SciPy

This is documentation for an old release of SciPy (version 1.5.4). Read this page in the documentation of the latest stable release (version 1.15.1).

Gilbrat Distribution

Special case of the log-normal with \(\sigma=1\) and \(S=1.0\), typically also \(L=0.0\).)

\begin{eqnarray*} f\left(x;\sigma\right) & = & \frac{1}{x\sqrt{2\pi}}\exp\left(-\frac{1}{2}\left(\log x\right)^{2}\right)\\ F\left(x;\sigma\right) & = & \Phi\left(\log x\right)=\frac{1}{2}\left(1+\mathrm{erf}\left(\frac{\log x}{\sqrt{2}}\right)\right)\\ G\left(q;\sigma\right) & = & \exp\left( \Phi^{-1}\left(q\right)\right) \end{eqnarray*}
\begin{eqnarray*} \mu & = & \sqrt{e}\\ \mu_{2} & = & e\left[e-1\right]\\ \gamma_{1} & = & \sqrt{e-1}\left(2+e\right)\\ \gamma_{2} & = & e^{4}+2e^{3}+3e^{2}-6\end{eqnarray*}
\begin{eqnarray*} h\left[X\right] & = & \log\left(\sqrt{2\pi e}\right)\\ & \approx & 1.4189385332046727418\end{eqnarray*}

Implementation: scipy.stats.gilbrat

Previous topic

Generalized Normal Distribution

Next topic

Gompertz (Truncated Gumbel) Distribution