SciPy

This is documentation for an old release of SciPy (version 1.5.0). Read this page in the documentation of the latest stable release (version 1.15.1).

Burr12 Distribution

There are two shape parameters \(c,d > 0\) and the support is \(x \in [0,\infty)\). The Burr12 distribution is also known as the Singh-Maddala distribution.

\begin{eqnarray*} f\left(x;c,d\right) & = & {cd} \frac{x^{c-1}} {\left(1+x^{c}\right)^{d+1}} \\ F\left(x;c,d\right) & = & 1 - \left(1+x^{c}\right)^{-d}\\ G\left(q;c,d\right) & = & \left((1-q)^{-1/d}-1\right)^{-1/c}\\ S\left(x;c,d\right) & = & \left(1+x^{c}\right)^{-d}\\ \mu & = & d \, B\left(d-\frac{1}{c}, 1+\frac{1}{c}\right)\\ \mu_{n} & = & d \, B\left(d-\frac{n}{c}, 1+\frac{n}{c}\right)\\ m_{d} & = & \left(\frac{c-1}{c d + 1}\right)^{1/c} \,\text{if }\quad c>1 \text{, otherwise }\quad 0\\ m_{n} & = & \left(2^{1/d}-1\right)^{-1/c} \end{eqnarray*}

where \(B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}\) is the Beta function.

Implementation: scipy.stats.burr12

Previous topic

Burr Distribution

Next topic

Cauchy Distribution