scipy.special.eval_hermitenorm#

scipy.special.eval_hermitenorm(n, x, out=None) = <ufunc 'eval_hermitenorm'>#

Evaluate probabilist’s (normalized) Hermite polynomial at a point.

Defined by

\[He_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2};\]

\(He_n\) is a polynomial of degree \(n\). See 22.11.8 in [AS] for details.

Parameters
narray_like

Degree of the polynomial

xarray_like

Points at which to evaluate the Hermite polynomial

Returns
Hendarray

Values of the Hermite polynomial

See also

roots_hermitenorm

roots and quadrature weights of probabilist’s Hermite polynomials

hermitenorm

probabilist’s Hermite polynomial object

numpy.polynomial.hermite_e.HermiteE

Probabilist’s Hermite series

eval_hermite

evaluate physicist’s Hermite polynomials

References

AS

Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.