scipy.stats.weibull_min¶
-
scipy.stats.
weibull_min
(*args, **kwds) = <scipy.stats._continuous_distns.weibull_min_gen object>[source]¶ Weibull minimum continuous random variable.
The Weibull Minimum Extreme Value distribution, from extreme value theory, is also often simply called the Weibull distribution.
As an instance of the
rv_continuous
class,weibull_min
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.Notes
The probability density function for
weibull_min
is:\[f(x, c) = c x^{c-1} \exp(-x^c)\]for \(x >= 0\), \(c > 0\).
weibull_min
takesc
as a shape parameter for \(c\). (named \(k\) in Wikipedia article and \(a\) innumpy.random.weibull
). Special shape values are \(c=1\) and \(c=2\) where Weibull distribution reduces to theexpon
andrayleigh
distributions respectively.The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc
andscale
parameters. Specifically,weibull_min.pdf(x, c, loc, scale)
is identically equivalent toweibull_min.pdf(y, c) / scale
withy = (x - loc) / scale
.References
https://en.wikipedia.org/wiki/Weibull_distribution
Examples
>>> from scipy.stats import weibull_min >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> c = 1.79 >>> mean, var, skew, kurt = weibull_min.stats(c, moments='mvsk')
Display the probability density function (
pdf
):>>> x = np.linspace(weibull_min.ppf(0.01, c), ... weibull_min.ppf(0.99, c), 100) >>> ax.plot(x, weibull_min.pdf(x, c), ... 'r-', lw=5, alpha=0.6, label='weibull_min pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pdf
:>>> rv = weibull_min(c) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of
cdf
andppf
:>>> vals = weibull_min.ppf([0.001, 0.5, 0.999], c) >>> np.allclose([0.001, 0.5, 0.999], weibull_min.cdf(vals, c)) True
Generate random numbers:
>>> r = weibull_min.rvs(c, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(c, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, c, loc=0, scale=1)
Probability density function.
logpdf(x, c, loc=0, scale=1)
Log of the probability density function.
cdf(x, c, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, c, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, c, loc=0, scale=1)
Survival function (also defined as
1 - cdf
, but sf is sometimes more accurate).logsf(x, c, loc=0, scale=1)
Log of the survival function.
ppf(q, c, loc=0, scale=1)
Percent point function (inverse of
cdf
— percentiles).isf(q, c, loc=0, scale=1)
Inverse survival function (inverse of
sf
).moment(n, c, loc=0, scale=1)
Non-central moment of order n
stats(c, loc=0, scale=1, moments=’mv’)
Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(c, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data, c, loc=0, scale=1)
Parameter estimates for generic data.
expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(c, loc=0, scale=1)
Median of the distribution.
mean(c, loc=0, scale=1)
Mean of the distribution.
var(c, loc=0, scale=1)
Variance of the distribution.
std(c, loc=0, scale=1)
Standard deviation of the distribution.
interval(alpha, c, loc=0, scale=1)
Endpoints of the range that contains alpha percent of the distribution