minimize(method=’COBYLA’)¶
- 
scipy.optimize.minimize(fun, x0, args=(), method='COBYLA', constraints=(), tol=None, callback=None, options={'rhobeg': 1.0, 'maxiter': 1000, 'disp': False, 'catol': 0.0002})
- Minimize a scalar function of one or more variables using the Constrained Optimization BY Linear Approximation (COBYLA) algorithm. - See also - For documentation for the rest of the parameters, see - scipy.optimize.minimize- Options
- rhobegfloat
- Reasonable initial changes to the variables. 
- tolfloat
- Final accuracy in the optimization (not precisely guaranteed). This is a lower bound on the size of the trust region. 
- dispbool
- Set to True to print convergence messages. If False, verbosity is ignored as set to 0. 
- maxiterint
- Maximum number of function evaluations. 
- catolfloat
- Tolerance (absolute) for constraint violations 
 
 
