scipy.stats.recipinvgauss¶
- 
scipy.stats.recipinvgauss(*args, **kwds) = <scipy.stats._continuous_distns.recipinvgauss_gen object>[source]¶
- A reciprocal inverse Gaussian continuous random variable. - As an instance of the - rv_continuousclass,- recipinvgaussobject inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.- Notes - The probability density function for - recipinvgaussis:\[f(x, \mu) = \frac{1}{\sqrt{2\pi x}} \exp\left(\frac{-(1-\mu x)^2}{2\mu^2x}\right)\]- for \(x \ge 0\). - recipinvgausstakes- muas a shape parameter for \(\mu\).- The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the - locand- scaleparameters. Specifically,- recipinvgauss.pdf(x, mu, loc, scale)is identically equivalent to- recipinvgauss.pdf(y, mu) / scalewith- y = (x - loc) / scale.- Examples - >>> from scipy.stats import recipinvgauss >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) - Calculate a few first moments: - >>> mu = 0.63 >>> mean, var, skew, kurt = recipinvgauss.stats(mu, moments='mvsk') - Display the probability density function ( - pdf):- >>> x = np.linspace(recipinvgauss.ppf(0.01, mu), ... recipinvgauss.ppf(0.99, mu), 100) >>> ax.plot(x, recipinvgauss.pdf(x, mu), ... 'r-', lw=5, alpha=0.6, label='recipinvgauss pdf') - Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed. - Freeze the distribution and display the frozen - pdf:- >>> rv = recipinvgauss(mu) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') - Check accuracy of - cdfand- ppf:- >>> vals = recipinvgauss.ppf([0.001, 0.5, 0.999], mu) >>> np.allclose([0.001, 0.5, 0.999], recipinvgauss.cdf(vals, mu)) True - Generate random numbers: - >>> r = recipinvgauss.rvs(mu, size=1000) - And compare the histogram: - >>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()   - Methods - rvs(mu, loc=0, scale=1, size=1, random_state=None) - Random variates. - pdf(x, mu, loc=0, scale=1) - Probability density function. - logpdf(x, mu, loc=0, scale=1) - Log of the probability density function. - cdf(x, mu, loc=0, scale=1) - Cumulative distribution function. - logcdf(x, mu, loc=0, scale=1) - Log of the cumulative distribution function. - sf(x, mu, loc=0, scale=1) - Survival function (also defined as - 1 - cdf, but sf is sometimes more accurate).- logsf(x, mu, loc=0, scale=1) - Log of the survival function. - ppf(q, mu, loc=0, scale=1) - Percent point function (inverse of - cdf— percentiles).- isf(q, mu, loc=0, scale=1) - Inverse survival function (inverse of - sf).- moment(n, mu, loc=0, scale=1) - Non-central moment of order n - stats(mu, loc=0, scale=1, moments=’mv’) - Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). - entropy(mu, loc=0, scale=1) - (Differential) entropy of the RV. - fit(data, mu, loc=0, scale=1) - Parameter estimates for generic data. - expect(func, args=(mu,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) - Expected value of a function (of one argument) with respect to the distribution. - median(mu, loc=0, scale=1) - Median of the distribution. - mean(mu, loc=0, scale=1) - Mean of the distribution. - var(mu, loc=0, scale=1) - Variance of the distribution. - std(mu, loc=0, scale=1) - Standard deviation of the distribution. - interval(alpha, mu, loc=0, scale=1) - Endpoints of the range that contains alpha percent of the distribution 
