scipy.special.eval_hermitenorm#
- scipy.special.eval_hermitenorm(n, x, out=None) = <ufunc 'eval_hermitenorm'>#
Evaluate probabilist’s (normalized) Hermite polynomial at a point.
Defined by
\[He_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2};\]\(He_n\) is a polynomial of degree \(n\). See 22.11.8 in [AS] for details.
- Parameters
- narray_like
Degree of the polynomial
- xarray_like
Points at which to evaluate the Hermite polynomial
- Returns
- Hendarray
Values of the Hermite polynomial
See also
roots_hermitenorm
roots and quadrature weights of probabilist’s Hermite polynomials
hermitenorm
probabilist’s Hermite polynomial object
numpy.polynomial.hermite_e.HermiteE
Probabilist’s Hermite series
eval_hermite
evaluate physicist’s Hermite polynomials
References
- AS
Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.