# scipy.special.beta¶

scipy.special.beta(a, b, out=None) = <ufunc 'beta'>

Beta function.

This function is defined in [1] as

$B(a, b) = \int_0^1 t^{a-1}(1-t)^{b-1}dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)},$

where $$\Gamma$$ is the gamma function.

Parameters
a, barray-like

Real-valued arguments

outndarray, optional

Optional output array for the function result

Returns
scalar or ndarray

Value of the beta function

gamma

the gamma function

betainc

the incomplete beta function

betaln

the natural logarithm of the absolute value of the beta function

References

1

NIST Digital Library of Mathematical Functions, Eq. 5.12.1. https://dlmf.nist.gov/5.12

Examples

>>> import scipy.special as sc


The beta function relates to the gamma function by the definition given above:

>>> sc.beta(2, 3)
0.08333333333333333
>>> sc.gamma(2)*sc.gamma(3)/sc.gamma(2 + 3)
0.08333333333333333


As this relationship demonstrates, the beta function is symmetric:

>>> sc.beta(1.7, 2.4)
0.16567527689031739
>>> sc.beta(2.4, 1.7)
0.16567527689031739


This function satisfies $$B(1, b) = 1/b$$:

>>> sc.beta(1, 4)
0.25


#### Previous topic

scipy.special.gammainccinv

#### Next topic

scipy.special.betaln