scipy.special.chebyt

scipy.special.chebyt(n, monic=False)[source]

Chebyshev polynomial of the first kind.

Defined to be the solution of

\[(1 - x^2)\frac{d^2}{dx^2}T_n - x\frac{d}{dx}T_n + n^2T_n = 0;\]

\(T_n\) is a polynomial of degree \(n\).

Parameters
nint

Degree of the polynomial.

monicbool, optional

If True, scale the leading coefficient to be 1. Default is False.

Returns
Torthopoly1d

Chebyshev polynomial of the first kind.

See also

chebyu

Chebyshev polynomial of the second kind.

Notes

The polynomials \(T_n\) are orthogonal over \([-1, 1]\) with weight function \((1 - x^2)^{-1/2}\).