This is documentation for an old release of SciPy (version 1.5.4). Read this page in the documentation of the latest stable release (version 1.15.1).
Gilbrat Distribution¶
Special case of the log-normal with \(\sigma=1\) and \(S=1.0\), typically also \(L=0.0\).)
\begin{eqnarray*} f\left(x;\sigma\right) & = & \frac{1}{x\sqrt{2\pi}}\exp\left(-\frac{1}{2}\left(\log x\right)^{2}\right)\\
F\left(x;\sigma\right) & = & \Phi\left(\log x\right)=\frac{1}{2}\left(1+\mathrm{erf}\left(\frac{\log x}{\sqrt{2}}\right)\right)\\
G\left(q;\sigma\right) & = & \exp\left( \Phi^{-1}\left(q\right)\right) \end{eqnarray*}
\begin{eqnarray*} \mu & = & \sqrt{e}\\
\mu_{2} & = & e\left[e-1\right]\\
\gamma_{1} & = & \sqrt{e-1}\left(2+e\right)\\
\gamma_{2} & = & e^{4}+2e^{3}+3e^{2}-6\end{eqnarray*}
\begin{eqnarray*} h\left[X\right] & = & \log\left(\sqrt{2\pi e}\right)\\
& \approx & 1.4189385332046727418\end{eqnarray*}
Implementation: scipy.stats.gilbrat