scipy.linalg.diagsvd¶
- scipy.linalg.diagsvd(s, M, N)[source]¶
Construct the sigma matrix in SVD from singular values and size M, N.
- Parameters
- s(M,) or (N,) array_like
Singular values
- Mint
Size of the matrix whose singular values are s.
- Nint
Size of the matrix whose singular values are s.
- Returns
- S(M, N) ndarray
The S-matrix in the singular value decomposition
Examples
>>> from scipy.linalg import diagsvd >>> vals = np.array([1, 2, 3]) # The array representing the computed svd >>> diagsvd(vals, 3, 4) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0]]) >>> diagsvd(vals, 4, 3) array([[1, 0, 0], [0, 2, 0], [0, 0, 3], [0, 0, 0]])