This is documentation for an old release of SciPy (version 1.5.1). Search for this page in the documentation of the latest stable release (version 1.15.1).
Burr Distribution¶
There are two shape parameters \(c,d > 0\) and the support is \(x \in [0,\infty)\).
\begin{eqnarray*} \textrm{Let }k & = & \Gamma\left(d\right)\Gamma\left(1-\frac{2}{c}\right)\Gamma\left(\frac{2}{c}+d\right)-\Gamma^{2}\left(1-\frac{1}{c}\right)\Gamma^{2}\left(\frac{1}{c}+d\right)\\
f\left(x;c,d\right) & = & \frac{cd}{x^{c+1}\left(1+x^{-c}\right)^{d+1}} \\
F\left(x;c,d\right) & = & \left(1+x^{-c}\right)^{-d}\\
G\left(q;c,d\right) & = & \left(q^{-1/d}-1\right)^{-1/c}\\
\mu & = & \frac{\Gamma\left(1-\frac{1}{c}\right)\Gamma\left(\frac{1}{c}+d\right)}{\Gamma\left(d\right)}\\
\mu_{2} & = & \frac{k}{\Gamma^{2}\left(d\right)}\\
\gamma_{1} & = & \frac{1}{\sqrt{k^{3}}}\left[2\Gamma^{3}\left(1-\frac{1}{c}\right)\Gamma^{3}\left(\frac{1}{c}+d\right)+\Gamma^{2}\left(d\right)\Gamma\left(1-\frac{3}{c}\right)\Gamma\left(\frac{3}{c}+d\right)\right.\\
& & \left.-3\Gamma\left(d\right)\Gamma\left(1-\frac{2}{c}\right)\Gamma\left(1-\frac{1}{c}\right)\Gamma\left(\frac{1}{c}+d\right)\Gamma\left(\frac{2}{c}+d\right)\right]\\
\gamma_{2} & = & -3+\frac{1}{k^{2}}\left[6\Gamma\left(d\right)\Gamma\left(1-\frac{2}{c}\right)\Gamma^{2}\left(1-\frac{1}{c}\right)\Gamma^{2}\left(\frac{1}{c}+d\right)\Gamma\left(\frac{2}{c}+d\right)\right.\\
& & -3\Gamma^{4}\left(1-\frac{1}{c}\right)\Gamma^{4}\left(\frac{1}{c}+d\right)+\Gamma^{3}\left(d\right)\Gamma\left(1-\frac{4}{c}\right)\Gamma\left(\frac{4}{c}+d\right)\\
& & \left.-4\Gamma^{2}\left(d\right)\Gamma\left(1-\frac{3}{c}\right)\Gamma\left(1-\frac{1}{c}\right)\Gamma\left(\frac{1}{c}+d\right)\Gamma\left(\frac{3}{c}+d\right)\right]\\
m_{d} & = & \left(\frac{cd-1}{c+1}\right)^{1/c}\,\text{if }\quad cd>1 \text{, otherwise }\quad 0\\
m_{n} & = & \left(2^{1/d}-1\right)^{-1/c}\end{eqnarray*}
Implementation: scipy.stats.burr