This is documentation for an old release of SciPy (version 1.6.0). Search for this page in the documentation of the latest stable release (version 1.15.1).
Asymmetric Laplace Distribution¶
This distribution is a generalization of the Laplace distribution. It has a single shape parameter \(\kappa>0\) that species the distribution’s asymmetry. The special case \(\kappa=1\) yields the Laplace distribution.
Functions¶
\begin{eqnarray*}
F(x, \kappa) & = & 1-\frac{\kappa^{-1}}{\kappa+\kappa^{-1}}\exp(-x\kappa),\quad x\ge0; \\
& = & \frac{\kappa}{\kappa+\kappa^{-1}}\exp(x/\kappa),\quad x<0. \\
f(x, \kappa) & = & \frac{1}{\kappa+\kappa^{-1}}\exp(-x\kappa),\quad x\ge0; \\
& = & \frac{1}{\kappa+\kappa^{-1}}\exp(x/\kappa),\quad x<0.
\end{eqnarray*}
\begin{eqnarray*}
\mu & = & \kappa^{-1}-\kappa\\
\mu_2 & = & \kappa^{-2}+\kappa^2\\
\gamma_1 & = & \frac{2(1-\kappa^6)}{(1+\kappa^4)^{3/2}}\\
\gamma_2 & = & \frac{6(1+\kappa^8)}{(1+\kappa^4)^2}
\end{eqnarray*}
References¶
“Asymmetric Laplace distribution”, Wikipedia https://en.wikipedia.org/wiki/Asymmetric_Laplace_distribution
Kozubowski TJ and Podgórski K, “A Multivariate and Asymmetric Generalization of Laplace Distribution,” Computational Statistics 15, 531–540 (2000). DOI:10.1007/PL00022717
Implementation: scipy.stats.laplace_asymmetric