scipy.stats.skewcauchy¶
- scipy.stats.skewcauchy = <scipy.stats._continuous_distns.skewcauchy_gen object>[source]¶
A skewed Cauchy random variable.
As an instance of the
rv_continuous
class,skewcauchy
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.See also
cauchy
Cauchy distribution
Notes
The probability density function for
skewcauchy
is:\[f(x) = \frac{1}{\pi \left(\frac{x^2}{\left(a\, \text{sign}(x) + 1 \right)^2} + 1 \right)}\]for a real number \(x\) and skewness parameter \(-1 < a < 1\).
When \(a=0\), the distribution reduces to the usual Cauchy distribution.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc
andscale
parameters. Specifically,skewcauchy.pdf(x, a, loc, scale)
is identically equivalent toskewcauchy.pdf(y, a) / scale
withy = (x - loc) / scale
. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.References
- 1
“Skewed generalized t distribution”, Wikipedia https://en.wikipedia.org/wiki/Skewed_generalized_t_distribution#Skewed_Cauchy_distribution
Examples
>>> from scipy.stats import skewcauchy >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> a = 0.5 >>> mean, var, skew, kurt = skewcauchy.stats(a, moments='mvsk')
Display the probability density function (
pdf
):>>> x = np.linspace(skewcauchy.ppf(0.01, a), ... skewcauchy.ppf(0.99, a), 100) >>> ax.plot(x, skewcauchy.pdf(x, a), ... 'r-', lw=5, alpha=0.6, label='skewcauchy pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pdf
:>>> rv = skewcauchy(a) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of
cdf
andppf
:>>> vals = skewcauchy.ppf([0.001, 0.5, 0.999], a) >>> np.allclose([0.001, 0.5, 0.999], skewcauchy.cdf(vals, a)) True
Generate random numbers:
>>> r = skewcauchy.rvs(a, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(a, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, a, loc=0, scale=1)
Probability density function.
logpdf(x, a, loc=0, scale=1)
Log of the probability density function.
cdf(x, a, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, a, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, a, loc=0, scale=1)
Survival function (also defined as
1 - cdf
, but sf is sometimes more accurate).logsf(x, a, loc=0, scale=1)
Log of the survival function.
ppf(q, a, loc=0, scale=1)
Percent point function (inverse of
cdf
— percentiles).isf(q, a, loc=0, scale=1)
Inverse survival function (inverse of
sf
).moment(n, a, loc=0, scale=1)
Non-central moment of order n
stats(a, loc=0, scale=1, moments=’mv’)
Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(a, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.
expect(func, args=(a,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(a, loc=0, scale=1)
Median of the distribution.
mean(a, loc=0, scale=1)
Mean of the distribution.
var(a, loc=0, scale=1)
Variance of the distribution.
std(a, loc=0, scale=1)
Standard deviation of the distribution.
interval(alpha, a, loc=0, scale=1)
Endpoints of the range that contains fraction alpha [0, 1] of the distribution