# scipy.interpolate.LSQBivariateSpline¶

class scipy.interpolate.LSQBivariateSpline(x, y, z, tx, ty, w=None, bbox=[None, None, None, None], kx=3, ky=3, eps=None)[source]

Weighted least-squares bivariate spline approximation.

Parameters
x, y, zarray_like

1-D sequences of data points (order is not important).

tx, tyarray_like

Strictly ordered 1-D sequences of knots coordinates.

warray_like, optional

Positive 1-D array of weights, of the same length as x, y and z.

bbox(4,) array_like, optional

Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)].

kx, kyints, optional

Degrees of the bivariate spline. Default is 3.

epsfloat, optional

A threshold for determining the effective rank of an over-determined linear system of equations. eps should have a value within the open interval (0, 1), the default is 1e-16.

bisplrep

an older wrapping of FITPACK

bisplev

an older wrapping of FITPACK

UnivariateSpline

a similar class for univariate spline interpolation

SmoothBivariateSpline

create a smoothing BivariateSpline

Notes

The length of x, y and z should be at least (kx+1) * (ky+1).

Methods

 __call__(self, x, y[, dx, dy, grid]) Evaluate the spline or its derivatives at given positions. ev(self, xi, yi[, dx, dy]) Evaluate the spline at points get_coeffs(self) Return spline coefficients. get_knots(self) Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively. get_residual(self) Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0) integral(self, xa, xb, ya, yb) Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

#### Previous topic

scipy.interpolate.SmoothSphereBivariateSpline.get_residual

#### Next topic

scipy.interpolate.LSQBivariateSpline.__call__