scipy.interpolate.SmoothBivariateSpline

class scipy.interpolate.SmoothBivariateSpline(x, y, z, w=None, bbox=[None, None, None, None], kx=3, ky=3, s=None, eps=1e-16)[source]

Smooth bivariate spline approximation.

Parameters
x, y, zarray_like

1-D sequences of data points (order is not important).

warray_like, optional

Positive 1-D sequence of weights, of same length as x, y and z.

bboxarray_like, optional

Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, bbox=[min(x), max(x), min(y), max(y)].

kx, kyints, optional

Degrees of the bivariate spline. Default is 3.

sfloat, optional

Positive smoothing factor defined for estimation condition: sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s Default s=len(w) which should be a good value if 1/w[i] is an estimate of the standard deviation of z[i].

epsfloat, optional

A threshold for determining the effective rank of an over-determined linear system of equations. eps should have a value within the open interval (0, 1), the default is 1e-16.

See also

BivariateSpline

a base class for bivariate splines.

UnivariateSpline

a smooth univariate spline to fit a given set of data points.

LSQBivariateSpline

a bivariate spline using weighted least-squares fitting

RectSphereBivariateSpline

a bivariate spline over a rectangular mesh on a sphere

SmoothSphereBivariateSpline

a smoothing bivariate spline in spherical coordinates

LSQSphereBivariateSpline

a bivariate spline in spherical coordinates using weighted least-squares fitting

RectBivariateSpline

a bivariate spline over a rectangular mesh

bisplrep

a function to find a bivariate B-spline representation of a surface

bisplev

a function to evaluate a bivariate B-spline and its derivatives

Notes

The length of x, y and z should be at least (kx+1) * (ky+1).

Methods

__call__(x, y[, dx, dy, grid])

Evaluate the spline or its derivatives at given positions.

ev(xi, yi[, dx, dy])

Evaluate the spline at points

get_coeffs()

Return spline coefficients.

get_knots()

Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively.

get_residual()

Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)

integral(xa, xb, ya, yb)

Evaluate the integral of the spline over area [xa,xb] x [ya,yb].