scipy.stats.mstats.kendalltau¶
- 
scipy.stats.mstats.kendalltau(x, y, use_ties=True, use_missing=False, method='auto')[source]¶
- Computes Kendall’s rank correlation tau on two variables x and y. - Parameters
- xsequence
- First data list (for example, time). 
- ysequence
- Second data list. 
- use_ties{True, False}, optional
- Whether ties correction should be performed. 
- use_missing{False, True}, optional
- Whether missing data should be allocated a rank of 0 (False) or the average rank (True) 
- method: {‘auto’, ‘asymptotic’, ‘exact’}, optional
- Defines which method is used to calculate the p-value [1]. ‘asymptotic’ uses a normal approximation valid for large samples. ‘exact’ computes the exact p-value, but can only be used if no ties are present. ‘auto’ is the default and selects the appropriate method based on a trade-off between speed and accuracy. 
 
- Returns
- correlationfloat
- Kendall tau 
- pvaluefloat
- Approximate 2-side p-value. 
 
 - References - 1
- Maurice G. Kendall, “Rank Correlation Methods” (4th Edition), Charles Griffin & Co., 1970. 
 
