This is documentation for an old release of SciPy (version 1.5.3). Read this page in the documentation of the latest stable release (version 1.15.1).
Generalized Logistic Distribution¶
Has been used in the analysis of extreme values. There is one shape parameter \(c>0.\) The support is \(x\geq0\).
\begin{eqnarray*} f\left(x;c\right) & = & \frac{c\exp\left(-x\right)}{\left[1+\exp\left(-x\right)\right]^{c+1}}\\
F\left(x;c\right) & = & \frac{1}{\left[1+\exp\left(-x\right)\right]^{c}}\\
G\left(q;c\right) & = & -\log\left(q^{-1/c}-1\right)\end{eqnarray*}
\[M\left(t\right)=\frac{c}{1-t}\,_{2}F_{1}\left(1+c,\,1-t\,;\,2-t\,;-1\right)\]
\begin{eqnarray*} \mu & = & \gamma+\psi_{0}\left(c\right)\\
\mu_{2} & = & \frac{\pi^{2}}{6}+\psi_{1}\left(c\right)\\
\gamma_{1} & = & \frac{\psi_{2}\left(c\right)+2\zeta\left(3\right)}{\mu_{2}^{3/2}}\\
\gamma_{2} & = & \frac{\left(\frac{\pi^{4}}{15}+\psi_{3}\left(c\right)\right)}{\mu_{2}^{2}}\\
m_{d} & = & \log c\\
m_{n} & = & -\log\left(2^{1/c}-1\right)\end{eqnarray*}
Note that the polygamma function is
\begin{eqnarray*} \psi_{n}\left(z\right) & = & \frac{d^{n+1}}{dz^{n+1}}\log\Gamma\left(z\right)\\
& = & \left(-1\right)^{n+1}n!\sum_{k=0}^{\infty}\frac{1}{\left(z+k\right)^{n+1}}\\
& = & \left(-1\right)^{n+1}n!\zeta\left(n+1,z\right)\end{eqnarray*}
where \(\zeta\left(k,x\right)\) is a generalization of the Riemann zeta function called the Hurwitz zeta function. Note that \(\zeta\left(n\right)\equiv\zeta\left(n,1\right)\).
Implementation: scipy.stats.genlogistic