scipy.stats.shapiro¶
- 
scipy.stats.shapiro(x)[source]¶
- Perform the Shapiro-Wilk test for normality. - The Shapiro-Wilk test tests the null hypothesis that the data was drawn from a normal distribution. - Parameters
- xarray_like
- Array of sample data. 
 
- Returns
- Wfloat
- The test statistic. 
- p-valuefloat
- The p-value for the hypothesis test. 
 
 - See also - Notes - The algorithm used is described in [4] but censoring parameters as described are not implemented. For N > 5000 the W test statistic is accurate but the p-value may not be. - The chance of rejecting the null hypothesis when it is true is close to 5% regardless of sample size. - References - 1
- https://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm 
- 2
- Shapiro, S. S. & Wilk, M.B (1965). An analysis of variance test for normality (complete samples), Biometrika, Vol. 52, pp. 591-611. 
- 3
- Razali, N. M. & Wah, Y. B. (2011) Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests, Journal of Statistical Modeling and Analytics, Vol. 2, pp. 21-33. 
- 4
- ALGORITHM AS R94 APPL. STATIST. (1995) VOL. 44, NO. 4. 
 - Examples - >>> from scipy import stats >>> np.random.seed(12345678) >>> x = stats.norm.rvs(loc=5, scale=3, size=100) >>> stats.shapiro(x) (0.9772805571556091, 0.08144091814756393) 
