This is documentation for an old release of SciPy (version 1.7.1). Search for this page in the documentation of the latest stable release (version 1.15.1).
Skewed Cauchy Distribution¶
This distribution is a generalization of the Cauchy distribution. It has a single shape parameter \(-1 < a < 1\) that skews the distribution. The special case \(a=0\) yields the Cauchy distribution.
Functions¶
\begin{eqnarray*}
f(x, a) & = & \frac{1}{\pi \left(\frac{x^2}{\left(a x + 1 \right)^2} + 1 \right)},\quad x\ge0; \\
& = & \frac{1}{\pi \left(\frac{x^2}{\left(-a x + 1 \right)^2} + 1 \right)},\quad x<0. \\
F(x, a) & = & \frac{1 - a}{2} + \frac{1 + a}{\pi} \arctan\left(\frac{x}{1 + a} \right),\quad x\ge0; \\
& = & \frac{1 - a}{2} + \frac{1 - a}{\pi} \arctan\left(\frac{x}{1 - a} \right),\quad x<0.
\end{eqnarray*}
The mean, variance, skewness, and kurtosis are all undefined.
References¶
“Skewed generalized t distribution”, Wikipedia https://en.wikipedia.org/wiki/Skewed_generalized_t_distribution#Skewed_Cauchy_distribution
Implementation: scipy.stats.skewcauchy