scipy.spatial.KDTree.sparse_distance_matrix¶
-
KDTree.
sparse_distance_matrix
(self, other, max_distance, p=2.0, output_type='dok_matrix')[source]¶ Compute a sparse distance matrix
Computes a distance matrix between two KDTrees, leaving as zero any distance greater than max_distance.
- Parameters
- otherKDTree
- max_distancepositive float
- pfloat, 1<=p<=infinity
Which Minkowski p-norm to use. A finite large p may cause a ValueError if overflow can occur.
- output_typestring, optional
Which container to use for output data. Options: ‘dok_matrix’, ‘coo_matrix’, ‘dict’, or ‘ndarray’. Default: ‘dok_matrix’.
New in version 1.6.0.
- Returns
- resultdok_matrix, coo_matrix, dict or ndarray
Sparse matrix representing the results in “dictionary of keys” format. If a dict is returned the keys are (i,j) tuples of indices. If output_type is ‘ndarray’ a record array with fields ‘i’, ‘j’, and ‘v’ is returned,
Examples
You can compute a sparse distance matrix between two kd-trees:
>>> import numpy as np >>> from scipy.spatial import KDTree >>> np.random.seed(21701) >>> points1 = np.random.random((5, 2)) >>> points2 = np.random.random((5, 2)) >>> kd_tree1 = KDTree(points1) >>> kd_tree2 = KDTree(points2) >>> sdm = kd_tree1.sparse_distance_matrix(kd_tree2, 0.3) >>> sdm.toarray() array([[0.20220215, 0.14538496, 0., 0.10257199, 0. ], [0.13491385, 0.27251306, 0., 0.18793787, 0. ], [0.19262396, 0., 0., 0.25795122, 0. ], [0.14859639, 0.07076002, 0., 0.04065851, 0. ], [0.17308768, 0., 0., 0.24823138, 0. ]])
You can check distances above the max_distance are zeros:
>>> from scipy.spatial import distance_matrix >>> distance_matrix(points1, points2) array([[0.20220215, 0.14538496, 0.43588092, 0.10257199, 0.4555495 ], [0.13491385, 0.27251306, 0.65944131, 0.18793787, 0.68184154], [0.19262396, 0.34121593, 0.72176889, 0.25795122, 0.74538858], [0.14859639, 0.07076002, 0.48505773, 0.04065851, 0.50043591], [0.17308768, 0.32837991, 0.72760803, 0.24823138, 0.75017239]])