scipy.fft.idct¶
- 
scipy.fft.idct(x, type=2, n=None, axis=- 1, norm=None, overwrite_x=False, workers=None)[source]¶ Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.
- Parameters
 - xarray_like
 The input array.
- type{1, 2, 3, 4}, optional
 Type of the DCT (see Notes). Default type is 2.
- nint, optional
 Length of the transform. If
n < x.shape[axis], x is truncated. Ifn > x.shape[axis], x is zero-padded. The default results inn = x.shape[axis].- axisint, optional
 Axis along which the idct is computed; the default is over the last axis (i.e.,
axis=-1).- norm{“backward”, “ortho”, “forward”}, optional
 Normalization mode (see Notes). Default is “backward”.
- overwrite_xbool, optional
 If True, the contents of x can be destroyed; the default is False.
- workersint, optional
 Maximum number of workers to use for parallel computation. If negative, the value wraps around from
os.cpu_count(). Seefftfor more details.
- Returns
 - idctndarray of real
 The transformed input array.
See also
dctForward DCT
Notes
For a single dimension array x,
idct(x, norm='ortho')is equal to MATLABidct(x).‘The’ IDCT is the IDCT-II, which is the same as the normalized DCT-III.
The IDCT is equivalent to a normal DCT except for the normalization and type. DCT type 1 and 4 are their own inverse and DCTs 2 and 3 are each other’s inverses.
Examples
The Type 1 DCT is equivalent to the DFT for real, even-symmetrical inputs. The output is also real and even-symmetrical. Half of the IFFT input is used to generate half of the IFFT output:
>>> from scipy.fft import ifft, idct >>> ifft(np.array([ 30., -8., 6., -2., 6., -8.])).real array([ 4., 3., 5., 10., 5., 3.]) >>> idct(np.array([ 30., -8., 6., -2.]), 1) array([ 4., 3., 5., 10.])
