This is documentation for an old release of SciPy (version 1.6.0). Read this page in the documentation of the latest stable release (version 1.15.1).
Inverse Normal (Inverse Gaussian) Distribution¶
The standard form involves the shape parameter \(\mu\) (in most definitions, \(L=0.0\) is used). (In terms of the regress documentation \(\mu=A/B\) ) and \(B=S\) and \(L\) is not a parameter in that distribution. A standard form is \(x>0\)
This is related to the canonical form or JKB “two-parameter” inverse Gaussian when written in it’s full form with scale parameter \(S\) and location parameter \(L\) by taking \(L=0\) and \(S\equiv\lambda,\) then \(\mu S\) is equal to \(\mu_{2}\) where \(\mu_{2}\) is the parameter used by JKB. We prefer this form because of it’s consistent use of the scale parameter. Notice that in JKB the skew \(\left(\sqrt{\beta_{1}}\right)\) and the kurtosis ( \(\beta_{2}-3\) ) are both functions only of \(\mu_{2}/\lambda=\mu S/S=\mu\) as shown here, while the variance and mean of the standard form here are transformed appropriately.
Implementation: scipy.stats.invgauss