minimize(method=’L-BFGS-B’)¶
- 
scipy.optimize.minimize(fun, x0, args=(), method='L-BFGS-B', jac=None, bounds=None, tol=None, callback=None, options={'disp': None, 'maxcor': 10, 'ftol': 2.220446049250313e-09, 'gtol': 1e-05, 'eps': 1e-08, 'maxfun': 15000, 'maxiter': 15000, 'iprint': -1, 'maxls': 20})
- Minimize a scalar function of one or more variables using the L-BFGS-B algorithm. - See also - For documentation for the rest of the parameters, see - scipy.optimize.minimize- Options
- dispNone or int
- If disp is None (the default), then the supplied version of iprint is used. If disp is not None, then it overrides the supplied version of iprint with the behaviour you outlined. 
- maxcorint
- The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.) 
- ftolfloat
- The iteration stops when - (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= ftol.
- gtolfloat
- The iteration will stop when - max{|proj g_i | i = 1, ..., n} <= gtolwhere- pg_iis the i-th component of the projected gradient.
- epsfloat
- Step size used for numerical approximation of the jacobian. 
- maxfunint
- Maximum number of function evaluations. 
- maxiterint
- Maximum number of iterations. 
- iprintint, optional
- Controls the frequency of output. - iprint < 0means no output;- iprint = 0print only one line at the last iteration;- 0 < iprint < 99print also f and- |proj g|every iprint iterations;- iprint = 99print details of every iteration except n-vectors;- iprint = 100print also the changes of active set and final x;- iprint > 100print details of every iteration including x and g.
- callbackcallable, optional
- Called after each iteration, as - callback(xk), where- xkis the current parameter vector.
- maxlsint, optional
- Maximum number of line search steps (per iteration). Default is 20. 
 
 - Notes - The option ftol is exposed via the - scipy.optimize.minimizeinterface, but calling- scipy.optimize.fmin_l_bfgs_bdirectly exposes factr. The relationship between the two is- ftol = factr * numpy.finfo(float).eps. I.e., factr multiplies the default machine floating-point precision to arrive at ftol.
