scipy.ndimage.morphological_gradient(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)[source]

The morphological gradient is calculated as the difference between a dilation and an erosion of the input with a given structuring element.

Parameters
inputarray_like

Array over which to compute the morphlogical gradient.

sizetuple of ints

Shape of a flat and full structuring element used for the mathematical morphology operations. Optional if footprint or structure is provided. A larger size yields a more blurred gradient.

footprintarray of ints, optional

Positions of non-infinite elements of a flat structuring element used for the morphology operations. Larger footprints give a more blurred morphological gradient.

structurearray of ints, optional

Structuring element used for the morphology operations. structure may be a non-flat structuring element.

outputarray, optional

An array used for storing the output of the morphological gradient may be provided.

mode{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to ‘constant’. Default is ‘reflect’

cvalscalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

originscalar, optional

The origin parameter controls the placement of the filter. Default 0

Returns

Notes

For a flat structuring element, the morphological gradient computed at a given point corresponds to the maximal difference between elements of the input among the elements covered by the structuring element centered on the point.

References

1

https://en.wikipedia.org/wiki/Mathematical_morphology

Examples

>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[2:5, 2:5] = 1
array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> # The morphological gradient is computed as the difference
>>> # between a dilation and an erosion
>>> ndimage.grey_dilation(a, size=(3,3)) -\
...  ndimage.grey_erosion(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> a = np.zeros((7,7), dtype=int)
>>> a[2:5, 2:5] = 1
>>> a[4,4] = 2; a[2,3] = 3
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 3, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 2, 3, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 0]])


#### Previous topic

scipy.ndimage.iterate_structure

#### Next topic

scipy.ndimage.morphological_laplace