scipy.special.btdtr#
- scipy.special.btdtr(a, b, x) = <ufunc 'btdtr'>#
Cumulative distribution function of the beta distribution.
Returns the integral from zero to x of the beta probability density function,
\[I = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1}\,dt\]where \(\Gamma\) is the gamma function.
- Parameters
- aarray_like
Shape parameter (a > 0).
- barray_like
Shape parameter (b > 0).
- xarray_like
Upper limit of integration, in [0, 1].
- Returns
- Indarray
Cumulative distribution function of the beta distribution with parameters a and b at x.
See also
Notes
This function is identical to the incomplete beta integral function
betainc
.Wrapper for the Cephes [1] routine
btdtr
.References
- 1
Cephes Mathematical Functions Library, http://www.netlib.org/cephes/