SciPy

This is documentation for an old release of SciPy (version 1.6.0). Read this page in the documentation of the latest stable release (version 1.15.1).

Weibull Maximum Extreme Value Distribution

Defined for \(x<0\) and \(c>0\) .

\begin{eqnarray*} f\left(x;c\right) & = & c\left(-x\right)^{c-1}\exp\left(-\left(-x\right)^{c}\right)\\ F\left(x;c\right) & = & \exp\left(-\left(-x\right)^{c}\right)\\ G\left(q;c\right) & = & -\left(-\log q\right)^{1/c}\end{eqnarray*}

The mean is the negative of the right-skewed Frechet distribution given above, and the other statistical parameters can be computed from

\[\mu_{n}^{\prime}=\left(-1\right)^{n}\Gamma\left(1+\frac{n}{c}\right).\]
\begin{eqnarray*} \mu & = & -\Gamma\left(1+\frac{1}{c}\right) \\ \mu_{2} & = & \Gamma\left(1+\frac{2}{c}\right) - \Gamma^{2}\left(1+\frac{1}{c}\right) \\ \gamma_{1} & = & -\frac{\Gamma\left(1+\frac{3}{c}\right) - 3\Gamma\left(1+\frac{2}{c}\right)\Gamma\left(1+\frac{1}{c}\right) + 2\Gamma^{3}\left(1+\frac{1}{c}\right)} {\mu_{2}^{3/2}} \\ \gamma_{2} & = & \frac{\Gamma\left(1+\frac{4}{c}\right) - 4\Gamma\left(1+\frac{1}{c}\right)\Gamma\left(1+\frac{3}{c}\right) + 6\Gamma^{2}\left(1+\frac{1}{c}\right)\Gamma\left(1+\frac{2}{c}\right) - 3\Gamma^{4}\left(1+\frac{1}{c}\right)} {\mu_{2}^{2}} - 3 \\ m_{d} & = & \begin{cases} -\left(\frac{c-1}{c}\right)^{\frac{1}{c}} & \text{if}\; c > 1 \\ 0 & \text{if}\; c <= 1 \end{cases} \\ m_{n} & = & -\ln\left(2\right)^{\frac{1}{c}} \end{eqnarray*}
\[h\left[X\right]=-\frac{\gamma}{c}-\log\left(c\right)+\gamma+1\]

where \(\gamma\) is Euler’s constant and equal to

\[\gamma\approx0.57721566490153286061.\]

Implementation: scipy.stats.weibull_max

Previous topic

Wald Distribution

Next topic

Weibull Minimum Extreme Value Distribution