scipy.linalg.eigvals_banded

scipy.linalg.eigvals_banded(a_band, lower=False, overwrite_a_band=False, select='a', select_range=None, check_finite=True)[source]

Solve real symmetric or complex Hermitian band matrix eigenvalue problem.

Find eigenvalues w of a:

a v[:,i] = w[i] v[:,i]
v.H v    = identity

The matrix a is stored in a_band either in lower diagonal or upper diagonal ordered form:

a_band[u + i - j, j] == a[i,j] (if upper form; i <= j) a_band[ i - j, j] == a[i,j] (if lower form; i >= j)

where u is the number of bands above the diagonal.

Example of a_band (shape of a is (6,6), u=2):

upper form:
*   *   a02 a13 a24 a35
*   a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 *   *

Cells marked with * are not used.

Parameters
a_band(u+1, M) array_like

The bands of the M by M matrix a.

lowerbool, optional

Is the matrix in the lower form. (Default is upper form)

overwrite_a_bandbool, optional

Discard data in a_band (may enhance performance)

select{‘a’, ‘v’, ‘i’}, optional

Which eigenvalues to calculate

select

calculated

‘a’

All eigenvalues

‘v’

Eigenvalues in the interval (min, max]

‘i’

Eigenvalues with indices min <= i <= max

select_range(min, max), optional

Range of selected eigenvalues

check_finitebool, optional

Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns
w(M,) ndarray

The eigenvalues, in ascending order, each repeated according to its multiplicity.

Raises
LinAlgError

If eigenvalue computation does not converge.

See also

eig_banded

eigenvalues and right eigenvectors for symmetric/Hermitian band matrices

eigvalsh_tridiagonal

eigenvalues of symmetric/Hermitian tridiagonal matrices

eigvals

eigenvalues of general arrays

eigh

eigenvalues and right eigenvectors for symmetric/Hermitian arrays

eig

eigenvalues and right eigenvectors for non-symmetric arrays

Examples

>>> from scipy.linalg import eigvals_banded
>>> A = np.array([[1, 5, 2, 0], [5, 2, 5, 2], [2, 5, 3, 5], [0, 2, 5, 4]])
>>> Ab = np.array([[1, 2, 3, 4], [5, 5, 5, 0], [2, 2, 0, 0]])
>>> w = eigvals_banded(Ab, lower=True)
>>> w
array([-4.26200532, -2.22987175,  3.95222349, 12.53965359])