scipy.special.bdtrc¶
- scipy.special.bdtrc(k, n, p) = <ufunc 'bdtrc'>¶
Binomial distribution survival function.
Sum of the terms floor(k) + 1 through n of the binomial probability density,
\[\mathrm{bdtrc}(k, n, p) = \sum_{j=\lfloor k \rfloor +1}^n {{n}\choose{j}} p^j (1-p)^{n-j}\]- Parameters
- karray_like
Number of successes (double), rounded down to nearest integer.
- narray_like
Number of events (int)
- parray_like
Probability of success in a single event.
- Returns
- yndarray
Probability of floor(k) + 1 or more successes in n independent events with success probabilities of p.
Notes
The terms are not summed directly; instead the regularized incomplete beta function is employed, according to the formula,
\[\mathrm{bdtrc}(k, n, p) = I_{p}(\lfloor k \rfloor + 1, n - \lfloor k \rfloor).\]Wrapper for the Cephes [1] routine
bdtrc
.References
- 1
Cephes Mathematical Functions Library, http://www.netlib.org/cephes/