scipy.sparse.dia_matrix¶
-
class
scipy.sparse.dia_matrix(arg1, shape=None, dtype=None, copy=False)[source]¶ Sparse matrix with DIAgonal storage
- This can be instantiated in several ways:
- dia_matrix(D)
with a dense matrix
- dia_matrix(S)
with another sparse matrix S (equivalent to S.todia())
- dia_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N), dtype is optional, defaulting to dtype=’d’.
- dia_matrix((data, offsets), shape=(M, N))
where the
data[k,:]stores the diagonal entries for diagonaloffsets[k](See example below)
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Examples
>>> import numpy as np >>> from scipy.sparse import dia_matrix >>> dia_matrix((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0) >>> offsets = np.array([0, -1, 2]) >>> dia_matrix((data, offsets), shape=(4, 4)).toarray() array([[1, 0, 3, 0], [1, 2, 0, 4], [0, 2, 3, 0], [0, 0, 3, 4]])
>>> from scipy.sparse import dia_matrix >>> n = 10 >>> ex = np.ones(n) >>> data = np.array([ex, 2 * ex, ex]) >>> offsets = np.array([-1, 0, 1]) >>> dia_matrix((data, offsets), shape=(n, n)).toarray() array([[2., 1., 0., ..., 0., 0., 0.], [1., 2., 1., ..., 0., 0., 0.], [0., 1., 2., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 2., 1., 0.], [0., 0., 0., ..., 1., 2., 1.], [0., 0., 0., ..., 0., 1., 2.]])
- Attributes
Methods
__len__(self)__mul__(self, other)interpret other and call one of the following
arcsin(self)Element-wise arcsin.
arcsinh(self)Element-wise arcsinh.
arctan(self)Element-wise arctan.
arctanh(self)Element-wise arctanh.
asformat(self, format[, copy])Return this matrix in the passed format.
asfptype(self)Upcast matrix to a floating point format (if necessary)
astype(self, dtype[, casting, copy])Cast the matrix elements to a specified type.
ceil(self)Element-wise ceil.
conj(self[, copy])Element-wise complex conjugation.
conjugate(self[, copy])Element-wise complex conjugation.
copy(self)Returns a copy of this matrix.
count_nonzero(self)Number of non-zero entries, equivalent to
deg2rad(self)Element-wise deg2rad.
diagonal(self[, k])Returns the kth diagonal of the matrix.
dot(self, other)Ordinary dot product
expm1(self)Element-wise expm1.
floor(self)Element-wise floor.
getH(self)Return the Hermitian transpose of this matrix.
get_shape(self)Get shape of a matrix.
getcol(self, j)Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).
getformat(self)Format of a matrix representation as a string.
getmaxprint(self)Maximum number of elements to display when printed.
getnnz(self[, axis])Number of stored values, including explicit zeros.
getrow(self, i)Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector).
log1p(self)Element-wise log1p.
maximum(self, other)Element-wise maximum between this and another matrix.
mean(self[, axis, dtype, out])Compute the arithmetic mean along the specified axis.
minimum(self, other)Element-wise minimum between this and another matrix.
multiply(self, other)Point-wise multiplication by another matrix
nonzero(self)nonzero indices
power(self, n[, dtype])This function performs element-wise power.
rad2deg(self)Element-wise rad2deg.
reshape(self, shape[, order, copy])Gives a new shape to a sparse matrix without changing its data.
resize(self, *shape)Resize the matrix in-place to dimensions given by
shaperint(self)Element-wise rint.
set_shape(self, shape)See
reshape.setdiag(self, values[, k])Set diagonal or off-diagonal elements of the array.
sign(self)Element-wise sign.
sin(self)Element-wise sin.
sinh(self)Element-wise sinh.
sqrt(self)Element-wise sqrt.
sum(self[, axis, dtype, out])Sum the matrix elements over a given axis.
tan(self)Element-wise tan.
tanh(self)Element-wise tanh.
toarray(self[, order, out])Return a dense ndarray representation of this matrix.
tobsr(self[, blocksize, copy])Convert this matrix to Block Sparse Row format.
tocoo(self[, copy])Convert this matrix to COOrdinate format.
tocsc(self[, copy])Convert this matrix to Compressed Sparse Column format.
tocsr(self[, copy])Convert this matrix to Compressed Sparse Row format.
todense(self[, order, out])Return a dense matrix representation of this matrix.
todia(self[, copy])Convert this matrix to sparse DIAgonal format.
todok(self[, copy])Convert this matrix to Dictionary Of Keys format.
tolil(self[, copy])Convert this matrix to List of Lists format.
transpose(self[, axes, copy])Reverses the dimensions of the sparse matrix.
trunc(self)Element-wise trunc.
