This is documentation for an old release of SciPy (version 1.6.3). Search for this page in the documentation of the latest stable release (version 1.15.1).
Von Mises Distribution¶
There is one shape parameter \(\kappa>0\), with support \(x\in\left[-\pi,\pi\right]\). For values of \(\kappa<100\) the PDF and CDF formulas below are used. Otherwise, a normal approximation with variance \(1/\kappa\) is used. [Note that the PDF and CDF functions below are periodic with period \(2\pi\). If an input outside \(x\in\left[-\pi,\pi\right]\) is given, it is converted to the equivalent angle in this range.]
\begin{eqnarray*} f\left(x;\kappa\right) & = & \frac{e^{\kappa\cos x}}{2\pi I_{0}\left(\kappa\right)}\\
F\left(x;\kappa\right) & = & \frac{1}{2} + \frac{x}{2\pi} + \sum_{k=1}^{\infty}\frac{I_{k}\left(\kappa\right)\sin\left(kx\right)}{I_{0}\left(\kappa\right)\pi k}\\
G\left(q; \kappa\right) & = & F^{-1}\left(x;\kappa\right)\end{eqnarray*}
where \(I_{k}(\kappa)\) is a modified Bessel function of the first kind.
\begin{eqnarray*} \mu & = & 0\\
\mu_{2} & = & \int_{-\pi}^{\pi}x^{2}f\left(x;\kappa\right)dx\\
\gamma_{1} & = & 0\\
\gamma_{2} & = & \frac{\int_{-\pi}^{\pi}x^{4}f\left(x;\kappa\right)dx}{\mu_{2}^{2}}-3\end{eqnarray*}
This can be used for defining circular variance.
Implementation: scipy.stats.vonmises