This is documentation for an old release of SciPy (version 1.7.0). Search for this page in the documentation of the latest stable release (version 1.15.1).
Negative Binomial Distribution¶
The negative binomial random variable with parameters \(n\) and \(p\in\left(0,1\right)\) can be defined as the number of extra independent trials (beyond \(n\) ) required to accumulate a total of \(n\) successes where the probability of a success on each trial is \(p.\) Equivalently, this random variable is the number of failures encountered while accumulating \(n\) successes during independent trials of an experiment that succeeds with probability \(p.\) Thus,
\begin{eqnarray*} p\left(k;n,p\right) & = & \left(\begin{array}{c} k+n-1\\ n-1\end{array}\right)p^{n}\left(1-p\right)^{k}\quad k\geq0\\ F\left(x;n,p\right) & = & \sum_{i=0}^{\left\lfloor x\right\rfloor }\left(\begin{array}{c} i+n-1\\ i\end{array}\right)p^{n}\left(1-p\right)^{i}\quad x\geq0\\ & = & I_{p}\left(n,\left\lfloor x\right\rfloor +1\right)\quad x\geq0\\ \mu & = & n\frac{1-p}{p}\\ \mu_{2} & = & n\frac{1-p}{p^{2}}\\ \gamma_{1} & = & \frac{2-p}{\sqrt{n\left(1-p\right)}}\\ \gamma_{2} & = & \frac{p^{2}+6\left(1-p\right)}{n\left(1-p\right)}.\end{eqnarray*}
Recall that \(I_{p}\left(a,b\right)\) is the incomplete beta integral.
Implementation: scipy.stats.nbinom