scipy.signal.ellipord¶
- 
scipy.signal.ellipord(wp, ws, gpass, gstop, analog=False, fs=None)[source]¶ Elliptic (Cauer) filter order selection.
Return the order of the lowest order digital or analog elliptic filter that loses no more than gpass dB in the passband and has at least gstop dB attenuation in the stopband.
- Parameters
 - wp, wsfloat
 Passband and stopband edge frequencies.
For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so these are normalized from 0 to 1, where 1 is the Nyquist frequency. (wp and ws are thus in half-cycles / sample.) For example:
Lowpass: wp = 0.2, ws = 0.3
Highpass: wp = 0.3, ws = 0.2
Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]
Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]
For analog filters, wp and ws are angular frequencies (e.g., rad/s).
- gpassfloat
 The maximum loss in the passband (dB).
- gstopfloat
 The minimum attenuation in the stopband (dB).
- analogbool, optional
 When True, return an analog filter, otherwise a digital filter is returned.
- fsfloat, optional
 The sampling frequency of the digital system.
New in version 1.2.0.
- Returns
 
See also
Examples
Design an analog highpass filter such that the passband is within 3 dB above 30 rad/s, while rejecting -60 dB at 10 rad/s. Plot its frequency response, showing the passband and stopband constraints in gray.
>>> from scipy import signal >>> import matplotlib.pyplot as plt
>>> N, Wn = signal.ellipord(30, 10, 3, 60, True) >>> b, a = signal.ellip(N, 3, 60, Wn, 'high', True) >>> w, h = signal.freqs(b, a, np.logspace(0, 3, 500)) >>> plt.semilogx(w, 20 * np.log10(abs(h))) >>> plt.title('Elliptical highpass filter fit to constraints') >>> plt.xlabel('Frequency [radians / second]') >>> plt.ylabel('Amplitude [dB]') >>> plt.grid(which='both', axis='both') >>> plt.fill([.1, 10, 10, .1], [1e4, 1e4, -60, -60], '0.9', lw=0) # stop >>> plt.fill([30, 30, 1e9, 1e9], [-99, -3, -3, -99], '0.9', lw=0) # pass >>> plt.axis([1, 300, -80, 3]) >>> plt.show()
