scipy.special.spherical_jn¶
- 
scipy.special.spherical_jn(n, z, derivative=False)[source]¶
- Spherical Bessel function of the first kind or its derivative. - Defined as [1], \[j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n + 1/2}(z),\]- where \(J_n\) is the Bessel function of the first kind. - Parameters
- nint, array_like
- Order of the Bessel function (n >= 0). 
- zcomplex or float, array_like
- Argument of the Bessel function. 
- derivativebool, optional
- If True, the value of the derivative (rather than the function itself) is returned. 
 
- Returns
- jnndarray
 
 - Notes - For real arguments greater than the order, the function is computed using the ascending recurrence [2]. For small real or complex arguments, the definitional relation to the cylindrical Bessel function of the first kind is used. - The derivative is computed using the relations [3], \[ \begin{align}\begin{aligned}j_n'(z) = j_{n-1}(z) - \frac{n + 1}{z} j_n(z).\\j_0'(z) = -j_1(z)\end{aligned}\end{align} \]- New in version 0.18.0. - References 
