SciPy

scipy.stats.weibull_min

scipy.stats.weibull_min(*args, **kwds) = <scipy.stats._continuous_distns.weibull_min_gen object>[source]

Weibull minimum continuous random variable.

The Weibull Minimum Extreme Value distribution, from extreme value theory, is also often simply called the Weibull distribution.

As an instance of the rv_continuous class, weibull_min object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for weibull_min is:

\[f(x, c) = c x^{c-1} \exp(-x^c)\]

for \(x >= 0\), \(c > 0\).

weibull_min takes c as a shape parameter for \(c\). (named \(k\) in Wikipedia article and \(a\) in numpy.random.weibull). Special shape values are \(c=1\) and \(c=2\) where Weibull distribution reduces to the expon and rayleigh distributions respectively.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, weibull_min.pdf(x, c, loc, scale) is identically equivalent to weibull_min.pdf(y, c) / scale with y = (x - loc) / scale.

References

https://en.wikipedia.org/wiki/Weibull_distribution

Examples

>>> from scipy.stats import weibull_min
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> c = 1.79
>>> mean, var, skew, kurt = weibull_min.stats(c, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(weibull_min.ppf(0.01, c),
...                 weibull_min.ppf(0.99, c), 100)
>>> ax.plot(x, weibull_min.pdf(x, c),
...        'r-', lw=5, alpha=0.6, label='weibull_min pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = weibull_min(c)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = weibull_min.ppf([0.001, 0.5, 0.999], c)
>>> np.allclose([0.001, 0.5, 0.999], weibull_min.cdf(vals, c))
True

Generate random numbers:

>>> r = weibull_min.rvs(c, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
../_images/scipy-stats-weibull_min-1.png

Methods

rvs(c, loc=0, scale=1, size=1, random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1)

Probability density function.

logpdf(x, c, loc=0, scale=1)

Log of the probability density function.

cdf(x, c, loc=0, scale=1)

Cumulative distribution function.

logcdf(x, c, loc=0, scale=1)

Log of the cumulative distribution function.

sf(x, c, loc=0, scale=1)

Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).

logsf(x, c, loc=0, scale=1)

Log of the survival function.

ppf(q, c, loc=0, scale=1)

Percent point function (inverse of cdf — percentiles).

isf(q, c, loc=0, scale=1)

Inverse survival function (inverse of sf).

moment(n, c, loc=0, scale=1)

Non-central moment of order n

stats(c, loc=0, scale=1, moments=’mv’)

Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).

entropy(c, loc=0, scale=1)

(Differential) entropy of the RV.

fit(data, c, loc=0, scale=1)

Parameter estimates for generic data.

expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)

Expected value of a function (of one argument) with respect to the distribution.

median(c, loc=0, scale=1)

Median of the distribution.

mean(c, loc=0, scale=1)

Mean of the distribution.

var(c, loc=0, scale=1)

Variance of the distribution.

std(c, loc=0, scale=1)

Standard deviation of the distribution.

interval(alpha, c, loc=0, scale=1)

Endpoints of the range that contains alpha percent of the distribution

Previous topic

scipy.stats.wald

Next topic

scipy.stats.weibull_max