linprog` now has an `rr_method` argument for specification of the method used for redundancy handling, and a new method for this purpose is available based on the interpolative decomposition approach.

### 5.9.11 scipy.signal improvements

`sckipy.signal.gammatone` has been added to design FIR or IIR filters that model the human auditory system.

`sckipy.signal.iircomb` has been added to design IIR peaking/notching comb filters that can boost/attenuate a frequency from a signal.

`sckipy.signal.sosfilt` performance has been improved to avoid some previously-observed slowdowns

`sckipy.signal.windows.taylor` has been added—the Taylor window function is commonly used in radar digital signal processing

`sckipy.signal.gauss_spline` now supports `list` type input for consistency with other related SciPy functions

`sckipy.signal.correlation_lags` has been added to allow calculation of the lag/displacement indices array for 1D cross-correlation.

### 5.9.12 scipy.sparse improvements

A solver for the minimum weight full matching problem for bipartite graphs, also known as the linear assignment problem, has been added in `scipy.sparse.csgraph.min_weight_full_bipartite_matching`. In particular, this provides functionality analogous to that of `scipy.optimize.linear_sum_assignment`, but with improved performance for sparse inputs, and the ability to handle inputs whose dense representations would not fit in memory.

The time complexity of `scipy.sparse.block_diag` has been improved dramatically from quadratic to linear.
5.9.13 `scipy.sparse.linalg` improvements

The vendored version of SuperLU has been updated.

5.9.14 `scipy.fft` improvements

The vendored `pocketfft` library now supports compiling with ARM neon vector extensions and has improved thread pool behavior.

5.9.15 `scipy.spatial` improvements

The python implementation of `KDTree` has been dropped and `KDTree` is now implemented in terms of `cKDTree`. You can now expect `cKDTree`-like performance by default. This also means `sys.setrecursionlimit` no longer needs to be increased for querying large trees.

`scipy.spatial.transform.Rotation` has been updated with support for Modified Rodrigues Parameters alongside the existing rotation representations (PR gh-12667).

`scipy.spatial.transform.Rotation` has been partially cythonized, with some performance improvements observed.

`scipy.spatial.distance.cdist` has improved performance with the `minkowski` metric, especially for p-norm values of 1 or 2.

5.9.16 `scipy.stats` improvements

New distributions have been added to `scipy.stats`:

- The asymmetric Laplace continuous distribution has been added as `scipy.stats.laplace_asymmetric`.
- The negative hypergeometric distribution has been added as `scipy.stats.nhypergeom`.
- The multivariate t distribution has been added as `scipy.stats.multivariate_t`.
- The multivariate hypergeometric distribution has been added as `scipy.stats.multivariate_hypergeom`.

The `fit` method has been overridden for several distributions (`laplace`, `pareto`, `rayleigh`, `invgauss`, `logistic`, `gumbel_l`, `gumbel_r`); they now use analytical, distribution-specific maximum likelihood estimation results for greater speed and accuracy than the generic (numerical optimization) implementation.

The one-sample Cramér-von Mises test has been added as `scipy.stats.cramervonmises`.

An option to compute one-sided p-values was added to `scipy.stats.ttest_1samp`, `scipy.stats.ttest_ind_from_stats`, `scipy.stats.ttest_ind` and `scipy.stats.ttest_rel`.

The function `scipy.stats.kendalltau` now has an option to compute Kendall’s tau-c (also known as Stuart’s tau-c), and support has been added for exact p-value calculations for sample sizes > 171.

`stats.trapz` was renamed to `stats.trapezoid`, with the former name retained as an alias for backwards compatibility reasons.

The function `scipy.stats.linregress` now includes the standard error of the intercept in its return value.

The `_logpdf`, `_sf`, and `_isf` methods have been added to `scipy.stats.nakagami`; `_sf` and `_isf` methods also added to `scipy.stats.gumbel_r`.

The `_sf` method has been added to `scipy.stats.levy` and `scipy.stats.levy_l` for improved precision.
scipy.stats.binned_statistic_dd performance improvements for the following computed statistics: max, min, median, and std.

We gratefully acknowledge the Chan-Zuckerberg Initiative Essential Open Source Software for Science program for supporting many of these improvements to scipy.stats.

**Deprecated features**

**5.9.17 scipy.spatial changes**

Calling KDTree.query with k=None to find all neighbours is deprecated. Use KDTree.query_ball_point instead.

distance.wminkowski was deprecated; use distance.minkowski and supply weights with the w keyword instead.

**Backwards incompatible changes**

**5.9.18 scipy changes**

Using scipy.fft as a function aliasing numpy.fft.fft was removed after being deprecated in SciPy 1.4.0. As a result, the scipy.fft submodule must be explicitly imported now, in line with other SciPy subpackages.

**5.9.19 scipy.interpolate changes**

**5.9.20 scipy.linalg changes**

**5.9.21 scipy.signal changes**

The output of decimate, lfilter_zi, lfiltic, sos2tf, and sosfilt_zi have been changed to match numpy.result_type of their inputs.

The window function slepian was removed. It had been deprecated since SciPy 1.1.

**5.9.22 scipy.spatial changes**

cKDTree.query now returns 64-bit rather than 32-bit integers on Windows, making behaviour consistent between platforms (PR gh-12673).

**5.9.23 scipy.stats changes**

The frechet_l and frechet_r distributions were removed. They were deprecated since SciPy 1.0.
Other changes

setup_requires was removed from setup.py. This means that users invoking python setup.py install without having numpy already installed will now get an error, rather than having numpy installed for them via easy_install. This install method was always fragile and problematic, users are encouraged to use pip when installing from source.

- Fixed a bug in scipy.optimize.dual_annealing accept_reject calculation that caused uphill jumps to be accepted less frequently.
- The time required for (un)pickling of scipy.stats.rv_continuous, scipy.stats.rv_discrete, and scipy.stats.rv_frozen has been significantly reduced (gh12550). Inheriting subclasses should note that __setstate__ no longer calls __init__ upon unpickling.

Authors

- @endolith
- @vkk800
- aditya +
- George Bateman +
- Christoph Baumgarten
- Peter Bell
- Tobias Biester +
- Keaton J. Burns +
- Evgeni Burovski
- Rüdiger Busche +
- Matthias Bussonnier
- Dominic C +
- Corallus Caninus +
- CJ Carey
- Thomas A Caswell
- chapochn +
- Lucía Cheung
- Zach Colbert +
- Coloquinte +
- Yannick Copin +
- Devin Crowley +
- Terry Davis +
- Michaël Defferrard +
- devonwp +
- Didier +
- divenex +
• Thomas Duvernay +
• Eoghan O’Connell +
• Gökçen Eraslan
• Kristian Eschenburg +
• Ralf Gommers
• Thomas Grainger +
• GreatV +
• Gregory Gundersen +
• h-vetinari +
• Matt Haberland
• Mark Harfouche +
• He He +
• Alex Henrie
• Chun-Ming Huang +
• Martin James McHugh III +
• Alex Izvorski +
• Joey +
• ST John +
• Jonas Jonker +
• Julius Bier Kirkegaard
• Marcin Konowalczyk +
• Konrad0
• Sam Van Kooten +
• Sergey Koposov +
• Peter Mahler Larsen
• Eric Larson
• Antony Lee
• Gregory R. Lee
• Loïc Estève
• Jean-Luc Margot +
• MarkusKoebis +
• Nikolay Mayorov
• G. D. McBain
• Andrew McCluskey +
• Nicholas McKibben
• Sturla Molden
• Denali Molitor +
• Eric Moore
• Shashaank N +
• Prashanth Nadukandi +
• nbelakovski +
• Andrew Nelson
• Nick +
• Nikola Forró +
• odidev
• ofirr +
• Sambit Panda
• Dima Pasechnik
• Tirth Patel +
• Matti Picus
• Pawel Redzyński +
• Vladimir Philipenko +
• Philipp Thölke +
• Ilhan Polat
• Eugene Prilepin +
• Vladyslav Rachek
• Ram Rachum +
• Tyler Reddy
• Martin Reinecke +
• Simon Segerblom Rex +
• Lucas Roberts
• Benjamin Rowell +
• Eli Rykoff +
• Atsushi Sakai
• Moritz Schulte +
• Daniel B. Smith
• Steve Smith +
• Jan Soedingrekso +
• Victor Stinner +
• Jose Storopoli +
• Diana Sukhoverkhova +
• Søren Fuglede Jørgensen
• taoky +
• Mike Taves +
• Ian Thomas +
• Will Tirone +
• Frank Torres +
• Seth Troisi
• Ronald van Elburg +
• Hugo van Kemenade
• Paul van Mulbregt
• Saul Ivan Rivas Vega +
• Pauli Virtanen
• Jan Vleeshouwers
• Samuel Wallan
• Warren Weckesser
• Ben West +
• Eric Wieser
• WillTirone +
• Levi John Wolf +
• Zhiqing Xiao
• Rory Yorke +
• Yun Wang (Maigo) +
• Egor Zemlyanoy +
• ZhihuiChen0903 +
• Jacob Zhong +

A total of 122 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

5.9.24 Issues closed for 1.6.0

• #1323: ndimage.shift destroys data from edges (Trac #796)
• #1892: using rptfile= with an existing file causes a Fortran runtime…
• #1903: ndimage.rotate misses some values (Trac #1378)
• #1930: scipy.io.wavfile should be able to read 24 bit signed wave (Trac…
• #3158: Odd casting behaviour of signal.filtfilt
• #3203: interpolation.zoom incorrect output for certain cases
• #3645: BUG: stats: mstats.pearsonr calculation is wrong if the masks…
• #3665: Return Bunch objects from stats functions
• #4922: unexpected zero output values from zoom
• #5202: BUG: stats: Spurious warnings from the pdf method of several…
• #5223: Zoom does not return the same values when resizing a sub-array…
• #5396: scipy.spatial.distance.pdist documentation bug
• #5489: ValueError: failed to create intent(cache|hide)|optional array–…
• #6096: loadmat drops dtype of empty arrays when squeeze_me=True
• #6713: scipy.ndimage.zoom returns artefacts and boundaries in some cases
• #7125: Impossible to know number of dimensions in c function used by…
• #7324: scipy.ndimage.zoom bad interpolation when downsampling (zoom…
• #8131: BUG: geometric_transform wrap mode possible bug
• #8163: LSRM fails on some random values when providing an x0
• #8210: Why should I choose order > 1 for scipy.ndimage.zoom?
• #8465: Unexpected behavior with reflect mode of ndimage.rotate
• #8776: cdist behavior with Minkowsky and np.inf
• #9168: documentation of pearson3 in scipy.stats unclear
• #9223: Faster implementation of scipy.sparse.block_diag
• #9476: Invalid index in signal.medfilt2d’s QUICK_SELECT
• #9857: scipy.odr.Output.sd_beta is not standard error
• #9865: Strange behavior of ‘ndimage.shift’ and ‘ndimage.affine_transform’
• #10042: Consider support for multivariate student-t distribution?
• #10134: gausshyper distribution accepts invalid parameters
• #10179: str+bytes concatenation error in test_lapack.py
• #10216: cKDTree.query_ball_point speed regression
• #10463: ENH: vectorize scipy.fft for more CPU architectures
• #10593: Rename ’sum’ ndimage function
• #10595: scipy.stats.ttest_1samp should support alternative hypothesis
• #10610: ndimage.interpolation.spline_filter1d default value of mode
• #10620: ndimage.interpolation.zoom() option to work like skimage.transform.resize()
• #10711: Array Shapes Not Aligned Bug in scipy.optimize._lsq.lsq_linear.py
• #10782: BUG: optimize: methods unknown to `scipy.optimize.show_options`
• #10892: Possible typo in an equation of optimize/dual_annealing
• #11020: signal.fftconvolve return a tuple including lag information
• #11093: scipy.interpolate.interp1d can not handle datetime64
• #11170: Use manylinux2014 to get aarch64/ppc64le support
• #11186: BUG: stats: pearson3 CDF and SF functions incorrect when skew…
• #11366: DeprecationWarning due to invalid escape sequences
• #11403: Optimize raises “ValueError: 'x0' violates bound constraints”…
• #11558: ENH: IIR comb filter
• #11559: BUG: iirfilter doesn’t fail for frequencies above Nyquist
• #11567: scipy.signal.iirfilter doesn’t check consistency of wp and ws…
• #11654: ENH: Add Negative Hypergeometric Distribution
• #11720: BUG: stats: wrong shape from median_absolute_deviation for arrays…
• #11746: BUG: stats: pearson3 returns size 1 arrays where other distributions…
• #11756: Improve and fix *Spline docstrings and code
• #11758: BUG: of scipy.interpolate.CubicSpline when 'bc_type' is set…
• #11925: MAINT: remove character encoding check in CI?
• #11963: Test failures - TestLinprogIPSparseCholmod
• #12102: incorrect first moment of non central t-distribution
• #12113: scipy.stats.poisson docs for rate = 0
• #12152: ENH: signal.gauss_spline should accept a list
• #12157: BUG: Iteration index initialisation is wrong in scipy.optimize.linexsearch.scalar_search_wolfe2
• #12162: Storing Rotation object in NumPy array returns an array with…
• #12176: cannot modify the slice of an array returned by `wavfile.read`
• #12190: retrieve leave colors from dendrogram
• #12196: PERF: scipy.linalg.pinv is very slow compared to numpy.linalg.pinv
• #12222: Interpolating categorical data (interp1d)
• #12231: Is the p-value of the Kruskal-Wallis test two-sided?
• #12249: ENH: least_squares: should not re-instantiate csr_matrix if already…
• #12264: DOC: optimize: linprog method-specific function signature
• #12290: DOC: Convex Hull areas are actually perimeters for 2-dimensional…
• #12308: integrate.solve_ivp with DOP853 method fails when yDot = 0
• #12326: BUG: stats.exponnorm.pdf returns 0 for small K
• #12337: scipy.sparse.linalg.eigsh documentation is misleading
• #12339: scipy.io.wavfile.write documentation has wrong example
• #12340: sparse.lil_matrix.tocsr() fails silently on matrices with nzn…
• #12350: Create a 2-parameter version of the gamma distribution
• #12369: scipy.signal.correlate has an error in the documentation, examples…
• #12373: interp1d returns incorrect values for step functions
• #12378: interpolate.NearestNDInterpolator.__call__ & LinearNDInterpolator.__call__…
• #12411: scipy.stats.spearmanr mishandles nan variables with "propogate"
• #12413: DOC: Remove the “Basic functions” section from the SciPy tutorial.
• #12415: scipy.stats.dirichlet documentation issue
• #12419: least_squares ValueError with ‘lm’ method - regression from 1.4.1…
• #12431: Request for Python wrapper for LAPACK’s ?pptrf (Cholesky factorization…
• #12458: spearmanr with entire NaN columns produces errors
• #12477: WIP: Addition of MLE for stats.invgauss/wald
• #12483: reading .wav fails when the file is too big on python 3.6.0
• #12490: BUG: stats: logistic and genlogistic logpdf overflow for large…
• #12499: LinearNDInterpolator raises ValueError when value array has writeable=False…
• #12523: Wrong key in __odrpack.c
• #12547: typo in scipy/cluster/_hierarchy.pyx
• #12549: DOC: least_squares return type is poorly formatted.
• #12578: TST: test_bounds_infeasible_2 failing on wheels repo cron jobs
• #12585: ENH: Add Multivariate Hypergeometric Distribution
• #12604: unintuitive conversion in ‘scipy.constants.lambda2nu’
• #12606: DOC: Invalid syntax in example.
• #12665: List of possible bugs found by automated code analysis
• #12696: scipy.optimize.minbound, numpy deprecation warning Creating…
• #12699: TestProjections.test_iterative_refinements_dense failure
• #12701: TestDifferentialEvolutionSolver::test_L4 failing
• #12719: Misleading scipy.signal.get_window() docstring with 'exponential'…
• #12740: circstd doesn’t handle \( R = \text{hypot}(S, C) > 1 \)
• #12749: ENH: interp1d Matlab compatibility
• #12773: Meta-issue: ndimage spline boundary handling (NumFOCUS proposal)
• #12813: optimize.root(method="krylov") fails if options[“tol_norm”] expects…
• #12815: stats.zscore inconsistent behavior when all values are the same
• #12840: scipy.signal.windows.dpss docstring typo
• #12874: Rotation.random vs stats.special_ortho_group
• #12881: FFT - documentation - examples - linspace construction
• #12904: BUG: parsing in loadarff()
• #12917: GitHub Actions nightly build triggered on forks
• #12919: BUG: numerical precision, use gammaln in nct.mean
• #12924: Rename Sample Based Integration Methods to Comply with Code of…
• #12940: Should the minimum numpy for AIX be bumped to 1.16.5
• #12951: A possible typo in scipy.stats.weightedtau
• #12952: [Documentation question] Would it be more precise to specify…
• #12970: Documentation presents second order sections as the correct choice…
• #12982: Calculate standard error of the intercept in linregress
5.9.25 Pull requests for 1.6.0

- #8032: ENH: Add in taylor window common in Radar processing
- #8779: CI: Run benchmarks
- #9361: ENH: Add Kendall's tau-a and tau-c variants to scipy.stats.kendalltau()
- #11068: ENH: Adds correlation_lags function to scipy.signal
- #11119: ENH: add Cramer-von-Mises (one-sample) test to scipy.stats
- #11249: ENH: optimize: interpolative decomposition redundancy removal...
- #11346: ENH: add fast toeplitz matrix multiplication using FFT
- #11413: ENH: Multivariate t-distribution (stale)
- #11563: ENH: exact p-value in stats.kendalltau() for sample sizes > 171
- #11691: ENH: add a stack of reversal functions to linprog
- #12043: ENH: optimize: add HiGHS methods to linprog - continued
- #12061: Check parameter consistency in signal.iirdesign
- #12067: MAINT: Cleanup OLDAPI in ndimage/src/_ctest.c
- #12069: DOC: Add developer guidelines for implementing the nan_policy...
• #12077: MAINT: malloc return value checks for cython
• #12080: MAINT: Remove suppress_warnings
• #12085: ENH: special: support ILP64 Lapack
• #12086: MAINT: Cleanup PyMODINIT_FUNC used during 2to3
• #12097: ENH: stats: override stats.rayleigh.fit with analytical MLE
• #12112: DOC: Improve integrate.nquad docstring
• #12125: TST: Add a test for stats.gmean with negative input
• #12139: TST: Reduce flakiness in lsmr test
• #12142: DOC: add a note in poisson distribution when mu=0 and k=0 in…
• #12144: DOC: Update ndimage.morphology.distance_transform*
• #12154: ENH: scipy.signal: allow lists in gauss_spline
• #12170: ENH: scipy.stats: add negative hypergeometric distribution
• #12177: MAINT: Correctly add input line to ValueError
• #12183: ENH: Use fromfile where possible
• #12186: MAINT: generalize tests in SphericalVoronoi
• #12198: TST: Fix str + bytes error
• #12199: ENH: match np.result_type behaviour in some scipy.signal functions
• #12200: ENH: add FIR and IIR gammatone filters to scipy.signal
• #12204: ENH: Add overwrite argument for odr.ODR() and its test.
• #12206: MAINT: lstsq: Switch to tranposed problem if the array is tall
• #12208: wavfile bugfixes and maintenance
• #12214: DOC: fix docstring of “sd_beta” of odr.Output.
• #12234: MAINT: prevent divide by zero warnings in scipy.optimize BFGS…
• #12235: REL: set version to 1.6.0.dev0
• #12237: BUG: Fix exit condition for QUICK_SELECT pivot
• #12242: ENH: Rename ndimage.sum to ndimage.sum_labels (keep sum as alias)
• #12243: EHN: Update SuperLU
• #12244: MAINT: stats: avoid spurious warnings in ncv2.pdf
• #12245: DOC: Fixed incorrect default for mode in scipy.ndimage.spline_filter1d
• #12248: MAINT: clean up pavement.py
• #12250: ENH: Replaced csr_matrix() by tocsr() and complemented docstring
• #12253: TST, CI: turn on codecov patch diffs
• #12259: MAINT: Remove duplicated test for import cycles
• #12263: ENH: Rename LocalSearchWrapper bounds
• #12265: BUG optimize: Accept np.matrix in lsq_linear
• #12266: BUG: Fix paren error in dual annealing accept_reject calculation
- #12269: MAINT: Included mismatched shapes in error messages.
- #12279: MAINT: `__array__` and array protocols cannot be used in sparse.
- #12281: DOC: update wheel DL docs
- #12283: ENH: odr: ILP64 Blas support in ODR
- #12284: ENH: linalg: support for ILP64 BLAS/LAPACK in f2py wrappers
- #12286: ENH: Cythonize scipy.spatial.transform.Rotation
- #12287: ENH: Read arbitrary bit depth (including 24-bit) WAVs
- #12292: BLD: fix musl compilation
- #12293: MAINT: Fix a DeprecationWarning in validate_runtests_log.py.
- #12296: DOC: Clarify area/volume in scipy.spatial.ConvexHull docstrings
- #12302: CI: Run travis builds on master to keep cache up to date
- #12305: TST: Cleanup print statements in tests
- #12323: ENH: Add a Bunch-like class to use as a backwards compatible…
- #12324: BUG: io: Fix an error that occurs when attempting to raise a…
- #12327: DOC: clarify docstrings of `query_ball_tree` and `query_pairs`
- #12334: PERF: Improve cKDTree.query_ball_point constant time cython overhead
- #12338: DOC: improve consistency and clarity of docs in linalg and sparse/linalg
- #12341: DOC: add Examples for KDTree query_ball_tree and query_pairs
- #12343: DOC: add examples for special.eval_legendre()
- #12349: BUG: avoid overflow in sum() for 32-bit systems
- #12351: DOC: Fix example wavfile to be 16bit
- #12352: [BUG] Consider 0/0 division in DOP853 error estimation
- #12353: Fix exception causes in vq.py
- #12354: MAINT: Cleanup unneeded void* cast in setlist.pxd
- #12355: TST: Remove hack for old win-amd64 bug
- #12356: ENH: Faster implementation of scipy.sparse.block_diag (#9411…
- #12357: MAINT,TST: update and run scipy/special/utils/convert.py
- #12358: TST: Check mstat.skewtest pvalue
- #12359: TST: Sparse matrix test with int64 indptr and indices
- #12363: DOC: ref. in CloughTocher2DInterpolator
- #12364: DOC: `sparse_distance_matrix` and `count_neighbors` examples
- #12371: MAINT, CI: bump to latest stable OpenBLAS
- #12372: MAINT: Minor cleanup of (c)KDTree tests
- #12374: DEP: Deprecate `distance.wminkowski`
- #12375: ENH: Add fast path for minkowski distance with p=1,2 and support…
- #12376: Fix exception causes in most of the codebase
• #12377: DOC: Quick fix - adds newline to correlation_lags docstring Examples…
• #12381: BENCH: remove obsolete goal_time param
• #12382: ENH: Replace KDTree with a thin wrapper over cKDTree
• #12385: DOC: improve docstrings of interpolate.NearestNDInterpolator.__call__…
• #12387: DOC/STY: add example to scipy.signal.correlate
• #12393: CI: Replace the existing check for non-ASCII characters with…
• #12394: CI: arm64 numpy now available
• #12395: ENH: improve stats.binned_statistic_dd performance
• #12396: DOC, MAINT: forward port 1.5.0 renotes
• #12398: API: Disable len() and indexing of Rotation instances with single…
• #12399: MAINT: Replace some Unicode dash-like chars with an ASCII hyphen.
• #12402: update .mailmap
• #12404: MAINT: io: Change the encoding comment of test_mio.py to utf-8.
• #12416: CI: cache mingw, azure pipelines
• #12427: BUG: logic error in loop unrolling (cKDTree)
• #12432: DOC: Remove the “Basic functions” section from the SciPy tutorial.
• #12434: ENH: linalg: Add LAPACK wrappers pptri/pptrs/psv/pptri/ppcon
• #12435: DOC: fix simplex math for scipy.stats.dirichlet documentation
• #12439: DOC: add API methods summary for NdPPoly
• #12443: BUG: stats: Improve calculation of expnorm.pdf
• #12448: DOC: stats: Add “Examples” to the ansari docstring.
• #12450: ENH: add ’leaves_color_list’ for cluster.dendrogram dictionary.
• #12451: MAINT: remove “blacklist” terminology from code base
• #12452: DOC: clarify the meaning of whitening for cluster.vq.whiten()
• #12455: MAINT: clearer error message in setup.py
• #12457: ENH: stats: override stats.pareto.fit with analytical MLE
• #12460: check if column in spearman rho is entirely NaN or Inf
• #12463: DOC: improve and clean up *Spline docstrings in fitpack2.py
• #12474: ENH: linalg: speedup _sqrtm_triu by moving tight loop to Cython
• #12476: ENH: add IIR comb filter to scipy.signal
• #12484: Fix documentation for minimize
• #12486: DOC: add a note in poisson distribution when mu=0 and k=0 in…
• #12491: MAINT: forward port 1.5.1 release notes
• #12508: Fix exception causes all over the codebase
• #12514: ENH: stats: override stats.invgauss.fit with analytical MLE
• #12519: PERF: Avoid np.zeros when custom initialization is needed anyway
• #12520: DOC: Minor RST section renaming.
• #12521: MAINT: Remove unused imports
• #12522: PERF: Get rid of unnecessary allocation in VarReader5.cread_fieldnames
• #12524: DOC: special: Set Axes3D rect to avoid clipping labels in plot.
• #12525: Fix large sparse nnz
• #12526: DOC: Remove double section and too long header underline.
• #12527: Improve error message for wrong interpolation type
• #12530: Move redundant logic outside loop for conditional speedup in…
• #12532: ENH: Add norm=\{“forward”, “backward”\} to `scipy.fft`
• #12535: MAINT: Avoid sphinx deprecated aliases for SeeAlso and Only
• #12540: BUG: fix odr.output.work_ind key bug and add its test.
• #12541: ENH: add solver for minimum weight full bipartite matching
• #12550: PERF: pickling speed of rv*
• #12551: DOC: fix typo in cluster/_.hierarchy.pyx
• #12552: CI: Cleanup travis pip installs
• #12556: BUG: Fix problem with Scipy.integrate.solve_bvp for big problems
• #12557: MAINT: Use extern templates to improve sparsetools compile time
• #12558: MAINT: Remove hack to allow scipy.fft to act like a function
• #12563: MAINT: Remove unused mu0 in special/orthogonal.py
• #12564: DOC: fix return type docstring for least_squares
• #12565: DOC: stats: respond to query about Kruskal-Wallis test being…
• #12566: BUG: Interpolate: use stable sort
• #12568: Updated documentation for as_quat
• #12571: DEP: remove deprecated slepian window
• #12573: DEP: remove ‘frechet_l’ and ‘frechet_r’
• #12575: BUG: stats: fix multinomial.pmf NaNs when params sum > 1
• #12576: MAINT: remove warning from LSQSphereBivariateSpline
• #12582: ENH: Multivariate t-distribution
• #12587: ENH: speed up rvs of gengamma in scipy.stats
• #12588: DOC: add Examples add see also sections for LinearNDInterpolator,…
• #12597: ENH: Add single-sided p-values to t-tests
• #12599: Small update to scipy FFT tutorial
• #12600: ENH: disjoint set data structure
• #12602: BUG: add const for Read-only views in interpnd.pyx
• #12605: BUG: correct ‘np.asanyarray’ use in ‘scipy.constants.lambda2nu’
• #12610: MAINT: forward port 1.5.2 release notes
- #12612: MAINT: stats: Use explicit keyword parameters instead of `**kwds`.
- #12616: DOC: make explicit docstring that interpolate.interp1d only accepts...
- #12618: DOC: Minor doc formatting.
- #12640: MAINT: stats: fix issues with scipy.stats.pearson3 docs, moment,…
- #12647: TST: Add Boost ellipr[cdfgj]_data test data
- #12648: DOC: Update special/utils/README with instructions
- #12649: DOC: simplified pip quickstart guide
- #12650: DOC: stats: Fix boxcox docstring: lambda can be negative.
- #12655: DOC: update Steering Council members listed in governance docs
- #12659: rv_sample expect bug
- #12663: DOC: optimize: try to fix linprog method-specific documentation
- #12664: BUG: stats: Fix logpdf with large negative values for logistic…
- #12666: MAINT: Fixes from static analysis
- #12667: ENH: Adding Modified Rodrigues Parameters to the Rotation class
- #12670: DOC: Update documentation for Gamma distribution
- #12673: API: Unconditionally return np.intp from cKDTree.query
- #12677: MAINT: Add Autogenerated notice to ufuncs.pyi
- #12682: MAINT: Remove _util._valarray
- #12688: MAINT: add f2py-generated scipy.integrate files to .gitignore
- #12689: BENCH: simplify benchmark setup, remove benchmarks/run.py
- #12694: scipy/stats: Add laplace_asymmetric continuous distribution
- #12695: DOC: update Ubuntu quickstart; conda compilers now work!
- #12698: MAINT: Replace np.max with np.maximum
- #12700: TST: bump test precision for constrained trustregion test
- #12702: TST: bump test tolerance for `DifferentialEvolutionSolver.test_L4`
- #12703: BUG: Improve input validation for sepfir2d
- #12708: MAINT: fix a typo in scipy.sparse
- #12709: BUG: bvlscan fail catastrophically to converge
- #12711: MAINT: Use platform.python_implementation to determine IS_PYPY
- #12713: TST: Fix flaky test_lgmres
- #12716: DOC: add examples and tutorial links for interpolate functions…
- #12717: DOC: Fix Issue #5396
- #12725: ENH: Support complex-valued images and kernels for many ndimage…
- #12729: DEP: remove setup_requires
- #12732: BENCH: skip benchmarks instead of hiding them when SCIPY_XSLOW=0
- #12734: CI: Don't ignore line-length in the lint_diff check.
• #12736: DOC: Fix signal.windows.get_window() ‘exponential’ docstring
• #12737: ENH: stats: override stats.gumbel_r.fit and stats.gumbel_l.fit…
• #12738: ENH: stats: override stats.logistic.fit with system of equations…
• #12743: BUG: Avoid negative variances in circular statistics
• #12744: Prevent build error on GNU/Hurd
• #12746: TST: parameterize the test cases in test_ndimage.py
• #12752: DOC: Add examples for some root finding functions.
• #12754: MAINT, CI: Azure windows deps multiline
• #12756: ENH: stats: Add an sf method to levy for improved precision in…
• #12757: ENH: stats: Add an sf method to levy_l for improved precision.
• #12765: TST, MAINT: infeasible_2 context
• #12767: Fix spline interpolation boundary handling for modes reflect…
• #1269: DOC: syntax error in scipy.interpolate.bspl
• #12770: ENH: add nearest-up rounding to scipy.interpolate.interp1d
• #12771: TST: fix invalid input unit test for scipy.signal.gammatone
• #12775: ENH: Adds quadratic_assignment with two methods
• #12776: ENH: add grid-constant boundary handling in ndimage interpolation…
• #12777: Add Taylor Window function - Common in Radar DSP
• #12779: ENH: Improvements to pocketfft thread pool and ARM neon vectorization
• #12788: API: Rename cKDTree n_jobs argument to workers
• #12792: DOC: remove THANKS.txt file in favor of scipy.org
• #12793: Add new flag to authors tool
• #12802: BENCH: add scipy.ndimage.interpolation benchmarks
• #12803: Do not pin the version of numpy in unsupported python versions
• #12810: CI: fix 32-bit Linux build failure on Azure CI runs
• #12812: ENH: support interpolation of complex-valued images
• #12814: BUG: nonlin_solve shouldn't pass non-vector dx to tol_norm
• #12818: Update ckdtree.pyx
• #12822: MAINT: simplify directed_hausdorff
• #12827: DOC: Fix wrong name w being used instead of worN in docs.
• #12831: DOC: fix typo in sparse/base.py
• #12835: MAINT: stats: Improve vonmises PDF calculation.
• #12839: ENH: scipy.stats: add multivariate hypergeometric distribution
• #12843: changed M to N in windows.dpss
• #12846: MAINT: update minimum NumPy version to 1.16.5
• #12847: DOC: Unify the formula in docs of scipy.stats.pearsonr()
• #12849: DOC: polish QAP docs for consistency and readability
• #12852: ENH, MAINT: Bring KDTree interface to feature-parity with cKDTree
• #12858: DOC: use :doi: and :arxiv: directives for references
• #12872: lazily import multiprocessing.Pool in MapWrapper
• #12878: DOC: document ScalarFunction
• #12882: MAINT: stats: Change a test to use <= instead of strictly less…
• #12885: numpy.linspace calls edited to ensure correct spacing.
• #12886: DOC: stats: Add ‘versionadded’ to cramervonmises docstring.
• #12899: TST: make a couple of tests expected to fail on 32-bit architectures
• #12903: DOC: update Windows build guide and move into contributor guide
• #12907: DOC: clarify which array the precenter option applies to
• #12908: MAINT: spatial: Remove two occurrences of unused variables in…
• #12909: ENH: stats: Add methods gumbel_r._sf and gumbel_r._isf
• #12910: CI: travis: Remove some unnecessary code from .travis.yml.
• #12911: Minor fixes to dendrogram plotting
• #12921: CI: don’t run GitHub Actions on fork or in cron job
• #12927: MAINT: rename integrate.simps to simpson
• #12934: MAINT: rename trapz and cumtrapz to (cumulative_)trapezoid
• #12936: MAINT: fix numerical precision in nct.stats
• #12938: MAINT: fix linter on master
• #12941: Update minimum AIX pinnings to match non AIX builds
• #12955: BUG: Fixed wrong NaNs check in scipy.stats.weightedtau
• #12958: ENH: stats: Implement _logpdf, _sf and _isf for nakagami.
• #12962: Correcting that p should be in [0,1] for a variety of discrete…
• #12964: BUG: added line.strip() to split_data_line()
• #12968: ENH: stats: Use only an analytical formula or scalar root-finding…
• #12971: MAINT: Declare support for Python 3.9
• #12972: MAINT: Remove redundant Python < 3.6 code
• #12980: DOC: Update documentation on optimize.rosen
• #12983: ENH: improvements to stats.linregress
• #12990: DOC: Clarify that using sos as output type for iirdesign can…
• #12992: DOC: capitalization and formatting in lsmr
• #12995: DOC: stats: Several documentation fixes.
• #12996: BUG: Improve error messages for `range` arg of binned_statistic_dd
• #12998: MAINT: approx_derivative with FP32 closes #12991
• #13004: TST: isinstance(OptimizeResult.message, str) closes #13001

- #13006: Keep correct dtypes when loading empty mat arrays.
- #13009: MAINT: clip SLSQP step within bounds
- #13012: DOC: fix bilinear_zpk example labels
- #13013: ENH: Add `subset` and `subsets` methods to `DisjointSet`...
- #13029: MAINT: basinhopping callback for initial minimisation
- #13032: DOC: fix docstring errors in in stats.wilcoxon
- #13036: BUG: forward port lint_diff shims
- #13041: MAINT: dogbox ensure x is within bounds closes #11403
- #13042: MAINT: forward port 1.5.4 release notes
- #13046: DOC: Update optimize.least_squares doc for all tolerance must...
- #13052: Typo fix for cluster documentation
- #13054: BUG: fix `scipy.optimize.show_options` for unknown methods....
- #13056: MAINT: fft: Fix a C++ compiler warning.
- #13057: Minor fixes on doc of function csr_toocs
- #13059: DOC: stats: Update the "Returns" section of the linregress docstring.
- #13060: MAINT: clip_x_for_func should be private
- #13061: DOC: signal.win -> signal.windows.win in Examples
- #13063: MAINT: Add suite-sparse and sksparse installation check
- #13070: MAINT: stats: Remove a couple obsolete comments.
- #13073: BUG: Fix scalar_search_wolfe2 to resolve #12157
- #13078: CI, MAINT: migrate Lint to Azure
- #13081: BLD: drop Python 3.6 support (NEP 29)
- #13082: MAINT: update minimum NumPy version to 1.16.5 in a couple more...
- #13083: DOC: update toolchain.rst
- #13086: DOC: Update the Parameters section of the correlation docstring
- #13087: ENH:signal: Speed-up Cython implementation of _sosfilt
- #13089: BLD, BUG: add c99 compiler flag to HiGHS baiсl traveling salesman library
- #13091: BUG: Fix GIL handling in _sosfilt
- #13094: DOC: clarify “location” in docstring of cKDTree.query
- #13095: Zoom resize update
- #13097: BUG: fix CubicSpline(…, bc_type="periodic") #11758
- #13100: BUG: sparse: Correct output format of kron
- #13107: ENH: faster linear_sum_assignment for small cost matrices
- #13110: CI, MAINT: refguide/asv checks to azure
- #13112: CI: fix MacOS CI
• #13113: CI: Install word list package for refguide-check
• #13115: BUG: add value range check for signal.iirdesign()
• #13116: CI: Don’t report name errors after an exception in refguide-check
• #13117: CI: move sdist/pre-release test Azure
• #13119: Improve error message on friedmanchisquare function
• #13121: Fix factorial() for NaN on Python 3.10
• #13123: BLD: Specify file extension for language standard version tests
• #13128: TST: skip Fortran I/O test for ODR
• #13130: TST: skip factorial() float tests on Python 3.10
• #13136: CI: Add python dbg run to GH Actions
• #13138: CI: Port coverage, 64-bit BLAS, GCC 4.8 build to azure
• #13139: Fix edge case for mode='nearest' in ndimage.interpolation functions
• #13141: BUG: signal: Fix data type of the numerator returned by ss2tf.
• #13144: MAINT: stats: restrict gausshyper z > -1
• #13146: typo in csr.py
• #13148: BUG: stats: fix typo in stable rvs per gh-12870
• #13149: DOC: spatial/stats: cross-ref random rotation matrix functions
• #13151: MAINT: stats: Fix a test and a couple PEP-8 issues.
• #13152: MAINT: stats: Use np.take_along_axis in the private function…
• #13154: ENH: stats: Implement defined handling of constant inputs in…
• #13156: DOC: maintain equal display range for ndimage.zoom example
• #13159: CI: Azure: Don’t run tests on merge commits, except for coverage
• #13160: DOC: stats: disambiguate location-shifted/noncentral
• #13161: BUG: DifferentialEvolutionSolver.__del__ can fail in garbage…
• #13163: BUG: stats: fix bug in spearmanr nan propagation
• #13167: MAINT: stats: Fix a test.
• #13169: BUG: stats: Fix handling of misaligned masks in mstats.pearsonr.
• #13178: CI: testing.yml -> macos.yml
• #13181: CI: fix lint
• #13190: BUG: optimize: fix a duplicate key bug for `test_show_options`’
• #13192: BUG:linalg: Add overwrite option to gejsv wrapper
• #13194: BUG: linalg should be able to use rel_step
• #13199: [skip travis] DOC: 1.6.0 release notes
• #13203: fix typos
• #13209: TST:linalg: set the seed for cossin test
• #13212: [DOC] Backtick and directive consistency.
• #13217: REL: add necessary setuptools and numpy version pins in pyproject.toml…
• #13226: BUG: pavement.py file handle fixes
• #13249: Handle cv2 correctly for ndimage functions with complex-valued…
• #13253: BUG,MAINT: Ensure all Pool objects are closed
• #13255: BUG:linalg: Fix heevx wrappers and add new tests
• #13260: CI: fix macOS testing
• #13269: CI: github actions: In the linux dbg tests, update apt before…
• #13279: MAINT: 1.6.0 rc2 backports

5.10 SciPy 1.5.4 Release Notes

Contents

• SciPy 1.5.4 Release Notes
  – Authors
    • Issues closed for 1.5.4
    • Pull requests for 1.5.4

SciPy 1.5.4 is a bug-fix release with no new features compared to 1.5.3. Importantly, wheels are now available for Python 3.9 and a more complete fix has been applied for issues building with XCode 12.

5.10.1 Authors

• Peter Bell
• CJ Carey
• Andrew McCluskey +
• Andrew Nelson
• Tyler Reddy
• Eli Rykoff +
• Ian Thomas +

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.
Issues closed for 1.5.4

- #12763: ndimage.fourier_ellipsoid segmentation fault
- #12789: TestConvolve2d.test_large_array failing on Windows ILP64 CI job
- #12857: sparse A[0,:] = ndarray is ok, A[:,0] = ndarray ValueError from...
- #12860: BUG: Build failure with Xcode 12
- #12935: Failure to build with Python 3.9.0 on macOS
- #12966: MAINT: lint_diff.py on some backport PRs
- #12988: BUG: Highly multi-dimensional `gaussian_kde` giving `-inf`...

Pull requests for 1.5.4

- #12790: TST: Skip TestConvolve2d.test_large_array if not enough memory
- #12851: BUG: sparse: fix inner indexed assignment of a 1d array
- #12875: BUG: segfault in ndimage.fourier_ellipsoid with length-1 dims
- #12937: CI: macOS3.9 testing
- #12957: MAINT: fixes XCode 12/ python 3.9.0 build for 1.5.x maint branch
- #12959: CI: add Windows Python 3.9 to CI
- #12974: MAINT: Run lint_diff.py against the merge target and only for...
- #12978: DOC: next_fast_len output doesn't match docstring
- #12979: BUG: fft.next_fast_len should accept keyword arguments
- #12989: BUG: improved the stability of kde for highly (1000s) multi-dimension...
- #13017: BUG: Add explicit cast to _tmp sum.
- #13022: TST: xfail test_maxiter_worsening()

5.11 SciPy 1.5.3 Release Notes

SciPy 1.5.3 is a bug-fix release with no new features compared to 1.5.2. In particular, Linux ARM64 wheels are now available and a compatibility issue with XCode 12 has been fixed.
5.11.1 Authors

- Peter Bell
- CJ Carey
- Thomas Duvernay +
- Gregory Lee
- Eric Moore
- odidev
- Dima Pasechnik
- Tyler Reddy
- Simon Segerblom Rex +
- Daniel B. Smith
- Will Tirone +
- Warren Weckesser

A total of 12 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.5.3

- #9611: Overflow error with new way of p-value calculation in kendall…
- #10069: scipy.ndimage.watershed_ift regression in 1.0.0
- #11260: BUG: DOP853 with complex data computes complex error norm, causing…
- #11479: RuntimeError: dictionary changed size during iteration on loading…
- #11972: BUG (solved): Error estimation in DOP853 ODE solver fails for…
- #12543: BUG: Picture rotated 180 degrees and rotated -180 degrees should…
- #12613: Travis X.4 and X.7 failures in master
- #12654: scipy.stats.combine_pvalues produces wrong results with method='mudholkar_george'
- #12819: BUG: Scipy Sparse slice indexing assignment Bug with zeros
- #12834: BUG: ValueError upon calling Scipy Interpolator objects
- #12836: ndimage.median can return incorrect values for integer inputs
- #12860: Build failure with Xcode 12
Pull requests for 1.5.3

- #12611: MAINT: prepare for SciPy 1.5.3
- #12614: MAINT: prevent reverse broadcasting
- #12617: MAINT: optimize: Handle non-scalar size 1 arrays in fmin_slsqp…
- #12623: MAINT: stats: Loosen some test tolerances.
- #12638: CI, MAINT: pin pytest for Azure win
- #12668: BUG: Ensure factorial is not too large in mstats.kendalltau
- #12705: MAINT: `openblas_support` added sha256 hash
- #12706: BUG: fix incorrect 1d case of the fourier_ellipsoid filter
- #12721: BUG: use special.sindg in ndimage.rotate
- #12724: BUG: per #12654 adjusted mudholkar_george method to combine p…
- #12726: BUG: Fix DOP853 error norm for complex problems
- #12730: CI: pin xdist for Azure windows
- #12786: BUG: stats: Fix formula in the 'stats' method of the ARGUS…
- #12795: CI: Pin setuptools on windows CI
- #12830: [BUG] sparse: Avoid using size attribute in LIL __setitem__
- #12833: BUG: change list of globals items to list of a copy
- #12842: BUG: Use uint16 for cost in NI_WatershedElement
- #12845: BUG: avoid boolean or integer addition error in ndimage.measurements.median
- #12864: BLD: replace the #include of libqull_r.h with with this of qhull_ra.h…
- #12867: BUG: Fixes a ValueError yielded upon calling Scipy Interpolator…
- #12902: CI: Remove ‘env’ from pytest.ini
- #12913: MAINT: Ignore pytest’s PytestConfigWarning

5.12 SciPy 1.5.2 Release Notes

SciPy 1.5.2 is a bug-fix release with no new features compared to 1.5.1.
5.12.1 Authors

- Peter Bell
- Tobias Biester +
- Evgeni Burovski
- Thomas A Caswell
- Ralf Gommers
- Sturla Molden
- Andrew Nelson
- ofirr +
- Sambit Panda
- Ilhan Polat
- Tyler Reddy
- Atsushi Sakai
- Pauli Virtanen

A total of 13 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.5.2

- #3847: Crash of interpolate.splprep(task=-1)
- #7395: splprep segfaults if fixed knots are specified
- #10761: scipy.signal.convolve2d produces incorrect values for large arrays
- #11971: DOC: search in devdocs returns wrong link
- #12155: BUG: Fix permutation of distance matrices in scipy.stats.multiscale_graphcorr
- #12203: Unable to install on PyPy 7.3.1 (Python 3.6.9)
- #12316: negative scipy.spatial.distance.correlation
- #12422: BUG: slsqp: ValueError: failed to initialize intent(inout) array...
- #12428: stats.truncnorm.rvs() never returns a scalar in 1.5
- #12441: eigvalsh inconsistent eigvals= subset_by_index=
- #12445: DOC: scipy.linalg.eigh
- #12449: Warnings are not filtered in csr_matrix.sum()
- #12469: SciPy 1.9 exception in LSQSphereBivariateSpline
- #12487: BUG: optimize: incorrect result from approx_fprime
- #12493: CI: GitHub Actions for maintenance branches
- #12533: eigh gives incorrect results
- #12579: BLD, MAINT: distutils issues in wheels repo
Pull requests for 1.5.2

- #12156: BUG: Fix permutation of distance matrices in scipy.stats.multiscale_graphcorr
- #12238: BUG: Use 64-bit indexing in convolve2d to avoid overflow
- #12256: BLD: Build lsap as a single extension instead of extension + ...
- #12320: BUG: spatial: avoid returning negative correlation distance
- #12383: ENH: Make cKDTree.tree more efficient
- #12392: DOC: update scipy-sphinx-theme
- #12400: BUG: truncnorm and geninvgauss never return scalars from rvs
- #12437: BUG: optimize: cast bounds to floats in new_bounds_to_old/old_bounds_to_new
- #12442: MAINT:linalg: Fix for input args of eigvalsh
- #12461: MAINT: sparse: write matrix/asmatrix wrappers without warning ...
- #12478: BUG: fix array_like input defects and add tests for all functions ...
- #12488: BUG: fix approx_derivative step size. Closes #12487
- #12500: CI: actions branch trigger fix
- #12501: CI: actions branch trigger fix
- #12504: BUG: cKDTreeNode use after free
- #12529: MAINT: allow graceful docs re-upload
- #12538: BUG:linalg: eigh type parameter handling corrected
- #12560: MAINT: truncnorm.rvs compatibility for `Generator`
- #12562: redo gh-12188: fix segfaults in splprep with fixed knots
- #12586: BLD: Add -std=c99 to sigtools to compile with C99
- #12590: CI: Add GCC 4.8 entry to travis build matrix
- #12591: BLD: fix cython error on master-branch cython

5.13 SciPy 1.5.1 Release Notes

SciPy 1.5.1 is a bug-fix release with no new features compared to 1.5.0. In particular, an issue where DLL loading can fail for SciPy wheels on Windows with Python 3.6 has been fixed.
5.13.1 Authors

- Peter Bell
- Loïc Estève
- Philipp Thölke+
- Tyler Reddy
- Paul van Mulbregt
- Pauli Virtanen
- Warren Weckesser

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.5.1

- #9108: documentation: scipy.spatial.KDTree vs. scipy.spatial.cKDTree
- #12218: TypeError in stats.ks_2samp when alternative != ‘two-sided-
- #12406: DOC: Docstring in stats.anderson function not properly formatted
- #12418: Regression in hierarchy.dendogram

Pull requests for 1.5.1

- #12280: BUG: Fixes gh-12218, TypeError converting int to float inside…
- #12336: BUG: KDTree should reject complex input points
- #12344: MAINT: Don’t use numpy’s aliases of Python builtin objects.
- #12407: DOC: Fix docstring for dist param in anderson function
- #12410: CI: Run the Azure Windows Python36 32bit tests with mode ‘fast’
- #12421: Fix regression in scipy 1.5.0 in dendogram when labels is a numpy…
- #12462: MAINT: move distributor_init import after __config__ import

5.14 SciPy 1.5.0 Release Notes

Contents

- SciPy 1.5.0 Release Notes
  - Highlights of this release
    - New features
      - scipy.cluster improvements
      - scipy.fft improvements
SciPy 1.5.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Before upgrading, we recommend that users check that their own code does not use deprecated SciPy functionality (to do so, run your code with `python -Wd` and check for `DeprecationWarning`s). Our development attention will now shift to bug-fix releases on the 1.5.x branch, and on adding new features on the master branch.

This release requires Python 3.6+ and NumPy 1.14.5 or greater.

For running on PyPy, PyPy3 6.0+ and NumPy 1.15.0 are required.
5.14.1 Highlights of this release

• wrappers for more than a dozen new LAPACK routines are now available in `scipy.linalg.lapack`
• Improved support for leveraging 64-bit integer size from linear algebra backends
• addition of the probability distribution for two-sided one-sample Kolmogorov-Smirnov tests

New features

5.14.2 `scipy.cluster` improvements

Initialization of `scipy.cluster.vq.kmeans2` using minit="++" had a quadratic complexity in the number of samples. It has been improved, resulting in a much faster initialization with quasi-linear complexity.

`scipy.cluster.hierarchy.dendrogram` now respects the matplotlib color palette

5.14.3 `scipy.fft` improvements

A new keyword-only argument `plan` is added to all FFT functions in this module. It is reserved for passing in a pre-computed plan from libraries providing a FFT backend (such as PyFFTW and mkl-fft), and it is currently not used in SciPy.

5.14.4 `scipy.integrate` improvements

5.14.5 `scipy.interpolate` improvements

5.14.6 `scipy.io` improvements

`scipy.io.wavfile` error messages are more explicit about what’s wrong, and extraneous bytes at the ends of files are ignored instead of raising an error when the data has successfully been read.

`scipy.io.loadmat` gained a `simplify_cells` parameter, which if set to True simplifies the structure of the return value if the .mat file contains cell arrays.

`pathlib.Path` objects are now supported in `scipy.io` Matrix Market I/O functions

5.14.7 `scipy.linalg` improvements

`scipy.linalg.eigh` has been improved. Now various LAPACK drivers can be selected at will and also subsets of eigenvalues can be requested via `subset_by_value` keyword. Another keyword `subset_by_index` is introduced. Keywords `turbo` and `eigvals` are deprecated.

Similarly, standard and generalized Hermitian eigenvalue LAPACK routines `<sy/he>evx` are added and existing ones now have full `_lwork` counterparts.

Wrappers for the following LAPACK routines have been added to `scipy.linalg.lapack`:

• `?getc2`: computes the LU factorization of a general matrix with complete pivoting
• `?gesc2`: solves a linear system given an LU factorization from `?getc2`
• **?gejsv**: computes the singular value decomposition of a general matrix
  with higher accuracy calculation of tiny singular values and their corresponding singular vectors

• **?geqrf**: computes the QR factorization of a general matrix with
  non-negative elements on the diagonal of R

• **?gtsvx**: solves a linear system with general tridiagonal matrix

• **?gttrf**: computes the LU factorization of a tridiagonal matrix

• **?gttrs**: solves a linear system given an LU factorization from ?gttrf

• **?ptsvx**: solves a linear system with symmetric positive definite
  tridiagonal matrix

• **?pttrf**: computes the LU factorization of a symmetric positive definite
  tridiagonal matrix

• **?pttrs**: solves a linear system given an LU factorization from ?pttrf

• **?pteqr**: computes the eigenvectors and eigenvalues of a positive definite
  tridiagonal matrix

• **?tbtrs**: solves a linear system with a triangular banded matrix

• **?csd**: computes the Cosine Sine decomposition of an orthogonal/unitary
  matrix

Generalized QR factorization routines (?geqrf) now have full _lwork counterparts.

scipy.linalg.cossin Cosine Sine decomposition of unitary matrices has been added.

The function scipy.linalg.khatri_rao, which computes the Khatri-Rao product, was added.

The new function scipy.linalg.convolution_matrix constructs the Toeplitz matrix representing one-dimensional convolution.

### 5.14.8 scipy.ndimage improvements

### 5.14.9 scipy.optimize improvements

The finite difference numerical differentiation used in various minimize methods that use gradients has several new features:

• 2-point, 3-point, or complex step finite differences can be used. Previously only a 2-step finite difference was available.

• There is now the possibility to use a relative step size, previously only an absolute step size was available.

• If the minimize method uses bounds the numerical differentiation strictly obeys those limits.

• The numerical differentiation machinery now makes use of a simple cache, which in some cases can reduce the number of function evaluations.

• minimize's method= 'powell' now supports simple bound constraints

There have been several improvements to scipy.optimize.linprog:

• The linprog benchmark suite has been expanded considerably.

• linprog's dense pivot-based redundancy removal routine and sparse presolve are faster
When `scikit-sparse` is available, solving sparse problems with `method='interior-point'` is faster. The caching of values when optimizing a function returning both value and gradient together has been improved, avoiding repeated function evaluations when using a HessianApproximation such as BFGS.

`differential_evolution` can now use the modern `np.random.Generator` as well as the legacy `np.random.RandomState` as a seed.

### 5.14.10 scipy.signal improvements

A new optional argument `include_nyquist` is added to `freqz` functions in this module. It is used for including the last frequency (Nyquist frequency).

`scipy.signal.find_peaks_cwt` now accepts a `window_size` parameter for the size of the window used to calculate the noise floor.

### 5.14.11 scipy.sparse improvements

Outer indexing is now faster when using a 2d column vector to select column indices.

`scipy.sparse.lil.tocsr` is faster.

Fixed/improved comparisons between pydata sparse arrays and sparse matrices.

BSR format sparse multiplication performance has been improved.

`scipy.sparse.linalg.LinearOperator` has gained the new `ndim` class attribute.

### 5.14.12 scipy.spatial improvements

`scipy.spatial.geometric_slerp` has been added to enable geometric spherical linear interpolation on an n-sphere.

`scipy.spatial.SphericalVoronoi` now supports calculation of region areas in 2D and 3D cases.

The tree building algorithm used by cKDTree has improved from quadratic worst case time complexity to loglinear. Benchmarks are also now available for building and querying of balanced/unbalanced kd-trees.

### 5.14.13 scipy.special improvements

The following functions now have Cython interfaces in `cython_special`:

- `scipy.special.erfinv`
- `scipy.special.erfcinv`
- `scipy.special.spherical_jn`
- `scipy.special.spherical_yn`
- `scipy.special.spherical_in`
- `scipy.special.spherical_kn`

`scipy.special.log_softmax` has been added to calculate the logarithm of softmax function. It provides better accuracy than `log(scipy.special.softmax(x))` for inputs that make softmax saturate.
5.14.14 scipy.stats improvements

The function for generating random samples in `scipy.stats.dlaplace` has been improved. The new function is approximately twice as fast with a memory footprint reduction between 25 % and 60 % (see gh-11069).

`scipy.stats` functions that accept a seed for reproducible calculations using random number generation (e.g. random variates from distributions) can now use the modern `np.random.Generator` as well as the legacy `np.random.RandomState` as a seed.

The `axis` parameter was added to `scipy.stats.rankdata`. This allows slices of an array along the given axis to be ranked independently.

The `axis` parameter was added to `scipy.stats.f_oneway`, allowing it to compute multiple one-way ANOVA tests for data stored in n-dimensional arrays. The performance of `f_oneway` was also improved for some cases.

The PDF and CDF methods for `stats.geninvgauss` are now significantly faster as the numerical integration to calculate the CDF uses a Cython based `LowLevelCallable`.

Moments of the normal distribution (`scipy.stats.norm`) are now calculated using analytical formulas instead of numerical integration for greater speed and accuracy.

Moments and entropy trapezoidal distribution (`scipy.stats.trapz`) are now calculated using analytical formulas instead of numerical integration for greater speed and accuracy.

Methods of the truncated normal distribution (`scipy.stats.truncnorm`), especially `_rvs`, are significantly faster after a complete rewrite.

The `fit` method of the Laplace distribution, `scipy.stats.laplace`, now uses the analytical formulas for the maximum likelihood estimates of the parameters.

Generation of random variates is now thread safe for all SciPy distributions. 3rd-party distributions may need to modify the signature of the `_rvs()` method to conform to `_rvs(self, ..., size=None, random_state=None)`. (A one-time VisibleDeprecationWarning is emitted when using non-conformant distributions.)

The Kolmogorov-Smirnov two-sided test statistic distribution (`scipy.stats.kstwo`) was added. Calculates the distribution of the K-S two-sided statistic $D_n$ for a sample of size $n$, using a mixture of exact and asymptotic algorithms.

The new function `median_abs_deviation` replaces the deprecated `median_absolute_deviation`.

The `wilcoxon` function now computes the p-value for Wilcoxon's signed rank test using the exact distribution for inputs up to length 25. The function has a new `mode` parameter to specify how the p-value is to be computed. The default is "auto", which uses the exact distribution for inputs up to length 25 and the normal approximation for larger inputs.

Added a new Cython-based implementation to evaluate gaussian kernel estimates, which should improve the performance of `gaussian_kde`.

The `winsorize` function now has a `nan_policy` argument for refined handling of `nan` input values.

The `binned_statistic_dd` function with statistic="std" performance was improved by ~4x.

`scipy.stats.kstest(rvs, cdf, ...)` now handles both one-sample and two-sample testing. The one-sample variation uses `scipy.stats.kstwo` (or `scipy.stats.kstwo` with back off to `scipy.stats.kstwo`) to calculate the p-value. The two-sample variation, invoked if `cdf` is array_like, uses an algorithm described by Hodges to compute the probability directly, only backing off to `scipy.stats.kstwo` in case of overflow. The result in both cases is more accurate p-values, especially for two-sample testing with smaller (or quite different) sizes.

`scipy.stats.maxwell` performance improvements include a 20 % speed up for `fit()` and 5 % for `pdf()`.

`scipy.stats.shapiro` and `scipy.stats.jarque_bera` now return a named tuple for greater consistency with other `stats` functions.
Deprecated features

5.14.15 scipy deprecations

5.14.16 scipy.special changes

The `bdtr`, `bdtrc`, and `bdtri` functions are deprecating non-negative non-integral \( n \) arguments.

5.14.17 scipy.stats changes

The function `median_absolute_deviation` is deprecated. Use `median_abs_deviation` instead.

The use of the string "raw" with the `scale` parameter of `iqr` is deprecated. Use `scale=1` instead.

Backwards incompatible changes

5.14.18 scipy.interpolate changes

5.14.19 scipy.linalg changes

The output signatures of `?syevr, ?heevr` have been changed from `w, v, info` to `w, v, m, isuppz, info`

The order of output arguments `w, v` of `<sy/he>\{gv, gvd, gvx\}` is swapped.

5.14.20 scipy.signal changes

The output length of `scipy.signal.upfirdn` has been corrected, resulting outputs may now be shorter for some combinations of up/down ratios and input signal and filter lengths.

`scipy.signal.resample` now supports a `domain` keyword argument for specification of time or frequency domain input.

5.14.21 scipy.stats changes

Other changes

Improved support for leveraging 64-bit integer size from linear algebra backends in several parts of the SciPy codebase.

Shims designed to ensure the compatibility of SciPy with Python 2.7 have now been removed.

Many warnings due to unused imports and unused assignments have been addressed.

Many usage examples were added to function docstrings, and many input validations and intuitive exception messages have been added throughout the codebase.

Early stage adoption of type annotations in a few parts of the codebase
Authors

• @endolith
• Hameer Abbasi
• ADmitri +
• Wesley Alves +
• Berkay Antmen +
• Sylwester Arabas +
• Arne Küderle +
• Christoph Baumgarten
• Peter Bell
• Felix Berkenkamp
• Jordão Bragantini +
• Clemens Brunner +
• Evgeni Burovski
• Matthias Bussonnier +
• CJ Carey
• Derrick Chambers +
• Leander Claes +
• Christian Clauss
• Luigi F. Cruz +
• dankleeman
• Andras Deak
• Milad Sadeghi DM +
• jeremie du boisberranger +
• Stefan Endres
• Malte Esders +
• Leo Fang +
• felixhekhorn +
• Isuru Fernando
• Andrew Fowlie
• Lakshay Garg +
• Gaurav Gijare +
• Ralf Gommers
• Emmanuelle Gouillart +
• Kevin Green +
• Martin Grignard +
• Maja Gwozdz
• Sturla Molden
• gyu-don+
• Matt Haberland
• hakeemo+
• Charles Harris
• Alex Henrie
• Santi Hernandez+
• William Hickman+
• Till Hoffmann+
• Joseph T. Iosue+
• Anany Shrey Jain
• Jakob Jakobson
• Charles Jekel+
• Julien Jerphanion+
• Jiacheng-Liu+
• Christoph Kecht+
• Paul Kienzle+
• Reidar Kind+
• Dmitry E. Kislov+
• Konrad+
• Konrad0
• Takuya KOUMURA+
• Krzysztof Pióro
• Peter Mahler Larsen
• Eric Larson
• Antony Lee
• Gregory Lee+
• Gregory R. Lee
• Chelsea Liu
• Cong Ma+
• Kevin Mader+
• Maja Gwóźdź+
• Alex Marvin+
• Matthias Kümmerer
• Nikolay Mayorov
• Mazay0 +
• G. D. McBain
• Nicholas McKibben +
• Sabrina J. Mielke +
• Sebastian J. Mielke +
• Miloš Komarčević +
• Shubham Mishra +
• Santiago M. Mola +
• Grzegorz Mrukwa +
• Peyton Murray
• Andrew Nelson
• Nico Schlömer
• nwjenkins +
• odidev +
• Sambit Panda
• Vikas Pandey +
• Rick Paris +
• Harshal Prakash Patankar +
• Balint Pato +
• Matti Picus
• Ilhan Polat
• poom +
• Siddhesh Poyarekar
• Vladyslav Rachek +
• Bharat Raghunathan
• Manu Rajput +
• Tyler Reddy
• Andrew Reed +
• Lucas Roberts
• Ariel Rokem
• Heshy Roskes
• Matt Ruffalo
• Atsushi Sakai +
• Benjamin Santos +
• Christoph Schock +
• Lisa Schwetlick +
A total of 129 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

5.14.22 Issues closed for 1.5.0

• #1455: ellipord does returns bogus values if gstop or gpass are negative…
• #1968: correlate2d's output does not agree with correlate's output in…
• #2744: BUG: optimize: ‘**kw’ argument of ‘newton_krylov’ is not documented
• #4755: TypeError: data type “<i0” not understood
• #4921: scipy.optimize maxiter option not working as expected
• #5144: RuntimeWarning on cgraph.shortest_path when edge lengths are…
• #5309: Documentation of ‘hybr’ and ‘lm’ inconsistent in optimize.root
• #6026: Replace approx_grad with _numdiff.approx_derivative in scipy.optimize
• #6502: Computing Eigenvalues in an Interval with LAPACK
• #7058: Errors in special.bdtri and special.bdtr for non-integer k values
• #7700: SuperLU does not respect perm_c="NATURAL"
• #7895: Improvements to io.loadmat
• #8205: ValueError in scipy.linalg.eigvalsh for large matrix
• #8278: Memory limit for scipy.sparse.linalg.spsolve with scikit-umfpack
• #8327: scipy.stats.mstats.winsorize NaN handling
• #8341: scipy.stats.ks_2samp for masked and unmasked data give different...
• #8748: scipy.stats.kstest for same distribution: p-values nonuniform
• #9042: optimize: Incorrect statement about 'jac' in the 'minimize'...
• #9197: problem with scipy.signal.butter with 1000+ points array
• #9212: EIGH very very slow → suggesting an easy fix
• #9553: ndimage routines behave badly when output has memory overlap...
• #9632: ndimage.maximum_filter undocumented behaviour using footprint...
• #9658: scipy.optimize.minimize(method='COBYLA') not threadsafe
• #9710: stats.weightedtau([1], [1.0]) SEGFAULTs
• #9797: Master Tracker for some Kolmogorov-Smirnov test Issues
• #9844: scipy.signal.upfirdn gives different length matrix versus MATLAB...
• #9872: scipy.signal.convolve is slower when vectorized
• #9913: BUG: No dt in StateSpace operations
• #10014: Distribution names 'weibull_min'and 'weibull_max' should...
• #10159: BUG: stats: chisquare returns incorrect results for arrays of...
• #10302: scipy.fft: Add a 'plan' argument
• #10332: ‘Incomplete wav chunk’ inconsistent/reason unknown
• #10441: Remove uses of ‘numpy.dual’?
• #10558: Document implicit sum in csr_matrix() constructor
• #10788: LU with full pivoting
• #10841: Unexpected behavior in linalg.blas.dtrmm wrapper
• #10919: optimize._lbfgsb.setulb() function violates parameter bounds
• #10963: ktest, ks_2samp: confusing 'mode' argument descriptions
• #11022: Unexpected Result in factorial function with NaN input
• #11028: Documentation error in optimize.minimize
• #11058: Adding logsoftmax function
• #11076: ValueError: Unknown wave file format
• #11090: Misconception of the median absolute deviation in stats?
• #11095: BUG: find_peaks_cwt test failures in 32-bit Linux wheels
• #11107: scipy.io.mmread generated an error “TypeError: startwith first…”
• #11123: Add wrapper for ?gttrf/?gttrs
• #11128: OverflowError in resample_poly (upfirdn)
• #11132: Possible bug: rv_discret.ppf for percentiles 0 and 100 and loc…
• #11163: Comparisons between scipy spmatrix and can sparse.SparseArray…
• #11168: Generalized Pareto variance inaccurate for concentrations near…
• #11169: Add wrapper for ?geqrfp
• #11184: 2-sided Kolmogorov Smirnov returns p-value of 1
• #11185: The .roots() or solve() function of scipy.interpolate.CubicHermiteSpline…
• #11190: Add wrapper for ?tbtrs
• #11200: Can no longer slice csr_matrix in 1.3.0
• #11207: _minimize_scalar_bounded: reference before assignment
• #11216: linprog: interior-point: Cholmod reordering can be reused
• #11223: Add wrappers for ?pttrf, ?pttrs
• #11224: Add wrapper for ?pteqr
• #11235: MAINT: Misleading Error Message for IIR Filter
• #11244: Missing reference in `scipy.optimize.line_search`
• #11262: Hermitian Eigenvalue Problem eigh() API and wrapper change proposal
• #11266: Sparse matrix constructor data type detection changes on Numpy…
• #11270: CI failing: Travis CI Py36 refguide and Linux_Python_36_32bit_full…
• #11279: linalg.eigh checks whole array for finite values
• #11295: CI: azure does not auto-cancel old jobs on pushes
• #11299: stats.truncnorm.rvs 100x slower in v1.4.x than v1.3.3
• #11315: BUG: special: rgamma on negative integers smaller -34
• #11319: Missing `int64_t` declaration in rectangular_lsap.cpp
• #11323: Compilation failure due to missing symbol pthread_atfork
• #11332: BUG: directed_hausdorff distance on sets u and v when u is a…
• #11350: Khatri-Rao product
• #11354: ENH: Add wrapper for ?gejsv
• #11361: Dropped NaN in eval_genlaguerre function
• #11363: Dropped NaN in hyperu function
• #11365: scipy.stats.binned_statistic regressed in v1.4.0
• #11369: Dropped NaN in eval_hermite
• #11370: Dropped NaN in eval_gegenbauer
• #11373: Add wrapper for ?gtsvx
• #11374: Add wrapper for ?ptsvx
• #11391: csgraph.minimum_spanning_tree loses precision
• #11398: Update stats to cope with `np.random.Generator` machinery
• #11412: Array copying causes unwanted type casting from complex to float…
• #11415: Where is the Wiener Filter derived from?
• #11416: _lib_util.getargspec_no_self is missing KEYWORD_ONLY support
• #11428: Documentation on SHGO inequality constraints appears contradictory
• #11429: Add LAPACK's ZUNCSD cosine sine decomposition
• #11438: run_dualannealing passes bounds incorrectly in benchmarks/optimize.py
• #11441: Can’t run optimize benchmarks
• #11442: Chebyshev weights
• #11448: Wrongly typed comparison in integrate.quad
• #11458: BUG: maximum_bipartite_matching produces infeasible solution
• #11460: CI failing: 2 Travis CI tests fail with numpy build or version…
• #11462: Bug on “++” initialization on “kmeans2”
• #11464: Shouldn’t data type of KDE evaluation should be like in the input…
• #11468: performance of binned_statistics_2d 100x slowdown from 1.3.2…
• #11484: Callback function doesn’t give the same value as the one being…
• #11492: Confusing dendrogram labelling
• #11493: scipy.optimize.least_squares fails if the return array of the…
• #11494: Error performing kronecker product between large sparse vectors
• #11503: medfilt produces 0 on input of length 1
• #11529: Pyflakes generates almost 700 warnings.
• #11566: irfft/irfftl2/irftn docs are slightly confusing re: input type.
• #11572: least_squares: too small tolerances not caught with method='lm'
• #11581: DOC: scipy.interpolate.RectSphereBivariateSpline
• #11586: Differential evolution breaks with LinearConstraints with sparse…
• #11595: scipy.spatial.cKDTree construction slow for some datasets
• #11598: output of special.voigt_profile when sigma=0
• #11601: linalg tests failing in runtests.py
• #11602: scipy.optimize.linear_sum_assignment returns reverse diagonal…
• #11610: Analytic formula for normal moments
• #11611: Build failure with gfortran 10
• #11613: TST, MAINT: test_quadpack TestCtypesQuad wasn’t fully migrated…
• #11630: SmoothBivariateSpline bbox parameter
• #11635: typo in docstring of scipy.stats.norminvgauss
• #11637: BUG: core dumps when calling scipy.interpolate.interp1d with…
• #11638: better documentation for ‘return_all’ option in minimize(Nelder…
• #11652: TST, MAINT: CI failures for pre-release NumPy wheels
• #11659: optimize.fmin_l_bfgs_b needs bound check and appropriate error…
• #11660: BUG/ENH: distribution.ncf with nc=0 returns nan
• #11661: scipy.ndimage.convolve1d and correlate1d don’t behave properly…
• #11669: p-value varies with the order of the data
• #11676: documentation of scipy.spatial.HalfspaceIntersection: wrong method…
• #11685: Rotation cannot be expressed as matrix
• #11686: MAINT: mypy imports of Cython “modules”
• #11693: TestDifferentialEvolutionSolver::test_L4 failing in CI
• #11696: DOC: incorrect compiler information for macOS in docs
• #11709: eight() tests fail to pass, crash Python with seemingly random…
• #11763: Small error in gamma continuous rv fit comments
• #11769: truncnorm.rvs Weird Behaviors
• #11770: crash in TestEigh::test_value_subsets
• #11795: trapz distribution mean computed using single precision
• #11800: Segmentation fault in scipy.odr for multidimensional independent…
• #11811: pyflakes silently failing on travis-ci
• #11826: Error with _fblas
• #11827: 'fit.tests.test_numpy.test_multiprocess' hangs on Python3.8…
• #11835: tests with ‘multiprocessing’ hang on Python 3.8 on macOS
• #11839: linalg.expm returns nans with RuntimeWarning: overflow encountered…
• #11856: Documentation of fit methods for ‘weibull_min’ and ‘exponweib’…
• #11868: Function always evaluated twice when using HessianUpdateStrategy…
• #11875: Typo in the docstring of simps()
• #11877: kmeans2 ‘++’ method is orders of magnitude slower than sklearn.cluster.KMeans()
• #11884: The upper code lines are dead code
• #11886: Array shape mismatch in scipy.optimize
• #11892: BUG: stats: Incorrect handling of edges cases by ttest_rel and…
• #11908: LinearOperator should have ndim attribute
• #11910: Documentation missing for what M is in init argument
• #11922: macOS actions CI has started failing in last couple of days.
• #11928: DOC: signal: Wrong description for sepfir2d, cspline2d, qspline2d
• #11944: curve_fit documentation unclear on default value of absolute_sigma
• #11945: Add a (potentially temporary) py.typed file?
• #11949: ValueError ‘k exceeds matrix dimensions’ for sparse.diagonal()
• #11951: BUG: asv benchmark failed because of cython version
5.14.23 Pull requests for 1.5.0

• #6510: Add Eigenvalue Range Functionality for Symmetric Eigenvalue Problems
• #9525: BUG: SuperLU ‘NATURAL’ order applies a column permutation
• #9634: Add the number of Jacobian evaluations to the output of L-BFGS-B.
• #9719: ENH: Added kstwo probability distribution for two-sided one-sample...
• #9783: WIP: optimize: added (dense) interpolative decomposition redundancy...
• #10053: Adding docstring to weibull_min and weibull_max based on issue...
• #10136: DEP: Add warning to linprog_verbose_callback
• #10380: ENH: add geometric_slerp
• #10602: MAINT: optimize: refactor common linprog arguments into namedtuple
• #10648: Bounds for the Powell minimization method
• #10673: ENH: approx_fprime -> approx_derivative
• #10759: ENH: calculation of region areas in spatial.SphericalVoronoi
• #10762: BENCH: optimize: more comprehensive linprog benchmarking
• #10796: ENH exact p-values of wilcoxon test in scipy.stats
• #10797: ENH: linalg: LU with full pivoting (wrappers for ?getc2/?gesc2)
• #10824: ENH: Fast gaussian kernel estimator
• #10942: BUG: prevent bound violation in L-BFGS-B optimize method
• #11003: ENH: add scipy.linalg.convolution_matrix
• #11023: improving error message for cubic-interpolate with duplicates
• #11045: MAINT: make bdt{r,rc,ri}() functions accept double n,k args +…
• #11063: Fix documentation error in optimize.minimize
• #11069: ENH: stats.dlaplace.rvs improvements
• #11071: DOC: Added examples to maximum_position in ndimage
• #11075: DOC: Update stylistic consistency in multiple files
• #11097: BUG: stats: fixing chisquare to return correct results for arrays…
• #11110: ENH: special: Cythonise erfinv, erfcinv
• #11112: BUG: special: Return NaN outside the domain of `eval_hermite`’
• #11114: BUG: special: fix ‘hyp1f1’ for nonnegative integral ‘a’ and…
• #11115: DOC: special: add docstrings for ‘kei’, ‘ker’, ‘keip’,…
• #11130: ENH: support for circular input
• #11136: BUG: expm handling of empty input
• #11138: DOC: stylistic consistency, punctuation, etc.
• #11139: MAINT: cluster: use cython_blas, remove handwritten BLAS wrappers
• #11146: DOC: update docs on bp parameter for detrend
• #11151: DOC: special: add docstrings for ‘bei’, ‘ber’, ‘beip’,…
• #11156: ENH: add input validation for ellipord.
• #11157: DOC: stylistic revision, punctuation, consistency
• #11160: ignore warning on 0 * inf in basin hopping
• #11162: DOC: minor stylistic revision, undo changes
• #11164: ENH/BUG: Pydata sparse equality
• #11171: Fix dtype validation of “seuclidean” metric V parameter
• #11177: BUG: stats: Improve genpareto stats calculations.
• #11180: MAINT: stats: Some clean up in test_distributions.py.
• #11187: ENH: add functionality log_softmax to SciPy.special.
• #11188: MAINT: add rvs method to argus in scipy.stats
• #11196: DOC: special: add to docstrings of Kelvin zeros functions
• #11202: BUG: fix edge counting in shortest_path
• #11218: BUG: scipy/interpolate: fix PPoly/Cubic*Spline roots() extrapolation…
• #11225: Add a warning to constant input for spearmanr() function
• #11226: Speed up of interior-point method for cholesky solver
• #11229: BUG: Explicit dtype specification in _upfirdn.py
• #11230: Additional citation for optimize tutorial
• #11231: Adds SLSQP test for duplicate f-evals (#10738)
• #11236: MAINT: Improved error message for Wn range in iirfilter.
• #11245: ENH: optimize: dense redundancy removal routine optimizations
• #11247: MAINT: Remove _lib/_numpy_compat.py
• #11248: BUG: rv_discrete.ppf() to handle loc
• #11251: DOC: add reference for linesearch zoom algorithm
• #11253: BUG: fix kendalltau issue where p-value becomes >1
• #11254: MAINT: make special.factorial handle nan correctly
• #11256: DOC: Updated documentation for scipy.linalg.qr
• #11265: Fix: Can no longer slice csr_matrix in 1.3.0
• #11267: BUG: Rework the scaling in the ks_2samp two-sided exact test.
• #11268: DOC: example of NonLinearConstraint
• #11269: Fix: Sparse matrix constructor data type detection changes on…
• #11276: BLD: update minimum Python, NumPy, Cython, Pybind11 versions
• #11277: MAINT: Cleanup conditionals for unsupported numpy versions
• #11278: MAINT: Cleanup stats.iqr workarounds for unsupported NumPy versions
• #11282: TST/CI: improve traceback formatting for test failures
• #11284: fix docs & behavior for mode sequences in ndimage filters
• #11285: DOC: special: complete the docstrings of Chi-square functions
• #11286: BUG: make loadmat/savemat file opening close resources correctly
• #11287: CI: skip Azure and TravisCI builds on merges and direct pushes…
• #11288: DOC: Fix import in scipy.io.wavfile.read sample code
• #11289: BUG: Use context manager for open
• #11290: MAINT: Remove _lib._version in favour of _lib._pep440
• #11292: DOC: special: add docstrings for various convenience functions
• #11293: DOC: special: fix typo in `chdtri` docstring
• #11296: DOC: special: add to docstrings of Bessel zeros and derivatives
• #11297: DOC: special: add parameters/returns sections for Bessel integrals
• #11300: MAINT: Update vendored uarray version
• #11301: CI: azure conditions should require succeeded()
• #11302: ENH: build infrastructure for ILP64 BLAS + ARPACK conversion
• #11303: DOC: special: fix typo in ‘besselpoly’ docstring
• #11304: ENH: MAINT: Rewrite of eigh() and relevant wrappers
• #11306: TST: skip test_aligned_mem linalg test that is crashing on ppce64
• #11307: MAINT: Fix typo ‘solutuion’ -> ‘solution’
• #11308: ENH: do not create 1d array out of a scalar
• #11310: MAINT: clean up object array creation, scalar/1d confusion
• #11311: DOC: Specify custom callable option for metric in cluster.hierarchy.fclusterdata

5.14. SciPy 1.5.0 Release Notes
• #11316: BUG: special: fix behavior for ‘rgamma’ zeros
• #11317: BUG: fix floating-point literal comparisons under C99
• #11318: TST: optimize: mark two linprog tests for skipping
• #11320: BUG: Include ‘int64_t’ declaration to ‘rectangular_lsap.cpp’
• #11330: MAINT: Update vendored pypocketfft version
• #11333: BUG: directed_hausdorff subset fix
• #11335: [ENH] sparse: Loose check for sparse outer indexing fast path
• #11337: Undefined name ‘e’ in pavement.py
• #11338: scipy_optdoc.py: Remove unused variable ‘sixu’
• #11340: xrange() was removed in Python 3 in favor of range()
• #11342: range() was removed in Py3 in _binned_statistic.py
• #11343: BUG: constants: fix ‘exact’ values table
• #11347: ENH: add input validation function and apply it to needed functions
• #11348: MAINT: remove six.string_types usages
• #11349: MAINT: minor doc fix _minimize_trustregion_constr
• #11353: MAINT: py3 remove various six usages
• #11358: ENH: optimize: Use CSR format instead of LIL for speed
• #11362: MAINT: sys.version_info >= 3.5
• #11364: ENH: cache square of sums for f_oneway
• #11368: ENH: add optional argument, “include_nyquist”, for freqz()
• #11372: BENCH: optimize: added linprog presolve benchmarks
• #11376: ENH: Add wrapper for ?gttrf/?gttrs
• #11377: MAINT: Remove Python 2 code from tools/authors.py
• #11378: ENH (WIP): Python wrapper for ?tbtrs
• #11379: MAINT: Remove six.with_metaclass from benchmarks/cython_special.py
• #11380: BUG: sparse/isolve: bicg and qmr don’t treat x0 correctly
• #11382: MAINT: remove error throw in binned_statistic_dd() on non-finite…
• #11383: MAINT: _lib: remove py2 compat shims in getargspec
• #11384: MAINT: Use numpyscalar types directly
• #11385: ENH: special: add spherical Bessel functions to `cython_special’
• #11389: MAINT: line.startwith shouldn’t be bytes
• #11393: ENH: Speed up truncnorm’s ppf()and rvs() methods
• #11394: MAINT: Remove self._size (and self._random_state) from stats…
• #11395: correction in error message (%d->%g format)
• #11396: DOC: revert gh10540, removing mtrand
• #11397: MAINT: differential_evolution accepts np.random.Generator
- #11402: ENH: stats can use np.random.Generator
- #11404: ENH: add docstring of butter() for transfer function syntax problem
- #11405: DOC: Fix “see also” for SmoothBivariateSpline
- #11408: ENH: Add a ‘plan’ argument to FFT functions in `scipy.fft`
- #11411: MAINT: check minimize duplicate evaluations
- #11418: ENH: Linalg: Python wrapper for ?geqrfp
- #11419: TST: Python 3.7 mac OS gcc multibuild fix
- #11423: ENH: Add tool to lint diffs
- #11425: FIX: _array_newton should preserve complex inputs
- #11426: MAINT: licence for global optimization benchmarks
- #11431: Make median_absolute_deviation scale argument aligned w/iqr
- #11432: Fix error message typo
- #11433: DOC: Remove L from longs
- #11434: MAINT: Python3 improvements to refguide_check.py
- #11435: DOC: Update runtest –parallel help
- #11436: MAINT: Remove checks for sys.version < 3.5
- #11437: DOC: Fix documentation issue
- #11439: Support path objects (PEP 519) in mmio functions
- #11440: correct bounds pass in run_dualannealing for benchmarks/optimize.py
- #11443: BENCH: optimize_linprog remove ImportError exception
- #11453: BUG: sparse: convert csc/csr indices to int64 as needed
- #11454: DOC: Remove caveat on ‘maximum_bipartite_matching’
- #11455: BUG: Fix _lib._util.getargspec_no_self lack of KEYWORD_ONLY support.
- #11456: Implementation of khatri_rao product
- #11459: BUG: fix augmentation being broken in maximum_bipartite_matching
- #11461: MAINT: minor spelling corrections in comments in SciPy.sparse.linalg.arpack
- #11467: [MRG] Make result data type of KDE evaluation like in the input…
- #11469: Update integrate.quad documentation
- #11472: Fixed result typo
- #11476: DOC: stats: Copy-edit the anderson docstring.
- #11478: ENH: avoid unnecessary array copies in matrix product
- #11481: BUG: Make special.hyperu return nan if any argument is nan
- #11483: BUG: Fixed ‘_kpp’ initialization on ‘scipy.cluster.vq’, closing…
- #11485: ENH: Update docstring of class KrylovJacobian to fix #2744
- #11486: BUG: make special.eval_hermite return nan if second argument…
- #11487: ENH: improve docstring of correlate and correlate2d to fix #1968
• #11488: FIX: change “func -> fun” of scipy.optimize _root.py to solve…
• #11489: BUG: fixes typo introduced in PR #11253 in stats.mstats.kendalltau()
• #11490: DOC: fix typo in scipy/io/matlab/mio4.py
• #11495: MAINT: refactor slsqp to fix issue in callback function
• #11498: [DOC] mention graph cuts in maximum flow docstring
• #11499: DOC: Improve documentation of scipy.signal.signaltools.wiener
• #11506: DOC: Fix typo in documentation of scipy.stats.morestats
• #11508: ENH: avoid copy on sparse __init__ when dtype is given
• #11509: ENH: avoid unnecessary array copies in matrix product (again)
• #11510: [DOC] An ex. for creating arbitrary size tri-diagonal
• #11511: TST: pin numba for Travis/sparse
• #11513: TST: disable NumPy cache dir ppc64le
• #11514: BUG: make special.eval_genlaguerre return nan if passed nan
• #11517: ENH: improve sparse.lil.tocsr performance
• #11519: Fix fresnel documentation
• #11520: BUG: make special.eval_gegenbauer return nan if passed nan
• #11524: ENH: Cosine Sine Decomposition
• #11526: BUG: fix SLSQP max iteration setting to fix #4921
• #11527: ENH: improve docstring of weibull_min_gen and weibull_max_gen…
• #11530: MAINT: Removed 3 unused imports, 3 unused assignments from ndimage.
• #11531: DOC: fix typos in bdtr and bdtrc from gh PR 11045
• #11532: MAINT: Fixed several unused imports and unused assignments from…
• #11533: MAINT: Fixed about 100 unused imports, unused assignment warnings…
• #11534: FIX: Allow non-native byte order inputs to scipy.fft
• #11535: MAINT: Fixed several unused imports in _lib.
• #11536: MAINT: Fixed several unused imports and unused assignments in…
• #11537: MAINT: Removed an unused import in scipy/constants.
• #11538: MAINT: Fixed several unused imports in scipy/fft.
• #11539: MAINT: Fixed several unused imports and unused assignments in…
• #11540: MAINT: Fixed two unused imports in scipy/misc.
• #11541: MAINT: Fixed several unused imports and unused assignments in…
• #11542: MAINT: Fixed an unused import in scipy/odr.
• #11543: MAINT: Fixed several unused imports and unused assignments in…
• #11544: MAINT: Fixed unused imports and unused assignments in scipy/integrate.
• #11545: MAINT: Removed unused imports and fixed unused assignments in…
• #11546: MAINT: Removed unused imports; fixed unused assignments in scipy/signal.
• #11547: MAINT: Removed unused imports; fixed unused assignments in scipy/spatial
• #11548: MAINT: Removed unused imports; fixed unused assignments in scipy.sparse.
• #11549: MAINT: Replace xrange with range
• #11560: MAINT: stats: remove an _argcheck call
• #11573: MAINT: Removed unused imports; fixed unused assignments in scipy/stats.
• #11574: MAINT: Small change to 'optimize.nls' error messages.
• #11575: MAINT: Update sytrd/hetrd tests
• #11582: MAINT: fix typo in quadpack.py closes #11448
• #11585: TST: add openblas_support.py
• #11587: BUG: Differential evolution with LinearConstraint with sparse…
• #11588: MAINT: Fully display problem size in lsmr/lsqr.
• #11589: MAINT: Remove Python 2 workarounds
• #11590: MAINT: Remove Python2 module init
• #11605: Standardization of bounds in _linprog_util.py
• #11608: BUG: fix use of is in DE callback
• #11614: TST, MAINT: TestCtypesQuad skip with pytest
• #11619: ENH: add nan_policy argument and functionality to stats.mstats.winsorize
• #11621: MAINT: Cleanup uses of PY_VERSION_HEX, NPY_PY3K in ndimage
• #11622: MAINT: Cleanup uses of PY_VERSION_HEX, NPY_PY3K in sparse
• #11623: MAINT: Remove unnecessary 'from __future__ import …' statements
• #11626: MAINT: Cleanup uses of PY_VERSION_HEX
• #11627: ENH: add analytic formula for normal moments
• #11628: MAINT, TST: adjust azure for matplotlib release
• #11631: Revert to old behaviour for constant cost matrices in 'linear_sum_assignment'
• #11632: MAINT: Define ARRAY_ANYORDER with DEF instead of cdef
• #11639: BUG: interpolate/interp1d: fail gracefully on all-nan inputs
• #11640: MAINT: Fix BLAS3 trmm wrapper for “side” arg
• #11642: TST, MAINT: remove dead code in Travis CI
• #11643: MAINT: fix conversion in binom_test
• #11645: MAINT: Assorted clean up.
• #11646: MAINT: Remove unnecessary ‘from __future__ import …’ statements
• #11647: DOC: document return_all arguments
• #11648: Perform geometric slerp in quaternion space
• #11651: DOC: Update paper URL in lambertw documentation
• #11653: PERF: Switch to C++ STL std::nth_element
• #11655: MAINT: Remove Python2 cStringStream
- #11657: ENH: Add wrapper for `?ptrf/?ptrs`
- #11664: ENH: Add wrapper for `?gejsv`
- #11665: ENH: Add wrapper for `?pteqr`
- #11667: BUG: Non-central Fisher distribution (fix nan-values when nc=0)
- #11668: ENH: Add wrapper for `?gtsvx`
- #11671: TST, CI: restore Azure temporarily
- #11672: Add warning to medfilt when array size < kernel_size
- #11674: TST: bump test precision for two np.dot related linalg tests.
- #11675: MAINT: pycodestyle clean-up
- #11677: ENH: Add wrapper for `?tsvx`
- #11679: BENCH: cKDTree benchmarks added: balanced/unbalanced tree (related…
- #11680: MAINT: rng_integers allows RandomState.randint or Generator.integers
- #11683: BUG: fix mode='mirror' on length 1 axes
- #11684: BUG: fix scipy.special.voigt_profile
- #11687: MAINT: sparse.linalg: avoid importing from `np.core`
- #11688: ENH: mypy: get specific about ignoring missing imports
- #11690: MAINT: mypy: fix errors about incompatible types in lists
- #11692: MAINT: mypy: fix remaining type errors
- #11694: TST, MAINT: bump to OpenBLAS 0.3.9 stable, raise tol for Win…
- #11697: DOC: fix pdf of norminggauss in scipy.stats
- #11701: MAINT: special: add rudimentary types for `_ufuncs` extension…
- #11702: BUG: Fixed a post-merge bug for eight()
- #11703: Improves docstring with consistent L2-norm
- #11705: DOC: Slerp the SphericalVoronoi docstring
- #11706: ENH: mypy: add `~mypy` option to `runtests.py`
- #11710: ENH: Modified stats.ktest() to use the exact stats.kstwo.sf()…
- #11715: DOC: add .. versionadded:: to as_matrix/from_matrix in spatial/transf…
- #11716: BENCH: fix benchmark imports for `~optimize_linprog.py`
- #11721: MAINT: io: Remove now-unecessary `# type: ignore`
- #11722: MAINT: mypy: remove mpmath from the ratchet
- #11726: Handle constant input for scipy.stats.f_oneway
- #11729: BENCH: optimize: added infeasible benchmarks for linprog
- #11731: fix inaccurate information about Mac OS compiler (#11696)
- #11733: Fix inaccurate docstring example of HalfspaceIntersection
- #11734: Doc: fix inaccurate docstring of SmoothBivariateSpline.
- #11735: Bug: stats: fix wrong shape from median_absolute_deviation for…
• #11736: ENH: add input validations and its tests for FITPACK in fitpack2.py
• #11737: BUG: Prevent crashes due to MKL bug in ?heevr
• #11739: MAINT: special: add type stubs for `_test_round.pyx`
• #11740: MAINT: special: remove unused specfun f2py wrappers
• #11741: BUG: fix small tolerances handling for minpack and add a test.
• #11743: Doc: fix docstring of rfft, rfft2, rfftn, irfft, irfft2, irfftn…
• #11744: MAINT: Remove unused py3k.h code
• #11745: DOC: stats: Clean up ncf documentation.
• #11748: MAINT: special: type `cython_special` as `Any`
• #11750: MAINT: type hints for `_spherical_voronoi`
• #11752: DOC: fix docstring of scipy.optimize.least_squares
• #11753: ENH: add input validation for dendrogram and a test.
• #11755: MAINT: Replace uses of tostring with tobytes
• #11757: ENH: improve binned_statistics_2d performance.
• #11759: ENH: optimize: add HiGHS methods to linprog
• #11760: MAINT: Remove FileStream replaced by GenericStream
• #11761: MAINT: Replace npy_3kcompat.h shims
• #11765: TST: Speedup test_pascal which is VERY slow on Azure
• #11766: TST: speed up differential_evolution L8 test
• #11767: Change comment in continuous rv gamma fit function
• #11776: Add domain option for resample.
• #11784: BUG: Fixed calculation of nonzero elements in scipy.sparse.random
• #11786: ENH: stats: add axis keyword argument to scipy.stats.rankdata
• #11789: Doc: fix docstring of scipy.spatial.chebyshev
• #11792: DOC: dev: add guidelines for developing public Cython APIs
• #11794: MAINT: add comments explaining a problem in cython.optimize organization
• #11796: DOC: add a note about precision losing in csgraph.minimum_spanning_tree…
• #11797: ENH: Allow negative `axis` in `interpolate.BSpline`. Also…
• #11798: Add simplify_cells parameter to scipy.io.loadmat
• #11801: MAINT, DOC: minor changes of ratio-of-uniforms in scipy.stats
• #11802: BUG: fix scipy.odr to handle multidimensional independent and…
• #11803: scipy.stats.trapz: Use analytic formulas for stats and entropy.
• #11808: DOC: add Examples in the scipy.interpolate.interpn docstring.
• #11809: Duplicate entries are added together in csr_matrix constructor
• #11813: MAINT: bump pyflakes to version 2.1.1
• #11814: BUG: scipy.sparse.csr doctest failing with incorrect output value
• #11817: DOC: add Examples in the scipy.optimize.leastsq docstring
• #11820: ENH: Raise an error on incorrect bounds format in optimize.fmin_l_bfgs_b
• #11822: CI: add github actions for macOS
• #11824: DOC: add Examples in scipy.optimize.line_search docstring (line_search_wolfe2)
• #11830: TST: Always use fork for multiprocessing in fft tests
• #11831: DOC: add Examples and Returns in scipy.misc.central_diff_weights...
• #11832: DOC: stats: Some small corrections to a couple docstrings.
• #11833: BUG: Fix compiler_name when there are paths used in flags
• #11836: MAINT: re-introduce multiprocessing tests on Python3.8
• #11837: Doc: add Examples in scipy.optimize.fsolve docstring
• #11838: Doc: add Examples in scipy.sparse.linalg.minres docstring
• #11840: BUG: sparse.linalg: fix overflow in expm intermediate computation
• #11842: BLD: fix build with gfortran 10
• #11843: MAINT: Simplify floats in constants.py
• #11847: DOC: add a tutorial of scipy.optimize.linprog
• #11849: ENH: speed up geninvgauss by using cython
• #11852: CI: remove osx from travisCI
• #11857: BUG: Change parameter fc of gausspulse to float.
• #11861: order = degree + 1 for splines
• #11863: Make g77 ABI wrapper work with gfortran ABI lapack
• #11866: MAINT: add type ignores to sympy and matplotlib imports
• #11867: CI: Add arm64 in travis-ci
• #11869: DOC: signal: Add an example to the lsim2 docstring.
• #11870: DOC: signal: Use impulse instead of impulse2 in the impulse example…
• #11871: ENH: type ufuncs in special as ufuncs instead of Any
• #11872: BUG: avoid recomputing in scipy.optimize.optimize.MemoizeJac
• #11873: DOC: signal: Fix ODE in impulse and impulse2 docstrings.
• #11874: DOC: add Examples of docstring for scipy.interpolate.approximate_taylor_polynomial
• #11878: DOC: fixed a typo under scipy/integrate/quadrature.py
• #11879: BUG: Fix index arrays overflow in sparse.kron
• #11880: DOC: stats: Add Examples for bartlett, fliplr, levene.
• #11881: MAINT: normalise numpy->np in optimize.py
• #11882: DOC: add Examples for scipy.io.readsav docstring.
• #11883: DOC: add Returns and Examples for scipy.ndimage.correlate() docstring
• #11885: BUG: stats: Handle multidimensional arrays in f_oneway, and more.
• #11889: DOC: signal: Unify lsim and lsim2 examples.
• #11896: BUG: stats: Fix handling of size 0 inputs for ttest_rel and ttest_ind.
• #11897: DOC: Remove misleading default values from fit method
• #11898: MAINT: LinearVectorFunction.J is ndarray closes #11886
• #11902: BUG: linalg: test_heequb failure
• #11904: fix real-to-real transforms for complex inputs and overwrite_x=True
• #11906: DOC: stats: fix error caused by trapz docstring
• #11907: BUG: stats: fixed SEGFAULT from Issue #9710
• #11912: ENH: Respect matplotlib color palette with hierarchy/dendrogram.
• #11914: DOC: refine doc for spatial.distance.squareform
• #11915: ENH: Ndim linear operator
• #11919: ENH: expose “window_size” parameter in find_peaks_cwt()
• #11920: DOC: explain M, diffev
• #11923: CI: macOS install swig closes #11922
• #11924: DOC: add Examples for scipy.optimize.bracket() docstring
• #11930: DOC: add Examples and clean up for signal.qspline1d and signal.qspline_eval…
• #11931: DOC: add Examples for sparse.linalg.bicg docstring.
• #11933: DOC: Add original reference for Yao-Liu objective functions
• #11934: DOC, MAINT: mailmap update
• #11935: DOC: make scipy.stats.mode documentation reflect that the function…
• #11936: ENH: special: add type stubs for `orthogonal.py`
• #11937: DOC: Add docstring examples to fft2, ifft2, io.savemat
• #11938: MAINT: add helper function for deprecating Cython API functions
• #11942: MAINT: ignore conditional import in _lib/_util
• #11943: MAINT: special: add types for geterr/seterr/errstate
• #11946: MAINT: add py.typed marker
• #11950: TST:MAINT: separated and stabilized heequb tests
• #11952: DOC: update toolchain roadmap for py38, C99, C++11/14
• #11957: MAINT: Use np.errstate context manager instead of np.seterr.
• #11958: MAINT: interpolate: Remove some trailing spaces.
• #11960: MAINT: Cleanup Python2 compatibility code
• #11961: MAINT: Remove numpypy_3kcompat.h from_superluobject.c
• #11962: DOC: Fix type of `codes` in docstring of `_vq._vq()`
• #11964: MAINT: Cleanup unused IS_PYPY
• #11969: DOC: add Examples and fix docstring for special.airye
• #11970: BUG: sparse: ‘diagonal’ of sparse matrices fixed to match numpy’s…
• #11974: BUG: Reshape oaconvolve output even when no axes are convolved
• #11976: MAINT: add logo for github actions
• #11977: CI: test bleeding edge Python
• #11979: DOC: add Examples for stats.ranksums() docstring.
• #11982: Fix KMeans++ initialisation slowness
• #11983: DOC: add Examples for stats.mstats.argstoarray() docstring.
• #11986: Avoid bugs in ndimage when the output and input arrays overlap…
• #11988: ENH: Override fit method of Laplace distribution with Maximum…
• #11993: TST, CI: Azure Windows path fixups
• #11995: MAINT, CI: remove custom mingw Azure
• #11996: DOC: add Examples and fix pep warning for fft.set_global_backend…
• #11997: MAINT, CI: Azure OpenBLAS simplify
• #11998: BENCH: Run against current HEAD instead of master
• #12001: ENH: stats: Implement_logpdf for the maxwell distribution.
• #12004: DOC: add examples for integrate.quad_vec() and integrate.quad_explain()
• #12005: MAINT: Use helper functions in ?tbtrs tests
• #12007: MAINT: updated LICENSES_bundled for pybind11 and six
• #12008: DOC: roadmap update
• #12009: ENH: optimize: support 64-bit BLAS in lbfgsb
• #12010: ENH: sparse.linalg: support 64-bit BLAS in isolve
• #12012: DOC: add Examples for interpolate.barycentric_interpolate(),…
• #12013: MAINT: remove last uses of numpy.dual
• #12014: CI: print 10 slowest tests
• #12020: MAINT: Removed handling of circular input in SphericalVoronoi
• #12022: DOC : added default value of absolute_sigma to False in scipy.optimize.curve_fit docs
• #12024: DOC: add Examples for io.hb_read() and io.hb_write()
• #12025: MAINT: Remove numpy/npy_3kcompat.h from nd_image
• #12028: Spelling correction
• #12030: ENH: optimize/_trlib: support ILP64 blas/lapack
• #12036: MAINT: Add some generated C files .gitignore
• #12038: MAINT, CI: Travis rackcdn->conda.org
• #12039: MAINT: signal: Lower the resolution of the plots in the chirp…
• #12040: DOC: add Examples for ndimage.spline_filter1d() and spline_filter()…
• #12044: MAINT: combine apt-get update and apt-get install into one RUN
• #12045: TST: Reduce size of test_diagonal_types to speed up tests
• #12046: MAINT: Remove unused npy_3kcompat.h
• #12047: MAINT: Cython 3.0 compat
• #12050: DOC: add download number badges of PyPI and conda-forge in README.rst
• #12052: DOC: add Examples odr.models.polynomial() and fix odr.odr docstring…
• #12056: ENH: Modifies shapiro to return a named tuple
• #12057: Adding my name into THANKS.txt
• #12060: TST: Reduce number of test_diagonal_types configs
• #12062: TST: Change dec.slow to pytest.mark.slow
• #12068: ENH: Modifies jarque_bera to return a named tuple
• #12070: MAINT, CI: appveyor rack->conda.org
• #12072: TST: filter out factorial(float) deprecation warning
• #12078: TST: Skip test on colab with large memory alloc
• #12079: DOC: Remove Python2 reference from stats tutorial
• #12081: DOC: add Examples docstring for optimize.show_options()
• #12084: BUG: interpolate: fix BarycentricInterpolator with integer input…
• #12089: ENH: spatial/qhull: support ILP64 Lapack
• #12090: ENH: integrate: support ILP64 BLAS in odeint/vode/lsoda
• #12091: ENH: integrate: support ILP64 in quadpack
• #12092: BUG: Fix dropping dt in signal.StateSpace
• #12093: MAINT: Rollback python2.6 workaround
• #12094: MAINT: `openblas_support` hash checks
• #12095: MAINT: ndimage: change `shares_memory` to `may_share_memory`
• #12098: Doc: change 4 model instances of odr to be instances of `Model`…
• #12101: Removed more unused imports and assignments.
• #12107: ENH: Area calculation for 2D inputs in SphericalVoronoi
• #12108: MAINT: ensure attributes have correct data type in `SphericalVoronoi`
• #12109: degree is not order in splines
• #12110: ENH: More helpful/forgiving io.wavfile errors
• #12117: BUG: fix newline
• #12123: [MAINT] Fix error on PyData/Sparse import.
• #12124: TST: Always test matmul now that Python3.5+ is required
• #12126: TST: Cleanup unused matplotlib code.
• #12127: DOC: update docstrings of signal.cspline2d, qspline2d, sepfl2d
• #12130: MAINT: Fixing broken links with linchecker
• #12135: ENH: linalg: Add the function convolution_matrix.
• #12136: MAINT: Cleanup np.poly1d hack
• #12137: TST, CI: reproduce wheels 32-bit setup
• #12140: TST: stats: add kstwo, ksone to slow tests.

- #12141: Support 64-bit integer size in Fitpack
- #12151: DOC: Correct Rosenbrock function sum
- #12159: BUG: Fix length calculation in upfirdn
- #12160: BUG: Fix M_PI
- #12168: DOC: add an obsolete version checking javascript to doc release…
- #12171: CI, MAINT: Azure OpenBLAS drive flip
- #12172: ENH: Bounds for the Powell minimization method
- #12175: BLD: support more Fortran compilers for ilp64 and macro expansion…
- #12179: BUG: stats: A few distributions didn’t accept lists as arguments.
- #12180: MAINT: removed redundant import in SphericalVoronoi tests
- #12181: DOC: for versionwarning don’t use $.getScript
- #12182: MAINT: random sampling on the hypersphere in SphericalVoronoi…
- #12194: MAINT: Module and example cleanups for doc build
- #12202: ENH: tool to DL release wheels from Anaconda
- #12210: Remove py.typed marker (at least for the release)
- #12217: BUG: stats: Fix handling of edge cases in median_abs_deviation.
- #12223: BUG: stats: wilcoxon returned p > 1 for certain inputs.
- #12227: BLD: Set macos min version when building rectangular_lsap
- #12229: MAINT: tools/gh_lists.py: fix http header case sensitivity issue
- #12236: DOC: Fix a couple grammatical mistakes in 1.5.0-notes.rst.
- #12276: TST: skip test_heequb, it fails intermittently.
- #12285: CI: split travis arm64 run into two
- #12317: BUG: prevent error accumulation in Rotation multiplication
- #12318: BUG: sparse: avoid np.prod overflow in check_shape
- #12319: BUG: Make cobyla threadsafe
- #12335: MAINT: Work around Sphinx bug

5.15 SciPy 1.4.1 Release Notes

Contents

- SciPy 1.4.1 Release Notes
  - Authors
    - Issues closed for 1.4.1
    - Pull requests for 1.4.1
SciPy 1.4.1 is a bug-fix release with no new features compared to 1.4.0. Importantly, it aims to fix a problem where an older version of pybind11 may cause a segmentation fault when imported alongside incompatible libraries.

5.15.1 Authors

- Ralf Gommers
- Tyler Reddy

Issues closed for 1.4.1

- #11237: Seg fault when importing torch

Pull requests for 1.4.1

- #11238: BLD: update minimum pybind11 version to 2.4.0.

5.16 SciPy 1.4.0 Release Notes

Contents

- SciPy 1.4.0 Release Notes
  - Highlights of this release
    - New features
  - Infrastructure
    - scipy.constants improvements
    - scipy.fft added
    - scipy.fftpack improvements
    - scipy.integrate improvements
    - scipy.interpolate improvements
    - scipy.io improvements
    - scipy.linalg improvements
    - scipy.ndimage improvements
    - scipy.optimize improvements
    - scipy.signal improvements
    - scipy.sparse improvements
    - scipy.spatial improvements
    - scipy.special improvements
    - scipy.stats improvements
SciPy 1.4.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Before upgrading, we recommend that users check that their own code does not use deprecated SciPy functionality (to do so, run your code with `python -Wd` and check for `DeprecationWarning`s). Our development attention will now shift to bug-fix releases on the 1.4.x branch, and on adding new features on the master branch.

This release requires Python 3.5+ and NumPy >=1.13.3 (for Python 3.5, 3.6), >=1.14.5 (for Python 3.7), >= 1.17.3 (for Python 3.8)

For running on PyPy, PyPy3 6.0+ and NumPy 1.15.0 are required.

## 5.16.1 Highlights of this release

- a new submodule, `scipy.fft`, now supersedes `scipy.fftpack`; this means support for long double transforms, faster multi-dimensional transforms, improved algorithm time complexity, release of the global interpreter lock, and control over threading behavior
- support for `pydata/sparse` arrays in `scipy.sparse.linalg`
- substantial improvement to the documentation and functionality of several `scipy.special` functions, and some new additions
- the generalized inverse Gaussian distribution has been added to `scipy.stats`
- an implementation of the Edmonds-Karp algorithm in `scipy.sparse.csgraph.maximum_flow`
- `scipy.spatial.SphericalVoronoi` now supports n-dimensional input,
  has linear memory complexity, improved performance, and supports single-hemisphere generators
New features

5.16.2 Infrastructure

Documentation can now be built with `runtests.py --doc`

A Dockerfile is now available in the scipy/scipy-dev repository to facilitate getting started with SciPy development.

5.16.3 scipy.constants improvements

`scipy.constants` has been updated with the CODATA 2018 constants.

5.16.4 scipy.fft added

`scipy.fft` is a new submodule that supersedes the `scipy.fftpack` submodule. For the most part, this is a drop-in replacement for `numpy.fft` and `scipy.fftpack` alike. With some important differences, `scipy.fft`: - uses NumPy's conventions for real transforms (`rfft`). This means the return value is a complex array, half the size of the full `fft` output. This is different from the output of `fftpack` which returned a real array representing complex components packed together. - the inverse real to real transforms (`idct` and `idst`) are normalized for `norm=None` in the same way as `ifft`. This means the identity `idct(dct(x)) == x` is now True for all norm modes. - does not include the convolutions or pseudo-differential operators from `fftpack`.

This submodule is based on the `pypocketfft` library, developed by the author of `pocketfft` which was recently adopted by NumPy as well. `pypocketfft` offers a number of advantages over fortran `FFTPACK`: - support for long double (`np.longfloat`) precision transforms. - faster multi-dimensional transforms using vectorisation - Bluestein's algorithm removes the worst-case $O(n^2)$ complexity of `FFTPACK` - the global interpreter lock (GIL) is released during transforms - optional multithreading of multi-dimensional transforms via the `workers` argument.

Note that `scipy.fftpack` has not been deprecated and will continue to be maintained but is now considered legacy. New code is recommended to use `scipy.fft` instead, where possible.

5.16.5 scipy.fftpack improvements

`scipy.fftpack` now uses `pypocketfft` to perform its FFTs, offering the same speed and accuracy benefits listed for `scipy.fft` above but without the improved API.

5.16.6 scipy.integrate improvements

The function `scipy.integrate.solve_ivp` now has an `args` argument. This allows the user-defined functions passed to the function to have additional parameters without having to create wrapper functions or lambda expressions for them.

`scipy.integrate.solve_ivp` can now return a `y_events` attribute representing the solution of the ODE at event times.

New `OdeSolver` is implemented — DOP853. This is a high-order explicit Runge-Kutta method originally implemented in Fortran. Now we provide a pure Python implementation usable through `solve_ivp` with all its features.

`scipy.integrate.quad` provides better user feedback when break points are specified with a weighted integrand.

`scipy.integrate.quad_vec` is now available for general purpose integration of vector-valued functions.
5.16.7 `scipy.interpolate` improvements

`scipy.interpolate.pade` now handles complex input data gracefully

`scipy.interpolate.Rbf` can now interpolate multi-dimensional functions

5.16.8 `scipy.io` improvements

`scipy.io.wavfile.read` can now read data from a WAV file that has a malformed header, similar to other modern WAV file parsers

`scipy.io.FortranFile` now has an expanded set of available Exception classes for handling poorly-formatted files

5.16.9 `scipy.linalg` improvements

The function `scipy.linalg.subspace_angles(A, B)` now gives correct results for complex-valued matrices. Before this, the function only returned correct values for real-valued matrices.

New boolean keyword argument `check_finite` for `scipy.linalg.norm`; whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

`scipy.linalg.solve_triangular` has improved performance for a C-ordered triangular matrix

LAPACK wrappers have been added for `?geequ`, `?geequb`, `?syequb`, and `?heequb`

Some performance improvements may be observed due to an internal optimization in operations involving LAPACK routines via `_compute_lwork`. This is particularly true for operations on small arrays.

Block QR wrappers are now available in `scipy.linalg.lapack`

5.16.10 `scipy.ndimage` improvements

5.16.11 `scipy.optimize` improvements

It is now possible to use linear and non-linear constraints with `scipy.optimize.differential_evolution`

`scipy.optimize.linear_sum_assignment` has been re-written in C++ to improve performance, and now allows input costs to be infinite.

A ScalarFunction.fun_and_grad method was added for convenient simultaneous retrieval of a function and gradient evaluation

`scipy.optimize.minimize` BFGS method has improved performance by avoiding duplicate evaluations in some cases

Better user feedback is provided when an objective function returns an array instead of a scalar.
5.16.12 scipy.signal improvements

Added a new function to calculate convolution using the overlap-add method, named `scipy.signal.oaconvolve`. Like `scipy.signal.fftconvolve`, this function supports specifying dimensions along which to do the convolution.

`scipy.signal.cwt` now supports complex wavelets.

The implementation of `choose_conv_method` has been updated to reflect the new FFT implementation. In addition, the performance has been significantly improved (with rather drastic improvements in edge cases).

The function `upfirdn` now has a `mode` keyword argument that can be used to select the signal extension mode used at the signal boundaries. These modes are also available for use in `resample_poly` via a newly added `padtype` argument.

`scipy.signal.sosfilt` now benefits from Cython code for improved performance

`scipy.signal.resample` should be more efficient by leveraging `rfft` when possible

5.16.13 scipy.sparse improvements

It is now possible to use the LOBPCG method in `scipy.sparse.linalg.svds`.

`scipy.sparse.linalg.LinearOperator` now supports the operation `rmatmat` for adjoint matrix-matrix multiplication, in addition to `rmatvec`.

Multiple stability updates enable float32 support in the LOBPCG eigenvalue solver for symmetric and Hermitian eigenvalues problems in `scipy.sparse.linalg.lobpcg`.

A solver for the maximum flow problem has been added as `scipy.sparse.csgraph.maximum_flow`.

`scipy.sparse.csgraph.maximum_bipartite_matching` now allows non-square inputs, no longer requires a perfect matching to exist, and has improved performance.

`scipy.sparse.lil_matrix` conversions now perform better in some scenarios

Basic support is available for `pydata/sparse` arrays in `scipy.sparse.linalg`

`scipy.sparse.linalg.spsolve_triangular` now supports the `unit_diagonal` argument to improve call signature similarity with its dense counterpart, `scipy.linalg.solve_triangular`

`assertAlmostEqual` may now be used with sparse matrices, which have added support for `__round__`

5.16.14 scipy.spatial improvements

The bundled Qhull library was upgraded to version 2019.1, fixing several issues. Scipy-specific patches are no longer applied to it.

`scipy.spatial.SphericalVoronoi` now has linear memory complexity, improved performance, and supports single-hemisphere generators. Support has also been added for handling generators that lie on a great circle arc (geodesic input) and for generators in n-dimensions.

`scipy.spatial.transform.Rotation` now includes functions for calculation of a mean rotation, generation of the 3D rotation groups, and reduction of rotations with rotational symmetries.

`scipy.spatial.transform.Slerp` is now callable with a scalar argument

`scipy.spatial.Delaunay` and `scipy.spatial.Voronoi` now have attributes for tracking whether they are furthest site diagrams
5.16.15 scipy.special improvements

The Voigt profile has been added as `scipy.special.voigt_profile`.

A real dispatch has been added for the Wright Omega function (`scipy.special.wrightomega`).

The analytic continuation of the Riemann zeta function has been added. (The Riemann zeta function is the one-argument variant of `scipy.special.zeta`.)

The complete elliptic integral of the first kind (`scipy.special.ellipk`) is now available in `scipy.special`

The accuracy of `scipy.special.hyp1f1` for real arguments has been improved.

The documentation of many functions has been improved.

5.16.16 scipy.stats improvements

`scipy.stats.multiscale_graphcorr` added as an independence test that operates on high dimensional and nonlinear data sets. It has higher statistical power than other `scipy.stats` tests while being the only one that operates on multivariate data.

The generalized inverse Gaussian distribution (`scipy.stats.geninvgauss`) has been added.

It is now possible to efficiently reuse `scipy.stats.binned_statistic_dd` with new values by providing the result of a previous call to the function.

`scipy.stats.hmean` now handles input with zeros more gracefully.

The beta-binomial distribution is now available in `scipy.stats.betabinom`.

`scipy.stats.zscore`, `scipy.stats.circmean`, `scipy.stats.circstd`, and `scipy.stats.circvar` now support the `nan_policy` argument for enhanced handling of NaN values.

`scipy.stats.entropy` now accepts an `axis` argument.

`scipy.stats.gaussian_kde.resample` now accepts a `seed` argument to empower reproducibility.

`scipy.stats.kendalltau` performance has improved, especially for large inputs, due to improved cache usage.

`scipy.stats.truncnorm` distribution has been rewritten to support much wider tails.

Deprecated features

5.16.17 scipy deprecations

Support for NumPy functions exposed via the root SciPy namespace is deprecated and will be removed in 2.0.0. For example, if you use `scipy.rand` or `scipy.diag`, you should change your code to directly use `numpy.random.default_rng` or `numpy.diag`, respectively. They remain available in the currently continuing Scipy 1.x release series.

The exception to this rule is using `scipy.fft` as a function – `scipy.fft` is now meant to be used only as a module, so the ability to call `scipy.fft(...)` will be removed in SciPy 1.5.0.

In `scipy.spatial.Rotation` methods `from_dcm`, `as_dcm` were renamed to `from_matrix`, `as_matrix` respectively. The old names will be removed in SciPy 1.6.0.

Method `Rotation.match_vectors` was deprecated in favor of `Rotation.align_vectors`, which provides a more logical and general API to the same functionality. The old method will be removed in SciPy 1.6.0.
**Backwards incompatible changes**

**5.16.18 scipy.special changes**

The deprecated functions hyp2f0, hyp1f2, and hyp3f0 have been removed.

The deprecated function bessel_diff_formula has been removed.

The function i0 is no longer registered with numpy.dual, so that numpy.dual.i0 will unconditionally refer to the NumPy version regardless of whether scipy.special is imported.

The function expn has been changed to return nan outside of its domain of definition \( (x, n < 0) \) instead of inf.

**5.16.19 scipy.sparse changes**

Sparse matrix reshape now raises an error if shape is not two-dimensional, rather than guessing what was meant. The behavior is now the same as before SciPy 1.1.0.

CSR and CSC sparse matrix classes should now return empty matrices of the same type when indexed out of bounds. Previously, for some versions of SciPy, this would raise an IndexError. The change is largely motivated by greater consistency with ndarray and numpy.matrix semantics.

**5.16.20 scipy.signal changes**

scipy.signal.resample behavior for length-1 signal inputs has been fixed to output a constant (DC) value rather than an impulse, consistent with the assumption of signal periodicity in the FFT method.

scipy.signal.cwt now performs complex conjugation and time-reversal of wavelet data, which is a backwards-incompatible bugfix for time-asymmetric wavelets.

**5.16.21 scipy.stats changes**

scipy.stats.loguniform added with better documentation as (an alias for scipy.stats.reciprocal). loguniform generates random variables that are equally likely in the log space; e.g., 1, 10 and 100 are all equally likely if loguniform(10 ** 0, 10 ** 2).rvs() is used.

Other changes

The LSODA method of scipy.integrate.solve_ivp now correctly detects stiff problems.

scipy.spatial.cKDTree now accepts and correctly handles empty input data

scipy.stats.binned_statistic_dd now calculates the standard deviation statistic in a numerically stable way.

scipy.stats.binned_statistic_dd now throws an error if the input data contains either np.nan or np.inf. Similarly, in scipy.stats now all continuous distributions’ .fit() methods throw an error if the input data contain any instance of either np.nan or np.inf.
Authors

- @endolith
- @wenhui-prudencemed +
- Abhinav +
- Anne Archibald
- ashwinpathak20nov1996 +
- Danilo Augusto +
- Nelson Auner +
- aypiggott +
- Christoph Baumgarten
- Peter Bell
- Sebastian Berg
- Arman Bilge +
- Benedikt Boecking +
- Christoph Boeddeker +
- Daniel Bunting
- Evgeni Burovski
- Angeline Burrell +
- Angeline G. Burrell +
- CJ Carey
- Carlos Ramos Carreño +
- Mak Sze Chun +
- Malayaja Chutani +
- Christian Clauss +
- Jonathan Conroy +
- Stephen P Cook +
- Dylan Cutler +
- Anirudh Dagar +
- Aidan Dang +
- dankleeman +
- Brandon David +
- Tyler Dawson +
- Dieter Werthmüller
- Joe Driscoll +
- Jakub Dyczek +
- Dávid Bodnár
• Fletcher Easton +
• Stefan Endres
• etienne +
• Johann Faouzi
• Yu Feng
• Isuru Fernando +
• Matthew H Flamm
• Martin Gauch +
• Gabriel Gerlero +
• Ralf Gommers
• Chris Gorgolewski +
• Domen Gorjup +
• Edouard Goudenhoofdt +
• Jan Gwinner +
• Maja Gwozd +
• Matt Haberland
• hadshirt +
• Pierre Haessig +
• David Hagen
• Charles Harris
• Gina Helfrich +
• Alex Henrie +
• Francisco J. Hernandez Heras +
• Andreas Hilboll
• Lindsey Hiltner
• Thomas Hisch
• Min Ho Kim +
• Gert-Ludwig Ingold
• jakobjakobson13 +
• Todd Jennings
• He Jia
• Muhammad Firmansyah Kasim +
• Andrew Knyazev +
• Holger Kohr +
• Mateusz Konieczny +
• Krzysztof Pióro +
• Philipp Lang +
• Peter Mahler Larsen +
• Eric Larson
• Antony Lee
• Gregory R. Lee
• Chelsea Liu +
• Jesse Livezey
• Peter Lysakovski +
• Jason Manley +
• Michael Marien +
• Nikolay Mayorov
• G. D. McBain +
• Sam McCormack +
• Melissa Weber Mendonça +
• Kevin Michel +
• mikeWShef +
• Sturla Molden
• Eric Moore
• Peyton Murray +
• Andrew Nelson
• Clement Ng +
• Juan Nunez-Iglesias
• Renee Otten +
• Kellie Ottoboni +
• Ayappan P
• Sambit Panda +
• Tapasweni Pathak +
• Oleksandr Pavlyk
• Fabian Pedregosa
• Petar Mlinarić
• Matti Picus
• Marcel Plch +
• Christoph Pohl +
• Ilhan Polat
• Siddhesh Poyarekar +
• Ioannis Prapas +
• James Alan Preiss +
• Yisheng Qiu +
• Eric Quintero
• Bharat Raghunathan +
• Tyler Reddy
• Joscha Reimer
• Antonio Horta Ribeiro
• Lucas Roberts
• rthshort +
• Josua Sassen
• Kevin Sheppard
• Scott Sievert
• Leo Singer
• Kai Striega
• Søren Fuglede Jørgensen
• tborisow +
• Étienne Tremblay +
• tuxcell +
• Miguel de Val-Borro
• Andrew Valentine +
• Hugo van Kemenade
• Paul van Mulbregt
• Sebastiano Vigna
• Pauli Virtanen
• Dany Vohl +
• Ben Walsh +
• Huize Wang +
• Warren Weckesser
• Anreas Weh +
• Joseph Weston +
• Adrian Wijaya +
• Timothy Willard +
• Josh Wilson
• Kentaro Yamamoto +
• Dave Zbarsky +
A total of 142 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

5.16.22 Issues closed for 1.4.0

- #1255: maxiter broken for Scipy.sparse.linalg gmres, in addition to…
- #1301: consolidate multipack.h from interpolate and integrate packages…
- #1739: Single precision FFT insufficiently accurate. (Trac #1212)
- #1795: stats test_distributions.py: replace old fuzz tests (Trac #1269)
- #2233: fftpack segfault with big arrays (Trac #1714)
- #2434: matmat and the sophistication of linear operator objects
- #2477: stats.truncnorm.rvs() does not give symmetric results for negative…
- #2629: FFTpack is unacceptably slow on non power of 2
- #2883: UnboundLocalError in scipy.interpolate.splrep
- #2956: Feature Request: axis argument for stats.entropy function
- #3528: Segfault on test_djbfft (possibly MKL-related?)
- #3793: cwt should also return complex array
- #4464: TST: residue/residuez/invres/invresz don’t have any tests
- #4561: BUG: tf filter trailing and leading zeros in residuez
- #4669: Rewrite sosfilt to make a single loop over the input?
- #5040: BUG: Empty data handling of (c)KDTrees
- #5112: boxcox transform edge cases could use more care
- #5441: scipy.stats.ncx2 fails for nc=0
- #5502: args keyword not handled in optimize.curve_fit
- #6484: Qhull segmentation fault
- #6900: linear_sum_assignment with infinite weights
- #6966: Hypergeometric Functions documentation is lacking
- #6999: possible false positive corruption check in compressed loadmat()
- #7018: ydata that needs broadcasting renders curve_fit unable to compute…
- #7140: trouble with documentation for windows
- #7327: interpolate.ndgriddata.griddata causes Python to crash rather…
- #7396: MatrixLinearOperator implements _adjoint(), but not _transpose()
- #7400: BUG(?): special: factorial and factorial2 return a 0-dimensional…
- #7434: Testing of scipy.stats continuous distributions misses 25 distributions
- #7491: Several scipy.stats distributions (fisk, burr, burr12, f) return…
- #7759: Overflow in stats.kruskal for large samples
- #7906: Wrong result from scipy.interpolate.UnivariateSpline.integral…
- #8165: ENH: match functionality of R for hmean
- #8417: optimize.minimize(method='L-BFGS-B', options={'disp': True})
- #8535: Strictly increasing requirement in UnivariateSpline
- #8815: [BUG] GMRES: number of iteration is only increased if callback...
- #9207: scipy.linalg.solve_triangular speed after scipy.linalg.lu_factor
- #9275: new feature: adding LOBPCG solver in svds in addition to ARPACK
- #9403: range of truncnorm.logpdf could be extended
- #9429: gaussian_kde not working with numpy matrix
- #9515: ndimage implementation relies on undefined behavior
- #9643: arpack returns singular values in ascending order
- #9669: DOC: matthew-brett/build-openblas has been retired
- #9852: scipy.spatial.ConvexHull exit with code 134, free(): invalid...
- #9902: scipy.stats.truncnorm second moment may be wrong
- #9943: Custom sampling methods in shgo do not work
- #9947: DOC: Incorrect documentation for `nan_policy='propagate'` in...
- #9994: BUG: sparse: reshape method allows a shape containing an arbitrary...
- #10036: Official Nelder mead tutorial uses xtol instead of xatol, which...
- #10078: possible to get a better error message when objective function...
- #10092: overflow in truncnorm.rvs
- #10121: A little spelling mistake
- #10126: inaccurate std implementation in binned_statistic
- #10161: Error in documentation scipy.special.modstruve
- #10195: Derivative of spline with const extrapolation is also extrapolated...
- #10206: sparse matrices indexing with scipy 1.3
- #10236: Non-descriptive error on type mismatch for functions of scipy.optimize...
- #10258: LOBPCG convergence failure if guess provided
- #10262: distance matrix lacks dtype checks / warnings
- #10271: BUG: optimize failure on wheels
- #10277: scipy.special.zeta(0) = NAN
- #10292: DOC/REL: Some sections of the release notes are not nested correctly.
- #10300: scipy.stats.rv_continuous.fit throws empty Runtimeerror when...
- #10319: events in scipy.integrate.solve_ivp: How do I setup an events...
- #10323: Adding more low-level LAPACK wrappers
- #10360: firwin2 inadvertently modifies input and may result in undefined...
- #10388: BLD: TestHerd::test_hetrd core dumps with Python-dbgs
- #10395: Remove warning about output shape of zoom
- #10403: DOC: scipy.signal.resample ignores t parameter
- #10421: Yeo-Johnson power transformation fails with integer input data
- #10422: BUG: scipy.fft does not support multiprocessing
- #10427: ENH: convolve numbers should be updated
- #10444: BUG: scipy.spatial.transform.Rotation.match_vectors returns improper...
- #10488: ENH: DCTs/DSTs for scipy.fft
- #10501: BUG: scipy.spatial.HalfspaceIntersection works incorrectly
- #10514: BUG: cKDTree GIL handling is incorrect
- #10535: TST: master branch CI failures
- #10588: scipy.fft and numpy.fft inconsistency when axes=None and shape…
- #10628: Scipy python>3.6 Windows wheels don’t ship msvcp*.dll
- #10733: DOC/BUG: min_only result does not match documentation
- #10774: min_only=true djijkstra infinite loop with duplicate indices
- #10775: UnboundLocalError in Radau when given a NaN
- #10835: io.wavfile.read unnecessarily raises an error for a bad wav header
- #10838: Error in documentation for scipy.linalg.lu_factor
- #10875: DOC: Graphical guides (using TikZ)
- #10880: setting verbose > 2 in minimize with trust-constr method leads…
- #10887: scipy.signal.signaltools._fftcconv_faster has incorrect estimates
- #10948: gammainc(0,x) = nan but should be 1, gammaincc(0,x) = nan but…
- #10952: TestQRdelete_F.test_delete_last_p_col test failure
- #10968: API: Change normalized=False to normalize=True in Rotation
- #10987: Memory leak in shgo triangulation
- #10991: Error running openBlas probably missing a step
- #11033: deadlock on osx for python 3.8
- #11041: Test failure in wheel builds for TestTf2zpk.test_simple
- #11089: Regression in scipy.stats where distribution will not accept loc and scale parameters
- #11100: BUG: multiscale_graphcorr random state seeding and parallel use
- #11121: Calls to scipy.interpolate.splprep increase RAM usage.
- #11125: BUG: segfault when slicing a CSR or CSC sparse matrix with slice start index > stop index
- #11198: BUG: sparse eigs (arpack) shift-invert drops the smallest eigenvalue for some k
5.16.23 Pull requests for 1.4.0

- #4591: BUG, TST: Several issues with scipy.signal.residue
- #6629: ENH: sparse: canonicalize on initialization
- #7076: ENH: add complex wavelet support to scipy.signal.cwt.
- #8681: ENH add generalized inverse Gaussian distribution to scipy.stats
- #9064: BUG/ENH: Added default _transpose into LinearOperator. Fixes…
- #9215: ENH: Rbf interpolation of large multi-dimensional data
- #9311: ENH: Added voigt in scipy.special.
- #9642: ENH: integrate: quad() for vector-valued functions
- #9679: DOC: expand docstring of exponweib distribution
- #9684: TST: add ppc64le ci testing
- #9800: WIP : ENH: Refactored _hungarian.py for speed and added a minimize/maximize…
- #9847: DOC: Change integrate tutorial to use solve_ivp instead of odeint
- #9876: ENH: Use rfft when possible in resampling
- #9998: BUG: Do not remove 1s when calling sparse: reshape method #9994
- #10002: ENH: adds constraints for differential evolution
- #10098: ENH: integrate: add args argument to solve_ivp.
- #10099: DOC: Add missing docs for linprog unknown_options
- #10104: BUG: Rewrite of stats.truncnorm distribution.
- #10105: MAINT improve efficiency of rvs_ratio_uniforms in scipy.stats
- #10107: TST: dual_annealing set seed
- #10108: ENH: stats: improve kendall_tau cache usage
- #10110: MAINT: _lib: Fix a build warning.
- #10114: FIX: only print bounds when supported by minimizer (shgo)
- #10115: TST: Add a test with an almost singular design matrix for lsq_linear
- #10118: MAINT: fix rdist methods in scipy.stats
- #10119: MAINT: improve rvs of randint in scipy.stats
- #10127: Fix typo in record array field name (spatial-ckdtree-sparse_distance…
- #10130: MAINT: ndimage: Fix some compiler warnings.
- #10131: DOC: Note the solve_ivp args enhancement in the 1.4.0 release…
- #10133: MAINT: add rvs for semicircular in scipy.stats
- #10138: BUG: special: Invalid arguments to ellip_harm can crash Python.
- #10139: MAINT: spatial: Fix some compiler warnings in the file distance_wrap.c.
- #10140: ENH: add handling of NaN in RuntimeWarning except clause
- #10142: DOC: return value of scipy.special.comb
- #10143: MAINT: Loosen linprog tol
• #10152: BUG: Fix custom sampling input for shgo, add unittest
• #10154: MAINT: add moments and improve doc of mielke in scipy.stats
• #10158: Issue #6999: read zlib checksum before checking bytes read.
• #10166: BUG: Correctly handle broadcasted ydata in curve_fit pcov computation.
• #10167: DOC: special: Add missing factor of \(i\) to \(\text{modstruve}\) docstring
• #10168: MAINT: stats: Fix an incorrect comment.
• #10169: ENH: optimize: Clarify error when objective function returns…
• #10172: DEV: Run tests in parallel when –parallel flag is passed to…
• #10173: ENH: Implement DOP853 ODE integrator
• #10176: Fixed typo
• #10182: TST: fix test issue for stats.pearsonr
• #10184: MAINT: stats: Simplify zmap and zscore (we can use keepdims now).
• #10191: DOC: fix a formatting issue in the scipy.spatial module docstring.
• #10193: DOC: Updated docstring for optimize.nnls
• #10198: DOC, ENH: special: Make ‘hyp2f1’ references more specific
• #10202: DOC: Format DST and DCT definitions as latex equations
• #10207: BUG: Compressed matrix indexing should return a scalar
• #10210: DOC: Update docs for connection=’weak’ in connected_components
• #10225: DOC: Clarify new interfaces for legacy functions in ‘optimize’
• #10231: DOC, MAINT: gpg2 updates to release docs / pavement
• #10235: LICENSE: split license file in standard BSD 3-clause and bundled.
• #10238: ENH: Add new scipy.fft module using pocketfft
• #10243: BUG: fix ARFF reader regression with quoted values.
• #10248: DOC: update README file
• #10255: CI: bump OpenBLAS to match wheels
• #10264: TST: add tests for stats.tvar with unflattened arrays
• #10280: MAINT: stats: Use a constant value for \(\sqrt{2/\pi}\).
• #10286: Development Documentation Overhaul
• #10290: MAINT: Deprecate NumPy functions in SciPy root
• #10291: FIX: Avoid importing xdist when checking for availability
• #10295: Disable deprecated Numpy API in __odrpack.c
• #10296: ENH: C++ extension for linear assignment problem
• #10298: ENH: Made pade function work with complex inputs
• #10301: DOC: Fix critical value significance levels in stats.anderson_ksamp
• #10307: Minkowski Distance Type Fix (issue #10262)
• #10309: BUG: Pass jac=None directly to lsoda
• #10310: BUG: interpolate: UnivariateSpline.derivative.ext is ‘zeros’…
• #10312: FIX: Fixing a typo in a comment
• #10314: scipy.spatial enhancement request
• #10315: DOC: Update integration tutorial to solve_ivp
• #10318: DOC: update the example for PPoly.solve
• #10333: TST: add tests for stats.tvar with unflattened arrays
• #10334: MAINT: special: Remove deprecated ‘hyp2f0’, ‘hyp1f2’, and…
• #10336: BUG: linalg/interpolative: fix interp_decomp modifying input
• #10341: BUG: sparse.linalg/gmres: deprecate effect of callback on semantics…
• #10344: DOC: improve wording of mathematical formulation
• #10345: ENH: Tiled QR wrappers for scipy.linalg.lapack
• #10350: MAINT: linalg: Use the new fft subpackage in linalg.dft test…
• #10351: BUG: Fix unstable standard deviation calculation in histogram
• #10353: Bug: interpolate.NearestNDInterpolator (issue #10352)
• #10357: DOC: linalg: Refer to scipy.fft.fft (not fftpack) in the dft…
• #10359: DOC: Update roadmap now scipy.fft has been merged
• #10361: ENH: Prefer scipy.fft to scipy.fftpack in scipy.signal
• #10371: DOC: Tweaks to fft documentation
• #10372: DOC: Fix typos
• #10377: TST, MAINT: adjustments for pytest 5.0
• #10378: ENH: _lib: allow new np.randomGenerator in check_random_state
• #10379: BUG: sparse: set writeability to be forward-compatible with numpy>=1.17
• #10381: BUG: Fixes gh-7491, pdf at x=0 of fisk/burr/burr12/f distributions.
• #10387: ENH: optimize/bfgs: don’t evaluate twice at initial point for…
• #10392: [DOC] Add an example for _binned_statistic_dd
• #10396: Remove warning about output shape of zoom
• #10397: ENH: Add check_finite to sp.linalg.norm
• #10399: ENH: Add __round__ method to sparse matrix
• #10407: MAINT: drop pybind11 from install_requires, it’s only build-time…
• #10408: TST: use pytest.raises, not numpy assert_raises
• #10409: CI: uninstall nose on Travis
• #10410: [ENH] ncx2 dispatch to chi2 when nc=0
• #10411: TST: optimize: test should use assert_allclose for fp comparisons
• #10414: DOC: add pybind11 to the other part of quickstart guides
• #10417: DOC: special: don’t mark non-ufuncs with a ‘[+]’
• #10423: FIX: Use pybind11::isinstance to check array dtypes
• #10424: DOC: add doctest example for binary data for ttest_ind_from_stats
• #10425: ENH: Add missing Hermitian transforms to scipy.fft
• #10426: MAINT: Fix doc build bugs
• #10431: Update numpy version for AIX
• #10433: MAINT: Minor fixes for the stats
• #10434: BUG: special: make `ndtri` return NaN outside domain of definition
• #10435: BUG: Allow integer input data in scipy.stats.yeojohnson
• #10438: [DOC] Add example for kurtosis
• #10440: ENH: special: make `ellipk` a ufunc
• #10443: MAINT: ndimage: malloc fail check
• #10447: BLD: Divert output from test compiles into a temporary directory
• #10451: MAINT: signal: malloc fail check
• #10455: BUG: special: fix values of `hyperu` for negative `x`
• #10456: DOC: Added comment clarifying the call for dcrsch.f in lbgsbf.f
• #10457: BUG: Allow ckdtrree to accept empty data input
• #10459: BUG:TST: Compute lwork safely
• #10460: [DOC] Add example to entropy
• #10461: DOC: Quickstart Guide updates
• #10462: TST: special: only show max atol/rtol for test points that failed
• #10465: BUG: Correctly align fft inputs
• #10467: ENH: lower-memory duplicate generator checking in spatial.SphericalVoronoi
• #10470: ENH: Normalise the inverse DCT/DST in scipy.fft
• #10472: BENCH: adjust timeout for slow setup_cache
• #10475: CI: include python debug for Travis-ci
• #10476: TST: special: use `__tracebackhide__` to get better error messages
• #10477: ENH: faster region building in spatial.SphericalVoronoi
• #10479: BUG: stats: Fix a few issues with the distributions’ fit method.
• #10480: Add RuntimeError in _distn_infrastructure.py in fit() method
• #10481: BENCH, MAINT: wheel_cache_size has been renamed build_cache_size
• #10494: ENH: faster circumcenter calculation in spatial.SphericalVoronoi
• #10500: Splrep_curfit_cache global variable bugfix
• #10503: BUG: spatial/qhull: get HalfspaceIntersection.dual_points from…
• #10506: DOC: interp2d, note nearest neighbor extrapolation
• #10507: MAINT: Remove fortran fftpack library in favour of pypocketfft
• #10508: TST: fix a bug in the circular import test.
• #10509: MAINT: Set up _build_utils as subpackage
• #10516: BUG: Use nogil contexts in cKDTree
• #10517: ENH: fftconvolve should not FFT broadcastable axes
• #10518: ENH: Speedup fftconvolve
• #10520: DOC: Proper .rst formatting for deprecated features and Backwards...
• #10523: DOC: Improve scipy.signal.resample documentation
• #10524: ENH: Add MGC to scipy.stats
• #10525: [ENH] nx2.ppf dispatch to chi2 when nc=0
• #10526: DOC: clarify laplacian normalization
• #10528: API: Rename scipy.fft DCT/DST shape argument to s
• #10531: BUG: fixed improper rotations in spatial.transform.rotation.match_vectors
• #10533: [DOC] Add example for winsorize function
• #10539: MAINT: special: don’t register ‘i0’ with ‘numpy.dual’
• #10540: MAINT: Fix Travis and Circle
• #10542: MAINT: interpolate: use cython_lapack
• #10547: Feature request. Add furthest site Voronoi diagrams to scipy.spatial.plotutils.
• #10549: [BUG] Fix bug in trimr when inclusive=False
• #10552: add scipy.signal.upfirdn signal extension modes
• #10555: MAINT: special: move ‘c_misc’ into Cephes
• #10556: [DOC] Add example for trima
• #10562: [DOC] Fix triple string fo trimmed so that __doc__ can show...
• #10563: improve least_squares error msg for mismatched shape
• #10564: ENH: linalg: memoize get_lapack/blas_funcs to speed it up
• #10566: ENH: add implementation of solver for the maximum flow problem
• #10567: BUG: spatial: use c++11 construct for getting start of vector...
• #10568: DOC: special: small tweaks to the ‘zetac’ docstring
• #10571: [ENH] Gaussian_kde can accept matrix dataset
• #10574: ENH: linalg: speed up _compute_lwork by avoiding numpuy constructs
• #10582: Fix typos with typos in bundled libraries reverted
• #10583: ENH: special: add the analytic continuation of Riemann zeta
• #10584: MAINT: special: clean up `special.__all__`
• #10586: BUG: multidimensional scipy.fft functions should accept ‘s’ rather...
• #10587: BUG: integrate/lsoda: never abort run, set error istate instead
• #10594: API: Replicate numpy’s fftn behaviour when s is given but not...
• #10599: DOC: dev: update documentation vs. github pull request workflow...
• #10603: MAINT: installer scripts removed
• #10604: MAINT: Change c*np.ones(…) to np.full(…, c, …) in many…
- #10608: Univariate splines should require x to be strictly increasing…
- #10613: ENH: Add seed option for gaussian_kde.resample
- #10614: ENH: Add parallel computation to scipy.fft
- #10615: MAINT: interpolate: remove unused header file
- #10616: MAINT: Clean up 32-bit platform xfail markers
- #10618: BENCH: Added ‘trust-constr’ to minimize benchmarks
- #10621: [MRG] multiple stability updates in lobpcg
- #10622: MAINT: forward port 1.3.1 release notes
- #10624: DOC: stats: Fix spelling of ‘support’.
- #10627: DOC: stats: Add references for the alpha distribution.
- #10629: MAINT: special: avoid overflow longer in `zeta` for negative…
- #10630: TST: GH10271, relax test assertion, fixes #10271
- #10631: DOC: nelder-mean uses xatol fixes #10036
- #10633: BUG: interpolate: integral(a, b) should be zero when both limits…
- #10635: DOC: special: complete hypergeometric functions documentation
- #10636: BUG: special: use series for `hyp1f1` when it converges rapidly
- #10641: ENH: allow matching of general bipartite graphs
- #10643: ENH: scipy.sparse.linalg.spsolve triangular unit diagonal
- #10650: ENH: Cythonize sosfilt
- #10654: DOC: Vertical alignment of table entries
- #10655: ENH: Dockerfile for scipy development
- #10660: TST: clean up tests for rvs in scipy.stats
- #10664: Throw error on non-finite input for binned_statistic_dd()
- #10665: DOC: special: improve the docstrings for `gamma` and `gammasgn`
- #10669: TST: Update scipy.fft real transform tests
- #10670: DOC: Clarify docs and error messages for scipy.signal.butter
- #10672: ENH: return solution attribute when using events in solve_ivp
- #10675: MAINT: special: add an explicit NaN check for `iv` arguments
- #10679: DOC: special: Add documentation for `beta` function
- #10681: TST: sparse.linalg: fix arnoldi test seed
- #10682: DOC: special: Add documentation for `betainc` function
- #10684: TST: special: require Mpmath 1.1.0 for `test_hyperu_around_0`
- #10686: FIX: sphinx isattributedescriptor is not available in sphinx…
- #10687: DOC: added Docker quickstart guide by @andyfaff
- #10689: DOC: special: clarify format of parameters/returns sections for…
- #10690: DOC: special: improve docstrings of incomplete gamma functions
• #10692: ENH: higher-dimensional input in `spatial.SphericalVoronoi`
• #10694: ENH: ScalarFunction.fun_and_grad
• #10698: DOC: special: Add documentation for `betaincinv`
• #10699: MAINT: remove time print lbfgsb fixes #8417
• #10701: TST, MAINT: bump OpenBLAS to 0.3.7 stable
• #10702: DOC: clarify iterations consume multiple function calls
• #10703: DOC: iprint doc lbfgsb closes #5482
• #10708: TST: test suggested in gh1758
• #10710: ENH: Added nan_policy to circ functions in `stats`
• #10712: ENH: add axis parameter to stats.entropy
• #10714: DOC: Formatting fix rv_continuous.expect docs
• #10715: DOC: BLD: update doc Makefile for python version; add scipy version…
• #10717: MAINT: modernize doc/Makefile
• #10719: Enable setting minres initial vector
• #10720: DOC: silence random warning in doc build for `stats.binned_statistic_dd`
• #10724: DEV: Add doc option to runtests.py
• #10728: MAINT: get rid of gramA, gramB text files that lobpcg tests leave…
• #10732: DOC: add min_only to docstring for Dijkstra’s algorithm
• #10734: DOC: spell out difference between source and target in shortest…
• #10735: Fix for Python 4
• #10739: BUG: optimize/slqp: deal with singular BFGS update
• #10742: DOC: special: add to the docstring of `gammahn`
• #10743: ENH: special: add a real dispatch for `wrightomega`‘
• #10746: MAINT: Fix typos in comments, docs and test name
• #10747: Remove spurious quotes
• #10750: MAINT: make cython code more precise
• #10751: MAINT: Check that scipy.linalg.lapack functions are documented
• #10752: MAINT: special: use `sf_error` in Cephes
• #10755: DOC: cluster: Add ‘See Also’ and ‘Examples’ for kmeans2.
• #10763: MAINT: list of minimize methods
• #10768: BUG: Fix corner case for sos2zpk
• #10773: Fix error type for complex input to scipy.fftpack.rfft and irfft
• #10776: ENH: handle geodesic input in `spatial.SphericalVoronoi`‘
• #10777: MAINT: minimizer->custom should handle the kinds of bounds/constraint…
• #10781: ENH: solve_triangular C order improvement
• #10787: Fix behavior of ‘exp1’ on branch cut and add docstring
• #10789: DOC: special: add parameters/returns doc sections for erfc/erf/ex/erfi
• #10790: Travis CI: sudo is deprecated and Xenial is default distro
• #10792: DOC: special: add full docstring for ‘expi’
• #10799: DOC: special: add a complete docstring for ‘expn’
• #10800: Docs edits (GSOD)
• #10802: BUG: fix UnboundLocalError in Radau (scipy#10775)
• #10804: ENH: Speed up next_fast_len with LRU cache
• #10805: DOC: Fix unbalanced quotes in signal.place_poles
• #10809: ENH: Speed up next_fast_len
• #10810: ENH: Raise catchable exceptions for bad Fortran files
• #10811: MAINT: optimize: Remove extra variable from _remove_redundancy_dense
• #10813: MAINT: special: Remove unused variables from _kolmogi and _smirnovi
• #10815: DOC, API: scipy.stats.reciprocal is “log-uniform”
• #10816: MAINT: special: remove deprecated ‘bessel_diff_formula’
• #10817: DOC: special: complete the docstring for ‘fresnel’
• #10820: Fixed compiler_helper.py to allow compilation with ICC on Linux
• #10823: DOC: updated reference guide text for consistency in writing…
• #10825: MAINT: special: change some features of the Voigt function
• #10828: MAINT: integrate: Remove unused variable from init_callback
• #10830: Adding LOBPCG solver in svds in addition to ARPACK
• #10837: WIP: ENH: reduction function for ’spatial.tranform.Rotation’…
• #10843: ENH: Adding optional parameter to stats.zscores to allow for…
• #10845: Rebase kruskal fix
• #10847: remove redundant __getitem__ from scipy.sparse.lil
• #10848: Better handling of empty (not missing) docstrings
• #10849: ENH: implement rmatmat for LinearOperator
• #10850: MAINT : Refactoring lil List of Lists
• #10851: DOC: add a generative art example to the scipy.spatial tutorial.
• #10852: DOC: linalg: fixed gh-10838 unused imports in example deleted
• #10854: DOC: special: add a full docstring for `pdtr`
• #10861: ENH: option to reuse binnnumbers in stats.binned_statistic_dd
• #10863: DOC: partial standardization and validation of scipy.stats reference…
• #10865: BUG: special: fix incomplete gamma functions for infinite ‘a’
• #10866: ENH: calculation of mean in spatial.transform.Rotation
• #10867: MAINT: Also store latex directory
- #10869: ENH: Implement overlap-add convolution
- #10870: ENH: Do not raise EOF error if wavfile data read
- #10876: ENH: Add beta-binomial distribution to scipy.stats
- #10878: MAINT: Update R project URL
- #10883: MAINT: (ndimage) More robust check for output being a numpy dtype
- #10884: DOC: Added instructions on adding a new distribution to scipy.stats.
- #10885: [BUG] fix lobpcg with maxiter=None results in Exception
- #10899: ENH: Match R functionality for hmean
- #10900: MAINT: stats: Use keepdims to simplify a few lines in power_divergence.
- #10901: ENH: sparse/linalg: support pydata/sparse matrices
- #10907: Check whether `maxiter` is integer
- #10912: ENH: warn user that quad() ignores `points=` when `weight=`
- #10918: CI: fix Travis CI py3.8 build
- #10920: MAINT: Update constants to codata 2018 values (second try)
- #10921: ENH: scipy.sparse.lil: tocsr accelerated
- #10924: BUG: Forbid passing `args` as kwarg in scipy.optimize.curve_fit
- #10928: DOC: Add examples to io.wavfile docstrings
- #10934: typo fix
- #10935: BUG: Avoid undefined behaviour on float to unsigned conversion
- #10936: DOC: Added missing example to stats.mstats.variation
- #10939: ENH: scipy.sparse.lil: tocsr accelerated depending on density
- #10946: BUG: setting verbose > 2 in minimize with trust-constr method...
- #10947: DOC: special: small improvements to the `poch` docstring
- #10949: BUG: fix return type of erlang_gen_.argcheck
- #10951: DOC: fixed Ricker wavelet formula
- #10954: BUG: special: fix 'factorial' return type for 0-d inputs
- #10955: MAINT: Relax the assert_unitary atol value
- #10956: WIP: make pdtr(int, double) be pdtr(double, double)
- #10957: BUG: Ensure full binary compatibility of long double test data
- #10964: ENH: Make Slerp callable with a scalar argument
- #10972: BUG: Handle complex gains in zpk2sos
- #10975: TST: skip test_kendalltau ppc64le
- #10978: BUG: boxcox data dimension and constancy check #5112
- #10979: API: Rename dcm to (rotation) matrix in Rotation class
- #10981: MAINT: add support for a==0 and x>0 edge case to igam and igamc
- #10986: MAINT: Remove direct imports from numpysignaltools.py

5.16. SciPy 1.4.0 Release Notes
- #10988: BUG: signal: fixed issue #10360
- #10989: FIX binned_statistic_dd Mac wheel test fails
- #10990: BUG: Fix memory leak in shgo triangulation
- #10992: TST: Relax tolerance in upfirdn test_modes
- #10993: TST: bump tolerance in optimize tests
- #10997: MAINT: Rework residue and residuez
- #11001: DOC: Updated Windows build tutorial
- #11004: BUG: integrate/quad_vec: fix several bugs in quad_vec
- #11005: TST: add Python 3.8 Win CI
- #11006: DOC: special: add a reference for `kl_div`
- #11012: MAINT: Rework invres and invresz
- #11015: DOC: special: add references for `rel_ent`
- #11017: DOC: numpydoc validation of morestats.py
- #11018: MAINT: Filter unrelated warning
- #11031: MAINT: update choose_conv_method for pocketfft implementation
- #11034: MAINT: TST: Skip tests with multiprocessing that use “spawn”…
- #11036: DOC: update doc/README with some more useful content.
- #11037: DOC: special: add a complete docstring for `rgamma`
- #11038: DOC: special: add a reference for the polygamma function
- #11042: TST: fix tf2zpk test failure due to incorrect complex sorting.
- #11044: MAINT: choose_conv_method can choose fftconvolution for longcomplex
- #11046: TST: Reduce tolerance for ppc64le with reference lapack
- #11048: DOC: special: add reference for orthogonal polynomial functions
- #11049: MAINT: proper random number initialization and readability fix
- #11051: MAINT: pep8 cleanup
- #11054: TST: bump test precision for dual_annealing SLSQP test
- #11055: DOC: special: add a reference for `zeta`
- #11056: API: Deprecated normalized keyword in Rotation
- #11065: DOC: Ubuntu Development Environment Quickstart should not modify…
- #11066: BUG: skip deprecation for numpy top-level types
- #11067: DOC: updated documentation for consistency in writing style
- #11070: DOC: Amendment to Ubuntu Development Environment Quickstart should…
- #11073: DOC: fix 1.4.0 release notes
- #11081: API: Replace Rotation.match_vectors with align_vectors
- #11083: DOC: more 1.4.0 release note fixes
- #11092: BUG: stats: fix freezing of some distributions
SciPy 1.3.3 is a bug-fix release with no new features compared to 1.3.2. In particular, a test suite issue involving multi-processing was fixed for Windows and Python 3.8 on macOS.

Wheels were also updated to place msvcp140.dll at the appropriate location, which was previously causing issues.

5.17.1 Authors

Ilhan Polat Tyler Reddy Ralf Gommers

Issues closed for 1.3.3

• #11033: deadlock on osx for python 3.8

Pull requests for 1.3.3

• #11034: MAINT: TST: Skip tests with multiprocessing that use “spawn” start method
5.18 SciPy 1.3.2 Release Notes

Contents

- SciPy 1.3.2 Release Notes
  - Authors
    - Issues closed for 1.3.2
    - Pull requests for 1.3.2

SciPy 1.3.2 is a bug-fix and maintenance release that adds support for Python 3.8.

5.18.1 Authors

- CJ Carey
- Dany Vohl
- Martin Gauch +
- Ralf Gommers
- Matt Haberland
- Eric Larson
- Nikolay Mayorov
- Sam McCormack +
- Andrew Nelson
- Tyler Reddy
- Pauli Virtanen
- Huize Wang +
- Warren Weckesser
- Joseph Weston +

A total of 14 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.3.2

- #4915: Bug in unique_roots in scipy.signal.signaltools.py for roots…
- #5161: Optimizers reporting success when the minimum is NaN
- #5546: ValueError raised if scipy.sparse.linalg.expm receives array…
- #10124: linprog(method='revised simplex') doctest bug
- #10609: Graph shortest path with Floyd-Warshall removes explicit zeros.
- #10658: BUG: stats: Formula for the variance of the noncentral F distribution…
- #10695: BUG: Assignation issues in csr_matrix with fancy indexing
• #10846: root_scalar fails when passed a function wrapped with functools.lru_cache
• #10902: CI: travis osx build failure
• #10967: macOS build failure in SuperLU on maintenance/1.3.x
• #10976: Typo in sp.stats.wilcoxon docstring

**Pull requests for 1.3.2**

• #10498: TST: optimize: fixed `linprog` “disp”: True bug
• #10536: CI: add 3.8-dev to travis
• #10671: BUG: stats: Fix the formula for the variance of the noncentral…
• #10693: BUG: ScalarFunction stores original array
• #10700: BUG: sparse: Loosen checks on sparse fancy assignment
• #10709: BUG: Fix floyd_warshall to support zero-weight edges
• #10756: BUG: optimize: ensure solvers exit with success=False for nan…
• #10833: BUG: Fix subspace_angles for complex values
• #10882: BUG: sparse/arpack: fix incorrect code for complex hermitian…
• #10891: BUG: make C-implemented root finders work with functools.lru_cache
• #10906: BUG: sparse/linalg: fix expm for np.matrix inputs
• #10917: CI: fix travis osx CI
• #10930: MAINT: Updates for 3.8
• #10938: MAINT: Add Python 3.8 to pyproject.toml
• #10943: BLD: update Cython version to 0.29.13
• #10961: BUG: Fix signal.unique_roots
• #10971: MAINT: use 3.8 stable in CI
• #10977: DOC: Fix typo in sp.stats.wilcoxon docstring
• #11025: Update _peak_finding.py

## 5.19 SciPy 1.3.1 Release Notes

SciPy 1.3.1 is a bug-fix release with no new features compared to 1.3.0.
5.19.1 Authors

- Matt Haberland
- Geordie McBain
- Yu Feng
- Evgeni Burovski
- Sturla Molden
- Tapasweni Pathak
- Eric Larson
- Peter Bell
- Carlos Ramos Carreño +
- Ralf Gommers
- David Hagen
- Antony Lee
- Ayappan P
- Tyler Reddy
- Pauli Virtanen

A total of 15 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.3.1

- #5040: BUG: Empty data handling of (c)KD Trees
- #9901: lsoda fails to detect stiff problem when called from solve_ivp
- #10206: sparse matrices indexing with scipy 1.3
- #10232: Exception in loadarff with quoted nominal attributes in scipy…
- #10292: DOC/REL: Some sections of the release notes are not nested correctly.
- #10303: BUG: optimize: linprog failing TestLinprogSimplexBland::test_unbounded_below_no_presolve_corrected
- #10376: TST: Travis CI fails (with pytest 5.0 ?)
- #10384: CircleCI doc build failing on new warnings
- #10398: Scipy 1.3.0 build broken in AIX
- #10501: BUG: scipy.spatial.HalfspaceIntersection works incorrectly
- #10514: BUG: cKDTree GIL handling is incorrect
- #10535: TST: master branch CI failures
- #10572: BUG: ckd tree query_ball_point errors on discontiguous input
- #10597: BUG: No warning on PchipInterpolator changing from bernstein base to local power base
Pull requests for 1.3.1

- #10071: DOC: reconstruct SuperLU permutation matrices avoiding SparseEfficiencyWarning
- #10196: Fewer checks on xdata for curve_fit.
- #10207: BUG: Compressed matrix indexing should return a scalar
- #10233: Fix for ARFF reader regression (#10232)
- #10306: BUG: optimize: Fix for 10303
- #10309: BUG: Pass jac=None directly to lsoda
- #10377: TST, MAINT: adjustments for pytest 5.0
- #10379: BUG: sparse: set writeability to be forward-compatible with numpy>=1.17
- #10426: MAINT: Fix doc build bugs
- #10431: Update numpy version for AIX
- #10457: BUG: Allow cdistree to accept empty data input
- #10503: BUG: spatial/qhull: get HalfspaceIntersection.dual_points from the correct array
- #10516: BUG: Use nogil contexts in cKDTree
- #10520: DOC: Proper .rst formatting for deprecated features and Backwards incompatible changes
- #10540: MAINT: Fix Travis and Circle
- #10573: BUG: Fix query_ball_point with discontiguous input
- #10600: BUG: interpolate: fix broken conversions between PPoly/BPoly objects

5.20 SciPy 1.3.0 Release Notes

Contents

- SciPy 1.3.0 Release Notes
  - Highlights of this release
  - New features
    - scipy.interpolate improvements
    - scipy.io improvements
    - scipy.linalg improvements
    - scipy.ndimage improvements
    - scipy.optimize improvements
    - scipy.signal improvements
    - scipy.sparse improvements
    - scipy.spatial improvements
    - scipy.stats improvements
SciPy 1.3.0 is the culmination of 5 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been some API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Before upgrading, we recommend that users check that their own code does not use deprecated SciPy functionality (to do so, run your code with `python -Wd` and check for `DeprecationWarning`s). Our development attention will now shift to bug-fix releases on the 1.3.x branch, and on adding new features on the master branch.

This release requires Python 3.5+ and NumPy 1.13.3 or greater.

For running on PyPy, PyPy 3.6.0+ and NumPy 1.15.0 are required.

### 5.20.1 Highlights of this release

- Three new `stats` functions, a rewrite of `pearsonr`, and an exact computation of the Kolmogorov-Smirnov two-sample test.
- A new Cython API for bounded scalar-function root-finders in `scipy.optimize`.
- Substantial CSR and CSC sparse matrix indexing performance improvements.
- Added support for interpolation of rotations with continuous angular rate and acceleration in `RotationSpline`.

### 5.20.2 New features

**scipy.interpolate improvements**

A new class `CubicHermiteSpline` is introduced. It is a piecewise-cubic interpolator which matches observed values and first derivatives. Existing cubic interpolators `CubicSpline`, `PchipInterpolator` and `Akima1DInterpolator` were made subclasses of `CubicHermiteSpline`. 
scipy.io improvements

For the Attribute-Relation File Format (ARFF) `scipy.io.arff.loadarff` now supports relational attributes. `scipy.io.mmread` can now parse Matrix Market format files with empty lines.

scipy.linalg improvements

Added wrappers for `syconv` routines, which convert a symmetric matrix given by a triangular matrix factorization into two matrices and vice versa.

`scipy.linalg.clarkson_woodruff_transform` now uses an algorithm that leverages sparsity. This may provide a 60-90 percent speedup for dense input matrices. Truly sparse input matrices should also benefit from the improved sketch algorithm, which now correctly runs in $O(nnz(A))$ time.

Added new functions to calculate symmetric Fiedler matrices and Fiedler companion matrices, named `scipy.linalg.fiedler` and `scipy.linalg.fiedler_companion`, respectively. These may be used for root finding.

scipy.ndimage improvements

Gaussian filter performances may improve by an order of magnitude in some cases, thanks to the removal of a dependence on `np.polynomial`. This may impact `scipy.ndimage.gaussian_filter` for example.

scipy.optimize improvements

The `scipy.optimize.brute` minimizer obtained a new keyword `workers`, which can be used to parallelize computation.

A Cython API for bounded scalar-function root-finders in `scipy.optimize` is available in a new module `scipy.optimize.cython_optimize` via `cimport`. This API may be used with `nogil` and `prange` to loop over an array of function arguments to solve for an array of roots more quickly than with pure Python.

'differential_evolution' can now use a `Bounds` class to specify the bounds for the optimizing argument of a function.

`scipy.optimize.dual_annealing` performance improvements related to vectorization of some internal code.

scipy.signal improvements

Two additional methods of discretization are now supported by `scipy.signal.cont2discrete`: impulse and foh.

`scipy.signal.firls` now uses faster solvers.

`scipy.signal.detrend` now has a lower physical memory footprint in some cases, which may be leveraged using the new `overwrite_data` keyword argument.

`scipy.signal.firwin` `pass_zero` argument now accepts new string arguments that allow specification of the desired filter type: 'bandpass', 'lowpass', 'highpass', and 'bandstop'.
`scipy.signal.sosfilt` may have improved performance due to lower retention of the global interpreter lock (GIL) in the algorithm.

**scipy.sparse improvements**

A new keyword was added to `csgraph.dijsktra` that allows users to query the shortest path to ANY of the passed-in indices, as opposed to the shortest path to EVERY passed index.

`scipy.sparse.linalg.lsmr` performance has been improved by roughly 10 percent on large problems.

Improved performance and reduced physical memory footprint of the algorithm used by `scipy.sparse.linalg.lobpcg`.

CSR and CSC sparse matrix fancy indexing performance has been improved substantially.

**scipy.spatial improvements**

`scipy.spatial.ConvexHull` now has a good attribute that can be used alongsize the QGn Qhull options to determine which external facets of a convex hull are visible from an external query point.

`scipy.spatial.cKDTree.query_ball_point` has been modernized to use some newer Cython features, including GIL handling and exception translation. An issue with `return_sorted=True` and scalar queries was fixed, and a new mode named `return_length` was added. `return_length` only computes the length of the returned indices list instead of allocating the array every time.

`scipy.spatial.transform.RotationSpline` has been added to enable interpolation of rotations with continuous angular rates and acceleration.

**scipy.stats improvements**

Added a new function to compute the Epps-Singleton test statistic, `scipy.stats.epps_singleton_2samp`, which can be applied to continuous and discrete distributions.

New functions `scipy.stats.median_absolute_deviation` and `scipy.stats.gstd` (geometric standard deviation) were added. The `scipy.stats.combine_pvalues` method now supports `pearson`, `tippett` and `mudholkar_george` pvalue combination methods.

The `scipy.stats.ortho_group` and `scipy.stats.special_ortho_group` rvs(dim) functions’ algorithms were updated from a $O(dim^4)$ implementation to a $O(dim^3)$ which gives large speed improvements for $dim>100$.

A rewrite of `scipy.stats.pearsonr` to use a more robust algorithm, provide meaningful exceptions and warnings on potentially pathological input, and fix at least five separate reported issues in the original implementation.

Improved the precision of `hypergeom.logcdf` and `hypergeom.logsf`.

Added exact computation for Kolmogorov-Smirnov (KS) two-sample test, replacing the previously approximate computation for the two-sided test `stats.ks_2samp`. Also added a one-sided, two-sample KS test, and a keyword `alternative` to `stats.ks_2samp`. 
5.20.3 Backwards-incompatible changes

**scipy.interpolate changes**

Functions from *scipy.interpolate* (spleval, spline, splmake, and spltopp) and functions from *scipy.misc* (bytescale, fromimage, imfilter, imread, imresize, imrotate, imsave, imshow, toimage) have been removed. The former set has been deprecated since v0.19.0 and the latter has been deprecated since v1.0.0. Similarly, aliases from *scipy.misc* (comb, factorial, factorial2, factorialk, logsum-exp, pade, info, source, who) which have been deprecated since v1.0.0 are removed. SciPy documentation for v1.1.0 can be used to track the new import locations for the relocated functions.

**scipy.linalg changes**

For *pinv*, *pinv2*, and *pinvh*, the default cutoff values are changed for consistency (see the docs for the actual values).

**scipy.optimize changes**

The default method for *linprog* is now 'interior-point'. The method's robustness and speed come at a cost: solutions may not be accurate to machine precision or correspond with a vertex of the polytope defined by the constraints. To revert to the original simplex method, include the argument *method='simplex'*.

**scipy.stats changes**

Previously, *ks_2samp(data1, data2)* would run a two-sided test and return the approximated p-value. The new signature, *ks_2samp(data1, data2, alternative="two-sided", method="auto"),* still runs the two-sided test by default but returns the exact p-value for small samples and the approximated value for large samples. *method="asymp"* would be equivalent to the old version but *auto* is the better choice.

5.20.4 Other changes

Our tutorial has been expanded with a new section on global optimizers.

There has been a rework of the *stats.distributions* tutorials.

*scipy.optimize* now correctly sets the convergence flag of the result to *CONVERR*, a convergence error, for bounded scalar-function root-finders if the maximum iterations has been exceeded, *disp* is false, and *full_output* is true.

*scipy.optimize.curve_fit* no longer fails if *xdata* and *ydata* dtypes differ; they are both now automatically cast to *float64*.

*scipy.ndimage* functions including *binary_erosion*, *binary_closing*, and *binary_dilation* now require an integer value for the number of iterations, which alleviates a number of reported issues.

Fixed normal approximation in case *zero_method == "pratt" in scipy.stats.wilcoxon*.

Fixes for incorrect probabilities, broadcasting issues and thread-safety related to *stats distributions* setting member variables inside *_argcheck()*.

*scipy.optimize.newton* now correctly raises a *RuntimeError* in the following cases: when default arguments are used and if a derivative of value zero is obtained (which is a special case of failing to converge).

A draft toolchain roadmap is now available, laying out a compatibility plan including Python versions, C standards, and NumPy versions.
5.20.5 Authors

- ananyashreyjain +
- ApamNapat +
- Scott Calabrese Barton +
- Christoph Baumgarten
- Peter Bell +
- Jacob Blomgren +
- Doctor Bob +
- Mana Borwornpadungkitti +
- Matthew Brett
- Evgeni Burovski
- CJ Carey
- Vega Theil Carstensen +
- Robert Cimrman
- Forrest Collman +
- Pietro Cottone +
- David +
- Idan David +
- Christoph Deil
- Dieter Werthmüller
- Conner DiPaolo +
- Dowon
- Michael Dunphy +
- Peter Andreas Entschev +
- Gökçen Eraslan +
- Johann Faouzi +
- Yu Feng
- Piotr Figiel +
- Matthew H Flamm
- Franz Forstmayr +
- Christoph Gohlke
- Richard Janis Goldschmidt +
- Ralf Gommers
- Lars Grueter
- Sylvain Guibian
- Matt Haberland
• Yaroslav Halchenko
• Charles Harris
• Lindsey Hiltner
• Jakob Struye +
• He Jia +
• Jwink3101 +
• Greg Kiar +
• Julius Bier Kirkegaard
• John Kirkham +
• Thomas Kluyver
• Vladimir Korolev +
• Joseph Kuo +
• Michael Lamparski +
• Eric Larson
• Denis Laxalde
• Katrin Leinweber
• Jesse Livezey
• ludcila +
• Dhruv Madeka +
• Magnus +
• Nikolay Mayorov
• Mark Mikofski
• Jarrod Millman
• Markus Mohrhard +
• Eric Moore
• Andrew Nelson
• Aki Nishimura +
• OGordon100 +
• Petar Mlinaric +
• Stefan Peterson
• Matti Picus +
• Ilhan Polat
• Aaron Pries +
• Matteo Ravasi +
• Tyler Reddy
• Ashton Reimer +
• Joscha Reimer
• rfezzani +
• Riadh +
• Lucas Roberts
• Heshy Roskes +
• Mirko Scholz +
• Taylor D. Scott +
• Srikrishna Sekhar +
• Kevin Sheppard +
• Sourav Singh
• skjerns +
• Kai Striega
• SyedSaifAliAlvi +
• Gopi Manohar T +
• Albert Thomas +
• Timon +
• Paul van Mulbregt
• Jacob Vanderplas
• Daniel Vargas +
• Pauli Virtanen
• VNMabus +
• Stefan van der Walt
• Warren Weckesser
• Josh Wilson
• Nate Yoder +
• Roman Yurchak

A total of 97 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.3.0

• #1320: scipy.stats.distribution: problem with self.a, self.b if they…
• #2002: members set in scipy.stats.distributions.##._argcheck (Trac #1477)
• #2823: distribution methods add tmp
• #3220: Scipy.optimize.fmin_powell direc argument syntax unclear
• #3728: scipy.stats.pearsonr: possible bug with zero variance input
• #6805: error-in-scipy-wilcoxon-signed-rank-test-for-equal-series
- #6873: `stats.boxcox` return all same values
- #7117: Warn users when using float32 input data to curve_fit and friends
- #7632: it's not possible to tell the `optimize.least_squares` solver...
- #7730: stats.pearsonr: Potential division by zero for dataset of length...
- #7933: stats.truncnorm fails when providing values outside truncation...
- #8033: Add standard filter types to firwin to set pass_zero intuitively...
- #8600: lfilter.c.src zfill has erroneous header
- #8692: Non-negative values of `stats.hypergeom.logcdf`
- #8734: Enable pip build isolation
- #8861: scipy.linalg.pinv gives wrong result while scipy.linalg.pinv2...
- #8915: need to fix macOS build against older numpy versions
- #8980: scipy.stats.pearsonr overflows with high values of x and y
- #9226: BUG: signal: SystemError: <built-in function _linear_filter>...
- #9254: BUG: root finders brentq, etc, flag says “converged” even if...
- #9308: Test failure - test_initial_constraints_as_canonical
- #9353: scipy.stats.pearsonr returns r=1 if r_num/r_den = inf
- #9359: Planck distribution is a geometric distribution
- #9381: linregress should warn user in 2x2 array case
- #9406: BUG: stats: In pearsonr, when r is nan, the p-value must also...
- #9437: Cannot create sparse matrix from size_t indexes
- #9518: Relational attributes in loadarff
- #9551: BUG: scipy.optimize.newton says the root of x^2+1 is zero.
- #9564: rv_sample accepts invalid input in scipy.stats
- #9565: improper handling of multidimensional input in stats.rv_sample
- #9581: Least-squares minimization fails silently when x and y data are...
- #9587: Outdated value for scipy.constants.au
- #9611: Overflow error with new way of p-value calculation in kendall...
- #9645: 'scipy.stats.mode' crashes with variable length arrays ('dtype=object')
- #9734: PendingDeprecationWarning for np.matrix with pytest
- #9786: stats.ks_2samp() misleading for small data sets.
- #9790: Excessive memory usage on detrend
- #9801: dual_annealing does not set the success attribute in OptimizeResult
- #9833: IntegrationWarning from mielke.stats() during build of html doc.
- #9835: scipy.signal.firls seems to be inefficient versus MATLAB firls
- #9864: Curve_fit does not check for empty input data if called with…
- #9869: scipy.ndimage.label: Minor documentation issue
• #9882: format at the wrong paranthesis in scipy.spatial.transform
• #9889: scipy.signal.find_peaks minor documentation issue
• #9890: Minkowski p-norm Issues in cKDTree For Values Other Than 2 Or…
• #9896: scipy.stats._argcheck sets (not just checks) values
• #9905: Memory error in ndimage.binary_erosion
• #9909: binary_dilation/erosion/closing crashes when iterations is float
• #9919: BUG: `coo_matrix` does not validate the `shape` argument.
• #9982: lsq_linear hangs/infinite loop with `trf` method
• #10003: exponnorm.pdf returns NaN for small K
• #10011: Incorrect check for invalid rotation plane in scipy.ndimage.rotate
• #10024: Fails to build from git
• #10048: DOC: scipy.optimize.root_scalar
• #10068: DOC: scipy.interpolate.splev
• #10074: BUG: `expm` calculates the wrong coefficients in the backward…

Pull requests for 1.3.0

• #7827: ENH: sparse: overhaul of sparse matrix indexing
• #8431: ENH: Cython optimize zeros api
• #8743: DOC: Updated linalg.pinv, .pinv2, .pinvh docstrings
• #8744: DOC: added example to remez docstring
• #9227: DOC: update description of “direc” parameter of “fmin_powell”
• #9263: ENH: optimize: added “revised simplex” for scipy.optimize.linprog
• #9325: DEP: Remove deprecated functions for 1.3.0
• #9330: Add note on push and pull affine transformations
• #9423: DOC: Clearly state how 2x2 input arrays are handled in stats.linregress
• #9428: ENH: parallelised brute
• #9438: BUG: Initialize coo matrix with size_t indexes
• #9455: MAINT: Speed up get_(lapack,blas)_func
• #9465: MAINT: Clean up optimize.zeros C solvers interfaces/code.
• #9477: DOC: linalg: fix lstsq docstring on residues shape
• #9478: DOC: Add docstring examples for rosen functions
• #9479: DOC: Add docstring example for ai_zeros and bi_zeros
• #9480: MAINT: linalg: lstsq clean up
• #9489: DOC: roadmap update for changes over the last year.
• #9492: MAINT: stats: Improve implementation of chi2 ppf method.
• #9497: DOC: Improve docstrings sparse.linalg.isolve
• #9499: DOC: Replace “Scipy” with “SciPy” in the .rst doc files for consistency.
• #9500: DOC: Document the toolchain and its roadmap.
• #9505: DOC: specify which definition of skewness is used
• #9511: DEP: interpolate: remove deprecated interpolate_wrapper
• #9517: BUG: improve error handling in stats.iqr
• #9522: ENH: Add Fiedler and fiedler companion to special matrices
• #9526: TST: relax precision requirements in signal.correlate tests
• #9529: DOC: fix missing random seed in optimize.newton example
• #9533: MAINT: Use list comprehension when possible
• #9537: DOC: add a “big picture” roadmap
• #9538: DOC: Replace “NumPy” with “NumPy” in .py, .rst and .txt doc files…
• #9539: ENH: add two-sample test (Epps-Singleton) to scipy.stats
• #9559: DOC: add section on global optimizers to tutorial
• #9561: ENH: remove nprefixer.h, change code appropriately
• #9562: MAINT: stats: Rewrite pearsonr.
• #9563: BUG: Minor bug fix Callback in linprog(method='simplex')
• #9568: MAINT: raise runtime error for newton with zeroder if disp true,…
• #9570: Correct docstring in show_options in optimize. Fixes #9407
• #9573: BUG fixes range of pk variable pre-check
• #9577: TST: fix minor issue in a signal.stft test.
• #9580: Included blank line before list - Fixes #8658
• #9582: MAINT: drop Python 2.7 and 3.4
• #9588: MAINT: update ‘constants.astronomical_unit’ to new 2012 value.
• #9592: TST: Add 32-bit testing to CI
• #9593: DOC: Replace cumulative density with cumulative distribution
• #9596: TST: remove VC 9.0 from Azure CI
• #9599: Hyperlink DOI to preferred resolver
• #9601: DEV: try to limit GC memory use on PyPy
• #9603: MAINT: improve logcdf and logsf of hypergeometric distribution
• #9605: Reference to pylops in LinearOperator notes and ARPACK example
• #9617: TST: reduce max memory usage for sparse.linalg.lgmres test
• #9619: FIX: Sparse matrix addition/subtraction eliminates explicit zeros
• #9621: bugfix in rv_sample in scipy.stats
• #9622: MAINT: Raise error in directed_hausdorff distance
• #9623: DOC: Build docs with warnings as errors
• #9625: Return the number of calls to ‘hessp’ (not just ‘hess’) in trust…
• #9627: Bug: Ignore empty lines in mmio
• #9637: Function to calculate the MAD of an array
• #9646: Bug: stats: mode for objects w/ndim > 1
• #9648: Add ‘stats.contingency’ to refguide-check
• #9650: Enh: many lobpcg() algorithm improvements
• #9652: Move misc.doccer to _lib.doccer
• #9660: Enh: add pearson, tippett, and mudholkar-george to combine_pvalues
• #9661: Bug: Fix ksone right-hand endpoint, documentation and tests.
• #9664: Enh: adding multi-target dijkstra performance enhancement
• #9670: Maint: link planck and geometric distribution in scipy.stats
• #9676: Enh: optimize: change default linprog method to interior-point
• #9685: Added reference to ndimage.filters.median_filter
• #9705: Fix coefficients in expm helper function
• #9711: Release the GIL during sosfilt processing for simple types
• #9721: Enh: Convexhull visible facets
• #9723: Bld: Modify rv_generic._construct_doc to print out failing distribution…
• #9726: Bug: Fix small issues with ‘signal.lfilter’
• #9729: Bug: Typecheck iterations for binary image operations
• #9730: Enh: reduce sizeof(NL_WatershedElement) by 20%
• #9731: Enh: remove suspicious sequence of type castings
• #9739: Bug: qr_updates fails if u is exactly in span Q
• #9749: Bug: MapWrapper.__exit__ should terminate
• #9753: Enh: Added exact computation for Kolmogorov-Smirnov two-sample…
• #9755: Doc: Added example for signal.impulse, copied from impulse2
• #9756: Doc: Added docstring example for iirdesign
• #9757: Doc: Added examples for step functions
• #9759: Enh: Allow pass_zero to act like btype
• #9760: Doc: Added docstring for lp2bs
• #9761: Doc: Added docstring and example for lp2bp
• #9764: Bug: Catch internal warnings for matrix
• #9766: Enh: Speed up gaussian_kernel1d by removing dependence on np.polynomial
• #9769: Bug: Fix Cubic Spline Read Only issues
• #9773: Doc: Several docstrings
• #9774: Tst: bump Azure CI OpenBLAS version to match wheels
• #9775: Doc: Improve clarity of cov_x documentation for scipy.optimize.leastsq
• #9779: Enh: dual_annealing vectorise visit_fn
- #9788: TST, BUG: f2py-related issues with NumPy < 1.14.0
- #9791: BUG: fix amax constraint not enforced in scalar_search_wolfe2
- #9792: ENH: Allow inplace copying in place in “detrend” function
- #9795: DOC: Fix/update docstring for dstn and dst
- #9796: MAINT: Allow None tolerances in least_squares
- #9798: BUG: fixes abort trap 6 error in scipy issue 9785 in unit tests
- #9807: MAINT: improve doc and add alternative keyword to wilcoxon in…
- #9808: Fix PPoly integrate and test for CubicSpline
- #9810: ENH: Add the geometric standard deviation function
- #9811: MAINT: remove invalid derphi default None value in scalar_search_wolfe2
- #9813: Adapt hamming distance in C to support weights
- #9817: DOC: Copy solver description to solver modules
- #9829: ENH: Add FOH and equivalent impulse response discretizations…
- #9831: ENH: Implement RotationSpline
- #9834: DOC: Change mielke distribution default parameters to ensure…
- #9838: ENH: Use faster solvers for firls
- #9854: ENH: loadarff now supports relational attributes.
- #9856: integrate.bvp - improve handling of nonlinear boundary conditions
- #9862: TST: reduce Appveyor CI load
- #9874: DOC: Update requirements in release notes
- #9883: BUG: fixed parenthesis in spatial.rotation
- #9884: ENH: Use Sparsity in Clarkson-Woodruff Sketch
- #9888: MAINT: Replace NumPy aliased functions
- #9892: BUG: Fix 9890 query_ball_point returns wrong result when p is…
- #9893: BUG: curve_fit doesn’t check for empty input if called with bounds
- #9894: scipy.signal.find_peaks documentation error
- #9898: BUG: Set success attribute in OptimizeResult. See #9801
- #9900: BUG: Restrict rv_generic._argcheck() and its overrides from setting…
- #9906: fixed a bug in kde logpdf
- #9911: DOC: replace example for “np.select” with the one from numpy…
- #9912: BF(DOC): point to numpy.select instead of plain (python) .select
- #9914: DOC: change ValueError message in _validate_pad of signaltools.
- #9915: cKDTree query_ball_point improvements
- #9918: Update ckdtree.pyx with boxsize argument in docstring
- #9920: BUG: sparse: Validate explicit shape if given with dense argument…
- #9924: BLD: add back pyproject.toml

- #9931: Fix empty constraint
- #9935: DOC: fix references for stats.f_oneway
- #9936: Revert gh-9619: “FIX: Sparse matrix addition/subtraction eliminates…
- #9937: MAINT: fix PEP8 issues and update to pycodestyle 2.5.0
- #9939: DOC: correct ‘structure’ description in `ndimage.label` docstring
- #9940: MAINT: remove extraneous distutils copies
- #9945: ENH: differential_evolution can use Bounds object
- #9949: Added ‘std’ to add doctstrings since it is a ‘known_stats’
- #9953: DOC: Documentation cleanup for stats tutorials.
- #9962: __repr__ for Bounds
- #9971: ENH: Improve performance of lsmr
- #9987: CI: pin Sphinx version to 1.8.5
- #9990: ENH: constraint violation
- #9991: BUG: Avoid inplace modification of input array in newton
- #9995: MAINT: sparse.csgraph: Add cdef to stop build warning.
- #9996: BUG: Make minimize_quadratic_1d work with infinite bounds correctly
- #10004: BUG: Fix unbound local error in linprog - simplex.
- #10007: BLD: fix Python 3.7 build with build isolation
- #10009: BUG: Make sure that _binary_erosion only accepts an integer number…
- #10016: Update link to airspeed-velocity
- #10017: DOC: Update `interpolate.LSQSphereBivariateSpline` to include…
- #10018: MAINT: special: Fix a few warnings that occur when compiling…
- #10019: TST: Azure summarizes test failures
- #10021: ENH: Introduce CubicHermiteSpline
- #10022: BENCH: Increase cython version in asv to fix benchmark builds
- #10023: BUG: Avoid expnormnorm producing nan for small K values.
- #10025: BUG: optimize: tweaked linprog status 4 error message
- #10026: ENH: optimize: use SuiteSparse in linprog interior-point when…
- #10027: MAINT: cluster: clean up the use of malloc() in the function…
- #10028: Fix rotate invalid plane check
- #10040: MAINT: fix pratt method of wilcox test in scipy.stats
- #10041: MAINT: special: Fix a warning generated when building the AMOS…
- #10044: DOC: fix up spatial.transform.Rotation docstrings
- #10047: MAINT: interpolate: Fix a few build warnings.
- #10051: Add project_urls to setup
- #10052: don’t set flag to “converged” if max iter exceeded
SciPy 1.2.3 is a bug-fix release with no new features compared to 1.2.2. It is part of the long-term support (LTS) release series for Python 2.7.

5.21 SciPy 1.2.3 Release Notes
5.21.1 Authors

- Geordie McBain
- Matt Haberland
- David Hagen
- Tyler Reddy
- Pauli Virtanen
- Eric Larson
- Yu Feng
- ananyashreyjain
- Nikolay Mayorov
- Evgeni Burovski
- Warren Weckesser

Issues closed for 1.2.3

- #4915: Bug in unique_roots in scipy.signal.signaltools.py for roots with same magnitude
- #5546: ValueError raised if scipy.sparse.linalg.expm receives array larger than 200x200
- #7117: Warn users when using float32 input data to curve_fit and friends
- #7906: Wrong result from scipy.interpolate.UnivariateSpline.integral for out-of-bounds
- #9581: Least-squares minimization fails silently when x and y data are different types
- #9901: lsoda fails to detect stiff problem when called from solve_ivp
- #9988: doc build broken with Sphinx 2.0.0
- #10303: BUG: optimize: linprog failing TestLinprogSimplexBland::test_unbounded_below_no_presolve_corrected
- #10376: TST: Travis CI fails (with pytest 5.0 ?)
- #10384: CircleCI doc build failing on new warnings
- #10535: TST: master branch CI failures
- #11121: Calls to scipy.interpolate.splprep increase RAM usage.
- #11198: BUG: sparse eigs (arpack) shift-invert drops the smallest eigenvalue for some k
- #11266: Sparse matrix constructor data type detection changes on Numpy 1.18.0
Pull requests for 1.2.3

- #9992: MAINT: Undo Sphinx pin
- #10071: DOC: reconstruct SuperLU permutation matrices avoiding SparseEfficiencyWarning
- #10076: BUG: optimize: fix curve_fit for mixed float32/float64 input
- #10138: BUG: special: Invalid arguments to ellip_harm can crash Python.
- #10306: BUG: optimize: Fix for 10303
- #10309: BUG: Pass jac=None directly to Isoda
- #10377: TST, MAINT: adjustments for pytest 5.0
- #10379: BUG: sparse: set writeability to be forward-compatible with numpy>=1.17
- #10426: MAINT: Fix doc build bugs
- #10540: MAINT: Fix Travis and Circle
- #10633: BUG: interpolate: integral(a, b) should be zero when both limits are outside of the interpolation range
- #10833: BUG: Fix subspace_angles for complex values
- #10882: BUG: sparse/arpack: fix incorrect code for complex hermitian M
- #10906: BUG: sparse/linalg: fix expm for np.matrix inputs
- #10961: BUG: Fix signal.unique_roots
- #11126: BUG: interpolate/fitpack: fix memory leak in splprep
- #11199: BUG: sparse.linalg: mistake in unsymm. real shift-invert ARPACK eigenvalue selection
- #11269: Fix: Sparse matrix constructor data type detection changes on Numpy 1.18.0

5.22 SciPy 1.2.2 Release Notes

SciPy 1.2.2 is a bug-fix release with no new features compared to 1.2.1. Importantly, the SciPy 1.2.2 wheels are built with OpenBLAS 0.3.7.dev to alleviate issues with SkylakeX AVX512 kernels.
5.22.1 Authors

- CJ Carey
- Tyler Dawson +
- Ralf Gommers
- Kai Striega
- Andrew Nelson
- Tyler Reddy
- Kevin Sheppard +

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.2.2

- #9611: Overflow error with new way of p-value calculation in kendall tau correlation for perfectly monotonic vectors
- #9964: optimize.newton : overwrites x0 argument when it is a numpy array
- #9784: TST: Minimum NumPy version is not being CI tested
- #10132: Docs: Description of nnz attribute of sparse.csc_matrix misleading

Pull requests for 1.2.2

- #10056: BUG: Ensure factorial is not too large in kendaltau
- #9991: BUG: Avoid inplace modification of input array in newton
- #9788: TST, BUG: f2py-related issues with NumPy < 1.14.0
- #9749: BUG: MapWrapper.__exit__ should terminate
- #10141: Update description for nnz on csc.py

5.23 SciPy 1.2.1 Release Notes

SciPy 1.2.1 is a bug-fix release with no new features compared to 1.2.0. Most importantly, it solves the issue that 1.2.0 cannot be installed from source on Python 2.7 because of non-ascii character issues.
It is also notable that SciPy 1.2.1 wheels were built with OpenBLAS 0.3.5.dev, which may alleviate some linear algebra issues observed in SciPy 1.2.0.

### 5.23.1 Authors

- Eric Larson
- Mark Mikofski
- Evgeni Burovski
- Ralf Gommers
- Eric Moore
- Tyler Reddy

### Issues closed for 1.2.1

- #9606: SyntaxError: Non-ASCII character ‘xe2’ in file scipy/stats/_continuous_distns.py on line 3346, but no encoding declared
- #9608: Version 1.2.0 introduces *too many indices for array* error in…
- #9709: scipy.stats.gaussian_kde normalizes the weights keyword argument…
- #9733: scipy.linalg.qr_update gives NaN result
- #9724: CI: Is scipy.scipy Windows Python36-32bit-full working?

### Pull requests for 1.2.1

- #9612: BUG: don’t use array newton unless size is greater than 1
- #9615: ENH: Add test for encoding
- #9720: BUG: stats: weighted KDE does not modify the weights array
- #9739: BUG: qr_updates fails if u is exactly in span Q
- #9725: TST: pin mingw for Azure Win CI
- #9736: TST: adjust to vmImage dispatch in Azure
- #9681: BUG: Fix failing stats tests (partial backport)
- #9662: TST: interpolate: avoid pytest deprecations

### 5.24 SciPy 1.2.0 Release Notes

**Contents**

- *SciPy 1.2.0 Release Notes*
  - *Highlights of this release*
  - *New features*
SciPy 1.2.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Before upgrading, we recommend that users check that their own code does not use deprecated SciPy functionality (to do so, run your code with `python -Wd` and check for `DeprecationWarning`s). Our development attention will now shift to bug-fix releases on the 1.2.x branch, and on adding new features on the master branch.

This release requires Python 2.7 or 3.4+ and NumPy 1.8.2 or greater.

**Note:** This will be the last SciPy release to support Python 2.7. Consequently, the 1.2.x series will be a long term support (LTS) release; we will backport bug-fixes until 1 Jan 2020.

For running on PyPy, PyPy3 6.0+ and NumPy 1.15.0 are required.

### 5.24.1 Highlights of this release

- 1-D root finding improvements with a new solver, `toms748`, and a new unified interface, `root_scalar`
- new dual annealing optimization method that combines stochastic and local deterministic searching
- a new optimization algorithm, `shgo` (simplicial homology global optimization), for derivative-free optimization problems
- a new category of quaternion-based transformations are available in `scipy.spatial.transform`
5.24.2 New features

**scipy.ndimage** improvements

Proper spline coefficient calculations have been added for the mirror, wrap, and reflect modes of scipy.ndimage.rotate.

**scipy.fftpack** improvements

DCT-IV, DST-IV, DCT-I, and DST-I orthonormalization are now supported in scipy.fftpack.

**scipy.interpolate** improvements

scipy.interpolate.pade now accepts a new argument for the order of the numerator.

**scipy.cluster** improvements

scipy.cluster.vq.kmeans2 gained a new initialization method, kmeans++.

**scipy.special** improvements

The function softmax was added to scipy.special.

**scipy.optimize** improvements

The one-dimensional nonlinear solvers have been given a unified interface scipy.optimize.root_scalar, similar to the scipy.optimize.root interface for multi-dimensional solvers. scipy.optimize.root_scalar(f, bracket=[a,b], method="brentq") is equivalent to scipy.optimize.brentq(f, a, b). If no method is specified, an appropriate one will be selected based upon the bracket and the number of derivatives available.

The so-called Algorithm 748 of Alefeld, Potra and Shi for root-finding within an enclosing interval has been added as scipy.optimize.toms748. This provides guaranteed convergence to a root with convergence rate per function evaluation of approximately 1.65 (for sufficiently well-behaved functions).

differential_evolution now has the updating and workers keywords. The first chooses between continuous updating of the best solution vector (the default), or once per generation. Continuous updating can lead to faster convergence. The workers keyword accepts an int or map-like callable, and parallelises the solver (having the side effect of updating once per generation). Supplying an int evaluates the trial solutions in N parallel parts. Supplying a map-like callable allows other parallelisation approaches (such as mpi4py, or joblib) to be used.

dual_annealing (and shgo below) is a powerful new general-purpose global optimization (GO) algorithm. dual_annealing uses two annealing processes to accelerate the convergence towards the global minimum of an objective mathematical function. The first annealing process controls the stochastic Markov chain searching and the second annealing process controls the deterministic minimization. So, dual annealing is a hybrid method that takes advantage of stochastic and local deterministic searching in an efficient way.

shgo (simplicial homology global optimization) is a similar algorithm appropriate for solving black box and derivative-free optimization (DFO) problems. The algorithm generally converges to the global solution in finite time. The convergence holds for non-linear inequality and equality constraints. In addition to returning a global minimum, the algorithm also returns any other global and local minima found after every iteration. This makes it useful for exploring the solutions in a domain.
**scipy.optimize.newton** can now accept a scalar or an array.

MINPACK usage is now thread-safe, such that MINPACK + callbacks may be used on multiple threads.

**scipy.signal improvements**

Digital filter design functions now include a parameter to specify the sampling rate. Previously, digital filters could only be specified using normalized frequency, but different functions used different scales (e.g. 0 to 1 for `butter` vs 0 to π for `freqz`), leading to errors and confusion. With the `fs` parameter, ordinary frequencies can now be entered directly into functions, with the normalization handled internally.

`find_peaks` and related functions no longer raise an exception if the properties of a peak have unexpected values (e.g. a prominence of 0). A `PeakPropertyWarning` is given instead.

The new keyword argument `plateau_size` was added to `find_peaks`. `plateau_size` may be used to select peaks based on the length of the flat top of a peak.

`welch()` and `csd()` methods in *scipy.signal* now support calculation of a median average PSD, using `average='mean'` keyword.

**scipy.sparse improvements**

The `scipy.sparse.bsr_matrix.tocsr` method is now implemented directly instead of converting via COO format, and the `scipy.sparse.bsr_matrix.tocsc` method is now also routed via CSR conversion instead of COO. The efficiency of both conversions is now improved.

The issue where SuperLU or UMFPACK solvers crashed on matrices with non-canonical format in *scipy.sparse.linalg* was fixed. The solver wrapper canonicalizes the matrix if necessary before calling the SuperLU or UMFPACK solver.

The `largest` option of `scipy.sparse.linalg.lobpcg()` was fixed to have a correct (and expected) behavior. The order of the eigenvalues was made consistent with the ARPACK solver (`eigs()`), i.e. ascending for the smallest eigenvalues, and descending for the largest eigenvalues.

The `scipy.sparse.random` function is now faster and also supports integer and complex values by passing the appropriate value to the `dtype` argument.

**scipy.spatial improvements**

The function `scipy.spatial.distance.jaccard` was modified to return 0 instead of `np.nan` when two all-zero vectors are compared.

Support for the Jensen Shannon distance, the square-root of the divergence, has been added under `scipy.spatial.distance.jensenshannon`.

An optional keyword was added to the function `scipy.spatial.cKDTree.query_ball_point()` to sort or not sort the returned indices. Not sorting the indices can speed up calls.

A new category of quaternion-based transformations are available in `scipy.spatial.transform`, including spherical linear interpolation of rotations (`Slerp`), conversions to and from quaternions, Euler angles, and general rotation and inversion capabilities (`spatial.transform.Rotation`), and uniform random sampling of 3D rotations (`spatial.transform.Rotation.random`).
scipy.stats improvements

The Yeo-Johnson power transformation is now supported (yeojohnson, yeojohnson_llf, yeojohnson_normmax, yeojohnson_normplot). Unlike the Box-Cox transformation, the Yeo-Johnson transformation can accept negative values.

Added a general method to sample random variates based on the density only, in the new function rvs_ratio_uniforms.

The Yule-Simon distribution (yulesimon) was added – this is a new discrete probability distribution.

stats and mstats now have access to a new regression method, siegelslopes, a robust linear regression algorithm

scipy.stats.gaussian_kde now has the ability to deal with weighted samples, and should have a modest improvement in performance

Levy Stable Parameter Estimation, PDF, and CDF calculations are now supported for scipy.stats.levy_stable.

The Brunner-Munzel test is now available as brunnermunzel in stats and mstats.

scipy.linalg improvements

scipy.linalg.lapack now exposes the LAPACK routines using the Rectangular Full Packed storage (RFP) for upper triangular, lower triangular, symmetric, or Hermitian matrices; the upper trapezoidal fat matrix RZ decomposition routines are now available as well.

5.24.3 Deprecated features

The functions hyp2f0, hyp1f2 and hyp3f0 in scipy.special have been deprecated.

5.24.4 Backwards-incompatible changes

LAPACK version 3.4.0 or later is now required. Building with Apple Accelerate is no longer supported.

The function scipy.linalg.subspace_angles(A, B) now gives correct results for all angles. Before this, the function only returned correct values for those angles which were greater than π/4.

Support for the Bento build system has been removed. Bento had not been maintained for several years, and did not have good Python 3 or wheel support, hence it was time to remove it.

The required signature of scipy.optimize.lingprog method=simplex callback function has changed. Before iteration begins, the simplex solver first converts the problem into a standard form that does not, in general, have the same variables or constraints as the problem defined by the user. Previously, the simplex solver would pass a user-specified callback function several separate arguments, such as the current solution vector xk, corresponding to this standard-form problem. Unfortunately, the relationship between the standard-form problem and the user-defined problem was not documented, limiting the utility of the information passed to the callback function.

In addition to numerous bug-fix changes, the simplex solver now passes a user-specified callback function a single OptimizeResult object containing information that corresponds directly to the user-defined problem. In future releases, this OptimizeResult object may be expanded to include additional information, such as variables corresponding to the standard-form problem and information concerning the relationship between the standard-form and user-defined problems.

The implementation of scipy.sparse.random has changed, and this affects the numerical values returned for both sparse.random and sparse.rand for some matrix shapes and a given seed.

scipy.optimize.newton will no longer use Halley’s method in cases where it negatively impacts convergence.
5.24.5 Authors

- @endolith
- @luzpaz
- Hameer Abbasi +
- akahard2dj +
- Anton Akhmerov
- Joseph Albert
- alexthomas93 +
- ashish +
- atpage +
- Blair Azzopardi +
- Yoshiki Vázquez Baeza
- Bence Bagi +
- Christoph Baumgarten
- Lucas Bellomo +
- BH4 +
- Aditya Bharti
- Max Bolingbroke
- François Boulogne
- Ward Bradt +
- Matthew Brett
- Evgeni Burovski
- Rafał Byczek +
- Alfredo Canziani +
- CJ Carey
- Lucía Cheung +
- Poom Chiarawongse +
- Jeanne Choo +
- Robert Cimrman
- Graham Clenaghan +
- cynthia-rempel +
- Johannes Damp +
- Jaime Fernandez del Rio
- Dowon +
- emmi474 +
- Stefan Endres +
• Thomas Etherington +
• Piotr Figiel
• Alex Fikl +
• fo40225 +
• Joseph Fox-Rabinovitz
• Lars G
• Abhinav Gautam +
• Stiaan Gerber +
• C.A.M. Gerlach +
• Ralf Gommers
• Todd Goodall
• Lars Grueter +
• Sylvain Gubian +
• Matt Haberland
• David Hagen
• Will Handley +
• Charles Harris
• Ian Henriksen
• Thomas Hisch +
• Theodore Hu
• Michael Hudson-Doyle +
• Nicolas Hug +
• jakirkham +
• Jakob Jakobson +
• James +
• Jan Schlüter
• jeanpauphilet +
• josephmernst +
• Kai +
• Kai-Striega +
• kalash04 +
• Toshiki Kataoka +
• Konrad0 +
• Tom Krauss +
• Johannes Kulick
• Lars Grüter +
A total of 137 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.
Issues closed for 1.2.0

• #9520: signal.correlate with method='fft' doesn’t benefit from long…
• #9547: signature of dual_annealing doesn’t match other optimizers
• #9540: SciPy v1.2.0rc1 cannot be imported on Python 2.7.15
• #1240: Allowing multithreaded use of minpack through scipy.optimize…
• #1432: scipy.stats.mode extremely slow (Trac #905)
• #3372: Please add Sphinx search field to online scipy html docs
• #3678: _clough_tocher_2d_single direction between centroids
• #4174: lobpcg “largest” option invalid?
• #5493: anderson_ksamp p-values>1
• #5743: slsqp fails to detect infeasible problem
• #6139: scipy.optimize.linprog failed to find a feasible starting point…
• #6358: stats: docstring for vonmises_line points to vonmises_line…
• #6498: runtests.py is missing in pypi distfile
• #7426: scipy.stats.ksone.pdf(x) returns nan for positive values of…
• #7455: scipy.stats.ksone.pdf(2,x) return incorrect values for x near…
• #7456: scipy.special.smirnov and scipy.special.smirnovi have accuracy…
• #7492: scipy.special.kolmogorov(x)/kolmogi(p) inefficient, inaccurate…
• #7914: TravisCI not failing when it should for -OO run
• #8064: linalg.solve test crashes on Windows
• #8212: LAPACK Rectangular Full Packed routines
• #8256: differential_evolution bug converges to wrong results in complex…
• #8443: Deprecate hyp2f0, hyp1f2, and hyp3f0?
• #8452: DOC: ARPACK tutorial has two conflicting equations
• #8680: scipy fails compilation when building from source
• #8686: Division by zero in _trustregion.py when x0 is exactly equal…
• #8700: _MINPACK_LOCK not held when calling into minpack from least_squares
• #8786: erroneous moment values for t-distribution
• #8791: Checking COLA condition in istft should be optional (or omitted)
• #8843: imresize cannot be deprecated just yet
• #8844: Inverse Wishart Log PDF Incorrect for Non-diagonal Scale Matrix?
• #8878: vonmises and vonmises_line in stats: vonmises wrong and superfluous?
• #8895: v1.1.0 ndi.rotate documentation – reused parameters not filled…
• #8900: Missing complex conjugation in scipy.sparse.linalg.LinearOperator
• #8904: BUG: if zero derivative at root, then Newton fails with RuntimeWarning
• #8911: make_interp_spline bc_type incorrect input interpretation
- #8942: MAINT: Refactor _linprog.py and _linprog_ip.py to remove…
- #8947: np.int64 in scipy.fftpack.next_fast_len
- #9020: BUG: linalg.subspace_angles gives wrong results
- #9033: scipy.stats.normaltest sometimes gives incorrect returns b/c…
- #9036: Bizarre times for scipy.sparse.rand function with ‘low’ density…
- #9044: optimize.minimize(method='trust-constr') result dict does not…
- #9071: doc/linalg: add cho_solve_banded to see also of cholesky_banded
- #9082: eigenvalue sorting in scipy.sparse.linalg.eigsh
- #9086: signaltools.py:491: FutureWarning: Using a non-tuple sequence…
- #9091: test_spline_filter failure on 32-bit
- #9122: Typo on scipy minimization tutorial
- #9167: DOC: BUG: typo in ndimage LowLevelCallable tutorial example
- #9169: truncnorm does not work if b < a in scipy.stats
- #9250: scipy.special.tests.test_mpmath::TestSystematic::test_pcfw fails…
- #9259: rv.expect() == rv.mean() is false for rv.mean() == nan (and inf)
- #9286: DOC: Rosenbrock expression in optimize.minimize tutorial
- #9316: SLSQP fails in nested optimization
- #9337: scipy.signal.find_peaks key typo in documentation
- #9345: Example from documentation of scipy.sparse.linalg.eigs raises…
- #9383: Default value for “mode” in “ndimage.shift”
- #9419: dual_annealing off by one in the number of iterations
- #9442: Error in Definition of Rosenbrock Function
- #9453: TST: test_eigs_consistency() doesn’t have consistent results

Pull requests for 1.2.0

- #9526: TST: relax precision requirements in signal.correlate tests
- #9507: CI: MAINT: Skip a cdtree test on pypy
- #9512: TST: test_random_sampling 32-bit handling
- #9494: TST: test_kolmogorov xfail 32-bit
- #9486: BUG: fix sparse random int handling
- #9550: BUG: scipy/_lib/_numpy_compat: get_randint
- #9549: MAINT: make dual_annealing signature match other optimizers
- #9541: BUG: fix SyntaxError due to non-ascii character on Python 2.7
- #7352: ENH: fix SyntaxError due to non-ascii character on Python 2.7
- #7373: BUG: Jaccard distance for all-zero arrays would return np.nan
• #7374: ENH: Add PDF, CDF and parameter estimation for Stable Distributions
• #8098: ENH: Add shgo for global optimization of NLPs.
• #8203: ENH: adding simulated dual annealing to optimize
• #8259: Option to follow original Storn and Price algorithm and its parallelisation
• #8293: ENH add ratio-of-uniforms method for rv generation to scipy.stats
• #8294: BUG: Fix slowness in stats.mode
• #8295: ENH: add Jensen Shannon distance to scipy.spatial.distance
• #8357: ENH: vectorize scalar zero-search-functions
• #8397: Add fs= parameter to filter design functions
• #8537: ENH: Implement mode parameter for spline filtering.
• #8558: ENH: small speedup for stats.gaussian_kde
• #8560: BUG: fix p-value calc of anderson_ksamp in scipy.stats
• #8614: ENH: correct p-values for stats.kendalltau and stats.mstats.kendalltau
• #8670: ENH: Require Lapack 3.4.0
• #8683: Correcting kmeans documentation
• #8725: MAINT: Cleanup scipy.optimize.leastsq
• #8726: BUG: Fix _get_output in scipy.ndimage to support string
• #8733: MAINT: stats: A bit of clean up.
• #8737: BUG: Improve numerical precision/convergence failures of smirnov/kolmogorov
• #8738: MAINT: stats: A bit of clean up in test_distributions.py.
• #8740: BF/ENH: make minpack thread safe
• #8742: BUG: Fix division by zero in trust-region optimization methods
• #8746: MAINT: signal: Fix a docstring of a private function, and fix…
• #8750: DOC clarified description of norminvgauss in scipy.stats
• #8753: DOC: signal: Fix a plot title in the chirp docstring.
• #8755: DOC: MAINT: Fix link to the wheel documentation in developer…
• #8760: BUG: stats: boltzmann wasn’t setting the upper bound.
• #8763: [DOC] Improved scipy.cluster.hierarchy documentation
• #8765: DOC: added example for scipy.stat.mstats.tmin
• #8788: DOC: fix definition of optional disp parameter
• #8802: MAINT: Suppress dd_real unused function compiler warnings.
• #8803: ENH: Add full_output support to optimize.newton()
• #8804: MAINT: stats cleanup
• #8808: DOC: add note about isinstance for frozen rvs
• #8812: Updated numpydoc submodule
• #8813: MAINT: stats: Fix multinomial docstrings, and do some clean up.
• #8816: BUG: fixed _stats of t-distribution in scipy.stats
• #8817: BUG: ndimage: Fix validation of the origin argument in correlate...
• #8822: BUG: integrate: Fix crash with repeated t values in odeint.
• #8832: Hyperlink DOIs against preferred resolver
• #8837: BUG: sparse: Ensure correct dtype for sparse comparison operations.
• #8839: DOC: stats: A few tweaks to the linregress docstring.
• #8846: BUG: stats: Fix logpdf method of invwishart.
• #8849: DOC: signal: Fixed mistake in the firwin docstring.
• #8854: DOC: fix type descriptors in ltisys documentation
• #8865: Fix tiny typo in docs for chi2 pdf
• #8870: Fixes related to invertibility of STFT
• #8872: ENH: special: Add the softmax function
• #8874: DOC correct gamma function in docstrings in scipy.stats
• #8876: ENH: Added TOMS Algorithm 748 as 1-d root finder; 17 test function...
• #8882: ENH: Only use Halley's adjustment to Newton if close enough.
• #8883: FIX: optimize: make jac and hess truly optional for 'trust-constr'
• #8885: TST: Do not error on warnings raised about non-tuple indexing.
• #8887: MAINT: filter out np.matrix PendingDeprecationWarning's in numpy...
• #8889: DOC: optimize: separate legacy interfaces from new ones
• #8890: ENH: Add optimize.root_scalar() as a universal dispatcher for...
• #8899: DCT-IV, DST-IV and DCT-I, DST-I orthonormalization support in...
• #8901: MAINT: Reorganize flapack.pyf.src file
• #8907: BUG: ENH: Check if guess for newton is already zero before checking...
• #8908: ENH: Make sorting optional for cKDTree.query_ball_point()
• #8910: DOC: sparse.csgraph simple examples.
• #8914: DOC: interpolate: fix equivalences of string aliases
• #8918: add float_control(precise, on) to _fpumode.c
• #8919: MAINT: interpolate: improve error messages for common bc_type...
• #8920: DOC: update Contributing to SciPy to say “prefer no PEP8 only…”
• #8924: MAINT: special: deprecate hyp2f0, hyp1f2, and hyp3f0
• #8927: MAINT: special: remove errprint
• #8932: Fix broadcasting scale arg of entropy
• #8936: Fix (some) non-tuple index warnings
• #8937: ENH: implement sparse matrix BSR to CSR conversion directly.
• #8938: DOC: add @_ni_docstrings.docfiller in ndimage.rotate
• #8940: Update_discrete_distns.py
3302 Chapter 5. Release Notes

- #8943: DOC: Finish dangling sentence in convolve docstring
- #8944: MAINT: Address tuple indexing and warnings
- #8945: ENH: spatial.transform.Rotation [GSOC2018]
- #8950: csgraph Dijkstra function description rewording
- #8953: DOC, MAINT: HTTP -> HTTPS, and other linkrot fixes
- #8955: BUG: np.int64 in scipy.fftpack.next_fast_len
- #8958: MAINT: Add more descriptive error message for phase one simplex.
- #8962: BUG: sparse.linalg: add missing conjugate to _ScaledLinearOperator.adjoint
- #8963: BUG: sparse.linalg: downgrade LinearOperator TypeError to warning
- #8965: ENH: Wrapped RFP format and RZ decomposition routines
- #8969: MAINT: doc and code fixes for optimize.newton
- #8970: Added ‘average’ keyword for welch/csd to enable median averaging
- #8971: Better imresize deprecation warning
- #8972: MAINT: Switch np.where(c) for np.nonzero(c)
- #8975: MAINT: Fix warning-based failures
- #8979: DOC: fix description of count_sort keyword of dendrogram
- #8982: MAINT: optimize: Fixed minor mistakes in test_linprog.py (#8978)
- #8984: BUG: sparse.linalg: ensure expm casts integer inputs to float
- #8986: BUG: optimize/slsqp: do not exit with convergence on steps where…
- #8989: MAINT: use collections.abc in basinhopping
- #8990: ENH extend p-values of anderson_ksamp in scipy.stats
- #8991: ENH: Weighted kde
- #8993: ENH: spatial.transform.Rotation.random [GSOC 2018]
- #8994: ENH: spatial.transform.Slerp [GSOC 2018]
- #8995: TST: time.time in test
- #9007: Fix typo in fftpack.rst
- #9013: Added correct plotting code for two sided output from spectrogram
- #9014: BUG: differential_evolution with inf objective functions
- #9017: BUG: fixed #8446 corner case for asformat(array|dense)
- #9018: MAINT: _lib/ccallback: remove unused code
- #9021: BUG: Issue with subspace_angles
- #9022: DOC: Added “See Also” section to lombscargle docstring
- #9034: BUG: Fix tolerance printing behavior, remove meaningless tol…
- #9035: TST: improve signal.bsplines test coverage
- #9037: ENH: add a new init method for k-means
- #9039: DOC: Add examples to fftpack.irfft docstrings
• #9048: ENH: scipy.sparse.random
• #9050: BUG: scipy.io.hb_write: fails for matrices not in csc format
• #9051: MAINT: Fix slow sparse.rand for k < mn/3 (#9036).
• #9054: MAINT: spatial: Explicitly initialize LAPACK output parameters.
• #9055: DOC: Add examples to scipy.special docstrings
• #9056: ENH: Use one thread in OpenBLAS
• #9059: DOC: Update README with link to Code of Conduct
• #9060: BLD: remove support for the Bento build system.
• #9062: DOC add sections to overview in scipy.stats
• #9066: BUG: Correct "remez" error message
• #9069: DOC: update linalg section of roadmap for LAPACK versions.
• #9079: MAINT: add spatial.transform to refguide check; complete some…
• #9081: MAINT: Add warnings if pivot value is close to tolerance in linprog(method='simplex')
• #9084: BUG fix incorrect p-values of kurtosistest in scipy.stats
• #9085: DOC: add sections to mstats overview in scipy.stats
• #9096: BUG: Add test for Stackoverflow example from issue 8174.
• #9101: ENH: add Siegel slopes (robust regression) to scipy.stats
• #9105: allow resample_poly() to output float32 for float32 inputs.
• #9112: MAINT: optimize: make trust-constr accept constraint dict (#9043)
• #9118: Add doc entry to cholesky_banded
• #9120: eigsh documentation parameters
• #9125: interpolative: correctly reconstruct full rank matrices
• #9126: MAINT: Use warnings for unexpected peak properties
• #9129: BUG: Do not catch and silence KeyboardInterrupt
• #9131: DOC: Correct the typo in scipy.optimize tutorial page
• #9133: FIX: Avoid use of bare except
• #9134: DOC: Update of ‘return_eigenvectors’ description
• #9137: DOC: typo fixes for discrete Poisson tutorial
• #9139: FIX: Doctest failure in optimize tutorial
• #9143: DOC: missing sigma in Pearson r formula
• #9145: MAINT: Refactor linear programming solvers
• #9149: FIX: Make scipy.odr.ODR ifixx equal to its data.fix if given
• #9156: DOC: special: Mention the sigmoid function in the expit docstring.
• #9160: Fixed a latex delimiter error in levy()
• #9170: DOC: correction / update of docstrings of distributions in scipy.stats
• #9171: better description of the hierarchical clustering parameter
- #9174: domain check for $a < b$ in stats.truncnorm
- #9175: DOC: Minor grammar fix
- #9176: BUG: CloughTocher2DInterpolator: fix miscalculation at neighborless…
- #9177: BUILD: Document the “clean” target in the doc/Makfile.
- #9178: MAINT: make refguide-check more robust for printed numpy arrays
- #9186: MAINT: Remove np.ediff1d occurence
- #9188: DOC: correct typo in extending ndimage with C
- #9190: ENH: Support specifying axes for fftconvolve
- #9192: MAINT: optimize: fixed @pv style suggestions from #9112
- #9200: Fix make_interp_spline(…, k=0 or 1, axis<0)
- #9201: BUG: sparse.linalg/gmres: use machine eps in breakdown check
- #9204: MAINT: fix up stats.spearmanr and match mstats.spearmanr with…
- #9206: MAINT: include benchmarks and dev files in sdist.
- #9208: TST: signal: bump bsplines test tolerance for complex data
- #9210: TST: mark tests as slow, fix missing random seed
- #9211: ENH: add capability to specify orders in pade func
- #9217: MAINT: Include success and nit in OptimizeResult returned…
- #9222: ENH: interpolate: Use scipy.spatial.distance to speed-up Rbf
- #9229: MNT: Fix Fourier filter double case
- #9233: BUG: spatial/distance: fix pdist/cdist performance regression…
- #9234: FIX: Proper suppression
- #9235: BENCH: rationalize slow benchmarks + miscellaneous fixes
- #9238: BENCH: limit number of parameter combinations in spatial.*KDTree…
- #9239: DOC: stats: Fix LaTeX markup of a couple distribution PDFs.
- #9241: ENH: Evaluate plateau size during peak finding
- #9242: ENH: stats: Implement _ppf and _logpdf for crystalball, and do…
- #9246: DOC: Properly render versionadded directive in HTML documentation
- #9255: DOC: mention RootResults in optimization reference guide
- #9260: TST: relax some tolerances so tests pass with x87 math
- #9264: TST Use assert_raises “match” parameter instead of the “message”…
- #9267: DOC: clarify expect() return val when moment is inf/nan
- #9272: DOC: Add description of default bounds to linprog
- #9277: MAINT: sparse/linalg: make test deterministic
- #9278: MAINT: interpolate: pep8 cleanup in test_polyint
- #9279: Fixed docstring for resample
- #9280: removed first check for float in get_sum_dtype
• #9281: BUG: only accept 1d input for bartlett / levene in scipy.stats
• #9282: MAINT: dense_output and t_eval are mutually exclusive inputs
• #9283: MAINT: add docs and do some cleanups in interpolate.Rbf
• #9288: Run distance_transform_edt tests on all types
• #9294: DOC: fix the formula typo
• #9298: MAINT: optimize/trust-constr: restore .niter attribute for backward-compat
• #9299: DOC: clarification of default rvs method in scipy.stats
• #9301: MAINT: removed unused import sys
• #9302: MAINT: removed unused imports
• #9303: DOC: signal: Refer to fs instead of nyq in the firwin docstring.
• #9305: ENH: Added Yeo-Johnson power transformation
• #9306: ENH - add dual annealing
• #9309: ENH add the yulesimon distribution to scipy.stats
• #9317: Nested SLSQP bug fix.
• #9320: MAINT: stats: avoid underflow in stats.geom.ppf
• #9326: Add example for Rosenbrock function
• #9332: Sort file lists
• #9340: Fix typo in find_peaks documentation
• #9343: MAINT Use np.full when possible
• #9344: DOC: added examples to docstring of dirichlet class
• #9346: DOC: Fix import of scipy.sparse.linalg in example (#9345)
• #9350: Fix interpolate read only
• #9351: MAINT: special.erf: use the x->-x symmetry
• #9356: Fix documentation typo
• #9358: DOC: improve doc for kfone and kstwobign in scipy.stats
• #9362: DOC: Change datatypes of A matrices in linprog
• #9364: MAINT: Adds implicit none to fftpack fortran sources
• #9369: DOC: minor tweak to CoC (updated NumFOCUS contact address).
• #9373: Fix exception if python is called with -OO option
• #9374: FIX: AIX compilation issue with NAN and INFINITY
• #9376: COBYLA -> COBYLA in docs
• #9377: DOC: Add examples integrate: fixed_quad and quadrature
• #9379: MAINT: TST: Make tests NumPy 1.8 compatible
• #9385: CI: On Travis matrix “OPTIMIZE=-OO” flag ignored
• #9387: Fix default value for ‘mode’ in ‘ndimage.shift’ in the doc
• #9392: BUG: rank has to be integer in rank_filter: fixed issue 9388

- #9399: DOC: Misc. typos
- #9400: TST: stats: Fix the expected r-value of a linregress test.
- #9405: BUG: np.hstack does not accept generator expressions
- #9408: ENH: linalg: Shorter ill-conditioned warning message
- #9418: DOC: Fix ndimage docstrings and reduce doc build warnings
- #9421: DOC: Add missing docstring examples in scipy.spatial
- #9422: DOC: Add an example to integrate.newton_cotes
- #9427: BUG: Fixed defect with maxiter #9419 in dual annealing
- #9431: BENCH: Add dual annealing to scipy benchmark (see #9415)
- #9435: DOC: Add docstring examples for stats.binom_test
- #9443: DOC: Fix the order of indices in optimize tutorial
- #9444: MAINT: interpolate: use operator.index for checking/coercing…
- #9445: DOC: Added missing example to stats.mstats.kruskal
- #9446: DOC: Add note about version changed for jaccard distance
- #9447: BLD: version-script handling in setup.py
- #9448: TST: skip a problematic linalg test
- #9449: TST: fix missing seed in lobpcg test.
- #9456: TST: test_eigs_consistency() now sorts output

5.25 SciPy 1.1.0 Release Notes

Contents

- SciPy 1.1.0 Release Notes
  - New features
    * scipy.integrate improvements
    * scipy.linalg improvements
    * scipy.misc improvements
    * scipy.ndimage improvements
    * scipy.optimize improvements
    * scipy.signal improvements
    * scipy.sparse improvements
    * scipy.special improvements
    * scipy.stats improvements
  - Deprecated features
  - Backwards incompatible changes
SciPy 1.1.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Before upgrading, we recommend that users check that their own code does not use deprecated SciPy functionality (to do so, run your code with `python -Wd` and check for `DeprecationWarning`s). Our development attention will now shift to bug-fix releases on the 1.1.x branch, and on adding new features on the master branch.

This release requires Python 2.7 or 3.4+ and NumPy 1.8.2 or greater.

This release has improved but not necessarily 100% compatible with the PyPy Python implementation. For running on PyPy, PyPy 6.0+ and Numpy 1.15.0+ are required.

### 5.25.1 New features

**scipy.integrate improvements**

The argument `tfirst` has been added to the function `scipy.integrate.odeint`. This allows `odeint` to use the same user functions as `scipy.integrate.solve_ivp` and `scipy.integrate.ode` without the need for wrapping them in a function that swaps the first two arguments.

Error messages from `quad()` are now clearer.

**scipy.linalg improvements**

The function `scipy.linalg.ldl` has been added for factorization of indefinite symmetric/hermitian matrices into triangular and block diagonal matrices.

Python wrappers for LAPACK `sygst`, `hegst` added in `scipy.linalg.lapack`.

Added `scipy.linalg.null_space`, `scipy.linalg.cdf2rdf`, `scipy.linalg.rsf2csf`.

**scipy.misc improvements**

An electrocardiogram has been added as an example dataset for a one-dimensional signal. It can be accessed through `scipy.misc.electrocardiogram`.

**scipy.ndimage improvements**

The routines `scipy.ndimage.binary_opening`, and `scipy.ndimage.binary_closing` now support masks and different border values.
**scipy.optimize improvements**

The method `trust-constr` has been added to `scipy.optimize.minimize`. The method switches between two implementations depending on the problem definition. For equality-constrained problems it is an implementation of a trust-region sequential quadratic programming solver and, when inequality constraints are imposed, it switches to a trust-region interior point method. Both methods are appropriate for large scale problems. Quasi-Newton options BFGS and SR1 were implemented and can be used to approximate second-order derivatives for this new method. Also, finite-differences can be used to approximate either first-order or second-order derivatives.

Random-to-Best/1/bin and Random-to-Best/1/exp mutation strategies were added to `scipy.optimize.differential_evolution` as `randtobestbin` and `randtobest1exp`, respectively. Note: These names were already in use but implemented a different mutation strategy. See Backwards-incompatible changes below. The `init` keyword for the `scipy.optimize.differential_evolution` function can now accept an array. This array allows the user to specify the entire population.

Added an adaptive option to Nelder-Mead to use step parameters adapted to the dimensionality of the problem.

Minor improvements in `scipy.optimize.basinhopping`.

**scipy.signal improvements**

Three new functions for peak finding in one-dimensional arrays were added. `scipy.signal.find_peaks` searches for peaks (local maxima) based on simple value comparison of neighboring samples and returns those peaks whose properties match optionally specified conditions for their height, prominence, width, threshold and distance to each other. `scipy.signal.peak_prominences` and `scipy.signal.peak_widths` can directly calculate the prominences or widths of known peaks.


Added `scipy.signal.windows.dpss, scipy.signal.windows.general_cosine` and `scipy.signal.windows.general_hamming`.

**scipy.sparse improvements**

Previously, the `reshape` method only worked on `scipy.sparse.lil_matrix`, and in-place reshaping did not work on any matrices. Both operations are now implemented for all matrices. Handling of shapes has been made consistent with `numpy.matrix` throughout the `scipy.sparse` module (shape can be a tuple or splatted, negative number acts as placeholder, padding and unpadding dimensions of size 1 to ensure length-2 shape).

**scipy.special improvements**

Added Owen's T function as `scipy.special.owens_t`.

Accuracy improvements in `chndtr, digamma, gammaincinv, lambertw, zetac`. 
scipy.stats improvements

The Moyal distribution has been added as `scipy.stats.moyal`.
Added the normal inverse Gaussian distribution as `scipy.stats.norminvgauss`.

5.25.2 Deprecated features

The iterative linear equation solvers in `scipy.sparse.linalg` had a sub-optimal way of how absolute tolerance is considered. The default behavior will be changed in a future Scipy release to a more standard and less surprising one. To silence deprecation warnings, set the `atol` parameter explicitly.

`scipy.signal.windows.slepian` is deprecated, replaced by `scipy.signal.windows.dpss`.

The window functions in `scipy.signal` are now available in `scipy.signal.windows`. They will remain also available in the old location in the `scipy.signal` namespace in future Scipy versions. However, importing them from `scipy.signal.windows` is preferred, and new window functions will be added only there.

Indexing sparse matrices with floating-point numbers instead of integers is deprecated.

The function `scipy.stats.itemfreq` is deprecated.

5.25.3 Backwards incompatible changes

Previously, `scipy.linalg.orth` used a singular value cutoff value appropriate for double precision numbers also for single-precision input. The cutoff value is now tunable, and the default has been changed to depend on the input data precision.

In previous versions of Scipy, the `randtobest1bin` and `randtobest1exp` mutation strategies in `scipy.optimize.differential_evolution` were actually implemented using the Current-to-Best/1/bin and Current-to-Best/1/exp strategies, respectively. These strategies were renamed to `currenttobest1bin` and `currenttobest1exp` and the implementations of `randtobest1bin` and `randtobest1exp` strategies were corrected.

Functions in the ndimage module now always return their output array. Before, most functions only returned the output array if it had been allocated by the function, and would return `None` if it had been provided by the user.

Distance metrics in `scipy.spatial.distance` now require non-negative weights.

`scipy.special.loggamma` now returns real-valued result when the input is real-valued.

5.25.4 Other changes

When building on Linux with GNU compilers, the `.so` Python extension files now hide all symbols except those required by Python, which can avoid problems when embedding the Python interpreter.

5.25.5 Authors

- Saurabh Agarwal +
- Diogo Aguiam +
- Joseph Albert +
- Gerrit Ansmann +
- Jean-François B +
• Vahan Babayan +
• Alessandro Pietro Bardelli
• Christoph Baumgarten +
• Felix Berkenkamp
• Lilian Besson +
• Aditya Bharti +
• Matthew Brett
• Evgeni Burovski
• CJ Carey
• Martin Ø. Christensen +
• Robert Cimrman
• Vicky Close +
• Peter Cock +
• Philip DeBoer
• Jaime Fernandez del Rio
• Dieter Werthmüller +
• Tom Donoghue +
• Matt Dzugan +
• Lars G +
• Jacques Gaudin +
• Andriy Gelman +
• Sean Gillies +
• Dezmond Goff
• Christoph Gohlke
• Ralf Gommers
• Uri Goren +
• Deepak Kumar Gouda +
• Douglas Lessa Graciosa +
• Matt Haberland
• David Hagen
• Charles Harris
• Jordan Heemskerk +
• Danny Hermes +
• Stephan Hoyer +
• Theodore Hu +
• Jean-François B. +
- Mads Jensen +
- Jon Haitz Legarreta Gorroño +
- Ben Jude +
- Noel Kippers +
- Julius Bier Kirkegaard +
- Maria Knorps +
- Mikkel Kristensen +
- Eric Larson
- Kasper Primdal Lauritzen +
- Denis Laxalde
- KangWon Lee +
- Jan Lehky +
- Jackie Leng +
- P.L. Lim +
- Nikolay Mayorov
- Mihai Capotâ +
- Max Mikhaylov +
- Mark Mikofski +
- Jarrod Millman
- Raden Muhammad +
- Paul Nation
- Andrew Nelson
- Nico Schlömer
- Joel Nothman
- Kyle Oman +
- Egor Panfilov +
- Nick Papior
- Anubhav Patel +
- Oleksandr Pavlyk
- Ilhan Polat
- Robert Pollak +
- Anant Prakash +
- Aman Pratik
- Sean Quinn +
- Gifftlin Rajaiah +
- Tyler Reddy
• Joscha Reimer
• Antonio H Ribeiro +
• Antonio Horta Ribeiro
• Benjamin Rose +
• Fabian Rost
• Divakar Roy +
• Scott Sievert
• Leo Singer
• Sourav Singh
• Martino Sorbaro +
• Eric Stansifer +
• Martin Thoma
• Phil Tooley +
• Piotr Uchwat +
• Paul van Mulbregt
• Pauli Virtanen
• Stefan van der Walt
• Warren Weckesser
• Florian Weimer +
• Eric Wieser
• Josh Wilson
• Ted Ying +
• Evgeny Zhurko
• Zé Vinícius
• @Astrofysicus +
• @awakenting +
• @endolith
• @FormerPhysicist +
• @gaulinmp +
• @hugovk
• @ksemb +
• @kshitij12345 +
• @luzpaz +
• @NKrvavica +
• @rafalalgo +
• @samvak0210 +
A total of 122 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

**Issues closed for 1.1.0**

- #979: Allow Hermitian matrices in lobpcg (Trac #452)
- #2694: Solution of iterative solvers can be less accurate than tolerance…
- #3164: RectBivariateSpline usage inconsistent with other interpolation…
- #4161: Missing ITMAX optional argument in scipy.optimize.mls
- #4354: signal.slepianshould use definition of digital window
- #4866: Shouldn’t scipy.linalg.sqrtm raise an error if matrix is singular?
- #4953: The dirichlet distribution unnecessarily requires strictly positive…
- #5336: sqrtm on a diagonal matrix can warn “Matrix is singular and may…
- #5922: Suboptimal convergence of Halley’s method?
- #6036: Incorrect edge case in scipy.stats.triang.pdf
- #6202: Enhancement: Add LDLt factorization to scipy
- #6589: sparse.random with custom rvs callable does pass on arg to subclass
- #6654: Spearman’s rank correlation coefficient slow with nan values.…
- #6794: Remove NumarrayType struct with numarray type names from ndimage
- #7136: The dirichlet distribution unnecessarily rejects probabilities…
- #7169: Will it be possible to add LDL’ factorization for Hermitian indefinite…
- #7291: fsolve docs should say it doesn’t handle over- or under-determined…
- #7453: binary_opening/binary_closing missing arguments
- #7500: linalg.solve test failure on OS X with Accelerate
- #7555: Integratig a function with singularities using the quad routine
- #7624: allow setting both absolute and relative tolerance of sparse…
- #7724: odeint documentation refers to t0 instead of t
- #7746: False CDF values for skew normal distribution
- #7750: mstats.winsorize documentation needs clarification
- #7787: Documentation error in spherical Bessel, Neumann, modified spherical…
• #7836: scipy mmwrite incorrectly writes the zeros for skew-symmetric,…
• #7839: sqrtm is unable to compute square root of zero matrix
• #7847: solve is very slow since #6775
• #7888: scipy 1.0.0b1 prints spurious DVODE/ZVODE/lsoda messages
• #7909: bessel kv function in 0 is nan
• #7915: LinearOperator's __init__ runs two times when instantiating the…
• #7958: integrate.quad could use better error messages when given bad…
• #7968: integrate.quad handles decreasing limits (b<a) inconsistently
• #7970: ENH: matching return dtype for loggamma/gammaln
• #7991: lfilter segfaults for integer inputs
• #8076: “make dist” for the docs doesn’t complete cleanly
• #8080: Use JSON in special/_generate_pyx.py?
• #8127: scipy.special.psi(x) very slow for some values of x
• #8145: BUG: ndimage geometric_transform and zoom using deprecated NumPy…
• #8158: BUG: romb print output requires correction
• #8181: loadmat() raises TypeError instead of FileNotFound when reading…
• #8228: bug for log1p on csr_matrix
• #8235: scipy.stats multinomial pmf return nan
• #8271: scipy.io.mmwrite raises type error for uint16
• #8288: Should tests be written for scipy.sparse.linalg.solve.minres…
• #8298: Broken links on scipy API web page
• #8329: __gels fails for fat A matrix
• #8346: Avoidable overflow in scipy.special.binom(n, k)
• #8371: BUG: special: zetac(x) returns 0 for x < -30.8148
• #8382: collections.OrderedDict in test_mio.py
• #8492: Missing documentation for brute_force parameter in scipy.ndimage.morphology
• #8532: leastsq needlessly appends extra dimension for scalar problems
• #8544: [feature request] Convert complex diagonal form to real block…
• #8561: [Bug?] Example of Bland's Rule for optimize.linprog (simplex)…
• #8562: CI: Appveyor builds fail because it can't import ConvexHull from…
• #8576: BUG: optimize: show_options(solver='minimize', method='Newton-CG')…
• #8603: test_roots_gegenbauer/chebyt/chebycfailures on manylinux
• #8604: Test failures in scipy.sparse.test_inplace_dense
• #8616: special: ellpj.c code can be cleaned up a bit
• #8625: scipy 1.0.1 no longer allows overwriting variables in netcdf…
• #8629: gcrotmk.test_atol failure with MKL
• #8632: Sigma clipping on data with the same value
• #8646: scipy.special.sinpi test failures in test_zero_sign on old MSVC
• #8663: linprog with method=interior-point produced incorrect answer…
• #8694: linalg:TestSolve.test_all_type_size_routine_combinations fails…
• #8703: Q: Does runtests.py --refguide-check need env (or other) variables…

Pull requests for 1.1.0

• #6590: BUG: sparse: fix custom rvs callable argument in sparse.random
• #7004: ENH: scipy.linalg.eigsh cannot get all eigenvalues
• #7120: ENH: implemented Owen’s T function
• #7483: ENH: Addition/multiplication operators for StateSpace systems
• #7566: Informative exception when passing a sparse matrix
• #7592: Adaptive Nelder-Mead
• #7729: WIP: ENH: optimize: large-scale constrained optimization algorithms…
• #7802: MRG: Add dpss window function
• #7803: DOC: Add examples to spatial.distance
• #7821: Add Returns section to the docstring
• #7833: ENH: Performance improvements in scipy.linalg.special_matrices
• #7864: MAINT: sparse: Simplify sputils.isintlike
• #7865: ENH: Improved speed of copy into L, U matrices
• #7871: ENH: sparse: Add 64-bit integer to sparsertools
• #7879: ENH: re-enabled old sv lapack routine as defaults
• #7889: DOC: Show probability density functions as math
• #7900: API: Soft deprecate signal.* windows
• #7910: ENH: allow sqrtm to compute the root of some singular matrices
• #7911: MAINT: Avoid unnecessary array copies in xdist
• #7913: DOC: Clarifies the meaning of initial of scipy.integrate.cumtrapz()
• #7916: BUG: sparse.linalg: fix wrong use of __new__ in LinearOperator
• #7921: BENCH: split spatial benchmark imports
• #7927: ENH: added sygst/hegst routines to lapack
• #7934: MAINT: add io/_test_fortranmodule to gitignore
• #7936: DOC: Fixed typo in scipy.special.roots_jacobidocumentation
• #7937: MAINT: special: Mark a test that fails on i686 as a known failure.
• #7941: ENH: LDLt decomposition for indefinite symmetric/hermitian matrices
• #7945: ENH: Implement reshape method on sparse matrices
• #7947: DOC: update docs on releasing and installing/upgrading
• #7954: Basin-hopping changes
• #7964: BUG: test_falker not robust against numerical fuss in eigenvalues
• #7967: QUADPACK Errors - human friendly errors to replace ‘Invalid Input’
• #7975: Make sure integrate.quad doesn’t double-count singular points
• #7978: TST: ensure negative weights are not allowed in distance metrics
• #7980: MAINT: Truncate the warning msg about ill-conditioning
• #7981: BUG: special: fix hyp2f1 behavior in certain circumstances
• #7983: ENH: special: Add a real dispatch to loggamma
• #7989: BUG: special: make kv return inf at a zero real argument
• #7990: TST: special: test ufuncs in special at nan inputs
• #7994: DOC: special: fix typo in spherical Bessel function documentation
• #7995: ENH: linalg: add null_space for computing null spaces via svd
• #7999: BUG: optimize: Protect _minpack calls with a lock.
• #8003: MAINT: consolidate c99 compatibility
• #8004: TST: special: get all cython_special tests running again
• #8006: MAINT: Consolidate an additional _c99compat.h
• #8011: Add new example of integrate.quad
• #8015: DOC: special: remove jn from the refguide (again)
• #8018: BUG - Issue with uint datatypes for array in get_index_dtype
• #8021: DOC: spatial: Simplify Delaunay plotting
• #8024: Documentation fix
• #8027: BUG: io.matlab: fix saving unicode matrix names on py2
• #8028: BUG: special: some fixes for lambertw
• #8030: MAINT: Bump Cython version
• #8034: BUG: sparse.linalg: fix corner-case bug in expm
• #8035: MAINT: special: remove complex division hack
• #8038: ENH: Cythonize pxy files if pxd dependencies change
• #8042: TST: stats: reduce required precision in test_fligner
• #8043: TST: Use diff. values for decimal keyword for single and doubles
• #8044: TST: accuracy of tests made different for singles and doubles
• #8049: Unhelpful error message when calling scipy.sparse.save_npz on…
• #8052: TST: spatial: add a regression test for gh-8051
• #8059: BUG: special: fix ufunc results for nan arguments
• #8066: MAINT: special: reimplement inverses of incomplete gamma functions
• #8072: Example for scipy.fftpack.iftt, https://github.com/scipy/scipy/issues/7168
• #8073: Example for ifftn, https://github.com/scipy/scipy/issues/7168
• #8078: Link to CoC in contributing.rst
• #8085: BLD: Fix npy_isnan of integer variables in cephes
• #8088: DOC: note version for which new attributes have been added to…
• #8090: BUG: special: add nan check to _legacy_cast_check functions
• #8091: Doxy Typos + trivial comment typos (2nd attempt)
• #8096: TST: special: simplify Arg
• #8101: MAINT: special: run _generate_pyx.py when add_newdocs.py…
• #8104: Input checking for scipy.sparse.linalg.inverse()
• #8105: DOC: special: Update the 'euler' docstring.
• #8109: MAINT: fixing code comments and hyp2f1 docstring: see issues…
• #8112: More trivial typos
• #8113: MAINT: special: generate test data npz files in setup.py and…
• #8116: DOC: add build instructions
• #8120: DOC: Clean up README
• #8121: DOC: Add missing colons in docstrings
• #8123: BLD: update Bento build config files for recent C99 changes.
• #8124: Change to avoid use of fmod in scipy.signal.chebwin
• #8126: Added examples for mode arg in geometric_transform
• #8128: relax relative tolerance parameter in TestMinimumPhase.test_hilbert
• #8129: ENH: special: use rational approximation for 'digamma' on '[1,…
• #8137: DOC Correct matrix width
• #8141: MAINT: optimize: remove unused __main__ code in L-BSGS-B
• #8147: BLD: update Bento build for removal of .npz scipy.special test…
• #8148: Alias hanning as an explanatory function of hann
• #8149: MAINT: special: small fixes for digamma
• #8159: Update version classifiers
• #8164: BUG: riccati solvers don't catch ill-conditioned problems sufficiently…
• #8168: DOC: release note for sparse resize methods
• #8170: BUG: correctly pad netCDF files with null bytes
• #8171: ENH added normal inverse gaussian distribution to scipy.stats
• #8175: DOC: Add example to scipy.ndimage.zoom
• #8177: MAINT: difflev small speedup in ensure constraint
• #8178: FIX: linalg._qr String formatter syntax error
• #8179: TST: Added pdist to asv spatial benchmark suite
• #8180: TST: ensure constraint test improved
• #8183: 0d conj correlate
• #8186: BUG: special: fix derivative of spherical_jn(1, 0)
• #8194: Fix warning message
• #8196: BUG: correctly handle inputs with nan’s and ties in spearmanr
• #8198: MAINT: stats.triang edge case fixes #6036
• #8200: DOC: Completed “Examples” sections of all linalg funcs
• #8201: MAINT: stats.trapz edge cases
• #8204: ENH: sparse.linalg/lobpcg: change .T to .T.conj() to support…
• #8206: MAINT: missed triang edge case.
• #8214: BUG: Fix memory corruption in linalg._decomp_update C extension
• #8222: DOC: recommend scipy.integrate.solve_ivp
• #8223: ENH: added Moyal distribution to scipy.stats
• #8232: BUG: sparse: Use deduped data for numpy ufuncs
• #8236: Fix #8235
• #8253: BUG: optimize: fix bug related with function call calculation…
• #8264: ENH: Extend peak finding capabilities in scipy.signal
• #8273: BUG fixed printing of convergence message in minimize_scalar…
• #8276: DOC: Add notes to explain constrains on overwrite_<>
• #8279: CI: fixing doctests
• #8282: MAINT: weightedtau, change search for nan
• #8287: Improving documentation of solve_ivp and the underlying solvers
• #8291: DOC: fix non-ascii characters in docstrings which broke the doc…
• #8292: CI: use numpy 1.13 for refguide check build
• #8296: Fixed bug reported in issue #8181
• #8297: DOC: Examples for linalg/decomp eigvals function
• #8300: MAINT: Housekeeping for minimizing the linalg compiler warnings
• #8301: DOC: make public API documentation cross-link to refguide.
• #8302: make sure _onenorm_matrix_power_nnm actually returns a float
• #8313: Change copyright to outdated 2008-2016 to 2008-year
• #8315: TST: Add tests for ‘scipy.sparse.linalg.solve.minres’
• #8318: ENH: odeint: Add the argument ‘tfirst’ to odeint.
• #8328: ENH: optimize: trust-constr optimization algorithms [GSoC…
• #8330: ENH: add a maxiter argument to NNLS
• #8331: DOC: tweak the Moyal distribution docstring
• #8333: FIX: Rewrapped ?gels and ?gels_lwork routines
• #8336: MAINT: integrate: handle b < a in quad
• #8337: BUG: special: Ensure zetac(1) returns inf.
• #8347: BUG: Fix overflow in special.binom. Issue #8346
• #8356: DOC: Corrected Documentation Issue #7750 winsorize function
• #8358: ENH: stats: Use explicit MLE formulas in lognorm.fit and expon.fit
• #8374: BUG: gh7854, maxiter for l-bfgs-b closes #7854
• #8379: CI: enable gccv coverage on travis
• #8383: Removed collections.OrderedDict import ignore.
• #8384: TravisCI: tool pep8 is now pycodestyle
• #8387: MAINT: special: remove unused specfun code for Struve functions
• #8393: DOC: Replace old type names in ndimage tutorial.
• #8400: Fix tolerance specification in sparse.linalg iterative solvers
• #8402: MAINT: Some small cleanups in ndimage.
• #8403: FIX: Make scipy.optimize.zeros run under PyPy
• #8407: BUG: sparse.linalg: fix termination bugs for cg, cgs
• #8409: MAINT: special: add a .pxd file for Cephes functions
• #8412: MAINT: special: remove cephes/protos.h
• #8421: Setting “unknown” message in OptimizeResult when calling MINPACK.
• #8423: FIX: Handle unsigned integers in mmio
• #8426: DOC: correct FAQ entry on Apache license compatibility. Closes…
• #8433: MAINT: add pytest_cache to the gitignore
• #8436: MAINT: scipy.sparse: less copies at transpose method
• #8437: BUG: correct behavior for skew-symmetric matrices in io.mmwrite
• #8440: DOC: Add examples to integrate.quadpack docstrings
• #8441: BUG: sparse.linalg/gmres: deal with exact breakdown in gmres
• #8442: MAINT: special: clean up Cephes header files
• #8448: TST: Generalize doctest stopwords .axis() .plot()
• #8457: MAINT: special: use JSON for function signatures in _generate.pyx.py
• #8461: MAINT: Simplify return value of ndimage functions.
• #8464: MAINT: Trivial typos
• #8474: BUG: spatial: make qhull.pyx more pypy-friendly
• #8476: TST: _lib: disable refcounting tests on PyPy
• #8479: BUG: io/matlab: fix issues in matlab i/o on pypy
• #8481: DOC: Example for signal.complex_sort
• #8482: TST: integrate: use integers instead of PyCapsules to store pointers
• #8483: ENH: io/netcdf: make mmap=False the default on PyPy
• #8484: BUG: io/matlab: work around issue in to_writeable on PyPy
• #8488: MAINT: special: add const/static specifiers where possible
• #8489: BUG: ENH: use common halley's method instead of parabolic variant
• #8491: DOC: fix typos
• #8496: ENH: special: make Chebyshev nodes symmetric
• #8501: BUG: stats: Split the integral used to compute skewnorm.cdf.
• #8502: WIP: Port CircleCI to v2
• #8507: DOC: Add missing description to brute_force parameter.
• #8509: BENCH: forgot to add nelder-mead to list of methods
• #8512: MAINT: Move spline interpolation code to spline.c
• #8513: TST: special: mark a slow test as xslow
• #8514: CircleCI: Share data between jobs
• #8515: ENH: special: improve accuracy of zetac for negative arguments
• #8520: TST: Decrease the array sizes for two linalg tests
• #8522: TST: special: restrict range of test_besselk/test_besselk_int
• #8527: Documentation - example added for voronoi_plot_2d
• #8528: DOC: Better, shared docstrings in ndimage
• #8533: BUG: Fix PEP8 errors introduced in #8528.
• #8534: ENH: Expose additional window functions
• #8538: MAINT: Fix a couple mistakes in .pyf files.
• #8540: ENH: interpolate: allow string aliases in make_interp_spline…
• #8541: ENH: Cythonize peak_prominences
• #8542: Remove numerical arguments from convolve2d / correlate2d
• #8546: ENH: New arguments, documentation, and tests for ndimage.binary_opening
• #8547: Giving both size and input now raises UserWarning (#7334)
• #8549: DOC: stats: inweibull is also known as Frechet or type II extreme…
• #8550: add cdf2rdf function
• #8551: ENH: Port of most of the dd_real part of the qd high-precision…
• #8553: Note in docs to address issue #3164.
• #8554: ENH: stats: Use explicit MLE formulas in uniform.fit()
• #8555: MAINT: adjust benchmark config
• #8557: [DOC]: fix Nakagami density docstring
• #8559: DOC: Fix docstring of diric(x, n)
• #8563: [DOC]: fix gamma density docstring
• #8564: BLD: change default Python version for doc build from 2.7 to…
• #8568: BUG: Fixes Bland's Rule for pivot row/leaving variable, closes…
• #8572: ENH: Add previous/next to interp1d
• #8578: Example for linalg.eig()
• #8580: DOC: update link to asv docs
• #8584: filter_design: switch to explicit arguments, keeping None as…
• #8586: DOC: stats: Add parentheses that were missing in the expnorm…
• #8587: TST: add benchmark for newton, secant, halley
• #8588: DOC: special: Remove heaviside from “functions not in special”…
• #8591: DOC: cdf2rdf Added version info and “See also”
• #8594: ENH: Cythonize peak_widths
• #8595: MAINT/ENH/BUG/TST: cdf2rdf: Address review comments made after…
• #8597: DOC: add versionadded 1.1.0 for new keywords in ndimage.morphology
• #8605: MAINT: special: improve implementations of sinpi and cospi
• #8607: MAINT: add 2D benchmarks for convolve
• #8608: FIX: Fix int check
• #8613: fix typo in doc of signal.peak_widths
• #8615: TST: fix failing linalg.qz float32 test by decreasing precision.
• #8617: MAINT: clean up code in ellpj.c
• #8618: add fsolve docs it doesn’t handle over- or under-determined problems
• #8620: DOC: add note on dtype attribute of aslinearoperator() argument
• #8627: ENH: Add example 1D signal (ECG) to scipy.misc
• #8630: ENH: Remove unnecessary copying in stats.percentileofscore
• #8631: BLD: fix pdf doc build. closes gh-8076
• #8633: BUG: fix regression in io.netcdf_file with append mode.
• #8635: MAINT: remove spurious warning from (z)vode and lsoda. Closes…
• #8636: BUG: sparse.linalg/gcrotmk: avoid rounding error in termination…
• #8637: For pdf build
• #8639: CI: build pdf documentation on circleci
• #8640: TST: fix special test that was importing np.testing.utils (deprecated)
• #8641: BUG: optimize: fixed sparse redundancy removal bug
• #8645: BUG: modified sigmaclip to avoid clipping of constant input in…
• #8647: TST: sparse: skip test_inplace_dense for numpy<1.13
• #8657: Latex reduce left margins
• #8659: TST: special: skip sign-of-zero test on 32-bit win32 with old…
• #8661: Fix dblquad and tplquad not accepting float boundaries
• #8666: DOC: fixes #8532
• #8667: BUG: optimize: fixed issue #8663
• #8668: Fix example in docstring of netcdf_file
• #8671: DOC: Replace deprecated matplotlib kwarg
• #8673: BUG: special: Use a stricter tolerance for the chndtr calculation.
• #8674: ENH: In the Dirichlet distribution allow x_i to be 0 if alpha_i…
• #8676: BUG: optimize: partial fix to linprog fails to detect infeasibility…
• #8685: DOC: Add interp1d-next/previous example to tutorial
• #8687: TST: netcdf: explicit mmap=True in test
• #8688: BUG: signal, stats: use Python sum() instead of np.sum for summing…
• #8689: TST: bump tolerances in tests
• #8690: DEP: deprecated stats.itemfreq
• #8691: BLD: special: fix build vs. dd_real.h package
• #8695: DOC: Improve examples in signal.find_peaks with ECG signal
• #8697: BUG: Fix setup.py build install egg_info, which did not previously…
• #8704: TST: linalg: drop large size from solve() test
• #8705: DOC: Describe signal.find_peaks and related functions behavior…
• #8706: DOC: Specify encoding of rst file, remove an ambiguity in an…
• #8710: MAINT: fix an import cycle sparse -> special -> integrate ->…
• #8711: ENH: remove an avoidable overflow in scipy.stats.norminvgauss.pdf()
• #8716: BUG: interpolate: allow list inputs for make_interp_spline(……
• #8720: np.testing import that is compatible with numpy 1.15
• #8724: CI: don’t use pyproject.toml in the CI builds

5.26 SciPy 1.0.1 Release Notes

SciPy 1.0.1 is a bug-fix release with no new features compared to 1.0.0. Probably the most important change is a fix for an incompatibility between SciPy 1.0.0 and numpy.f2py in the NumPy master branch.
5.26.1 Authors

- Saurabh Agarwal +
- Alessandro Pietro Bardelli
- Philip DeBoer
- Ralf Gommers
- Matt Haberland
- Eric Larson
- Denis Laxalde
- Mihai Capotă +
- Andrew Nelson
- Oleksandr Pavlyk
- Ilhan Polat
- Anant Prakash +
- Pauli Virtanen
- Warren Weckesser
- @xoviat
- Ted Ying +

A total of 16 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed for 1.0.1

- #7493: ndimage.morphology functions are broken with numpy 1.13.0
- #8118: minimize_cobyla broken if disp=True passed
- #8142: scipy-v1.0.0 pdist with metric=`minkowski` raises ’ValueError:…
- #8173: scipy.stats.ortho_group produces all negative determinants…
- #8207: gaussian_filter seg faults on float16 numpy arrays
- #8234: scipy.optimize.linprog.interior-point presolve bug with trivial…
- #8243: Make csgraph importable again via from scipy.sparse import*
- #8320: scipy.root segfaults with optimizer ‘lm’
Pull requests for 1.0.1

- #8068: BUG: fix numpy deprecation test failures
- #8082: BUG: fix solve_lyapunov import
- #8144: MRG: Fix for cobyla
- #8150: MAINT: resolve UPDATEIFCOPY deprecation errors
- #8156: BUG: missing check on minkowski w kwarg
- #8187: BUG: Sign of elements in random orthogonal 2D matrices in “ortho_group_gen”…
- #8197: CI: uninstall oclint
- #8215: Fixes Numpy datatype compatibility issues
- #8237: BUG: optimize: fix bug when variables fixed by bounds are inconsistent…
- #8248: BUG: declare “gfk” variable before call of terminate() in newton-cg
- #8280: REV: reintroduce csgraph import in scipy.sparse
- #8322: MAINT: prevent scipy.optimize.root segfault closes #8320
- #8334: TST: stats: don’t use exact equality check for hdmedian test
- #8477: BUG: signal/signaltools: fix wrong refcounting in PyArray_OrderFilterND
- #8566: CI: Temporarily pin Cython version to 0.27.3
- #8573: Backports for 1.0.1
- #8581: Fix Cython 0.28 build break of qhull.pyx

5.27 SciPy 1.0.0 Release Notes
We are extremely pleased to announce the release of SciPy 1.0. 16 years after version 0.1 saw the light of day. It has been a long, productive journey to get here, and we anticipate many more exciting new features and releases in the future.

5.27.1 Why 1.0 now?

A version number should reflect the maturity of a project - and SciPy was a mature and stable library that is heavily used in production settings for a long time already. From that perspective, the 1.0 version number is long overdue.

Some key project goals, both technical (e.g. Windows wheels and continuous integration) and organisational (a governance structure, code of conduct and a roadmap), have been achieved recently.

Many of us are a bit perfectionist, and therefore are reluctant to call something “1.0” because it may imply that it’s “finished” or “we are 100% happy with it”. This is normal for many open source projects, however that doesn’t make it right. We acknowledge to ourselves that it’s not perfect, and there are some dusty corners left (that will probably always be the case). Despite that, SciPy is extremely useful to its users, on average has high quality code and documentation, and gives the stability and backwards compatibility guarantees that a 1.0 label imply.

5.27.2 Some history and perspectives

• 2001: the first SciPy release
• 2005: transition to NumPy
• 2007: creation of scikits
• 2008: scipy.spatial module and first Cython code added
• 2010: moving to a 6-monthly release cycle
• 2011: SciPy development moves to GitHub
• 2011: Python 3 support
• 2012: adding a sparse graph module and unified optimization interface
• 2012: removal of scipy.maxentropy
• 2013: continuous integration with TravisCI

- 2015: adding Cython interface for BLAS/LAPACK and a benchmark suite
- 2017: adding a unified C API with scipy.LowLevelCallable; removal of scipy.weave
- 2017: SciPy 1.0 release

Pauli Virtanen is SciPy's Benevolent Dictator For Life (BDFL). He says:

Truthfully speaking, we could have released a SciPy 1.0 a long time ago, so I'm happy we do it now at long last. The project has a long history, and during the years it has matured also as a software project. I believe it has well proved its merit to warrant a version number starting with unity.

Since its conception 15+ years ago, SciPy has largely been written by and for scientists, to provide a box of basic tools that they need. Over time, the set of people active in its development has undergone some rotation, and we have evolved towards a somewhat more systematic approach to development. Regardless, this underlying drive has stayed the same, and I think it will also continue propelling the project forward in future. This is all good, since not long after 1.0 comes 1.1.

Travis Oliphant is one of SciPy's creators. He says:

I'm honored to write a note of congratulations to the SciPy developers and the entire SciPy community for the release of SciPy 1.0. This release represents a dream of many that has been patiently pursued by a stalwart group of pioneers for nearly 2 decades. Efforts have been broad and consistent over that time from many hundreds of people. From initial discussions to efforts coding and packaging to documentation efforts to extensive conference and community building, the SciPy effort has been a global phenomenon that it has been a privilege to participate in.

The idea of SciPy was already in multiple people's minds in 1997 when I first joined the Python community as a young graduate student who had just fallen in love with the expressibility and extensibility of Python. The internet was just starting to bring together like-minded mathematicians and scientists in nascent electronically-connected communities. In 1998, there was a concerted discussion on the matrix-SIG, python mailing list with people like Paul Barrett, Joe Harrington, Perry Greenfield, Paul Dubois, Konrad Hinsen, David Ascher, and others. This discussion encouraged me in 1998 and 1999 to procrastinate my PhD and spend a lot of time writing extension modules to Python that mostly wrapped battle-tested Fortran and C-code making it available to the Python user. This work attracted the help of others like Robert Kern, Pearu Peterson and Eric Jones who joined their efforts with mine in 2000 so that by 2001, the first SciPy release was ready. This was long before Github simplified collaboration and input from others and the “patch” command and email was how you helped a project improve.

Since that time, hundreds of people have spent an enormous amount of time improving the SciPy library and the community surrounding this library has dramatically grown. I stopped being able to participate actively in developing the SciPy library around 2010. Fortunately, at that time, Pauli Virtanen and Ralf Gommers picked up the pace of development supported by dozens of other key contributors such as David Cournapeau, Evgeni Burovski, Josef Perktold, and Warren Weckesser. While I have only been able to admire the development of SciPy from a distance for the past 7 years, I have never lost my love of the project and the concept of community-driven development. I remain driven even now by a desire to help sustain the development of not only the SciPy library but many other affiliated and related open-source projects. I am extremely pleased that SciPy is in the hands of a world-wide community of talented developers who will ensure that SciPy remains an example of how grass-roots, community-driven development can succeed.

Fernando Perez offers a wider community perspective:

The existence of a nascent Scipy library, and the incredible –if tiny by today’s standards– community surrounding it is what drew me into the scientific Python world while still a physics graduate student in 2001. Today, I am awed when I see these tools power everything from high school education to the research that led to the 2017 Nobel Prize in physics.

Don't be fooled by the 1.0 number: this project is a mature cornerstone of the modern scientific computing ecosystem. I am grateful for the many who have made it possible, and hope to be able to contribute again to it in the future. My sincere congratulations to the whole team!
5.27.3 Highlights of this release

Some of the highlights of this release are:

- Major build improvements. Windows wheels are available on PyPI for the first time, and continuous integration has been set up on Windows and OS X in addition to Linux.
- A set of new ODE solvers and a unified interface to them (scipy.integrate.solve_ivp).
- Two new trust region optimizers and a new linear programming method, with improved performance compared to what scipy.optimize offered previously.
- Many new BLAS and LAPACK functions were wrapped. The BLAS wrappers are now complete.

5.27.4 Upgrading and compatibility

There have been a number of deprecations and API changes in this release, which are documented below. Before upgrading, we recommend that users check that their own code does not use deprecated SciPy functionality (to do so, run your code with python -Wd and check for DeprecationWarnings).

This release requires Python 2.7 or >=3.4 and NumPy 1.8.2 or greater.

This is also the last release to support LAPACK 3.1.x - 3.3.x. Moving the lowest supported LAPACK version to >3.2.x was long blocked by Apple Accelerate providing the LAPACK 3.2.1 API. We have decided that it’s time to either drop Accelerate or, if there is enough interest, provide shims for functions added in more recent LAPACK versions so it can still be used.

New features

5.27.5 scipy.cluster improvements

scipy.cluster.hierarchy.optimal_leaf_ordering, a function to reorder a linkage matrix to minimize distances between adjacent leaves, was added.

5.27.6 scipy.fftpack improvements

N-dimensional versions of the discrete sine and cosine transforms and their inverses were added as dctn, idctn, dstn and idstn.

5.27.7 scipy.integrate improvements

A set of new ODE solvers have been added to scipy.integrate. The convenience function scipy.integrate.solve_ivp allows uniform access to all solvers. The individual solvers (RK23, RK45, Radau, BDF and LSODA) can also be used directly.
5.27.8 scipy.linalg improvements


The function scipy.linalg.subspace_angles has been added to compute the subspace angles between two matrices.

The function scipy.linalg.clarkson_woodruff_transform has been added. It finds low-rank matrix approximation via the Clarkson-Woodruff Transform.

The functions scipy.linalg.eigh_tridiagonal and scipy.linalg.eigvalsh_tridiagonal, which find the eigenvalues and eigenvectors of tridiagonal hermitian/symmetric matrices, were added.

5.27.9 scipy.ndimage improvements

Support for homogeneous coordinate transforms has been added to scipy.ndimage.affine_transform.

The ndimage C code underwent a significant refactoring, and is now a lot easier to understand and maintain.

5.27.10 scipy.optimize improvements

The methods trust-region-exact and trust-krylov have been added to the function scipy.optimize.minimize. These new trust-region methods solve the subproblem with higher accuracy at the cost of more Hessian factorizations (compared to dogleg) or more matrix vector products (compared to ncg) but usually require less nonlinear iterations and are able to deal with indefinite Hessians. They seem very competitive against the other Newton methods implemented in scipy.

scipy.optimize.linprog gained an interior point method. Its performance is superior (both in accuracy and speed) to the older simplex method.

5.27.11 scipy.signal improvements

An argument fs (sampling frequency) was added to the following functions: firwin, firwin2, firls, and remez. This makes these functions consistent with many other functions in scipy.signal in which the sampling frequency can be specified.

scipy.signal.freqz has been sped up significantly for FIR filters.

5.27.12 scipy.sparse improvements

Iterating over and slicing of CSC and CSR matrices is now faster by up to ~35%.

The tocsr method of COO matrices is now several times faster.

The diagonal method of sparse matrices now takes a parameter, indicating which diagonal to return.
5.27.13 **scipy.sparse.linalg improvements**

A new iterative solver for large-scale nonsymmetric sparse linear systems, \texttt{scipy.sparse.linalg.gcrotmk}, was added. It implements GCROT\((m, k)\), a flexible variant of GCROT.

\texttt{scipy.sparse.linalg.lsmr} now accepts an initial guess, yielding potentially faster convergence.

SuperLU was updated to version 5.2.1.

5.27.14 **scipy.spatial improvements**

Many distance metrics in \texttt{scipy.spatial.distance} gained support for weights.

The signatures of \texttt{scipy.spatial.distance.pdist} and \texttt{scipy.spatial.distance.cdist} were changed to *args, **kwargs in order to support a wider range of metrics (e.g. string-based metrics that need extra keywords). Also, an optional \texttt{out} parameter was added to \texttt{pdist} and \texttt{cdist} allowing the user to specify where the resulting distance matrix is to be stored.

5.27.15 **scipy.stats improvements**

The methods \texttt{cdf} and \texttt{logcdf} were added to \texttt{scipy.stats.multivariate_normal}, providing the cumulative distribution function of the multivariate normal distribution.

New statistical distance functions were added, namely \texttt{scipy.stats.wasserstein_distance} for the first Wasserstein distance and \texttt{scipy.stats.energy_distance} for the energy distance.

**Deprecated features**

The following functions in \texttt{scipy.misc} are deprecated: \texttt{bytescale}, \texttt{fromimage}, \texttt{imfilter}, \texttt{imread}, \texttt{imresize}, \texttt{imrotate}, \texttt{imsave}, \texttt{imshow} and \texttt{toimage}. Most of those functions have unexpected behavior (like rescaling and type casting image data without the user asking for that). Other functions simply have better alternatives.

\texttt{scipy.interpolate.interpolate_wrapper} and all functions in that submodule are deprecated. This was a never finished set of wrapper functions which is not relevant anymore.

The \texttt{fillvalue} of \texttt{scipy.signal.convolve2d} will be cast directly to the dtypes of the input arrays in the future and checked that it is a scalar or an array with a single element.

\texttt{scipy.spatial.distance.matching} is deprecated. It is an alias of \texttt{scipy.spatial.distance.hamming}, which should be used instead.

Implementation of \texttt{scipy.spatial.distance.wminkowski} was based on a wrong interpretation of the metric definition. In scipy 1.0 it has been just deprecated in the documentation to keep retro-compatibility but is recommended to use the new version of \texttt{scipy.spatial.distance.minkowski} that implements the correct behaviour.

Positional arguments of \texttt{scipy.spatial.distance.pdist} and \texttt{scipy.spatial.distance.cdist} should be replaced with their keyword version.
Backwards incompatible changes

The following deprecated functions have been removed from `scipy.stats`: `betai`, `chisqprob`, `f_value`, `histogram`, `histogram2`, `pdf_fromgamma`, `signaltonoise`, `square_of_sums`, `ss` and `threshold`.

The following deprecated functions have been removed from `scipy.stats.mstats`: `betai`, `f_value_wilks_lambda`, `signaltonoise` and `threshold`.

The deprecated `a` and `reta` keywords have been removed from `scipy.stats.shapiro`.

The deprecated functions `sparse.csgraph.cs_graph_components` and `sparse.linalg.symeig` have been removed from `scipy.sparse`.

The following deprecated keywords have been removed in `scipy.sparse.linalg`: `drop_tol` from `splu`, and `xtype` from `bicg`, `bicgstab`, `cg`, `cgs`, `gmres`, `qmr` and `minres`.

The deprecated functions `expm2` and `expm3` have been removed from `scipy.linalg`. The deprecated keyword `q` was removed from `scipy.linalg.expm`. And the deprecated submodule `linalg.calc_lwork` was removed.

The deprecated functions `C2K`, `K2C`, `F2C`, `C2F`, `F2K` and `K2F` have been removed from `scipy.constants`.

The deprecated `ppform` class was removed from `scipy.interpolate`.

The deprecated keyword `iprint` was removed from `scipy.optimize.fmin_cobyla`.

The default value for the `zero_phase` keyword of `scipy.signal.decimate` has been changed to True.

The `kmeans` and `kmeans2` functions in `scipy.cluster.vq` changed the method used for random initialization, so using a fixed random seed will not necessarily produce the same results as in previous versions.

`scipy.special.gammaln` does not accept complex arguments anymore.

The deprecated functions `sph_jn`, `sph_yn`, `sph_jnyn`, `sph_in`, `sph_kn`, and `sph_inkn` have been removed. Users should instead use the functions `spherical_jn`, `spherical_yn`, `spherical_in`, and `spherical_kn`. Be aware that the new functions have different signatures.

The cross-class properties of `scipy.signal.lti` systems have been removed. The following properties/setters have been removed:

Name - (accessing/setting has been removed) - (setting has been removed)

- `StateSpace` - (num, den, gain) - (zeros, poles)
- `TransferFunction` (A, B, C, D, gain) - (zeros, poles)
- `ZerosPolesGain` (A, B, C, D, num, den) - ()

`signal.freqz(b, a)` with `b` or `a >1-D` raises a `ValueError`. This was a corner case for which it was unclear that the behavior was well-defined.

The method `var` of `scipy.stats.dirichlet` now returns a scalar rather than an ndarray when the length of `alpha` is 1.
Other changes

SciPy now has a formal governance structure. It consists of a BDFL (Pauli Virtanen) and a Steering Committee. See the governance document for details.

It is now possible to build SciPy on Windows with MSVC + gfortran! Continuous integration has been set up for this build configuration on Appveyor, building against OpenBLAS.

Continuous integration for OS X has been set up on TravisCI.

The SciPy test suite has been migrated from nose to pytest.

scipy/_distributor_init.py was added to allow redistributors of SciPy to add custom code that needs to run when importing SciPy (e.g. checks for hardware, DLL search paths, etc.).

Support for PEP 518 (specifying build system requirements) was added - see pyproject.toml in the root of the SciPy repository.

In order to have consistent function names, the function scipy.linalg.solve_lyapunov is renamed to scipy.linalg.solve_continuous_lyapunov. The old name is kept for backwards-compatibility.

Authors

- @arcady +
- @xoviat +
- Anton Akhmerov
- Dominic Antonacci +
- Alessandro Pietro Bardelli
- Ved Basu +
- Michael James Bedford +
- Ray Bell +
- Juan M. Bello-Rivas +
- Sebastian Berg
- Felix Berkenkamp
- Jyotirmoy Bhattacharya +
- Matthew Brett
- Jonathan Bright
- Bruno Jiménez +
- Evgeni Burovski
- Patrick Callier
- Mark Campanelli +
- CJ Carey
- Robert Cimrman
- Adam Cox +
- Michael Danilov +
Chapter 5. Release Notes
• Eli Sadoff +
• Pim Schellart
• Nico Schlömer +
• Klaus Sembritzki +
• Nikolay Shebanov +
• Jonathan Tammo Siebert
• Scott Sievert
• Max Silbiger +
• Mandeep Singh +
• Michael Stewart +
• Jonathan Sutton +
• Deep Tavker +
• Martin Thoma
• James Tocknell +
• Aleksandar Trifunovic +
• Paul van Mulbregt +
• Jacob Vanderplas
• Aditya Vijaykumar
• Pauli Virtanen
• James Webber
• Warren Weckesser
• Eric Wieser +
• Josh Wilson
• Zhiqing Xiao +
• Evgeny Zhurko
• Nikolay Zinov +
• Zé Vinícius +

A total of 121 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.
5.27.16 Issues closed for 1.0.0

- #2300: scipy.misc.toimage (and therefore imresize) converts to uint32…
- #2347: Several misc.im* functions incorrectly handle 3 or 4-channeled…
- #2442: scipy.misc.pilutil -> scipy.ndimage?
- #2829: Mingw Gfortran on Windows?
- #3154: scipy.misc.imsave creates wrong bitmap header
- #3505: scipy.linalg.lstsq() residual’s help text is a lil strange
- #3808: Is Brent’s method for minimizing the value of a function implemented…
- #4121: Add cdf() method to stats.multivariate_normal
- #4458: scipy.misc.imresize changes image range
- #4575: Docs for L-BFGS-B mention non-existent parameter
- #4893: misc.imsave does not work with file type defined
- #5231: Discrepancies in scipy.optimize.minimize(method='L-BFGS-B')
- #5238: Optimal leaf ordering in scipy.cluster.hierarchy.dendrogram
- #5305: Wrong image scaling in scipy/misc/pilutil.py with misc.imsave?
- #5823: test failure in filter_design
- #6061: scipy.stats.spearmanr return values outside range -1 to 1
- #6242: Inconsistency / duplication for imread and imshow, imsave
- #6265: BUG: signal.iirfilter of bandpass type is unstable when high…
- #6370: scipy.optimize.linear_sum_assignment hangs on undefined matrix
- #6417: scipy.misc.imresize converts images to uint8
- #6618: splrep and splprep inconsistent
- #6854: Support PEP 519 in I/O functions
- #6921: [Feature request] Random unitary matrix
- #6930: uniform_filter1d appears to truncate rather than round when output…
- #6949: interp2d function crashes python
- #6959: scipy.interpolate.LSQUnivariateSpline - check for increasing…
- #7005: linear_sum_assignment in scipy.optimize never return if one of…
- #7010: scipy.statsbinned_statistic_2d: incorrect binnumbers returned
- #7049: expm_multiply is excessively slow when called for intervals
- #7050: Documenting _argcheck for rv_discrete
- #7077: coo_matrix.tocsr() still slow
- #7093: Wheels licensing
- #7122: Sketching-based Matrix Computations
- #7133: Discontinuity of a scipy special function
- #7141: Improve documentation for Elliptic Integrals
• #7181: A change in `numpy.poly1d` is causing the scipy tests to fail.
• #7202: String Formatting Issue in `LinearOperator.__init__`
• #7239: Source tarball distribution
• #7247: genlaguerre poly1d-object doesn’t respect ‘monic’ option at evaluation
• #7248: BUG: regression in Legendre polynomials on master
• #7316: dgels is missing
• #7381: Krogh interpolation fails to produce derivatives for complex...
• #7416: scipy.stats.kappa4(h,k) raise a ValueError for positive integer...
• #7421: scipy.stats.arcsine().pdf and scipy.stats.beta(0.5, 0.5).pdf...
• #7429: `test_matrix_norms()` in scipy/linalg/tests/test_basic.py calls...
• #7444: Doc: stats.dirichlet.var output description is wrong
• #7475: Parameter amax in `scalar_search_wolfe2` is not used
• #7502: Operations between numpy.array and scipy.sparse matrix return...
• #7550: DOC: signal tutorial: Typo in explanation of convolution
• #7551: stdint.h included in SuperLU header files, but does not exist...
• #7553: Build for master broken on OS X
• #7557: Error in scipy.signal.periodogram example
• #7590: OSX test fail - test_ltitisys.TestPlacePoles.test_real
• #7658: optimize.BenchGlobal broken
• #7669: nan result from multivariate_normal.cdf
• #7733: Inconsistent usage of indices, indptr in Delaunay.vertex_neighbor_vertices
• #7747: Numpy changes in np.random.dirichlet cause test failures
• #7772: Fix numpy lstsq rcond= parameter
• #7776: tests require `nose`
• #7798: contributor names for 1.0 release notes
• #7828: 32-bit Linux test errors on TestCephes
• #7893: scipy.spatial.distance.wminkowski behaviour change in 1.0.0b1
• #7898: DOC: Window functions
• #7959: BUG maybe: fmin_bfgs possibly broken in 1.0
• #7969: scipy 1.0.0rc1 windows wheels depend on missing msvcp140.dll
5.27.17 Pull requests for 1.0.0

- #4978: WIP: add pre_center and normalize options to lombscargle
- #5796: TST: Remove all permanent filter changes from tests
- #5910: ENH: sparse.linalg: add GCR(m,k)
- #6326: ENH: New ODE solvers
- #6480: ENH: Make signal.decimate default to zero_phase=True
- #6705: ENH: add initial guess to sparse.linalg.lsqr
- #6706: ENH: add initial guess to sparse.linalg.lsmr
- #6769: BUG: optimize: add sufficient descent condition check to CG line…
- #6855: Handle objects supporting PEP 519 in I/O functions
- #6945: MAINT: ckdtrie codebase clean up
- #6953: DOC: add a SciPy Project Governance document
- #6998: fix documentation of spearman rank corrcof
- #7017: ENH: add methods logcdf and cdf to scipy.stats.multivariate_normal
- #7027: Add random unitary matrices
- #7030: ENH: Add strictly-increasing checks for x to 1D splines
- #7031: BUG: Fix linear_sum_assignment hanging on an undefined matrix
- #7041: DOC: Clarify that windows are DFT-even by default
- #7048: DOC: modified docs for find_peak_cwt. Fixes #6922
- #7056: Fix insufficient precision when calculating spearman/kendall…
- #7057: MAINT: change dtype comparison in optimize.linear_sum_assignment.
- #7059: TST: make Xdist Deprecated_Args cover all metrics
- #7061: Fix msvc 9 and 10 compile errors
- #7070: ENH: sparse: optimizing CSR/CSC slicing fast paths
- #7078: ENH: sparse: defer sum_duplicates to csr/csc
- #7079: ENH: sparse: allow subclasses to override specific math operations
- #7081: ENH: sparse: speed up CSR/CSC toarray()
- #7082: MAINT: Add missing PyType_Ready(&SuperLUGlobalType) for Py3
- #7083: Corrected typo in the doc of scipy.linalg.ltsq()
- #7086: Fix bug #7049 causing excessive slowness in expm_multiply
- #7088: Documented _argcheck for rv_discrete
- #7094: MAINT: Fix mistake in PR #7082
- #7098: BF: return NULL from failed Py3 module check
- #7105: MAINT: Customize ?TRSYL call in lyapunov solver
- #7111: Fix error message typo in UnivariateSpline
- #7113: FIX: Add add float to return type in documentation
- #7119: ENH: sparse.linalg: remove _count_nonzero hack
- #7123: ENH: added “interior-point” method for scipy.optimize.linprog
- #7137: DOC: clarify stats.linregress docstring, closes gh-7074
- #7138: DOC: special: Add an example to the airy docstring.
- #7139: DOC: stats: Update stats tutorial
- #7142: BUG: special: prevent segfault in pbwa
- #7143: DOC: special: warn about alternate elliptic integral parameterizations
- #7146: fix docstring of NearestNDInterpolator
- #7148: DOC: special: Add Parameters, Returns and Examples to gamma docstring
- #7152: MAINT: spatial: Remove two unused variables in ckdtree/src/distance.h
- #7153: MAINT: special: remove deprecated variant of gammaln
- #7154: MAINT: Fix some code that generates C compiler warnings
- #7155: DOC: linalg: Add examples for solve_banded and solve_triangular
- #7156: DOC: fix docstring of NearestNDInterpolator
- #7159: BUG: special: fix sign of derivative when x < 0 in pbwa
- #7161: MAINT: interpolate: make Rbf.A array a property
- #7163: MAINT: special: return nan for inaccurate regions of pbwa
- #7165: ENH: optimize: changes to make BFGS implementation more efficient.
- #7166: BUG: Prevent infinite loop in optimize._lsq.trf_linear.py
- #7173: BUG: sparse: return a numpy matrix from __add_dense
- #7179: DOC: Fix an error in sparse argmax docstring
- #7180: MAINT: interpolate: A bit of clean up in interpolate/src/_interpolate.cpp
- #7182: Allow homogeneous coordinate transforms in affine_transform
- #7184: MAINT: Remove hack modifying a readonly attr
- #7185: ENH: Add evaluation of periodic splines #6730
- #7186: MAINT: PPoly: improve error messages for wrong shape/axis
- #7187: DEP: interpolate: deprecate interpolate_wrapper
- #7198: DOC: linalg: Add examples for solveh_banded and solve_toeplitz.
- #7200: DOC: stats: Added tutorial documentation for the generalized…
- #7208: DOC: Added docstrings to issparse/isspmatrix(…) methods and…
- #7213: DOC: Added examples to circmean, circvar, circstd
- #7215: DOC: Adding examples to scipy.sparse.linalg…. docstrings
- #7223: DOC: special: Add examples for expit and logit.
- #7224: BUG: interpolate: fix integer overflow in fitpack.bispev
- #7225: DOC: update 1.0 release notes for several recent PRs.
- #7226: MAINT: update docs and code for mailing list move to python.org
• #7233: Fix issue #7232: Do not mask exceptions in objective func evaluation
• #7234: MAINT: cluster: cleaning up VQ/k-means code
• #7236: DOC: Fixed typo
• #7238: BUG: fix syntaxerror due to unicode character in trustregion_exact.
• #7243: DOC: Update docstring in misc/pilutil.py
• #7246: DEP: misc: deprecate imported names
• #7249: DOC: Add plotted example to scipy.cluster.vq.kmeans
• #7252: Fix 5231: docs of factr, ftol in sync w/ code
• #7254: ENH: SphericalVoronoi Input Handling
• #7256: fix for issue #7255 - Circular statistics functions give wrong…
• #7263: CI: use python's faulthandler to ease tracing segfaults
• #7288: ENH: linalg: add subspace_angles function.
• #7290: BUG: stats: Fix spurious warnings in genextreme.
• #7292: ENH: optimize: added trust region method trust-trlib
• #7296: DOC: stats: Add an example to the ttest_ind_from_stats docstring.
• #7297: DOC: signal: Add examples for chirp() and sweep_poly().
• #7299: DOC: Made difference between brent and fminbound clearer
• #7305: Simplify if-statements and constructor calls in integrate._ode
• #7309: Comply with PEP 518.
• #7313: REL: add pythonRequires to setup.py, fix Python version check.
• #7315: BUG: Fixed bug with Laguerre and Legendre polynomials
• #7320: DOC: clarify meaning of flags in ode.integrate
• #7333: DOC: Add examples to scipy.ndimage.gaussian_filter1d
• #7337: ENH: add n-dimensional DCT and IDCT to ftfpack
• #7353: Add _gels functions
• #7357: DOC: linalg: Add examples to the svdvals docstring.
• #7359: Bump Sphinx version to 1.5.5
• #7361: DOC: linalg: Add some ‘See Also’ links among special matrices…
• #7362: TST: Fix some Fedora 25 test failures.
• #7363: DOC: linalg: tweak the docstring example of svd
• #7365: MAINT: fix refguide_check.py for Sphinx >= 1.5
• #7367: BUG: odrpack: fix invalid stride checks in d_lpkbls.f
• #7368: DOC: constants: Add examples to the ‘find’ docstring.
• #7376: MAINT: bundle Mathjax with built docs
• #7377: MAINT: optimize: Better name for trust-region-exact method.
• #7378: Improve wording in tutorial
• #7383: fix KroghInterpolator.derivatives failure with complex input
• #7389: FIX: Copy mutable window in resample_poly
• #7390: DOC: optimize: A few tweaks of the examples in the curve_fit
• #7391: DOC: Add examples to scipy.stats
• #7394: “Weight” is actually mass. Add slugs and slinches/blobs to mass
• #7398: DOC: Correct minor typo in optimize.{brent,brentq}
• #7401: DOC: zeta only accepts real input
• #7413: BUG: fix error messages in _minimize_trustregion_exact
• #7414: DOC: fix ndimage.distance_transform_bf docstring [ci skip]
• #7415: DOC: fix skew docstring [ci skip]
• #7423: Expand binnumbers with correct dimensions
• #7431: BUG: Extend scipy.stats.arcsine.pdf to endpoints 0 and 1 #7427
• #7432: DOC: Add examples to scipy.cluster.hierarchy
• #7448: ENH: stats: Implement the survival function for pareto.
• #7454: FIX Replaced np.assert_allclose with imported assert_allclose
• #7460: TST: fix integrate.ivp test that fails on 32-bit Python.
• #7461: Doc: Added tutorial documentation for stats distributions ksome
• #7463: DOC: Fix typos and remove trailing whitespace
• #7465: Fix some ndimage.interpolation endianness bugs
• #7468: del redundancy in interpolate.py
• #7470: Initialize “info” in minpack_lmdif
• #7478: Added more testing of smirnov/smirnovi functions
• #7479: MAINT: update for new FutureWarning’s in numpy 1.13.0
• #7480: DOC: correctly describe output shape of dirichlet.mean() and…
• #7482: signal.lti: Remove deprecated cross-system properties
• #7484: MAINT: Clean-up uses of np.asarray in ndimage
• #7485: ENH: support any order >=0 in ndimage.gaussian_filter
• #7486: ENH: Support k!=0 for sparse.diagonal()
• #7498: BUG: sparse: pass assumeSortedIndices option to scikit.umfpack
• #7501: ENH: add optimal leaf ordering for linkage matrices
• #7506: MAINT: remove overflow in Metropolis fixes #7495
• #7507: TST: speed up full test suite by less eval points in mpmath tests.
• #7509: BUG: fix issue when using python setup.py somecommand --force.
• #7511: fix some alerts found with lgtm
• #7514: Add explanation what the integer returned mean.
• #7516: BUG: Fix roundoff errors in ndimage.uniform_filter1d.
• #7517: TST: fix signal.convolve test that was effectively being skipped.
• #7523: ENH: linalg: allow lstsq to work with 0-shaped arrays
• #7525: TST: Warning cleanup
• #7526: DOC: params in ndimage.interpolation functions not optional
• #7527: MAINT: Encapsulate error message handling in NI_LineBuffer.
• #7528: MAINT: Remove ndimage aliases for NPY_MAXDIMS.
• #7529: MAINT: Remove NI_(UN)LIKELY macros in favor of numpy ones.
• #7537: MAINT: Use accessor function for numpy array internals
• #7541: MAINT: Remove some uses of Numarray types in ndimage.
• #7543: MAINT: Replace all NumarrayTypes uses in ni_fourier.c
• #7544: MAINT: Replace all uses of NumarrayTypes in ni_interpolation.c
• #7545: MAINT: Replace all uses of NumarrayTypes in ni_measure.c
• #7546: MAINT: Replace all uses of NumarrayTypes in ni_morphology.c
• #7548: DOC: make a note in benchmarks README on how to run without rebuilding.
• #7549: MAINT: Get rid of NumarrayTypes.
• #7552: TST: Fix new warnings -> error bugs found on OSX
• #7554: Update superlu to 5.2.1 + fix stdint.h issue on MSVC
• #7556: MAINT: Fix some types from #7549 + miscellaneous warnings.
• #7558: MAINT: Use correct #define NO_IMPORT_ARRAY, not NO_ARRAY_IMPORT...
• #7562: BUG: Copy import_nose from numpy.
• #7563: ENH: Add the first Wasserstein and the Cramér-von Mises statistical...
• #7568: Test janitoring
• #7571: Test janitoring pt. 2
• #7572: Pytesting
• #7574: TST: Remove ignore warnings filters from stats
• #7577: MAINT: Remove unused code in ndimage/ni_measure.c and .h
• #7578: TST: Remove ignore warnings filters from sparse, clean up warning...
• #7581: BUG: properly deallocate memory from PyArray_IntpConverter.
• #7582: DOC: signal tutorial: Typo in explanation of convolution
• #7583: Remove remaining ignore warnings filters
• #7586: DOC: add note to HACKING.rst on where to find build docs.
• #7587: DOC: Add examples to scipy.optimize
• #7594: TST: Add tests for ndimage converter functions.
• #7596: Added a sanity check to signal.savgol_filter
• #7599: _upfirdn_apply stopping condition bugfix
• #7601: MAINT: special: remove sph_jn et al.
• #7602: TST: fix test failures in trimmed statistics tests with numpy...
• #7605: Be clear about required dimension order
• #7606: MAINT: Remove unused function NI_NormalizeType.
• #7607: TST: add osx to travis matrix
• #7608: DOC: improve HACKING guide - mention reviewing PRs as contribution.
• #7609: MAINT: Remove unnecessary warning filter by avoiding unnecessary...
• #7610: #7557: fix example code in periodogram
• #7611: #7220: fix TypeError while raising ValueError for invalid shape
• #7612: Convert yield tests to pytest parametrized tests
• #7613: Add distributor init file
• #7614: fixup header
• #7615: BUG: sparse: Fix assignment w/ non-canonical sparse argument
• #7617: DOC: Clarify digital filter functions
• #7619: ENH: scipy.sparse.spmatrix.astype: casting and copy parameter...
• #7621: Expose VODE/ZVODE/LSODE IDID return code to user
• #7622: MAINT: special: remove out-of-date comment for ellpk
• #7625: TST: Add a test for “ignore” warning filters
• #7628: MAINT: refactoring and cleaning distance.py/.c/.h
• #7629: DEP: deprecate args usage in xdist
• #7630: ENH: weighted metrics
• #7634: Follow-up to #6855
• #7635: interpolate.splprep: Test some error cases, give slightly better...
• #7642: Add an example to interpolate.lagrange
• #7643: ENH: Added wrappers for LAPACK <s,d>stev
• #7649: Fix #7636, add PEP 519 test coverage to remaining I/O functions
• #7650: DOC: signal: Add ‘Examples’ to the docstring for sosfiltfilt.
• #7651: Fix up ccache usage on Travis + try enabling on OSX
• #7653: DOC: transition of examples from 2 to 3. Closes #7366
• #7662: CI: speed up continuous integration builds
• #7664: Update odr documentation
• #7665: BUG: wolfe2 line/scalar search now uses amax parameter
• #7671: MAINT: _lib/ccallback.h: PyCapsule_GetName returns const char*
• #7672: TST: interpolate: test integrating periodic b-splines against...
• #7674: Tests tuning
• #7675: CI: move refguide-check to faster build
- #7676: DOC: bump scipy-sphinx-theme to fix copybutton.js
- #7678: Note the zero-padding of the results of splrep and splprep
- #7681: MAINT: _lib: add user-overridable available memory determination
- #7684: TST: linAlg: explicitly close opened npz files
- #7686: MAINT: remove unnecessary shebang lines and executable bits
- #7687: BUG: stats: don’t emit invalid warnings if moments are infinite
- #7690: ENH: allow int-like parameters in several routines
- #7691: DOC: Drop non-working source links from docs
- #7694: fix marray to ma.array in func median_cihs
- #7698: BUG: stats: fix nan result from multivariate_normal.cdf (#7669)
- #7703: DOC: special: Update the docstrings for noncentral F functions.
- #7709: BLD: integrate: avoid symbol clash between lsoda and vode
- #7711: TST: _lib: make test_parallel_threads to not fail falsely
- #7712: TST: stats: bump test tolerance in TestMultivariateNormal.test_broadcasting
- #7715: MAINT: fix deprecated use of numpy.issubdtype
- #7716: TST: integrate: drop timing tests
- #7717: MAINT: mstats.winsorize inclusion bug fix
- #7719: DOC: stats: Add a note about the special cases of the rdist distribution.
- #7720: DOC: Add example and math to stats.pearsonr
- #7723: DOC: Added Mann-Whitney U statistic reference
- #7727: BUG: special/cdflib: deal with nan and nonfinite inputs
- #7728: BLD: spatial: fix cdtree depends header list
- #7732: BLD: update Bento build for optimal_leaf_ordering addition
- #7734: DOC: signal: Copy-edit and add examples to the Kaiser-related…
- #7736: BUG: Fixes #7735: Prevent integer overflow in concatenated index…
- #7737: DOC: rename indices/indptr for spatial.Delaunay vertex_neighbor_vertices
- #7738: ENH: Speed up freqz computation
- #7739: TST: ignore ncdftridfn failure in win32 and warn on FPU mode changes
- #7740: Fix overflow in Anderson-Darling k-sample test
- #7742: TST: special: limit expm1 mpmath comparison range
- #7748: TST: stats: don’t pass invalid alpha to np.random.dirichlet
- #7749: BUG/DOC: optimize: method is ‘interior-point’, not ‘interior…
- #7751: BUG: optimize: show_options(‘linprog’, method=’interior-point’)…
- #7753: ENH: io: easier syntax for FortranFile read/write of mixed records
- #7754: BLD: add _lib._fpumode extension to Bento build.
- #7756: DOC: Show probability density functions as math

5.27. SciPy 1.0.0 Release Notes

- #7757: MAINT: remove outdated OS X build scripts. Fixes pytest failure.
- #7758: MAINT: stats: pep8, wrap lines
- #7760: DOC: special: add instructions on how to add special functions
- #7761: DOC: allow specifying Python version for Sphinx makefile
- #7765: TST: fix test coverage of mstats Extras.py
- #7767: DOC: update 1.0 release notes.
- #7768: DOC: update notes on how to release. Also change paver file to...
- #7769: Add the _sf and _logsf function for planck dist
- #7770: DOC: Replace rotten links in the docstring of minres
- #7771: MAINT: f2py build output cleanup
- #7773: DOC: optimize: Some copy-editing of linprog docs.
- #7774: MAINT: set rcond explicitly for np.linalg.lstsq calls
- #7777: remove leftover nose imports
- #7780: ENH: Wrap LAPACK’s dsytrd
- #7781: DOC: Link rfft
- #7782: MAINT: run pxy autogeneration in cythonize & remove autogen files
- #7783: FIX: Disallow Wn==1 in digital filters
- #7790: Fix test errors introduced by gh-5910
- #7792: MAINT: fix syntax in pyproject.toml
- #7809: ENH: sketches - Clarkson Woodruff Transform
- #7810: ENH: Add \(\text{eig}(vals)_{\text{tridiagonal}}\)
- #7811: BUG: stats: Fix warnings in \texttt{binned\_statistics\_dd}
- #7814: ENH: signal: Replace ‘nyq’ and ‘Hz’ arguments with ‘fs’.
- #7820: DOC: update 1.0 release notes and mailmap
- #7823: BUG: memory leak in messagestream / qhull.pyx
- #7830: DOC: linalg: Add an example to the lstsq docstring.
- #7835: ENH: Automatic FIR order for \texttt{decimate}
- #7838: MAINT: stats: Deprecate \texttt{frechet\_l} and \texttt{frechet\_r}.
- #7841: \texttt{slsqp} PEP8 formatting fixes, typos, etc.
- #7843: ENH: Wrap all BLAS routines
- #7844: DOC: update LICENSE.txt with licenses of bundled libs as needed.
- #7851: ENH: Add wrappers for \texttt{?GGLSE, \texttt{?}(HE/SY)CON, \texttt{?SYTF2, \texttt{?}(HE/SY)TRF}
- #7856: ENH: added out argument to Xdist
- #7858: BUG: special/cdflib: fix fatal loss of precision issues in cumfnc
- #7859: FIX: Squash \texttt{place\_poles} warning corner case
- #7861: dummy statement for undefined WITH\_THREAD
- #7863: MAINT: add license texts to binary distributions
- #7866: DOC, MAINT: fix links in the doc
- #7867: DOC: fix up descriptions of pdf’s in distribution docstrings.
- #7869: DEP: deprecate misc.pilutil functions
- #7870: DEP: remove deprecated functions
- #7872: TST: silence RuntimeWarning for stats.truncnorm test marked as…
- #7874: TST: fix an optimize.linprog test that fails intermittently.
- #7875: TST: filter two integration warnings in stats tests.
- #7876: GEN: Add comments to the tests for clarification
- #7891: ENH: backport #7879 to 1.0.x
- #7902: MAINT: signal: Make freqz handling of multidim. arrays match…
- #7905: REV: restore wminkowski
- #7908: FIX: Avoid bad __del__ (close) behavior
- #7918: TST: mark two optimize.linprog tests as xfail. See gh-7877.
- #7929: MAINT: changed defaults to lower in sytf2, sytrf and hetrf
- #7939: Fix umfpack solver construction for win-amd64
- #7948: DOC: add note on checking for deprecations before upgrade to…
- #7952: DOC: update SciPy Roadmap for 1.0 release and recent discussions.
- #7960: BUG: optimize: revert changes to bfgs in gh-7165
- #7962: TST: special: mark a failing hyp2f1 test as xfail
- #7973: BUG: fixed keyword in ‘info’ in _get_mem_available utility
- #8001: TST: fix test failures from Matplotlib 2.1 update
- #8010: BUG: signal: fix crash in lfilter
- #8019: MAINT: fix test failures with NumPy master

5.28 SciPy 0.19.1 Release Notes

SciPy 0.19.1 is a bug-fix release with no new features compared to 0.19.0. The most important change is a fix for a severe memory leak in integrate.quad.

5.28.1 Authors

- Evgeni Burovski
- Patrick Callier +
- Yu Feng
- Ralf Gommers
- Ilhan Polat
A total of 9 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.19.1

- #7214: Memory use in integrate.quad in scipy-0.19.0
- #7258: linalg.matrix_balance gives wrong transformation matrix
- #7262: Segfault in daily testing
- #7273: scipy.interpolate._bspl.evaluate_spline gets wrong type
- #7335: scipy.signal.dlti(A,B,C,D).freqresp() fails

Pull requests for 0.19.1

- #7211: BUG: convolve may yield inconsistent dtypes with method changed
- #7216: BUG: integrate: fix refcounting bug in quad()
- #7229: MAINT: special: Rewrite a test of wrightomega
- #7261: FIX: Corrected the transformation matrix permutation
- #7265: BUG: Fix broken axis handling in spectral functions
- #7266: FIX 7262: ckdTree crashes in query_knn.
- #7279: Upcast half- and single-precision floats to doubles in BSpline...
- #7336: BUG: Fix signal.dfreqresp for StateSpace systems
- #7419: Fix several issues in sparse.load_npz, save_npz
- #7420: BUG: stats: allow integers as kappa4 shape parameters

5.29 SciPy 0.19.0 Release Notes

Contents

- SciPy 0.19.0 Release Notes
  - New features
    - Foreign function interface improvements
    - scipy.linalg improvements
    - scipy.spatial improvements
    - scipy.ndimage improvements
SciPy 0.19.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.19.x branch, and on adding new features on the master branch.

This release requires Python 2.7 or 3.4-3.6 and NumPy 1.8.2 or greater.

Highlights of this release include:

- A unified foreign function interface layer, `scipy.LowLevelCallable`.
- Cython API for scalar, typed versions of the universal functions from the `scipy.special` module, via `cimport scipy.special.cython_special`.

### 5.29.1 New features

#### Foreign function interface improvements

`scipy.LowLevelCallable` provides a new unified interface for wrapping low-level compiled callback functions in the Python space. It supports Cython imported “api” functions, ctypes function pointers, CFFI function pointers, PyCapsules, Numba jitted functions and more. See gh-6509 for details.
scipy.linalg improvements

The function `scipy.linalg.solve` obtained two more keywords `assume_a` and `transposed`. The underlying LAPACK routines are replaced with “expert” versions and now can also be used to solve symmetric, hermitian and positive definite coefficient matrices. Moreover, ill-conditioned matrices now cause a warning to be emitted with the estimated condition number information. Old `sym_pos` keyword is kept for backwards compatibility reasons however it is identical to using `assume_a='pos'`. Moreover, the `debug` keyword, which had no function but only printing the `overwrite_<a, b>` values, is deprecated.

The function `scipy.linalg.matrix_balance` was added to perform the so-called matrix balancing using the LAPACK xGEBAL routine family. This can be used to approximately equate the row and column norms through diagonal similarity transformations.

The functions `scipy.linalg.solve_continuous_are` and `scipy.linalg.solve_discrete_are` have numerically more stable algorithms. These functions can also solve generalized algebraic matrix Riccati equations. Moreover, both gained a `balanced` keyword to turn balancing on and off.

scipy.spatial improvements

`scipy.spatial.SphericalVoronoi.sort_vertices_of_regions` has been re-written in Cython to improve performance.

`scipy.spatial.SphericalVoronoi` can handle > 200 k points (at least 10 million) and has improved performance.

The function `scipy.spatial.distance.directed_hausdorff` was added to calculate the directed Hausdorff distance.

`count_neighbors` method of `scipy.spatial.cKDTree` gained an ability to perform weighted pair counting via the new keywords `weights` and `cumulative`. See `gh-5647` for details.

`scipy.spatial.distance.pdist` and `scipy.spatial.distance.cdist` now support non-double custom metrics.

scipy.ndimage improvements

The callback function C API supports PyCapsules in Python 2.7
Multidimensional filters now allow having different extrapolation modes for different axes.

scipy.optimize improvements

The `scipy.optimize.basinhopping` global minimizer obtained a new keyword, `seed`, which can be used to seed the random number generator and obtain repeatable minimizations.

The keyword `sigma` in `scipy.optimize.curve_fit` was overloaded to also accept the covariance matrix of errors in the data.
scipy.signal improvements

The function `scipy.signal.correlate` and `scipy.signal.convolve` have a new optional parameter `method`. The default value of `auto` estimates the fastest of two computation methods, the direct approach and the Fourier transform approach.

A new function has been added to choose the convolution/correlation method, `scipy.signal.choose_conv_method` which may be appropriate if convolutions or correlations are performed on many arrays of the same size.

New functions have been added to calculate complex short time fourier transforms of an input signal, and to invert the transform to recover the original signal: `scipy.signal.stft` and `scipy.signal.istft`. This implementation also fixes the previously incorrect output of `scipy.signal.spectrogram` when complex output data were requested.

The function `scipy.signal.sosfreqz` was added to compute the frequency response from second-order sections.

The function `scipy.signal.unit_impulse` was added to conveniently generate an impulse function.

The function `scipy.signal.lirn_impulse` was added to design second-order IIR notch filters that can be used to remove a frequency component from a signal. The dual function `scipy.signal.iirpeak` was added to compute the coefficients of a second-order IIR peak (resonant) filter.

The function `scipy.signal.minimum_phase` was added to convert linear-phase FIR filters to minimum phase.

The functions `scipy.signal.upfirdn` and `scipy.signal.resample_poly` are now substantially faster when operating on some n-dimensional arrays when n > 1. The largest reduction in computation time is realized in cases where the size of the array is small (<1k samples or so) along the axis to be filtered.

scipy.fftpack improvements

Fast Fourier transform routines now accept `np.float16` inputs and upcast them to `np.float32`. Previously, they would raise an error.

scipy.cluster improvements

Methods "centroid" and "median" of `scipy.cluster.hierarchy.linkage` have been significantly sped up. Long-standing issues with using `linkage` on large input data (over 16 GB) have been resolved.

scipy.sparse improvements

The functions `scipy.sparse.save_npz` and `scipy.sparse.load_npz` were added, providing simple serialization for some sparse formats.

The `prune` method of classes `bsr_matrix`, `csc_matrix`, and `csr_matrix` was updated to reallocate backing arrays under certain conditions, reducing memory usage.

The methods `argmin` and `argmax` were added to classes `coo_matrix`, `csc_matrix`, `csr_matrix`, and `bsr_matrix`.

New function `scipy.sparse.csgraph.structural_rank` computes the structural rank of a graph with a given sparsity pattern.

New function `scipy.sparse.linalg.spsolve_triangular` solves a sparse linear system with a triangular left hand side matrix.
**scipy.special improvements**

Scalar, typed versions of universal functions from `scipy.special` are available in the Cython space via `cimport` from the new module `scipy.special.cython_special`. These scalar functions can be expected to be significantly faster than the universal functions for scalar arguments. See the `scipy.special` tutorial for details.

Better control over special-function errors is offered by the functions `scipy.special.geterr` and `scipy.special.seterr` and the context manager `scipy.special.errstate`.

The names of orthogonal polynomial root functions have been changed to be consistent with other functions relating to orthogonal polynomials. For example, `scipy.special.j_roots` has been renamed `scipy.special.roots_jacobi` for consistency with the related functions `scipy.special.jacobi` and `scipy.special.eval_jacobi`. To preserve back-compatibility the old names have been left as aliases.

Wright Omega function is implemented as `scipy.special.wrightomega`.

**scipy.stats improvements**

The function `scipy.stats.weightedtau` was added. It provides a weighted version of Kendall’s tau.

New class `scipy.stats.multinomial` implements the multinomial distribution.

New class `scipy.stats.rv_histogram` constructs a continuous univariate distribution with a piecewise linear CDF from a binned data sample.

New class `scipy.stats.argus` implements the Argus distribution.

**scipy.interpolate improvements**

New class `scipy.interpolate.BSpline` represents splines. BSpline objects contain knots and coefficients and can evaluate the spline. The format is consistent with FITPACK, so that one can do, for example:

```python
>>> t, c, k = splrep(x, y, s=0)
>>> spl = BSpline(t, c, k)
>>> np.allclose(spl(x), y)
```

`spl*` functions, `scipy.interpolate.splev, scipy.interpolate.splint, scipy.interpolate.splder` and `scipy.interpolate.splantider`, accept both BSpline objects and (t, c, k) tuples for backwards compatibility.

For multidimensional splines, `c.ndim > 1`, BSpline objects are consistent with piecewise polynomials, `scipy.interpolate.PPoly`. This means that BSpline objects are not immediately consistent with `scipy.interpolate.splprep`, and one cannot do `>>> BSpline(*splprep([x, y])[0])`. Consult the `scipy.interpolate` test suite for examples of the precise equivalence.

In new code, prefer using `scipy.interpolate.BSpline` objects instead of manipulating (t, c, k) tuples directly.

New function `scipy.interpolate.make_interp_spline` constructs an interpolating spline given data points and boundary conditions.

New function `scipy.interpolate.make_lsq_spline` constructs a least-squares spline approximation given data points.
scipy.integrate improvements

Now `scipy.integrate.fixed_quad` supports vector-valued functions.

5.29.2 Deprecated features

`scipy.interpolate.splmake`, `scipy.interpolate.spleval` and `scipy.interpolate.spline` are deprecated. The format used by `splmake/spleval` was inconsistent with `splrep/splev` which was confusing to users.

`scipy.special.errprint` is deprecated. Improved functionality is available in `scipy.special.seterr`.

Calling `scipy.spatial.distance.pdist` or `scipy.spatial.distance.cdist` with arguments not needed by the chosen metric is deprecated. Also, metrics "old_cosine" and "old_cos" are deprecated.

5.29.3 Backwards incompatible changes

The deprecated `scipy.weave` submodule was removed.

`scipy.spatial.distance.squareform` now returns arrays of the same dtype as the input, instead of always float64.

`scipy.special.errprint` now returns a boolean.

The function `scipy.signal.find_peaks_cwt` now returns an array instead of a list.

`scipy.stats.kendalltau` now computes the correct p-value in case the input contains ties. The p-value is also identical to that computed by `scipy.stats.mstats.kendalltau` and by R. If the input does not contain ties there is no change w.r.t. the previous implementation.

The function `scipy.linalg.block_diag` will not ignore zero-sized matrices anymore. Instead it will insert rows or columns of zeros of the appropriate size. See gh-4908 for more details.

5.29.4 Other changes

SciPy wheels will now report their dependency on `numpy` on all platforms. This change was made because Numpy wheels are available, and because the pip upgrade behavior is finally changing for the better (use `--upgrade-strategy=only-if-needed` for pip >= 8.2; that behavior will become the default in the next major version of pip).

Numerical values returned by `scipy.interpolate.interp1d` with `kind="cubic"` and "quadratic" may change relative to previous scipy versions. If your code depended on specific numeric values (i.e., on implementation details of the interpolators), you may want to double-check your results.

5.29.5 Authors

- @endolith
- Max Argus +
- Hervé Audren
- Alessandro Pietro Bardelli +
- Michael Benfield +
- Felix Berkenkamp
• Matthew Brett
• Per Brodtkorb
• Evgeni Burovski
• Pierre de Buyl
• CJ Carey
• Brandon Carter +
• Tim Cera
• Klesk Chonkin
• Christian Häggström +
• Luca Citi
• Peadar Coyle +
• Daniel da Silva +
• Greg Dooper +
• John Draper +
• drvk +
• David Ellis +
• Yu Feng
• Baptiste Fontaine +
• Jed Frey +
• Siddhartha Gandhi +
• Wim Glenn +
• Akash Goel +
• Christoph Gohlke
• Ralf Gommers
• Alexander Goncearenco +
• Richard Gowers +
• Alex Griffing
• Radoslaw Guzinski +
• Charles Harris
• Callum Jacob Hays +
• Ian Henriksen
• Randy Heydon +
• Lindsey Hiltner +
• Gerrit Holl +
• Hiroki IKEDA +
• jfinkels +
A total of 121 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

**Issues closed for 0.19.0**

- [#1767]: Function definitions in __fitpack.h should be moved. (Trac #1240)
- [#1774]: _kmeans chokes on large thresholds (Trac #1247)
- [#2089]: Integer overflows cause segfault in linkage function with large...
- [#2190]: Are odd-length window functions supposed to be always symmetrical?...
- [#2251]: solve_discrete_are in scipy.linalg does (sometimes) not solve...
- [#2580]: scipy.interpolate.UnivariateSpline (or a new superclass of it)...
- [#2592]: scipy.stats.anderson assumes gumbel_1
- [#3054]: scipy.linalg.eig does not handle infinite eigenvalues
- [#3160]: multinominal pmf / logpmf
- [#3904]: scipy.special.ellipj dn wrong values at quarter period
- [#4044]: Inconsistent code book initialization in kmeans
- [#4234]: scipy.signal.flattop documentation doesn't list a source for...
- [#4831]: Bugs in C code in __quadpack.h
- [#4908]: bug: unnesesary validity check for block dimension in scipy.sparse.block_diag
- [#4917]: BUG: indexing error for sparse matrix with ix_
- [#4938]: Docs on extending ndimage need to be updated.
- [#5056]: sparse matrix element-wise multiplying dense matrix returns dense...
- [#5337]: Formula in documentation for correlate is wrong
- [#5537]: use OrderedDict in io.netcdf
- [#5750]: [doc] missing data index value in KDTree, cKDTree
- [#5755]: p-value computation in scipy.stats.kendalltau() in broken in...
- [#5757]: BUG: Incorrect complex output of signal.spectrogram
- [#5964]: ENH: expose scalar versions of scipy.special functions to cython
- [#6107]: scipy.cluster.hierarchy.single segmentation fault with 2**16...
- [#6278]: optimize.basin hopping should take a RandomState object
• #6296: InterpolatedUnivariateSpline: check finite fails when w is unspecified
• #6306: Anderson-Darling bad results
• #6314: scipy.stats.kendaltau() p value not in agreement with R, SPSS…
• #6340: Curve_fit bounds and maxfev
• #6377: expm_multiply, complex matrices not working using start,stop,etc…
• #6382: optimize.differential_evolution stopping criterion has unintuitive…
• #6391: Global Benchmarking times out at 600s.
• #6397: mmwrite errors with large (but still 64-bit) integers
• #6413: scipy.stats.dirichlet computes multivariate gaussian differential…
• #6428: scipy.stats.mstats.mode modifies input
• #6440: Figure out ABI break policy for scipy.special Cython API
• #6441: Using Qhull for halfspace intersection : segfault
• #6442: scipy.spatial : In incremental mode volume is not recomputed
• #6451: Documentation for scipy.cluster.hierarchy.to_tree is confusing…
• #6490: interp1d (kind=zero) returns wrong value for rightmost interpolation…
• #6521: scipy.stats.entropy does not calculate the KL divergence
• #6530: scipy.stats.spearmanr unexpected NaN handling
• #6541: Test runner does not run scipy._lib/tests?
• #6552: BUG: misc.bytescalereturns unexpected results when using cmin/cmax…
• #6556: RectSphereBivariateSpline(u, v, r) fails if min(v) >= pi
• #6559: Differential_evolution maxiter causing memory overflow
• #6565: Coverage of spectral functions could be improved
• #6628: Incorrect parameter name in binomial documentation
• #6634: Expose LAPACK’s xGESVX family for linalg.solve ill-conditioned…
• #6657: Confusing documentation for scipy.special.sph_harm
• #6676: scipy.special.chebyt(N) throw a ‘TypeError’ when N > 64
• #6727: Documentation for scipy.stats.norm.fit is incorrect
• #6764: Documentation for scipy.spatial.Delaunay is partially incorrect
• #6811: scipy.spatial.SphericalVoronoifails for large number of points
• #6841: spearmanr fails when nan_policy=’omit’ is set
• #6869: Currently in gaussian_kde, the logpdf function is calculated…
• #6875: SLSQP inconsistent handling of invalid bounds
• #6876: Python stopped working (Segfault?) with minimum/maximum filter…
• #6889: dblquad gives different results under scipy 0.17.1 and 0.18.1
• #6898: BUG: dblquad ignores error tolerances
• #6901: Solving sparse linear systems in CSR format with complex values
• #6903: issue in spatial.distance.pdist docstring
• #6917: Problem in passing drop_rule to scipy.sparse.linalg.spilu
• #6926: signature mismatches for LowLevelCallable
• #6961: Scipy contains shebang pointing to /usr/bin/python and /bin/bash…
• #6972: BUG: special: generate_ufuncs.py is broken
• #6984: Assert raises test failure for test_ill_condition_warning
• #6990: BUG: sparse: Bad documentation of the $k$ argument in sparse.linalg.eigs
• #6991: Division by zero in linregress()
• #7011: possible speed improvement in rv_continuous.fit()
• #7015: Test failure with Python 3.5 and numpy master
• #7055: SciPy 0.19.0rc1 test errors and failures on Windows
• #7096: macOS test failures for test_solve_continuous_are
• #7100: test_distance.test_Xdist_deprecated_args test error in 0.19.0rc2

Pull requests for 0.19.0

• #2908: Scipy 1.0 Roadmap
• #3174: add b-splines
• #4606: ENH: Add a unit impulse waveform function
• #5608: Adds keyword argument to choose faster convolution method
• #5647: ENH: Faster count_neighour in cKDTree / + weighted input data
• #6021: Netcdf append
• #6058: ENH: scipy.signal - Add stft and istft
• #6059: ENH: More accurate signal.freqresp for zpk systems
• #6195: ENH: Cython interface for special
• #6234: DOC: Fixed a typo in ward() help
• #6261: ENH: add docstring and clean up code for signal.normalize
• #6270: MAINT: special: add tests for cdflib
• #6271: Fix for scipy.cluster.hierarchy.is_isomorphic
• #6273: optimize: rewrite while loops as for loops
• #6279: MAINT: Bessel tweaks
• #6291: Fixes gh-6219: remove runtime warning from genextreme distribution
• #6294: STY: Some PEP8 and cleaning up imports in stats/_continuous_distns.py
• #6297: Clarify docs in misc/__init__.py
• #6300: ENH: sparse: Loosen input validation for `diags` with empty inputs
• #6301: BUG: standardizes check_finite behavior re optional weights,…
• #6303: Fixing example in _lazysel ect docstring.
• #6307: MAINT: more improvements to gammainc/gammaincc
• #6308: Clarified documentation of hypergeometric distribution.
• #6309: BUG: stats: Improve calculation of the Anderson-Darling statistic.
• #6315: ENH: Descending order of x in PPoly
• #6317: ENH: stats: Add support for nan_policy to stats.median_test
• #6321: TST: fix a typo in test name
• #6328: ENH: sosfreqz
• #6335: Define LinregressResult outside of linregress
• #6337: In anderson test, added support for right skewed gumbel distribution.
• #6341: Accept several spellings for the curve_fit max number of function…
• #6342: DOC: cluster: clarify hierarchy.linkage usage
• #6352: DOC: removed brentq from its own ‘see also’
• #6362: ENH: stats: Use explicit formulas for sf, logsf, etc in weibull…
• #6369: MAINT: special: add a comment to hyp0f1_complex
• #6375: Added the multinomial distribution.
• #6387: MAINT: special: improve accuracy of ellipj’s dn at quarter…
• #6388: BenchmarkGlobal - getting it to work in Python3
• #6394: ENH: scipy.sparse: add save and load functions for sparse matrices
• #6400: MAINT: moves global benchmark run from setup_cache to track_all
• #6403: ENH: seed kwd for basinhopping. Closes #6278
• #6404: ENH: signal: added irnotch and iirpeak functions.
• #6406: ENH: special: extend sici/shichi to complex arguments
• #6407: ENH: Window functions should not accept non-integer or negative…
• #6408: MAINT: _differentialevolution now uses _lib._util.check_random_state
• #6427: MAINT: Fix gmpy build & test that mpmath uses gmpy
• #6439: MAINT: ndimage: update callback function c api
• #6443: BUG: Fix volume computation in incremental mode
• #6447: Fixes issue #6413 - Minor documentation fix in the entropy function…
• #6448: ENH: Add halfspace mode to Qhull
• #6449: ENH: rtol and atol for differential_evolution termination fixes…
• #6453: DOC: Add some See Also links between similar functions
• #6454: DOC: linalg: clarify callable signature in ordqz
• #6457: ENH: spatial: enable non-double dtypes in squareform
• #6459: BUG: Complex matrices not handled correctly by expm_multiply…
• #6465: TST DOC Window docs, tests, etc.
• #6469: ENH: linalg: better handling of infinite eigenvalues in eig/eigvals
• #6475: DOC: calling interp1d/interp2d with NaNs is undefined
• #6477: Document magic numbers in optimize.py
• #6481: TST: Supress some warnings from test_windows
• #6485: DOC: spatial: correct typo in procrustes
• #6487: Fix Bray-Curtis formula in pdist docstring
• #6493: ENH: Add covariance functionality to scipy.optimize.curve_fit
• #6494: ENH: stats: Use log1p() to improve some calculations.
• #6495: BUG: Use MST algorithm instead of SLINK for single linkage clustering
• #6497: MRG: Add minimum_phase filter function
• #6505: reset scipy.signal.resample window shape to 1-D
• #6507: BUG: linkage: Raise exception if y contains non-finite elements
• #6509: ENH: _lib: add common machinery for low-level callback functions
• #6520: scipy.sparse.base.__mul__ non-numpy/scipy objects with ‘shape’…
• #6522: Replace kl_div by rel_entr in entropy
• #6524: DOC: add next_fast_len to list of functions
• #6527: DOC: Release notes to reflect the new covariance feature in optimize.curve_fit
• #6532: ENH: Simplify _cos_win, document it, add symmetric/periodic arg
• #6535: MAINT: sparse.csgraph: updating old cython loops
• #6540: DOC: add to documentation of orthogonal polynomials
• #6544: TST: Ensure tests for scipy._lib are run by scipy.test()
• #6546: updated docstring of stats.linregress
• #6553: committed changes that I originally submitted for scipy.signal.cspline…
• #6561: BUG: modify signal.find_peaks_cwt() to return array and accept…
• #6562: DOC: Negative binomial distribution clarification
• #6563: MAINT: be more liberal in requiring numpy
• #6567: MAINT: use xrange for iteration in differential_evolution fixes…
• #6572: BUG: “sp.linalg.solve_discrete_are” fails for random data
• #6578: BUG: misc: allow both cmin/cmax and low/high params in bytescale
• #6581: Fix some unfortunate typos
• #6582: MAINT: linalg: make handling of infinite eigenvalues in ordq…
• #6585: DOC: interpolate: correctseealso links to ndimage
• #6588: Update docstring of scipy.spatial.distance_matrix
• #6592: DOC: Replace ‘first’ by ‘smallest’ in mode
• #6593: MAINT: remove scipy.weave submodule
• #6594: DOC: distance.squareform: fix html docs, add note about dtype…
• #6598: [DOC] Fix incorrect error message in medfilt2d
• #6599: MAINT: finalize: turn a solve_discrete_are test back on
• #6600: DOC: Add SOS goals to roadmap
• #6601: DEP: Raise minimum numpy version to 1.8.2
• #6605: MAINT: ‘new’ module is deprecated, don’t use it
• #6607: DOC: add note on change in wheel dependency on numpy and pip…
• #6609: Fixes #6602 - Typo in docs
• #6616: ENH: generalization of continuous and discrete Riccati solvers…
• #6621: DOC: improve cluster.hierarchy docstrings.
• #6623: CS matrix prune method should copy data from large unpruned arrays
• #6625: DOC: special: complete documentation of eval_* functions
• #6626: TST: special: silence some deprecation warnings
• #6631: fix parameter name doc for discrete distributions
• #6632: MAINT: stats: change some instances of special to sc
• #6633: MAINT: refguide: py2k long integers are equal to py3k integers
• #6638: MAINT: change type declaration in cluster.linkage, prevent overflow
• #6640: BUG: fix issue with duplicate values used in cluster.vq.kmeans
• #6641: BUG: fix corner case in cluster.vq.kmeans for large thresholds
• #6643: MAINT: clean up truncation modes of dendrogram
• #6645: MAINT: special: rename *_roots functions
• #6646: MAINT: clean up mpmath imports
• #6647: DOC: add sqrt to Mahalanobis description for pdist
• #6648: DOC: special: add a section on cython_special to the tutorial
• #6649: ENH: Added scipy.spatial.distance.directed_hausdorff
• #6650: DOC: add Sphinx roles for DOI and arXiv links
• #6651: BUG: mstats: make sure mode(…, None) does not modify its input
• #6652: DOC: special: add section to tutorial on functions not in special
• #6653: ENH: special: add the Wright Omega function
• #6656: ENH: don’t coerce input to double with custom metric in cdist…
• #6658: Faster/shorter code for computation of discordances
• #6659: DOC: special: make __init__ summaries and html summaries match
• #6661: general.rst: Fix a typo
• #6664: TST: Spectral functions’ window correction factor
• #6665: [DOC] Conditions on v in RectSphereBivariateSpline
• #6668: DOC: Mention negative masses for center of mass
• #6675: MAINT: special: remove outdated README
• #6677: BUG: Fixes computation of p-values.
• #6679: BUG: optimize: return correct Jacobian for method ‘SLSQP’ in…
• #6680: ENH: Add structural rank to sparse.csgraph
• #6686: TST: Added Airspeed Velocity benchmarks for SphericalVoronoi
• #6687: DOC: add section “deciding on new features” to developer guide.
• #6691: ENH: Clearer error when fmin_slsqp obj doesn’t return scalar
• #6702: TST: Added airspeed velocity benchmarks for scipy.spatial.distance.cdist
• #6707: TST: interpolate: test fitpack wrappers, not _impl
• #6709: TST: fix a number of test failures on 32-bit systems
• #6711: MAINT: move function definitions from __fitpack.h to _fitpackmodule.c
• #6712: MAINT: clean up wishlist in stats.morestats, and copyright statement.
• #6715: DOC: update the release notes with BSpline et al.
• #6716: MAINT: scipy.io.wavfile: No infinite loop when trying to read…
• #6717: some style cleanup
• #6723: BUG: special: cast to float before in-place multiplication in…
• #6726: address performance regressions in interp1d
• #6728: DOC: make code examples in integrate tutorial copy-pasteable
• #6731: DOC: scipy.optimize: Added an example for wrapping complex-valued…
• #6732: MAINT: cython_special: remove errprint
• #6733: MAINT: special: fix some pyflakes warnings
• #6734: DOC: sparse.linalg: fixed matrix description in bicsstab doc
• #6737: BLD: update cythonize.py to detect changes in pxi files
• #6740: DOC: special: some small fixes to docstrings
• #6741: MAINT: remove dead code in interpolate.py
• #6742: BUG: fix linalg.block_diag to support zero-sized matrices.
• #6744: ENH: interpolate: make PPolynomial.from_spline accept BSpline objects
• #6746: DOC: special: clarify use of Condon-Shortley phase in sph_harm/lpmv
• #6750: ENH: sparse: avoid densification on broadcasted elem-wise mult
• #6751: sinm doc explained cosm
• #6753: ENH: special: allow for more fine-tuned error handling
• #6759: Move logsumexp and pade from scipy.misc to scipy.special and…
• #6761: ENH: argmax and argmin methods for sparse matrices
• #6762: DOC: Improve docstrings of sparse matrices
• #6763: ENH: Weighted tau
• #6768: ENH: cythonized spherical Voronoi region polygon vertex sorting
• #6770: Correction of Delaunay class’ documentation
• #6775: ENH: Integrating LAPACK “expert” routines with conditioning warnings…
• #6776: MAINT: Removing the trivial f2py warnings
• #6777: DOC: Update rv_continuous.fit doc.
• #6778: MAINT: cluster.hierarchy: Improved wording of error msgs
• #6786: BLD: increase minimum Cython version to 0.23.4
• #6787: DOC: expand on linalg.block_diag changes in 0.19.0 release…
• #6789: ENH: Add further documentation for norm.fit
• #6790: MAINT: Fix a potential problem in nn_chain linkage algorithm
• #6791: DOC: Add examples to scipy.ndimage.fourier
• #6792: DOC: fix some numpydoc / Sphinx issues.
• #6793: MAINT: fix circular import after moving functions out of misc
• #6796: TST: test importing each submodule. Regression test for gh-6793.
• #6799: ENH: stats: Argus distribution
• #6801: ENH: stats: Histogram distribution
• #6803: TST: make sure tests for _build_utils are run.
• #6804: MAINT: more fixes in loggamma
• #6806: ENH: Faster linkage for ‘centroid’ and ‘median’ methods
• #6810: ENH: speed up upfirdn and resample_poly for n-dimensional arrays
• #6812: TST: Added ConvexHull asv benchmark code
• #6814: ENH: Different extrapolation modes for different dimensions in…
• #6826: Signal spectral window default fix
• #6828: BUG: SphericalVoronoi Space Complexity (Fixes #6811)
• #6830: RealData docstring correction
• #6834: DOC: Added reference for skewtest function. See #6829
• #6836: DOC: Added mode='mirror' in the docstring for the functions accepting…
• #6838: MAINT: sparse: start removing old BSR methods
• #6844: handle incompatible dimensions when input is not an ndarray in…
• #6847: Added maxiter to golden search.
• #6850: BUG: added check for optional param scipy.stats.spearmanr
• #6858: MAINT: Removing redundant tests
• #6861: DEP: Fix escape sequences deprecated in Python 3.6.
• #6862: DOC: dx should be float, not int
• #6863: updated documentation curve_fit
• #6866: DOC: added some documentation to j1 referring to spherical_jn
• #6867: DOC: cdist move long examples list into Notes section
• #6868: BUG: Make stats.mode return a ModeResult namedtuple on empty…
• #6871: Corrected documentation.
• #6874: ENH: gaussian_kde.logpdf based on logsumexp
• #6877: BUG: ndimage: guard against footprints of all zeros
• #6881: python 3.6
• #6885: Vectorized integrate.fixed_quad
• #6886: fixed typo
• #6891: TST: fix failures for linalg.dare/care due to tightened test…
• #6892: DOC: fix a bunch of Sphinx errors.
• #6894: TST: Added asv benchmarks for scipy.spatial.Voronoi
• #6908: BUG: Fix return dtype for complex input in spsolve
• #6909: ENH: fftpack: use float32 routines for float16 inputs.
• #6911: added min/max support to binned_statistic
• #6913: Fix 6875: SLSQP raise ValueError for all invalid bounds.
• #6914: DOCS: GH6903 updating docs of Spatial.distance.pdist
• #6916: MAINT: fix some issues for 32-bit Python
• #6924: BLD: update Bento build for scipy.LowLevelCallable
• #6932: ENH: Use OrderedDict in io.netcdf. Closes gh-5537
• #6933: BUG: fix LowLevelCallable issue on 32-bit Python.
• #6936: BUG: sparse: handle size-1 2D indexes correctly
• #6938: TST: fix test failures in special on 32-bit Python.
• #6939: Added attributes list to cKDTree docstring
• #6940: improve efficiency of dok_matrix.tocoo
• #6942: DOC: add link to lia-arff package in the io.arff docstring.
• #6943: MAINT: Docstring fixes and an additional test for linalg.solve
• #6944: DOC: Add example of odeint with a banded Jacobian to the integrate…
• #6946: ENH: hypergeom.logpmf in terms of betain
• #6947: TST: speedup distance tests
• #6948: DEP: Deprecate the keyword “debug” from linalg.solve
• #6950: BUG: Correctly treat large integers in MMIO (fixes #6397)
• #6952: ENH: Minor user-friendliness cleanup in LowLevelCallable
• #6956: DOC: improve description of ‘output’ keyword for convolve
• #6957: ENH more informative error in sparse.bmat
• #6962: Shebang fixes
• #6964: DOC: note argmin/argmax addition

5.29. SciPy 0.19.0 Release Notes
• #6965: BUG: Fix issues passing error tolerances in dblquad and tplquad.
• #6971: fix the docstring of signaltools.correlate
• #6973: Silence expected numpy warnings in scipy.ndimage.interpolation.zoom()
• #6975: BUG: special: fix regex in generate_ufuncs.py
• #6976: Update docstring for griddata
• #6978: Avoid division by zero in zoom factor calculation
• #6979: BUG: ARE solvers did not check the generalized case carefully
• #6985: ENH: sparse: add scipy.sparse.linalg.sp.solve_triangular
• #6994: MAINT: spatial: updates to plotting utils
• #6995: DOC: Bad documentation of k in sparse.linalg.eigs See #6990
• #6997: TST: Changed the test with a less singular example
• #7000: DOC: clarify interp1d ‘zero’ argument
• #7007: BUG: Fix division by zero in linregress() for 2 data points
• #7009: BUG: Fix problem in passing drop_rule to scipy.sparse.linalg.spilu
• #7012: speed improvement in _distn_infrastructure.py
• #7014: Fix Typo: add a single quotation mark to fix a slight typo
• #7021: MAINT: stats: use machine constants from np.finfo, not machar
• #7026: MAINT: update .mailmap
• #7032: Fix layout of rv_histogram docs
• #7035: DOC: update 0.19.0 release notes
• #7036: ENH: Add more boundary options to signal.stft
• #7040: TST: stats: skip too slow tests
• #7042: MAINT: sparse: speed up setdiag tests
• #7043: MAINT: refactor and code cleaning Xdist
• #7053: Fix msvc 9 and 10 compile errors
• #7060: DOC: updated release notes with #7043 and #6656
• #7062: MAINT: Change default STFT boundary kwarg to “zeros”
• #7064: Fix ValueError: path is on mount ‘X’: start on mount ‘D’ on…
• #7067: TST: Fix PermissionError: [Errno 13] Permission denied on Windows
• #7068: TST: Fix UnboundLocalError: local variable ‘data’ referenced…
• #7069: Fix OverflowError: Python int too large to convert to C long…
• #7071: TST: silence RuntimeWarning for nan test of stats.spearmanr
• #7072: Fix OverflowError: Python int too large to convert to C long…
• #7084: TST: linalg: bump tolerance in test_falker
• #7095: TST: linalg: bump more tolerances in test_falker
• #7101: TST: Relax solve_continuous_are test case 2 and 12
• #7106: BUG: stop cdist “correlation” modifying input
• #7116: Backports to 0.19.0rc2

5.30 SciPy 0.18.1 Release Notes

SciPy 0.18.1 is a bug-fix release with no new features compared to 0.18.0.

5.30.1 Authors

• @kleskjr
• Evgeni Burovski
• CJ Carey
• Luca Citi +
• Yu Feng
• Ralf Gommers
• Johannes Schmitz +
• Josh Wilson
• Nathan Woods

A total of 9 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.18.1

• #6357: scipy 0.17.1 piecewise cubic hermite interpolation does not return…
• #6420: circmean() changed behaviour from 0.17 to 0.18
• #6421: scipy.linalg.solve_banded overwrites input ‘b’ when the inversion…
• #6425: cKDTree INF bug
• #6435: scipy.stats.ks_2samp returns different values on different computers
• #6458: Error in scipy.integrate.dblquad when using variable integration…

Pull requests for 0.18.1

• #6405: BUG: sparse: fix elementwise divide for CSR/CSC
• #6431: BUG: result for insufficient neighbours from cKDTree is wrong.
• #6432: BUG Issue #6421: scipy.linalg.solve_banded overwrites input ‘b’…
• #6455: DOC: add links to release notes
• #6462: BUG: interpolate: fix .roots method of PchipInterpolator
• #6492: BUG: Fix regression in dblquad: #6458
• #6543: fix the regression in circmean
SciPy 0.18.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.19.x branch, and on adding new features on the master branch.

This release requires Python 2.7 or 3.4-3.5 and NumPy 1.7.1 or greater.

Highlights of this release include:

- A new ODE solver for two-point boundary value problems, `scipy.optimize.solve_bvp`.
- A new class, `CubicSpline`, for cubic spline interpolation of data.
- Spherical Voronoi diagrams, `scipy.spatial.SphericalVoronoi`.
- Support for discrete-time linear systems, `scipy.signal.dlti`.

### 5.31.1 New features

**scipy.integrate improvements**

A solver of two-point boundary value problems for ODE systems has been implemented in `scipy.integrate.solve_bvp`. The solver allows for non-separated boundary conditions, unknown parameters and certain singular terms. It finds a C1 continuous solution using a fourth-order collocation algorithm.

**scipy.interpolate improvements**

Cubic spline interpolation is now available via `scipy.interpolate.CubicSpline`. This class represents a piecewise cubic polynomial passing through given points and C2 continuous. It is represented in the standard polynomial basis on each segment.

A representation of n-dimensional tensor product piecewise polynomials is available as the `scipy.interpolate.NdPPoly` class.

Univariate piecewise polynomial classes, `PPoly` and `Bpoly`, can now be evaluated on periodic domains. Use `extrapolate="periodic"` keyword argument for this.

**scipy.fftpack improvements**

`scipy.fftpack.next_fast_len` function computes the next “regular” number for FFTPACK. Padding the input to this length can give significant performance increase for `scipy.fftpack.fft`.

**scipy.signal improvements**

Resampling using polyphase filtering has been implemented in the function `scipy.signal.resample_poly`. This method upsamples a signal, applies a zero-phase low-pass FIR filter, and downsamples using `scipy.signal.upfirdn` (which is also new in 0.18.0). This method can be faster than FFT-based filtering provided by `scipy.signal.resample` for some signals.

`scipy.signal.firls`, which constructs FIR filters using least-squares error minimization, was added.

`scipy.signal.sosfiltfilt`, which does forward-backward filtering like `scipy.signal.filtfilt` but for second-order sections, was added.
**Discrete-time linear systems**

`scipy.signal.dlti` provides an implementation of discrete-time linear systems. Accordingly, the `StateSpace`, `TransferFunction` and `ZerosPolesGain` classes have learned a new keyword, `dt`, which can be used to create discrete-time instances of the corresponding system representation.

**scipy.sparse improvements**

The functions `sum`, `max`, `mean`, `min`, `transpose`, and `reshape` in `scipy.sparse` have had their signatures augmented with additional arguments and functionality so as to improve compatibility with analogously defined functions in `numpy`.

Sparse matrices now have a `count_nonzero` method, which counts the number of nonzero elements in the matrix. Unlike `getnnz()` and `nnz` property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data.

**scipy.optimize improvements**

The implementation of Nelder-Mead minimization, `scipy.minimize(..., method="Nelder-Mead")`, obtained a new keyword, `initial_simplex`, which can be used to specify the initial simplex for the optimization process.

Initial step size selection in CG and BFGS minimizers has been improved. We expect that this change will improve numeric stability of optimization in some cases. See pull request gh-5536 for details.

Handling of infinite bounds in SLSQP optimization has been improved. We expect that this change will improve numeric stability of optimization in the some cases. See pull request gh-6024 for details.

A large suite of global optimization benchmarks has been added to `scipy/benchmarks/go_benchmark_functions`. See pull request gh-4191 for details.

Nelder-Mead and Powell minimization will now only set defaults for maximum iterations or function evaluations if neither limit is set by the caller. In some cases with a slow converging function and only 1 limit set, the minimization may continue for longer than with previous versions and so is more likely to reach convergence. See issue gh-5966.

**scipy.stats improvements**

Trapezoidal distribution has been implemented as `scipy.stats.trapz`. Skew normal distribution has been implemented as `scipy.stats.skewnorm`. Burr type XII distribution has been implemented as `scipy.stats.burr12`. Three- and four-parameter kappa distributions have been implemented as `scipy.stats.kappa3` and `scipy.stats.kappa4`, respectively.

New `scipy.stats.iqr` function computes the interquartile region of a distribution.

**Random matrices**

`scipy.stats.special_ortho_group` and `scipy.stats.ortho_group` provide generators of random matrices in the SO(N) and O(N) groups, respectively. They generate matrices in the Haar distribution, the only uniform distribution on these group manifolds.

`scipy.stats.random_correlation` provides a generator for random correlation matrices, given specified eigenvalues.
**scipy.linalg improvements**

`scipy.linalg.svd` gained a new keyword argument, `lapack_driver`. Available drivers are `gesdd` (default) and `gesvd`.

`scipy.linalg.lapack.ilaver` returns the version of the LAPACK library SciPy links to.

**scipy.spatial improvements**

Boolean distances, `scipy.spatial.pdist`, have been sped up. Improvements vary by the function and the input size. In many cases, one can expect a speed-up of x2–x10.

New class `scipy.spatial.SphericalVoronoi` constructs Voronoi diagrams on the surface of a sphere. See pull request gh-5232 for details.

**scipy.cluster improvements**

A new clustering algorithm, the nearest neighbor chain algorithm, has been implemented for `scipy.cluster.hierarchy.linkage`. As a result, one can expect a significant algorithmic improvement ($O(N^2)$ instead of $O(N^3)$) for several linkage methods.

**scipy.special improvements**

The new function `scipy.special.loggamma` computes the principal branch of the logarithm of the Gamma function. For real input, `loggamma` is compatible with `scipy.special.gammaln`. For complex input, it has more consistent behavior in the complex plane and should be preferred over `gammaln`.

Vectorized forms of spherical Bessel functions have been implemented as `scipy.special.spherical_jn`, `scipy.special.spherical_kn`, `scipy.special.spherical_in` and `scipy.special.spherical_yn`. They are recommended for use over `sph_*` functions, which are now deprecated.

Several special functions have been extended to the complex domain and/or have seen domain/stability improvements. This includes `spence`, `digamma`, `log1p` and several others.

### 5.31.2 Deprecated features

The cross-class properties of `lti` systems have been deprecated. The following properties/setters will raise a `DeprecationWarning`:

Name - (accessing/setting raises warning) - (setting raises warning) * StateSpace - (num, den, gain) - (zeros, poles) * TransferFunction (A, B, C, D, gain) - (zeros, poles) * ZerosPolesGain (A, B, C, D, num, den) - ()

Spherical Bessel functions, `sph_in`, `sph_jn`, `sph_kn`, `sph_yn`, `sph_jnyn` and `sph_inkn` have been deprecated in favor of `scipy.special.spherical_jn` and `spherical_kn`, `spherical_in`, `spherical_yn`, `spherical_in`.

The following functions in `scipy.constants` are deprecated: `C2K`, `K2C`, `C2F`, `F2C`, `F2K` and `K2F`. They are succeeded by a new function `scipy.constants.convert_temperature` that can perform all those conversions plus to/from the Rankine temperature scale.
5.31.3 Backwards incompatible changes

**scipy.optimize**

The convergence criterion for `optimize.bisect`, `optimize.brentq`, `optimize.brenth`, and `optimize.ridder` now work the same as `numpy.allclose`.

**scipy.ndimage**

The offset in `ndimage.interpolation.affine_transform` is now consistently added after the matrix is applied, independent of if the matrix is specified using a one-dimensional or a two-dimensional array.

**scipy.stats**

`stats.ks_2samp` used to return nonsensical values if the input was not real or contained nans. It now raises an exception for such inputs.

Several deprecated methods of `scipy.stats` distributions have been removed: `est_loc_scale`, `veccdf`, `vecfunc`, `vec_generic_moment`.

Deprecated functions `nanmean`, `nanstd` and `nanmedian` have been removed from `scipy.stats`. These functions were deprecated in scipy 0.15.0 in favor of their `numpy` equivalents.

A bug in the `rvs()` method of the distributions in `scipy.stats` has been fixed. When arguments to `rvs()` were given that were shaped for broadcasting, in many cases the returned random samples were not random. A simple example of the problem is `stats.norm.rvs(loc=np.zeros(10))`. Because of the bug, that call would return 10 identical values. The bug only affected code that relied on the broadcasting of the shape, location and scale parameters.

The `rvs()` method also accepted some arguments that it should not have. There is a potential for backwards incompatibility in cases where `rvs()` accepted arguments that are not, in fact, compatible with broadcasting. An example is

    stats.gamma.rvs([2, 5, 10, 15], size=(2,2))

The shape of the first argument is not compatible with the requested size, but the function still returned an array with shape (2, 2). In scipy 0.18, that call generates a `ValueError`.

**scipy.io**

`scipy.io.netcdf` masking now gives precedence to the `_FillValue` attribute over the `missing_value` attribute, if both are given. Also, data are only treated as missing if they match one of these attributes exactly: values that differ by roundoff from `_FillValue` or `missing_value` are no longer treated as missing values.

**scipy.interpolate**

`scipy.interpolate.PiecewisePolynomial` class has been removed. It has been deprecated in scipy 0.14.0, and `scipy.interpolate.BPoly.from_derivatives` serves as a drop-in replacement.
5.31.4 Other changes

Scipy now uses setuptools for its builds instead of plain distutils. This fixes usage of `install_requires='scipy'` in the `setup.py` files of projects that depend on Scipy (see Numpy issue gh-6551 for details). It potentially affects the way that build/install methods for Scipy itself behave though. Please report any unexpected behavior on the Scipy issue tracker.

PR #6240 changes the interpretation of the `maxfun` option in L-BFGS-B based routines in the `scipy.optimize` module. An L-BFGS-B search consists of multiple iterations, with each iteration consisting of one or more function evaluations. Whereas the old search strategy terminated immediately upon reaching `maxfun` function evaluations, the new strategy allows the current iteration to finish despite reaching `maxfun`.

The bundled copy of Qhull in the `scipy.spatial` subpackage has been upgraded to version 2015.2.

The bundled copy of ARPACK in the `scipy.sparse.linalg` subpackage has been upgraded to arpack-ng 3.3.0.

The bundled copy of SuperLU in the `scipy.sparse` subpackage has been upgraded to version 5.1.1.

5.31.5 Authors

- @endolith
- @yanxun827 +
- @kleskjr +
- @MYheavyGo +
- @solarjoe +
- Gregory Allen +
- Gilles Aouizerate +
- Tom Augspurger +
- Henrik Bengtsson +
- Felix Berkenkamp
- Per Brodtkorb
- Lars Buitinck
- Daniel Bunting +
- Evgeni Burovski
- CJ Carey
- Tim Cera
- Grey Christoforo +
- Robert Cimrman
- Philip DeBoer +
- Yves Delley +
- Dávid Bodnár +
- Ion Elberdin +
- Gabriele Farina +
• Yu Feng
• Andrew Fowlie +
• Joseph Fox-Rabinovitz
• Simon Gibbons +
• Neil Girdhar +
• Kolja Glogowski +
• Christoph Gohlke
• Ralf Gommers
• Todd Goodall +
• Johnnie Gray +
• Alex Griffing
• Olivier Grisel
• Thomas Haslwanter +
• Michael Hirsch +
• Derek Homeier
• Golnaz Irannejad +
• Marek Jacob +
• InSuk Joung +
• Tetsuo Koyama +
• Eugene Krokhalev +
• Eric Larson
• Denis Laxalde
• Antony Lee
• Jerry Li +
• Henry Lin +
• Nelson Liu +
• Loïc Estève
• Lei Ma +
• Osvaldo Martin +
• Stefano Martina +
• Nikolay Mayorov
• Matthieu Melot +
• Sturla Molden
• Eric Moore
• Alistair Muldal +
• Maniteja Nandana
• Tavi Nathanson +
• Andrew Nelson
• Joel Nothman
• Behzad Nouri
• Nikolai Nowaczyk +
• Juan Nunez-Iglesias +
• Ted Pudlik
• Eric Quintero
• Yoav Ram
• Jonas Rauber +
• Tyler Reddy +
• Juha Remes
• Garrett Reynolds +
• Ariel Rokem +
• Fabian Rost +
• Bill Sacks +
• Jona Sassenhagen +
• Kari Schoonbee +
• Marcello Seri +
• Sourav Singh +
• Martin Spacek +
• Søren Fuglede Jørgensen +
• Bhavika Tekwani +
• Martin Thoma +
• Sam Tygier +
• Meet Udeshi +
• Utkarsh Upadhyay
• Bram Vandekerckhove +
• Sebastián Vanrell +
• Ze Vinicius +
• Pauli Virtanen
• Stefan van der Walt
• Warren Weckesser
• Jakub Wilk +
• Josh Wilson
• Phillip J. Wolfram +
A total of 99 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed for 0.18.0

- #1484: SVD using *GESVD* lapack drivers (Trac #957)
- #1547: Inconsistent use of offset in ndimage.interpolation.affine_transform()…
- #1609: special.hyp0f1 returns nan (Trac #1082)
- #1656: fmin_slqslp enhancement (Trac #1129)
- #2069: stats broadcasting in rvs (Trac #1544)
- #2165: sph_in returns false results for some orders/values (Trac #1640)
- #2255: Incorrect order of translation and rotation in affine_transform…
- #2332: hyp0f1 args and return values are unnumpyic (Trac #1813)
- #2534: The sparse .sum() method with uint8 dtype does not act like the…
- #3113: Implement ufuncs for CSPHYJ, SPHJ, SPHY, CSPHIK, SPIH, SPHIK…
- #3568: SciPy 0.13.3 - CentOS5 - Errors in test_arpack
- #3581: optimize: stepsize in fmin_bfgs is “bad”
- #4476: scipy.sparse non-native endian bug
- #4484: fto in optimize.fmin fails to work
- #4510: sparsetools.cxx call_thunk can segfault due to out of bounds…
- #5051: fto and xtof for _minimize_neldermead are absolute instead of…
- #5097: proposal: spherical Voronoi diagrams
- #5123: Call to scipy.sparse.coo_matrix fails when passed Cython typed…
- #5220: scipy.cluster.hierarchy.{ward,median,centroid} does not work…
- #5379: Add a build step at the end of .travis.yml that uploads working…
- #5440: scipy.optimize.basinhopping: accept_test returning numpy.bool_…
- #5452: Error in scipy.integrate.nquad when using variable integration…
- #5520: Cannot inherit csr_matrix properly
- #5533: kendall tau implementation uses Python mergesort
- #5553: stats.tiecorrect overflows
- #5589: Add the Type XII Burr distribution to stats.
- #5612: sparse.linalg factorizations slow for small k due to default…
- #5626: io.netcdf masking should use masked_equal rather than masked_value
- #5637: Simple cubic spline interpolation?
• #5683: BUG: Akima1DInterpolator may return nans given multidimensional...
• #5686: scipy.stats.ttest_ind_from_stats does not accept arrays
• #5702: scipy.ndimage.interpolation.affine_transform lacks documentation...
• #5718: Wrong computation of weighted minkowski distance in cdist
• #5745: move to setuptools for next release
• #5752: DOC: solve_discrete_lyapunov equation puts transpose in wrong...
• #5760: signal.ss2tf doesn't handle zero-order state-space models
• #5764: Hypergeometric function hyp0f1 behaves incorrectly for complex...
• #5814: stats NaN Policy Error message inconsistent with code
• #5833: docstring of stats.binom_test() needs an update
• #5853: Error in scipy.linalg.expm for complex matrix with shape (1,1)
• #5856: Specify Nelder-Mead initial simplex
• #5865: scipy.linalg.expm fails for certain numpy matrices
• #5915: optimize.basin_hopping - variable referenced before assignment.
• #5916: LSQUnivariateSpline fitting failed with knots generated from...
• #5927: unicode vs. string comparison in scipy.stats.binned_statistic_dd
• #5936: faster implementation of ks_2samp
• #5948: csc matrix .mean returns single element matrix rather than scalar
• #5959: BUG: optimize test error for root when using lgmres
• #5972: Test failures for sparse sum tests on 32-bit Python
• #5976: Unexpected exception in scipy.sparse.bmat while using 0 x 0 matrix
• #6008: scipy.special.kl_div not available in 0.14.1
• #6011: The von-Mises entropy is broken
• #6016: python crashes for linalg.interpolative.svd with certain large...
• #6017: Wilcoxon signed-rank test with zero_method="pratt" or "zsplit"...
• #6028: stats.distributions does not have trapezoidal distribution
• #6035: Wrong link in f_oneway
• #6056: BUG: signal.decimate should only accept discrete LTI objects
• #6093: Precision error on Linux 32 bit with openblas
• #6101: Barycentric transforms test error on Python3, 32-bit Linux
• #6105: scipy.misc.face docstring is incorrect
• #6113: scipy.linalg.logm fails for a trivial matrix
• #6128: Error in dot method of sparse COO array, when used with numpy…
• #6132: Failures with latest MKL
• #6136: Failures on master with MKL
• #6162: fmin_l_bfgs_b returns inconsistent results (fmin ≠ f(xmin)) and…
• #6165: optimize.minimize infinite loop with Newton-CG
• #6167: incorrect distribution fitting for data containing boundary values.
• #6194: lstsq() and others detect numpy.complex256 as real
• #6216: ENH: improve accuracy of ppf cdf roundtrip for bradford
• #6217: BUG: weibull_min.logpdf return nan for c=1 and x=0
• #6218: Is there a method to cap shortest path search distances?
• #6222: PchipInterpolator no longer handles a 2-element array
• #6226: ENH: improve accuracy for logistic.ppfp and logistic.isf
• #6227: ENH: improve accuracy for rayleigh.logpdf and rayleigh.logsf...
• #6228: ENH: improve accuracy of ppf cdf roundtrip for gumbel_1
• #6235: BUG: alpha.pdf and alpha.logpdf returns nan for x=0
• #6245: ENH: improve accuracy for ppf-cdf and sf-isf roundtrips for invgamma
• #6263: BUG: stats: Inconsistency in the multivariate_normal docstring
• #6292: Python 3 unordered type errors in test_sparsetools.TestInt32Overflow
• #6316: TestCloughTocher2DInterpolator.test_dense crashes python3.5.2rc1_64bit...
• #6318: Scipy interp1d 'nearest' not working for high values on x-axis

Pull requests for 0.18.0

• #3226: DOC: Change nb and na to conventional m and n
• #3867: allow cKDTree.query taking a list input in k.
• #4191: ENH: Benchmarking global optimizers
• #4356: ENH: add PPoly.solve(y) for solving \( p(x) = y \)
• #4370: DOC separate boolean distance functions for clarity
• #4678: BUG: sparse: ensure index dtype is large enough to pass all parameters...
• #4881: scipy.signal: Add the class dlti for linear discrete-time systems....
• #4901: MAINT: add benchmark and improve docstring for signal.lfilter
• #5043: ENH: sparse: add count_nonzero method
• #5136: Attribute kurtosistest() to Anscombe & Glynn (1983)
• #5186: ENH: Port upfirdn
• #5232: ENH: adding spherical Voronoi diagram algorithm to scipy.spatial
• #5279: ENH: Bessel filters with different normalizations, high order
• #5384: BUG: Closes #5027 distance function always casts bool to double
• #5392: ENH: Add zero_phase kwarg to signal.decimate
• #5394: MAINT: sparse: non-canonical test cleanup and fixes
• #5424: DOC: add Scipy developers guide
• #5442: STY: PEP8 amendments
• #5472: Online QR in LGMRES
• #5526: BUG: stats: Fix broadcasting in the rvs() method of the distributions.
• #5530: MAINT: sparse: set format attr explicitly
• #5536: optimize: fix up cg/bfgs initial step sizes
• #5548: PERF: improves performance in stats.kendalltau
• #5549: ENH: Nearest-neighbor chain algorithm for hierarchical clustering
• #5554: MAINT/BUG: closes overflow bug in stats.tiecorrect
• #5557: BUG: modify optimize.bisect to achieve desired tolerance
• #5581: DOC: Tutorial for least_squares
• #5606: ENH: differential_evolution - moving core loop of solve method…
• #5609: [MRG] test against numpy dev
• #5611: use setuptools for bdist_egg distributions
• #5615: MAINT: linalg: tighten _decomp_update + special: remove unused…
• #5622: Add SO(N) rotation matrix generator
• #5623: ENH: special: Add vectorized spherical Bessel functions.
• #5627: Response to issue #5160, implements the skew normal distribution…
• #5628: DOC: Align the description and operation
• #5632: DOC: special: Expanded docs for Airy, elliptic, Bessel functions.
• #5633: MAINT: linalg: unchecked malloc in _decomp_update
• #5634: MAINT: optimize: tighten _group_columns
• #5640: Fixes for io.netcdf masking
• #5645: MAINT: size 0 vector handling in cKDTree range queries
• #5649: MAINT: update license text
• #5650: DOC: Clarify Exponent Order in lti/ltisys.py
• #5651: DOC: Clarify Documentation for scipy/special.gammaln
• #5652: DOC: Fixed scipy/special.betain Doc
• #5653: [MRG] ENH: CubicSpline interpolator
• #5654: ENH: Burr12 distribution to stats module
• #5659: DOC: Define BEFORE/AFTER in runtests.py -h for bench-compare
• #5660: MAINT: remove functions deprecated before 0.16.0
• #5662: ENH: Circular statistic optimization
• #5663: MAINT: remove uses of np.testing.rand
• #5665: MAINT: spatial: remove matching distance implementation
• #5667: Change some HTTP links to HTTPS
• #5669: DOC: zpk2sos can't do analog, array_like, etc.
• #5670: Update conf.py

- #5672: MAINT: move a sample distribution to a subclass of rv_discrete
- #5678: MAINT: stats: remove est_loc_scale method
- #5679: MAINT: DRY up generic computations for discrete distributions
- #5680: MAINT: stop shadowing builtins in stats.distributions
- #5681: forward port ENH: Re-enable broadcasting of fill_value
- #5684: BUG: Fix Akima1DInterpolator returning nans
- #5690: BUG: fix stats.ttest_ind_from_stats to handle arrays.
- #5691: BUG: fix generator in io._loadarff to comply with PEP 0479
- #5693: ENH: use math.factorial for exact factorials
- #5695: DOC: dx might be a float, not only an integer
- #5699: MAINT: io: micro-optimize Matlab reading code for size
- #5701: Implement OptimizeResult.__dir__
- #5703: ENH: stats: make R² printing optional in probplot
- #5704: MAINT: typo outf->out
- #5705: BUG: fix typo in query_pairs
- #5707: DOC: Add some explanation for ftol xtol in scipy.optimize.fmin
- #5708: DOC: optimize: PEP8 minimize docstring
- #5709: MAINT: optimize Cython code for speed and size
- #5713: [DOC] Fix broken link to reference
- #5717: DOC: curve_fit raises RuntimeError on failure.
- #5724: forward port gh-5720
- #5728: STY: remove a blank line
- #5729: ENH: spatial: speed up boolean distances
- #5732: MAINT: differential_evolution changes to default keywords break…
- #5733: TST: differential_evolution - population initiation tests
- #5736: Complex number support in log1p, expm1, and xlog1py
- #5741: MAINT: sparse: clean up extraction functions
- #5742: DOC: signal: Explain fftbins in get_window
- #5748: ENH: Add O(N) random matrix generator
- #5749: ENH: Add polyphase resampling
- #5756: RFC: Bump the minimum numpy version, drop older python versions
- #5761: DOC: Some improvements to least squares docstrings
- #5762: MAINT: spatial: distance refactoring
- #5768: DOC: Fix io.loadmat docstring for mdict param
- #5770: BUG: Accept anything np.dtype can handle for a dtype in sparse.random
- #5772: Update sparse.csgraph.laplacian docstring
• #5777: BUG: fix special.hyp0f1 to work correctly for complex inputs.
• #5780: DOC: Update PIL error install URL
• #5781: DOC: Fix documentation on solve_discrete_lyapunov
• #5782: DOC: cKDTree and KDTree now reference each other
• #5783: DOC: Clarify finish behaviour in scipy.optimize.brute
• #5784: MAINT: Change default tolerances of least_squares to 1e-8
• #5787: BUG: Allow Processing of Zero Order State Space Models in signal.ss2tf
• #5788: DOC, BUG: Clarify and Enforce Input Types to ‘Data’ Objects
• #5789: ENH: sparse: speedup LIL matrix slicing (was #3338)
• #5791: DOC: README: remove coveralls.io
• #5792: MAINT: remove uses of deprecated np.random.random_integers
• #5794: fix affine_transform (fixes #1547 and #5702)
• #5795: DOC: Removed uniform method from kmeans2 doc
• #5797: DOC: Clarify the computation of weighted minkowski
• #5798: BUG: Ensure scipy's _asarray returns ndarray
• #5799: TST: Mpmath testing patch
• #5801: allow reading of certain IDL 8.0 .sav files
• #5803: DOC: fix module name in error message
• #5804: DOC: special: Expanded docs for special functions.
• #5805: DOC: Fix order of returns in _spectral_helper
• #5806: ENH: sparse: vectorized coo_matrix.diagonal
• #5808: ENH: Added iqr function to compute IQR metric in scipy/stats/stats.py
• #5810: MAINT/BENCH: sparse: Benchmark cleanup and additions
• #5811: DOC: sparse.linalg: shape, not size
• #5813: Update sparse ARPACK functions min ncv value
• #5815: BUG: Error message contained wrong values
• #5816: remove dead code from stats tests
• #5820: “in”->”a” in order_filter docstring
• #5821: DOC: README: INSTALL.txt was renamed in 2014
• #5825: DOC: typo in the docstring of least_squares
• #5826: MAINT: sparse: increase test coverage
• #5827: NdPPoly rebase
• #5828: Improve numerical stability of hyp0f1 for large orders
• #5829: ENH: sparse: Add copy parameter to all .toXXX() methods in sparse…
• #5830: DOC: rework INSTALL.rst.txt
• #5831: Adds plotting options to voronoi_plot_2d
• #5834: Update stats.binom_test() docstring
• #5836: ENH, TST: Allow SIMO tf's for tf2ss
• #5837: DOC: Image examples
• #5838: ENH: sparse: add eliminate_zeros() to coo_matrix
• #5839: BUG: Fixed name of NumpyVersion.__repr__
• #5845: MAINT: Fixed typos in documentation
• #5847: Fix bugs in sparsetools
• #5848: BUG: sparse.linalg: add locks to ensure ARPACK threadsafety
• #5849: ENH: sparse.linalg: upgrade to superlu 5.1.1
• #5851: ENH: expose lapack's ilaver to python to allow lapack verion…
• #5852: MAINT: runtests.py: ensure Ctrl-C interrupts the build
• #5854: DOC: Minor update to documentation
• #5855: Pr 5640
• #5859: ENH: Add random correlation matrix generator
• #5862: BUG: Allow expm for complex matrix with shape (1, 1)
• #5863: FIX: Fix test
• #5864: DOC: add a little note about the Normal survival function (Q-function)
• #5867: Fix for #5865
• #5869: extend normal distribution cdf to complex domain
• #5872: DOC: Note that morlet and cwt don’t work together
• #5875: DOC: interp2d class description
• #5876: MAINT: spatial: remove a stray print statement
• #5878: MAINT: Fixed noisy UserWarnings in ndimage tests. Fixes #5877
• #5879: MAINT: sparse.linalg/superlu: add explicit casts to resolve compiler…
• #5880: MAINT: signal: import gcd from math and not fractions when on…
• #5887: Neldermead initial simplex
• #5894: BUG: _CustomLinearOperator unpickalable in python3.5
• #5895: DOC: special: slightly improve the multigamma ln docstring
• #5900: Remove duplicate assignment.
• #5901: Update bundled ARPACK
• #5904: ENH: Make convolve and correlate order-agnostic
• #5905: ENH: sparse.linalg: further LGMRES cleanups
• #5906: Enhancements and cleanup in scipy.integrate (attempt #2)
• #5907: ENH: Change sparse sum and mean dtype casting to match…
• #5909: changes for convolution symmetry
• #5913: MAINT: basinhopping remove instance test closes #5440
• #5919: MAINT: un initialised var if basinhopping niter=0. closes #5915
• #5920: BLD: Fix missing isame.c error for MKL
• #5921: DOC: interpolate: add example showing how to work around issue…
• #5926: MAINT: spatial: upgrade to Qhull 2015.2
• #5928: MAINT: sparse: optimize DIA sum/diagonal, csgraph.laplacian
• #5929: Update info/URL for octave-maintainers discussion
• #5930: TST: special: silence DeprecationWarnings from sph_yn
• #5931: ENH: implement the principle branch of the logarithm of Gamma.
• #5934: Typo: “mush” => “must”
• #5935: BUG: string comparison stats._binned_statistic closes #5927
• #5938: Cythonize stats.ks_2samp for a ~33% gain in speed.
• #5939: DOC: fix optimize.fmin convergence docstring
• #5941: Fix minor typo in squareform docstring
• #5942: Update linregress stderr description.
• #5943: ENH: Improve numerical accuracy of lognorm
• #5944: Merge vonmises into stats.pyx
• #5945: MAINT: interpolate: Tweak declaration to avoid cython warning…
• #5946: MAINT: sparse: clean up format conversion methods
• #5949: BUG: fix sparse.mean to return a scalar instead of a matrix
• #5955: MAINT: Replace calls to hanning with hann
• #5956: DOC: Missing periods interfering with parsing
• #5958: MAINT: add a test for lognorm.sf underflow
• #5961: MAINT_centered(): rename size to shape
• #5962: ENH: constants: Add multi-scale temperature conversion function
• #5965: ENH: special: faster way for calculating comb() for exact=True
• #5975: ENH: Improve FIR path of signal.decimate
• #5977: MAINT/BUG: sparse: remove overzealous bmat checks
• #5978: minimize._neldermead() stop at user requested maxiter or maxfev
• #5983: ENH: make sparse sum cast dtypes like NumPy sum for 32-bit…
• #5985: BUG, API: Add jac parameter to curve_fit
• #5989: ENH: Add firls least-squares fitting
• #5990: BUG: read tries to handle 20-bit WAV files but shouldn’t
• #5991: DOC: Cleanup wav read/write docs and add tables for common types
• #5994: ENH: Add gesvd method for svd
• #5996: MAINT: Wave cleanup
• #5997: TST: Break up upfirdn tests & compare to lfilter
• #6001: Filter design docs
• #6002: COMPAT: Expand compatibility from numeric.py
• #6007: ENH: Skip conversion of TF to TF in freqresp
• #6009: DOC: fix incorrect version added for entr, rel_entr, kl_div
• #6013: Fixed the entropy calculation of the von Mises distribution.
• #6014: MAINT: make gamma, rgamma use loggamma for complex arguments
• #6020: WIP: ENH: add exact=True factorial for vectors
• #6022: Added ‘lanczos’ to the image interpolation function list.
• #6024: BUG: optimize: do not use dummy constraints in SLSQP when no…
• #6025: ENH: Boundary value problem solver for ODE systems
• #6029: MAINT: Future imports for optimize._lsq
• #6030: ENH: stats.trap - adding trapezoidal distribution closes #6028
• #6031: MAINT: Some improvements to optimize._numdiff
• #6032: MAINT: Add special/_comb.c to .gitignore
• #6033: BUG: check the requested approximation rank in interpolative.svd
• #6034: DOC: Doc for mannwhitneyu in stats.py corrected
• #6040: FIX: Edit the wrong link in f_oneway
• #6044: BUG: (ordqz) always increase parameter lwork by 1.
• #6047: ENH: extend special.spence to complex arguments.
• #6049: DOC: Add documentation of PR #5640 to the 0.18.0 release notes
• #6050: MAINT: small cleanups related to loggamma
• #6070: Add asarray to explicitly cast list to numpy array in wilcoxon…
• #6071: DOC: antialiasing filter and link decimate resample, etc.
• #6075: MAINT: reimplement special.digamma for complex arguments
• #6080: avoid multiple computation in ktest
• #6081: Clarified pearson correlation return value
• #6085: ENH: allow long indices of sparse matrix with umfpack in spsolve()
• #6086: fix description for associated Laguerre polynomials
• #6087: Corrected docstring of splrep.
• #6094: ENH: special: change zeta signature to zeta(x, q=1)
• #6095: BUG: fix integer overflow in special.spence
• #6106: Fixed Issue #6105
• #6116: BUG: matrix logarithm edge case
• #6119: TST: DeprecationWarnings in stats on python 3.5 closes #5885
• #6120: MAINT: sparse: clean up sutils.isintlike
• #6122: DOC: optimize: linprog docs should say minimize instead of maximize
• #6123: DOC: optimize: document the `fun` field in `scipy.optimize.OptimizeResult`
• #6124: Move FFT zero-padding calculation from signaltools to fftpack
• #6125: MAINT: improve special.gammainc in the \( a \sim x \) regime.
• #6130: BUG: sparse: Fix COO dot with zero columns
• #6138: ENH: stats: Improve behavior of genextreme.sf and genextreme.isf
• #6146: MAINT: simplify the expit implementation
• #6151: MAINT: make generate_ufuncs.py output deterministic
• #6152: TST: special: better test for gammainc at large arguments
• #6153: ENH: Make next_fast_len public and faster
• #6154: fix typo “mush”–>”must”
• #6155: DOC: Fix some incorrect RST definition lists
• #6160: make logsumexp error out on a masked array
• #6161: added missing bracket to rosen documentation
• #6163: ENH: Added “kappa4” and “kappa3” distributions.
• #6164: DOC: Minor clean-up in integrate._bvp
• #6169: Fix mpf_assert_allclose to handle iterable results, such as maps
• #6170: Fix pchip_interpolate convenience function
• #6172: Corrected misplaced bracket in doc string
• #6175: ENH: sparse.csgraph: Pass indices to shortest_path
• #6178: TST: increase test coverage of sf and isf of a generalized extreme…
• #6179: TST: avoid a deprecation warning from numpy
• #6181: ENH: Boundary conditions for CubicSpline
• #6182: DOC: Add examples/graphs to max_len_seq
• #6183: BLD: update Bento build config files for recent changes.
• #6184: BUG: fix issue in io/wavfile for float96 input.
• #6186: ENH: Periodic extrapolation for PPoly and BPoly
• #6192: MRG: Add circle-CI
• #6193: ENH: sparse: avoid setitem densification
• #6196: Fixed missing sqrt in docstring of Mahalanobis distance in cdist,…
• #6206: MAINT: Minor changes in solve_bvp
• #6207: BUG: linalg: for BLAS, downcast complex256 to complex128, not…
• #6209: BUG: io.matlab: avoid buffer overflows in read_element_into
• #6210: BLD: use setuptools when building.
• #6214: BUG: sparse.linalg: fix bug in LGMRES breakdown handling
• #6215: MAINT: special: make loggamma use zdiv
• #6220: DOC: Add parameter
• #6221: ENH: Improve Newton solver for solve_bvp
• #6223: pchip should work for length-2 arrays
• #6224: signal.lti: deprecate cross-class properties/sets
• #6229: BUG: optimize: avoid an infinite loop in Newton-CG
• #6230: Add example for application of gaussian filter
• #6236: MAINT: gumbel_l accuracy
• #6237: MAINT: rayleigh accuracy
• #6238: MAINT: logistic accuracy
• #6239: MAINT: bradford distribution accuracy
• #6240: MAINT: avoid bad fmin in l-bfgs-b due to maxfun interruption
• #6241: MAINT: weibull_min accuracy
• #6246: ENH: Add _support_mask to distributions
• #6247: fixed a print error for an example of ode
• #6249: MAINT: change x-axis label for stats.probplot to “theoretical…
• #6250: DOC: fix typos
• #6251: MAINT: constants: filter out test noise from deprecated conversions
• #6252: MAINT: io/arff: remove unused variable
• #6253: Add examples to scipy.ndimage.filters
• #6254: MAINT: special: fix some build warnings
• #6258: MAINT: inverse gamma distribution accuracy
• #6260: MAINT: signal.decimate - Use discrete-time objects
• #6262: BUG: odr: fix string formatting
• #6267: TST: fix some test issues in interpolate and stats.
• #6269: TST: fix some warnings in the test suite
• #6274: ENH: Add sosfiltfilt
• #6276: DOC: update release notes for 0.18.0
• #6277: MAINT: update the author name mapping
• #6282: DOC: Correcting references for scipy.stats.normaltest
• #6283: DOC: some more additions to 0.18.0 release notes.
• #6284: Add  versionadded:: directive to loggamma.
• #6285: BUG: stats: Inconsistency in the multivariate_normal docstring…
• #6290: Add author list, gh-lists to 0.18.0 release notes
• #6293: TST: special: relax a test’s precision
• #6295: BUG: sparse: stop comparing None and int in bsr_matrix constructor
• #6313: MAINT: Fix for python 3.5 travis-ci build problem.
• #6327: TST: signal: use assert_allclose for testing near-equality in…
• #6330: BUG: spatial/qhull: allocate qhT via malloc to ensure CRT likes…
• #6332: TST: fix stats.iqr test to not emit warnings, and fix line lengths.
• #6334: MAINT: special: fix a test for hypof1
• #6347: TST: spatial.qhull: skip a test on 32-bit platforms
• #6350: BUG: optimize/slsqp: don’t overwrite an array out of bounds
• #6351: BUG: #6318 Interp1d ‘nearest’ integer x-axis overflow issue fixed
• #6355: Backports for 0.18.0

5.32 SciPy 0.17.1 Release Notes

SciPy 0.17.1 is a bug-fix release with no new features compared to 0.17.0.

5.32.1 Issues closed for 0.17.1

• #5817: BUG: skew, kurtosis return np.nan instead of “propagate”
• #5850: Test failed with sgelsy
• #5898: interpolate.interp1d crashes using float128
• #5953: Massive performance regression in cKDTree.query with L_infdistance…
• #6062: mannwhitneyu breaks backward compatibility in 0.17.0
• #6134: T test does not handle nans

5.32.2 Pull requests for 0.17.1

• #5902: BUG: interpolate: make interp1d handle np.float128 again
• #5957: BUG: slow down with p=np.inf in 0.17 cKDTree.query
• #5970: Actually propagate nans through stats functions with nan_policy="propagate"
• #5971: BUG: linalg: fix lwork check in *gelsy
• #6074: BUG: special: fixed violation of strict aliasing rules.
• #6083: BUG: Fix dtype for sum of linear operators
• #6100: BUG: Fix mannwhitneyu to be backward compatible
• #6135: Don’t pass null pointers to LAPACK, even during workspace queries.
• #6148: stats: fix handling of nan values in T tests and kendalltau
SciPy 0.17.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.17.x branch, and on adding new features on the master branch.

This release requires Python 2.6, 2.7 or 3.2-3.5 and NumPy 1.6.2 or greater.

Release highlights:

- New functions for linear and nonlinear least squares optimization with constraints: `scipy.optimize.lsq_linear` and `scipy.optimize.least_squares`
- Support for fitting with bounds in `scipy.optimize.curve_fit`.
- Significant improvements to `scipy.stats`, providing many functions with better handing of inputs which have NaNs or are empty, improved documentation, and consistent behavior between `scipy.stats` and `scipy.stats.mstats`.
- Significant performance improvements and new functionality in `scipy.spatial.cKDTree`.
5.33.1 New features

**scipy.cluster improvements**

A new function `scipy.cluster.hierarchy.cut_tree`, which determines a cut tree from a linkage matrix, was added.

**scipy.io improvements**

`scipy.io.mmwrite` gained support for symmetric sparse matrices.

`scipy.io.netcdf` gained support for masking and scaling data based on data attributes.

**scipy.optimize improvements**

**Linear assignment problem solver**

`scipy.optimize.linear_sum_assignment` is a new function for solving the linear sum assignment problem. It uses the Hungarian algorithm (Kuhn-Munkres).

**Least squares optimization**

A new function for *nonlinear* least squares optimization with constraints was added: `scipy.optimize.least_squares`. It provides several methods: Levenberg-Marquardt for unconstrained problems, and two trust-region methods for constrained ones. Furthermore it provides different loss functions. New trust-region methods also handle sparse Jacobians.

A new function for *linear* least squares optimization with constraints was added: `scipy.optimize.lsq_linear`. It provides a trust-region method as well as an implementation of the Bounded-Variable Least-Squares (BVLS) algorithm.

`scipy.optimize.curve_fit` now supports fitting with bounds.

**scipy.signal improvements**

A *mode* keyword was added to `scipy.signal.spectrogram`, to let it return other spectrograms than power spectral density.

**scipy.stats improvements**

Many functions in `scipy.stats` have gained a *nan_policy* keyword, which allows specifying how to treat input with NaNs in them: propagate the NaNs, raise an error, or omit the NaNs.

Many functions in `scipy.stats` have been improved to correctly handle input arrays that are empty or contain inf/nans.

A number of functions with the same name in `scipy.stats` and `scipy.stats.mstats` were changed to have matching signature and behavior. See gh-5474 for details.

`scipy.stats.binom_test` and `scipy.stats.mannwhitneyu` gained a keyword *alternative*, which allows specifying the hypothesis to test for. Eventually all hypothesis testing functions will get this keyword.

For methods of many continuous distributions, complex input is now accepted.

Matrix normal distribution has been implemented as `scipy.stats.matrix_normal`.

5.33. SciPy 0.17.0 Release Notes 3387
**scipy.sparse improvements**

The axis keyword was added to sparse norms, `scipy.sparse.linalg.norm`.

**scipy.spatial improvements**

`scipy.spatial.cKDTree` was partly rewritten for improved performance and several new features were added to it:

- the query_ball_point method became significantly faster
- query and query_ball_point gained an n_jobs keyword for parallel execution
- build and query methods now release the GIL
- full pickling support
- support for periodic spaces
- the sparse_distance_matrix method can now return and sparse matrix type

**scipy.interpolate improvements**

Out-of-bounds behavior of `scipy.interpolate.interp1d` has been improved. Use a two-element tuple for the fill_value argument to specify separate fill values for input below and above the interpolation range. Linear and nearest interpolation kinds of `scipy.interpolate.interp1d` support extrapolation via the fill_value="extrapolate" keyword.

fill_value can also be set to an array-like (or a two-element tuple of array-likes for separate below and above values) so long as it broadcasts properly to the non-interpolated dimensions of an array. This was implicitly supported by previous versions of scipy, but support has now been formalized and gets compatibility-checked before use. For example, a set of y values to interpolate with shape (2, 3, 5) interpolated along the last axis (2) could accept a fill_value array with shape () (singleton), (1,), (2, 1), (1, 3), (3,), or (2, 3); or it can be a 2-element tuple to specify separate below and above bounds, where each of the two tuple elements obeys proper broadcasting rules.

**scipy.linalg improvements**

The default algorithm for `scipy.linalg.leastsq` has been changed to use LAPACK's function *gelsd. Users wanting to get the previous behavior can use a new keyword lapack_driver="gelss" (allowed values are “gelss”, “gelsd” and “gelsy”).

scipy.sparse matrices and linear operators now support the matmul (@) operator when available (Python 3.5+). See [PEP 465](https://legacy.python.org/dev/peps/pep-0465/)

A new function `scipy.linalg.ordqz`, for QZ decomposition with reordering, has been added.
5.33.2 Deprecated features

`scipy.stats.histogram` is deprecated in favor of `np.histogram`, which is faster and provides the same functionality.

`scipy.stats.threshold` and `scipy.mstats.threshold` are deprecated in favor of `np.clip`. See issue #617 for details.

`scipy.stats.ss` is deprecated. This is a support function, not meant to be exposed to the user. Also, the name is unclear. See issue #663 for details.

`scipy.stats.square_of_sums` is deprecated. This too is a support function not meant to be exposed to the user. See issues #665 and #663 for details.

`scipy.stats.f_value`, `scipy.stats.f_value_multivariate`, `scipy.stats.f_value_wilks_lambda`, and `scipy.mstats.f_value_wilks_lambda` are deprecated. These are related to ANOVA, for which `scipy.stats` provides quite limited functionality and these functions are not very useful standalone. See issues #660 and #650 for details.

`scipy.stats.chisqprob` is deprecated. This is an alias. `stats.chi2.sf` should be used instead.

`scipy.stats.betai` is deprecated. This is an alias for `special.betainc` which should be used instead.

5.33.3 Backwards incompatible changes

The functions `stats.trim1` and `stats.trimboth` now make sure the elements trimmed are the lowest and/or highest, depending on the case. Slicing without at least partial sorting was previously done, but didn’t make sense for unsorted input.

When `variable_names` is set to an empty list, `scipy.io.loadmat` now correctly returns no values instead of all the contents of the MAT file.

Element-wise multiplication of sparse matrices now returns a sparse result in all cases. Previously, multiplying a sparse matrix with a dense matrix or array would return a dense matrix.

The function `misc.lena` has been removed due to license incompatibility.

The constructor for `sparse.coo_matrix` no longer accepts `(None, (m,n))` to construct an all-zero matrix of shape `(m,n)`. This functionality was deprecated since at least 2007 and was already broken in the previous SciPy release. Use `coo_matrix((m,n))` instead.

The Cython wrappers in `linalg.cython_lapack` for the LAPACK routines `*gegs`, `*gegv`, `*gelsx`, `*geqpf`, `*ggsvd`, `*ggsvp`, `lahrd`, `latzm`, `tzrqf` have been removed since these routines are not present in the new LAPACK 3.6.0 release. With the exception of the routines `*ggsvd` and `*ggsvp`, these were all deprecated in favor of routines that are currently present in our Cython LAPACK wrappers.

Because the LAPACK `*gegv` routines were removed in LAPACK 3.6.0. The corresponding Python wrappers in `scipy.linalg.lapack` are now deprecated and will be removed in a future release. The source files for these routines have been temporarily included as a part of `scipy.linalg` so that SciPy can be built against LAPACK versions that do not provide these deprecated routines.
5.33.4 Other changes

Html and pdf documentation of development versions of Scipy is now automatically rebuilt after every merged pull request. *scipy.constants* is updated to the CODATA 2014 recommended values.

Usage of *scipy.fftpack* functions within Scipy has been changed in such a way that PyFFTW can easily replace *scipy.fftpack* functions (with improved performance). See gh-5295 for details.

The *imread* functions in *scipy.misc* and *scipy.ndimage* were unified, for which a *mode* argument was added to *scipy.misc.imread*. Also, bugs for 1-bit and indexed RGB image formats were fixed.

*runtests.py*, the development script to build and test Scipy, now allows building in parallel with *--parallel*.

5.33.5 Authors

- @cel4 +
- @chemelnucfin +
- @endolith
- @mamrehn +
- @tosh1ki +
- Joshua L. Adelman +
- Anne Archibald
- Hervé Audren +
- Vincent Barrielle +
- Bruno Beltran +
- Sumit Binnani +
- Joseph Jon Booker
- Olga Botvinnik +
- Michael Boyle +
- Matthew Brett
- Zaz Brown +
- Lars Buitinck
- Pete Bunch +
- Evgeni Burovski
- CJ Carey
- Ien Cheng +
- Cody +
- Jaime Fernandez del Rio
- Ales Erjavec +
- Abraham Escalante
- Yves-Rémi Van Eyck
• Yu Feng +
• Eric Firing
• Francis T. O'Donovan +
• André Gaul
• Christoph Gohlke
• Ralf Gommers
• Alex Griffing
• Alexander Grigorievskiy
• Charles Harris
• Jörn Hees +
• Ian Henriksen
• Derek Homeier +
• David Menéndez Hurtado
• Gert-Ludwig Ingold
• Aakash Jain +
• Rohit Jamuar +
• Jan Schlüter
• Johannes Ballé
• Luke Zoltan Kelley +
• Jason King +
• Andreas Kopecky +
• Eric Larson
• Denis Laxalde
• Antony Lee
• Gregory R. Lee
• Josh Levy-Kramer +
• Sam Lewis +
• François Mugimel +
• Martín Gaitán +
• Sam Mason +
• Andreas Mayer
• Nikolay Mayorov
• Damon McDougall +
• Robert McGibbon
• Sturla Molden
• Will Monroe +
A total of 101 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

**Issues closed for 0.17.0**

- #1923: problem with numpy 0’s in stats.poisson.rvs (Trac #1398)
- #2138: scipy.misc.imread segfaults on 1 bit png (Trac #1613)
- #2237: distributions do not accept complex arguments (Trac #1718)
- #2282: scipy.special.hyp1f1(0.5, 1.5, -1000) fails (Trac #1763)
- #2618: poisson.pmf returns NaN if mu is 0
- #2957: hyp1f1 precision issue
- #2997: FAIL: test_qhull.TestUtilities.test_more_barycentric_transforms
- #3129: No way to set ranges for fitting parameters in Optimize functions
- #3191: interp1d should contain a fill_value_below and a fill_value_above…
- #3453: PchipInterpolator sets slopes at edges differently than Matlab’s…
- #4106: ndimage._ni_support._normalize_sequence() fails with numpy.int64
- #4118: `scipy.integrate.ode.set_solout` called after `scipy.integrate.ode.set_initial_value` fails silently
- #4233: 1D scipy.interpolate.griddata using method=nearest produces nans…
- #4375: All tests fail due to bad file permissions
- #4580: scipy.ndimage.filters.convolve documentation is incorrect
- #4627: logsumexp with sign indicator - enable calculation with negative…
- #4702: logsumexp with zero scaling factor
- #4834: gammainc should return 1.0 instead of NaN for infinite x
- #4838: enh: exprel special function
- #4862: the scipy.special.boxcox function is inaccurate for denormal…
- #4887: Spherical harmonic incongruences
- #4895: some scipy ufuncs have inconsistent output dtypes?
- #4923: logdm does not aggressively convert complex outputs to float
- #4932: BUG: stats: The fit method of the distributions silently ignores…
- #4956: Documentation error in `scipy.special.bi_zeros`
- #4957: Docstring for pbvv_seq is wrong
- #4967: block_diag should look at dtypes of all arguments, not only the…
- #5037: scipy.optimize.minimize minimize error messages are printed to stdout…

- #5039: Cubic interpolation: On entry to DGESDD parameter number 12 had...
- #5163: Base case example of Hierarchical Clustering (offer)
- #5181: BUG: stats.genextreme.entropy should use the explicit formula
- #5184: Some? wheels don't express a numpy dependency
- #5197: mstats: test_kurtosis fails (ULP max is 2)
- #5260: Typo causing an error in splrep
- #5263: Default epsilon in rbf.py fails for colinear points
- #5276: Reading empty (no data) arff file fails
- #5280: 1d scipy.signal.convolve much slower than numpy.convolve
- #5326: Implementation error in scipy.interpolate.PchipInterpolator
- #5370: Test issue with test_quadpack and libm.so as a linker script
- #5426: ERROR: test_stats.test_chisquare_masked_arrays
- #5427: Automate installing correct numpy versions in numpy-vendor image
- #5430: Python3 : Numpy scalar types “not iterable”; specific instance…
- #5450: BUG: spatial.ConvexHull triggers a seg. fault when given nans.
- #5478: clarify the relation between matrix normal distribution and multivariate_normal
- #5539: lstsq related test failures on windows binaries from numpy-vendor
- #5560: doc: scipy.stats.burr pdf issue
- #5571: lstsq test failure after lapack_driver change
- #5577: ordqz segfault on Python 3.4 in Wine
- #5578: scipy.linalg test failures on python 3 in Wine
- #5607: Overloaded ‘isnan(double&)’ is ambiguous when compiling with…
- #5629: Test for lstsq randomly failed
- #5630: memory leak with scipy 0.16 spatial cKDEtree
- #5689: isnan errors compiling scipy/special/Faddeeva.cc with clang++
- #5694: fftpack test failure in test_import
- #5719: curve_fit(method!="lm") ignores initial guess

Pull requests for 0.17.0

- #3022: hyp1f1: better handling of large negative arguments
- #3107: ENH: Add ordered QZ decomposition
- #4390: ENH: Allow axis and keepdims arguments to be passed to scipy.linalg.norm.
- #4671: ENH: add axis to sparse norms
- #4796: ENH: Add cut tree function to scipy.cluster.hierarchy
- #4809: MAINT: cauchy moments are undefined
- #4821: ENH: stats: make distribution instances picklable
• #4839: ENH: Add scipy.special.exprel relative error exponential ufunc
• #4859: Logsumexp fixes - allows sign flags and b==0
• #4865: BUG: scipy.io.mmio.write: error with big indices and low precision
• #4869: add as_inexact option to _lib._util._asarray_validated
• #4884: ENH: Finite difference approximation of Jacobian matrix
• #4890: ENH: Port cKDTree query methods to C++, allow pickling on Python…
• #4892: how much doctesting is too much?
• #4896: MAINT: work around a possible numpy ufunc loop selection bug
• #4898: MAINT: A bit of pyflakes-driven cleanup.
• #4899: ENH: add ‘alternative’ keyword to hypothesis tests in stats
• #4903: BENCH: Benchmarks for interpolate module
• #4905: MAINT: prepend underscore to mask_to_limits; delete masked_var.
• #4906: MAINT: Benchmarks for optimize.leastsq
• #4910: WIP: Trimmed statistics functions have inconsistent API.
• #4914: DEP: deprecate scipy.stats.ss and scipy.stats.square_of_sums.
• #4924: MAINT: if the imaginary part of logm of a real matrix is small,…
• #4930: BENCH: Benchmarks for signal module
• #4941: ENH: update find_repeats.
• #4942: MAINT: use np.float64_t instead of np.float_t in cKDTree
• #4944: BUG: integer overflow in correlate_nd
• #4951: do not ignore invalid kwargs in distributions fit method
• #4958: Add some detail to docstrings for special functions
• #4961: ENH: stats.describe: add bias kw and empty array handling
• #4963: ENH: scipy.sparse.coo.coo_matrix.__init__: less memory needed
• #4968: DEP: deprecate stats.f_value* and mstats.f_value* functions.
• #4969: ENH: review stats.rlfreq and stats.cumfreq; fixes to stats.histogram
• #4971: Extend github source links to line ranges
• #4972: MAINT: improve the error message in validate_runtests_log
• #4976: DEP: deprecate scipy.stats.threshold
• #4977: MAINT: more careful dtype treatment in block diagonal matrix…
• #4979: ENH: distributions, complex arguments
• #4984: clarify dirichlet distribution error handling
• #4992: ENH: stats.fligner and stats.bartlett empty input handling.
• #4996: DOC: fix stats.spearmanr docs
• #4997: Fix up boxcox for underflow / loss of precision
#4998: DOC: improved documentation for stats.ppcc_max
#5000: ENH: added empty input handling scipy.moment; doc enhancements
#5003: ENH: improves rankdata algorithm
#5005: scipy.stats: numerical stability improvement
#5007: ENH: nan handling in functions that use stats._chk_asarray
#5009: remove coveralls.io
#5010: Hypergeometric distribution log survival function
#5014: Patch to compute the volume and area of convex hulls
#5015: DOC: Fix mistaken variable name in sawtooth
#5016: DOC: resample example
#5017: DEP: deprecate stats.betai and stats.chisqprob
#5018: ENH: Add test on random inpu to volume computations
#5020: BUG: Fix return dtype of lil_matrix.getnnz(axis=0)
#5030: DOC: resample slow for prime output too
#5033: MAINT: integrate, special: remove unused R1MACH and Makefile
#5034: MAINT: signal: lift max_len_seq validation out of Cython
#5035: DOC/MAINT: refguide / doctest drudgery
#5041: BUG: fixing some small memory leaks detected by cppcheck
#5044: [GSoC] ENH: New least-squares algorithms
#5050: MAINT: C fixes, trimmed a lot of dead code from Cephes
#5057: ENH: sparse: avoid densifying on sparse/dense elementwise mult
#5058: TST: stats: add a sample distribution to the test loop
#5061: ENH: spatial: faster 2D Voronoi and Convex Hull plotting
#5065: TST: improve test coverage for stats.mvsdist and stats.bayes_mvs
#5066: MAINT: fitpack: remove a noop
#5067: ENH: empty and nan input handling for stats.kstat and stats.kstatvar
#5071: DOC: optimize: Correct paper reference, add doi
#5072: MAINT: scipy.sparse cleanup
#5073: DOC: special: Add an example showing the relation of diric to…
#5075: DOC: clarified parameterization of stats.lognorm
#5076: use int, float, bool instead of np.int, np.float, np.bool
#5078: DOC: Rename fftpack docs to README
#5081: BUG: Correct handling of scalar ‘b’ in lsmr and lsqr
#5082: loadmat variable_names: don’t confuse [] and None.
#5083: Fix integrate.fixed_quad docstring to indicate None return value
#5086: Use solve() instead of inv() for gaussian_kde
5.33. SciPy 0.17.0 Release Notes

- #5090: MAINT: stats: add explicit _sf, _isf to gengamma distribution
- #5094: ENH: scipy.interpolate.NearestNDInterpolator: cKDTree configurable
- #5098: DOC: special: fix typesetting in *_roots quadrature* functions
- #5099: DOC: make the docstring of stats.moment raw
- #5104: DOC/ENH fixes and micro-optimizations for scipy.linalg
- #5105: enh: made l-bfgs-b parameter for the maximum number of line search
- #5106: TST: add NIST test cases to stats.f_oneway
- #5110: [GSoC]: Bounded linear least squares
- #5111: MAINT: special: Cephes cleanup
- #5118: BUG: FIR path failed if len(x) < len(b) in lfilter.
- #5124: ENH: move the filliben approximation to a publicly visible function
- #5126: StatisticsCleanup: stats.kruskal review
- #5131: DOC: differential_evolution, improve docstring for mutation and…
- #5132: MAINT: differential_evolution improve init_population_lhs comments…
- #5133: MRG: rebased miio refactoring
- #5135: MAINT: stats.mstats consistency with stats.stats
- #5139: TST: linalg: add a smoke test for gh-5039
- #5140: EHN: Update constants.codata to CODATA 2014
- #5145: added ValueErrorto docstring as possible error raised
- #5146: MAINT: Improve implementation details and doc in stats.shapiro
- #5147: [GSoC] ENH: Upgrades to curve_fit
- #5150: Fix misleading wavelets/cwt example
- #5152: BUG: cluster.hierarchy.dendrogram: missing font size doesn’t…
- #5153: add keywords to control the summation in discrete distributions…
- #5156: DOC: added comments on algorithms used in Legendre function
- #5158: ENH: optimize: add the Hungarian algorithm
- #5162: FIX: Remove lena
- #5164: MAINT: fix cluster.hierarchy.dendrogram issues and docs
- #5166: MAINT: changed stats.pointbiserialr to delegate to stats.pearsonr
- #5167: ENH: add nan_policy to stats.kendalltau.
- #5168: TST: added nist test case (Norris) to stats.linregress.
- #5169: update lpmv docstring
- #5171: Clarify metric parameter in linkage docstring
- #5172: ENH: add mode keyword to signal.spectrogram
- #5177: DOC: graphical example for KDTreex.query_ball_point

• #5179: MAINT: stats: tweak the formula for ncx2.pdf
• #5188: MAINT: linalg: A bit of clean up.
• #5189: BUG: stats: Use the explicit formula in stats.genextreme.entropy
• #5193: BUG: fix uninitialized use in lartg
• #5194: BUG: properly return error to fortran from ode_jacobian_function
• #5198: TST: Fix TestCtypesQuad failure on Python 3.5 for Windows
• #5201: allow extrapolation in interp1d
• #5209: MAINT: Change complex parameter to boolean in Y_()
• #5213: BUG: sparse: fix logical comparison dtype conflicts
• #5216: BUG: sparse: fixing unbound local error
• #5218: DOC and BUG: Bessel function docstring improvements, fix array_like,…
• #5222: MAINT: sparse: fix COO ctor
• #5224: DOC: optimize: type of OptimizeResult.hess_inv varies
• #5228: ENH: Add maskandscale support to netcdf; based on pupynere and…
• #5229: DOC: sparse.linalg.svds doc typo fixed
• #5234: MAINT: sparse: simplify COO ctor
• #5235: MAINT: sparse: warn on todia() with many diagonals
• #5236: MAINT: ndimage: simplify thread handling/recursion + constness
• #5239: BUG: integrate: Fixed issue 4118
• #5241: qr_insert fixes, closes #5149
• #5246: Doctest tutorial files
• #5247: DOC: optimize: typo/import fix in linear_sum_assignment
• #5248: remove inspect.getargspec and test python 3.5 on Travis CI
• #5250: BUG: Fix sparse multiply by single-element zero
• #5261: Fix bug causing a TypeError in splrep when a runtime warning…
• #5262: Follow up to 4489 (Addition LAPACK routines in linalg.lstsq)
• #5264: ignore zero-length edges for default epsilon
• #5269: DOC: Typos and spell-checking
• #5272: MAINT: signal: Convert array syntax to memoryviews
• #5273: DOC: raw strings for docstrings with math
• #5274: MAINT: sparse: update cython code for MST
• #5278: BUG: io: Stop guessing the data delimiter in ARFF files.
• #5289: BUG: misc: Fix the Pillow work-around for 1-bit images.
• #5291: ENH: call np.correlate for 1d in scipy.signal.correlate
• #5294: DOC: special: Remove a potentially misleading example from the…
• #5295: Simplify replacement of fftpack by pyfftw
- #5296: ENH: Add matrix normal distribution to stats
- #5297: Fixed leaf_rotation and leaf_font_size in Python 3
- #5303: MAINT: stats: rewrite find_repeats
- #5307: MAINT: stats: remove unused Fortran routine
- #5313: BUG: sparse: fix diags for nonsquare matrices
- #5315: MAINT: special: Cephes cleanup
- #5316: fix input check for sparse.linalg.svds
- #5319: MAINT: Cython code maintenance
- #5328: BUG: Fix place_poles return values
- #5329: avoid a spurious divide-by-zero in Student t stats
- #5334: MAINT: integrate: miscellaneous cleanup
- #5340: MAINT: Printing Error Msg to STDERR and Removing iterate.dat
- #5347: ENH: add Py3.5-style matmul operator (e.g. A @ B) to sparse linear…
- #5350: FIX error, when reading 32-bit float wav files
- #5351: refactor the PCHIP interpolant's algorithm
- #5354: MAINT: construct csr and csc matrices from integer lists
- #5359: add a fast path to interp1d
- #5364: Add two fill_values to interp1d.
- #5365: ABCD docstrings
- #5366: Fixed typo in the documentation for scipy.signal.cwt() per #5290.
- #5367: DOC updated scipy.spatial.Delaunay example
- #5368: ENH: Do not create a throwaway class at every function call
- #5372: DOC: spectral: fix reference formatting
- #5375: PEP8 amendments to fpack_basic.py
- #5377: BUG: integrate: builtin name no longer shadowed
- #5381: PEP8ified fpack_pseudo_diffs.py
- #5385: BLD: fix Bento build for changes to optimize and spatial
- #5386: STY: PEP8 amendments to interpolate.py
- #5387: DEP: deprecate stats.histogram
- #5388: REL: add “make upload” command to doc/Makefile.
- #5389: DOC: updated origin param of scipy.ndimage.filters.convolve
- #5395: BUG: special: fix a number of edge cases related to x = np.inf.
- #5398: MAINT: stats: avoid spurious warnings in lognorm.pdf(0, s)
- #5407: ENH: stats: Handle mu=0 in stats.poisson
- #5409: Fix the behavior of discrete distributions at the right-hand…
- #5412: TST: stats: skip a test to avoid a spurious log(0) warning

- #5413: BUG: linalg: work around LAPACK single-precision lwork computation
- #5414: MAINT: stats: move creation of namedtuples outside of function
- #5415: DOC: fix up sections in ToC in the pdf reference guide
- #5416: TST: fix issue with a ctypes test for integrate on Fedora.
- #5419: MAINT: sparse: fix usage of NotImplemented
- #5420: Raise proper error if maxiter < 1
- #5422: DOC: changed documentation of brent to be consistent with bracket
- #5444: BUG: gaussian_filter, BPoly.from_derivatives fail on numpy int
- #5445: MAINT: stats: fix incorrect deprecation warnings and test noise
- #5446: DOC: add note about PyFFTW in fftpack tutorial.
- #5459: DOC: integrate: Some improvements to the differential equation
- #5465: BUG: Relax mstats kurtosis test tolerance by a few ulp
- #5471: ConvexHull should raise ValueError for NaNs.
- #5473: MAINT: update decorators.py module to version 4.0.5
- #5476: BUG: imsave searches for wrong channel axis if image has 3 or...
- #5477: BLD: add numpy to setup/installRequires for OS X wheels
- #5479: ENH: return Jacobian/Hessian from BasinHopping
- #5484: BUG: fix test zero division handling
- #5486: Fix crash on kmeans2
- #5491: MAINT: Expose parallel build option to runtests.py
- #5494: Sort OptimizeResult.__repr__ by key
- #5496: DOC: update the author name mapping
- #5497: Enhancement to binned_statistic: option to unraveled returned...
- #5498: BUG: sparse: fix a bug in sparsetools input dtype resolution
- #5500: DOC: detect unprintable characters in docstrings
- #5505: BUG: misc: Ensure fromimage converts mode ‘P’ to ‘RGB’ or ‘RGBA’.
- #5514: DOC: further update the release notes
- #5515: ENH: optionally disable fixed-point acceleration
- #5517: DOC: Improvements and additions to the matrix_normal doc
- #5518: Remove wrappers for LAPACK deprecated routines
- #5521: TST: skip a linalg.orth memory test on 32-bit platforms.
- #5523: DOC: change a few floats to integers in docstring examples
- #5524: DOC: more updates to 0.17.0 release notes.
- #5525: Fix to minor typo in documentation for scipy.integrate.ode
- #5527: TST: bump arccosh tolerance to allow for inaccurate numpy or…
SciPy 0.17.0 Release Notes

- #5535: DOC: signal: minor clarification to docstring of TransferFunction.
- #5538: DOC: signal: fix find_peaks_cwt documentation
- #5545: MAINT: Fix typo in linalg/basic.py
- #5547: TST: mark TestEig.test_singular as knownfail in master.
- #5550: MAINT: work around lstsq driver selection issue
- #5556: BUG: Fixed broken dogbox trust-region radius update
- #5561: BUG: eliminate warnings, exception (on Win) in test_maskandscale;…
- #5567: TST: a few cleanups in the test suite; run_module_suite and clearer…
- #5568: MAINT: simplify poisson’s _argcheck
- #5569: TST: bump GMean test tolerance to make it pass on Wine
- #5572: TST: lstsq: bump test tolerance for TravisCI
- #5573: TST: remove use of np.fromfile from cluster.vq tests
- #5576: Lapack deprecations
- #5579: TST: skip tests of linalg.norm axis keyword on numpy <= 1.7.x
- #5582: Clarify language of survival function documentation
- #5583: MAINT: stats/tests: A bit of clean up.
- #5588: DOC: stats: Add a note that stats.burr is the Type III Burr distribution.
- #5595: TST: fix test_lamch failures on Python 3
- #5600: MAINT: Ignore spatial/ckdtree.cxx and .h
- #5602: Explicitly numbered replacement fields for maintainability
- #5605: MAINT: collection of small fixes to test suite
- #5614: Minor doc change.
- #5624: FIX: Fix interpolate
- #5625: BUG: msvc9 binaries crash when indexing std::vector of size 0
- #5635: BUG: misspelled __dealloc__ in cKDTree.
- #5642: STY: minor fixup of formatting of 0.17.0 release notes.
- #5643: BLD: fix a build issue in special/Faddeeva.cc with isnan.
- #5661: TST: linalg tests used stdlib random instead of numpy.random.
- #5682: backports for 0.17.0
- #5696: Minor improvements to least_squares’ docstring.
- #5697: BLD: fix for isnan/isinf issues in special/Faddeeva.cc
- #5720: TST: fix for file opening error in fftpack test_import.py
- #5722: BUG: Make curve_fit respect an initial guess with bounds
- #5726: Backports for v0.17.0rc2
- #5727: API: Changes to least_squares API
5.34 SciPy 0.16.1 Release Notes

SciPy 0.16.1 is a bug-fix release with no new features compared to 0.16.0.

5.34.1 Issues closed for 0.16.1

- #5077: cKDTree not indexing properly for arrays with too many elements
- #5127: Regression in 0.16.0: solve_banded errors out in patsy test suite
- #5149: linalg tests apparently cause python to crash with numpy 1.10.0b1
- #5154: 0.16.0 fails to build on OS X; can’t find Python.h
- #5173: failing stats.histogram test with numpy 1.10
- #5191: Scipy 0.16.x - TypeError: _asarray_validated() got an unexpected…
- #5195: tarballs missing documentation source
- #5363: FAIL: test_orthogonal.test_j_roots, test_orthogonal.test_js_roots

5.34.2 Pull requests for 0.16.1

- #5088: BUG: fix logic error in cKDTree.sparse_distance_matrix
- #5089: BUG: Don't overwrite b in lfilter's FIR path
- #5128: BUG: solve_banded failed when solving 1x1 systems
- #5155: BLD: fix missing Python include for Homebrew builds.
- #5192: BUG: backport as_inexact kwarg to _asarray_validated
- #5203: BUG: fix uninitialized use in lartg 0.16 backport
- #5204: BUG: properly return error to fortran from ode_jacobian_function…
- #5207: TST: Fix TestCtypesQuad failure on Python 3.5 for Windows
- #5352: TST: sparse: silence warnings about boolean indexing
- #5355: MAINT: backports for 0.16.1 release
- #5356: REL: update Paver file to ensure sdist contents are OK for releases.
- #5382: 0.16.x backport: MAINT: work around a possible numpy ufunc loop…
- #5393: TST:special: bump tolerance levels for test_j_roots and test_js_roots
- #5417: MAINT: stats: move namedtuple creating outside function calls.
5.35 SciPy 0.16.0 Release Notes

SciPy 0.16.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.16.x branch, and on adding new features on the master branch.

This release requires Python 2.6, 2.7 or 3.2-3.4 and NumPy 1.6.2 or greater.

Highlights of this release include:

- A Cython API for BLAS/LAPACK in `scipy.linalg`
- A new benchmark suite. It’s now straightforward to add new benchmarks, and they’re routinely included with performance enhancement PRs.
- Support for the second order sections (SOS) format in `scipy.signal`. 
5.35.1 New features

Benchmark suite

The benchmark suite has switched to using Airspeed Velocity for benchmarking. You can run the suite locally via python runtests.py --bench. For more details, see benchmarks/README.rst.

scipy.linalg improvements

A full set of Cython wrappers for BLAS and LAPACK has been added in the modules scipy.linalg.cython_blas and scipy.linalg.cython_lapack. In Cython, these wrappers can now be cimported from their corresponding modules and used without linking directly against BLAS or LAPACK.

The functions scipy.linalg.qr_delete, scipy.linalg.qr_insert and scipy.linalg.qr_update for updating QR decompositions were added.

The function scipy.linalg.solve_circulant solves a linear system with a circulant coefficient matrix.

The function scipy.linalg.invpascal computes the inverse of a Pascal matrix.

The function scipy.linalg.solve_toeplitz, a Levinson-Durbin Toeplitz solver, was added.

Added wrapper for potentially useful LAPACK function *lasd4. It computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. See its LAPACK documentation and unit tests for it to get more info.

Added two extra wrappers for LAPACK least-square solvers. Namely, they are *gelsd and *gelsy.

Wrappers for the LAPACK *lange functions, which calculate various matrix norms, were added.

Wrappers for *gtsv and *ptsv, which solve A*X = B for tri-diagonalmatrix A, were added.

scipy.signal improvements

Support for second order sections (SOS) as a format for IIR filters was added. The new functions are:

- scipy.signal.sosfilt
- scipy.signal.sosfilt_zi
- scipy.signal.sos2tf
- scipy.signal.sos2zpk
- scipy.signal.tf2sos
- scipy.signal.zpk2sos.

Additionally, the filter design functions iirdesign, iirfilter, butter, cheby1, cheby2, ellip, and bessel can return the filter in the SOS format.

The function scipy.signal.place_poles, which provides two methods to place poles for linear systems, was added.

The option to use Gustafsson’s method for choosing the initial conditions of the forward and backward passes was added to scipy.signal.filtfilt.

New classes TransferFunction, StateSpace and ZerosPolesGain were added. These classes are now returned when instantiating scipy.signal.lti. Conversion between those classes can now be done explicitly now.

An exponential (Poisson) window was added as scipy.signal.exponential, and a Tukey window was added as scipy.signal.tukey.
The function for computing digital filter group delay was added as `scipy.signal.group_delay`.

The functionality for spectral analysis and spectral density estimation has been significantly improved: `scipy.signal.welch` became ~8x faster and the functions `scipy.signal.spectrogram`, `scipy.signal.coherence` and `scipy.signal.csd` (cross-spectral density) were added.

`scipy.signal.lsim` was rewritten - all known issues are fixed, so this function can now be used instead of lsim2; lsim is orders of magnitude faster than lsim2 in most cases.

**scipy.sparse improvements**

The function `scipy.sparse.norm`, which computes sparse matrix norms, was added.

The function `scipy.sparse.random`, which allows to draw random variates from an arbitrary distribution, was added.

**scipy.spatial improvements**

`scipy.spatial.cKDTree` has seen a major rewrite, which improved the performance of the query method significantly, added support for parallel queries, pickling, and options that affect the tree layout. See pull request 4374 for more details.

The function `scipy.spatial.procrustes` for Procrustes analysis (statistical shape analysis) was added.

**scipy.stats improvements**

The Wishart distribution and its inverse have been added, as `scipy.stats.wishart` and `scipy.stats.invwishart`.

The Exponentially Modified Normal distribution has been added as `scipy.stats.exponnorm`.

The Generalized Normal distribution has been added as `scipy.stats.gennorm`.

All distributions now contain a `random_state` property and allow specifying a specific `numpy.random.RandomState` random number generator when generating random variates.

Many statistical tests and other `scipy.stats` functions that have multiple return values now return namedtuples. See pull request 4709 for details.

**scipy.optimize improvements**

A new derivative-free method DF-SANE has been added to the nonlinear equation system solving function `scipy.optimize.root`.

### 5.35.2 Deprecated features

`scipy.stats.pdf_fromgamma` is deprecated. This function was undocumented, untested and rarely used. Statsmodels provides equivalent functionality with `statsmodels.distributions.ExpandedNormal`.

`scipy.stats.fastsort` is deprecated. This function is unnecessary, `numpy.argsort` can be used instead.

`scipy.stats.signaltonoise` and `scipy.stats.mstats.signaltonoise` are deprecated. These functions did not belong in `scipy.stats` and are rarely used. See issue #609 for details.

`scipy.stats.histogram2` is deprecated. This function is unnecessary, `numpy.histogram2d` can be used instead.
5.35.3 Backwards incompatible changes

The deprecated global optimizer `scipy.optimize.anneal` was removed.

The following deprecated modules have been removed: `scipy.lib.blas`, `scipy.lib.lapack`, `scipy.linalg.cblas`, `scipy.linalg.fblas`, `scipy.linalg.clapack`, `scipy.linalg.flapack`. They had been deprecated since Scipy 0.12.0, the functionality should be accessed as `scipy.linalg.blas` and `scipy.linalg.lapack`.

The deprecated function `scipy.special.all_mat` has been removed.

The deprecated functions `fprob`, `ksprob`, `zprob`, `randwcdfl` and `randwpfl` have been removed from `scipy.stats`.

5.35.4 Other changes

The version numbering for development builds has been updated to comply with PEP 440.

Building with `python setup.py develop` is now supported.

5.35.5 Authors

- @axiru+
- @endolith
- Elliott Sales de Andrade+
- Anne Archibald
- Yoshiki Vázquez Baeza+
- Sylvain Bellemare
- Felix Berkenkamp+
- Raoul Bourquin+
- Matthew Brett
- Per Brodtkorb
- Christian Brueffer
- Lars Buitinck
- Evgeni Burovski
- Steven Byrnes
- CJ Carey
- George Castillo+
- Alex Conley+
- Liam Damewood+
- Rupak Das+
- Abraham Escalante+
- Matthias Feurer+
• Eric Firing +
• Clark Fitzgerald
• Chad Fulton
• André Gaul
• Andreea Georgescu +
• Christoph Gohlke
• Andrey Golovizin +
• Ralf Gommers
• J.J. Green +
• Alex Griffing
• Alexander Grigorievskiy +
• Hans Moritz Gunther +
• Jonas Hahnfeld +
• Charles Harris
• Ian Henriksen
• Andreas Hilboll
• Åsmund Hjulstad +
• Jan Schlüter +
• Janko Slavič +
• Daniel Jensen +
• Johannes Ballé +
• Terry Jones +
• Amato Kasahara +
• Eric Larson
• Denis Laxalde
• Antony Lee
• Gregory R. Lee
• Perry Lee +
• Loïc Estève
• Martin Manns +
• Eric Martin +
• Matěj Kocián +
• Andreas Mayer +
• Nikolay Mayorov +
• Robert McGibbon +
• Sturla Molden
• Nicola Montecchio +
• Eric Moore
• Jamie Morton +
• Nikolas Moya +
• Maniteja Nandana +
• Andrew Nelson
• Joel Nothman
• Aldrian Obaja
• Regina Ongowarsito +
• Paul Ortyl +
• Pedro López-Adeva Fernández-Layos +
• Stefan Peterson +
• Irvin Probst +
• Eric Quintero +
• John David Reaver +
• Juha Remes +
• Thomas Robitaille
• Clancy Rowley +
• Tobias Schmidt +
• Skipper Seabold
• Aman Singh +
• Eric Soroos
• Valentine Svensson +
• Julian Taylor
• Aman Thakral +
• Helmut Toplitzer +
• Fukumu Tsutsumi +
• Anastasiia Tsyplia +
• Jacob Vanderplas
• Pauli Virtanen
• Matteo Visconti +
• Warren Weckesser
• Florian Wilhelm +
• Nathan Woods
• Haochen Wu +
• Daan Wynen +
A total of 93 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

**Issues closed for 0.16.0**

- #1063: Implement a wishart distribution (Trac #536)
- #1885: Rbf: floating point warnings - possible bug (Trac #1360)
- #2020: Rbf default epsilon too large (Trac #1495)
- #2325: extending distributions, hypergeom, to degenerate cases (Trac…
- #3502: [ENH] linalg.hessenberg should use ORGHR for calc_q=True
- #3603: Passing array as window into signal.resample() fails
- #3675: Intermittent failures for signal.slepian on Windows
- #3742: Pchip interpolator inconvenient as ppoly
- #3786: add procrustes?
- #3798: scipy.io.savemat fails for empty dicts
- #3975: Use RandomState in scipy.stats
- #4022: savemat incorrectly saves logical arrays
- #4028: scipy.stats.geom.logpmf(1,1) returns nan. The correct value is…
- #4030: simplify scipy.stats.betaprime.cdf
- #4031: improve accuracy of scipy.stats.gompertz distribution for small…
- #4033: improve accuracy of scipy.stats.lomax distribution for small…
- #4034: improve accuracy of scipy.stats.rayleigh distribution for large…
- #4035: improve accuracy of scipy.stats.truncexpon distribution for small…
- #4081: Error when reading matlab file: buffer is too small for requested…
- #4100: Why does qr(a, lwork=0) not fail?
- #4134: scipy.stats: rv_frozen has no expect() method
- #4204: Please add docstring to scipy.optimize.RootResults
- #4206: Wrap LAPACK tridiagonal solve routine gtsv
- #4208: Empty sparse matrices written to MAT file cannot be read by MATLAB
- #4217: use a TravisCI configuration with numpy built with NPY_RELAXED_STRIDES_CHECKING=1
- #4282: integrate.odeint raises an exception when full_output=1 and the…
- #4301: scipy and numpy version names do not follow pep 440
- #4355: PPoly.antiderivative() produces incorrect output
- #4391: spsolve becomes extremely slow with large b matrix
- #4393: Documentation glitch in sparse.linalg.spilu
- #4408: Vector-valued constraints in minimize() et al
- #4412: Documentation of scipy.signal.cwt error
• #4428: dok.__setitem__ problem with negative indices
• #4434: Incomplete documentation for sparse.linalg.sp.solve
• #4438: linprog() documentation example wrong
• #4445: Typo in scipy.special.expit doc
• #4467: Documentation Error in scipy.optimize options for TNC
• #4492: solve_toeplitz benchmark is bitrotting already
• #4506: lobpcg/sparse performance regression Jun 2014?
• #4520: g77_abi_wrappers needed on Linux for MKL as well
• #4521: Broken check in uses_mkl for newer versions of the library
• #4523: rbf with gaussian kernel seems to produce more noise than original…
• #4526: error in site documentation for poisson.pmf() method
• #4527: KDTree example doesn't work in Python 3
• #4550: scipy.stats.mode - UnboundLocalError on empty sequence
• #4554: filter out convergence warnings in optimization tests
• #4565: odeint messages
• #4569: remez: “ValueError: Failure to converge after 25 iterations….
• #4582: DOC: optimize: _minimize_scalar_brent does not have a disp option
• #4585: DOC: Erroneous latex-related characters in tutorial.
• #4590: sparse.linalg.svds should throw an exception if which not in…
• #4594: scipy.optimize.linprog IndexError when a callback is provided
• #4596: scipy.linalg.block_diag misbehavior with empty array inputs (v0.13.3)
• #4599: scipy.integrate.nquad should call _OptFunc when called with only…
• #4612: Crash in signal.lfilter on nd input with wrong shaped zi
• #4613: scipy.io.readsav error on reading sav file
• #4673: scipy.interpolate.RectBivariateSpline construction locks PyQt…
• #4681: Broadcasting in signal.lfilter still not quite right.
• #4705: kmeans k_or_guess parameter error if guess is not square array
• #4719: Build failure on 14.04.2
• #4724: GenGamma _munp function fails due to overflow
• #4726: FAIL: test_cobyla.test_vector_constraints
• #4734: Failing tests in stats with numpy master.
• #4736: qr_update bug or incompatibility with numpy 1.10?
• #4746: linprog returns solution violating equality constraint
• #4757: optimize.leastsq docstring mismatch
• #4774: Update contributor list for v0.16
• #4779: circmean and others do not appear in the documentation
• #4788: problems with scipy sparse linalg solve_iterative.py when complex
• #4791: BUG: scipy.spatial: incremental Voronoi doesn't increase size…

Pull requests for 0.16.0

• #3116: sparse: enhancements for DIA format
• #3157: ENH: linalg: add the function 'solve_circulant' for solving a…
• #3442: ENH: signal: Add Gustafsson's method as an option for the filtfilt…
• #3679: WIP: fix sporadic slepian failures
• #3680: Some cleanups in stats
• #3717: ENH: Add second-order sections filtering
• #3741: Dltisys changes
• #3956: add note to scipy.signal.resample about prime sample numbers
• #3980: Add checkFinite flag to UnivariateSpline
• #3996: MAINT: stricter linalg argument checking
• #4001: BUG: numerical precision in dirichlet
• #4012: ENH: linalg: Add a function to compute the inverse of a Pascal…
• #4021: ENH: Cython api for lapack and blas
• #4089: Fixes for various PEP8 issues.
• #4116: MAINT: fitpack: trim down compiler warnings (unused labels, variables)
• #4129: ENH: stats: add a random_state property to distributions
• #4135: ENH: Add Wishart and inverse Wishart distributions
• #4195: improve the interpolate docs
• #4200: ENH: Add t-test from descriptive stats function.
• #4202: Dendrogram threshold color
• #4205: BLD: fix a number of Bento build warnings.
• #4211: add an ufunc for the inverse Box-Cox transform
• #4212: MRG: fix for gh-4208
• #4213: ENH: specific warning if matlab file is empty
• #4215: Issue #4209: splprep documentation updated to reflect dimensional…
• #4219: DOC: silence several Sphinx warnings when building the docs
• #4223: MAINT: remove two redundant lines of code
• #4226: try forcing the numpy rebuild with relaxed strides
• #4228: BLD: some updates to Bento config files and docs. Closes gh-3978.
• #4232: wrong references in the docs
• #4242: DOC: change example sample spacing
• #4245: Arff fixes
• #4246: MAINT: C fixes
• #4247: MAINT: remove some unused code
• #4249: Add routines for updating QR decompositions
• #4250: MAINT: Some pyflakes-driven cleanup in linalg and sparse
• #4252: MAINT trim away >10 kLOC of generated C code
• #4253: TST: stop shadowing ellip* tests vs boost data
• #4254: MAINT: special: use NPY_PI, not M_PI
• #4255: DOC: INSTALL: use Py3-compatible print syntax, and don’t mention…
• #4256: ENH: spatial: reimplement cdist_cosine using np.dot
• #4258: BUG: io.arff #4429 #2088
• #4261: MAINT: signal: PEP8 and related style clean up.
• #4262: BUG: newton_krylov() was ignoring norm_tol argument, closes #4259
• #4263: MAINT: clean up test noise and optimize tests for docstrings…
• #4266: MAINT: io: Give an informative error when attempting to read…
• #4268: MAINT: fftpack benchmark integer division vs true division
• #4269: MAINT: avoid shadowing the eigvals function
• #4272: BUG: sparse: Fix bench_sparse.py
• #4276: DOC: remove confusing parts of the documentation related to writing…
• #4281: Sparse matrix multiplication: only convert array if needed (with…
• #4284: BUG: integrate: odeint crashed when the integration time was…
• #4286: MRG: fix matlab output type of logical array
• #4291: DOC: linalg: fix layout in cholesky_banded docstring
• #4292: BUG: allow empty dict as proxy for empty struct
• #4293: MAINT: != -> not_equal in hamming distance implementation
• #4295: Pole placement
• #4296: MAINT: some cleanups in tests of several modules
• #4302: ENH: Solve toeplitz linear systems
• #4306: Add benchmark for conjugate gradient solver.
• #4307: BLD: PEP 440
• #4310: BUG: make stats.geom.logpmf(1,1) return 0.0 instead of nan
• #4311: TST: restore a test that uses slogdet now that we have dropped…
• #4313: Some minor fixes for stats.wishart addition.
• #4315: MAINT: drop numpy 1.5 compatibility code in sparse matrix tests
• #4318: ENH: Add random_state to multivariate distributions
• #4319: MAINT: fix hamming distance regression for exotic arrays, with…
#4320: TST: a few changes like self.assertIsNotNone(x == y, message) -> assert_equal(x,…
#4321: TST: more changes like self.assertIsNotNone(x == y, message) -> assert_equal(x,…
#4322: TST: in test_signaltools, changes like self.assertIsNotNone(x == y,…
#4323: MAINT: cleanup benchmarks so they can all be run as single files.
#4324: Add more detailed committer guidelines, update MAINTAINERS.txt
#4326: TST: use numpy.testing in test_hierarchy.py
#4329: MAINT: stats: rename check_random_state test function
#4330: Update distance tests
#4333: MAINT: import comb, factorial from scipy.special, not scipy.misc
#4338: TST: more conversions from nose to numpy.testing
#4339: MAINT: remove the deprecated all_mat function from special_matrices.py
#4340: add several features to frozen distributions
#4344: BUG: Fix/test invalid lwork param in qr
#4345: Fix test noise visible with Python 3.x
#4347: Remove deprecated blas/lapack imports, rename lib to _lib
#4349: DOC: add a nontrivial example to stats.binned_statistic.
#4350: MAINT: remove optimize.anneal for 0.16.0 (was deprecated in 0.14.0).
#4351: MAINT: fix usage of deprecated Numpy C API in optimize…
#4352: MAINT: fix a number of special test failures
#4353: implement cdf for betaprime distribution
#4357: BUG: piecewise polynomial antiderivative
#4358: BUG: integrate: fix handling of banded Jacobians in odeint, plus…
#4359: MAINT: remove a code path taken for Python version < 2.5
#4360: MAINT: stats.mstats: Remove some unused variables (thanks, pyflakes).
#4362: Removed erroneous reference to smoothing parameter #4072
#4363: MAINT: interpolate: clean up in fitpack.py
#4364: MAINT: lib: don't export “partial” from decorator
#4365: svdvals now returns a length-0 sequence of singular values given…
#4367: DOC: slightly improve TeX rendering of wishart/invwishart docstring
#4373: ENH: wrap gtsv and ptsv for solve_banded and solveh_banded.
#4374: ENH: Enhancements to spatial.cKDTree
#4376: BF: fix reading off-spec matlab logical sparse
#4377: MAINT: integrate: Clean up some Fortran test code.
#4378: MAINT: fix usage of deprecated Numpy C API in signal
#4380: MAINT: scipy.optimize, removing further anneal references
#4381: ENH: Make DCT and DST accept int and complex types like fft
• #4392: ENH: optimize: add DF-SANE nonlinear derivative-free solver
• #4394: Make reordering algorithms 64-bit clean
• #4396: BUG: bundle cblas.h in Accelerate ABI wrappers to enable compilation…
• #4398: FIX pdist bug where wminkowski’s w.dtype != double
• #4402: BUG: fix stat.hypergeom argcheck
• #4404: MAINT: Fill in the full symmetric squareform in the C loop
• #4405: BUG: avoid X += X.T (refs #4401)
• #4407: improved accuracy of gompertz distribution for small x
• #4414: DOC: fix error in scipy.signal.cwt documentation.
• #4415: ENH: Improve accuracy of lomax for small x.
• #4416: DOC: correct a parameter name in docstring of SuperLU.solve,….
• #4419: Restore scipy.linalg.calc_lwork also in master
• #4420: fix a performance issue with a sparse solver
• #4423: ENH: improve rayleigh accuracy for large x.
• #4424: BUG: optimize.minimize: fix overflow issue with integer x0 input.
• #4425: ENH: Improve accuracy of truncexpon for small x
• #4426: ENH: improve rayleigh accuracy for large x.
• #4427: MAINT: optimize: cleanup of TNC code
• #4429: BLD: fix build failure with numpy 1.7.x and 1.8.x.
• #4430: BUG: fix a sparse.dok_matrix set/get copy-paste bug
• #4433: Update _minimize.py
• #4435: ENH: release GIL around batch distance computations
• #4436: Fixed incomplete documentation for spsolve
• #4439: MAINT: integrate: Some clean up in the tests.
• #4440: Fast permutation t-test
• #4442: DOC: optimize: fix wrong result in docstring
• #4447: DOC: signal: Some additional documentation to go along with the…
• #4448: DOC: tweak the docstring of lapack.linalg module
• #4449: fix a typo in the expit docstring
• #4451: ENH: vectorize distance loops with gcc
• #4456: MAINT: don’t fail large data tests on MemoryError
• #4461: CI: use travis_retry to deal with network timeouts
• #4462: DOC: rationalize minimize() et al. documentation
• #4470: MAINT: sparse: inherit dok_matrix.toarray from spmatrix
• #4473: BUG: signal: Fix validation of the zi shape in sosfilt.
• #4475: BLD: setup.py: update min numpy version and support “setup.py…
• #4481: ENH: add a new linalg special matrix: the Helmert matrix
• #4485: MRG: some changes to allow reading bad mat files
• #4490: [ENH] linalg.hessenberg: use orghr - rebase
• #4491: ENH: linalg: Adding wrapper for potentially useful LAPACK function…
• #4493: BENCH: the solve_toeplitz benchmark used outdated syntax and…
• #4494: MAINT: stats: remove duplicated code
• #4496: References added for watershed_it algorithm
• #4499: DOC: reshuffle stats distributions documentation
• #4501: Replace benchmark suite with airspeed velocity
• #4502: SLSQP should strictly satisfy bound constraints
• #4503: DOC: forward port 0.15.x release notes and update author name…
• #4504: ENH: option to avoid computing possibly unused svd matrix
• #4505: Rebase of PR 3303 (sparse matrix norms)
• #4507: MAINT: fix lobpcg performance regression
• #4509: DOC: sparse: replace dead link
• #4511: Fixed differential evolution bug
• #4512: Change to fully PEP440 compliant dev version numbers (always…
• #4525: made tiny style corrections (pep8)
• #4533: Add exponentially modified gaussian distribution (scipy.stats.expongauss)
• #4534: MAINT: benchmarks: make benchmark suite importable on all scipy…
• #4535: BUG: Changed zip() to list(zip()) so that it could work in Python…
• #4536: Follow up to pr 4348 (exponential window)
• #4540: ENH: spatial: Add procrustes analysis
• #4541: Bench fixes
• #4542: TST: NumpyVersion dev -> dev0
• #4543: BUG: Overflow in savgol_coeffs
• #4544: pep8 fixes for stats
• #4546: MAINT: use reduction axis arguments in one-norm estimation
• #4549: ENH : Added group_delay to scipy.signal
• #4553: ENH: Significantly faster moment function
• #4556: DOC: document the changes of the sparse.linalg.svds (optional…
• #4559: DOC: stats: describe loc and scale parameters in the docstring…
• #4563: ENH: rewrite of stats.ppcc_plot
• #4564: Be more (or less) forgiving when user passes +-inf instead of…
• #4566: DEP: remove a bunch of deprecated function from scipy.stats,…
• #4570: MNT: Suppress LineSearchWarning’s in scipy.optimize tests
• #4572: ENH: Extract inverse hessian information from L-BFGS-B
• #4576: ENH: Split signal.lti into subclasses, part of #2912
• #4578: MNT: Reconcile docstrings and function signatures
• #4581: Fix build with Intel MKL on Linux
• #4583: DOC: optimize: remove references to unused disp kwarg
• #4584: ENH: scipy.signal - Tukey window
• #4587: Hermite asymptotic
• #4593: DOC - add example to RegularGridInterpolator
• #4595: DOC: Fix erroneous latex characters in tutorial/optimize.
• #4600: Add return codes to optimize.tnc docs
• #4603: ENH: Wrap LAPACK *lange functions for matrix norms
• #4604: scipy.stats: generalized normal distribution
• #4609: MAINT: interpolate: fix a few inconsistencies between docstrings…
• #4610: MAINT: make runtest.py -bench-compare use asv continuous and…
• #4611: DOC: stats: explain rice scaling; add a note to the tutorial…
• #4614: BUG: lfilter, the size of zi was not checked correctly for nd…
• #4617: MAINT: integrate: Clean the C code behind odeint.
• #4618: FIX: Raise error when window length != data length
• #4619: Issue #4550: scipy.stats.mode - UnboundLocalError on empty…
• #4620: Fixed a problem (#4590) with svds accepting wrong eigenvalue…
• #4621: Speed up special.ai_zeros/bi_zeros by 10x
• #4623: MAINT: some tweaks to spatial.procrustes (private file, html…
• #4628: Speed up signal.lfilter and add a convolution path for FIR filters
• #4629: Bug: integrate.nquad; resolve issue #4599
• #4631: MAINT: integrate: Remove unused variables in a Fortran test function.
• #4633: MAINT: Fix convergence message for remez
• #4635: PEP8: indentation (so that pep8 bot does not complain)
• #4637: MAINT: generalize a sign function to do the right thing for complex…
• #4639: Amended typo in apple_sgemv_fix.c
• #4642: MAINT: use lapack for scipy.linalg.norm
• #4643: RBF default epsilon too large 2020
• #4646: Added atleast_1d around poly in invres and invrez
• #4647: fix doc pdf build
• #4648: BUG: Fixes #4408: Vector-valued constraints in minimize() et…
• #4649: Vonmisesfix
• #4650: Signal example clean up in Tukey and place_poles
• #4652: DOC: Fix the error in convolve for same mode
• #4653: improve erf performance
• #4655: DEP: deprecate scipy.stats.histogram2 in favour of np.histogram2d
• #4656: DEP: deprecate scipy.stats.signaltonoise
• #4660: Avoid extra copy for sparse compressed [:, seq] and [seq, :]…
• #4661: Clean, rebase of #4478, adding ?gelsy and ?gelsd wrappers
• #4662: MAINT: Correct odeint messages
• #4664: Update _monotone.py
• #4672: fix behavior of scipy.linalg.block_diag for empty input
• #4675: Fix lsim
• #4676: Added missing colon to :math: directive in docstring.
• #4679: ENH: sparse randn
• #4682: ENH: scipy.signal - Addition of CSD, coherence; Enhancement of…
• #4684: BUG: various errors in weight calculations in orthogonal.py
• #4685: BUG: Fixes #4594: optimize.linprog IndexError when a callback…
• #4686: MAINT: cluster: Clean up duplicated exception raising code.
• #4688: Improve is_distance_dm exception message
• #4692: MAINT: stats: Simplify the calculation in tukeylambda._ppf
• #4693: ENH: added functionality to handle scalars in stats._chk_asarray
• #4694: Vectorization of Anderson-Darling computations.
• #4696: Fix singleton expansion in lfilter.
• #4698: MAINT: quiet warnings from cephes.
• #4701: add Bpoly.antiderivatives / integrals
• #4703: Add citation of published paper
• #4706: MAINT: special: avoid out-of-bounds access in specfun
• #4707: MAINT: fix issues with np.matrix as input to functions related…
• #4709: ENH: scipy.stats now returns namedtuples.
• #4710: scipy.io.idl: make reader more robust to missing variables in…
• #4711: Fix crash for unknown chunks at the end of file
• #4712: Reduce onenormest memory usage
• #4713: MAINT: interpolate: no need to pass dtype around if it can be…
• #4714: BENCH: Add benchmarks for stats module
• #4715: MAINT: polish signal.place_poles and signal/test_ltisys.py
• #4716: DEP: deprecate mstats.signaltonoise …
• #4717: MAINT: basinhopping: fix error in tests, silence /0 warning,…
• #4718: ENH: stats: can specify f-shapes to fix in fitting by name
• #4721: Document that imresize converts the input to a PIL image
• #4722: MAINT: PyArray_BASE is not an lvalue unless the deprecated API...
• #4725: Fix gengamma_nump failure
• #4728: DOC: add poch to the list of scipy special function descriptions
• #4735: MAINT: stats: avoid (a spurious) division-by-zero in skew
• #4738: TST: silence runtime warnings for some corner cases in stats...
• #4739: BLD: try to build numpy instead of using the one on TravisCI
• #4740: DOC: Update some docstrings with 'versionadded'
• #4742: BLD: make sure that relaxed strides checking is in effect on...
• #4750: DOC: special: TeX typesetting of rel_entr, kl_div and pseudo_huber
• #4751: BENCH: add sparse null slice benchmark
• #4753: BUG: Fixed compilation with recent Cython versions.
• #4756: BUG: Fixes #4733: optimize.brute finish option is not compatible...
• #4758: DOC: optimize.leastsq default maxfev clarification
• #4759: improved stats mle fit
• #4760: MAINT: count bfgs updates more carefully
• #4762: BUGS: Fixes #4746 and #4594: linprog returns solution violating...
• #4763: fix small linprog bugs
• #4766: BENCH: add signal.lsim benchmark
• #4768: fix python syntax errors in docstring examples
• #4769: Fixes #4726: test_cobyla.test_vector_constraints
• #4770: Mark FITPACK functions as thread safe.
• #4771: edited scipy/stats/stats.py to fix doctest for fisher_exact
• #4773: DOC: update 0.16.0 release notes.
• #4775: DOC: linalg: add funm_psd as a docstring example
• #4778: Use a dictionary for function name synonyms
• #4780: Include apparently-forgotten functions in docs
• #4783: Added many missing special functions to docs
• #4784: add an axis attribute to PPoly and friends
• #4785: Brief note about origin of Lena image
• #4786: DOC: reformat the Methods section of the KDE docstring
• #4787: Add rice cdf and ppf.
• #4792: CI: add a kludge for detecting test failures which try to disguise...
• #4795: Make refguide_check smarter about false positives
• #4797: BUG/TST: numpoints not updated for incremental Voronoi
• #4799: BUG: spatial: Fix a couple edge cases for the Mahalanobis metric...
• #4801: BUG: Fix TypeError in scipy.optimize._trust-region.py when disp=True.
• #4803: Issues with relaxed strides in QR updating routines
• #4806: MAINT: use an informed initial guess for cauchy fit
• #4810: PEP8ify codata.py
• #4812: BUG: Relaxed strides cleanup in decomp_update.pyx.in
• #4820: BLD: update Bento build for sgemv fix and install cython blas/lapack…
• #4823: ENH: scipy.signal - Addition of spectrogram function
• #4827: DOC: add csd and coherence to __init__.py
• #4833: BLD: fix issue in linalg *lange wrappers for g77 builds.
• #4841: TST: fix test failures in scipy.special with mingw32 due to test…
• #4842: DOC: update site.cfg.example. Mostly taken over from Numpy
• #4845: BUG: signal: Make spectrogram’s return values order match the…
• #4849: DOC: Fix error in ode docstring example
• #4856: BUG: fix typo causing memleak

5.36 SciPy 0.15.1 Release Notes

SciPy 0.15.1 is a bug-fix release with no new features compared to 0.15.0.

5.36.1 Issues fixed

• #4413: BUG: Tests too strict, f2py doesn’t have to overwrite this array
• #4417: BLD: avoid using NPY_API_VERSION to check not using deprecated…
• #4418: Restore and deprecate scipy.linalg.calc_work

5.37 SciPy 0.15.0 Release Notes

Contents

• SciPy 0.15.0 Release Notes
  – New features
    • Linear Programming Interface
    • Differential evolution, a global optimizer
    • scipy.signal improvements
    • scipy.integrate improvements
    • scipy.linalg improvements
    • scipy.sparse improvements
SciPy 0.15.0 is the culmination of 6 months of hard work. It contains several new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.16.x branch, and on adding new features on the master branch.

This release requires Python 2.6, 2.7 or 3.2-3.4 and NumPy 1.5.1 or greater.

## 5.37.1 New features

### Linear Programming Interface

The new function `scipy.optimize.linprog` provides a generic linear programming similar to the way `scipy.optimize.minimize` provides a generic interface to nonlinear programming optimizers. Currently the only method supported is `simplex` which provides a two-phase, dense-matrix-based simplex algorithm. Callbacks functions are supported, allowing the user to monitor the progress of the algorithm.

### Differential evolution, a global optimizer

A new `scipy.optimize.differential_evolution` function has been added to the `optimize` module. Differential Evolution is an algorithm used for finding the global minimum of multivariate functions. It is stochastic in nature (does not use gradient methods), and can search large areas of candidate space, but often requires larger numbers of function evaluations than conventional gradient based techniques.

### scipy.signal improvements

The function `scipy.signal.max_len_seq` was added, which computes a Maximum Length Sequence (MLS) signal.
**scipy.integrate improvements**

It is now possible to use `scipy.integrate` routines to integrate multivariate ctypes functions, thus avoiding callbacks to Python and providing better performance.

**scipy.linalg improvements**

The function `scipy.linalg.orthogonal_procrustes` for solving the procrustes linear algebra problem was added.

BLAS level 2 functions `her, syr, her2` and `syr2` are now wrapped in `scipy.linalg`.

**scipy.sparse improvements**

`scipy.sparse.linalg.svds` can now take a `LinearOperator` as its main input.

**scipy.special improvements**

Values of ellipsoidal harmonic (i.e. Lame) functions and associated normalization constants can be now computed using `ellip_harm, ellip_harm_2, and ellip_normal`.

New convenience functions `entr, rel_ent, kl_div, huber, and pseudo_huber` were added.

**scipy.sparse.csgraph improvements**

Routines `reverse_cuthill_mckee` and `maximum_bipartite_matching` for computing reorderings of sparse graphs were added.

**scipy.stats improvements**

Added a Dirichlet multivariate distribution, `scipy.stats.dirichlet`.

The new function `scipy.stats.median_test` computes Mood's median test.

The new function `scipy.stats.combine_pvalues` implements Fisher's and Stouffer's methods for combining p-values.

`scipy.stats.describe` returns a namedtuple rather than a tuple, allowing users to access results by index or by name.

### 5.37.2 Deprecated features

The `scipy.weave` module is deprecated. It was the only module never ported to Python 3.x, and is not recommended to be used for new code - use Cython instead. In order to support existing code, `scipy.weave` has been packaged separately: [https://github.com/scipy/weave](https://github.com/scipy/weave). It is a pure Python package, and can easily be installed with `pip install weave`.

`scipy.special.bessel_diff_formula` is deprecated. It is a private function, and therefore will be removed from the public API in a following release.

`scipy.stats.nanmean, nanmedian` and `nanstd` functions are deprecated in favor of their numpy equivalents.
5.37.3 Backwards incompatible changes

scipy.ndimage

The functions `scipy.ndimage.minimum_positions`, `scipy.ndimage.maximum_positions` and `scipy.ndimage.extrema` return positions as ints instead of floats.

scipy.integrate

The format of banded Jacobians in `scipy.integrate.ode` solvers is changed. Note that the previous documentation of this feature was erroneous.

5.37.4 Authors

- Abject +
- Ankit Agrawal +
- Sylvain Bellemare +
- Matthew Brett
- Christian Brodbeck
- Christian Bueffer
- Lars Buitinck
- Evgeni Burovski
- Pierre de Buyl +
- Greg Caporaso +
- CJ Carey
- Jacob Carey +
- Thomas A Caswell
- Helder Cesar +
- Björn Dahlgren +
- Kevin Davies +
- Yotam Doron +
- Marcos Duarte +
- endolith
- Jesse Engel +
- Rob Falck +
- Corey Farwell +
- Jaime Fernandez del Rio +
- Clark Fitzgerald +
- Tom Flannaghan +
• Chad Fulton +
• Jochen Garcke +
• François Garillot +
• André Gaul
• Christoph Gohlke
• Ralf Gommers
• Alex Griffing
• Blake Griffith
• Olivier Grisel
• Charles Harris
• Trent Hauck +
• Ian Henriksen +
• Jinyok Heo +
• Matt Hickford +
• Andreas Hilboll
• Danilo Horta +
• David Menéndez Hurtado +
• Gert-Ludwig Ingold
• Thouis (Ray) Jones
• Chris Kerr +
• Carl Kleffner +
• Andreas Kloeckner
• Thomas Kluyver +
• Adrian Kretz +
• Johannes Kulick +
• Eric Larson
• Brianna Laugher +
• Denis Laxalde
• Antony Lee +
• Gregory R. Lee +
• Brandon Liu
• Alex Loew +
• Loïc Estève +
• Jaakko Luttinen +
• Benny Malengier
• Tobias Megies +
• Sturla Molden
• Eric Moore
• Brett R. Murphy +
• Paul Nation +
• Andrew Nelson
• Brian Newsom +
• Joel Nothman
• Sergio Oller +
• Janani Padmanabhan +
• Tiago M.D. Pereira +
• Nicolas Del Piano +
• Manuel Reinhardt +
• Thomas Robitaille
• Mike Romberg +
• Alex Rothberg +
• Sebastian Pölderl +
• Maximilian Singh +
• Brigitta Sipocz +
• Alex Stewart +
• Julian Taylor
• Collin Tokheim +
• James Tomlinson +
• Benjamin Trendelkamp-Schroer +
• Richard Tsai
• Alexey Umnov +
• Jacob Vanderplas
• Joris Vankerschaver
• Bastian Venthur +
• Pauli Virtanen
• Stefan van der Walt
• Yuxiang Wang +
• James T. Webber
• Warren Weckesser
• Axl West +
• Nathan Woods
• Benda Xu +
• Victor Zabalza +
• Tiziano Zito +

A total of 99 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed

• #1431: ellipk(x) extending its domain for x<0 (Trac #904)
• #1727: consistency of std interface (Trac #1200)
• #1851: Shape parameter negated in genextreme (relative to R, MATLAB,…
• #1889: interp2d is weird (Trac #1364)
• #2188: splev gives wrong values or crashes outside of support when der…
• #2343: scipy.interpolate's splrep function fails with certain combinations…
• #2669: signal.lti.sys.ss2tf should only apply to MISO systems in current…
• #2911: interpolate.splder() failure on Fedora
• #3171: future of weave in scipy
• #3176: Suggestion to improve error message in scipy.integrate.odeint
• #3198: pdf() and logpdf() methods for scipy.stats.gaussian_kde
• #3318: Travis CI is breaking on test(“full”)
• #3329: scipy.stats.scoreatpercentile backward-incompatible change not…
• #3362: Reference cycle in scipy.sparse.linalg.eigs with shift-invert…
• #3364: BUG: linalg.hessenberg broken (wrong results)
• #3376: stats.f_oneway needs floats
• #3379: Installation of scipy 0.13.3 via zc.buildout fails
• #3403: hierarchy.linkage raises an ugly exception for a compressed 2x2…
• #3422: optimize.curve_fit() handles NaN by returning all parameters…
• #3457: linalg.fractional_matrix_power has no docstring
• #3469: DOC: ndimage.find_object ignores zero-values
• #3491: optimize.leastsq() documentation should mention it does not work…
• #3499: cluster.vq.whiten return nan for all zeros column in observations
• #3503: minimize attempts to do vector addition when numpy arrays are…
• #3508: exponweib.logpdf fails for valid parameters
• #3509: libatlas3-base-dev does not exist
• #3550: BUG: anomalous values computed by special.ellipkinc
• #3555: scipy.ndimage positions are float instead of int
• #3557: UnivariateSpline.__call__ should pass all relevant args through…
• #3569: No license statement for test data imported from boost?
• #3576: mstats test failure (too sensitive?)
• #3579: Errors on scipy 0.14.x branch using MKL, Ubuntu 14.04 x86_64
• #3580: Operator overloading with sparse matrices
• #3587: Wrong alphabetical order in continuous statistical distribution…
• #3596: scipy.signal.fftconvolve no longer thread safe
• #3623: BUG: signal.convolve takes longer than it needs to
• #3655: Integer returned from integer data in scipy.signal.periodogram…
• #3662: Travis failure on Numpy 1.5.1 (not reproducible?)
• #3668: dendogram(orientation='foo')
• #3669: KroghInterpolator doesn’t pass through points
• #3672: Inserting a knot in a spline
• #3682: misleading documentation of scipy.optimize.curve_fit
• #3699: BUG?: minor problem with scipy.signal.lfilter w/initial conditions
• #3700: Inconsistent exceptions raised by scipy.io.loadmat
• #3703: TypeError for RegularGridInterpolator with big-endian data
• #3714: Misleading error message in eigsh: k must be between 1 and rank(A)-1
• #3720: coo_matrix.setdiag() fails
• #3740: Scipy.Spatial.KdTree (Query) Return Type?
• #3761: Invalid result from scipy.special.btdtri
• #3784: DOC - Special Functions - Drum example fix for higher modes
• #3785: minimize() should have friendlier args=
• #3787: BUG: signal: Division by zero in lombscargle
• #3800: BUG: scipy.sparse.csgraph.shortest_path overwrites input matrix
• #3817: Warning in calculating moments from Binomial distribution for…
• #3821: review scipy usage of np.ma.is_masked
• #3829: Linear algebra function documentation doesn’t mention default…
• #3830: A bug in Docstring of scipy.linalg.eig
• #3844: Issue with shape parameter returned by genextreme
• #3858: “ImportError: No module named Cython.Compiler.Main” on install
• #3876: savgol_filter not in release notes and has no versionadded
• #3884: scipy.stats.kendalltau empty array error
• #3895: ValueError: illegal value in 12-th argument of internal gesdd…
• #3898: skimage test broken by minmax filter change
• #3901: scipy sparse errors with numpy master
• #3905: DOC: optimize: linprog docstring has two “Returns” sections
• #3915: DOC: sphinx warnings because of **kwargs in the stats distributions…
• #3935: Split stats.distributions files in tutorial
• #3969: gh-3607 breaks backward compatibility in ode solver banded jacobians
• #4025: DOC: signal: The return value of find_peaks_cwt is not documented.
• #4029: scipy.stats.nbinom.logpmf(0,1,1) returns nan. Correct value is…
• #4032: ERROR: test_imresize (test_pilutil.TestPILUtil)
• #4038: errors do not propagate through scipy.integrate.odeint properly
• #4171: orthogonal_procrustes always returns scale.
• #4176: Solving the Discrete Lyapunov Equation does not work with matrix…

Pull requests

• #3109: ENH Added Fisher’s method and Stouffer’s Z-score method
• #3225: Add the limiting distributions to generalized Pareto distribution…
• #3262: Implement back end of faster multivariate integration
• #3266: ENH: signal: add type=False as parameter for periodogram and…
• #3273: Add PEP8 check to Travis-CI
• #3342: ENH: linprog function for linear programming
• #3348: BUG: add proper error handling when using interp2d on regular…
• #3351: ENH: Add MLS method
• #3382: ENH: scipy.special information theory functions
• #3396: ENH: improve stats.nanmedian more by assuming nans are rare
• #3398: Added two wrappers to the gaussian_kde class.
• #3405: BUG: cluster.linkage array conversion to double dtype
• #3407: MAINT: use assert_warns instead of a more complicated mechanism
• #3409: ENH: change to use array view in signal/_peak_finding.py
• #3416: Issue 3376 : stats f_oneway needs floats
• #3419: BUG: tools: Fix list of FMA instructions in detect_cpu_extensions_wine.py
• #3420: DOC: stats: Add ‘entropy’ to the stats package-level documentation.
• #3429: BUG: close intermediate file descriptor right after it is used…
• #3430: MAINT: Fix some cython variable declarations to avoid warnings…
• #3433: Correcting the normalization of chebwin window function
• #3435: Add more precise link to R’s quantile documentation
• #3446: ENH: scipy.optimize - adding differential_evolution
• #3450: MAINT: remove unused function scipy.stats.mstats_basic._kolmog1
• #3458: Reworked version of PR-3084 (mstats-stats comparison)
• #3462: MAINT: Returning a warning for low attenuation values of chebwin…
• #3463: DOC: linalg: Add examples to functions in matfuncs.py

5.37. SciPy 0.15.0 Release Notes
• #3477: ENH: sparse: release GIL in sparsetools routines
• #3480: DOC: Add more details to deconvolve docstring
• #3484: BLD: fix Qhull build issue with MinGW-w64. Closes gh-3237.
• #3498: MAINT: io: remove old warnings from idl.py
• #3504: BUG: cluster.vq.whiten returns nan or inf when std==0
• #3510: MAINT: stats: Reimplement the pdf and logpdf methods of exponweib.
• #3512: Fix PEP8 errors showing up on TravisCI after pep8 1.5 release
• #3514: DOC: libatlas3-base-dev seems to have never been a thing
• #3516: DOC improve scipy.sparse docstrings
• #3517: ENH: speed-up ndimage.filters.min(max)imum_filter1d
• #3518: Issues in scipy.misc.logsumexp
• #3526: DOC: graphical example for cwt, and use a more interesting signal
• #3527: ENH: Implement min(max)imum_filter1d using the MINLIST algorithm
• #3537: STY: reduce number of C compiler warnings
• #3540: DOC: linalg: add docstring to fractional_matrix_power
• #3542: kde.py Doc Typo
• #3545: BUG: stats: stats.levy.cdf with small arguments loses precision.
• #3547: BUG: special: erfcinv with small arguments loses precision.
• #3553: DOC: Convolve examples
• #3561: FIX: in ndimage.measurements return positions as int instead…
• #3564: Fix test failures with numpy master. Closes gh-3554
• #3565: ENH: make interp2d accept unsorted arrays for interpolation.
• #3566: BLD: add numpy requirement to metadata if it can’t be imported.
• #3567: DOC: move matfuncs docstrings to user-visible functions
• #3574: Fixes multiple bugs in mstats.theilslopes
• #3577: TST: decrease sensitivity of an mstats test
• #3585: Cleanup of code in scipy.constants
• #3589: BUG: sparse: allow operator overloading
• #3594: BUG: lobpcg returned wrong values for small matrices (n < 10)
• #3598: MAINT: fix coverage and coveralls
• #3599: MAINT: symeig – now that’s a name I’ve not heard in a long time
• #3602: MAINT: clean up the new optimize.linprog and add a few more tests
• #3607: BUG: integrate: Fix some bugs and documentation errors in the…
• #3609: MAINT integrate/odepack: kill dead Fortran code
• #3616: FIX: Invalid values
• #3617: Sort netcdf variables in a Python-3 compatible way
• #3622: DOC: Added 0.15.0 release notes entry for linprog function.
• #3625: Fix documentation for cKDTree.sparse_distance_matrix
• #3626: MAINT: linalg.orth memory efficiency
• #3627: MAINT: stats: A bit of cleanup
• #3628: MAINT: signal: remove a useless function from wavelets.py
• #3632: ENH: stats: Add Mood’s median test.
• #3636: MAINT: cluster: some clean up
• #3638: DOC: docstring of optimize.basinhopping confuses singular and…
• #3639: BUG: change ddof default to 1 in mstats.sem, consistent with…
• #3640: Weave: deprecate the module and disable slow tests on TravisCI
• #3641: ENH: Added support for date attributes to io.arff.arffread
• #3644: MAINT: stats: remove superfluous alias in mstats_basic.py
• #3646: ENH: adding sum_duplicates method to COO sparse matrix
• #3647: Fix for #3596: Make fftconvolve threadsafe
• #3650: BUG: sparse: smarter random index selection
• #3652: fix wrong option name in power_divergence docstring example
• #3654: Changing EPD to Canopy
• #3657: BUG: signal.welch: ensure floating point dtype regardless of…
• #3660: TST: mark a test as known fail
• #3661: BLD: ignore pep8 E302 (expected 2 blank lines, found 1)
• #3663: BUG: fix leaking errstate, and ignore invalid= errors in a test
• #3664: BUG: correlate was extremely slow when in2.size > in1.size
• #3667: ENH: Adds default params to pdfs of multivariate_norm
• #3670: ENH: Small speedup of FFT size check
• #3671: DOC: adding differential_evolution function to 0.15 release notes
• #3673: BUG: interpolate/fitpack: arguments to fortran routines may not…
• #3674: Add support for appending to existing netcdf files
• #3681: Speed up test(‘full’), solve Travis CI timeout issues
• #3683: ENH: cluster: rewrite and optimize vq in Cython
• #3684: Update special docs
• #3688: Spacing in special docstrings
• #3692: ENH: scipy.special: Improving sph_harm function
• #3693: Update refguide entries for signal and fftpack
• #3695: Update continuous.rst
• #3696: ENH: check for valid ‘orientation’ kwarg in dendrogram()
• #3701: make ‘a’ and ‘b’ coefficients at least 1d array in filtfilt
- #3702: BUG: cluster: _vq unable to handle large features
- #3704: BUG: special: ellip(k,e) inc nan and double expected value
- #3707: BUG: handle fill_value dtype checks correctly in RegularGridInterpolator
- #3708: Reraise exception on failure to read mat file.
- #3709: BUG: cast 'x' to correct dtype in KroghInterpolator._evaluate
- #3712: ENH: cluster: reimplement the update-step of K-means in Cython
- #3713: FIX: Check type of lfiltic
- #3718: Changed INSTALL file extension to rst
- #3719: address svds returning nans for zero input matrix
- #3722: MAINT: spatial: static, unused code, sqrt(squeuclidean)
- #3725: ENH: use numpys nanmedian if available
- #3727: TST: add a new fixed_point test and change some test function…
- #3731: BUG: fix romb in scipy.integrate.quadrature
- #3734: DOC: simplify examples with semilogx
- #3735: DOC: Add minimal docstrings to lti.impulse/step
- #3736: BUG: cast pchip arguments to floats
- #3744: stub out inherited methods of Akima1DInterpolator
- #3746: DOC: Fix formatting for Raises section
- #3748: ENH: Added discrete Lyapunov transformation solve
- #3750: Enable automated testing with Python 3.4
- #3751: Reverse Cuthill-McKee and Maximum Bipartite Matching reorderings…
- #3759: MAINT: avoid indexing with a float array
- #3762: TST: filter out RuntimeWarning in vq tests
- #3766: TST: cluster: some cleanups in test_hierarchy.py
- #3767: ENH/BUG: support negative m in elliptic integrals
- #3769: ENH: avoid repeated matrix inverse
- #3770: BUG: signal: In lfilt_zi, b was not rescaled correctly when…
- #3772: STY avoid unnecessary transposes in csr_matrix.getcol/row
- #3773: ENH: Add ext parameter to UnivariateSpline call
- #3774: BUG: in integrate/quadpack.h, put all declarations before statements.
- #3779: Incbet fix
- #3788: BUG: Fix lombscargle ZeroDivisionError
- #3791: Some maintenance for doc builds
- #3795: scipy.special.legendre docstring
- #3796: TYPO: sheroidal -> spheroidal
- #3801: BUG: shortest_path overwrite
• #3803: TST: lombscargle regression test related to atan vs atan2
• #3809: ENH: orthogonal procrustes solver
• #3811: ENH: scipy.special, Implemented Ellipsoidal harmonic function:…
• #3819: BUG: make a fully connected csgraph from an ndarray with no zeros
• #3820: MAINT: avoid spurious warnings in binom(n, p=0).mean() etc
• #3825: Don’t claim scipy.cluster does distance matrix calculations.
• #3827: get and set diagonal of coo_matrix, and related csgraph laplacian…
• #3832: DOC: Minor additions to integrate/nquad docstring.
• #3845: Bug fix for #3842: Bug in scipy.optimize.line_search
• #3848: BUG: edge case where the covariance matrix is exactly zero
• #3850: DOC: typo
• #3851: DOC: document default argument values for some arpack functions
• #3860: DOC: sparse: add the function ‘find’ to the module-level docstring
• #3861: BUG: Removed unnecessary storage of args as instance variables…
• #3862: BUG: signal: fix handling of multi-output systems in ss2tf.
• #3865: Feature request: ability to read heterogeneous types in FortranFile
• #3866: MAINT: update pip wheelhouse for installs
• #3871: MAINT: linalg: get rid of calc_lwork.f
• #3872: MAINT: use scipy.linalg instead of np.dual
• #3873: BLD: show a more informative message if Cython wasn’t installed.
• #3874: TST: cluster: cleanup the hierarchy test data
• #3877: DOC: Savitzky-Golay filter version added
• #3878: DOC: move version added to notes
• #3879: small tweaks to the docs
• #3881: FIX incorrect sorting during fancy assignment
• #3885: kendalltau function now returns a nan tuple if empty arrays used…
• #3886: BUG: fixing linprog’s kwarg order to match docs
• #3888: BUG: optimize: In _linprog_simplex, handle the case where the…
• #3891: BUG: stats: Fix ValueError message in chi2_contingency.
• #3892: DOC: sparse.linalg: Fix lobpcg docstring.
• #3894: DOC: stats: Assorted docstring edits.
• #3896: Fix 2 mistakes in MatrixMarket format parsing
• #3897: BUG: associated Legendre function of second kind for 1<x<1.0001
• #3899: BUG: fix undefined behavior in algam
• #3906: MAINT/DOC: Whitespace tweaks in several docstrings.
• #3907: TST: relax bounds of interpolate test to accomodate rounding…
• #3909: MAINT: Create a common version of count_nonzero for compatibility…
• #3910: Fix a couple of test errors in master
• #3911: Use MathJax for the html docs
• #3914: Rework the _roots functions and document them.
• #3916: Remove all linpack_lite code and replace with LAPACK routines
• #3917: splines, constant extrapolation
• #3918: DOC: tweak the rv_discrete docstring example
• #3919: Quadrature speed-up: scipy.special.orthogonal.p_roots with cache
• #3920: DOC: Clarify docstring for sigma parameter for curve_fit
• #3922: Fixed Docstring issues in linprog (Fixes #3905).
• #3924: Coerce args into tuple if necessary.
• #3926: DOC: Surround stats class methods in docstrings with backticks.
• #3927: Changed doc for romb's dx parameter to int.
• #3928: check FITPACK conditions in LSQUnivariateSpline
• #3929: Added a warning about leastsq using with NaNs.
• #3930: ENH: optimize: curve_fit now warns if pcov is undetermined
• #3932: Clarified the k > n case.
• #3933: DOC: remove import scipy as sp abbreviation here and there
• #3936: Add license and copyright holders to test data imported from…
• #3938: DOC: Corrected documentation for return types.
• #3939: DOC: fitpack: add a note about Sch-W conditions to splrep docstring
• #3940: TST: integrate: Remove an invalid test of odeint.
• #3942: FIX: Corrected error message of eigsh.
• #3943: ENH: release GIL for filter and interpolation of ndimage
• #3944: FIX: Raise value error if window data-type is unsupported
• #3946: Fixed signal.get_window with unicode window name
• #3947: MAINT: some docstring fixes and style cleanups in stats.mstats
• #3949: DOC: fix a couple of issues in stats docstrings.
• #3950: TST: sparse: remove known failure that doesn’t fail
• #3951: TST: switch from Rackspace wheelhouse to numpy/cython source…
• #3952: DOC: stats: Small formatting correction to the ‘chi’ distribution…
• #3953: DOC: stats: Several corrections and small additions to docstrings.
• #3955: signal.__init__.py: remove duplicated get_window entry
• #3959: TST: sparse: more “known failures” for DOK that don’t fail
• #3960: BUG: io.netcdf: do not close mmap if there are references left…
• #3965: DOC: Fix a few more sphinx warnings that occur when building…
• #3966: DOC: add guidelines for using test generators in HACKING
• #3968: BUG: sparse.linalg: make Inv objects in arpack garbage-collectable…
• #3971: Remove all linpack_lite code and replace with LAPACK routines
• #3972: fix typo in error message
• #3973: MAINT: better error message for multivariate normal.
• #3981: turn the cryptically named scipy.special information theory functions…
• #3984: Wrap her, syr, her2, syr2 blas routines
• #3990: improve UnivariateSpline docs
• #3991: ENH: stats: return namedtuple for describe output
• #3993: DOC: stats: percentileofscore references np.percentile
• #3997: BUG: linalg: pascal(35) was incorrect: last element overflowed…
• #3998: MAINT: use isMaskedArray instead of is_masked to check type
• #3999: TST: test against all of boost data files.
• #4000: BUG: stats: Fix edge-case handling in a few distributions.
• #4003: ENH: using python's warnings instead of prints in fitpack.
• #4004: MAINT: optimize: remove a couple unused variables in zeros.c
• #4006: BUG: Fix C90 compiler warnings in NL_MinOrMaxFilter1D
• #4007: MAINT/DOC: Fix spelling of ‘decomposition’ in several files.
• #4008: DOC: stats: Split the descriptions of the distributions in the…
• #4015: TST: logsumexp regression test
• #4016: MAINT: remove some inf-related warnings from logsumexp
• #4020: DOC: stats: fix whitespace in docstrings of several distributions
• #4023: Exactly one space required before assignments
• #4024: In dendrogram(): Correct an argument name and a grammar issue…
• #4041: BUG: misc: Ensure that the ‘size’ argument of PIL’s ‘resize’…
• #4049: BUG: Return of _logpmf
• #4051: BUG: expm of integer matrices
• #4052: ENH: integrate: odeint: Handle exceptions in the callback functions.
• #4053: BUG: stats: Refactor argument validation to avoid a unicode issue.
• #4057: Added newline to scipy.sparse.linalg.svds documentation for correct…
• #4058: MAINT: stats: Add note about change to scoreatpercentile in release…
• #4059: ENH: interpolate: Allow splev to accept an n-dimensional array.
• #4064: Documented the return value for scipy.signal.find_peaks_cwt
• #4074: ENH: Support LinearOperator as input to svds
• #4084: BUG: Match exception declarations in scipy/io/matlab/strems.pyx…
• #4091: DOC: special: more clear instructions on how to evaluate polynomials
• #4105: BUG: Workaround for SGEMV segfault in Accelerate
• #4107: DOC: get rid of ‘import *’ in examples
• #4113: DOC: fix typos in distance.yule
• #4114: MAINT C fixes
• #4117: deprecate nanmean, nanmedian and nanstd in favor of their numpy…
• #4126: scipy.io.idl: support description records and fix bug with null…
• #4131: ENH: release GIL in more ndimage functions
• #4132: MAINT: stats: fix a typo [skip ci]
• #4145: DOC: Fix documentation error for nc chi-squared dist
• #4150: Fix _nd_image.geometric_transform endianness bug
• #4153: MAINT: remove use of deprecated numpy API in lib/lapack/ f2py…
• #4156: MAINT: optimize: remove dead code
• #4159: MAINT: optimize: clean up Zeros code
• #4165: DOC: add missing special functions to __doc__
• #4172: DOC: remove misleading procrustes docstring line
• #4175: DOC: sparse: clarify CSC and CSR constructor usage
• #4177: MAINT: enable np.matrix inputs to solve_discrete_lyapunov
• #4179: TST: fix an intermittently failing test case for special.legendre
• #4181: MAINT: remove unnecessary null checks before free
• #4182: Ellipsoidal harmonics
• #4183: Skip Cython build in Travis-CI
• #4184: Pr 4074
• #4187: Pr/3923
• #4190: BUG: special: fix up ellip_harm build
• #4193: BLD: fix msvc compiler errors
• #4194: BUG: fix buffer dtype mismatch on win-amd64
• #4199: ENH: Changed scipy.stats.describe output from datalen to nobs
• #4201: DOC: add blas2 and nan* deprecations to the release notes
• #4243: TST: bump test tolerances
5.38 SciPy 0.14.1 Release Notes

SciPy 0.14.1 is a bug-fix release with no new features compared to 0.14.0.

5.38.1 Issues closed

- #3630: NetCDF reading results in a segfault
- #3631: SuperLU object not working as expected for complex matrices
- #3733: segfault from map_coordinates
- #3780: Segfault when using CSR/CSC matrix and uint32/uint64
- #3781: BUG: sparse: fix omitted types in sparsetools typemaps
- #3802: 0.14.0 API breakage: _gen generators are missing from scipy.stats.distributions API
- #3805: ndimage test failures with numpy 1.10
- #3812: == sometimes wrong on csr_matrix
- #3853: Many scipy.sparse test errors/failures with numpy 1.9.0b2
- #4084: fix exception declarations for Cython 0.21.1 compatibility
- #4093: BUG: fitpack: avoid a memory error in splev(x, tck, der=k)
- #4104: BUG: Workaround SGEMV segfault in Accelerate (maintenance 0.14.x)
- #4143: BUG: fix ndimage functions for large data
- #4149: Bug in expm for integer arrays
- #4145: Backport gh-4041 for 0.14.1 (Ensure that the ‘size’ argument of PIL’s ‘resize’ method is a tuple)
- #4163: Backport #4142 (ZeroDivisionError in scipy.sparse.linalg.lsqr)
- #4164: Backport gh-4153 (remove use of deprecated numpy API in lib/lapack/f2py wrapper)
- #4180: backport pil resize support tuple fix
- #4168: Lots of arpack test failures on windows 32 bits with numpy 1.9.1
- #4203: Matrix multiplication in 0.14.x is more than 10x slower compared…
- #4218: attempt to make ndimage interpolation compatible with numpy relaxed…
- #4225: BUG: off-by-one error in PPoly shape checks
- #4248: BUG: optimize: fix issue with incorrect use of closure for slsqp.

5.39 SciPy 0.14.0 Release Notes
SciPy 0.14.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.14.x branch, and on adding new features on the master branch.

This release requires Python 2.6, 2.7 or 3.2-3.4 and NumPy 1.5.1 or greater.

### 5.39.1 New features

**scipy.interpolate improvements**

A new wrapper function `scipy.interpolate.interpn` for interpolation on regular grids has been added. `interpn` supports linear and nearest-neighbor interpolation in arbitrary dimensions and spline interpolation in two dimensions.

Faster implementations of piecewise polynomials in power and Bernstein polynomial bases have been added as `scipy.interpolate.PPoly` and `scipy.interpolate.BPoly`. New users should use these in favor of `scipy.interpolate.piecewisePolynomial`.

`scipy.interpolate.interp1d` now accepts non-monotonic inputs and sorts them. If performance is critical, sorting can be turned off by using the new `assume_sorted` keyword.

Functionality for evaluation of bivariate spline derivatives in `scipy.interpolate` has been added.

The new class `scipy.interpolate.Akima1DInterpolator` implements the piecewise cubic polynomial interpolation scheme devised by H. Akima.
Functionality for fast interpolation on regular, unevenly spaced grids in arbitrary dimensions has been added as `scipy.interpolate.RegularGridInterpolator`.

**scipy.linalg improvements**

The new function `scipy.linalg.dft` computes the matrix of the discrete Fourier transform. A condition number estimation function for matrix exponential, `scipy.linalg.expm_cond`, has been added.

**scipy.optimize improvements**

A set of benchmarks for optimize, which can be run with `optimize.bench()`, has been added. `scipy.optimize.curve_fit` now has more controllable error estimation via the `absolute_sigma` keyword. Support for passing custom minimization methods to `optimize.minimize()` and `optimize.minimize_scalar()` has been added, currently useful especially for combining `optimize.basinhopping()` with custom local optimizer routines.

**scipy.stats improvements**

A new class `scipy.stats.multivariate_normal` with functionality for multivariate normal random variables has been added. A lot of work on the `scipy.stats` distribution framework has been done. Moment calculations (skew and kurtosis mainly) are fixed and verified, all examples are now runnable, and many small accuracy and performance improvements for individual distributions were merged.

The new function `scipy.stats.anderson_ksamp` computes the k-sample Anderson-Darling test for the null hypothesis that k samples come from the same parent population.

**scipy.signal improvements**

`scipy.signal.iirfilter` and related functions to design Butterworth, Chebyshev, elliptical and Bessel IIR filters now all use pole-zero (“zpk”) format internally instead of using transformations to numerator/denominator format. The accuracy of the produced filters, especially high-order ones, is improved significantly as a result.

The Savitzky-Golay filter was added with the new functions `scipy.signal.savgol_filter` and `scipy.signal.savgol_coeffs`.

The new function `scipy.signal.vectorstrength` computes the vector strength, a measure of phase synchrony, of a set of events.

**scipy.special improvements**

The functions `scipy.special.boxcox` and `scipy.special.boxcox1p`, which compute the Box-Cox transformation, have been added.
**scipy.sparse improvements**

- Significant performance improvement in CSR, CSC, and DOK indexing speed.
- When using Numpy >= 1.9 (to be released in MM 2014), sparse matrices function correctly when given to arguments of `np.dot`, `np.multiply` and other ufuncs. With earlier Numpy and Scipy versions, the results of such operations are undefined and usually unexpected.
- Sparse matrices are no longer limited to $2^{31}$ nonzero elements. They automatically switch to using 64-bit index data type for matrices containing more elements. User code written assuming the sparse matrices use int32 as the index data type will continue to work, except for such large matrices. Code dealing with larger matrices needs to accept either int32 or int64 indices.

### 5.39.2 Deprecated features

**anneal**

The global minimization function `scipy.optimize.anneal` is deprecated. All users should use the `scipy.optimize.basinhopping` function instead.

**scipy.stats**

`randwcdf` and `randwppf` functions are deprecated. All users should use distribution-specific `rvs` methods instead. Probability calculation aliases `zprob`, `fprob` and `ksprob` are deprecated. Use instead the `sf` methods of the corresponding distributions or the `special` functions directly.

**scipy.interpolate**

PiecewisePolynomial class is deprecated.

### 5.39.3 Backwards incompatible changes

**scipy.special.lpmn**

`lpmn` no longer accepts complex-valued arguments. A new function `clpmn` with uniform complex analytic behavior has been added, and it should be used instead.

**scipy.sparse.linalg**

Eigenvectors in the case of generalized eigenvalue problem are normalized to unit vectors in 2-norm, rather than following the LAPACK normalization convention.

The deprecated UMFPACK wrapper in `scipy.sparse.linalg` has been removed due to license and install issues. If available, `scikits.umfpack` is still used transparently in the `spsolve` and `factorized` functions. Otherwise, SuperLU is used instead in these functions.
scipy.stats

The deprecated functions glm, oneway and cmedian have been removed from scipy.stats.
stats.scoreatpercentile now returns an array instead of a list of percentiles.

scipy.interpolate

The API for computing derivatives of a monotone piecewise interpolation has changed: if \( p \) is a PchipInterpolator object, \( p.derivative(der) \) returns a callable object representing the derivative of \( p \). For in-place derivatives use the second argument of the \_call\_ method: \( p(0.1, \text{der}=2) \) evaluates the second derivative of \( p \) at \( x=0.1 \).

The method \( p.derivatives \) has been removed.

5.39.4 Other changes

5.39.5 Authors

• Marc Abramowitz +
• Anders Bech Borchersen +
• Vincent Arel-Bundock +
• Petr Baudis +
• Max Bolingbroke
• François Boulogne
• Matthew Brett
• Lars Buitinck
• Evgeni Burovski
• CJ Carey +
• Thomas A Caswell +
• Pawel Chojnacki +
• Phillip Cloud +
• Stefano Costa +
• David Cournapeau
• David Menendez Hurtado +
• Matthieu Dartiailh +
• Christoph Deil +
• Jörg Dietrich +
• endolith
• Francisco de la Peña +
• Ben FrantzDale +
• Jim Garrison +
• André Gaul
• Christoph Gohlke
• Ralf Gommers
• Robert David Grant
• Alex Griffing
• Blake Griffith
• Yaroslav Halchenko
• Andreas Hilboll
• Kat Huang
• Gert-Ludwig Ingold
• James T. Webber +
• Dorota Jarecka +
• Todd Jennings +
• Thouis (Ray) Jones
• Juan Luis Cano Rodriguez
• kritz +
• Jacques Kvam +
• Eric Larson +
• Justin Lavoie +
• Denis Laxalde
• Jussi Leinonen +
• lemonlaug +
• Tim Leslie
• Alain Leufroy +
• George Lewis +
• Max Linke +
• Brandon Liu +
• Benny Malengier +
• Matthias Kümmerer +
• Cimarron Mittelsteadt +
• Eric Moore
• Andrew Nelson +
• Niklas Hambüchen +
• Joel Nothman +
• Clemens Novak
• Emanuele Olivetti +
- Stefan Otte +
- peb +
- Josef Perktold
- pjverneck
- poolio
- Jérôme Roy +
- Carl Sandrock +
- Andrew Sczesnak +
- Shauna +
- Fabrice Silva
- Daniel B. Smith
- Patrick Snape +
- Thomas Spura +
- Jacob Stevenson
- Julian Taylor
- Tomas Tomecek
- Richard Tsai
- Jacob Vanderplas
- Joris Vankerschaver +
- Pauli Virtanen
- Warren Weckesser

A total of 80 people contributed to this release. People with a “+” by their names contributed a patch for the first time. This list of names is automatically generated, and may not be fully complete.

Issues closed

- #1325: add custom axis keyword to dendrogram function in scipy.cluster.hierarchy…
- #1437: Wrong pochhammer symbol for negative integers (Trac #910)
- #1555: scipy.io.netcdf leaks file descriptors (Trac #1028)
- #1569: sparse matrix failed with element-wise multiplication using numpy.multiply()…
- #1833: Sparse matrices are limited to $2^{32}$ non-zero elements (Trac #1307)
- #1834: scipy.linalg.eig does not normalize eigenvector if B is given…
- #1866: stats for invgamma (Trac #1340)
- #1886: stats.zipf floating point warnings (Trac #1361)
- #1887: Stats continuous distributions - floating point warnings (Trac…
- #1897: scoreatpercentile() does not handle empty list inputs (Trac #1372)
- #1918: splint returns incorrect results (Trac #1393)
- #1949: kurtosistest fails in mstats with type error (Trac #1424)
- #2092: scipy.test leaves darwin27compiled_catalog. cpp and so files…
- #2106: stats ENH: shape parameters in distribution docstrings (Trac…
- #2123: Bad behavior of sparse matrices in a binary ufunc (Trac #1598)
- #2152: Fix mmio/fromfile on gzip on Python 3 (Trac #1627)
- #2164: stats.rice.pdf(x, 0) returns nan (Trac #1639)
- #2169: scipy.optimize.fmin_bfgs not handling functions with boundaries…
- #2177: scipy.cluster.hierarchy.ClusterNode.pre_order returns IndexError…
- #2179: coo.todense() segfaults (Trac #1654)
- #2185: Precision of scipy.ndimage.gaussian_filter*() limited (Trac #1660)
- #2186: scipy.stats.mstats.kurtosistest crashes on 1d input (Trac #1661)
- #2238: Negative p-value on hypergeom.cdf (Trac #1719)
- #2283: ascending order in interpolation routines (Trac #1764)
- #2288: mstats.kurtosistest is incorrectly converting to float, and fails…
- #2396: lpmn wrong results for | z | > 1 (Trac #1877)
- #2398: ss2tf returns num as 2D array instead of 1D (Trac #1879)
- #2406: linkage does not take Unicode strings as method names (Trac #1887)
- #2443: IIR filter design should not transform to tf representation internally
- #2572: class method solve of splu return object corrupted or falsely…
- #2667: stats endless loop ?
- #2671: .stats.hypergeom documentation error in the note about pmf
- #2691: BUG scipy.linalg.lapack: potrf/ptroi interpret their ‘lower’…
- #2721: Allow use of ellipsis in scipy.sparse slicing
- #2741: stats: deprecate and remove alias for special functions
- #2742: stats add rvs to rice distribution
- #2765: bugs stats entropy
- #2832: argrelextrema returns tuple of 2 empty arrays when no peaks found…
- #2861: scipy.stats.scoreatpercentile broken for vector per
- #2891: COBYLA successful termination when constraints violated
- #2919: test failure with the current master
- #2922: ndimage.percentile_filter ignores origin argument for multidimensional…
- #2938: Sparse/dense matrix inplace operations fail due to __numpy_ufunc__
- #2944: MacPorts builds yield 40Mb worth of build warnings
- #2945: FAIL: test_random_complex (test_basic.TestDet)
- #2947: FAIL: Test some trivial edge cases for savgol_filter()
- #2953: Scipy Delaunay triangulation is not oriented
- #2971: scipy.stats.mstats.winsorize documentation error
- #2980: Problems running what seems a perfectly valid example
- #2996: entropy for rv_discrete is incorrect?!
- #2998: Fix numpy version comparisons
- #3002: python setup.py install fails
- #3014: Bug in stats.fisher_exact
- #3030: relative entropy using scipy.stats.distribution.entropy when...
- #3037: scipy.optimize.curve_fit leads to unexpected behavior when input...
- #3047: mstats.ttest_rel axis=None, requires masked array
- #3059: BUG: Slices of sparse matrices return incorrect dtype
- #3063: range keyword in binned_statistics incorrect
- #3067: cumtrapz not working as expected
- #3069: sinc
- #3086: standard error calculation inconsistent between ‘stats’ and ‘mstats’
- #3094: Add a perm function into scipy.misc and an enhancement of...
- #3111: scipy.sparse.[] stack don’t respect anymore the dtype parameter
- #3172: optimize.curve_fit uses different nomenclature from optimize.leastsq
- #3196: scipy.stats.mstats.gmean does not actually take dtype
- #3212: Dot product of csr_matrix causes segmentation fault
- #3227: ZeroDivisionError in broyden1 when initial guess is the right...
- #3238: lbfgsb output not suppressed by disp=0
- #3249: Sparse matrix min/max/etc don’t support axis=-1
- #3251: cdist performance issue with ‘squeuclidean’ metric
- #3279: logm fails for singular matrix
- #3285: signal.chirp(method='hyp') disallows hyperbolic upsweep
- #3299: MEMORY LEAK: fmin_tnc
- #3330: test failures with the current master
- #3345: scipy and/or numpy change is causing tests to fail in another...
- #3363: splu does not work for non-vector inputs
- #3385: expit does not handle large arguments well
- #3395: specfun.f doesn’t compile with MinGW
- #3399: Error message bug in scipy.cluster.hierarchy.linkage
- #3404: interpolate._ppoly doesn’t build with MinGW
- #3412: Test failures in signal
- #3466: ‘scipy.sparse.csgraph.shortest_path’ does not work on ‘scipy.sparse.
csr_matrix’ or ‘lil_matrix’
Pull requests

• #442: ENH: sparse: enable 64-bit index arrays & nnz > 2**31
• #2766: DOC: remove doc/seps/technology-preview.rst
• #2772: TST: stats: Added a regression test for stats.wilcoxon. Closes…
• #2778: Clean up stats._support, close statistics review issues
• #2792: BUG io: fix file descriptor closing for netcdf variables
• #2847: Rice distribution: extend to b=0, add an explicit rvs method.
• #2878: [stats] fix formulas for higher moments of dweibull distribution
• #2904: ENH: moments for the zipf distribution
• #2907: ENH: add coverage info with coveralls.io for Travis runs.
• #2932: BUG+TST: setdiag implementation for dia_matrix (Close #2931)…
• #2942: Misc fixes pointed out by Eclipse PyDev static code analysis
• #2946: ENH: allow non-monotonic input in interp1d
• #2986: BUG: runtests: chdir away from root when running tests
• #2987: DOC: linalg: don’t recommend np.linalg.norm
• #2992: ENH: Add “limit” parameter to dijkstra calculation
• #2995: ENH: Use int shape
• #3006: DOC: stats: add a log base note to the docstring
• #3007: DEP: stats: Deprecate randwppf and randwcdff
• #3008: Fix mstats.kurtosistest, and test coverage for skewtest/normaltest
• #3009: Minor reST typo
• #3010: Add scipy.optimize.Result to API docs
• #3012: Corrects documentation error
• #3052: PEP-8 conformance improvements
• #3064: Binned statistic
• #3068: Fix Issue #3067 fix cumtrapz that was raising an exception when…
• #3073: Arff reader with nominal value of 1 character
• #3074: Some maintenance work
• #3080: Review and clean up all Box-Cox functions
• #3083: Bug: should return 0 if no regions found
• #3085: BUG: Use zpk in IIR filter design to improve accuracy
• #3101: refactor stats tests a bit
• #3112: ENH: implement Akima interpolation in 1D
• #3123: MAINT: an easier way to make ranges from slices
• #3124: File object support for imread and imsave
• #3126: pep8ify stats/distributions.py
• #3134: MAINT: split distributions.py into three files
• #3138: clean up tests for discrete distributions
• #3155: special: handle the edge case lambda=0 in pdtr, pdtrc and pdtrik
• #3156: Rename optimize.Result to OptimizeResult
• #3166: BUG: make curve_fit() work with array_like input. Closes gh-3037.
• #3170: Fix numpy version checks
• #3175: use numpy sinc
• #3177: Update numpy version warning, remove oldnumeric import
• #3178: DEP: remove deprecated umfpack wrapper. Closes gh-3002.
• #3179: DOC: add BPoly to the docs
• #3180: Suppress warnings when running stats.test()
• #3181: altered sem func in mstats to match stats
• #3182: Make weave tests behave
• #3183: ENH: Add k-sample Anderson-Darling test to stats module
• #3186: Fix stats.scoreatpercentile
• #3187: DOC: make curve_fit nomenclature same as leastsq
• #3201: Added axis keyword to dendrogram function
• #3207: Make docstring examples in stats.distributions docstrings runnable
• #3218: BUG: integrate: Fix banded jacobian handling in the “vode” and…
• #3222: BUG: limit input ranges in special.nctdtr
• #3223: Fix test errors with numpy master
• #3224: Fix int32 overflows in sparsertools
• #3228: DOC: tf2ss zpk2ss note controller canonical form
• #3234: Add See Also links and Example graphs to filter design *ord functions
• #3235: Updated the buttord function to be consistent with the other…
• #3239: correct doc for pchip interpolation
• #3240: DOC: fix ReST errors in the BPoly docstring
• #3241: RF: check write attr of fileobject without writing
• #3243: a bit of maintainence work in stats
• #3245: BUG/ENH: stats: make frozen distributions hold separate instances
• #3247: ENH function to return nnz per row/column in some sparse matrices
• #3248: ENH much more efficient sparse min/max with axis
• #3252: Fast sqeuclidean
• #3253: FIX support axis=-1 and -2 for sparse reduce methods
• #3254: TST tests for non-canonical input to sparse matrix operations
• #3272: BUG: sparse: fix bugs in dia_matrix.setdiag
• #3278: Also generate a tar.xz when running paver xdist
• #3286: DOC: update 0.14.0 release notes.
• #3289: TST: remove insecure mktemp use in tests
• #3292: MAINT: fix a backwards incompatible change to stats.distributions.__all__
• #3293: ENH: signal: Allow upsweeps of frequency in the ‘hyperbolic’…
• #3302: ENH: add dtype arg to stats.mstats.gmean and stats.mstats.hmean
• #3307: DOC: add note about different ba forms in tf2zpk
• #3309: doc enhancements to scipy.stats.mstats.winsorize
• #3310: DOC: clarify matrix vs array in mmio docstrings
• #3314: BUG: fix scipy.io.mmread() of gzipped files under Python3
• #3323: ENH: Efficient interpolation on regular grids in arbitrary dimensions
• #3332: DOC: clean up scipy.special docs
• #3335: ENH: improve nanmedian performance
• #3347: BUG: fix use of np.max in stats.fisher_exact
• #3356: ENH: sparse: speed up LIL indexing + assignment via Cython
• #3357: Fix “imresize does not work with size = int”
• #3358: MAINT: rename AkimaInterpolator to Akima1DInterpolator
• #3366: WHT: sparse: reindent dsolve/*.c *.h
• #3367: BUG: sparse/dsolve: fix dense matrix fortran order bugs in superlu…
• #3369: ENH minimize, minimize_scalar: Add support for user-provided…
• #3371: scipy.stats.sigmaclip doesn’t appear in the html docs.
• #3373: BUG: sparse/dsolve: detect invalid LAPACK parameters in superlu…
• #3375: ENH: sparse/dsolve: make the L and U factors of splu and spilu…
• #3377: MAINT: make travis build one target against Numpy 1.5
• #3378: MAINT: fftpack: Remove the use of 'import *' in a couple test…
• #3381: MAINT: replace np.isinf(x) & (x>0) -> np.isposinf(x) to avoid…
• #3383: MAINT: skip float96 tests on platforms without float96
• #3384: MAINT: add pyflakes to Travis-CI
• #3386: BUG: stable evaluation of expit
• #3388: BUG: SuperLU: fix missing declaration of dlamch
• #3389: BUG: sparse: downcast 64-bit indices safely to intp when required
• #3390: BUG: nonlinear solvers are not confused by lucky guess
• #3391: TST: fix sparse test errors due to axis=-1,-2 usage in np.matrix.sum().
• #3392: BUG: sparse/lil: fix up Cython bugs in fused type lookup
• #3393: BUG: sparse/compressed: work around bug in np.unique in earlier…
• #3394: BUG: allow ClusterNode.pre_order() for non-root nodes
• #3400: BUG: cluster.linkage ValueError typo bug
• #3402: BUG: special: In specfun.f, replace the use of CMPLX with DCMPLX…
• #3408: MAINT: sparse: Numpy 1.5 compatibility fixes
• #3410: MAINT: interpolate: fix blas defs in _ppoly
• #3411: MAINT: Numpy 1.5 fixes in interpolate
• #3413: Fix more test issues with older numpy versions
• #3414: TST: signal: loosen some error tolerances in the filter tests…
• #3415: MAINT: tools: automated close issue + pr listings for release…
• #3440: MAINT: wrap sparsertools manually instead via SWIG
• #3460: TST: open image file in binary mode
• #3467: BUG: fix validation in csgraph.shortest_path

5.40 SciPy 0.13.2 Release Notes

SciPy 0.13.2 is a bug-fix release with no new features compared to 0.13.1.

5.40.1 Issues fixed

• 3096: require Cython 0.19, earlier versions have memory leaks in fused types
• 3079: ndimage.label fix swapped 64-bitness test
• 3108: optimize.fmin_slsqp constraint violation

5.41 SciPy 0.13.1 Release Notes

SciPy 0.13.1 is a bug-fix release with no new features compared to 0.13.0. The only changes are several fixes in ndimage, one of which was a serious regression in ndimage.label (Github issue 3025), which gave incorrect results in 0.13.0.

5.41.1 Issues fixed

• 3025: ndimage.label returns incorrect results in scipy 0.13.0
• 1992: ndimage.label return type changed from int32 to uint32
• 1992: ndimage.find_objects doesn’t work with int32 input in some cases
5.42 SciPy 0.13.0 Release Notes

Contents

• SciPy 0.13.0 Release Notes
  – New features
    * scipy.integrate improvements
      · N-dimensional numerical integration
      · dopri* improvements
    * scipy.linalg improvements
      · Interpolative decompositions
      · Polar decomposition
      · BLAS level 3 functions
      · Matrix functions
    * scipy.optimize improvements
      · Trust-region unconstrained minimization algorithms
    * scipy.sparse improvements
      · Boolean comparisons and sparse matrices
      · CSR and CSC fancy indexing
    * scipy.sparse.linalg improvements
    * scipy.spatial improvements
    * scipy.signal improvements
    * scipy.special improvements
    * scipy.io improvements
      · Unformatted Fortran file reader
      · scipy.io.wavfile enhancements
    * scipy.interpolate improvements
      · B-spline derivatives and antiderivatives
    * scipy.stats improvements
  – Deprecated features
    * expm2 and expm3
    * scipy.stats functions
  – Backwards incompatible changes
    * LIL matrix assignment
    * Deprecated radon function removed
    * Removed deprecated keywords xa and xb from stats.distributions
SciPy 0.13.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.13.x branch, and on adding new features on the master branch.

This release requires Python 2.6, 2.7 or 3.1-3.3 and NumPy 1.5.1 or greater. Highlights of this release are:

- support for fancy indexing and boolean comparisons with sparse matrices
- interpolative decompositions and matrix functions in the linalg module
- two new trust-region solvers for unconstrained minimization

### 5.42.1 New features

**scipy.integrate** improvements

N-dimensional numerical integration

A new function `scipy.integrate.nquad`, which provides N-dimensional integration functionality with a more flexible interface than `dblquad` and `tplquad`, has been added.

**dopri** improvements

The intermediate results from the `dopri` family of ODE solvers can now be accessed by a `solout` callback function.

**scipy.linalg** improvements

Interpolative decompositions

Scipy now includes a new module `scipy.linalg.interpolative` containing routines for computing interpolative matrix decompositions (ID). This feature is based on the ID software package by P.G. Martinsson, V. Rokhlin, Y. Shkolnisky, and M. Tygert, previously adapted for Python in the PymatrixId package by K.L. Ho.

Polar decomposition

A new function `scipy.linalg.polar`, to compute the polar decomposition of a matrix, was added.

BLAS level 3 functions

The BLAS functions `symm`, `syrk`, `syr2k`, `hemm`, `herk` and `her2k` are now wrapped in `scipy.linalg`. 

SciPy0.13.0istheculminationof7monthsofhardwork. Itcontainsmanynewfeatures,numerousbug-fixes,improved
testcoverageandbetterdocumentation.TherehavebeenanumberofdeprecationsandAPIchangesinthisrelease,which
aredocumentedbelow. Allusersareencouragedtoupgradetothisrelease,astherearealargenumberofbug-fixesand
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.13.x branch, and on adding
new features on the master branch.

This release requires Python 2.6, 2.7 or 3.1-3.3 and NumPy 1.5.1 or greater. Highlights of this release are:

- support for fancy indexing and boolean comparisons with sparse matrices
- interpolative decompositions and matrix functions in the linalg module
- two new trust-region solvers for unconstrained minimization

### 5.42.1 New features

**scipy.integrate** improvements

N-dimensional numerical integration

A new function `scipy.integrate.nquad`, which provides N-dimensional integration functionality with a more
flexible interface than `dblquad` and `tplquad`, has been added.

**dopri** improvements

The intermediate results from the `dopri` family of ODE solvers can now be accessed by a `solout` callback function.

**scipy.linalg** improvements

Interpolative decompositions

Scipy now includes a new module `scipy.linalg.interpolative` containing routines for computing interpolative
matrix decompositions (ID). This feature is based on the ID software package by P.G. Martinsson, V. Rokhlin, Y.
Shkolnisky, and M. Tygert, previously adapted for Python in the PymatrixId package by K.L. Ho.

Polar decomposition

A new function `scipy.linalg.polar`, to compute the polar decomposition of a matrix, was added.

BLAS level 3 functions

The BLAS functions `symm`, `syrk`, `syr2k`, `hemm`, `herk` and `her2k` are now wrapped in `scipy.linalg`. 

SciPy0.13.0istheculminationof7monthsofhardwork. Itcontainsmanynewfeatures,numerousbug-fixes,improved
testcoverageandbetterdocumentation.TherehavebeenanumberofdeprecationsandAPIchangesinthisrelease,which
aredocumentedbelow. Allusersareencouragedtoupgradetothisrelease,astherearealargenumberofbug-fixesand
optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.13.x branch, and on adding
new features on the master branch.

This release requires Python 2.6, 2.7 or 3.1-3.3 and NumPy 1.5.1 or greater. Highlights of this release are:

- support for fancy indexing and boolean comparisons with sparse matrices
- interpolative decompositions and matrix functions in the linalg module
- two new trust-region solvers for unconstrained minimization

### 5.42.1 New features

**scipy.integrate** improvements

N-dimensional numerical integration

A new function `scipy.integrate.nquad`, which provides N-dimensional integration functionality with a more
flexible interface than `dblquad` and `tplquad`, has been added.

**dopri** improvements

The intermediate results from the `dopri` family of ODE solvers can now be accessed by a `solout` callback function.

**scipy.linalg** improvements

Interpolative decompositions

Scipy now includes a new module `scipy.linalg.interpolative` containing routines for computing interpolative
matrix decompositions (ID). This feature is based on the ID software package by P.G. Martinsson, V. Rokhlin, Y.
Shkolnisky, and M. Tygert, previously adapted for Python in the PymatrixId package by K.L. Ho.

Polar decomposition

A new function `scipy.linalg.polar`, to compute the polar decomposition of a matrix, was added.

BLAS level 3 functions

The BLAS functions `symm`, `syrk`, `syr2k`, `hemm`, `herk` and `her2k` are now wrapped in `scipy.linalg`.
Matrix functions

Several matrix function algorithms have been implemented or updated following detailed descriptions in recent papers of Nick Higham and his co-authors. These include the matrix square root (\texttt{sqrtm}), the matrix logarithm (\texttt{logm}), the matrix exponential (\texttt{expm}) and its Frechet derivative (\texttt{expm\_frechet}), and fractional matrix powers (\texttt{fractional\_matrix\_power}).

\texttt{scipy.optimize} improvements

Trust-region unconstrained minimization algorithms

The \texttt{minimize} function gained two trust-region solvers for unconstrained minimization: \texttt{dogleg} and \texttt{trust\_ncg}.

\texttt{scipy.sparse} improvements

Boolean comparisons and sparse matrices

All sparse matrix types now support boolean data, and boolean operations. Two sparse matrices \( A \) and \( B \) can be compared in all the expected ways \( A < B, A \geq B, A \neq B \), producing similar results as dense Numpy arrays. Comparisons with dense matrices and scalars are also supported.

CSR and CSC fancy indexing

Compressed sparse row and column sparse matrix types now support fancy indexing with boolean matrices, slices, and lists. So where \( A \) is a (CSC or CSR) sparse matrix, you can do things like:

\begin{verbatim}
>>> A[A > 0.5] = 1    # since Boolean sparse matrices work
>>> A[:,2,:3] = 2
>>> A[[1,2],2] = 3
\end{verbatim}

\texttt{scipy.sparse.linalg} improvements

The new function \texttt{onenormest} provides a lower bound of the 1-norm of a linear operator and has been implemented according to Higham and Tisseur (2000). This function is not only useful for sparse matrices, but can also be used to estimate the norm of products or powers of dense matrices without explicitly building the intermediate matrix.

The multiplicative action of the matrix exponential of a linear operator (\texttt{expm\_multiply}) has been implemented following the description in Al-Mohy and Higham (2011).

Abstract linear operators (\texttt{scipy.sparse.linalg.LinearOperator}) can now be multiplied, added to each other, and exponentiated, producing new linear operators. This enables easier construction of composite linear operations.

\texttt{scipy.spatial} improvements

The vertices of a \texttt{ConvexHull} can now be accessed via the \texttt{vertices} attribute, which gives proper orientation in 2-D.
scipy.signal improvements

The cosine window function `scipy.signal.cosine` was added.

scipy.special improvements

New functions `scipy.special.xlogy` and `scipy.special.xlog1py` were added. These functions can simplify and speed up code that has to calculate \( x \times \log(y) \) and give 0 when \( x = 0 \).

scipy.io improvements

Unformatted Fortran file reader

The new class `scipy.io.FortranFile` facilitates reading unformatted sequential files written by Fortran code.

scipy.io.wavfile enhancements

`scipy.io.wavfile.write` now accepts a file buffer. Previously it only accepted a filename.

`scipy.io.wavfile.read` and `scipy.io.wavfile.write` can now handle floating point WAV files.

scipy.interpolate improvements

B-spline derivatives and antiderivatives

`scipy.interpolate.splder` and `scipy.interpolate.splantider` functions for computing B-splines that represent derivatives and antiderivatives of B-splines were added. These functions are also available in the class-based FITPACK interface as `UnivariateSpline.derivative` and `UnivariateSpline.antiderivative`.

scipy.stats improvements

Distributions now allow using keyword parameters in addition to positional parameters in all methods.

The function `scipy.stats.power_divergence` has been added for the Cressie-Read power divergence statistic and goodness of fit test. Included in this family of statistics is the “G-test” (https://en.wikipedia.org/wiki/G-test).

`scipy.stats.mood` now accepts multidimensional input.

An option was added to `scipy.stats.wilcoxon` for continuity correction.

`scipy.stats.chisquare` now has an `axis` argument.

`scipy.stats.mstats.chisquare` now has `axis` and `ddof` arguments.

5.42.2 Deprecated features

expm2 and expm3

The matrix exponential functions `scipy.linalg.expm2` and `scipy.linalg.expm3` are deprecated. All users should use the numerically more robust `scipy.linalg.expm` function instead.
scipy.stats functions

`scipy.stats.oneway` is deprecated; `scipy.stats.f_oneway` should be used instead.

`scipy.stats glm` is deprecated. `scipy.stats.ttest_ind` is an equivalent function; more full-featured general (and generalized) linear model implementations can be found in statsmodels.

`scipy.stats.cmedian` is deprecated; `numpy.median` should be used instead.

5.42.3 Backwards incompatible changes

LIL matrix assignment

Assigning values to LIL matrices with two index arrays now works similarly as assigning into ndarrays:

```python
>>> x = lil_matrix((3, 3))
>>> x[[0,1,2],[0,1,2]] = [0,1,2]
>>> x.todense()
matrix([[0., 0., 0.],
 [0., 1., 0.],
 [0., 0., 2.]])
```

rather than giving the result:

```python
>>> x.todense()
matrix([[0., 1., 2.],
 [0., 1., 2.],
 [0., 1., 2.]])
```

Users relying on the previous behavior will need to revisit their code. The previous behavior is obtained by `x[numpy.ix_([0,1,2],[0,1,2])] = ...`

Deprecated `radon` function removed

The `misc.radon` function, which was deprecated in scipy 0.11.0, has been removed. Users can find a more full-featured `radon` function in scikit-image.

Removed deprecated keywords `xa` and `xb` from `stats.distributions`

The keywords `xa` and `xb`, which were deprecated since 0.11.0, have been removed from the distributions in `scipy.stats`.

Changes to MATLAB file readers / writers

The major change is that 1D arrays in numpy now become row vectors (shape 1, N) when saved to a MATLAB 5 format file. Previously 1D arrays saved as column vectors (N, 1). This is to harmonize the behavior of writing MATLAB 4 and 5 formats, and adapt to the defaults of numpy and MATLAB - for example `np.atleast_2d` returns 1D arrays as row vectors.

Trying to save arrays of greater than 2 dimensions in MATLAB 4 format now raises an error instead of silently reshaping the array as 2D.

scipy.io.loadmat('afile') used to look for afile on the Python system path (sys.path); now loadmat only looks in the current directory for a relative path filename.

5.42.4 Other changes

Security fix: scipy.weave previously used temporary directories in an insecure manner under certain circumstances. Cython is now required to build unreleased versions of scipy. The C files generated from Cython sources are not included in the git repo anymore. They are however still shipped in source releases.

The code base received a fairly large PEP8 cleanup. A tox pep8 command has been added; new code should pass this test command.

Scipy cannot be compiled with gfortran 4.1 anymore (at least on RH5), likely due to that compiler version not supporting entry constructs well.

5.42.5 Authors

This release contains work by the following people (contributed at least one patch to this release, names in alphabetical order):

- Jorge Cañardo Alastuey +
- Tom Aldcroft +
- Max Bolingbroke +
- Joseph Jon Booker +
- François Boulogne
- Matthew Brett
- Christian Brodbeck +
- Per Brodictkorb +
- Christian Brueffer +
- Lars Buitinck
- Evgeni Burovski +
- Tim Cera
- Lawrence Chan +
- David Cournapeau
- Dražen Lučanin +
- Alexander J. Dunlap +
- endolith
- André Gaul +
- Christoph Gohlke
- Ralf Gommers
- Alex Griffing +
- Blake Griffith +
A total of 65 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

5.43 SciPy 0.12.1 Release Notes

SciPy 0.12.1 is a bug-fix release with no new features compared to 0.12.0. The single issue fixed by this release is a security issue in `scipy.weave`, which was previously using temporary directories in an insecure manner under certain circumstances.

5.44 SciPy 0.12.0 Release Notes

Contents

- SciPy 0.12.0 Release Notes
  - New features
    * scipy.spatial improvements
      - cKDTree feature-complete
      - Voronoi diagrams and convex hulls
      - Delaunay improvements
    * Spectral estimators (scipy.signal)
    * scipy.optimize improvements
      - Callback functions in L-BFGS-B and TNC
      - Basin hopping global optimization (scipy.optimize.basinhopping)
    * scipy.special improvements
      - Revised complex error functions
      - Faster orthogonal polynomials
    * scipy.sparse.linalg features
    * Listing Matlab(R) file contents in scipy.io
    * Documented BLAS and LAPACK low-level interfaces (scipy.linalg)
    * Polynomial interpolation improvements (scipy.interpolate)
  - Deprecated features
SciPy 0.12.0 is the culmination of 7 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.12.x branch, and on adding new features on the master branch.

Some of the highlights of this release are:

- Completed QHull wrappers in scipy.spatial.
- cKDTree now a drop-in replacement for KDTree.
- A new global optimizer, basinhopping.
- Support for Python 2 and Python 3 from the same code base (no more 2to3).

This release requires Python 2.6, 2.7 or 3.1-3.3 and NumPy 1.5.1 or greater. Support for Python 2.4 and 2.5 has been dropped as of this release.

## 5.44.1 New features

### scipy.spatial improvements

#### cKDTree feature-complete

Cython version of KDTree, cKDTree, is now feature-complete. Most operations (construction, query, query_ball_point, query_pairs, count_neighbors and sparse_distance_matrix) are between 200 and 1000 times faster in cKDTree than in KDTree. With very minor caveats, cKDTree has exactly the same interface as KDTree, and can be used as a drop-in replacement.

#### Voronoi diagrams and convex hulls

scipy.spatial now contains functionality for computing Voronoi diagrams and convex hulls using the Qhull library. (Delaunay triangulation was available since Scipy 0.9.0.)

#### Delaunay improvements

It's now possible to pass in custom Qhull options in Delaunay triangulation. Coplanar points are now also recorded, if present. Incremental construction of Delaunay triangulations is now also possible.
**Spectral estimators (scipy.signal)**

The functions `scipy.signal.periodogram` and `scipy.signal.welch` were added, providing DFT-based spectral estimators.

**scipy.optimize improvements**

**Callback functions in L-BFGS-B and TNC**

A callback mechanism was added to L-BFGS-B and TNC minimization solvers.

**Basin hopping global optimization (scipy.optimize.basinhopping)**

A new global optimization algorithm. Basinhopping is designed to efficiently find the global minimum of a smooth function.

**scipy.special improvements**

**Revised complex error functions**

The computation of special functions related to the error function now uses a new Faddeeva library from MIT which increases their numerical precision. The scaled and imaginary error functions `erfcx` and `erfi` were also added, and the Dawson integral `dawsn` can now be evaluated for a complex argument.

**Faster orthogonal polynomials**

Evaluation of orthogonal polynomials (the `eval_*` routines) in now faster in `scipy.special`, and their `out=` argument functions properly.

**scipy.sparse.linalg features**

- In `scipy.sparse.linalg.spsolve`, the `b` argument can now be either a vector or a matrix.
- `scipy.sparse.linalg.inv` was added. This uses `spsolve` to compute a sparse matrix inverse.
- `scipy.sparse.linalg.expm` was added. This computes the exponential of a sparse matrix using a similar algorithm to the existing dense array implementation in `scipy.linalg.expm`.

**Listing Matlab(R) file contents in scipy.io**

A new function `whosmat` is available in `scipy.io` for inspecting contents of MAT files without reading them to memory.

**Documented BLAS and LAPACK low-level interfaces (scipy.linalg)**

The modules `scipy.linalg.blas` and `scipy.linalg.lapack` can be used to access low-level BLAS and LAPACK functions.
Polynomial interpolation improvements (*scipy.interpolate*)

The barycentric, Krogh, piecewise and pchip polynomial interpolators in `scipy.interpolate` accept now an `axis` argument.

5.44.2 Deprecated features

*scipy.lib.lapack*

The module `scipy.lib.lapack` is deprecated. You can use `scipy.linalg.lapack` instead. The module `scipy.lib.blas` was deprecated earlier in Scipy 0.10.0.

*fblas and cblas*

Accessing the modules `scipy.linalg.fblas`, `cblas`, `flapack`, `clapack` is deprecated. Instead, use the modules `scipy.linalg.lapack` and `scipy.linalg.blas`.

5.44.3 Backwards incompatible changes

Removal of *scipy.io.save_as_module*

The function `scipy.io.save_as_module` was deprecated in Scipy 0.11.0, and is now removed.

Its private support modules `scipy.io.dumbdbm_patched` and `scipy.io.dumb_shelve` are also removed.

*axis* argument added to *scipy.stats.scoreatpercentile*

The function `scipy.stats.scoreatpercentile` has been given an `axis` argument. The default argument is `axis=None`, which means the calculation is done on the flattened array. Before this change, `scoreatpercentile` would act as if `axis=0` had been given. Code using `scoreatpercentile` with a multidimensional array will need to add `axis=0` to the function call to preserve the old behavior. (This API change was not noticed until long after the release of 0.12.0.)

5.44.4 Authors

- Anton Akhmerov +
- Alexander Eberspächer +
- Anne Archibald
- Jisk Attema +
- K.-Michael Aye +
- bemasc +
- Sebastian Berg +
- François Boulogne +
- Matthew Brett
- Lars Buitinck
- Steven Byrnes +
• Tim Cera +
• Christian +
• Keith Clawson +
• David Cournapeau
• Nathan Crock +
• endolith
• Bradley M. Froehle +
• Matthew R Goodman
• Christoph Gohlke
• Ralf Gommers
• Robert David Grant +
• Yaroslav Halchenko
• Charles Harris
• Jonathan Helmus
• Andreas Hilboll
• Hugo +
• Oleksandr Huziy
• Jeroen Demeyer +
• Johannes Schönberger +
• Steven G. Johnson +
• Chris Jordan-Squire
• Jonathan Taylor +
• Niklas Kroeger +
• Jerome Kieffer +
• kingson +
• Josh Lawrence
• Denis Laxalde
• Alex Leach +
• Tim Leslie
• Richard Lindsley +
• Lorenzo Luengo +
• Stephen McQuay +
• MinRK
• Sturla Molden +
• Eric Moore +
• mszep +
• Matt Newville +
• Vlad Niculae
• Travis Oliphant
• David Parker +
• Fabian Pedregosa
• Josef Perktold
• Zach Ploskey +
• Alex Reinhart +
• Gilles Rochefort +
• Ciro Duran Santillli +
• Jan Schlueter +
• Jonathan Scholz +
• Anthony Scopatz
• Skipper Seabold
• Fabrice Silva +
• Scott Sinclair
• Jacob Stevenson +
• Sturla Molden +
• Julian Taylor +
• thorstenkranz +
• John Travers +
• True Price +
• Nicky van Foreest
• Jacob Vanderplas
• Patrick Varilly
• Daniel Velkov +
• Pauli Virtanen
• Stefan van der Walt
• Warren Weckesser

A total of 75 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
SciPy 0.11.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. Highlights of this release are:

- A new module has been added which provides a number of common sparse graph algorithms.
- New unified interfaces to the existing optimization and root finding functions have been added.

All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Our development attention will now shift to bug-fix releases on the 0.11.x branch, and on adding new features on the master branch.

This release requires Python 2.4-2.7 or 3.1-3.2 and NumPy 1.5.1 or greater.
5.45.1 New features

Sparse Graph Submodule

The new submodule `scipy.sparse.csgraph` implements a number of efficient graph algorithms for graphs stored as sparse adjacency matrices. Available routines are:

- `connected_components` - determine connected components of a graph
- `laplacian` - compute the laplacian of a graph
- `shortest_path` - compute the shortest path between points on a positive graph
- `dijkstra` - use Dijkstra’s algorithm for shortest path
- `floyd_warshall` - use the Floyd-Warshall algorithm for shortest path
- `breadth_first_order` - compute a breadth-first order of nodes
- `depth_first_order` - compute a depth-first order of nodes
- `breadth_first_tree` - construct the breadth-first tree from a given node
- `depth_first_tree` - construct a depth-first tree from a given node
- `minimum_spanning_tree` - construct the minimum spanning tree of a graph

scipy.optimize improvements

The optimize module has received a lot of attention this release. In addition to added tests, documentation improvements, bug fixes and code clean-up, the following improvements were made:

- A unified interface to minimizers of univariate and multivariate functions has been added.
- A unified interface to root finding algorithms for multivariate functions has been added.
- The L-BFGS-B algorithm has been updated to version 3.0.

Unified interfaces to minimizers

Two new functions `scipy.optimize.minimize` and `scipy.optimize.minimize_scalar` were added to provide a common interface to minimizers of multivariate and univariate functions respectively. For multivariate functions, `scipy.optimize.minimize` provides an interface to methods for unconstrained optimization (`fmin`, `fmin_powell`, `fmin_cg`, `fmin_ncg`, `fmin_bfgs` and `anneal`) or constrained optimization (`fmin_l_bfgs_b`, `fmin_tnc`, `fmin_cobyla` and `fmin_slsqp`). For univariate functions, `scipy.optimize.minimize_scalar` provides an interface to methods for unconstrained and bounded optimization (`brent`, `golden`, `fminbound`). This allows for easier comparing and switching between solvers.

Unified interface to root finding algorithms

The new function `scipy.optimize.root` provides a common interface to root finding algorithms for multivariate functions, embedding `fsolve`, `leastsq` and `nonlin` solvers.
**scipy.linalg improvements**

**New matrix equation solvers**

Solvers for the Sylvester equation (scipy.linalg.solve_sylvester, discrete and continuous Lyapunov equations (scipy.linalg.solve_lyapunov, scipy.linalg.solve_discrete_lyapunov) and discrete and continuous algebraic Riccati equations (scipy.linalg.solve_continuous_are, scipy.linalg.solve_discrete_are) have been added to scipy.linalg. These solvers are often used in the field of linear control theory.

**QZ and QR Decomposition**

It is now possible to calculate the QZ, or Generalized Schur, decomposition using scipy.linalg.qz. This function wraps the LAPACK routines sggse, dggse, cggse, and zggse.

The function scipy.linalg.qr_multiply, which allows efficient computation of the matrix product of Q (from a QR decomposition) and a vector, has been added.

**Pascal matrices**

A function for creating Pascal matrices, scipy.linalg.pascal, was added.

**Sparse matrix construction and operations**

Two new functions, scipy.sparse.diags and scipy.sparse.block_diag, were added to easily construct diagonal and block-diagonal sparse matrices respectively.

scipy.sparse.csc_matrix and csr_matrix now support the operations sin, tan, arcsin, arctan, sinh, tanh, arcsinh, arctanh, rint, sign, expm1, log1p, deg2rad, rad2deg, floor, ceil and trunc. Previously, these operations had to be performed by operating on the matrices’ data attribute.

**LSMR iterative solver**

LSMR, an iterative method for solving (sparse) linear and linear least-squares systems, was added as scipy.sparse.linalg.lsmr.

**Discrete SineTransform**

Bindings for the discrete sine transform functions have been added to scipy.fftpack.

**scipy.interpolate improvements**

For interpolation in spherical coordinates, the three classes scipy.interpolate.SmoothSphereBivariateSpline, scipy.interpolate.LSQSphereBivariateSpline, and scipy.interpolate.RectSphereBivariateSpline have been added.
Binned statistics (scipy.stats)

The stats module has gained functions to do binned statistics, which are a generalization of histograms, in 1-D, 2-D and multiple dimensions: scipy.stats.binned_statistic, scipy.stats.binned_statistic_2d and scipy.stats.binned_statistic_dd.

5.45.2 Deprecated features

scipy.sparse.cs_graph_components has been made a part of the sparse graph submodule, and renamed to scipy.sparse.csgraph.connected_components. Calling the former routine will result in a deprecation warning.

scipy.misc.radon has been deprecated. A more full-featured radon transform can be found in scikits-image.

scipy.io.save_as_module has been deprecated. A better way to save multiple Numpy arrays is the numpy.savez function.

The xa and xb parameters for all distributions in scipy.stats.distributions already weren’t used; they have now been deprecated.

5.45.3 Backwards incompatible changes

Removal of scipy.maxentropy

The scipy.maxentropy module, which was deprecated in the 0.10.0 release, has been removed. Logistic regression in scikits.learn is a good and modern alternative for this functionality.

Minor change in behavior of splev

The spline evaluation function now behaves similarly to interp1d for size-1 arrays. Previous behavior:

```python
>>> from scipy.interpolate import splev, splrep, interp1d
>>> x = [1,2,3,4,5]
>>> y = [4,5,6,7,8]
>>> tck = splrep(x, y)
>>> splev([1], tck)
4.
>>> splev(1, tck)
4.
```

Corrected behavior:

```python
>>> splev([1], tck)
array([4.])
>>> splev(1, tck)
array(4.)
```

This affects also the UnivariateSpline classes.
Behavior of `scipy.integrate.complex_ode`

The behavior of the `y` attribute of `complex_ode` is changed. Previously, it expressed the complex-valued solution in the form:

\[ z = \text{ode}.y[::2] + i\text{ode}.y[1::2] \]

Now, it is directly the complex-valued solution:

\[ z = \text{ode}.y \]

Minor change in behavior of T-tests

The T-tests `scipy.stats.ttest_ind`, `scipy.stats.ttest_rel` and `scipy.stats.ttest_1samp` have been changed so that `0 / 0` now returns NaN instead of 1.

5.45.4 Other changes

The SuperLU sources in `scipy.sparse.linalg` have been updated to version 4.3 from upstream.

The function `scipy.signal.bode`, which calculates magnitude and phase data for a continuous-time system, has been added.

The two-sample T-test `scipy.stats.ttest_ind` gained an option to compare samples with unequal variances, i.e. Welch's T-test.

`scipy.misc.logsumexp` now takes an optional `axis` keyword argument.

5.45.5 Authors

This release contains work by the following people (contributed at least one patch to this release, names in alphabetical order):

- Jeff Armstrong
- Chad Baker
- Brandon Beacher +
- behrisch +
- borishim +
- Matthew Brett
- Lars Buitinck
- Luis Pedro Coelho +
- Johann Cohen-Tanugi
- David Cournapeau
- dougal +
- Ali Ebrahim +
- endolith +
- Bjørn Forsman +
• Robert Gantner +
• Sebastian Gassner +
• Christoph Gohlke
• Ralf Gommers
• Yaroslav Halchenko
• Charles Harris
• Jonathan Helmus +
• Andreas Hilboll +
• Marc Honnorat +
• Jonathan Hunt +
• Maxim Ivanov +
• Thouis (Ray) Jones
• Christopher Kuster +
• Josh Lawrence +
• Denis Laxalde +
• Travis Oliphant
• Joonas Paalasmaa +
• Fabian Pedregosa
• Josef Perktold
• Gavin Price +
• Jim Radford +
• Andrew Schein +
• Skipper Seabold
• Jacob Silterra +
• Scott Sinclair
• Alexis Tabary +
• Martin Teichmann
• Matt Terry +
• Nicky van Foreest +
• Jacob Vanderplas
• Patrick Varilly +
• Pauli Virtanen
• Nils Wagner +
• Darryl Wally +
• Stefan van der Walt
• Liming Wang +
• David Warde-Farley +
• Warren Weckesser
• Sebastian Werk +
• Mike Wimmer +
• Tony S Yu +

A total of 55 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

5.46 SciPy 0.10.1 Release Notes

Contents

• SciPy 0.10.1 Release Notes
  – Main changes
  – Other issues fixed

SciPy 0.10.1 is a bug-fix release with no new features compared to 0.10.0.

5.46.1 Main changes

The most important changes are:

1. The single precision routines of eigs and eigsh in scipy.sparse.linalg have been disabled (they internally use double precision now).

2. A compatibility issue related to changes in NumPy macros has been fixed, in order to make scipy 0.10.1 compile with the upcoming numpy 1.7.0 release.

5.46.2 Other issues fixed

• #835: stats: nan propagation in stats.distributions
• #1202: io: netcdf segfault
• #1531: optimize: make curve_fit work with method as callable.
• #1560: linalg: fixed mistake in eig_banded documentation.
• #1565: ndimage: bug in ndimage.variance
• #1457: ndimage: standard_deviation does not work with sequence of indexes
• #1562: cluster: segfault in linkage function
• #1568: stats: One-sided fisher_exact() returns $p < 1$ for 0 successful attempts
• #1575: stats: zscore and zmap handle the axis keyword incorrectly
SciPy 0.10.0 is the culmination of 8 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a limited number of deprecations and backwards-incompatible changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.10.x branch, and on adding new features on the development master branch.

Release highlights:

- Support for Bento as optional build system.
- Support for generalized eigenvalue problems, and all shift-invert modes available in ARPACK.

This release requires Python 2.4-2.7 or 3.1- and NumPy 1.5 or greater.
5.47.1 New features

Bento: new optional build system

SciPy can now be built with Bento. Bento has some nice features like parallel builds and partial rebuilds, that are not possible with the default build system (distutils). For usage instructions see BENTO_BUILD.txt in the scipy top-level directory.

Currently SciPy has three build systems, distutils, numscons and bento. Numscscons is deprecated and is planned and will likely be removed in the next release.

Generalized and shift-invert eigenvalue problems in scipy.sparse.linalg

The sparse eigenvalue problem solver functions scipy.sparse.eigs/eigh now support generalized eigenvalue problems, and all shift-invert modes available in ARPACK.

Discrete-Time Linear Systems (scipy.signal)

Support for simulating discrete-time linear systems, including scipy.signal.dlsim, scipy.signal.dimpulse, and scipy.signal.dstep, has been added to SciPy. Conversion of linear systems from continuous-time to discrete-time representations is also present via the scipy.signal.cont2discrete function.

Enhancements to scipy.signal

A Lomb-Scargle periodogram can now be computed with the new function scipy.signal.lombscargle.

The forward-backward filter function scipy.signal.filtfilt can now filter the data in a given axis of an n-dimensional numpy array. (Previously it only handled a 1-dimensional array.) Options have been added to allow more control over how the data is extended before filtering.

FIR filter design with scipy.signal.firwin2 now has options to create filters of type III (zero at zero and Nyquist frequencies) and IV (zero at zero frequency).

Additional decomposition options (scipy.linalg)

A sort keyword has been added to the Schur decomposition routine (scipy.linalg.schur) to allow the sorting of eigenvalues in the resultant Schur form.

Additional special matrices (scipy.linalg)

The functions hilbert and invhilbert were added to scipy.linalg.
**Enhancements to scipy.stats**

- The *one-sided form* of Fisher’s exact test is now also implemented in `stats.fisher_exact`.
- The function `stats.chi2_contingency` for computing the chi-square test of independence of factors in a contingency table has been added, along with the related utility functions `stats.contingency.margins` and `stats.contingency.expected_freq`.

**Enhancements to scipy.special**

The functions $\logit(p) = \log(p/(1-p))$ and $\expit(x) = 1/(1+\exp(-x))$ have been implemented as `scipy.special.logit` and `scipy.special.expit` respectively.

**Basic support for Harwell-Boeing file format for sparse matrices**

Both read and write are support through a simple function-based API, as well as a more complete API to control number format. The functions may be found in `scipy.sparse.io`.

The following features are supported:

- Read and write sparse matrices in the CSC format
- Only real, symmetric, assembled matrix are supported (RUA format)

### 5.47.2 Deprecated features

**scipy.maxentropy**

The maxentropy module is unmaintained, rarely used and has not been functioning well for several releases. Therefore it has been deprecated for this release, and will be removed for scipy 0.11. Logistic regression in scikits.learn is a good alternative for this functionality. The `scipy.maxentropy.logsumexp` function has been moved to `scipy.misc`.

**scipy.lib.blas**

There are similar BLAS wrappers in `scipy.linalg` and `scipy.lib`. These have now been consolidated as `scipy.linalg.blas`, and `scipy.lib.blas` is deprecated.

**Numscons build system**

The numscons build system is being replaced by Bento, and will be removed in one of the next scipy releases.

### 5.47.3 Backwards-incompatible changes

The deprecated name `invnorm` was removed from `scipy.stats.distributions`, this distribution is available as `invgauss`.

The following deprecated nonlinear solvers from `scipy.optimize` have been removed:
- `broyden_modified` (bad performance)
- `broyden1_modified` (bad performance)
- `broyden_generalized` (equivalent to `anderson`)
- `anderson2` (equivalent to `anderson`)
- `broyden3` (obsoleted by new limited-memory broyden methods)
- `vackar` (renamed to `diagbroyden`)

## 5.47.4 Other changes

`scipy.constants` has been updated with the CODATA 2010 constants.

`__all__` dicts have been added to all modules, which has cleaned up the namespaces (particularly useful for interactive work).

An API section has been added to the documentation, giving recommended import guidelines and specifying which submodules are public and which aren’t.

## 5.47.5 Authors

This release contains work by the following people (contributed at least one patch to this release, names in alphabetical order):

- Jeff Armstrong+
- Matthew Brett
- Lars Buitinck+
- David Cournapeau
- FISH 2000+
- Michael McNeil Forbes+
- Matty G+
- Christoph Gohlke
- Ralf Gommers
- Yaroslav Halchenko
- Charles Harris
- Thouis (Ray) Jones+
- Chris Jordan-Squire+
- Robert Kern
- Chris Lasher+
- Wes McKinney+
- Travis Oliphant
- Fabian Pedregosa
- Josef Perktold
- Thomas Robitaille+

---

**5.47. SciPy 0.10.0 Release Notes**

---

**3471**
A total of 35 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

### 5.48 SciPy 0.9.0 Release Notes

**Contents**

- *SciPy 0.9.0 Release Notes*
  - Python 3
  - Scipy source code location to be changed
  - New features
    - Delaunay tessellations (*scipy.spatial*)
    - N-dimensional interpolation (*scipy.interpolate*)
    - Nonlinear equation solvers (*scipy.optimize*)
    - New linear algebra routines (*scipy.linalg*)
    - Improved FIR filter design functions (*scipy.signal*)
    - Improved statistical tests (*scipy.stats*)
  - Deprecated features
    - Obsolete nonlinear solvers (in *scipy.optimize*)
  - Removed features
    - Old correlate/convolve behavior (in *scipy.signal*)
    - *scipy.stats*
SciPy 0.9.0 is the culmination of 6 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.9.x branch, and on adding new features on the development trunk.

This release requires Python 2.4 - 2.7 or 3.1 - and NumPy 1.5 or greater.

Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0 release will mark a major milestone in the development of SciPy, after which changing the package structure or API will be much more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to making them as bug-free as possible.

However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface. This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we need help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything - from which algorithms we implement, to details about our function’s call signatures.

### 5.48.1 Python 3

Scipy 0.9.0 is the first SciPy release to support Python 3. The only module that is not yet ported is `scipy.weave`.

### 5.48.2 Scipy source code location to be changed

Soon after this release, Scipy will stop using SVN as the version control system, and move to Git. The development source code for Scipy can from then on be found at

https://github.com/scipy/scipy

### 5.48.3 New features

**Delaunay tessellations (`scipy.spatial`)**

Scipy now includes routines for computing Delaunay tessellations in N dimensions, powered by the Qhull computational geometry library. Such calculations can now make use of the new `scipy.spatial.Delaunay` interface.
N-dimensional interpolation (scipy.interpolate)

Support for scattered data interpolation is now significantly improved. This version includes a scipy.interpolate.griddata function that can perform linear and nearest-neighbour interpolation for N-dimensional scattered data, in addition to cubic spline (C1-smooth) interpolation in 2D and 1D. An object-oriented interface to each interpolator type is also available.

Nonlinear equation solvers (scipy.optimize)

Scipy includes new routines for large-scale nonlinear equation solving in scipy.optimize. The following methods are implemented:

- Newton-Krylov (scipy.optimize.newton_krylov)
- (Generalized) secant methods:
  - Limited-memory Broyden methods (scipy.optimize.broyden1, scipy.optimize.broyden2)
  - Anderson method (scipy.optimize.anderson)
- Simple iterations (scipy.optimize.diagbroyden, scipy.optimize.excitingmixing, scipy.optimize.linearmixing)

The scipy.optimize.nonlin module was completely rewritten, and some of the functions were deprecated (see above).

New linear algebra routines (scipy.linalg)

Scipy now contains routines for effectively solving triangular equation systems (scipy.linalg.solve_triangular).

Improved FIR filter design functions (scipy.signal)

The function scipy.signal.firwin was enhanced to allow the design of highpass, bandpass, bandstop and multiband FIR filters.

The function scipy.signal.firwin2 was added. This function uses the window method to create a linear phase FIR filter with an arbitrary frequency response.

The functions scipy.signal.kaiser_atten and scipy.signal.kaiser_beta were added.

Improved statistical tests (scipy.stats)

A new function scipy.stats.fisher_exact was added, that provides Fisher's exact test for 2x2 contingency tables.

The function scipy.stats.kendalltau was rewritten to make it much faster (O(n log(n)) vs O(n^2)).
5.48.4 Deprecated features

Obsolete nonlinear solvers (in scipy.optimize)

The following nonlinear solvers from scipy.optimize are deprecated:

- `broyden_modified` (bad performance)
- `broyden1_modified` (bad performance)
- `broyden_generalized` (equivalent to `anderson`)
- `anderson2` (equivalent to `anderson`)
- `broyden3` (obsoleted by new limited-memory broyden methods)
- `vackar` (renamed to `diagbroyden`)

5.48.5 Removed features

The deprecated modules `helpmod`, `pexec` and `ppimport` were removed from scipy.misc.

The `output_type` keyword in many scipy.ndimage interpolation functions has been removed.

The `econ` keyword in scipy.linalg.qr has been removed. The same functionality is still available by specifying `mode='economic'`.

Old correlate/convolve behavior (in scipy.signal)

The old behavior for scipy.signal.convolve, scipy.signal.convolve2d, scipy.signal.correlate and scipy.signal.correlate2d was deprecated in 0.8.0 and has now been removed. Convolve and correlate used to swap their arguments if the second argument has dimensions larger than the first one, and the mode was relative to the input with the largest dimension. The current behavior is to never swap the inputs, which is what most people expect, and is how correlation is usually defined.

scipy.stats

Many functions in scipy.stats that are either available from numpy or have been superseded, and have been deprecated since version 0.7, have been removed: `std`, `var`, `mean`, `median`, `cov`, `corrcoef`, `z`, `zs`, `stderr`, `samplestd`, `samplevar`, `pdfapprox`, `pdf_moments` and `erfc`. These changes are mirrored in scipy.stats.mstats.

scipy.sparse

Several methods of the sparse matrix classes in scipy.sparse which had been deprecated since version 0.7 were removed: `save`, `rowcol`, `getdata`, `listprint`, `ensure_sorted_indices`, `matvec`, `matmat` and `rmatvec`.

The functions `spkron`, `speye`, `spidentity`, `lil_eye` and `lil_diags` were removed from scipy.sparse. The first three functions are still available as `scipy.sparse.kron`, `scipy.sparse.eye` and `scipy.sparse.identity`.

The `dims` and `nzmax` keywords were removed from the sparse matrix constructor. The `colind` and `rowind` attributes were removed from CSR and CSC matrices respectively.
scipy.sparse.linalg.arpack.speigs

A duplicated interface to the ARPACK library was removed.

5.48.6 Other changes

ARPACK interface changes

The interface to the ARPACK eigenvalue routines in scipy.sparse.linalg was changed for more robustness. The eigenvalue and SVD routines now raise ArpackNoConvergence if the eigenvalue iteration fails to converge. If partially converged results are desired, they can be accessed as follows:

```python
import numpy as np
from scipy.sparse.linalg import eigs, ArpackNoConvergence

m = np.random.randn(30, 30)
try:
 w, v = eigs(m, 6)
except ArpackNoConvergence, err:
 partially_converged_w = err.eigenvalues
 partially_converged_v = err.eigenvectors
```

Several bugs were also fixed.

The routines were moreover renamed as follows:

- `eigen` -> `eigs`
- `eigen_symmetric` -> `eigsh`
- `svd` -> `svds`

5.49 SciPy 0.8.0 Release Notes

Contents

- SciPy 0.8.0 Release Notes
  - Python 3
  - Major documentation improvements
  - Deprecated features
    * Swapping inputs for correlation functions (scipy.signal)
    * Obsolete code deprecated (scipy.misc)
    * Additional deprecations
  - New features
    * DCT support (scipy.fftpack)
    * Single precision support for fft functions (scipy.fftpack)
SciPy 0.8.0 is the culmination of 17 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.8.x branch, and on adding new features on the development trunk. This release requires Python 2.4 - 2.6 and NumPy 1.4.1 or greater.

Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0 release will mark a major milestone in the development of SciPy, after which changing the package structure or API will be much more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to making them as bug-free as possible.

However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface. This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we need help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything - from which algorithms we implement, to details about our function’s call signatures.
5.49.1 Python 3

Python 3 compatibility is planned and is currently technically feasible, since Numpy has been ported. However, since the Python 3 compatible Numpy 1.5 has not been released yet, support for Python 3 in Scipy is not yet included in Scipy 0.8. SciPy 0.9, planned for fall 2010, will very likely include experimental support for Python 3.

5.49.2 Major documentation improvements

SciPy documentation is greatly improved.

5.49.3 Deprecated features

Swapping inputs for correlation functions (scipy.signal)

Concern correlate, correlate2d, convolve and convolve2d. If the second input is larger than the first input, the inputs are swapped before calling the underlying computation routine. This behavior is deprecated, and will be removed in scipy 0.9.0.

Obsolete code deprecated (scipy.misc)

The modules helpmod, ppimport and pexec from scipy.misc are deprecated. They will be removed from SciPy in version 0.9.

Additional deprecations

- linalg: The function solveh_banded currently returns a tuple containing the Cholesky factorization and the solution to the linear system. In SciPy 0.9, the return value will be just the solution.
- The function constants.codata.find will generate a DeprecationWarning. In Scipy version 0.8.0, the keyword argument ‘disp’ was added to the function, with the default value ‘True’. In 0.9.0, the default will be ‘False’.
- The qshape keyword argument of signal.chirp is deprecated. Use the argument vertex_zero instead.
- Passing the coefficients of a polynomial as the argument f0 to signal.chirp is deprecated. Use the function signal.sweep_poly instead.
- The io.recaster module has been deprecated and will be removed in 0.9.0.

5.49.4 New features

DCT support (scipy.fftpack)

New realtransforms have been added, namely dct and idct for Discrete Cosine Transform; type I, II and III are available.
Single precision support for fft functions (scipy.fftpack)

fft functions can now handle single precision inputs as well: fft(x) will return a single precision array if x is single precision. At the moment, for FFT sizes that are not composites of 2, 3, and 5, the transform is computed internally in double precision to avoid rounding error in FFTPACK.

Correlation functions now implement the usual definition (scipy.signal)

The outputs should now correspond to their matlab and R counterparts, and do what most people expect if the old_behavior=False argument is passed:

• correlate, convolve and their 2d counterparts do not swap their inputs depending on their relative shape anymore;
• correlation functions now conjugate their second argument while computing the slidexed sum-products, which correspond to the usual definition of correlation.

Additions and modification to LTI functions (scipy.signal)

• The functions impulse2 and step2 were added to scipy.signal. They use the function scipy.signal.lsim2 to compute the impulse and step response of a system, respectively.
• The function scipy.signal.lsim2 was changed to pass any additional keyword arguments to the ODE solver.

Improved waveform generators (scipy.signal)

Several improvements to the chirp function in scipy.signal were made:

• The waveform generated when method="logarithmic" was corrected; it now generates a waveform that is also known as an “exponential” or “geometric” chirp. (See https://en.wikipedia.org/wiki/Chirp.)
• A new chirp method, “hyperbolic”, was added.
• Instead of the keyword qshape, chirp now uses the keyword vertex_zero, a boolean.
• chirp no longer handles an arbitrary polynomial. This functionality has been moved to a new function, sweep_poly.
A new function, sweep_poly, was added.

New functions and other changes in scipy.linalg

The functions cho_solve_banded, circulant, companion, hadamard and leslie were added to scipy.linalg.
The function block_diag was enhanced to accept scalar and 1D arguments, along with the usual 2D arguments.

New function and changes in scipy.optimize

The curve_fit function has been added; it takes a function and uses non-linear least squares to fit that to the provided data. The leastsq and fsolve functions now return an array of size one instead of a scalar when solving for a single parameter.
New sparse least squares solver

The \texttt{lsqr} function was added to \texttt{scipy.sparse}. This routine finds a least-squares solution to a large, sparse, linear system of equations.

ARPACK-based sparse SVD

A naive implementation of SVD for sparse matrices is available in \texttt{scipy.sparse.linalg.eigen.arpack}. It is based on using an symmetric solver on $<A, A>$, and as such may not be very precise.

Alternative behavior available for \texttt{scipy.constants.find}

The keyword argument \texttt{disp} was added to the function \texttt{scipy.constants.find}, with the default value \texttt{True}. When \texttt{disp} is \texttt{True}, the behavior is the same as in Scipy version 0.7. When \texttt{False}, the function returns the list of keys instead of printing them. (In SciPy version 0.9, the default will be reversed.)

Incomplete sparse LU decompositions

Scipy now wraps SuperLU version 4.0, which supports incomplete sparse LU decompositions. These can be accessed via \texttt{scipy.sparse.linalg.spilu}. Upgrade to SuperLU 4.0 also fixes some known bugs.

Faster matlab file reader and default behavior change

We’ve rewritten the matlab file reader in Cython and it should now read matlab files at around the same speed that Matlab does.

The reader reads matlab named and anonymous functions, but it can’t write them.

Until scipy 0.8.0 we have returned arrays of matlab structs as numpy object arrays, where the objects have attributes named for the struct fields. As of 0.8.0, we return matlab structs as numpy structured arrays. You can get the older behavior by using the optional \texttt{struct_as_record=False} keyword argument to \texttt{scipy.io.loadmat} and friends.

There is an inconsistency in the matlab file writer, in that it writes numpy 1D arrays as column vectors in matlab 5 files, and row vectors in matlab 4 files. We will change this in the next version, so both write row vectors. There is a \texttt{FutureWarning} when calling the writer to warn of this change; for now we suggest using the \texttt{oned_as='row'} keyword argument to \texttt{scipy.io.savemat} and friends.

Faster evaluation of orthogonal polynomials

Values of orthogonal polynomials can be evaluated with new vectorized functions in \texttt{scipy.special: eval_legendre, eval_chebyt, eval_chebyu, eval_chebys, eval_jacobi, eval_laguerre, eval_genlaguerre, eval_hermite, eval_hermite3norm, eval_gegenbauer, eval_sh_legendre, eval_sh_chebyt, eval_sh_chebyu, eval_sh_jacobi}. This is faster than constructing the full coefficient representation of the polynomials, which was previously the only available way.

Note that the previous orthogonal polynomial routines will now also invoke this feature, when possible.
Lambert W function

`scipy.special.lambertw` can now be used for evaluating the Lambert W function.

Improved hypergeometric 2F1 function

Implementation of `scipy.special.hyp2f1` for real parameters was revised. The new version should produce accurate values for all real parameters.

More flexible interface for Radial basis function interpolation

The `scipy.interpolate.Rbf` class now accepts a callable as input for the “function” argument, in addition to the built-in radial basis functions which can be selected with a string argument.

5.49.5 Removed features

`scipy.stsci`: the package was removed

The module `scipy.misc.limits` was removed.

`scipy.io`

The IO code in both NumPy and SciPy is being extensively reworked. NumPy will be where basic code for reading and writing NumPy arrays is located, while SciPy will house file readers and writers for various data formats (data, audio, video, images, matlab, etc.).

Several functions in `scipy.io` are removed in the 0.8.0 release including: `npfile`, `save`, `load`, `create_module`, `create_shelf`, `objload`, `objsave`, `fopen`, `read_array`, `write_array`, `fread`, `fwrite`, `bswap`, `packbits`, `unpackbits`, and `convert_objectarray`. Some of these functions have been replaced by NumPy’s raw reading and writing capabilities, memory-mapping capabilities, or array methods. Others have been moved from SciPy to NumPy, since basic array reading and writing capability is now handled by NumPy.

5.50 SciPy 0.7.2 Release Notes

SciPy 0.7.2 is a bug-fix release with no new features compared to 0.7.1. The only change is that all C sources from Cython code have been regenerated with Cython 0.12.1. This fixes the incompatibility between binaries of SciPy 0.7.1 and NumPy 1.4.
5.51 SciPy 0.7.1 Release Notes

SciPy 0.7.1 is a bug-fix release with no new features compared to 0.7.0.

### 5.51.1 scipy.io

Bugs fixed:

- Several fixes in Matlab file IO

### 5.51.2 scipy.odr

Bugs fixed:

- Work around a failure with Python 2.6

### 5.51.3 scipy.signal

Memory leak in lfilter have been fixed, as well as support for array object

Bugs fixed:

- #880, #925: lfilter fixes
- #871: bicgstab fails on Win32
5.51.4 scipy.sparse

Bugs fixed:

- #883: scipy.io.mmread with scipy.sparse.lil_matrix broken

5.51.5 scipy.special

Several bugs of varying severity were fixed in the special functions:

- #503, #640: iv: problems at large arguments fixed by new implementation
- #623: jv: fix errors at large arguments
- #679: struve: fix wrong output for v < 0
- #803: pbdv produces invalid output
- #804: lqmn: fix crashes on some input
- #823: betainc: fix documentation
- #834: exp1 strange behavior near negative integer values
- #852: jn_zeros: more accurate results for large s, also in jnp/yn/ynp_zeros
- #853: jv, yv, iv: invalid results for non-integer v < 0, complex x
- #854: jv, yv, iv, kv: return nan more consistently when out-of-domain
- #927: ellipj: fix segfault on Windows
- #946: ellpj: fix segfault on Mac OS X/python 2.6 combination.
- ive, jve, yve, kv, kve: with real-valued input, return nan for out-of-domain instead of returning only the real part of the result.

Also, when scipy.special.errprint(1) has been enabled, warning messages are now issued as Python warnings instead of printing them to stderr.

5.51.6 scipy.stats

- linregress, mannwhitneyu, describe: errors fixed
- kstwobign, norm, expon, exponweib, exponpow, frechet, genexpon, rdist, truncexpon, planck: improvements to numerical accuracy in distributions
5.51.7 Windows binaries for python 2.6

Python 2.6 binaries for windows are now included. The binary for python 2.5 requires numpy 1.2.0 or above, and the one for python 2.6 requires numpy 1.3.0 or above.

5.51.8 Universal build for scipy

Mac OS X binary installer is now a proper universal build, and does not depend on gfortran anymore (libgfortran is statically linked). The python 2.5 version of scipy requires numpy 1.2.0 or above, the python 2.6 version requires numpy 1.3.0 or above.

5.52 SciPy 0.7.0 Release Notes

SciPy 0.7.0 is the culmination of 16 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.7.x branch, and on adding new features on the development trunk. This release requires Python 2.4 or 2.5 and NumPy 1.2 or greater.
Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0 release will mark a major milestone in the development of SciPy, after which changing the package structure or API will be much more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to making them as bug-free as possible. For example, in addition to fixing numerous bugs in this release, we have also doubled the number of unit tests since the last release.

However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface. This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we need help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything - from which algorithms we implement, to details about our function’s call signatures.

Over the last year, we have seen a rapid increase in community involvement, and numerous infrastructure improvements to lower the barrier to contributions (e.g., more explicit coding standards, improved testing infrastructure, better documentation tools). Over the next year, we hope to see this trend continue and invite everyone to become more involved.

5.52.1 Python 2.6 and 3.0

A significant amount of work has gone into making SciPy compatible with Python 2.6; however, there are still some issues in this regard. The main issue with 2.6 support is NumPy. On UNIX (including Mac OS X), NumPy 1.2.1 mostly works, with a few caveats. On Windows, there are problems related to the compilation process. The upcoming NumPy 1.3 release will fix these problems. Any remaining issues with 2.6 support for SciPy 0.7 will be addressed in a bug-fix release.

Python 3.0 is not supported at all; it requires NumPy to be ported to Python 3.0. This requires immense effort, since a lot of C code has to be ported. The transition to 3.0 is still under consideration; currently, we don’t have any timeline or roadmap for this transition.

5.52.2 Major documentation improvements

SciPy documentation is greatly improved; you can view a HTML reference manual online or download it as a PDF file. The new reference guide was built using the popular Sphinx tool.

This release also includes an updated tutorial, which hadn’t been available since SciPy was ported to NumPy in 2005. Though not comprehensive, the tutorial shows how to use several essential parts of Scipy. It also includes the ndimage documentation from the numarray manual.

Nevertheless, more effort is needed on the documentation front. Luckily, contributing to Scipy documentation is now easier than before: if you find that a part of it requires improvements, and want to help us out, please register a user name in our web-based documentation editor at https://docs.scipy.org/ and correct the issues.

5.52.3 Running Tests

NumPy 1.2 introduced a new testing framework based on nose. Starting with this release, SciPy now uses the new NumPy test framework as well. Taking advantage of the new testing framework requires nose version 0.10, or later. One major advantage of the new framework is that it greatly simplifies writing unit tests - which has all ready paid off, given the rapid increase in tests. To run the full test suite:

```
>>> import scipy
>>> scipy.test('full')
```

For more information, please see The NumPy/SciPy Testing Guide.

We have also greatly improved our test coverage. There were just over 2,000 unit tests in the 0.6.0 release; this release nearly doubles that number, with just over 4,000 unit tests.
5.52.4 Building SciPy

Support for NumScons has been added. NumScons is a tentative new build system for NumPy/SciPy, using SCons at its core.

SCons is a next-generation build system, intended to replace the venerable Make with the integrated functionality of autoconf/automake and ccache. Scons is written in Python and its configuration files are Python scripts. NumScons is meant to replace NumPy’s custom version of distutils providing more advanced functionality, such as autoconf, improved fortran support, more tools, and support for numpy.distutils/scons cooperation.

5.52.5 Sandbox Removed

While porting SciPy to NumPy in 2005, several packages and modules were moved into scipy.sandbox. The sandbox was a staging ground for packages that were undergoing rapid development and whose APIs were in flux. It was also a place where broken code could live. The sandbox has served its purpose well, but was starting to create confusion. Thus scipy.sandbox was removed. Most of the code was moved into scipy, some code was made into a scikit, and the remaining code was just deleted, as the functionality had been replaced by other code.

5.52.6 Sparse Matrices

Sparse matrices have seen extensive improvements. There is now support for integer dtypes such int8, uint32, etc. Two new sparse formats were added:

- new class dia_matrix: the sparse DIAgonal format
- new class bsr_matrix: the Block CSR format

Several new sparse matrix construction functions were added:

- sparse.kron: sparse Kronecker product
- sparse.bmat: sparse version of numpy.bmat
- sparse.vstack: sparse version of numpy.vstack
- sparse.hstack: sparse version of numpy.hstack

Extraction of submatrices and nonzero values have been added:

- sparse.tril: extract lower triangle
- sparse.triu: extract upper triangle
- sparse.find: nonzero values and their indices

csr_matrix and csc_matrix now support slicing and fancy indexing (e.g., A[1:3, 4:7] and A[[3,2,6,8], :]). Conversions among all sparse formats are now possible:

- using member functions such as .tocsr() and .tolil()
- using the .asformat() member function, e.g. A.asformat('csr')
- using constructors A = lil_matrix([[1,2]]); B = csr_matrix(A)

All sparse constructors now accept dense matrices and lists of lists. For example:

- A = csr_matrix( rand(3,3) ) and B = lil_matrix( [[1,2],[3,4]] )

The handling of diagonals in the spdiags function has been changed. It now agrees with the MATLAB(TM) function of the same name.
Numerous efficiency improvements to format conversions and sparse matrix arithmetic have been made. Finally, this release contains numerous bug fixes.

### 5.52.7 Statistics package

Statistical functions for masked arrays have been added, and are accessible through `scipy.stats.mstats`. The functions are similar to their counterparts in `scipy.stats` but they have not yet been verified for identical interfaces and algorithms.

Several bugs were fixed for statistical functions, of those, `kstest` and `percentileofscore` gained new keyword arguments.

Added deprecation warning for `mean`, `median`, `var`, `std`, `cov`, and `corrcoef`. These functions should be replaced by their numpy counterparts. Note, however, that some of the default options differ between the `scipy.stats` and numpy versions of these functions.

Numerous bug fixes to `stats.distributions`: all generic methods now work correctly, several methods in individual distributions were corrected. However, a few issues remain with higher moments (`skew`, `kurtosis`) and entropy. The maximum likelihood estimator, `fit`, does not work out-of-the-box for some distributions - in some cases, starting values have to be carefully chosen, in other cases, the generic implementation of the maximum likelihood method might not be the numerically appropriate estimation method.

We expect more bug fixes, increases in numerical precision and enhancements in the next release of scipy.

### 5.52.8 Reworking of IO package

The IO code in both NumPy and SciPy is being extensively reworked. NumPy will be where basic code for reading and writing NumPy arrays is located, while SciPy will house file readers and writers for various data formats (data, audio, video, images, matlab, etc.).

Several functions in `scipy.io` have been deprecated and will be removed in the 0.8.0 release including `npfile`, `save`, `load`, `create_module`, `create_shelf`, `objload`, `objsave`, `fopen`, `read_array`, `write_array`, `fread`, `fwrite`, `bswap`, `packbits`, `unpackbits`, and `convert_objectarray`. Some of these functions have been replaced by NumPy's raw reading and writing capabilities, memory-mapping capabilities, or array methods. Others have been moved from SciPy to NumPy, since basic array reading and writing capability is now handled by NumPy.

The Matlab (TM) file readers/writers have a number of improvements:

- default version 5
- v5 writers for structures, cell arrays, and objects
- v5 readers/writers for function handles and 64-bit integers
- new `struct_as_record` keyword argument to `loadmat`, which loads struct arrays in matlab as record arrays in numpy
- string arrays have `dtype='U...'` instead of `dtype=object`
- `loadmat` no longer squeezes singleton dimensions, i.e. `squeeze_me=False` by default
5.52.9 New Hierarchical Clustering module

This module adds new hierarchical clustering functionality to the scipy.cluster package. The function interfaces are similar to the functions provided MATLAB(TM)'s Statistics Toolbox to help facilitate easier migration to the NumPy/SciPy framework. Linkage methods implemented include single, complete, average, weighted, centroid, median, and ward.

In addition, several functions are provided for computing inconsistency statistics, cophenetic distance, and maximum distance between descendants. The fcluster and fclusterdata functions transform a hierarchical clustering into a set of flat clusters. Since these flat clusters are generated by cutting the tree into a forest of trees, the leaders function takes a linkage and a flat clustering, and finds the root of each tree in the forest. The ClusterNode class represents a hierarchical clusterings as a field-navigable tree object. to_tree converts a matrix-encoded hierarchical clustering to a ClusterNode object. Routines for converting between MATLAB and SciPy linkage encodings are provided. Finally, a dendrogram function plots hierarchical clusterings as a dendrogram, using matplotlib.

5.52.10 New Spatial package

The new spatial package contains a collection of spatial algorithms and data structures, useful for spatial statistics and clustering applications. It includes rapidly compiled code for computing exact and approximate nearest neighbors, as well as a pure-python kd-tree with the same interface, but that supports annotation and a variety of other algorithms. The API for both modules may change somewhat, as user requirements become clearer.

It also includes a distance module, containing a collection of distance and dissimilarity functions for computing distances between vectors, which is useful for spatial statistics, clustering, and kd-trees. Distance and dissimilarity functions provided include Bray-Curtis, Canberra, Chebyshev, City Block, Cosine, Dice, Euclidean, Hamming, Jaccard, Kulsinski, Mahalanobis, Matching, Minkowski, Rogers-Tanimoto, Russell-Rao, Squared Euclidean, Standardized Euclidean, Sokal-Michener, Sokal-Sneath, and Yule.

The pdist function computes pairwise distance between all unordered pairs of vectors in a set of vectors. The cdist computes the distance on all pairs of vectors in the Cartesian product of two sets of vectors. Pairwise distance matrices are stored in condensed form; only the upper triangular is stored. squareform converts distance matrices between square and condensed forms.

5.52.11 Reworked fftpack package

FFTW2, FFTW3, MKL and DJBFFT wrappers have been removed. Only (NETLIB) fftpack remains. By focusing on one backend, we hope to add new features - like float32 support - more easily.

5.52.12 New Constants package

scipy.constants provides a collection of physical constants and conversion factors. These constants are taken from CODATA Recommended Values of the Fundamental Physical Constants: 2002. They may be found at physics.nist.gov/constants. The values are stored in the dictionary physical_constants as a tuple containing the value, the units, and the relative precision - in that order. All constants are in SI units, unless otherwise stated. Several helper functions are provided.
5.52.13 New Radial Basis Function module

`scipy.interpolate` now contains a Radial Basis Function module. Radial basis functions can be used for smoothing/interpolating scattered data in n-dimensions, but should be used with caution for extrapolation outside of the observed data range.

5.52.14 New complex ODE integrator

`scipy.integrate.ode` now contains a wrapper for the ZVODE complex-valued ordinary differential equation solver (by Peter N. Brown, Alan C. Hindmarsh, and George D. Byrne).

5.52.15 New generalized symmetric and hermitian eigenvalue problem solver

`scipy.linalg.eigh` now contains wrappers for more LAPACK symmetric and hermitian eigenvalue problem solvers. Users can now solve generalized problems, select a range of eigenvalues only, and choose to use a faster algorithm at the expense of increased memory usage. The signature of the `scipy.linalg.eigh` changed accordingly.

5.52.16 Bug fixes in the interpolation package

The shape of return values from `scipy.interpolate.interpld` used to be incorrect, if interpolated data had more than 2 dimensions and the axis keyword was set to a non-default value. This has been fixed. Moreover, `interpld` returns now a scalar (0D-array) if the input is a scalar. Users of `scipy.interpolate.interpld` may need to revise their code if it relies on the previous behavior.

5.52.17 Weave clean up

There were numerous improvements to `scipy.weave.blitz++` was relicensed by the author to be compatible with the SciPy license. `wx_spec.py` was removed.

5.52.18 Known problems

Here are known problems with scipy 0.7.0:

- weave test failures on windows: those are known, and are being revised.
- weave test failure with gcc 4.3 (std::labs): this is a gcc 4.3 bug. A workaround is to add `<cstdlib>` in `scipy/weave/blitz/blitz/funcs.h` (line 27). You can make the change in the installed scipy (in site-packages).
BIBLIOGRAPHY

[WPW] https://en.wikipedia.org/wiki/Window_function


https://physics.nist.gov/cuu/Constants/


[9] Stiff equation on Wikipedia.


[12] Lotka-Volterra equations on Wikipedia.


[1] Python package regulargrid by Johannes Buchner, see https://pypi.python.org/pypi/regulargrid/
[1] Tom Lyche and Knut Morken, Spline Methods, 2005, Section 3.1.2


“Pascal matrix”, https://en.wikipedia.org/wiki/Pascal_matrix


http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777
https://en.wikipedia.org/wiki/Homogeneous_coordinates


https://en.wikipedia.org/wiki/Closing_%28morphology%29
https://en.wikipedia.org/wiki/Mathematical_morphology
https://en.wikipedia.org/wiki/Dilation_%28morphology%29
https://en.wikipedia.org/wiki/Mathematical_morphology
https://en.wikipedia.org/wiki/Mathematical_morphology
https://en.wikipedia.org/wiki/Mathematical_morphology

3498 Bibliography
https://en.wikipedia.org/wiki/Hit-or-miss_transform
https://en.wikipedia.org/wiki/Opening_%28morphology%29
https://en.wikipedia.org/wiki/Mathematical_morphology
https://en.wikipedia.org/wiki/Mathematical_morphology
https://en.wikipedia.org/wiki/Dilation_%28morphology%29
https://en.wikipedia.org/wiki/Mathematical_morphology
https://en.wikipedia.org/wiki/Mathematical_morphology
https://en.wikipedia.org/wiki/Mathematical_morphology


Bibliography 3503


Bibliography


Bibliography 3507


Richard Manning Karp: An algorithm to Solve the m x n Assignment Problem in Expected Time O(mn log n). Networks, 10(2):143-152, 1980.


https://en.wikipedia.org/wiki/Assignment_problem


https://github.com/scipy/scipy/pull/5647#issuecomment-168474926


https://github.com/scipy/scipy/pull/5647#issuecomment-168474926

http://www.qhull.org/

Caroli et al. Robust and Efficient Delaunay triangulations of points on or close to a sphere. Research Report RR-7004, 2009.


http://www.qhull.org/


https://en.wikipedia.org/wiki/Slerp#Geometric_Slerp


3510 Bibliography


Kullback-Leibler divergence, https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence


NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/5.2#E1

NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/5


NIST Digital Library of Mathematical Functions, Eq. 5.12.1. https://dlmf.nist.gov/5

Fredrik Johansson and others. “mpmath: a Python library for arbitrary-precision floating-point arithmetic” (Version 0.19) http://mpmath.org/

Nist, Digital Library of Mathematical functions, https://dlmf.nist.gov/5.2#i

NIST, Digital Library of Mathematical Functions, https://dlmf.nist.gov/5.15

Fredrik Johansson and others. “mpmath: a Python library for arbitrary-precision floating-point arithmetic” (Version 0.19) http://mpmath.org/

Nist, Digital Library of Mathematical Functions https://dlmf.nist.gov/5.2#iii

https://en.wikipedia.org/wiki/Error_function


Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva

[dlmf] NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/7.2#iii


[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

ture

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,

[AS] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs,


[1] Digital Library of Mathematical Functions, 6.2.5 https://dlmf.nist.gov/6.2#E5


Negative Hypergeometric Distribution from http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Negativehypergeometric.pdf


https://en.wikipedia.org/wiki/Yule-Simon_distribution


https://eli.thegreenplace.net/2009/03/21/efficient-integer-exponentiation-algorithms


“Interquartile range” https://en.wikipedia.org/wiki/Interquartile_range

“Robust measures of scale” https://en.wikipedia.org/wiki/Robust_measures_of_scale

“Quantile” https://en.wikipedia.org/wiki/Quantile


https://en.wikipedia.org/wiki/Welch%27s_t-test


R statistical software: https://www.r-project.org/


[3] Pearson, Karl. “On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling”, Philosophical Magazine. Series 5. 50 (1900), pp. 157-175.


INDEX

Symbols

__call__() (scipy.integrate.DenseOutput method), 489
__call__() (scipy.integrate.OdeSolution method), 490
__call__() (scipy.interpolate.Akima1DInterpolator method), 528
__call__() (scipy.interpolate.BPoly method), 542
__call__() (scipy.interpolate.BSpline method), 574
__call__() (scipy.interpolate.BarycentricInterpolator method), 512
__call__() (scipy.interpolate.BivariateSpline method), 623
__call__() (scipy.interpolate.CloughTocher2DInterpolator method), 554
__call__() (scipy.interpolate.CubicHermiteSpline method), 521
__call__() (scipy.interpolate.CubicSpline method), 533
__call__() (scipy.interpolate.InterpolatedUnivariateSpline method), 606
__call__() (scipy.interpolate.KroghInterpolator method), 515
__call__() (scipy.interpolate.LSQBivariateSpline method), 632
__call__() (scipy.interpolate.LSQSphereBivariateSpline method), 636
__call__() (scipy.interpolate.LSQUnivariateSpline method), 613
__call__() (scipy.interpolate.LinearNDInterpolator method), 550
__call__() (scipy.interpolate.NdPPoly method), 569
__call__() (scipy.interpolate.NearestNDInterpolator method), 552
__call__() (scipy.interpolate.PPoly method), 537
__call__() (scipy.interpolate.PchipInterpolator method), 525
__call__() (scipy.interpolate.RBFInterpolator method), 557
__call__() (scipy.interpolate.Rbf method), 559
__call__() (scipy.interpolate.RectBivariateSpline method), 566
__call__() (scipy.interpolate.RectSphereBivariateSpline method), 620
__call__() (scipy.interpolate.RegularGridInterpolator method), 565
__call__() (scipy.interpolate.SmoothBivariateSpline method), 625
__call__() (scipy.interpolate.SmoothSphereBivariateSpline method), 629
__call__() (scipy.interpolate.UnivariateSpline method), 623
__call__() (scipy.interpolate.interp1d method), 511
__call__() (scipy.interpolate.interp2d method), 561
__call__() (scipy.optimize.LbfgsInvHessProduct method), 1396
__call__() (scipy.signal.CZT method), 1700
__call__() (scipy.signal.ZoomFFT method), 1702
__call__() (scipy.sparse.linalg.LinearOperator method), 1971
__call__() (scipy.stats.gaussian_kde method), 3050
__call__() (scipy.stats.rv_continuous method), 2406
__call__() (scipy.stats.rv_discrete method), 2419
__call__() (scipy.stats.rv_histogram method), 2421
__getitem__() (scipy.cluster.hierarchy.DisjointSet method), 357
__getitem__() (scipy.optimize.OptimizeResult method), 1272
__len__() (scipy.optimize.OptimizeResult method), 1272
__len__() (scipy.sparse.bsr_array method), 1709
__len__() (scipy.sparse.bsr_matrix method), 1824
__len__() (scipy.sparse.coo_array method), 1727
__len__() (scipy.sparse.coo_matrix method), 1843
__len__() (scipy.sparse.csc_array method), 1745
__len__() (scipy.sparse.csc_matrix method), 1861
__len__() (scipy.sparse.csr_array method), 1765
__len__() (scipy.sparse.csr_matrix method), 1881
__len__() (scipy.sparse.dia_array method), 1783
__len__() (scipy.sparse.dia_matrix method), 1899
__len__() (scipy.sparse.dok_array method), 1978
__len__() (scipy.sparse.dok_matrix method), 1914
arctanh() (scipy.sparse.csc_array method), 1746
arctanh() (scipy.sparse.csc_matrix method), 1862
arctanh() (scipy.sparse.csr_array method), 1765
arctanh() (scipy.sparse.csr_matrix method), 1881
arctanh() (scipy.sparse.dia_array method), 1783
arctanh() (scipy.sparse.dia_matrix method), 1899
ArffError, 667
argmax() (scipy.sparse.bsr_array method), 1710
argmax() (scipy.sparse.bsr_matrix method), 1825
argmax() (scipy.sparse.coo_array method), 1728
argmax() (scipy.sparse.coo_matrix method), 1844
argmax() (scipy.sparse.csc_array method), 1746
argmax() (scipy.sparse.csc_matrix method), 1862
argmax() (scipy.sparsecsr_array method), 1766
argmax() (scipy.sparse.csr_array method), 1882
argmax() (scipy.sparse.csr_matrix method), 1902
argmax() (scipy.sparse.csr_matrix method), 1914
argmax() (scipy.sparse.dok_array method), 1978
argmax() (scipy.sparse.dok_matrix method), 1914
argmax() (scipy.sparse.lil_array method), 1811
argmax() (scipy.sparse.lil_matrix method), 1927
argmax() (scipy.sparse.spmatrix method), 1938
aslinearoperator() (in module scipy.sparse.linalg), 1973
assignValue() (scipy.io.netcdf_variable method), 659
assoc_laguerre() (in module scipy.special), 2294
association() (in module scipy.stats.contingency), 3028
astype() (scipy.sparse.bsr_array method), 1711
astype() (scipy.sparse.bsr_matrix method), 1826
astype() (scipy.sparse.coo_array method), 1729
astype() (scipy.sparse.coo_matrix method), 1845
astype() (scipy.sparse.csc_array method), 1747
astype() (scipy.sparse.csc_matrix method), 1863
astype() (scipy.sparse.csr_array method), 1766
astype() (scipy.sparse.csr_matrix method), 1882
astype() (scipy.sparse.dia_array method), 1900
astype() (scipy.sparse.dia_matrix method), 1904
astype() (scipy.sparse.dok_array method), 1978
astype() (scipy.sparse.dok_matrix method), 1914
astype() (scipy.sparse.lil_array method), 1812
astype() (scipy.sparse.lil_matrix method), 1927
astype() (scipy.sparse.spmatrix method), 1938
average() (in module scipy.cluster.hierarchy), 319
B
BadCoefficients, 1540
band_stop_obj() (in module scipy.signal), 1541
bandwidth() (in module scipy.linalg), 693
barnard_exact() (in module scipy.stats), 3032
bartlett() (in module scipy.stats), 2883
barycentric_interpolate() (in module scipy.interpolate), 516
BarycentricInterpolator (class in scipy.interpolate), 512
basinhopping() (in module scipy.optimize), 1299
basis_element() (scipy.interpolate.BSpline class method), 574
bayes_mvs() (in module scipy.stats), 2783
BDF (class in scipy.integrate), 483
bdtr (in module scipy.special), 2203
bdtrc (in module scipy.special), 2204
bdtri (in module scipy.special), 2204
bdtrik (in module scipy.special), 2205
bdtrin (in module scipy.special), 2206
bei (in module scipy.special), 2353
bei_zeros() (in module scipy.special), 2358
beip (in module scipy.special), 2354
beip_zeros() (in module scipy.special), 2359
bellman_ford() (in module scipy.sparse.csgraph), 2028
ber (in module scipy.special), 2352
ber_zeros() (in module scipy.special), 2358
beroulli() (in module scipy.stats), 2717
beroulli() (in module scipy.special), 2367
berp (in module scipy.special), 2354
berp_zeros() (in module scipy.special), 2359
bessel() (in module scipy.signal), 1568
bessel() (in module scipy.special), 1541
besselpoly (in module scipy.special), 2185
beta (in module scipy.special), 2265
beta (in module scipy.stats), 2444
betabinom (in module scipy.stats), 2719
betainc (in module scipy.special), 2266
betaincinv (in module scipy.special), 2267
betainv (in module scipy.special), 2266
betaprime (in module scipy.stats), 2447
BFGS (class in scipy.optimize), 1295
bi_zeros() (in module scipy.special), 2143
bicg() (in module scipy.sparse.linalg), 1983
bicgstab() (in module scipy.sparse.linalg), 1984
bilinear() (in module scipy.signal), 1496
bilinear_zpk() (in module scipy.signal), 1497
binary_closing() (in module scipy.ndimage), 1227
binary_dilation() (in module scipy.ndimage), 1229
binary_erosion() (in module scipy.ndimage), 1231
binary_fill_holes() (in module scipy.ndimage), 1233
binary_hit_or_miss() (in module scipy.ndimage), 1234
binary_opening() (in module scipy.ndimage), 1235
binary_propagation() (in module scipy.ndimage), 1237
binned_statistic() (in module scipy.stats), 2802
binned_statistic_2d() (in module scipy.stats), 2806
binned_statistic_dd() (in module scipy.stats), 2808
binom (in module scipy.special), 2367
binom (in module scipy.stats), 2721
binom_test() (in module scipy.stats), 2888
binomtest() (in module scipy.stats), 2889
BinomTestResult (class in scipy.stats._result_classes), 3056
bisect() (in module scipy.optimize), 1340
bisclev() (in module scipy.interpolate), 638
bispirep() (in module scipy.interpolate), 637
BivariateSpline (class in scipy.interpolate), 622
black_tophat() (in module scipy.ndimage), 1239
block_diag() (in module scipy.sparse), 1952
bmat() (in module scipy.sparse), 1955
bode() (in module scipy.signal), 1602
bode() (scipy.signal.lti method), 1606
bode() (scipy.signal.lti method), 1582
boltzmann (in module scipy.stats), 2723
bootstrap() (in module scipy.stats), 2793
BootstrapDegenerateDistributionWarning, 3055
boschloo_exact() (in module scipy.stats), 3034
Bounds (class in scipy.optimize), 1294
boxcox (in module scipy.special), 2248
boxcox() (in module scipy.stats), 2965
boxcox1p (in module scipy.special), 2249
boxcox_llf() (in module scipy.stats), 2969
boxcox_normmax() (in module scipy.stats), 2967
boxcox_normplot() (in module scipy.stats), 3042
BPoly (class in scipy.interpolate), 541
bracket() (in module scipy.optimize), 1392
bradford (in module scipy.stats), 2449
braycurtis() (in module scipy.spatial.distance), 2120
breadth_first_order() (in module scipy.sparse.csgraph), 2031
breadth_first_tree() (in module scipy.sparse.csgraph), 2033
brent() (in module scipy.optimize), 1420
brentq() (in module scipy.optimize), 1337
broyden1() (in module scipy.optimize), 1425
broyden2() (in module scipy.optimize), 1427
brunnermunzel() (in module scipy.stats), 2866
brunnermunzel() (in module scipy.stats.mstats), 2952
brute() (in module scipy.optimize), 1303
BSpline (class in scipy.interpolate), 571
bspline() (in module scipy.signal), 1456
bsr_array (class in scipy.sparse), 1705
bsr_matrix (class in scipy.sparse), 1821
btddtr (in module scipy.special), 2206
btddtri (in module scipy.special), 2207
btddtria (in module scipy.special), 2208
btddtrib (in module scipy.special), 2209
burr (in module scipy.stats), 2452
burr12 (in module scipy.stats), 2454
butter() (in module scipy.signal), 1542
butter() (in module scipy.signal), 1552
buttord() (in module scipy.signal), 1554

calculate_areas() (scipy.spatial.SphericalVoronoi method), 2092
canberra() (in module scipy.spatial.distance), 2121
cascade() (in module scipy.signal), 1644
cauhy (in module scipy.stats), 2457
caxpy (in module scipy.linalg.blas), 789
cbtr (in module scipy.special), 2384
cc_diff() (in module scipy.fftpack), 440
ccopy (in module scipy.linalg.blas), 789
cdf (scipy.stats.rv_continuous method), 2400
cdf (scipy.stats.rv_discrete method), 2413
cdf (scipy.stats.rv_histogram method), 2422
cdf (scipy.stats.sampling.NumericalInversePolynomial method), 2998
cdf2rdf (in module scipy.linalg), 744
cdist () (in module scipy.spatial.distance), 2112
cdot (in module scipy.linalg.blas), 789
cdotu (in module scipy.linalg.blas), 790
cell () (scipy.sparse.bsr_array method), 1711
cell () (scipy.sparse.bsr_matrix method), 1827
cell () (scipy.sparse.coo_array method), 1730
cell () (scipy.sparse.coo_matrix method), 1845
cell () (scipy.sparse.csc_array method), 1748
cell () (scipy.sparse.csc_matrix method), 1767
cell () (scipy.sparse.csr_array method), 1883
cell () (scipy.sparse.dia_array method), 1784
cell () (scipy.sparse.dia_matrix method), 1900
center_of_mass () (in module scipy.ndimage), 1210
central_diff_weights () (in module scipy.misc), 1149
centroid () (in module scipy.cluster.hierarchy), 322
cg() (in module scipy.sparse.linalg), 1984
cgmbv (in module scipy.linalg.blas), 819
cgbsv (in module scipy.linalg.lapack), 862
cgbtrf (in module scipy.linalg.lapack), 864
cgbtrs (in module scipy.linalg.lapack), 866
cgebal (in module scipy.linalg.lapack), 867
cgecon (in module scipy.linalg.lapack), 869
cgeequ (in module scipy.linalg.lapack), 870
cgeequb (in module scipy.linalg.lapack), 872
cgees (in module scipy.linalg.lapack), 874
cgeev (in module scipy.linalg.lapack), 876
cgeev_lwork (in module scipy.linalg.lapack), 878
cgegv() (in module scipy.linalg.lapack), 880
cgehrd (in module scipy.linalg.lapack), 882
cgehrd_lwork (in module scipy.linalg.lapack), 883
cgels (in module scipy.linalg.lapack), 886
cgels_lwork (in module scipy.linalg.lapack), 887
cgelad (in module scipy.linalg.lapack), 889
cgelad_lwork (in module scipy.linalg.lapack), 890
cgels_lwork (in module scipy.linalg.lapack), 892
cgels_lwork (in module scipy.linalg.lapack), 894
cgelsy (in module scipy.linalg.lapack), 895
cgelsy_lwork (in module scipy.linalg.lapack), 897
cgemm (in module scipy.linalg.blas), 841
cgemqrt (in module scipy.linalg.lapack), 1080
cgemv (in module scipy.linalg.blas), 819
cgeqp3 (in module scipy.linalg.lapack), 898
cgeqrft (in module scipy.linalg.lapack), 900
cgeqrft_lwork (in module scipy.linalg.lapack), 901
cgeqrft (in module scipy.linalg.lapack), 902
cgeqrpf_lwork (in module scipy.linalg.lapack), 903
cgeqrt (in module scipy.linalg.lapack), 1079
cgerc (in module scipy.linalg.blas), 820
cgerf (in module scipy.linalg.lapack), 905
cgeru (in module scipy.linalg.blas), 820
cgesc2 (in module scipy.linalg.lapack), 923
cgesdd (in module scipy.linalg.lapack), 906
cgesdd_lwork (in module scipy.linalg.lapack), 908
cgesv (in module scipy.linalg.lapack), 909
cgesvd (in module scipy.linalg.lapack), 911
cgesvd_lwork (in module scipy.linalg.lapack), 913
cgesvx (in module scipy.linalg.lapack), 915
cgetc2 (in module scipy.linalg.lapack), 918
cgetrf (in module scipy.linalg.lapack), 917
cgetri (in module scipy.linalg.lapack), 920
cgetri_lwork (in module scipy.linalg.lapack), 921
cgetrs (in module scipy.linalg.lapack), 922
cges (in module scipy.linalg.lapack), 926
cgeev (in module scipy.linalg.lapack), 929
cgelse (in module scipy.linalg.lapack), 931
cgglse (in module scipy.linalg.lapack), 933
cgs () (in module scipy.sparse.linalg), 1985
cgtsv (in module scipy.linalg.lapack), 934
cgtsvx (in module scipy.linalg.lapack), 937
cgttrf (in module scipy.linalg.lapack), 1082
cgttrs (in module scipy.linalg.lapack), 1084
cchevd (in module scipy.linalg.lapack), 938
cchevx (in module scipy.linalg.lapack), 939
cbmv (in module scipy.linalg.blas), 821
chdr (in module scipy.special), 2232
chdr (in module scipy.special), 2233
chdtri (in module scipy.special), 2234
chdriv (in module scipy.special), 2234
chdriv (in module scipy.special), 2240
cheb1ap() (in module scipy.signal), 1542
cheb1ord() (in module scipy.signal), 1558
cheb2ap() (in module scipy.signal), 1542
cheb2ord() (in module scipy.signal), 1562
cheby1() (in module scipy.signal), 1556
cheby2() (in module scipy.signal), 1560
chebyc() (in module scipy.special), 2324
chebys() (in module scipy.special), 2324
chebyshev() (in module scipy.spatial.distance), 2121
chebyt () (in module scipy.special), 2319
chebyu () (in module scipy.special), 2321
ccheck_COLA () (in module scipy.signal), 1688
ccheck_format () (scipy.sparse.bsr_array method), 1711
ccheck_format () (scipy.sparse.bsr_matrix method), 1827
ccheck_format () (scipy.sparse.csc_array method), 1748
ccheck_format () (scipy.sparse.csc_matrix method), 1864
check_format() (scipy.sparse.csr_array method), 1767
check_format() (scipy.sparse.csr_matrix method), 1883
check_grad() (in module scipy.optimize), 1391
check_NOLA() (in module scipy.signal), 1690
checon (in module scipy.linalg.lapack), 940
cheequb (in module scipy.linalg.lapack), 941
cheev (in module scipy.linalg.lapack), 941
cheev_lwork (in module scipy.linalg.lapack), 942
cheevd (in module scipy.linalg.lapack), 943
cheevd_lwork (in module scipy.linalg.lapack), 944
cheevr (in module scipy.linalg.lapack), 944
cheevr_lwork (in module scipy.linalg.lapack), 946
cheevx (in module scipy.linalg.lapack), 946
cheevx_lwork (in module scipy.linalg.lapack), 947
chegst (in module scipy.linalg.lapack), 948
chegv (in module scipy.linalg.lapack), 949
chegv_lwork (in module scipy.linalg.lapack), 950
chegvd (in module scipy.linalg.lapack), 950
chegvx (in module scipy.linalg.lapack), 951
chegvx_lwork (in module scipy.linalg.lapack), 952
chemm (in module scipy.linalg.blas), 841
chemv (in module scipy.linalg.blas), 821
cher (in module scipy.linalg.blas), 822
cher2 (in module scipy.linalg.blas), 822
cher2k (in module scipy.linalg.blas), 841
cher (in module scipy.linalg.blas), 842
chesv (in module scipy.linalg.lapack), 953
chesv_lwork (in module scipy.linalg.lapack), 954
chesvx (in module scipy.linalg.lapack), 954
chesvx_lwork (in module scipy.linalg.lapack), 955
chetrd_lwork (in module scipy.linalg.lapack), 956
chetrd_lwork (in module scipy.linalg.lapack), 957
chetrf (in module scipy.linalg.lapack), 957
chetrf_lwork (in module scipy.linalg.lapack), 958
chfk (in module scipy.linalg.lapack), 959
chi (in module scipy.stats), 2460
chi2 (in module scipy.stats), 2462
chi2_contingency() (in module scipy.stats), 3021
chi2_contingency() (in module scipy.stats.contingency), 3059
chirp() (in module scipy.signal), 1628
chisquare() (in module scipy.stats), 2843
chisquare() (in module scipy.stats.mstats), 2946
chnhdr (in module scipy.special), 2237
chnhdrdf (in module scipy.special), 2237
chnhdrtri (in module scipy.special), 2237
cho_factor() (in module scipy.linalg), 724
cho_solve() (in module scipy.linalg), 725
cho_solve_banded() (in module scipy.linalg), 725
cholesky() (in module scipy.linalg), 722
cholesky_banded() (in module scipy.linalg), 723
choose_conv_method() (in module scipy.signal), 1452
chpmv (in module scipy.linalg.blas), 823
chpr (in module scipy.linalg.blas), 823
chpr2 (in module scipy.linalg.blas), 824
circmean() (in module scipy.stats), 3018
circstd() (in module scipy.stats), 3020
circulant() (in module scipy.linalg), 767
circvar() (in module scipy.stats), 3019
cityblock() (in module scipy.spatial.distance), 2122
cKDTree (class in scipy.spatial), 2065
clange (in module scipy.linalg.lapack), 960
clarf (in module scipy.linalg.lapack), 962
clarfg (in module scipy.linalg.lapack), 963
clarkson_woodruff_transform() (in module scipy.linalg), 764
clartg (in module scipy.linalg.lapack), 965
clawwp (in module scipy.linalg.lapack), 967
claum (in module scipy.linalg.lapack), 968
clear() (scipy.optimize.OptimizeResult method), 1272
clear() (scipy.sparse.dok_array method), 1799
clear() (scipy.sparse.dok_matrix method), 1915
close() (scipy.io.FortranFile method), 651
close() (scipy.io.netcdf_file method), 656
close() (scipy.spatial.ConvexHull method), 2086
close() (scipy.spatial.Delaunay method), 2082
close() (scipy.spatial.HalfspaceIntersection method), 2097
close() (scipy.spatial.Voronoi method), 2089
CloughTocher2DInterpolator (class in scipy.interpolate), 552
clpmn() (in module scipy.special), 2288
ClusterNode (class in scipy.cluster.hierarchy), 341
cmplx_sort() (in module scipy.signal), 1543
coreherence() (in module scipy.signal), 1674
comb() (in module scipy.special), 2361
combine_pvalues() (in module scipy.stats), 2867
companion() (in module scipy.linalg), 768
cmpare_medians_ms() (in module scipy.stats.mstats), 2963
cmplete() (in module scipy.cluster.hierarchy), 317
cmplex_ode (class in scipy.integrate), 500
cmpfidence_interval() (scipy.stats._result_classes.TukeyHSDResult method), 3058
cmpfconj() (scipy.sparse.bsr_array method), 1711
cmpfconj() (scipy.sparse.bsr_matrix method), 1827
cmpfconj() (scipy.sparse.coo_array method), 1730
cmpfconj() (scipy.sparse.coo_matrix method), 1846
cmpfconj() (scipy.sparse.csc_array method), 1748
cmpfconj() (scipy.sparse.csc_matrix method), 1864
cmpfconj() (scipy.sparse.csr_array method), 1767
cmpfconj() (scipy.sparse.csr_matrix method), 1883
cmpfconj() (scipy.sparse.csr_array method), 1784
count_nonzero() (scipy.sparse.dia_matrix method), 1785
count_nonzero() (scipy.sparse.dia_array method), 1901
count_nonzero() (scipy.sparse.dok_array method), 1800
count_nonzero() (scipy.sparse.dok_matrix method), 1916
count_nonzero() (scipy.sparse.lil_array method), 1813
count_nonzero() (scipy.sparse.lil_matrix method), 1928
count_nonzero() (scipy.sparsespmatrix method), 1939
count_tied_groups() (in module scipy.stats.mstats), 2962
covariance_factor() (scipy.stats.gaussian_kde method), 3054
cpbsv (in module scipy.linalg.lapack), 977
cpbtrf (in module scipy.linalg.lapack), 980
cpftf (in module scipy.linalg.lapack), 981
cpftri (in module scipy.linalg.lapack), 983
cpfrs (in module scipy.linalg.lapack), 984
cpocon (in module scipy.linalg.lapack), 986
cposv (in module scipy.linalg.lapack), 990
cposvx (in module scipy.linalg.lapack), 992
cptrf (in module scipy.linalg.lapack), 994
cptri (in module scipy.linalg.lapack), 996
cptrs (in module scipy.linalg.lapack), 997
cppcon (in module scipy.linalg.lapack), 998
cpps (in module scipy.linalg.lapack), 1000
cpptrf (in module scipy.linalg.lapack), 1001
cpptri (in module scipy.linalg.lapack), 1002
ccpptrs (in module scipy.linalg.lapack), 1004
cppf (in module scipy.linalg.lapack), 1010
cptref (in module scipy.linalg.lapack), 1005
cptsv (in module scipy.linalg.lapack), 1007
cptsvx (in module scipy.linalg.lapack), 1009
cpttrs (in module scipy.linalg.lapack), 1010
cramervonmises() (in module scipy.stats), 2845
cramervonmises_2samp() (in module scipy.stats), 2846
createDimension() (scipy.io.netcdf_file method), 657
createVariable() (scipy.io.netcdf_file method), 657
crosstab() (in module scipy.stats.contingency), 3023
crot (in module scipy.linalg.lapack), 1013
crotg (in module scipy.linalg.blas), 790
crystalball (in module scipy.stats), 2467
cs_diff() (in module scipy.stats), 439
csc_array (class in scipy.sparse), 1742
csc_matrix (class in scipy.sparse), 1858
cscal (in module scipy.linalg.blas), 790
csd() (in module scipy.signal), 1671
csgraph_from_dense() (in module scipy.sparse.csgraph), 2046
csgraph_from_masked() (in module scipy.sparse.csgraph), 2047
csgraph_masked_from_dense() (in module scipy.sparse.csgraph), 2048
csgraph_to_dense() (in module scipy.sparse.csgraph), 2048
csgraph_to_masked() (in module scipy.sparse.csgraph), 2050
cspatial1d() (in module scipy.signal), 1459
cspatial1d_eval() (in module scipy.signal), 1462
cspatial2d() (in module scipy.signal), 1462
csr_array (class in scipy.sparse), 1761
csr_matrix (class in scipy.sparse), 1877
csrort (in module scipy.linalg.blas), 791
csscal (in module scipy.linalg.blas), 791
cswap (in module scipy.linalg.blas), 792
csycon (in module scipy.linalg.lapack), 1024
csyconv (in module scipy.linalg.lapack), 1025
csyequb (in module scipy.linalg.lapack), 1026
csymm (in module scipy.linalg.blas), 842
csy (in module scipy.linalg.blas), 827
csy2k (in module scipy.linalg.blas), 843
csymk (in module scipy.linalg.blas), 843
csysv (in module scipy.linalg.lapack), 1039
csysv_lwork (in module scipy.linalg.lapack), 1041
csysv (in module scipy.linalg.lapack), 1042
csysv_lwork (in module scipy.linalg.lapack), 1044
csytf (in module scipy.linalg.lapack), 1045
csytrf (in module scipy.linalg.lapack), 1048
csytrf_lwork (in module scipy.linalg.lapack), 1049
ctbmv (in module scipy.linalg.blas), 824
ctbmv (in module scipy.linalg.blas), 825
ctbtrs (in module scipy.linalg.lapack), 1051
cfsm (in module scipy.linalg.lapack), 1052
cfttp (in module scipy.linalg.lapack), 1054
cftttr (in module scipy.linalg.lapack), 1055
ctgexc (in module scipy.linalg.lapack), 1057
ctgse (in module scipy.linalg.lapack), 1060
ctgse (in module scipy.linalg.lapack), 1062
ctpgmr (in module scipy.linalg.lapack), 1088
ctpmv (in module scipy.linalg.blas), 825
ctpgmr (in module scipy.linalg.lapack), 1086
ctpsv (in module scipy.linalg.blas), 825
ctpgmr (in module scipy.linalg.lapack), 1086
ctpsv (in module scipy.linalg.blas), 825
ctpgmr (in module scipy.linalg.lapack), 1063
ctpgmr (in module scipy.linalg.lapack), 1064
crmm (in module scipy.linalg.blas), 843
crmm (in module scipy.linalg.blas), 844
crs (in module scipy.linalg.blas), 826
crs (in module scipy.linalg.blas), 826

dlamch (in module scipy.linalg.lapack), 960
dlange (in module scipy.linalg.lapack), 960
dlplace (in module scipy.stats), 2726
dlarf (in module scipy.linalg.lapack), 961
dlarfkg (in module scipy.linalg.lapack), 963
dlartg (in module scipy.linalg.lapack), 964
dlasd4 (in module scipy.linalg.lapack), 966
dlaswp (in module scipy.linalg.lapack), 966
dlaum (in module scipy.linalg.lapack), 968
dlsim() (in module scipy.signal), 1608
dlti (class in scipy.signal), 1604
dnrm2 (in module scipy.linalg.blas), 793
dok_array (class in scipy.sparse), 1795
dok_matrix (class in scipy.sparse), 1911
DOP853 (class in scipy.integrate), 479
dord (in module scipy.linalg.lapack), 970
dorcsd_lwork (in module scipy.linalg.lapack), 971
dorgrl_work (in module scipy.linalg.lapack), 972
dorgrl_work (in module scipy.linalg.lapack), 972
dorgrq (in module scipy.linalg.lapack), 973
dorgrq (in module scipy.linalg.lapack), 974
dorml_work (in module scipy.linalg.lapack), 975
dorml_work (in module scipy.linalg.lapack), 976
dot () (scipy.optimize.BFGS method), 1296
dot () (scipy.optimize.HessianUpdateStrategy method), 1399
dot () (scipy.optimize.LbfgsHinvHessProduct method), 1396
dot () (scipy.optimize.SR1 method), 1297
dot () (scipy.sparse.bsr_array method), 1713
dot () (scipy.sparse.bsr_matrix method), 1829
dot () (scipy.sparse.coo_array method), 1731
dot () (scipy.sparse.coo_matrix method), 1847
dot () (scipy.sparse.csc_array method), 1750
dot () (scipy.sparse.csc_matrix method), 1866
dot () (scipy.sparse.csr_array method), 1769
dot () (scipy.sparse.csr_matrix method), 1885
dot () (scipy.sparse.dia_array method), 1786
dot () (scipy.sparse.dia_matrix method), 1902
dot () (scipy.sparse.dok_array method), 1800
dot () (scipy.sparse.dok_matrix method), 1916
dot () (scipy.sparse.lil_array method), 1813
dot () (scipy.sparse.lil_matrix method), 1929
dot () (scipy.sparse.linalg.LinearOperator method), 1971
dot () (scipy.sparse.spmatrix method), 1940
dpbsv (in module scipy.linalg.lapack), 977
dpbt (in module scipy.linalg.lapack), 978
dpbrs (in module scipy.linalg.lapack), 980
dpbrtf (in module scipy.linalg.lapack), 981
dpbrtr (in module scipy.linalg.lapack), 982
dpbrts (in module scipy.linalg.lapack), 984
dpcon (in module scipy.linalg.lapack), 985
dposv (in module scipy.linalg.lapack), 990
dposvx (in module scipy.linalg.lapack), 992
dpotrf (in module scipy.linalg.lapack), 994
dpotri (in module scipy.linalg.lapack), 995
dptrs (in module scipy.linalg.lapack), 997
dppcon (in module scipy.linalg.lapack), 998
dppsv (in module scipy.linalg.lapack), 999
dpptrf (in module scipy.linalg.lapack), 1001
dpptri (in module scipy.linalg.lapack), 1002
dpptrs (in module scipy.linalg.lapack), 1003
dstf2 (in module scipy.linalg.lapack), 988
dstrf (in module scipy.linalg.lapack), 987
dpteg (in module scipy.linalg.lapack), 1012
dptsv (in module scipy.linalg.lapack), 1005
dptsvx (in module scipy.linalg.lapack), 1007
dpttrf (in module scipy.linalg.lapack), 1008
dpttrs (in module scipy.linalg.lapack), 1010
drot (in module scipy.linalg.blas), 794
drotg (in module scipy.linalg.blas), 794
drotm (in module scipy.linalg.blas), 794
drotmg (in module scipy.linalg.blas), 795
dsev (in module scipy.linalg.lapack), 1015
dsevd (in module scipy.linalg.lapack), 1015
dsevdx (in module scipy.linalg.lapack), 1016
dsbmv (in module scipy.linalg.blas), 814
dscal (in module scipy.linalg.blas), 795
df (in module scipy.linalg.lapack), 1017
dspr (in module scipy.linalg.blas), 815
dspr2 (in module scipy.linalg.blas), 815
dst () (in module scipy.fft), 406
dst () (in module scipy.fft), 433
dste (in module scipy.linalg.lapack), 1018
dstein (in module scipy.linalg.lapack), 1019
dstemr (in module scipy.linalg.lapack), 1020
dstemr (in module scipy.linalg.lapack), 1021
dstep () (in module scipy.signal), 1610
dsteg (in module scipy.linalg.lapack), 1022
dstei (in module scipy.linalg.lapack), 1022
dstn () (in module scipy.fft), 409
dstn () (in module scipy.fft), 433
dswap (in module scipy.linalg.blas), 795
dsc (in module scipy.linalg.lapack), 1023
dsv (in module scipy.linalg.lapack), 1025
dsv (in module scipy.linalg.lapack), 1026
dsev (in module scipy.linalg.lapack), 1027
dsev_x (in module scipy.linalg.lapack), 1028
dsev (in module scipy.linalg.lapack), 1029
dsev_x (in module scipy.linalg.lapack), 1029
dsev (in module scipy.linalg.lapack), 1030
dsev_x (in module scipy.linalg.lapack), 1031
dsev (in module scipy.linalg.lapack), 1032
dsev_x (in module scipy.linalg.lapack), 1033
dsgst (in module scipy.linalg.lapack), 1034
dsgv (in module scipy.linalg.lapack), 1034
dsgv_x (in module scipy.linalg.lapack), 1035

Index
dsygvd (in module scipy.linalg.lapack), 1036
dsysvx (in module scipy.linalg.lapack), 1037
dsvyevr (in module scipy.linalg.lapack), 1038
dsymm (in module scipy.linalg.blas), 839
dsymv (in module scipy.linalg.blas), 816
dsy (in module scipy.linalg.blas), 816
dsy2 (in module scipy.linalg.blas), 817
dsy2k (in module scipy.linalg.blas), 839
dsyrk (in module scipy.linalg.blas), 839
dsysv (in module scipy.linalg.blas), 1039
dsysv_lwork (in module scipy.linalg.lapack), 1040
dsysvx (in module scipy.linalg.lapack), 1042
dsysvx_lwork (in module scipy.linalg.lapack), 1044
dsytrf (in module scipy.linalg.lapack), 1046
dsytrd (in module scipy.linalg.lapack), 1047
dsytrf_lwork (in module scipy.linalg.lapack), 1049
dtbbmv (in module scipy.linalg.blas), 817
dtbrs (in module scipy.linalg.lapack), 1050
dtfttp (in module scipy.linalg.lapack), 1053
dtftr (in module scipy.linalg.lapack), 1055
dtgevc (in module scipy.linalg.lapack), 1056
dtgsen (in module scipy.linalg.lapack), 1059
dtgsen_lwork (in module scipy.linalg.lapack), 1061
dtmgqrt (in module scipy.linalg.lapack), 1087
dtmgqr (in module scipy.linalg.lapack), 1085
dtjsp (in module scipy.linalg.blas), 818
dtpttf (in module scipy.linalg.lapack), 1063
dtpttr (in module scipy.linalg.lapack), 1064
dtrmm (in module scipy.linalg.blas), 840
dtrmv (in module scipy.linalg.blas), 818
dtrsm (in module scipy.linalg.blas), 840
dtrsv (in module scipy.linalg.blas), 818
dtrsy (in module scipy.linalg.lapack), 1065
dtrtri (in module scipy.linalg.lapack), 1067
dtrtrs (in module scipy.linalg.lapack), 1068
dtrttf (in module scipy.linalg.lapack), 1070
dtrttt (in module scipy.linalg.lapack), 1071
dttrzf (in module scipy.linalg.lapack), 1073
dttrzf_lwork (in module scipy.linalg.lapack), 1074
dual_annealing() (in module scipy.optimize), 1315
dweibull (in module scipy.stats), 2472
dzasum (in module scipy.linalg.blas), 796
dznrm2 (in module scipy.linalg.blas), 796

E

eig() (in module scipy.linalg), 697
eig_banded() (in module scipy.linalg), 705
eigh() (in module scipy.linalg), 700
eigh_tridiagonal() (in module scipy.linalg), 708
eigs() (in module scipy.sparse.linalg), 1999
eigsh() (in module scipy.sparse.linalg), 2001
eigvals() (in module scipy.linalg), 699
eigvals_banded() (in module scipy.linalg), 707
eigvalsh() (in module scipy.linalg), 703
eigvalsh_tridiagonal() (in module scipy.linalg), 710
electrocardiogram() (in module scipy.misc), 1151
eliminate_zeros() (scipy.sparse.bsr_array method), 1713
eliminate_zeros() (scipy.sparse.bsr_matrix method), 1829
eliminate_zeros() (scipy.sparse.coo_array method), 1732
eliminate_zeros() (scipy.sparse.csr_array method), 1848
eliminate_zeros() (scipy.sparse.csc_array method), 1750
eliminate_zeros() (scipy.sparse.csr_matrix method), 1866
eliminate_zeros() (scipy.sparse.csr_array method), 1769
eliminate_zeros() (scipy.sparse.csr_matrix method), 1885
eillp() (in module scipy.signal), 1564
eillp_harm() (in module scipy.special), 2291
eillp_harm_2() (in module scipy.special), 2292
eillp_normal() (in module scipy.special), 2293
eillpap() (in module scipy.signal), 1543
eillepe() (in module scipy.special), 2148
elleipeinc() (in module scipy.special), 2150
eillp() (in module scipy.special), 2144
eillpk() (in module scipy.special), 2145
eillpinc() (in module scipy.special), 2147
eillpm() (in module scipy.special), 2146
eillipord() (in module scipy.signal), 1567
eilliprc() (in module scipy.special), 2151
eilliprd() (in module scipy.special), 2152
eilliprf() (in module scipy.special), 2153
eillipq() (in module scipy.special), 2154
eillipq() (in module scipy.special), 2155
energy_distance() (in module scipy.stats), 2984
entr() (in module scipy.special), 2252
entropy() (in module scipy.stats), 2786
entropy() (scipy.stats.rv_continuous method), 2403
entropy() (scipy.stats.rv_discrete method), 2416
entropy() (scipy.stats.rv_histogram method), 2422
epsps_singleton_2samp() (in module scipy.stats), 2855
erf() (in module scipy.special), 2274
erf_zeros() (in module scipy.special), 2275
erfc() (in module scipy.special), 2275
erfcinv() (in module scipy.special), 2280
erfcx() (in module scipy.special), 2276
erfinv() (in module scipy.special), 2277
erfinv() (in module scipy.special), 2279
Index 3549

erlang (in module scipy.stats), 2475
errror (scipy.io.arff.ArrffError attribute), 667
erro (scipy.io.ArffParaseArrffError attribute), 667
erro (scipy.io.FortranEOFAttribute), 653
erro (scipy.io.FortranForgettingAttribute), 654
errostate (class in scipy.special), 2137
estimate_rank () (in module scipy.linalg.interpolative), 1143
estimate_spectral_norm () (in module scipy.linalg.interpolative), 1143
estimate_spectral_norm_diff () (in module scipy.linalg.interpolative), 1143
euclidean () (in module scipy.spatial.distance), 2123
euler () (in module scipy.special), 2370
ev () (scipy.interpolate.BivariateSpline method), 623
ev () (scipy.interpolate.LSQBivariateSpline method), 632
ev () (scipy.interpolate.LSQSphereBivariateSpline method), 636
ev () (scipy.interpolate.RectBivariateSpline method), 567
ev () (scipy.interpolate.RectSphereBivariateSpline method), 621
ev () (scipy.interpolate.SmoothBivariateSpline method), 626
ev () (scipy.interpolate.SmoothSphereBivariateSpline method), 630
eval_chebyc (in module scipy.special), 2298
eval_chebys (in module scipy.special), 2299
eval_chebyt (in module scipy.special), 2297
eval_chebyu (in module scipy.special), 2298
eval_gegenbauer (in module scipy.special), 2304
eval_genlaguerre (in module scipy.special), 2302
eval_hermite (in module scipy.special), 2303
eval_hermiteenorm (in module scipy.special), 2303
eval_jacobi (in module scipy.special), 2300
eval_laguerre (in module scipy.special), 2301
eval_legendre (in module scipy.special), 2295
eval_sh_chebyt (in module scipy.special), 2305
eval_sh_chebyu (in module scipy.special), 2306
eval_sh_jacobi (in module scipy.special), 2307
eval_sh_legendre (in module scipy.special), 2305
evaluate () (scipy.stats.gaussian_kde method), 3050
excitingmixing () (in module scipy.optimize), 1433
exp1 (in module scipy.special), 2372
exp10 (in module scipy.special), 2384
exp2 (in module scipy.special), 2385
expect () (scipy.stats.rv_continuous method), 2403
expect () (scipy.stats.rv_discrete method), 2416
expect () (scipy.stats.rv_histogram method), 2423
expected_freq () (in module scipy.stats.contingency), 3025
exp1 (in module scipy.special), 2373
expit (in module scipy.special), 2246
expm () (in module scipy.linalg), 748
expm () (in module scipy.sparse.linalg), 1975
expm1 (in module scipy.special), 2389
expm1 () (scipy.sparse.bsr_array method), 1713
expm1 () (scipy.sparse.bsr_matrix method), 1829
expm1 () (scipy.sparse.coo_array method), 1732
expm1 () (scipy.sparse.coo_matrix method), 1848
expm1 () (scipy.sparse.csc_array method), 1750
expm1 () (scipy.sparse.csc_matrix method), 1866
expm1 () (scipy.sparse.cs_array method), 1769
expm1 () (scipy.sparse.cs_matrix method), 1885
expm1 () (scipy.sparse.dia_array method), 1786
expm1 () (scipy.sparse.dia_matrix method), 1902
expm_cond () (in module scipy.linalg), 756
expm_frechet () (in module scipy.linalg), 755
expm_multiply () (in module scipy.sparse.linalg), 1976
expn (in module scipy.special), 2370
expon (in module scipy.stats), 2476
exponential (in module scipy.odr), 1266
exponnorm (in module scipy.stats), 2478
exponpow (in module scipy.stats), 2483
exponweib (in module scipy.stats), 2481
exprel (in module scipy.special), 2393
extend () (scipy.interpolate.BPoly method), 543
extend () (scipy.interpolate.PPoly method), 540
extrema () (in module scipy.ndimage), 1211
eye () (in module scipy.sparse), 1948

F
f (in module scipy.stats), 2486
f_oneway () (in module scipy.stats), 2811
f_oneway () (in module scipy.stats.mstats), 2936
F_onewayBadInputSizesWarning, 3054
F_onewayConstantInputWarning, 3054
face () (in module scipy.misc), 1151
factorial () (in module scipy.special), 2375
factorial2 () (in module scipy.special), 2375
factorialk () (in module scipy.special), 2376
factorized () (in module scipy.sparse.linalg), 1981
fast_forward () (scipy.stats.qmc.Halton method), 2906
fast_forward () (scipy.stats.qmc.LatinHypercube method), 2909
fast_forward () (scipy.stats.qmc.MultinomialQMC method), 2910
fast_forward () (scipy.stats.qmc.MultivariateNormalQMC method), 2912
fast_forward () (scipy.stats.qmc.QMCEngine method), 2901
fast_forward () (scipy.stats.qmc.Sobol method), 2903
fatiguetime (in module scipy.stats), 2488
fcluster () (in module scipy.cluster.hierarchy), 307
fclusterdata () (in module scipy.cluster.hierarchy), 309
friedmanchisquare() (in module scipy.stats), 2866
friedmanchisquare() (in module scipy.stats.mstats), 2952
from_bernstein_basis() (scipy.interpolate.PPoly class method), 540
from_cython() (scipy.LowLevelCallable class method), 3062
from_derivatives() (scipy.interpolate.BPoly class method), 545
from_mlab_linkage() (in module scipy.cluster.hierarchy), 329
from_power_basis() (scipy.interpolate.BPoly class method), 544
from_power_basis() (scipy.interpolate.BSpline class method), 579
from_spline() (scipy.interpolate.PPoly class method), 540
fromkeys() (scipy.optimize.OptimizeResult method), 1272
fromkeys() (scipy.sparse.dok_array method), 1801
fromkeys() (scipy.sparse.dok_matrix method), 1917
fsolve() (in module scipy.optimize), 1424
funm() (in module scipy.linalg), 754

G
gamma (in module scipy.special), 2255
gamma (in module scipy.stats), 2513
gammainc (in module scipy.special), 2260
gammaincc (in module scipy.special), 2263
gammainccinv (in module scipy.special), 2264
gammaintc (in module scipy.special), 2262
gammaintcinv (in module scipy.special), 2257
gammadistn (in module scipy.stats), 2259
gammadist (in module scipy.stats), 2259
gammachisquare (in module scipy.stats), 2258
gammachisquare() (in module scipy.stats), 2259
gammachisquare() (in module scipy.stats.mstats), 2262
gammaintc (in module scipy.stats), 2261
gammaintcinv (in module scipy.stats), 2262
gaussian_filter() (in module scipy.ndimage), 1161
gaussian_filter1d() (in module scipy.ndimage), 1163
gaussian_gradient_magnitude() (in module scipy.ndimage), 1164
gaussian_kde (class in scipy.stats), 3047
gaussian_laplace() (in module scipy.ndimage), 1166
gausspulse() (in module scipy.stats), 1632
gcrotmk() (in module scipy.sparse.linalg), 1991
gdtr (in module scipy.special), 2212
gdtrc (in module scipy.special), 2212
gdtrib (in module scipy.special), 2214
gdtrix (in module scipy.special), 2215
gegenbauer() (in module scipy.special), 2331

generate_binary_structure() (in module scipy.ndimage), 1244
generic_filter() (in module scipy.ndimage), 1167
generic_filter1d() (in module scipy.ndimage), 1169
generic_gradient_magnitude() (in module scipy.ndimage), 1171
generic_laplace() (in module scipy.ndimage), 1172
genexpon (in module scipy.stats), 2506
genextreme (in module scipy.stats), 2508
gengamma (in module scipy.stats), 2516
genhalflogistic (in module scipy.stats), 2519
genhyperbolic (in module scipy.stats), 2521
geninvgauss (in module scipy.stats), 2524
genlaguerre() (in module scipy.special), 2328
genlogistic (in module scipy.stats), 2498
genorm (in module scipy.stats), 2501
genpareto (in module scipy.stats), 2503
gem (in module scipy.stats), 2728
generic_slerp() (in module scipy.spatial), 2106
generic_transform() (in module scipy.ndimage), 1197
get() (scipy.optimize.OptimizeResult method), 1272
get() (scipy.sparse.dok_array method), 1801
get() (scipy.sparse.dok_matrix method), 1917
get_blas_funcs() (in module scipy.linalg), 783
get_blas_funcs() (in module scipy.linalg.blas), 786
get_coeffs() (scipy.interpolate.BivariateSpline method), 623
get_coeffs() (scipy.interpolate.InterpolatedUnivariateSpline method), 608
get_coeffs() (scipy.interpolate.LSQBivariateSpline method), 632
generate_binary_structure() (in module scipy.ndimage), 1244
get_coeffs() (scipy.interpolate.LSQUnivariateSpline method), 615
generate_binary_structure() (in module scipy.ndimage), 1244
get_coeffs() (scipy.interpolate.RectBivariateSpline method), 567
get_coeffs() (scipy.interpolate.RectSphereBivariateSpline method), 621
get_coeffs() (scipy.interpolate.SmoothBivariateSpline method), 626
get_coeffs() (scipy.interpolate.SmoothSphereBivariateSpline method), 630
get_coeffs() (scipy.interpolate.UnivariateSpline method), 602
get_count() (scipy.cluster.hierarchy.ClusterNode method), 341
getformat() (scipy.sparse.dia_matrix method), 1787
getformat() (scipy.sparse.dia_matrix method), 1903
getformat() (scipy.sparse.dok_array method), 1801
getformat() (scipy.sparse.dok_matrix method), 1917
getformat() (scipy.sparse.lil_matrix method), 1814
getformat() (scipy.sparse.lil_matrix method), 1930
getH() (scipy.sparse.bsr_array method), 1714
getH() (scipy.sparse.bsr_matrix method), 1829
getH() (scipy.sparse.coo_array method), 1732
getH() (scipy.sparse.coo_matrix method), 1848
getH() (scipy.sparse.csc_array method), 1750
getH() (scipy.sparse.csc_matrix method), 1866
getH() (scipy.sparse.csr_array method), 1769
getH() (scipy.sparse.csr_matrix method), 1885
getH() (scipy.sparse.dia_array method), 1786
getH() (scipy.sparse.dia_matrix method), 1902
getH() (scipy.sparse.dok_array method), 1801
getH() (scipy.sparse.dok_matrix method), 1917
getH() (scipy.sparse.lil_array method), 1814
getH() (scipy.sparse.lil_matrix method), 1929
getH() (scipy.sparse.spmatrix method), 1940
getmaxprint() (scipy.sparse.bsr_array method), 1714
getmaxprint() (scipy.sparse.bsr_matrix method), 1830
getmaxprint() (scipy.sparse.coo_array method), 1733
getmaxprint() (scipy.sparse.coo_matrix method), 1849
getmaxprint() (scipy.sparse.csc_array method), 1751
getmaxprint() (scipy.sparse.csc_matrix method), 1867
getmaxprint() (scipy.sparse.csr_array method), 1770
getmaxprint() (scipy.sparse.csr_matrix method), 1886
getmaxprint() (scipy.sparse.dia_array method), 1787
getmaxprint() (scipy.sparse.dia_matrix method), 1903
getmaxprint() (scipy.sparse.dok_array method), 1802
getmaxprint() (scipy.sparse.dok_matrix method), 1918
getmaxprint() (scipy.sparse.lil_array method), 1815
getmaxprint() (scipy.sparse.lil_matrix method), 1930
getmaxprint() (scipy.sparse.spmatrix method), 1941
getRow() (scipy.sparse.lil_array method), 1815
getRowview() (scipy.sparse.lil_matrix method), 1931
getValue() (scipy.io.netcdf_variable method), 659
gilbrat (in module scipy.stats), 2527
gmean() (in module scipy.stats), 2763
gmean() (in module scipy.stats.mstats), 2919
gmres() (in module scipy.sparse.linalg), 1986
golden() (in module scipy.optimize), 1421
gompertz (in module scipy.stats), 2529
grey_closing() (in module scipy.ndimage), 1245
grey_dilation() (in module scipy.ndimage), 1246
grey_erosion() (in module scipy.ndimage), 1248
grey_opening() (in module scipy.ndimage), 1250
griddata() (in module scipy.interpolate), 546
group_delay() (in module scipy.signal), 1517
gstd() (in module scipy.stats), 2779
gumbel_l (in module scipy.stats), 2534
gumbel_r (in module scipy.stats), 2532
gzscore() (in module scipy.stats), 2980

H
h1vp() (in module scipy.special), 2189
h2vp() (in module scipy.special), 2189
hadamard() (in module scipy.linalg), 775
halfcauchy (in module scipy.stats), 2537
halfgennorm (in module scipy.stats), 2544
halflogistic (in module scipy.stats), 2539
halfnorm (in module scipy.stats), 2542
HalfspaceIntersection (class in scipy.spatial), 2093
Halton (class in scipy.stats.qmc), 2904
hamming() (in module scipy.spatial.distance), 2129
hankel() (in module scipy.linalg), 775
Index 3555

is_valid_y () (in module scipy.spatial.distance), 2119
isamax (in module scipy.linalg.blas), 797
isf () (scipy.stats.rv_continuous method), 2402
isf () (scipy.stats.rv_discrete method), 2415
isf () (scipy.stats.rv_histogram method), 2427
ishermitian () (in module scipy.linalg), 695
issparse () (in module scipy.sparse), 1962
isspmatrix () (in module scipy.sparse), 1963
isspmatrix_bsr () (in module scipy.sparse), 1964
isspmatrix_coo () (in module scipy.sparse), 1966
isspmatrix_csc () (in module scipy.sparse), 1963
isspmatrix_CSR () (in module scipy.sparse), 1964
isspmatrix_dia () (in module scipy.sparse), 1966
isspmatrix dok () (in module scipy.sparse), 1965
isspmatrix_lil () (in module scipy.sparse), 1965
issymmetric () (in module scipy.linalg), 694
istft () (in module scipy.signal), 1684
it2i0k0 () (in module scipy.special), 2185
it2j0y0 () (in module scipy.special), 2184
it2struve0 () (in module scipy.special), 2200
itairy () (in module scipy.special), 2143
itemfreq () (in module scipy.stats), 2798
items () (scipy.optimize.OptimizeResult method), 1272
items () (scipy.sparse.dok_array method), 1802
items () (scipy.sparse.dok_matrix method), 1918
itemsize () (scipy.io.netcdf_variable method), 659
iterate_structure () (in module scipy.ndimage), 1251
iti0k0 () (in module scipy.sparse), 2185
itilbert () (in module scipy.fftpack), 438
itj0y0 () (in module scipy.special), 2184
itmodstruve0 () (in module scipy.special), 2201
itstruve0 () (in module scipy.special), 2199
iv () (in module scipy.special), 2164
ive () (in module scipy.special), 2165
ivp () (in module scipy.special), 2188
izamax (in module scipy.linalg.blas), 797

J
j0 () (in module scipy.special), 2176
j1 () (in module scipy.special), 2176
jaccard () (in module scipy.spatial.distance), 2129
jacobi () (in module scipy.special), 2325
jarque_bera () (in module scipy.stats), 2868
jensenshannon () (in module scipy.spatial.distance), 2124
jn_zeros () (in module scipy.special), 2171
jnjnp_zeros () (in module scipy.special), 2170
jnp_zeros () (in module scipy.special), 2172
jyn_zeros () (in module scipy.special), 2170
johnson () (in module scipy.sparse.csgraph), 2029
johnsonsb () (in module scipy.stats), 2557
johnsons u () (in module scipy.stats), 2559
jv () (in module scipy.special), 2157
jve (in module scipy.special), 2158
jvp() (in module scipy.special), 2186

K
k0 (in module scipy.special), 2181
k0e (in module scipy.special), 2182
k1 (in module scipy.special), 2182
kle (in module scipy.special), 2183
kaiser_atten() (in module scipy.signal), 1523
kaiser_beta() (in module scipy.signal), 1524
kaiserord() (in module scipy.signal), 1525
kappa3 (in module scipy.stats), 2565
kappa4 (in module scipy.stats), 2562
KDTree (class in scipy.spatial), 2054
kei (in module scipy.special), 2356
kei_zeros() (in module scipy.special), 2360
keip (in module scipy.special), 2357
keip_zeros() (in module scipy.special), 2361
kelvin (in module scipy.special), 2351
kelvin_zeros() (in module scipy.special), 2351
kendalltau() (in module scipy.stats), 2820
kendalltau() (in module scipy.stats.mstats), 2940
kendalltau_seasonal() (in module scipy.stats.mstats), 2941
ker (in module scipy.special), 2355
ker_zeros() (in module scipy.special), 2359
kerp (in module scipy.special), 2357
kerp_zeros() (in module scipy.special), 2360
keys() (scipy.optimize.OptimizeResult method), 1272
keys() (scipy.sparse.dok_array method), 1802
keys() (scipy.sparse.dok_matrix method), 1918
khatri_rao() (in module scipy.linalg), 688
kl_div (in module scipy.special), 2253
kmeans() (in module scipy.cluster.vq), 301
kmeans2() (in module scipy.cluster.vq), 304
kn (in module scipy.special), 2160
kolmogi (in module scipy.special), 2243
kolmogorov (in module scipy.special), 2241
krogh_interpolate() (in module scipy.interpolate), 517
KroghInterpolator (class in scipy.interpolate), 513
kron() (in module scipy.linalg), 687
kron() (in module scipy.sparse), 1949
kronsum() (in module scipy.sparse), 1950
kruskal() (in module scipy.stats), 2864
kruskal() (in module scipy.stats.mstats), 2950
kruskalwallis() (in module scipy.stats.mstats), 2951
ks_1samp() (in module scipy.stats), 2852
ks_1samp() (in module scipy.stats.mstats), 2949
ks_2samp() (in module scipy.stats), 2854
ks_2samp() (in module scipy.stats.mstats), 2948
ks_twosamp() (in module scipy.stats.mstats), 2949
ksone() (in module scipy.stats), 2568
kstat() (in module scipy.stats), 2770
kstatvar() (in module scipy.stats), 2771
kstest() (in module scipy.stats), 2850
kstest() (in module scipy.stats.mstats), 2948
kstwo() (in module scipy.stats), 2570
kstwobign() (in module scipy.stats), 2573
kulczynski1() (in module scipy.spatial.distance), 2131
kulsinski() (in module scipy.spatial.distance), 2130
kurtosis() (in module scipy.stats), 2765
kurtosis() (in module scipy.stats.mstats), 2921
kurtosistest() (in module scipy.stats), 2896
kurtosistest() (in module scipy.stats.mstats), 2953
kv (in module scipy.special), 2162
kve (in module scipy.special), 2163
kvp() (in module scipy.special), 2187

L
label() (in module scipy.ndimage), 1214
labeled_comprehension() (in module scipy.ndimage), 1216
lagrange() (in module scipy.interpolate), 639
laguerre() (in module scipy.special), 2326
lambdav2nu() (in module scipy.stats.mstats), 373
lambertw() (in module scipy.special), 2363
laplace() (in module scipy.stats), 2576
laplace() (in module scipy.ndimage), 1173
laplace_asymmetric() (in module scipy.stats), 2579
laplacian() (in module scipy.sparse.csgraph), 2022
LatinHypercube (class in scipy.stats.qmc), 2906
LbfgsInvHessProduct (class in scipy.optimize), 1395
ld1() (in module scipy.linalg), 720
leaders() (in module scipy.cluster.hierarchy), 311
least_squares() (in module scipy.optimize), 1318
leastsq() (in module scipy.optimize), 1422
leaves_list() (in module scipy.cluster.hierarchy), 343
legendre() (in module scipy.special), 2318
leslie() (in module scipy.linalg), 778
levene() (in module scipy.stats), 2884
levy() (in module scipy.stats), 2581
levy_l() (in module scipy.stats), 2584
levy_stable() (in module scipy.stats), 2586
lfilter() (in module scipy.signal), 1471
lfilter_zi() (in module scipy.signal), 1474
lfiltic() (in module scipy.signal), 1473
lgmres() (in module scipy.sparse.linalg), 1987
lift_points() (scipy.spatial.Delaunay method), 2082
lil_array (class in scipy.sparse), 1809
lil_matrix (class in scipy.sparse), 1925
LinAlgError, 696
LinAlgWarning, 697
line_search() (in module scipy.optimize), 1393
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear_sum_assignment()</td>
<td>module scipy.optimize</td>
<td>1383</td>
</tr>
<tr>
<td>LinearConstraint</td>
<td>class in scipy.optimize</td>
<td>1294</td>
</tr>
<tr>
<td>linearmixing()</td>
<td>(module scipy.optimize)</td>
<td>1434</td>
</tr>
<tr>
<td>LinearNDInterpolator</td>
<td>(class in scipy.interpolate)</td>
<td>549</td>
</tr>
<tr>
<td>LinearOperator</td>
<td>(class in scipy.sparse.linalg)</td>
<td>1969</td>
</tr>
<tr>
<td>linkage()</td>
<td>(module scipy.cluster.hierarchy)</td>
<td>313</td>
</tr>
<tr>
<td>linprog()</td>
<td>(module scipy.optimize)</td>
<td>1361</td>
</tr>
<tr>
<td>linprog_verbose_callback()</td>
<td>(module scipy.optimize)</td>
<td>1382</td>
</tr>
<tr>
<td>linregress()</td>
<td>(module scipy.stats)</td>
<td>2826</td>
</tr>
<tr>
<td>linregress()</td>
<td>(module scipy.stats.mstats)</td>
<td>2941</td>
</tr>
<tr>
<td>lmbda()</td>
<td>(module scipy.special)</td>
<td>2169</td>
</tr>
<tr>
<td>load_npz()</td>
<td>(module scipy.sparse)</td>
<td>1960</td>
</tr>
<tr>
<td>loadarff()</td>
<td>(module scipy.io.arff)</td>
<td>664</td>
</tr>
<tr>
<td>loadmat()</td>
<td>(module scipy.io)</td>
<td>643</td>
</tr>
<tr>
<td>lobpcg()</td>
<td>(module scipy.sparse.linalg)</td>
<td>2004</td>
</tr>
<tr>
<td>log1p</td>
<td>(module scipy.special)</td>
<td>2388</td>
</tr>
<tr>
<td>log1p()</td>
<td>(scipy.sparse.bsr_array method)</td>
<td>1715</td>
</tr>
<tr>
<td>log1p()</td>
<td>(scipy.sparse.bsr_matrix method)</td>
<td>1831</td>
</tr>
<tr>
<td>log1p()</td>
<td>(scipy.sparse.coo_array method)</td>
<td>1733</td>
</tr>
<tr>
<td>log1p()</td>
<td>(scipy.sparse.coo_matrix method)</td>
<td>1849</td>
</tr>
<tr>
<td>log1p()</td>
<td>(scipy.sparse.csr_array method)</td>
<td>1752</td>
</tr>
<tr>
<td>log1p()</td>
<td>(scipy.sparse.csr_matrix method)</td>
<td>1868</td>
</tr>
<tr>
<td>log1p()</td>
<td>(scipy.sparse.csc_array method)</td>
<td>1771</td>
</tr>
<tr>
<td>log1p()</td>
<td>(scipy.sparse.csc_matrix method)</td>
<td>1887</td>
</tr>
<tr>
<td>log1p()</td>
<td>(scipy.sparse.dia_array method)</td>
<td>1788</td>
</tr>
<tr>
<td>log1p()</td>
<td>(scipy.sparse.dia_matrix method)</td>
<td>1904</td>
</tr>
<tr>
<td>log_expit</td>
<td>(module scipy.special)</td>
<td>2247</td>
</tr>
<tr>
<td>log_ndtr</td>
<td>(module scipy.special)</td>
<td>2236</td>
</tr>
<tr>
<td>log_softmax()</td>
<td>(module scipy.special)</td>
<td>2380</td>
</tr>
<tr>
<td>logcdf()</td>
<td>(scipy.stats.rv_continuous method)</td>
<td>2401</td>
</tr>
<tr>
<td>logcdf()</td>
<td>(scipy.stats.rv_discrete method)</td>
<td>2413</td>
</tr>
<tr>
<td>logcdf()</td>
<td>(scipy.stats.rv_histogram method)</td>
<td>2427</td>
</tr>
<tr>
<td>loggamma</td>
<td>(module scipy.special)</td>
<td>2258</td>
</tr>
<tr>
<td>loggamma</td>
<td>(module scipy.stats)</td>
<td>2592</td>
</tr>
<tr>
<td>logistic</td>
<td>(module scipy.stats)</td>
<td>2590</td>
</tr>
<tr>
<td>logit</td>
<td>(module scipy.special)</td>
<td>2244</td>
</tr>
<tr>
<td>loglaplace</td>
<td>(module scipy.stats)</td>
<td>2595</td>
</tr>
<tr>
<td>logm</td>
<td>(module scipy.linalg)</td>
<td>749</td>
</tr>
<tr>
<td>lognorm</td>
<td>(module scipy.stats)</td>
<td>2597</td>
</tr>
<tr>
<td>logpdf()</td>
<td>(scipy.stats.gaussian_kde method)</td>
<td>3052</td>
</tr>
<tr>
<td>logpdf()</td>
<td>(scipy.stats.rv_continuous method)</td>
<td>2400</td>
</tr>
<tr>
<td>logpdf()</td>
<td>(scipy.stats.rv_histogram method)</td>
<td>2427</td>
</tr>
<tr>
<td>logpmf()</td>
<td>(scipy.stats.rv_discrete method)</td>
<td>2413</td>
</tr>
<tr>
<td>logser</td>
<td>(module scipy.stats)</td>
<td>2732</td>
</tr>
<tr>
<td>logsf()</td>
<td>(scipy.stats.rv_continuous method)</td>
<td>2401</td>
</tr>
<tr>
<td>logsf()</td>
<td>(scipy.stats.rv_discrete method)</td>
<td>2414</td>
</tr>
<tr>
<td>logsf()</td>
<td>(scipy.stats.rv_histogram method)</td>
<td>2428</td>
</tr>
<tr>
<td>logsumexp()</td>
<td>(module scipy.special)</td>
<td>2392</td>
</tr>
<tr>
<td>loguniform</td>
<td>(module scipy.stats)</td>
<td>2600</td>
</tr>
<tr>
<td>lomax</td>
<td>(module scipy.stats)</td>
<td>2603</td>
</tr>
<tr>
<td>lombscargle()</td>
<td>(module scipy.signal)</td>
<td>1679</td>
</tr>
<tr>
<td>LowLevelCallable</td>
<td>(class in scipy)</td>
<td>3061</td>
</tr>
<tr>
<td>lp2bp()</td>
<td>(module scipy.signal)</td>
<td>1543</td>
</tr>
<tr>
<td>lp2bp_zpk()</td>
<td>(module scipy.signal)</td>
<td>1544</td>
</tr>
<tr>
<td>lp2bs()</td>
<td>(module scipy.signal)</td>
<td>1545</td>
</tr>
<tr>
<td>lp2bs_zpk()</td>
<td>(module scipy.signal)</td>
<td>1547</td>
</tr>
<tr>
<td>lp2hp()</td>
<td>(module scipy.signal)</td>
<td>1547</td>
</tr>
<tr>
<td>lp2hp_zpk()</td>
<td>(module scipy.signal)</td>
<td>1549</td>
</tr>
<tr>
<td>lp2lp()</td>
<td>(module scipy.signal)</td>
<td>1549</td>
</tr>
<tr>
<td>lp2lp_zpk()</td>
<td>(module scipy.signal)</td>
<td>1551</td>
</tr>
<tr>
<td>lpmn()</td>
<td>(module scipy.special)</td>
<td>2290</td>
</tr>
<tr>
<td>lpmv</td>
<td>(module scipy.special)</td>
<td>2286</td>
</tr>
<tr>
<td>ln()</td>
<td>(module scipy.special)</td>
<td>2289</td>
</tr>
<tr>
<td>lqmn()</td>
<td>(module scipy.special)</td>
<td>2290</td>
</tr>
<tr>
<td>lqnp()</td>
<td>(module scipy.special)</td>
<td>2289</td>
</tr>
<tr>
<td>lsim()</td>
<td>(module scipy.signal)</td>
<td>1591</td>
</tr>
<tr>
<td>lsim2()</td>
<td>(module scipy.signal)</td>
<td>1593</td>
</tr>
<tr>
<td>lsmr()</td>
<td>(module scipy.sparse.linalg)</td>
<td>1996</td>
</tr>
<tr>
<td>LSODA</td>
<td>(class in scipy.integrate)</td>
<td>485</td>
</tr>
<tr>
<td>lsq_linear()</td>
<td>(module scipy.optimize)</td>
<td>1327</td>
</tr>
<tr>
<td>LSQBi variateSpline</td>
<td>(class in scipy.interpolate)</td>
<td>630</td>
</tr>
<tr>
<td>lsqr()</td>
<td>(module scipy.sparse.linalg)</td>
<td>1993</td>
</tr>
<tr>
<td>LSQSphereBi variateSpline</td>
<td>(class in scipy.interpolate)</td>
<td>633</td>
</tr>
<tr>
<td>LSQuad viateSpline</td>
<td>(class in scipy.interpolate)</td>
<td>610</td>
</tr>
<tr>
<td>lstsq()</td>
<td>(module scipy.linalg)</td>
<td>682</td>
</tr>
<tr>
<td>lti</td>
<td>(class in scipy.signal)</td>
<td>1580</td>
</tr>
<tr>
<td>lu()</td>
<td>(module scipy.linalg)</td>
<td>712</td>
</tr>
<tr>
<td>lu_factor()</td>
<td>(module scipy.linalg)</td>
<td>713</td>
</tr>
<tr>
<td>lu_solve()</td>
<td>(module scipy.linalg)</td>
<td>714</td>
</tr>
<tr>
<td>mahalanobis()</td>
<td>(module scipy.spatial.distance)</td>
<td>2125</td>
</tr>
<tr>
<td>make_interp_spline()</td>
<td>(module scipy.interpolate)</td>
<td>580</td>
</tr>
<tr>
<td>make_lsq_spline()</td>
<td>(module scipy.interpolate)</td>
<td>583</td>
</tr>
<tr>
<td>mannwhitneyu()</td>
<td>(module scipy.stats)</td>
<td>2856</td>
</tr>
<tr>
<td>mannwhitneyu()</td>
<td>(module scipy.stats.mstats)</td>
<td>2950</td>
</tr>
<tr>
<td>map_coordinates()</td>
<td>(module scipy.ndimage)</td>
<td>1200</td>
</tr>
<tr>
<td>margins()</td>
<td>(module scipy.stats.contingency)</td>
<td>3026</td>
</tr>
<tr>
<td>mathieu_a</td>
<td>(module scipy.special)</td>
<td>2343</td>
</tr>
<tr>
<td>mathieu_b</td>
<td>(module scipy.special)</td>
<td>2343</td>
</tr>
<tr>
<td>mathieu_cem</td>
<td>(module scipy.special)</td>
<td>2345</td>
</tr>
<tr>
<td>mathieu_even_coef()</td>
<td>(module scipy.special)</td>
<td>2343</td>
</tr>
<tr>
<td>mathieu_modcem1</td>
<td>(module scipy.special)</td>
<td>2345</td>
</tr>
<tr>
<td>mathieu_modcem2</td>
<td>(module scipy.special)</td>
<td>2346</td>
</tr>
<tr>
<td>mathieu_modsem1</td>
<td>(module scipy.special)</td>
<td>2346</td>
</tr>
<tr>
<td>mathieu_odd_coef()</td>
<td>(module scipy.special)</td>
<td>2344</td>
</tr>
<tr>
<td>mathieu_sem</td>
<td>(module scipy.special)</td>
<td>2345</td>
</tr>
</tbody>
</table>
matmul() (scipy.optimize.LbfgsInvHessProduct method), 1396
matmat() (scipy.sparse.bsr_array method), 1715
matmat() (scipy.sparse.bsr_matrix method), 1831
matmat() (scipy.sparse.linalg.LinearOperator method), 1972
matmul_toeplitz() (in module scipy.sparse), 678
matrix_balance() (in module scipy.linalg), 691
matrix_normal (in module scipy.stats), 2698
MatrixRankWarning, 1982
matvec() (scipy.optimize.LbfgsInvHessProduct method), 1397
matvec() (scipy.sparse.bsr_array method), 1715
matvec() (scipy.sparse.bsr_matrix method), 1831
matvec() (scipy.sparse.linalg.LinearOperator method), 1972
max() (scipy.sparse.bsr_array method), 1715
max() (scipy.sparse.bsr_matrix method), 1831
max() (scipy.sparse.coo_array method), 1733
max() (scipy.sparse.coo_matrix method), 1849
max() (scipy.sparse.csr_array method), 1752
max() (scipy.sparse.csr_matrix method), 1868
max() (scipy.sparse.csr_array method), 1771
max() (scipy.sparse.csr_matrix method), 1887
max_distance_point() (scipy.spatial.Rectangle method), 2077
max_distance_rectangle() (scipy.spatial.Rectangle method), 2077
max_len_seq() (in module scipy.signal), 1633
maxdists() (in module scipy.cluster.hierarchy), 333
maximum() (in module scipy.ndimage), 1217
maximum() (scipy.sparse.bsr_array method), 1716
maximum() (scipy.sparse.bsr_matrix method), 1832
maximum() (scipy.sparse.coo_array method), 1734
maximum() (scipy.sparse.coo_matrix method), 1850
maximum() (scipy.sparse.csc_array method), 1752
maximum() (scipy.sparse.csc_matrix method), 1868
maximum() (scipy.sparse.csr_array method), 1771
maximum() (scipy.sparse.csr_matrix method), 1887
maximum() (scipy.sparse.dia_array method), 1788
maximum() (scipy.sparse.dia_matrix method), 1796
maximum() (scipy.sparse.dok_array method), 1802
maximum() (scipy.sparse.dok_matrix method), 1818
maximum() (scipy.sparse.lil_array method), 1831
maximum() (scipy.sparse.lil_matrix method), 1842
maximum() (scipy.sparse.spmatrix method), 1854
maximum() (scipy.stats.rv_continuous method), 2405
maximum() (scipy.stats.rv_discrete method), 2417
maximum() (scipy.stats.rv_histogram method), 2428
maxfilt() (in module scipy.signal), 1468
medfilt2d() (in module scipy.signal), 1468
median() (in module scipy.cluster.hierarchy), 323
median() (in module scipy.ndimage), 1220
median() (scipy.stats.rv_continuous method), 2405
median() (scipy.stats.rv_discrete method), 2417
median() (scipy.stats.rv_histogram method), 2428
median_abs_deviation() (in module scipy.stats), 2791
median_absolute_deviation() (in module scipy.stats), 2789
median_cihs() (in module scipy.stats.mstats), 2963
median_filter() (in module scipy.ndimage), 1177
median_test() (in module scipy.stats), 2891
meppf() (in module scipy.stats.mstats), 2926
merge() (scipy.cluster.hierarchy.DisjointSet method), 356
MetaData (class in scipy.io.arff), 666
mielke (in module scipy.stats), 2608
min() (scipy.sparse.bsr_array method), 1716
min() (scipy.sparse.bsr_matrix method), 1832
min() (scipy.sparse.coo_array method), 1735
min() (scipy.sparse.coo_matrix method), 1851
min() (scipy.sparse.csc_array method), 1753
min() (scipy.sparse.csc_matrix method), 1869
min() (scipy.sparse.csr_array method), 1772
min() (scipy.sparse.csr_matrix method), 1888
min_distance_point() (scipy.spatial.Rectangle method), 2077
min_distance_rectangle() (scipy.spatial.Rectangle method), 2077
min_weight_full_bipartite_matching() (in module scipy.sparse.csgraph), 2041
minimize() (in module scipy.optimize), 1276
minimize_scalar() (in module scipy.optimize), 1273
minimum() (in module scipy.ndimage), 1221
minimum() (scipy.sparse.bsr_matrix method), 1717
minimum() (scipy.sparse.bsr_array method), 1833
minimum() (scipy.sparse.coo_array method), 1735
minimum() (scipy.sparse.csc_matrix method), 1851
minimum() (scipy.sparse.csc_array method), 1753
minimum() (scipy.sparse.csr_matrix method), 1869
minimum() (scipy.sparse.csr_array method), 1772
minimum() (scipy.spatial.distance), 2126
minimum() (scipy.spatial.distance), 2104
minimum() (scipy.special), 2104
minres() (in module scipy.sparse.linalg), 1989
mjci() (in module scipy.stats.mstats), 2963
mminfo() (in module scipy.io), 648
mmread() (in module scipy.io), 649
mmwrite() (in module scipy.io), 649
mode() (in module scipy.stats), 2767
mode() (in module scipy.stats.mstats), 2922
Model (class in scipy.odr), 1258
modfresnelm (in module scipy.special), 2284
modfresnelp (in module scipy.special), 2284
modstruve (in module scipy.special), 2199
module
    scipy.cluster, 299
    scipy.cluster.hierarchy, 306
    scipy.cluster.vq, 299
    scipy.constants, 357
    scipy.fft, 374
    scipy.fftpack, 420
scipy.fftconvolve, 445
scipy.integrate, 446
scipy.interpolate, 508
scipy.io, 642
scipy.io.arff, 664
scipy.io.wavfile, 661
scipy.linalg, 667
scipy.linalg.blas, 785
scipy.linalg.cython_blas, 1093
scipy.linalg.cython_lapack, 1097
scipy.linalg.interpolative, 1139
scipy.linalg.lapack, 848
scipy.misc, 1148
scipy.ndimage, 1154
scipy.odr, 1255
scipy.optimize, 1268
scipy.optimize.cython_optimize, 1436
scipy.signal, 1438
scipy.sparse, 1705
scipy.sparse.csgraph, 2020
scipy.sparse.linalg, 1969
scipy.spatial, 2053
scipy.spatial.distance, 2109
scipy.stats, 2135
scipy.stats.mstats, 2395
scipy.stats._result_classes, 3055
scipy.stats.contingency, 3058
scipy.stats.mstats, 2917
scipy.stats.qmc, 2899
scipy.stats.sampling, 2985
moment() (in module scipy.stats), 2768
moment() (in module scipy.stats.mstats), 2927
moment() (scipy.stats.rv_continuous method), 2402
moment() (scipy.stats.rv_discrete method), 2415
moment() (scipy.stats.rv_histogram method), 2429
mood() (in module scipy.stats), 2894
morlet() (in module scipy.signal), 1644
morlet2() (in module scipy.signal), 1646
morphological_gradient() (in module scipy.ndimage), 1252
morphological_laplace() (in module scipy.ndimage), 1254
moyal (in module scipy.stats), 2611
mquantiles() (in module scipy.stats.mstats), 2922
mquantiles_cimj() (in module scipy.stats.mstats), 2964
msign() (in module scipy.stats.mstats), 2962
multigammaln() (in module scipy.special), 2271
multilinear (in module scipy.odr), 1266
multinomial (in module scipy.stats), 2706
MultinomialQMC (class in scipy.stats.mstats), 2909
multiply() (scipy.sparse.bsr_array method), 1717
multiply() (scipy.sparse.bsr_matrix method), 1833
multiply() (scipy.sparse.coo_array method), 1735
multiply() (scipy.sparse.coo_matrix method), 1851
multiply() (scipy.sparse.csc_array method), 1754
multiply() (scipy.sparse.csc_matrix method), 1870
multiply() (scipy.sparse.csr_array method), 1773
multiply() (scipy.sparse.csr_matrix method), 1889
multiply() (scipy.sparse.dia_array method), 1789
multiply() (scipy.sparse.dia_matrix method), 1905
multiply() (scipy.sparse.dok_array method), 1803
multiply() (scipy.sparse.dok_matrix method), 1919
multiply() (scipy.sparse.lil_array method), 1816
multiply() (scipy.sparse.lil_matrix method), 1932
multiply() (scipy.sparse.spmatrix method), 1942
multiscale_graphcorr() (in module scipy.stats), 2832
multivariate_hypergeom (in module scipy.stats), 2714
multivariate_normal (in module scipy.stats), 2696
multivariate_t (in module scipy.stats), 2712
MultivariateNormalQMC (class in scipy.stats.qmc), 2911
mvsdist() (in module scipy.stats), 2785

N
nakagami (in module scipy.stats), 2613
name() (scipy.io.crf2.MetaData method), 666
nbdtc (in module scipy.special), 2216
nbdtcr (in module scipy.special), 2217
nbdttri (in module scipy.special), 2218
nbdttrik (in module scipy.special), 2219
nbdttrin (in module scipy.special), 2220
nbinom (in module scipy.stats), 2734
ncf (in module scipy.stats), 2618
ncfdtr (in module scipy.special), 2221
ncfdtri (in module scipy.special), 2225
ncfdtridfd (in module scipy.special), 2223
ncfdtridfn (in module scipy.special), 2224
ncfdtrinc (in module scipy.special), 2226
nchypergeom_fisher (in module scipy.stats), 2737
nchypergeom_wallenius (in module scipy.stats), 2740
nct (in module scipy.stats), 2621
nctdtr (in module scipy.special), 2227
nctdtridfd (in module scipy.special), 2228
nctdtrinc (in module scipy.special), 2229
nctdtrit (in module scipy.special), 2228
ncx2 (in module scipy.stats), 2616
NdPoly (class in scipy.interpolate), 568
dtr (in module scipy.special), 2235
dtri (in module scipy.special), 2236
dtri_exp (in module scipy.special), 2236
NearestNDInterpolator (class in scipy.interpolate), 551
NegativeCycleError, 2045
netcdf_file (class in scipy.io), 654
netcdf_variable (class in scipy.io), 658
newton() (in module scipy.optimize), 1341
newton_cotes() (in module scipy.integrate), 463
newton_krylov() (in module scipy.optimize), 1429
next_fast_len() (in module scipy.fft), 416
next_fast_len() (in module scipy.fftpack), 444
nhypergeom (in module scipy.stats), 2743
nnlf() (scipy.stats.rv_continuous method), 2409
nnlf() (scipy.stats.rv_histogram method), 2429
nnls() (in module scipy.optimize), 1326
NonlinearConstraint (class in scipy.optimize), 1292
nonzero() (scipy.sparse.bsr_array method), 1717
nonzero() (scipy.sparse.bsr_matrix method), 1833
nonzero() (scipy.sparse.coo_array method), 1735
nonzero() (scipy.sparse.coo_matrix method), 1851
nonzero() (scipy.sparse.csr_array method), 1747
nonzero() (scipy.sparse.csr_matrix method), 1870
nonzero() (scipy.sparse.csc_array method), 1773
nonzero() (scipy.sparse.csc_matrix method), 1889
nonzero() (scipy.sparse.dok_array method), 1793
nonzero() (scipy.sparse.dok_matrix method), 1905
nonzero() (scipy.sparse.lil_array method), 1816
nonzero() (scipy.sparse.lil_matrix method), 1932
null_space() (in module scipy.sparse.linalg), 1977
normalize() (in module scipy.signal), 1551
normaltest() (in module scipy.stats), 2898
normaltest() (in module scipy.stats.stats), 2954
norminvgauss (in module scipy.stats), 2626
nquad() (in module scipy.integrate), 456
nrktrimm (in module scipy.special), 2229
nrktrisd (in module scipy.special), 2229
nu2lambda() (in module scipy.stats), 373
null_space() (in module scipy.linalg), 719
num_obs_dm() (in module scipy.spatial.distance), 2119
num_obs_linkage() (in module scipy.cluster.hierarchy), 353
num_obs_y() (in module scipy.spatial.distance), 2120
NumericalInverseHermite (class in scipy.stats), 3018
NumericalInverseHermite (class in scipy.stats.sampling), 2986
NumericalInversePolynomial (class in scipy.stats.sampling), 2993

O
oconvolve() (in module scipy.signal), 1446
obl_ang1 (in module scipy.special), 2347
obl_ang1_cv (in module scipy.special), 2350
obl_cv (in module scipy.special), 2348
obl_cv_seq() (in module scipy.special), 2349
obl_rad1 (in module scipy.special), 2348
obl_rad1_cv (in module scipy.special), 2350
obl_rad2 (in module scipy.special), 2348
obl_rad2_cv (in module scipy.special), 2351
obrientransform() (in module scipy.stats), 2975
obrientransform() (in module scipy.stats.mstats), 2955
ode (class in scipy.integrate), 494
odeint() (in module scipy.integrate), 490
OdeSolution (class in scipy.integrate), 489
OdeSolver (class in scipy.integrate), 487
ODR (class in scipy.integrate), 478
odr() (in module scipy.odr), 1264
OdrError, 1264
OdrStop, 1264
OdrWarning, 1264
onenormest() (in module scipy.sparse.linalg), 1978
optimal_leaf_ordering() (in module scipy.cluster.hierarchy), 346
OptimizeResult (class in scipy.optimize), 1271
OptimizeWarning, 1273
order_filter() (in module scipy.signal), 1467
ordqz() (in module scipy.linalg), 740
orth() (in module scipy.linalg), 718
ortho_group (in module scipy.stats), 2709
orthogonal_procrustes() (in module scipy.linalg), 690
Output (class in scipy.odr), 1263
output() (scipy.signal.dlti method), 1608
output() (scipy.signal.lti method), 1583
owens_t (in module scipy.special), 2251
P
pade() (in module scipy.interpolate), 642
page_trend_test() (in module scipy.stats), 2869
pareto (in module scipy.stats), 2629
ParseArffError, 667
pascal() (in module scipy.linalg), 779
pbdn_seq() (in module scipy.special), 2342
pdbv() (in module scipy.special), 2340
pdbv_seq() (in module scipy.special), 2342
pbvv() (in module scipy.special), 2341
pbvv_seq() (in module scipy.special), 2342
pbwa (in module scipy.special), 2341
pchip_interpolate() (in module scipy.interpolate), 519
PchipInterpolator (class in scipy.interpolate), 523
pdf() (scipy.stats.gaussian_kde method), 3052
pdf() (scipy.stats.rv_continuous method), 2400
pdf() (scipy.stats.rv_histogram method), 2429
pdf() (in module scipy.spatial.distance), 2109
pdtr (in module scipy.special), 2230
pdtrc (in module scipy.special), 2231
pdtri (in module scipy.special), 2231
pdtrik (in module scipy.special), 2231
peak_prominences() (in module scipy.signal), 1659
peak_widths() (in module scipy.signal), 1662
pearson3 (in module scipy.stats), 2632
pearsonr() (in module scipy.stats), 2814
pearsonr() (in module scipy.stats.mstats), 2937
PearsonRConstantInputWarning, 3054
PearsonRNearConstantInputWarning, 3055
percentile_filter() (in module scipy.ndimage), 1182
percentileofscore() (in module scipy.stats), 2799
periodogram() (in module scipy.signal), 1665
perm() (in module scipy.special), 2362
permutation_test() (in module scipy.stats), 2873
physical_constants (in module scipy.constants), 361
pinv() (in module scipy.linalg), 684
pinv2() (in module scipy.linalg), 685
pinvh() (in module scipy.linalg), 686
place_poles() (in module scipy.signal), 1624
planck (in module scipy.stats), 2745
plane_distance() (scipy.spatial.Delaunay method), 2082
plotting_positions() (in module scipy.stats.mstats), 2925
pmf() (scipy.stats.rv_discrete method), 2412
poch (in module scipy.special), 2273
pointbiserialr() (in module scipy.stats), 2819
pointbiserialr() (in module scipy.stats.mstats), 2940
points() (scipy.signal.CZT method), 1700
points() (scipy.signal.ZoomFFT method), 1703
poisson (in module scipy.stats), 2748
polar() (in module scipy.linalg), 726
polygamma() (in module scipy.special), 2270
polynomial() (in module scipy.odr), 1265
pop() (scipy.optimize.OptimizeResult method), 1272
pop() (scipy.sparse.dok_array method), 1803
pop() (scipy.sparse.dok_matrix method), 1919
popitem() (scipy.optimize.OptimizeResult method), 1272
popitem() (scipy.sparse.dok_array method), 1804
popitem() (scipy.sparse.dok_matrix method), 1920
power() (scipy.sparse.bsr_array method), 1717
power() (scipy.sparse.bsr_matrix method), 1833
power() (scipy.sparse.coo_array method), 1736
power() (scipy.sparse.coo_matrix method), 1852
power() (scipy.sparse.csc_array method), 1754
power() (scipy.sparse.csc_matrix method), 1870
power() (scipy.sparse.csr_array method), 1773
power() (scipy.sparse.csr_matrix method), 1889
power() (scipy.sparse.dia_array method), 1789

Index
power() (scipy.sparse.dia_matrix method), 1905
power() (scipy.sparse.dok_array method), 1804
power() (scipy.sparse.dok_matrix method), 1920
power() (scipy.sparse.lil_array method), 1816
power() (scipy.sparse.lil_matrix method), 1932
power() (scipy.sparse.spmatrix method), 1943
power_divergence() (in module scipy.stats), 2848
powerlaw (in module scipy.stats), 2634
powerlognorm (in module scipy.stats), 2637
pownorm (in module scipy.stats), 2639
ppcc_max() (in module scipy.stats), 3036
ppcc_plot() (in module scipy.stats), 3039
ppf() (scipy.stats.rv_continuous method), 2402
ppf() (scipy.stats.rv_discrete method), 2414
ppf() (scipy.stats.rv_histogram method), 2430
ppf() (scipy.stats.sampling.DiscreteGuideTable method), 3015
ppf() (scipy.stats.sampling.NumericalInverseHermite method), 2991
ppf() (scipy.stats.sampling.NumericalInversePolynomial method), 2998
ppf_hat() (scipy.stats.sampling.TransformedDensityRejection method), 3003
PPoly (class in scipy.interpolate), 536
pprint() (scipy.odr.Output method), 1263
pre_order() (scipy.cluster.hierarchy.ClusterNode method), 343
precision() (in module scipy.constants), 359
prewitt() (in module scipy.ndimage), 1184
pro_ang1 (in module scipy.special), 2347
pro_ang1_cv (in module scipy.special), 2349
pro_cv (in module scipy.special), 2348
pro_cv_seq() (in module scipy.special), 2348
pro_rad1 (in module scipy.special), 2347
pro_rad1_cv (in module scipy.special), 2350
pro_rad2 (in module scipy.special), 2347
pro_rad2_cv (in module scipy.special), 2350
probplot() (in module scipy.stats), 3041
procrustes() (in module scipy.spatial), 2104
proportion_ci() (scipy.stats._result_classes.BinomTestResult method), 3056
prune() (scipy.sparse.bsr_array method), 1718
prune() (scipy.sparse.bsr_matrix method), 1834
prune() (scipy.sparse.coo_array method), 1734
prune() (scipy.sparse.csr_array method), 1754
prune() (scipy.sparse.csc_matrix method), 1870
prune() (scipy.sparse.csr_matrix method), 1773
prune() (scipy.sparse.csc_array method), 1889
pseudo_huber() (in module scipy.special), 2254
psi (in module scipy.special), 2268
Q
QhullError, 2109
QMCEngine (class in scipy.stats.qmc), 2899
qmf() (in module scipy.signal), 1645
qmr() (in module scipy.sparse.linalg), 1990
qr() (in module scipy.linalg), 728
qr_delete() (in module scipy.linalg), 733
qr_insert() (in module scipy.linalg), 735
qr_multiply() (in module scipy.linalg), 729
qr_update() (in module scipy.linalg), 730
qrvs() (scipy.stats.sampling.NumericalInverseHermite method), 2991
qspline1d() (in module scipy.signal), 1460
qspline1d_eval() (in module scipy.signal), 1464
qspline2d() (in module scipy.signal), 1462
quad() (in module scipy.integrate), 447
quad_explain() (in module scipy.integrate), 463
quad_vec() (in module scipy.integrate), 452
quadratic() (in module scipy.odr), 1267
quadratic() (in module scipy.stats), 1458
quadratic_assignment() (in module scipy.optimize), 1384
quadrature() (in module scipy.integrate), 460
query() (scipy.spatial.KDTree method), 2068
query() (scipy.spatial.KDTree method), 2057
query_ball_point() (scipy.spatial.KDTree method), 2070
query_ball_point() (scipy.spatial.KDTree method), 2059
query_ball_tree() (scipy.spatial.KDTree method), 2072
query_ball_tree() (scipy.spatial.KDTree method), 2060
query_pairs() (scipy.spatial.KDTree method), 2072
query_pairs() (scipy.spatial.KDTree method), 2061
qz() (in module scipy.linalg), 738
R
rad2deg() (scipy.sparse.csr_matrix method), 1718
rad2deg() (scipy.sparse.csr_matrix method), 1834
rad2deg() (scipy.sparse.coo_matrix method), 1736
rad2deg() (scipy.sparse.coo_matrix method), 1852
rad2deg() (scipy.sparse.csc_matrix method), 1754
rad2deg() (scipy.sparse.csc_matrix method), 1870
rad2deg() (scipy.sparse.csr_matrix method), 1773
rad2deg() (scipy.sparse.csr_matrix method), 1889
rad2deg() (scipy.sparse.dia_matrix method), 1789
rad2deg() (scipy.sparse.dia_matrix method), 1905
Radau (class in scipy.integrate), 481
radian (in module scipy.special), 2385
rand() (in module scipy.linalg.interpolative), 1144
rand() (in module scipy.linalg), 1957
randint() (in module scipy.stats), 2750
random() (in module scipy.stats), 1958
random() (scipy.stats.qmc.Halton method), 2906
roots_sh_chebyu() (in module scipy.special), 2317
roots_sh_jacobi() (in module scipy.special), 2317
roots_sh_legendre() (in module scipy.special),
2316
rosen() (in module scipy.optimize), 1400
rosen_der() (in module scipy.optimize), 1401
rosen_hess() (in module scipy.optimize), 1402
rosen_hess_prod() (in module scipy.optimize), 1402
rotate() (in module scipy.ndimage), 1201
round (in module scipy.special), 2390
rq() (in module scipy.linalg), 737
rsf2csf() (in module scipy.linalg), 743
rsh() (in module scipy.stats.mstats), 2964
run() (scipy.odr.ODR method), 1261
russellrao() (in module scipy.spatial.distance), 2132
rv_continuous (class in scipy.stats), 2396
rv_discrete (class in scipy.stats), 2409
rv_histogram (class in scipy.stats), 2419
rvs() (scipy.stats.rv_continuous method), 2399
rvs() (scipy.stats.rv_discrete method), 2412
rvs() (scipy.stats.rv_histogram method), 2430
rvs() (scipy.stats.sampling.DiscreteAliasUrn method),
3010
rvs() (scipy.stats.sampling.DiscreteGuideTable method),
3015
rvs() (scipy.stats.sampling.NumericalInverseHermite
method), 2992
rvs() (scipy.stats.sampling.NumericalInversePolynomial
method), 2998
rvs() (scipy.stats.sampling.SimpleRatioUniforms
method), 3006
rvs() (scipy.stats.sampling.TransformedDensityRejection
method), 3003
rvs_ratio_uniforms() (in module scipy.stats),
3016
S
sasum (in module scipy.linalg.blas), 798
save_npz () (in module scipy.sparse), 1959
savemat () (in module scipy.io), 645
savgol_coeffs() (in module scipy.signal), 1529
savgol_filter() (in module scipy.signal), 1478
sawtooth() (in module scipy.signal), 1635
saxpy (in module scipy.linalg.blas), 798
sc_diff() (in module scipy.fftpack), 439
scale() (in module scipy.stats.qstats), 2915
scasum (in module scipy.linalg.blas), 798
schur() (in module scipy.linalg), 741
scipy
module, 1
scipy.cluster
module, 299
scipy.cluster.hierarchy
module, 306
scipy.cluster.vq module, 299
scipy.constants module, 357
scipy.fft module, 374
scipy.fftpack module, 420
scipy.fftpack.convolve module, 445
scipy.integrate module, 446
scipy.interpolate module, 508
scipy.io module, 642
scipy.io.arff module, 664
scipy.io.wavfile module, 661
scipy.linalg module, 667
scipy.linalg.blas module, 785
scipy.linalg.cython_blas module, 1093
scipy.linalg.cython_lapack module, 1097
scipy.linalg.interpolative module, 1139
scipy.linalg.lapack module, 1154
scipy.misc module, 1148
scipy.ndimage module, 1154
scipy.odr module, 1255
scipy.optimize module, 1268
scipy.optimize.cython_optimize module, 1436
scipy.signal module, 1438
scipy.sparse module, 1705
scipy.sparse.csgraph module, 2020
scipy.sparse.linalg module, 1969
scipy.spatial module, 2053
scipy.spatial.distance module, 2109
scipy.special module, 2135
scipy.stats module, 2395
scipy.stats._result_classes module, 3055
scipy.stats.contingency module, 3058
scipy.stats.mstats module, 2917
scipy.stats.qmc module, 2899
scipy.stats.sampling module, 2985
scnrm2 (in module scipy.linalg.blas), 799
scopy (in module scipy.linalg.blas), 799
scoreatpercentile() (in module scipy.stats), 2800
scoreatpercentile() (in module scipy.stats.mstats), 2936
sdot (in module scipy.linalg.blas), 799
seed() (in module scipy.linalg.interpolative), 1144
sem() (in module scipy.stats), 2782
sem() (in module scipy.stats.mstats), 2933
semicircular (in module scipy.stats), 2652
sen_seasonal_slopes() (in module scipy.stats.mstats), 2943
sepfir2d() (in module scipy.signal), 1452
set_backend() (in module scipy.fft), 418
set_bandwidth() (scipy.stats.gaussian_kde method), 3052
set_f_params() (scipy.integrate.complex_ode method), 503
set_f_params() (scipy.integrate.ode method), 499
set_global_backend() (in module scipy.fft), 419
set_initial_value() (scipy.integrate.complex_ode method), 503
set_initial_value() (scipy.integrate.ode method), 499
set_integrator() (scipy.integrate.complex_ode method), 503
set_integrator() (scipy.integrate.ode method), 499
set_jac_params() (scipy.integrate.complex_ode method), 503
set_job() (scipy.odr.ODR method), 1262
set_link_color_palette() (in module scipy.cluster.hierarchy), 354
set_meta() (scipy.odr.Data method), 1257
set_meta() (scipy.odr.Model method), 1259
set_meta() (scipy.odr.RealData method), 1258
set_random_state() (scipy.stats.sampling.DiscreteAliasUrn method), 3011
set_random_state()
  (scipy.stats.sampling.DiscreteGuideTable method), 3015
set_random_state()
  (scipy.stats.sampling.NumericalInverseHermite method), 2993
set_random_state()
  (scipy.stats.sampling.NumericalInversePolynomial method), 2999
set_random_state()
  (scipy.stats.sampling.SimpleRatioUniforms method), 3007
set_random_state()
  (scipy.stats.sampling.TransformedDensityRejection method), 3004
set_shape()
  (scipy.sparse.bsr_array method), 1719
set_shape()
  (scipy.sparse.bsr_matrix method), 1835
set_shape()
  (scipy.sparse.coo_array method), 1737
set_shape()
  (scipy.sparse.coo_matrix method), 1853
set_shape()
  (scipy.sparse.csc_array method), 1756
set_shape()
  (scipy.sparse.csc_matrix method), 1872
set_shape()
  (scipy.sparse.csr_array method), 1775
set_shape()
  (scipy.sparse.csr_matrix method), 1891
set_shape()
  (scipy.sparse.dia_array method), 1790
set_shape()
  (scipy.sparse.dia_matrix method), 1906
set_shape()
  (scipy.sparse.dok_array method), 1805
set_shape()
  (scipy.sparse.dok_matrix method), 1921
set_shape()
  (scipy.sparse.lil_array method), 1817
set_shape()
  (scipy.sparse.lil_matrix method), 1933
set_shape()
  (scipy.sparse.spmatrix method), 1944
set_smoothing_factor()
  (scipy.interpolate.InterpolatedUnivariateSpline method), 610
set_smoothing_factor()
  (scipy.interpolate.LSQUnivariateSpline method), 616
set_smoothing_factor()
  (scipy.interpolate.UnivariateSpline method), 603
set_solout()
  (scipy.integrate.complex_ode method), 503
set_solout()
  (scipy.integrate.ode method), 500
set_workers()
  (in module scipy.fft), 417
set_yi()
  (scipy.interpolate.BarycentricInterpolator method), 513
setdefault()
  (scipy.optimize.OptimizeResult method), 1273
setdefault()
  (scipy.sparse.dok_array method), 1805
setdefault()
  (scipy.sparse.dok_matrix method), 1921
setdiag()
  (scipy.sparse.bsr_array method), 1719
setdiag()
  (scipy.sparse.bsr_matrix method), 1835
setdiag()
  (scipy.sparse.coo_array method), 1737
setdiag()
  (scipy.sparse.coo_matrix method), 1853
setdiag()
  (scipy.sparse.csc_array method), 1756
setdiag()
  (scipy.sparse.csc_matrix method), 1872
setdiag()
  (scipy.sparse.csr_array method), 1877
setdiag()
  (scipy.sparse.csr_matrix method), 1891
setdiag()
  (scipy.sparse.dia_array method), 1907
setdiag()
  (scipy.sparse.dia_matrix method), 1921
setdiag()
  (scipy.sparse.dok_array method), 1805
setdiag()
  (scipy.sparse.dok_matrix method), 1921
setdiag()
  (scipy.sparse.lil_array method), 1817
setdiag()
  (scipy.sparse.lil_matrix method), 1933
setdiag()
  (scipy.sparse.spmatrix method), 1944
seterr()
  (in module scipy.special), 2136
seuclidean()
  (in module scipy.spatial.distance), 2127
sf()
  (scipy.stats.rv_continuous method), 2401
sf()
  (scipy.stats.rv_discrete method), 2414
sf()
  (scipy.stats.rv_histogram method), 2430
sgbmv
  (in module scipy.linalg.blas), 807
sgbsv
  (in module scipy.linalg.blapack), 861
sgbtrf
  (in module scipy.linalg.blapack), 863
sgbtrs
  (in module scipy.linalg.blapack), 865
sgedal
  (in module scipy.linalg.blapack), 867
sgecom
  (in module scipy.linalg.blapack), 868
sgequ
  (in module scipy.linalg.blapack), 870
sgequb
  (in module scipy.linalg.blapack), 871
sgees
  (in module scipy.linalg.blapack), 872
sggev
  (in module scipy.linalg.blapack), 875
sggev_lwork
  (in module scipy.linalg.blapack), 877
sgev()
  (in module scipy.linalg.blapack), 878
sgehrd
  (in module scipy.linalg.blapack), 881
sgehrd_lwork
  (in module scipy.linalg.blapack), 882
sgesv
  (in module scipy.linalg.blapack), 884
sgels
  (in module scipy.linalg.blapack), 885
sgels_lwork
  (in module scipy.linalg.blapack), 886
sgelsd
  (in module scipy.linalg.blapack), 888
sgelsd_lwork
  (in module scipy.linalg.blapack), 890
sgels
  (in module scipy.linalg.blapack), 891
sgelss
  (in module scipy.linalg.blapack), 893
sgelss_lwork
  (in module scipy.linalg.blapack), 896
sgelsy
  (in module scipy.linalg.blapack), 894
sgelsy_lwork
  (in module scipy.linalg.blapack), 896
sgemm
  (in module scipy.linalg.blas), 836
sgemqrt
  (in module scipy.linalg.blapack), 1079
sgemv
  (in module scipy.linalg.blas), 807
sgep3
  (in module scipy.linalg.blapack), 898
sgerf
  (in module scipy.linalg.blapack), 899
sgerf_lwork
  (in module scipy.linalg.blapack), 901
sgerfp
  (in module scipy.linalg.blapack), 902
sgerfp_lwork
  (in module scipy.linalg.blapack), 903
sger
  (in module scipy.linalg.blas), 808
sgerqf
  (in module scipy.linalg.blapack), 904
sgesc2
  (in module scipy.linalg.blapack), 923
sgesdd
  (in module scipy.linalg.blapack), 905
sgesdd_lwork
  (in module scipy.linalg.blapack), 907
sgesv
  (in module scipy.linalg.blapack), 908
sgesvd
  (in module scipy.linalg.blapack), 910
sgesvd_lwork
  (in module scipy.linalg.blapack), 912

3566  Index
Index 3569
sum_duplicates() (scipy.sparse.coo_array method), 1739
sum_duplicates() (scipy.sparse.coo_matrix method), 1759
sum_duplicates() (scipy.sparse.csc_array method), 1758
sum_duplicates() (scipy.sparse.csc_matrix method), 1758
sum_duplicates() (scipy.sparse.csr_array method), 1777
sum_duplicates() (scipy.sparse.csr_matrix method), 1893
sum_labels() (in module scipy.ndimage), 1224
SuperLU (class in scipy.sparse.linalg), 2016
support() (scipy.stats.rv_continuous method), 2409
support() (scipy.stats.rv_discrete method), 2419
support() (scipy.stats.rv_histogram method), 2431
svd() (in module scipy.linalg), 715
svd() (in module scipy.linalg.interpolative), 1142
svds() (in module scipy.sparse.linalg), 2006
svdvals() (in module scipy.linalg), 716
sweep_poly() (in module scipy.signal), 1637
symiirorder1() (in module scipy.signal), 1470
symiirorder2() (in module scipy.signal), 1470
sync() (scipy.io.netcdf_file method), 658

T

t (in module scipy.stats), 2663
tan() (scipy.sparse.bsr_array method), 1721
tan() (scipy.sparse.bsr_matrix method), 1837
tan() (scipy.sparse.coo_array method), 1739
tan() (scipy.sparse.coo_matrix method), 1855
tan() (scipy.sparse.csc_array method), 1758
tan() (scipy.sparse.csc_matrix method), 1874
tan() (scipy.sparse.csr_array method), 1777
tan() (scipy.sparse.csr_matrix method), 1908
tandg (in module scipy.special), 2387
tanh() (scipy.sparse.bsr_array method), 1721
tanh() (scipy.sparse.bsr_matrix method), 1837
tanh() (scipy.sparse.coo_array method), 1739
tanh() (scipy.sparse.coo_matrix method), 1855
tanh() (scipy.sparse.csc_array method), 1758
tanh() (scipy.sparse.csc_matrix method), 1874
tanh() (scipy.sparse.csr_array method), 1777
tanh() (scipy.sparse.csr_matrix method), 1893
tanh() (scipy.sparse.dia_array method), 1908
tanhm() (in module scipy.linalg), 752
tanm() (in module scipy.linalg), 750
tf2sos() (in module scipy.signal), 1616
tf2ss() (in module scipy.signal), 1616
tf2zpk() (in module scipy.signal), 1615
Index 3571

tfmr() (in module scipy.sparse.linalg), 1992
theilslopes() (in module scipy.stats), 2829
theilslopes() (in module scipy.stats.mstats), 2942
tilecorrect() (in module scipy.stats), 2859
tilbert() (in module scipy.fftpack), 437
tklmbda (in module scipy.special), 2244
tmax() (in module scipy.stats), 2774
tmax() (in module scipy.stats.mstats), 2930
tmean() (in module scipy.stats), 2772
tmean() (in module scipy.stats.mstats), 2928
tmin() (in module scipy.stats), 2733
tmin() (in module scipy.stats.mstats), 2929
to_discrete() (scipy.signal.lti method), 1583
to_mlab_linkage() (in module scipy.cluster.hierarchy), 335
to_ss() (scipy.signal.StateSpace method), 1586
to_ss() (scipy.signal.TransferFunction method), 1588
to_ss() (scipy.signal.ZerosPolesGain method), 1590
to_tf() (scipy.signal.StateSpace method), 1586
to_tf() (scipy.signal.TransferFunction method), 1588
to_tf() (scipy.signal.ZerosPolesGain method), 1590
to_tree() (in module scipy.cluster.hierarchy), 344
to_zpk() (scipy.signal.StateSpace method), 1586
to_zpk() (scipy.signal.TransferFunction method), 1589
to_zpk() (scipy.signal.ZerosPolesGain method), 1591
todense() (scipy.sparse.bsr_matrix method), 1721
todense() (scipy.sparse.bsr_array method), 1721
todense() (scipy.sparse.csr_array method), 1806
todense() (scipy.sparse.csr_matrix method), 1806
tocoo() (scipy.sparse.bsr_matrix method), 1722
tocoo() (scipy.sparse.bsr_array method), 1722
tocoo() (scipy.sparse.coo_array method), 1739
tocoo() (scipy.sparse.coo_matrix method), 1855
tocoo() (scipy.sparse.csc_matrix method), 1758
tocoo() (scipy.sparse.csc_array method), 1758
tocoo() (scipy.sparse.csr_matrix method), 1777
tocoo() (scipy.sparse.csr_array method), 1893
tocoo() (scipy.sparse.dia_matrix method), 1793
tocoo() (scipy.sparse.dia_array method), 1809
tocoo() (scipy.sparse.dok_matrix method), 1806
tocoo() (scipy.sparse.dok_array method), 1922
tocoo() (scipy.sparse.lil_matrix method), 1818
tocoo() (scipy.sparse.lil_array method), 1934
tocoo() (scipy.sparse.csc_matrix method), 1945
todense() (scipy.sparse.linalg), 1945
todense() (scipy.sparse.bsr_array method), 1722
todense() (scipy.sparse.bsr_matrix method), 1838
todense() (scipy.sparse.coo_matrix method), 1739
todense() (scipy.sparse.coo_array method), 1855
todense() (scipy.sparse.csc_matrix method), 1758
todense() (scipy.sparse.csr_matrix method), 1874
todense() (scipy.sparse.csr_array method), 1777
todense() (scipy.sparse.csc_array method), 1934
todense() (scipy.sparse.dok_matrix method), 1909
todense() (scipy.sparse.dok_array method), 1909
todense() (scipy.sparse.lil_matrix method), 1819
todense() (scipy.sparse.lil_array method), 1934

todense() (scipy.sparse.linalg), 1945
todense() (scipy.sparse.bsr_array method), 1722
todense() (scipy.sparse.bsr_matrix method), 1838
todense() (scipy.sparse.coo_array method), 1741
todense() (scipy.sparse.coo_matrix method), 1857
todense() (scipy.sparse.csc_array method), 1759
todense() (scipy.sparse.csc_matrix method), 1875

tensor() (in module tf.tensor), 1739

tensor() (in module tf.data), 1909
tensor() (in module tf.data.distributed), 1806
tensor() (in module tf.data.experimental), 1922
tensor() (in module tf.data.experimental prefetching), 1819

tensor() (in module tf.data.experimental prefetching), 1922

tensorflow() (in module tf.data.experimental prefetching), 1398

tensorflow() (in module tf.data.experimental prefetching), 1922

tensorflow() (in module tf.data.experimental prefetching), 1838

tensorflow() (in module tf.data.experimental prefetching), 1857

tensorflow() (in module tf.data.experimental prefetching), 1875

todense() (scipy.sparse.csr_array method), 1778
todense() (scipy.sparse.csr_matrix method), 1894
todense() (scipy.sparse.dia_array method), 1794
todense() (scipy.sparse.dia_matrix method), 1910
todense() (scipy.sparse.dok_array method), 1807
todense() (scipy.sparse.dok_matrix method), 1923
todense() (scipy.sparse.lil_array method), 1819
todense() (scipy.sparse.lil_matrix method), 1935
todense() (scipy.sparse.spmatrix method), 1946
todía() (scipy.sparse.bsr_array method), 1723
todía() (scipy.sparse.bsr_matrix method), 1839
todía() (scipy.sparse.coo_array method), 1741
todía() (scipy.sparse.coo_matrix method), 1808
todía() (scipy.sparse.csr_array method), 1839
todía() (scipy.sparse.csc_array method), 1857
todía() (scipy.sparse.csc_matrix method), 1875
todía() (scipy.sparse.csr_array method), 1878
todía() (scipy.sparse.csr_matrix method), 1894
todía() (scipy.sparse.dia_array method), 1946
todía() (scipy.sparse.dia_matrix method), 1910
todía() (scipy.sparse.dok_array method), 1807
todía() (scipy.sparse.dok_matrix method), 1923
todía() (scipy.sparse.lil_array method), 1820
todía() (scipy.sparse.lil_matrix method), 1935
todía() (scipy.sparse.spmatrix method), 1946
todok() (scipy.sparse.bsr_array method), 1723
todok() (scipy.sparse.bsr_matrix method), 1839
todok() (scipy.sparse.coo_array method), 1741
todok() (scipy.sparse.coo_matrix method), 1857
todok() (scipy.sparse.csc_array method), 1760
todok() (scipy.sparse.csc_matrix method), 1786
todok() (scipy.sparse.csr_array method), 1797
todok() (scipy.sparse.csr_matrix method), 1895
todok() (scipy.sparse.dia_array method), 1946
todok() (scipy.sparse.dia_matrix method), 1910
todok() (scipy.sparse.dok_array method), 1807
todok() (scipy.sparse.dok_matrix method), 1923
todok() (scipy.sparse.lil_array method), 1820
todok() (scipy.sparse.lil_matrix method), 1936
todok() (scipy.sparse.spmatrix method), 1947
toeplitz() (in module scipy.linalg), 781
tolil() (scipy.sparse.bsr_array method), 1723
tolil() (scipy.sparse.bsr_matrix method), 1839
tolil() (scipy.sparse.coo_array method), 1741
tolil() (scipy.sparse.coo_matrix method), 1857
tolil() (scipy.sparse.csc_array method), 1760
tolil() (scipy.sparse.csc_matrix method), 1786
tolil() (scipy.sparsecsr_array method), 1797
tolil() (scipy.sparse.csr_matrix method), 1895
tolil() (scipy.sparse.dia_array method), 1794
tolil() (scipy.sparse.dia_matrix method), 1910
tolil() (scipy.sparse.dok_array method), 1808
tolil() (scipy.sparse.dok_matrix method), 1924
tolil() (scipy.sparse.lil_array method), 1820
tolil() (scipy.sparse.lil_matrix method), 1936
tolil() (scipy.sparse.spmatrix method), 1947
toms748() (in module scipy.optimize), 1344
tplquad() (in module scipy.integrate), 455
trace() (scipy.sparse.bsr_array method), 1723
trace() (scipy.sparse.bsr_matrix method), 1839
trace() (scipy.sparse.coo_array method), 1741
trace() (scipy.sparse.coo_matrix method), 1857
trace() (scipy.sparse.csc_array method), 1760
trace() (scipy.sparse.csc_matrix method), 1876
trace() (scipy.sparse.csr_array method), 1779
trace() (scipy.sparse.csr_matrix method), 1895
trace() (scipy.sparse.dia_array method), 1911
trace() (scipy.sparse.dok_array method), 1808
trace() (scipy.sparse.dok_matrix method), 1924
trace() (scipy.sparse.lil_array method), 1820
trace() (scipy.sparse.lil_matrix method), 1936
TransferFunction (class in scipy.signal), 1587
TransformedDensityRejection (class in scipy.stats.sampling), 2999
transpose() (scipy.optimize.LbfgsInvHessProduct method), 1398
transpose() (scipy.sparse.bsr_array method), 1723
transpose() (scipy.sparse.bsr_matrix method), 1839
transpose() (scipy.sparse.coo_array method), 1742
transpose() (scipy.sparse.coo_matrix method), 1858
transpose() (scipy.sparse.csc_array method), 1760
transpose() (scipy.sparse.csc_matrix method), 1786
transpose() (scipy.sparse.csr_array method), 1779
transpose() (scipy.sparse.csr_matrix method), 1895
transpose() (scipy.sparse.dia_array method), 1795
transpose() (scipy.sparse.dia_matrix method), 1911
transpose() (scipy.sparse.dok_array method), 1808
transpose() (scipy.sparse.dok_matrix method), 1924
transpose() (scipy.sparse.lil_array method), 1820
transpose() (scipy.sparse.lil_matrix method), 1936
transpose() (scipy.sparse.linalg.LinearOperator method), 1973
trapezoid (in module scipy.stats), 2665
trapezoid() (in module scipy.integrate), 465
tri() (in module scipy.linalg), 782
triang (in module scipy.stats), 2668
tril() (in module scipy.linalg), 689
tril() (in module scipy.sparse), 1953
trim() (in module scipy.stats.mstats), 2955
trim() (in module scipy.stats), 2978
trim_mean() (in module scipy.stats), 2778
trima() (in module scipy.stats.mstats), 2956
trimboth() (in module scipy.stats), 2977
trimboth() (in module scipy.stats.mstats), 2957
trimmed_mean() (in module scipy.stats.mstats), 2933
trimmed_mean_ci() (in module scipy.stats.mstats), 2934
trimmed_std() (in module scipy.stats.mstats), 2934
trimmed_stde() (in module scipy.stats.mstats), 2956
trimmed_var() (in module scipy.stats.mstats), 2935
trimr() (in module scipy.stats.mstats), 2957
trimtall() (in module scipy.stats.mstats), 2957
triu() (in module scipy.linalg), 689
triu() (in module scipy.sparse), 1954
trunc() (scipy.sparse.bsr_array method), 1724
trunc() (scipy.sparse.bsr_matrix method), 1840
trunc() (scipy.sparse.coo_array method), 1742
trunc() (scipy.sparse.coo_matrix method), 1858
trunc() (scipy.sparse.csc_array method), 1761
trunc() (scipy.sparse.csc_matrix method), 1877
trunc() (scipy.sparse.csr_array method), 1780
trunc() (scipy.sparse.csr_matrix method), 1896
trunc() (scipy.sparse.dia_array method), 1795
trunc() (scipy.sparse.dia_matrix method), 1911
truncexpon (in module scipy.stats), 2670
truncnorm (in module scipy.stats), 2673
tsearch() (in module scipy.spatial), 2102
tsem() (in module scipy.stats), 2775
tsem() (in module scipy.stats.mstats), 2931
tstd() (in module scipy.stats), 2775
ttest_isamp() (in module scipy.stats), 2835
ttest_isamp() (in module scipy.stats.mstats), 2944
ttest_ind() (in module scipy.stats), 2837
ttest_ind() (in module scipy.stats.mstats), 2945
ttest_ind_from_stats() (in module scipy.stats), 2840
ttest_onesignamp() (in module scipy.stats.mstats), 2944
ttest_rel() (in module scipy.stats), 2842
tukey_hsd() (in module scipy.stats.mstats), 2945
tukey_hsd() (in module scipy.stats), 2878
TukeyHSDResult (class in scipy.stats._result_classes), 3057
tukeylambda (in module scipy.stats), 2675
tvar() (in module scipy.stats), 2772
tvar() (in module scipy.stats.mstats), 2929
typename() (scipy.io.netcdf_variable method), 659
typename() (scipy.io.arff.MetaData method), 666

U
u_error()
   (scipy.stats.distributions.NumericalInverseHermite method), 2993
u_error()
   (scipy.stats.distributions.NumericalInversePolynomial method), 2999
uniform (in module scipy.stats), 2678
uniform_filter() (in module scipy.ndimage), 1188
uniform_filter1d() (in module scipy.ndimage), 1190
unilineral (in module scipy.odr), 1266
unique_roots() (in module scipy.signal), 1534
unit() (in module scipy.constants), 359
unit_impulse() (in module scipy.signal), 1640
unitary_group (in module scipy.stats), 2710
UnivariateSpline (class in scipy.interpolate), 596
UNURANError, 3016
update() (scipy.optimize.BFGS method), 1296
update() (scipy.optimize.HessianUpdateStrategy method), 1400
update() (scipy.optimize.OptimizeResult method), 1273
update() (scipy.optimize.SR1 method), 1298
update() (scipy.sparse.dok_array method), 1808
update() (scipy.sparse.dok_matrix method), 1924
update_discrepancy() (in module scipy.stats.qmc), 2914
upfirdn() (in module scipy.signal), 1494
use_solver() (in module scipy.sparse.linalg), 1982

V
value() (in module scipy.constants), 359
values() (scipy.optimize.OptimizeResult method), 1273
values() (scipy.sparse.dok_array method), 1809
values() (scipy.sparse.dok_matrix method), 1925
var() (scipy.stats.rv_continuous method), 2406
var() (scipy.stats.rv_discrete method), 2418
var() (scipy.stats.rv_histogram method), 2432
variance() (in module scipy.ndimage), 1225
variation() (in module scipy.stats), 2776
variation() (in module scipy.stats.mstats), 2932
vectorstrength() (in module scipy.signal), 1681
voigt_profile (in module scipy.special), 2284
volume() (scipy.spatial.Rectangle method), 2078
vonomises (in module scipy.stats), 2680
vonomises_line (in module scipy.stats), 2682
Voronoi (class in scipy.spatial), 2087
voronoi_plot_2d() (in module scipy.spatial), 2099
vg() (in module scipy.cluster.vq), 300
vstack() (in module scipy.sparse), 1957

W
wald (in module scipy.stats), 2685
ward() (in module scipy.cluster.hierarchy), 325
wasserstein_distance() (in module scipy.stats), 2983
watershed_ift() (in module scipy.ndimage), 1226
WavFileWarning, 664
weibull_max (in module scipy.stats), 2690
weibull_min (in module scipy.stats), 2687
weighted() (in module scipy.cluster.hierarchy), 320
weightedtau() (in module scipy.stats), 2821
welch() (in module scipy.signal), 1668
white_tophat() (in module scipy.ndimage), 1254
whiten() (in module scipy.cluster.vq), 300
whosmat () (in module scipy.io), 646
wiener () (in module scipy.signal), 1469
wilcoxon () (in module scipy.stats), 2862
winsorize () (in module scipy.stats.mstats), 2958
wishart () (in module scipy.stats), 2702
with_traceback () (scipy.constants.ConstantWarning method), 361
with_traceback () (scipy.integrate.AccuracyWarning method), 464
with_traceback () (scipy.integrate.IntegrationWarning method), 464
with_traceback () (scipy.io.arff.ArffError method), 667
with_traceback () (scipy.io.arff.ParseArffError method), 667
with_traceback () (scipy.io.FortranEOFError method), 653
with_traceback () (scipy.io.FortranFormattingError method), 654
with_traceback () (scipy.io.wavfile.WavFileWarning method), 664
with_traceback () (scipy.linalg.LinAlgError method), 697
with_traceback () (scipy.linalg.LinAlgWarning method), 697
with_traceback () (scipy.odr.OdrError method), 1264
with_traceback () (scipy.odr.OdrStop method), 1264
with_traceback () (scipy.odr.OdrWarning method), 1273
with_traceback () (scipy.optimize.OptimizeWarning method), 1273
with_traceback () (scipy.signal.BadCoefficients method), 1540
with_traceback () (scipy.sparse.csgraph.NegativeCycleError method), 2045
with_traceback () (scipy.sparse.linalg.ArpackError method), 2019
with_traceback () (scipy.sparse.linalg.ArpackNoConvergence method), 2018
with_traceback () (scipy.sparse.linalg.MatrixRankWarning method), 1982
with_traceback () (scipy.sparse.SparsesEfficiencyWarning method), 1967
with_traceback () (scipy.sparse.SparsesWarning method), 1967
with_traceback () (scipy.spatial.QhullError method), 2109
with_traceback () (scipy.special.SpecialFunctionError method), 2138
with_traceback () (scipy.stats.BootstrapDegenerateDistributionWarning method), 3055
with_traceback () (scipy.stats.F_onewayBadInputSizesWarning method), 3054
with_traceback () (scipy.stats.F_onewayConstantInputWarning method), 3054
with_traceback () (scipy.stats.PearsonRConstantInputWarning method), 3054
with_traceback () (scipy.stats.PearsonRNearConstantInputWarning method), 3055
with_traceback () (scipy.stats.sampling.UNURANError method), 3016
with_traceback () (scipy.stats.SpearmanRConstantInputWarning method), 3055
wofz (in module scipy.special), 2281
wrapcauchy (in module scipy.stats), 2693
wright_bessel (in module scipy.special), 2134
wrightomega (in module scipy.special), 2364
write () (in module scipy.io.wavfile), 663
write_record () (scipy.io.FortranFile method), 653
x
xlog1py (in module scipy.special), 2391
xlogy (in module scipy.special), 2391
y
y0 (in module scipy.special), 2177
y0_zeros () (in module scipy.special), 2174
y1 (in module scipy.special), 2178
y1_zeros () (in module scipy.special), 2174
y1p_zeros () (in module scipy.special), 2175
yjojohnson () (in module scipy.stats), 2970
yjojohnson_lif () (in module scipy.stats), 2973
yjojohnson_normmax () (in module scipy.stats), 2972
yjojohnson_normplot () (in module scipy.stats), 3044
yn (in module scipy.special), 2158
yn_zeros () (in module scipy.special), 2172
ynp_zeros () (in module scipy.special), 2173
yule () (in module scipy.spatial.distance), 2134
yulesimon (in module scipy.stats), 2754
yv (in module scipy.special), 2159
yve (in module scipy.special), 2160
yvp() (in module scipy.special), 2187

Z
zaxpy (in module scipy.linalg.blas), 802
zcopy (module scipy.linalg.blas), 802
zdct (module scipy.linalg.blas), 803
zdot (module scipy.linalg.blas), 803
zdotu (module scipy.linalg.blas), 803
zdotu (module scipy.linalg.blas), 803
zdscal (module scipy.linalg.blas), 804
ZerosPolesGain (class in scipy.signal), 1589
zeta() (module scipy.special), 2381
zetac (module scipy.special), 2382
zgbmv (module scipy.linalg.blas), 827
zgbsv (module scipy.linalg.lapack), 863
zgbtrf (module scipy.linalg.lapack), 864
zgtrfs (module scipy.linalg.lapack), 866
zgebal (module scipy.linalg.lapack), 868
zgecon (module scipy.linalg.lapack), 869
zgeequ (module scipy.linalg.lapack), 871
zgeequb (module scipy.linalg.lapack), 872
zgees (module scipy.linalg.lapack), 875
zgeev (module scipy.linalg.lapack), 877
zgeev_lwork (module scipy.linalg.lapack), 878
zgegv() (module scipy.linalg.lapack), 880
zgehrd (module scipy.linalg.lapack), 882
zgehrd_lwork (module scipy.linalg.lapack), 883
zgel (module scipy.linalg.lapack), 886
zgels (module scipy.linalg.lapack), 887
zgels_lwork (module scipy.linalg.lapack), 887
zgeld (module scipy.linalg.lapack), 889
zgeld_lwork (module scipy.linalg.lapack), 891
zgelss (module scipy.linalg.lapack), 893
zgelss_lwork (module scipy.linalg.lapack), 894
zgelsv (module scipy.linalg.lapack), 896
zgelsv_lwork (module scipy.linalg.lapack), 897
zgmm (module scipy.linalg.blas), 844
zgemm (module scipy.linalg.lapack), 1081
zgemqrt (module scipy.linalg.lapack), 1081
zgmmv (module scipy.linalg.blas), 828
zgeqp3 (module scipy.linalg.lapack), 899
zgeqr (module scipy.linalg.lapack), 900
zgeqrf (module scipy.linalg.lapack), 901
zgeqrfp (module scipy.linalg.lapack), 903
zgeqrfp_lwork (module scipy.linalg.lapack), 904
zgeqrt (module scipy.linalg.lapack), 1079
zgerc (module scipy.linalg.blas), 828
zgerf (module scipy.linalg.lapack), 905
zgeru (module scipy.linalg.blas), 829
zgesc2 (module scipy.linalg.lapack), 924
zgesdd (module scipy.linalg.lapack), 907
zgesdd_lwork (module scipy.linalg.lapack), 908
zgesv (module scipy.linalg.lapack), 910
zgesvd (module scipy.linalg.lapack), 912
zgesvd_lwork (module scipy.linalg.lapack), 913
zgesvx (module scipy.linalg.lapack), 916
zgetc2 (module scipy.linalg.lapack), 919
zgetrf (module scipy.linalg.lapack), 917
zgetri (module scipy.linalg.lapack), 920
zgetri_lwork (module scipy.linalg.lapack), 921
zgetrs (module scipy.linalg.lapack), 922
zges (module scipy.linalg.lapack), 927
zgeev (module scipy.linalg.lapack), 930
zgglse (module scipy.linalg.lapack), 932
zgglse_lwork (module scipy.linalg.lapack), 933
zgtsv (module scipy.linalg.lapack), 935
zgtsvx (module scipy.linalg.lapack), 937
zgtrf (module scipy.linalg.lapack), 1083
zgtrfs (module scipy.linalg.lapack), 1084
zhbevd (module scipy.linalg.lapack), 938
zhbevx (module scipy.linalg.lapack), 939
zhbmv (module scipy.linalg.blas), 829
zhecon (module scipy.linalg.lapack), 940
zheequb (module scipy.linalg.lapack), 941
zheev (module scipy.linalg.lapack), 942
zheev_lwork (module scipy.linalg.lapack), 942
zheevd (module scipy.linalg.lapack), 943
zheevd_lwork (module scipy.linalg.lapack), 944
zheevr (module scipy.linalg.lapack), 945
zheevr_lwork (module scipy.linalg.lapack), 946
zheevx (module scipy.linalg.lapack), 947
zheevx_lwork (module scipy.linalg.lapack), 948
zhgsvp (module scipy.linalg.lapack), 948
zhegv (module scipy.linalg.lapack), 949
zhegv_lwork (module scipy.linalg.lapack), 950
zhegvd (module scipy.linalg.lapack), 951
zhegvd_lwork (module scipy.linalg.lapack), 952
zhegvx (module scipy.linalg.lapack), 953
zhegvx_lwork (module scipy.linalg.lapack), 953
zhemm (module scipy.linalg.blas), 845
zhemv (module scipy.linalg.blas), 830
zher (module scipy.linalg.blas), 830
zher2 (module scipy.linalg.blas), 831
zherk (module scipy.linalg.blas), 845
zhesv (module scipy.linalg.lapack), 953
zhesv_lwork (module scipy.linalg.lapack), 954
zhesvx (module scipy.linalg.lapack), 955
zhesvx_lwork (module scipy.linalg.lapack), 956
zhetrd (module scipy.linalg.lapack), 956
zhetrd_lwork (module scipy.linalg.lapack), 957
zhetrf (module scipy.linalg.lapack), 958
zhetrf_lwork (module scipy.linalg.lapack), 958
zhfrk (module scipy.linalg.lapack), 959
zhpmv (module scipy.linalg.blas), 831
zhpr (module scipy.linalg.blas), 832
zhpr2 (module scipy.linalg.blas), 832
zipf (module scipy.stats), 2757
zipfian (module scipy.stats), 2759
zlange (module scipy.linalg.lapack), 961
zlarf (module scipy.linalg.lapack), 962
<table>
<thead>
<tr>
<th>Function</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>zlarfg</td>
<td>scipy.linalg.lapack</td>
<td>964</td>
</tr>
<tr>
<td>zlarfg</td>
<td>scipy.linalg.lapack</td>
<td>965</td>
</tr>
<tr>
<td>zlaswp</td>
<td>scipy.linalg.lapack</td>
<td>967</td>
</tr>
<tr>
<td>zlaum</td>
<td>scipy.linalg.lapack</td>
<td>968</td>
</tr>
<tr>
<td>zmap</td>
<td>scipy.stats</td>
<td>2978</td>
</tr>
<tr>
<td>zmap</td>
<td>scipy.stats.mstats.mstats</td>
<td>2959</td>
</tr>
<tr>
<td>zoom</td>
<td>scipy.signal.ndimage</td>
<td>1208</td>
</tr>
<tr>
<td>zoom_fft</td>
<td>scipy.signal</td>
<td>1697</td>
</tr>
<tr>
<td>ZoomFFT</td>
<td>scipy.signal</td>
<td>1701</td>
</tr>
<tr>
<td>zpbsv</td>
<td>scipy.linalg.lapack</td>
<td>977</td>
</tr>
<tr>
<td>zpbtrf</td>
<td>scipy.linalg.lapack</td>
<td>979</td>
</tr>
<tr>
<td>zpbtrs</td>
<td>scipy.linalg.lapack</td>
<td>980</td>
</tr>
<tr>
<td>zpftrf</td>
<td>scipy.linalg.lapack</td>
<td>982</td>
</tr>
<tr>
<td>zpftri</td>
<td>scipy.linalg.lapack</td>
<td>983</td>
</tr>
<tr>
<td>zpftrs</td>
<td>scipy.linalg.lapack</td>
<td>985</td>
</tr>
<tr>
<td>zpk2zos</td>
<td>scipy.linalg</td>
<td>1617</td>
</tr>
<tr>
<td>zpk2zs</td>
<td>scipy.linalg</td>
<td>1620</td>
</tr>
<tr>
<td>zpk2tf</td>
<td>scipy.linalg</td>
<td>1617</td>
</tr>
<tr>
<td>zpocon</td>
<td>scipy.linalg.lapack</td>
<td>986</td>
</tr>
<tr>
<td>zposv</td>
<td>scipy.linalg.lapack</td>
<td>991</td>
</tr>
<tr>
<td>zposvx</td>
<td>scipy.linalg.lapack</td>
<td>993</td>
</tr>
<tr>
<td>zpotrf</td>
<td>scipy.linalg.lapack</td>
<td>995</td>
</tr>
<tr>
<td>zpotri</td>
<td>scipy.linalg.lapack</td>
<td>996</td>
</tr>
<tr>
<td>zpotrs</td>
<td>scipy.linalg.lapack</td>
<td>997</td>
</tr>
<tr>
<td>zppcon</td>
<td>scipy.linalg.lapack</td>
<td>999</td>
</tr>
<tr>
<td>zppsv</td>
<td>scipy.linalg.lapack</td>
<td>1000</td>
</tr>
<tr>
<td>zpptf</td>
<td>scipy.linalg.lapack</td>
<td>1001</td>
</tr>
<tr>
<td>zpptri</td>
<td>scipy.linalg.lapack</td>
<td>1003</td>
</tr>
<tr>
<td>zpptrs</td>
<td>scipy.linalg.lapack</td>
<td>1004</td>
</tr>
<tr>
<td>zpstrf</td>
<td>scipy.linalg.lapack</td>
<td>1005</td>
</tr>
<tr>
<td>zpstrf</td>
<td>scipy.linalg.lapack</td>
<td>1006</td>
</tr>
<tr>
<td>zpteqr</td>
<td>scipy.linalg.lapack</td>
<td>1013</td>
</tr>
<tr>
<td>zpts</td>
<td>scipy.linalg.lapack</td>
<td>1006</td>
</tr>
<tr>
<td>zptsx</td>
<td>scipy.linalg.lapack</td>
<td>1008</td>
</tr>
<tr>
<td>zpttrf</td>
<td>scipy.linalg.lapack</td>
<td>1009</td>
</tr>
<tr>
<td>zpttrs</td>
<td>scipy.linalg.lapack</td>
<td>1011</td>
</tr>
<tr>
<td>zrot</td>
<td>scipy.linalg.lapack</td>
<td>1014</td>
</tr>
<tr>
<td>zrotg</td>
<td>scipy.linalg.blas</td>
<td>804</td>
</tr>
<tr>
<td>zscal</td>
<td>scipy.linalg.blas</td>
<td>805</td>
</tr>
<tr>
<td>zscore</td>
<td>scipy.stats</td>
<td>2979</td>
</tr>
<tr>
<td>zscore</td>
<td>scipy.stats.mstats.mstats</td>
<td>2959</td>
</tr>
<tr>
<td>zswap</td>
<td>scipy.linalg.blas</td>
<td>805</td>
</tr>
<tr>
<td>zsycon</td>
<td>scipy.linalg.lapack</td>
<td>1024</td>
</tr>
<tr>
<td>zsyconv</td>
<td>scipy.linalg.lapack</td>
<td>1025</td>
</tr>
<tr>
<td>zsyequb</td>
<td>scipy.linalg.lapack</td>
<td>1027</td>
</tr>
<tr>
<td>zsymm</td>
<td>scipy.linalg.lapack</td>
<td>846</td>
</tr>
<tr>
<td>zsy</td>
<td>scipy.linalg.lapack</td>
<td>835</td>
</tr>
<tr>
<td>zsy2k</td>
<td>scipy.linalg.lapack</td>
<td>846</td>
</tr>
<tr>
<td>zsyk</td>
<td>scipy.linalg.lapack</td>
<td>847</td>
</tr>
<tr>
<td>zsysv</td>
<td>scipy.linalg.lapack</td>
<td>847</td>
</tr>
<tr>
<td>zsysv_lwork</td>
<td>scipy.linalg.lapack</td>
<td>1040</td>
</tr>
<tr>
<td>zsysv_lwork</td>
<td>scipy.linalg.lapack</td>
<td>1041</td>
</tr>
<tr>
<td>zsysvx</td>
<td>scipy.linalg.lapack</td>
<td>1043</td>
</tr>
<tr>
<td>zsysvx_lwork</td>
<td>scipy.linalg.lapack</td>
<td>1044</td>
</tr>
<tr>
<td>zsytf2</td>
<td>scipy.linalg.lapack</td>
<td>1046</td>
</tr>
<tr>
<td>zsytrf</td>
<td>scipy.linalg.lapack</td>
<td>1048</td>
</tr>
<tr>
<td>zsytrf_lwork</td>
<td>scipy.linalg.lapack</td>
<td>1050</td>
</tr>
<tr>
<td>ztbrm</td>
<td>scipy.linalg.blas</td>
<td>833</td>
</tr>
<tr>
<td>ztbrsv</td>
<td>scipy.linalg.blas</td>
<td>833</td>
</tr>
<tr>
<td>ztbrts</td>
<td>scipy.linalg.lapack</td>
<td>1051</td>
</tr>
<tr>
<td>ztfsm</td>
<td>scipy.linalg.lapack</td>
<td>1053</td>
</tr>
<tr>
<td>zttftp</td>
<td>scipy.linalg.lapack</td>
<td>1054</td>
</tr>
<tr>
<td>ztttr</td>
<td>scipy.linalg.lapack</td>
<td>1055</td>
</tr>
<tr>
<td>ztgevc</td>
<td>scipy.linalg.lapack</td>
<td>1057</td>
</tr>
<tr>
<td>ztgesn</td>
<td>scipy.linalg.lapack</td>
<td>1060</td>
</tr>
<tr>
<td>ztgesn_lwork</td>
<td>scipy.linalg.lapack</td>
<td>1062</td>
</tr>
<tr>
<td>ztpmqrt</td>
<td>scipy.linalg.lapack</td>
<td>1088</td>
</tr>
<tr>
<td>ztpmv</td>
<td>scipy.linalg.blas</td>
<td>833</td>
</tr>
<tr>
<td>ztpqrt</td>
<td>scipy.linalg.lapack</td>
<td>1086</td>
</tr>
<tr>
<td>ztpqrtf</td>
<td>scipy.linalg.lapack</td>
<td>1086</td>
</tr>
<tr>
<td>ztptrt</td>
<td>scipy.linalg.lapack</td>
<td>1063</td>
</tr>
<tr>
<td>ztpttr</td>
<td>scipy.linalg.lapack</td>
<td>1065</td>
</tr>
<tr>
<td>zttrm</td>
<td>scipy.linalg.blas</td>
<td>847</td>
</tr>
<tr>
<td>zttrmv</td>
<td>scipy.linalg.blas</td>
<td>834</td>
</tr>
<tr>
<td>zttrsm</td>
<td>scipy.linalg.blas</td>
<td>847</td>
</tr>
<tr>
<td>zttrsv</td>
<td>scipy.linalg.blas</td>
<td>834</td>
</tr>
<tr>
<td>ztrsyl</td>
<td>scipy.linalg.lapack</td>
<td>1066</td>
</tr>
<tr>
<td>zttri</td>
<td>scipy.linalg.lapack</td>
<td>1068</td>
</tr>
<tr>
<td>ztrtrs</td>
<td>scipy.linalg.lapack</td>
<td>1069</td>
</tr>
<tr>
<td>ztrtrt</td>
<td>scipy.linalg.lapack</td>
<td>1071</td>
</tr>
<tr>
<td>ztrttp</td>
<td>scipy.linalg.lapack</td>
<td>1072</td>
</tr>
<tr>
<td>zttrzr</td>
<td>scipy.linalg.lapack</td>
<td>1073</td>
</tr>
<tr>
<td>zttrzrf_lwork</td>
<td>scipy.linalg.lapack</td>
<td>1074</td>
</tr>
<tr>
<td>zuncsd</td>
<td>scipy.linalg.lapack</td>
<td>1090</td>
</tr>
<tr>
<td>zuncsd_lwork</td>
<td>scipy.linalg.lapack</td>
<td>1091</td>
</tr>
<tr>
<td>zunghr</td>
<td>scipy.linalg.lapack</td>
<td>1075</td>
</tr>
<tr>
<td>zunghr_lwork</td>
<td>scipy.linalg.lapack</td>
<td>1076</td>
</tr>
<tr>
<td>zungqr</td>
<td>scipy.linalg.lapack</td>
<td>1076</td>
</tr>
<tr>
<td>zungqrf</td>
<td>scipy.linalg.lapack</td>
<td>1077</td>
</tr>
<tr>
<td>zunmqr</td>
<td>scipy.linalg.lapack</td>
<td>1078</td>
</tr>
<tr>
<td>zunnmrz</td>
<td>scipy.linalg.lapack</td>
<td>1092</td>
</tr>
<tr>
<td>zunnrzw_lwork</td>
<td>scipy.linalg.lapack</td>
<td>1092</td>
</tr>
</tbody>
</table>