SciPy

scipy.sparse.bsr_matrix

class scipy.sparse.bsr_matrix(arg1, shape=None, dtype=None, copy=False, blocksize=None)[source]

Block Sparse Row matrix

This can be instantiated in several ways:
bsr_matrix(D, [blocksize=(R,C)])

where D is a dense matrix or 2-D ndarray.

bsr_matrix(S, [blocksize=(R,C)])

with another sparse matrix S (equivalent to S.tobsr())

bsr_matrix((M, N), [blocksize=(R,C), dtype])

to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.

bsr_matrix((data, ij), [blocksize=(R,C), shape=(M, N)])

where data and ij satisfy a[ij[0, k], ij[1, k]] = data[k]

bsr_matrix((data, indices, indptr), [shape=(M, N)])

is the standard BSR representation where the block column indices for row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding block values are stored in data[ indptr[i]: indptr[i+1] ]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.

Summary of BSR format

The Block Compressed Row (BSR) format is very similar to the Compressed Sparse Row (CSR) format. BSR is appropriate for sparse matrices with dense sub matrices like the last example below. Block matrices often arise in vector-valued finite element discretizations. In such cases, BSR is considerably more efficient than CSR and CSC for many sparse arithmetic operations.

Blocksize

The blocksize (R,C) must evenly divide the shape of the matrix (M,N). That is, R and C must satisfy the relationship M % R = 0 and N % C = 0.

If no blocksize is specified, a simple heuristic is applied to determine an appropriate blocksize.

Examples

>>> from scipy.sparse import bsr_matrix
>>> bsr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3 ,4, 5, 6])
>>> bsr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6]).repeat(4).reshape(6, 2, 2)
>>> bsr_matrix((data,indices,indptr), shape=(6, 6)).toarray()
array([[1, 1, 0, 0, 2, 2],
       [1, 1, 0, 0, 2, 2],
       [0, 0, 0, 0, 3, 3],
       [0, 0, 0, 0, 3, 3],
       [4, 4, 5, 5, 6, 6],
       [4, 4, 5, 5, 6, 6]])
Attributes
dtypedtype

Data type of the matrix

shape2-tuple

Get shape of a matrix.

ndimint

Number of dimensions (this is always 2)

nnz

Number of stored values, including explicit zeros.

data

Data array of the matrix

indices

BSR format index array

indptr

BSR format index pointer array

blocksize

Block size of the matrix

has_sorted_indices

Determine whether the matrix has sorted indices

Methods

__len__(self)

__mul__(self, other)

interpret other and call one of the following

arcsin(self)

Element-wise arcsin.

arcsinh(self)

Element-wise arcsinh.

arctan(self)

Element-wise arctan.

arctanh(self)

Element-wise arctanh.

argmax(self[, axis, out])

Return indices of maximum elements along an axis.

argmin(self[, axis, out])

Return indices of minimum elements along an axis.

asformat(self, format[, copy])

Return this matrix in the passed format.

asfptype(self)

Upcast matrix to a floating point format (if necessary)

astype(self, dtype[, casting, copy])

Cast the matrix elements to a specified type.

ceil(self)

Element-wise ceil.

check_format(self[, full_check])

check whether the matrix format is valid

conj(self[, copy])

Element-wise complex conjugation.

conjugate(self[, copy])

Element-wise complex conjugation.

copy(self)

Returns a copy of this matrix.

count_nonzero(self)

Number of non-zero entries, equivalent to

deg2rad(self)

Element-wise deg2rad.

diagonal(self[, k])

Returns the kth diagonal of the matrix.

dot(self, other)

Ordinary dot product

eliminate_zeros(self)

Remove zero elements in-place.

expm1(self)

Element-wise expm1.

floor(self)

Element-wise floor.

getH(self)

Return the Hermitian transpose of this matrix.

get_shape(self)

Get shape of a matrix.

getcol(self, j)

Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).

getformat(self)

Format of a matrix representation as a string.

getmaxprint(self)

Maximum number of elements to display when printed.

getnnz(self[, axis])

Number of stored values, including explicit zeros.

getrow(self, i)

Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).

log1p(self)

Element-wise log1p.

matmat(*args, **kwds)

matmat is deprecated! BSR matmat is deprecated in SciPy 0.19.0.

matvec(*args, **kwds)

matvec is deprecated! BSR matvec is deprecated in SciPy 0.19.0.

max(self[, axis, out])

Return the maximum of the matrix or maximum along an axis.

maximum(self, other)

Element-wise maximum between this and another matrix.

mean(self[, axis, dtype, out])

Compute the arithmetic mean along the specified axis.

min(self[, axis, out])

Return the minimum of the matrix or maximum along an axis.

minimum(self, other)

Element-wise minimum between this and another matrix.

multiply(self, other)

Point-wise multiplication by another matrix, vector, or scalar.

nonzero(self)

nonzero indices

power(self, n[, dtype])

This function performs element-wise power.

prune(self)

Remove empty space after all non-zero elements.

rad2deg(self)

Element-wise rad2deg.

reshape(self, shape[, order, copy])

Gives a new shape to a sparse matrix without changing its data.

resize(self, *shape)

Resize the matrix in-place to dimensions given by shape

rint(self)

Element-wise rint.

set_shape(self, shape)

See reshape.

setdiag(self, values[, k])

Set diagonal or off-diagonal elements of the array.

sign(self)

Element-wise sign.

sin(self)

Element-wise sin.

sinh(self)

Element-wise sinh.

sort_indices(self)

Sort the indices of this matrix in place

sorted_indices(self)

Return a copy of this matrix with sorted indices

sqrt(self)

Element-wise sqrt.

sum(self[, axis, dtype, out])

Sum the matrix elements over a given axis.

sum_duplicates(self)

Eliminate duplicate matrix entries by adding them together

tan(self)

Element-wise tan.

tanh(self)

Element-wise tanh.

toarray(self[, order, out])

Return a dense ndarray representation of this matrix.

tobsr(self[, blocksize, copy])

Convert this matrix into Block Sparse Row Format.

tocoo(self[, copy])

Convert this matrix to COOrdinate format.

tocsc(self[, copy])

Convert this matrix to Compressed Sparse Column format.

tocsr(self[, copy])

Convert this matrix to Compressed Sparse Row format.

todense(self[, order, out])

Return a dense matrix representation of this matrix.

todia(self[, copy])

Convert this matrix to sparse DIAgonal format.

todok(self[, copy])

Convert this matrix to Dictionary Of Keys format.

tolil(self[, copy])

Convert this matrix to List of Lists format.

transpose(self[, axes, copy])

Reverses the dimensions of the sparse matrix.

trunc(self)

Element-wise trunc.

__getitem__

Previous topic

Sparse matrices (scipy.sparse)

Next topic

scipy.sparse.bsr_matrix.__len__