scipy.stats.skewtest¶
-
scipy.stats.
skewtest
(a, axis=0, nan_policy='propagate')[source]¶ Test whether the skew is different from the normal distribution.
This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the same as that of a corresponding normal distribution.
- Parameters
- aarray
The data to be tested.
- axisint or None, optional
Axis along which statistics are calculated. Default is 0. If None, compute over the whole array a.
- nan_policy{‘propagate’, ‘raise’, ‘omit’}, optional
Defines how to handle when input contains nan. The following options are available (default is ‘propagate’):
‘propagate’: returns nan
‘raise’: throws an error
‘omit’: performs the calculations ignoring nan values
- Returns
- statisticfloat
The computed z-score for this test.
- pvaluefloat
Two-sided p-value for the hypothesis test.
Notes
The sample size must be at least 8.
References
- 1
R. B. D’Agostino, A. J. Belanger and R. B. D’Agostino Jr., “A suggestion for using powerful and informative tests of normality”, American Statistician 44, pp. 316-321, 1990.
Examples
>>> from scipy.stats import skewtest >>> skewtest([1, 2, 3, 4, 5, 6, 7, 8]) SkewtestResult(statistic=1.0108048609177787, pvalue=0.3121098361421897) >>> skewtest([2, 8, 0, 4, 1, 9, 9, 0]) SkewtestResult(statistic=0.44626385374196975, pvalue=0.6554066631275459) >>> skewtest([1, 2, 3, 4, 5, 6, 7, 8000]) SkewtestResult(statistic=3.571773510360407, pvalue=0.0003545719905823133) >>> skewtest([100, 100, 100, 100, 100, 100, 100, 101]) SkewtestResult(statistic=3.5717766638478072, pvalue=0.000354567720281634)