SciPy

scipy.special.roots_sh_jacobi

scipy.special.roots_sh_jacobi(n, p1, q1, mu=False)[source]

Gauss-Jacobi (shifted) quadrature.

Compute the sample points and weights for Gauss-Jacobi (shifted) quadrature. The sample points are the roots of the n-th degree shifted Jacobi polynomial, \(G^{p,q}_n(x)\). These sample points and weights correctly integrate polynomials of degree \(2n - 1\) or less over the interval \([0, 1]\) with weight function \(w(x) = (1 - x)^{p-q} x^{q-1}\). See 22.2.2 in [AS] for details.

Parameters
nint

quadrature order

p1float

(p1 - q1) must be > -1

q1float

q1 must be > 0

mubool, optional

If True, return the sum of the weights, optional.

Returns
xndarray

Sample points

wndarray

Weights

mufloat

Sum of the weights

References

AS

Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.

Previous topic

scipy.special.roots_sh_chebyu

Next topic

scipy.special.legendre