scipy.stats.ttest_rel¶
-
scipy.stats.
ttest_rel
(a, b, axis=0, nan_policy='propagate')[source]¶ Calculate the t-test on TWO RELATED samples of scores, a and b.
This is a two-sided test for the null hypothesis that 2 related or repeated samples have identical average (expected) values.
- Parameters
- a, barray_like
The arrays must have the same shape.
- axisint or None, optional
Axis along which to compute test. If None, compute over the whole arrays, a, and b.
- nan_policy{‘propagate’, ‘raise’, ‘omit’}, optional
Defines how to handle when input contains nan. The following options are available (default is ‘propagate’):
‘propagate’: returns nan
‘raise’: throws an error
‘omit’: performs the calculations ignoring nan values
- Returns
- statisticfloat or array
t-statistic.
- pvaluefloat or array
Two-sided p-value.
Notes
Examples for use are scores of the same set of student in different exams, or repeated sampling from the same units. The test measures whether the average score differs significantly across samples (e.g. exams). If we observe a large p-value, for example greater than 0.05 or 0.1 then we cannot reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the null hypothesis of equal averages. Small p-values are associated with large t-statistics.
References
https://en.wikipedia.org/wiki/T-test#Dependent_t-test_for_paired_samples
Examples
>>> from scipy import stats >>> np.random.seed(12345678) # fix random seed to get same numbers
>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500) >>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) + ... stats.norm.rvs(scale=0.2,size=500)) >>> stats.ttest_rel(rvs1,rvs2) (0.24101764965300962, 0.80964043445811562) >>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) + ... stats.norm.rvs(scale=0.2,size=500)) >>> stats.ttest_rel(rvs1,rvs3) (-3.9995108708727933, 7.3082402191726459e-005)