scipy.stats.describe¶
- 
scipy.stats.describe(a, axis=0, ddof=1, bias=True, nan_policy='propagate')[source]¶
- Compute several descriptive statistics of the passed array. - Parameters
- aarray_like
- Input data. 
- axisint or None, optional
- Axis along which statistics are calculated. Default is 0. If None, compute over the whole array a. 
- ddofint, optional
- Delta degrees of freedom (only for variance). Default is 1. 
- biasbool, optional
- If False, then the skewness and kurtosis calculations are corrected for statistical bias. 
- nan_policy{‘propagate’, ‘raise’, ‘omit’}, optional
- Defines how to handle when input contains nan. The following options are available (default is ‘propagate’): - ‘propagate’: returns nan 
- ‘raise’: throws an error 
- ‘omit’: performs the calculations ignoring nan values 
 
 
- Returns
- nobsint or ndarray of ints
- Number of observations (length of data along axis). When ‘omit’ is chosen as nan_policy, each column is counted separately. 
- minmax: tuple of ndarrays or floats
- Minimum and maximum value of data array. 
- meanndarray or float
- Arithmetic mean of data along axis. 
- variancendarray or float
- Unbiased variance of the data along axis, denominator is number of observations minus one. 
- skewnessndarray or float
- Skewness, based on moment calculations with denominator equal to the number of observations, i.e. no degrees of freedom correction. 
- kurtosisndarray or float
- Kurtosis (Fisher). The kurtosis is normalized so that it is zero for the normal distribution. No degrees of freedom are used. 
 
 - Examples - >>> from scipy import stats >>> a = np.arange(10) >>> stats.describe(a) DescribeResult(nobs=10, minmax=(0, 9), mean=4.5, variance=9.166666666666666, skewness=0.0, kurtosis=-1.2242424242424244) >>> b = [[1, 2], [3, 4]] >>> stats.describe(b) DescribeResult(nobs=2, minmax=(array([1, 2]), array([3, 4])), mean=array([2., 3.]), variance=array([2., 2.]), skewness=array([0., 0.]), kurtosis=array([-2., -2.])) 
