scipy.special.chebyu¶
- 
scipy.special.chebyu(n, monic=False)[source]¶
- Chebyshev polynomial of the second kind. - Defined to be the solution of \[(1 - x^2)\frac{d^2}{dx^2}U_n - 3x\frac{d}{dx}U_n + n(n + 2)U_n = 0;\]- \(U_n\) is a polynomial of degree \(n\). - Parameters
- nint
- Degree of the polynomial. 
- monicbool, optional
- If True, scale the leading coefficient to be 1. Default is False. 
 
- Returns
- Uorthopoly1d
- Chebyshev polynomial of the second kind. 
 
 - See also - chebyt
- Chebyshev polynomial of the first kind. 
 - Notes - The polynomials \(U_n\) are orthogonal over \([-1, 1]\) with weight function \((1 - x^2)^{1/2}\). 
