scipy.stats.nakagami¶
-
scipy.stats.
nakagami
(*args, **kwds) = <scipy.stats._continuous_distns.nakagami_gen object>[source]¶ A Nakagami continuous random variable.
As an instance of the
rv_continuous
class,nakagami
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.Notes
The probability density function for
nakagami
is:\[f(x, \nu) = \frac{2 \nu^\nu}{\Gamma(\nu)} x^{2\nu-1} \exp(-\nu x^2)\]for \(x >= 0\), \(\nu > 0\).
nakagami
takesnu
as a shape parameter for \(\nu\).The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc
andscale
parameters. Specifically,nakagami.pdf(x, nu, loc, scale)
is identically equivalent tonakagami.pdf(y, nu) / scale
withy = (x - loc) / scale
. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.Examples
>>> from scipy.stats import nakagami >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> nu = 4.97 >>> mean, var, skew, kurt = nakagami.stats(nu, moments='mvsk')
Display the probability density function (
pdf
):>>> x = np.linspace(nakagami.ppf(0.01, nu), ... nakagami.ppf(0.99, nu), 100) >>> ax.plot(x, nakagami.pdf(x, nu), ... 'r-', lw=5, alpha=0.6, label='nakagami pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pdf
:>>> rv = nakagami(nu) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of
cdf
andppf
:>>> vals = nakagami.ppf([0.001, 0.5, 0.999], nu) >>> np.allclose([0.001, 0.5, 0.999], nakagami.cdf(vals, nu)) True
Generate random numbers:
>>> r = nakagami.rvs(nu, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(nu, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, nu, loc=0, scale=1)
Probability density function.
logpdf(x, nu, loc=0, scale=1)
Log of the probability density function.
cdf(x, nu, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, nu, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, nu, loc=0, scale=1)
Survival function (also defined as
1 - cdf
, but sf is sometimes more accurate).logsf(x, nu, loc=0, scale=1)
Log of the survival function.
ppf(q, nu, loc=0, scale=1)
Percent point function (inverse of
cdf
— percentiles).isf(q, nu, loc=0, scale=1)
Inverse survival function (inverse of
sf
).moment(n, nu, loc=0, scale=1)
Non-central moment of order n
stats(nu, loc=0, scale=1, moments=’mv’)
Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(nu, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.
expect(func, args=(nu,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(nu, loc=0, scale=1)
Median of the distribution.
mean(nu, loc=0, scale=1)
Mean of the distribution.
var(nu, loc=0, scale=1)
Variance of the distribution.
std(nu, loc=0, scale=1)
Standard deviation of the distribution.
interval(alpha, nu, loc=0, scale=1)
Endpoints of the range that contains alpha percent of the distribution