scipy.ndimage.grey_dilation¶
- scipy.ndimage.grey_dilation(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)[source]¶
Calculate a greyscale dilation, using either a structuring element, or a footprint corresponding to a flat structuring element.
Grayscale dilation is a mathematical morphology operation. For the simple case of a full and flat structuring element, it can be viewed as a maximum filter over a sliding window.
- Parameters
- inputarray_like
Array over which the grayscale dilation is to be computed.
- sizetuple of ints
Shape of a flat and full structuring element used for the grayscale dilation. Optional if footprint or structure is provided.
- footprintarray of ints, optional
Positions of non-infinite elements of a flat structuring element used for the grayscale dilation. Non-zero values give the set of neighbors of the center over which the maximum is chosen.
- structurearray of ints, optional
Structuring element used for the grayscale dilation. structure may be a non-flat structuring element.
- outputarray, optional
An array used for storing the output of the dilation may be provided.
- mode{‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to ‘constant’. Default is ‘reflect’
- cvalscalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
- originscalar, optional
The origin parameter controls the placement of the filter. Default 0
- Returns
- grey_dilationndarray
Grayscale dilation of input.
See also
Notes
The grayscale dilation of an image input by a structuring element s defined over a domain E is given by:
(input+s)(x) = max {input(y) + s(x-y), for y in E}
In particular, for structuring elements defined as s(y) = 0 for y in E, the grayscale dilation computes the maximum of the input image inside a sliding window defined by E.
Grayscale dilation [1] is a mathematical morphology operation [2].
References
Examples
>>> from scipy import ndimage >>> a = np.zeros((7,7), dtype=int) >>> a[2:5, 2:5] = 1 >>> a[4,4] = 2; a[2,3] = 3 >>> a array([[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 3, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 2, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]]) >>> ndimage.grey_dilation(a, size=(3,3)) array([[0, 0, 0, 0, 0, 0, 0], [0, 1, 3, 3, 3, 1, 0], [0, 1, 3, 3, 3, 1, 0], [0, 1, 3, 3, 3, 2, 0], [0, 1, 1, 2, 2, 2, 0], [0, 1, 1, 2, 2, 2, 0], [0, 0, 0, 0, 0, 0, 0]]) >>> ndimage.grey_dilation(a, footprint=np.ones((3,3))) array([[0, 0, 0, 0, 0, 0, 0], [0, 1, 3, 3, 3, 1, 0], [0, 1, 3, 3, 3, 1, 0], [0, 1, 3, 3, 3, 2, 0], [0, 1, 1, 2, 2, 2, 0], [0, 1, 1, 2, 2, 2, 0], [0, 0, 0, 0, 0, 0, 0]]) >>> s = ndimage.generate_binary_structure(2,1) >>> s array([[False, True, False], [ True, True, True], [False, True, False]], dtype=bool) >>> ndimage.grey_dilation(a, footprint=s) array([[0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 3, 1, 0, 0], [0, 1, 3, 3, 3, 1, 0], [0, 1, 1, 3, 2, 1, 0], [0, 1, 1, 2, 2, 2, 0], [0, 0, 1, 1, 2, 0, 0], [0, 0, 0, 0, 0, 0, 0]]) >>> ndimage.grey_dilation(a, size=(3,3), structure=np.ones((3,3))) array([[1, 1, 1, 1, 1, 1, 1], [1, 2, 4, 4, 4, 2, 1], [1, 2, 4, 4, 4, 2, 1], [1, 2, 4, 4, 4, 3, 1], [1, 2, 2, 3, 3, 3, 1], [1, 2, 2, 3, 3, 3, 1], [1, 1, 1, 1, 1, 1, 1]])