SciPy

This is documentation for an old release of SciPy (version 1.4.1). Read this page in the documentation of the latest stable release (version 1.15.1).

Cauchy Distribution

The support is \(x\in\mathbb{R}\).

\begin{eqnarray*} f\left(x\right) & = & \frac{1}{\pi\left(1+x^{2}\right)}\\ F\left(x\right) & = & \frac{1}{2}+\frac{1}{\pi}\tan^{-1}x\\ G\left(q\right) & = & \tan\left(\pi q-\frac{\pi}{2}\right)\\ m_{d} & = & 0\\ m_{n} & = & 0\end{eqnarray*}

No finite moments. This is the \(t\) distribution with one degree of freedom.

\begin{eqnarray*} h\left[X\right] & = & \log\left(4\pi\right)\\ & \approx & 2.5310242469692907930.\end{eqnarray*}

Implementation: scipy.stats.cauchy

Previous topic

Burr12 Distribution

Next topic

Chi Distribution