scipy.stats.mstats.tmin#
- scipy.stats.mstats.tmin(a, lowerlimit=None, axis=0, inclusive=True)[source]#
Compute the trimmed minimum
- Parameters
- aarray_like
array of values
- lowerlimitNone or float, optional
Values in the input array less than the given limit will be ignored. When lowerlimit is None, then all values are used. The default value is None.
- axisint or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole array a.
- inclusive{True, False}, optional
This flag determines whether values exactly equal to the lower limit are included. The default value is True.
- Returns
- tminfloat, int or ndarray
Notes
For more details on
tmin
, see stats.tmin.Examples
>>> from scipy.stats import mstats >>> a = np.array([[6, 8, 3, 0], ... [3, 2, 1, 2], ... [8, 1, 8, 2], ... [5, 3, 0, 2], ... [4, 7, 5, 2]]) ... >>> mstats.tmin(a, 5) masked_array(data=[5, 7, 5, --], mask=[False, False, False, True], fill_value=999999)