minimize(method=’Powell’)¶
- 
scipy.optimize.minimize(fun, x0, args=(), method='Powell', tol=None, callback=None, options={'func': None, 'xtol': 0.0001, 'ftol': 0.0001, 'maxiter': None, 'maxfev': None, 'disp': False, 'direc': None, 'return_all': False})
- Minimization of scalar function of one or more variables using the modified Powell algorithm. - See also - For documentation for the rest of the parameters, see - scipy.optimize.minimize- Options
- dispbool
- Set to True to print convergence messages. 
- xtolfloat
- Relative error in solution xopt acceptable for convergence. 
- ftolfloat
- Relative error in - fun(xopt)acceptable for convergence.
- maxiter, maxfevint
- Maximum allowed number of iterations and function evaluations. Will default to - N*1000, where- Nis the number of variables, if neither maxiter or maxfev is set. If both maxiter and maxfev are set, minimization will stop at the first reached.
- direcndarray
- Initial set of direction vectors for the Powell method. 
 
 
