Integrals related to Bessel functions of the first kind of order 0.
Computes the integrals
\[\begin{split}\int_0^x \frac{1 - J_0(t)}{t} dt \\
\int_x^\infty \frac{Y_0(t)}{t} dt.\end{split}\]
For more on \(J_0\) and \(Y_0\) see j0
and y0
.
- Parameters
- xarray_like
Values at which to evaluate the integrals.
- outtuple of ndarrays, optional
Optional output arrays for the function results.
- Returns
- ij0scalar or ndarray
The integral for j0
- iy0scalar or ndarray
The integral for y0