scipy.stats.ncf¶
- 
scipy.stats.ncf(*args, **kwds) = <scipy.stats._continuous_distns.ncf_gen object>[source]¶
- A non-central F distribution continuous random variable. - As an instance of the - rv_continuousclass,- ncfobject inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.- Notes - The probability density function for - ncfis:\[\begin{split}f(x, n_1, n_2, \lambda) = \exp(\frac{\lambda}{2} + \lambda n_1 \frac{x}{2(n_1 x+n_2)}) n_1^{n_1/2} n_2^{n_2/2} x^{n_1/2 - 1} \\ (n_2+n_1 x)^{-(n_1+n_2)/2} \gamma(n_1/2) \gamma(1+n_2/2) \\ \frac{L^{\frac{v_1}{2}-1}_{v_2/2} (-\lambda v_1 \frac{x}{2(v_1 x+v_2)})} {B(v_1/2, v_2/2) \gamma(\frac{v_1+v_2}{2})}\end{split}\]- for \(n_1 > 1\), \(n_2, \lambda > 0\). Here \(n_1\) is the degrees of freedom in the numerator, \(n_2\) the degrees of freedom in the denominator, \(\lambda\) the non-centrality parameter, \(\gamma\) is the logarithm of the Gamma function, \(L_n^k\) is a generalized Laguerre polynomial and \(B\) is the beta function. - ncftakes- df1,- df2and- ncas shape parameters.- The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the - locand- scaleparameters. Specifically,- ncf.pdf(x, dfn, dfd, nc, loc, scale)is identically equivalent to- ncf.pdf(y, dfn, dfd, nc) / scalewith- y = (x - loc) / scale.- Examples - >>> from scipy.stats import ncf >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) - Calculate a few first moments: - >>> dfn, dfd, nc = 27, 27, 0.416 >>> mean, var, skew, kurt = ncf.stats(dfn, dfd, nc, moments='mvsk') - Display the probability density function ( - pdf):- >>> x = np.linspace(ncf.ppf(0.01, dfn, dfd, nc), ... ncf.ppf(0.99, dfn, dfd, nc), 100) >>> ax.plot(x, ncf.pdf(x, dfn, dfd, nc), ... 'r-', lw=5, alpha=0.6, label='ncf pdf') - Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed. - Freeze the distribution and display the frozen - pdf:- >>> rv = ncf(dfn, dfd, nc) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') - Check accuracy of - cdfand- ppf:- >>> vals = ncf.ppf([0.001, 0.5, 0.999], dfn, dfd, nc) >>> np.allclose([0.001, 0.5, 0.999], ncf.cdf(vals, dfn, dfd, nc)) True - Generate random numbers: - >>> r = ncf.rvs(dfn, dfd, nc, size=1000) - And compare the histogram: - >>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()   - Methods - rvs(dfn, dfd, nc, loc=0, scale=1, size=1, random_state=None) - Random variates. - pdf(x, dfn, dfd, nc, loc=0, scale=1) - Probability density function. - logpdf(x, dfn, dfd, nc, loc=0, scale=1) - Log of the probability density function. - cdf(x, dfn, dfd, nc, loc=0, scale=1) - Cumulative distribution function. - logcdf(x, dfn, dfd, nc, loc=0, scale=1) - Log of the cumulative distribution function. - sf(x, dfn, dfd, nc, loc=0, scale=1) - Survival function (also defined as - 1 - cdf, but sf is sometimes more accurate).- logsf(x, dfn, dfd, nc, loc=0, scale=1) - Log of the survival function. - ppf(q, dfn, dfd, nc, loc=0, scale=1) - Percent point function (inverse of - cdf— percentiles).- isf(q, dfn, dfd, nc, loc=0, scale=1) - Inverse survival function (inverse of - sf).- moment(n, dfn, dfd, nc, loc=0, scale=1) - Non-central moment of order n - stats(dfn, dfd, nc, loc=0, scale=1, moments=’mv’) - Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). - entropy(dfn, dfd, nc, loc=0, scale=1) - (Differential) entropy of the RV. - fit(data, dfn, dfd, nc, loc=0, scale=1) - Parameter estimates for generic data. - expect(func, args=(dfn, dfd, nc), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) - Expected value of a function (of one argument) with respect to the distribution. - median(dfn, dfd, nc, loc=0, scale=1) - Median of the distribution. - mean(dfn, dfd, nc, loc=0, scale=1) - Mean of the distribution. - var(dfn, dfd, nc, loc=0, scale=1) - Variance of the distribution. - std(dfn, dfd, nc, loc=0, scale=1) - Standard deviation of the distribution. - interval(alpha, dfn, dfd, nc, loc=0, scale=1) - Endpoints of the range that contains alpha percent of the distribution 
