This is documentation for an old release of SciPy (version 1.7.1). Search for this page in the documentation of the latest stable release (version 1.15.1).
Burr12 Distribution¶
There are two shape parameters \(c,d > 0\) and the support is \(x \in [0,\infty)\). The Burr12 distribution is also known as the Singh-Maddala distribution.
\begin{eqnarray*}
f\left(x;c,d\right) & = & {cd} \frac{x^{c-1}} {\left(1+x^{c}\right)^{d+1}} \\
F\left(x;c,d\right) & = & 1 - \left(1+x^{c}\right)^{-d}\\
G\left(q;c,d\right) & = & \left((1-q)^{-1/d}-1\right)^{-1/c}\\
S\left(x;c,d\right) & = & \left(1+x^{c}\right)^{-d}\\
\mu & = & d \, B\left(d-\frac{1}{c}, 1+\frac{1}{c}\right)\\
\mu_{n} & = & d \, B\left(d-\frac{n}{c}, 1+\frac{n}{c}\right)\\
m_{d} & = & \left(\frac{c-1}{c d + 1}\right)^{1/c} \,\text{if }\quad c>1 \text{, otherwise }\quad 0\\
m_{n} & = & \left(2^{1/d}-1\right)^{-1/c}
\end{eqnarray*}
where \(B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}\) is the Beta function.
Implementation: scipy.stats.burr12