scipy.stats.mstats.siegelslopes¶
- 
scipy.stats.mstats.siegelslopes(y, x=None, method='hierarchical')[source]¶
- Computes the Siegel estimator for a set of points (x, y). - siegelslopesimplements a method for robust linear regression using repeated medians to fit a line to the points (x, y). The method is robust to outliers with an asymptotic breakdown point of 50%.- Parameters
- yarray_like
- Dependent variable. 
- xarray_like or None, optional
- Independent variable. If None, use - arange(len(y))instead.
- method{‘hierarchical’, ‘separate’}
- If ‘hierarchical’, estimate the intercept using the estimated slope - medslope(default option). If ‘separate’, estimate the intercept independent of the estimated slope. See Notes for details.
 
- Returns
- medslopefloat
- Estimate of the slope of the regression line. 
- medinterceptfloat
- Estimate of the intercept of the regression line. 
 
 - See also - theilslopes
- a similar technique without repeated medians 
 - Notes - For more details on - siegelslopes, see- scipy.stats.siegelslopes.
